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ABSTRACT
A Helmholtz resonator with flexible plate attenuates noise

in exhaust ducts, and the transmission loss function quantifies
the amount of filtered noise at a desired frequency. In this work
the transmission loss is maximized (optimized) by allowing the
resonator end plate thickness to vary for two cases: 1) a non-
optimized baseline resonator, and 2) a resonator with a uniform
flexible endplate that was previously optimized for transmission
loss and resonator size. To accomplish this, receptance coupling
techniques were used to couple a finite element model of a vary-
ing thickness resonator end plate to a mass-spring-damper model
of the vibrating air mass in the resonator. Sequential quadratic
programming was employed to complete a gradient based opti-
mization search. By allowing the end plate thickness to vary, the
transmission loss of the non-optimized baseline resonator was
improved significantly, 28 percent. However, the transmission
loss of the previously optimized resonator for transmission loss
and resonator size showed minimal improvement.

1 Introduction
Due to their use in aerospace, automotive, and industrial ap-

plications for sound attenuation or the generation of sound vibra-
tion, there is a continued interest in acoustic devices. Therefore,
a need exists for analysis and design tools that can be used in
the development of new products or the improvement of existing

∗Address all correspondence to this author.

products.
Investigators have previously applied analytical and optimization
techniques to the development of acoustic devices. In an effort
to develop flat loudspeakers, Doaré et al. [5] derived a dynamic
model of a circular clamped plate in the presence of excitations
from a voice coil and piezoelectric patches. An optimization
study was carried out to design the geometry of the voice coil
and patches to maximize the amplitude of the first mode while
minimizing the amplitude at other modes. Duan et al. [6] con-
sidered improving the response of circular plates with free edges
by altering their thickness. An analytical model was derived to
model the stepped plate and a higher thickness at the bound-
ary was found to produce a favorable symmetric mode similar
to clamped plates.
Prior work also includes efforts to improve device response,
which depends on the alignment of the actuation with the struc-
ture resonant frequencies. Peters et al. [13] utilized eigenmode
sensitivities to identify preferable locations in the structure to im-
prove system response. Additional work [12] includes the identi-
fication of temporary changes in the structure to minimize power
consumption.
This work presents a continuation of the author’s effort to im-
prove the sound attenuation of passive Helmholtz resonators with
a flexible circular plate. Previously, Nudehi, et. al. [11] created
an analytical model of a passive Helmholtz resonator with a flex-
ible uniform thickness circular end plate using receptance cou-
pling techniques [2]. Kurdi, et. al. [8] used this analytical model
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in conjunction with a gradient based optimization search to op-
timize a baseline resonator with a flexible endplate to achieve a
maximum transmission loss at a desired frequency while mini-
mizing the resonator size.
In this paper, the authors expand upon their previous work to
include in the optimization a flexible endplate that can vary in
thickness throughout its area. Two questions are investigated:
how much can a flexible endplate with optimized, varying end-
plate thickness 1) improve the transmission loss of the baseline
resonator (with no other changes to geometry) and 2) improve the
transmission loss of a resonator with a uniform thickness flexible
endplate previously optimized for transmission loss and mini-
mum resonator size.
To accomplish this a numerical model of the transmission loss
function of the resonator is derived by coupling a finite element
model (FEM) of the top circular endplate [1] with single-degree-
of-freedom model of the acoustic field in the resonator cham-
ber. Coupling is achieved through receptance coupling substruc-
ture analysis [2]. An analysis and design framework of the res-
onator is developed within the Finite Element Analysis Program
(FEAP) environment [15]. Adjoint design sensitivities of the
transmission loss are derived to expedite the gradient-based opti-
mization search, which is carried out using sequential quadratic
programming method utilizing NLPQLP library [14].
The paper is organized as follows. The optimization problem is
formulated in Sections 2 and 3. The transmission loss and ad-
joint sensitivity of a Helmholtz resonator with a flexible plate are
provided in Sections 4 and 5. The verification and optimization
results for the model and sensitivity are provided in Section 6,
and the conclusions are presented in Section 7.

2 Summary of Previous Work: Transmission Loss
Optimization of a Helmholtz Resonator with a Uni-
form Thickness Flexible Plate
In our previous study, a design process was introduced to

produce small volume Helmholtz resonators with flexible uni-
form thickness plates capable of achieving high transmission loss
across a specified frequency range [8]. Figure 1 shows the ge-
ometry of the resonator with the flexible plate. For the design
process, a multi-objective optimization procedure was applied in
which the resonator’s cavity volume and transmission loss were
considered as the two competing objectives. The outcome of the
optimization was the geometry of the resonator (neck diameter,
neck length, cavity diameter, cavity height) and the thickness of
the flexible plate, which was assumed to be uniform. In this pa-
per, we refer to this optimization as the level-1 optimization, in
which the optimal resonator’s parameters and the thickness of
flexible plate were determined to achieve high transmission loss
across a specified frequency range.
The optimization produced a Pareto curve of potential resonator
and plate designs, allowing the designer to select a design from
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FIGURE 1: Helmholtz resonator with a flexible plate

a variety of optimal designs that meets the designer’s particu-
lar size and transmission loss specifications. One of the level-
1 optimization results (Optimal Design-1) is shown in Table 1.
Also, Table 1 shows the geometric properties of a baseline, non-
optimized Helmholtz resonator design with a flexible end plate
(studied in [11]). The baseline resonator has a transmission loss
peak at a frequency of 30 Hz, the desired frequency chosen in
the optimal design formulation. Also, in the level-1 optimiza-
tion, the baseline geometry was used as the start of the search to
find the optimal resonator geometry.

Quantity dp(mm) tp(mm) dn(mm) ln(mm) hc(mm) ∆T L(dB)

Baseline 194.31 0.254 18.67 19.25 200.00 6.83

Optimal Design-1 203.20 0.2413 20.32 9.52 81.28 10.23

TABLE 1: Resonator geometric properties.

In Table 1, the flexible plate diameter is dp, tp is the flexible plate
thickness, dn is the resonator neck diameter, ln is the resonator
neck length, hc is the resonator chamber height, and ∆T L is the
weighted transmission loss. The geometrical variables are shown
in Figure 1a.

3 Analytical Development: Transmission Loss Op-
timization of a Helmholtz Resonator with a Non-
Uniform Thickness Flexible Plate

3.1 Optimization Objective and Constraint
The goal of the optimization search is to provide the high-

est transmission loss across the specified frequency range. To
accomplish this we permit the flexible plate thickness to be non-
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uniform, and the design variable vector in the optimization prob-
lem only includes the thickness of each material element in the
finite element mesh of the plate. The transmission loss objective
function is formulated in (8) and shown below:

min
b

∆T L=−T L(ωdesired−δ )+αT L(ωdesired)+T L(ωdesired +δ )

2+α
(1)

where, T L(ωdesired) is the transmission loss at selected frequency,
ωdesired is the nominal selected frequency, δ is the selected fre-
quency band around ωdesired, α is a weighting factor to favor
ωdesired, and ∆T L is the weighted transmission loss. The ob-
jective function creates a desired frequency band in which the
maximum transmission loss will occur and is weighted such that
the maximum transmission loss is directed to the center of the
band.

The objective function is constrained by the following:

g =
ndv

∑
i=1

A(i)t(i)p −
πd2

p

4
tp ≤ 0.0, (2)

where g is the constraint, A(i) is the area of the ith element
in the plate finite element mesh, design vector b includes the el-
ements thickness (t(i)p ), tp and dp are the plate thickness and di-
ameter of the non-optimized resonator, respectively, and ndv is
the number of elements used in the plate mesh. The constraint is
applied such that the volume of the optimized, non-uniform plate
is equal to or less than the volume of the non-optimized, uniform
plate. The purpose of the constraint is to provide an optimized
resonator with a weight equal to or less than the non-optimized
resonator.

4 Analysis Model
The transmission loss of the resonator is defined as [4]:

T L = 20log10 |β | (3)

where

β = 1+ iωH(ω)
ρa

2Aduct
(4)

and H(ω) is the frequency response of the resonator assembly,
ω is the excitation frequency, ρ is the air density, a is the speed
of sound and Aduct is the cross-sectional area of the duct where
the resonator is installed. H(ω) is derived by coupling the fre-
quency response function of the flexible end plate and the stan-

dard Helmholtz resonator using the receptance coupling method.
The result of the coupling is summarized in (5)

H = h11(ω)− h12(ω)h21(ω)

h22(ω)+h33(ω)
(5)

In this equation, h11(ω) is the direct receptance of the Helmholtz
resonator subsystem at coordinate 1, h22(ω) is the direct recep-
tance of the Helmholtz resonator at coordinate 2, h33(ω) is the di-
rect receptance of the flexible end plate subsystem at coordinate
3, and h21(ω) = h12(ω) is the cross receptance of the Helmholtz
resonator subsystem at the coordinates 1 and 2. Figure 1b dis-
plays the coordinates in relation to the resonator and plate. As-
suming a harmonic input pressure, the expressions for these re-
ceptances are:

h11(ω) =
v1

p1
=
−1

ω2Mres
(6a)

h22(ω) =
v2

p2
=

ω2Mres− iωBres−Kres

ω2(iωMresBres +MresKres)
(6b)

h33(ω) =
v3

p3
(6c)

h12(ω) =
v1

p2
=
−1

ω2Mres
(6d)

In (6) p j and v j are the pressure and displaced volume at coor-
dinate j, i =

√
−1, Bres is the equivalent viscous damping of the

resonator [16], and Mres , Kres, are the equivalent resonator mass
and stiffness, respectively, which are defined below:

Mres =
mneck

A2
neck

(7a)

Kres =
ρa2

V chamber
(7b)

where mneck is the mass of the fluid in the neck and Aneck is the
cross-sectional area of the neck.
The receptance of (6c) is found by considering the finite element
model of plate. Equations of motion of the plate are derived by
considering the principle of virtual work [7].

[M] q̈(t)+(iγ +1) [K]q(t) = f . (8)

Here q̈(t) is the global nodal deformation vector, [M] is the global
mass matrix, [K] is the global stiffness matrix, f is the external
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force vector, γ is structural damping factor. The damping con-
tribution is derived by assuming the internal friction of the plate
depends on the response amplitude only, is independent of exci-
tation frequency and is proportional to the stiffness matrix [10].
Applying expansion theorem [10] one can transform (8) into
modal coordinates by substituting the modal approximation:

q(t) =
n

∑
r=1

ηr(t)ur (9)

to yield

η̈(t)+(iγ +1) [Λ]η(t) = [U ]T f (10)

In the above equations, ur is the rth mode shape of the plate
with a modal deformation of ηr(t), n is the number of modes
in the eigensolution of the plate, η is modal deformation vec-
tor of size n, [U ] is the matrix of eigenvectors normalized to the
mass matrix [3], and [Λ] is the diagonal matrix of the plate natu-
ral frequencies (ωr) which are the results of the below eigenvalue
problem:

[K]ur = µr [M]ur (11)

where µr = ω2
r .

Utilizing the mode shapes, the displaced plate volume in (6c) is
computed by integrating (9) over the plate area

v3(t) =
n

∑
r=1

ηr(t)
∫

A
urdA =

n

∑
r=1

ηr(t)uT
r A (12)

where A is a column vector consisting of the plate mesh elements
area.
The plate receptance is then found by transferring (10) into the
frequency domain by substituting η = δη exp(iωt) and f =
δ f exp(iωt). This will result in:

δηr =
uT

r δ f
(iγ +1)ω2

r −ω2 (13)

Substituting the expression for ηr in the frequency domain
from (13) into (12), will yield the displaced volume of the res-
onator plate in the frequency domain as shown below:

δv3 =
n

∑
r=1

uT
r AuT

r δ f
(iγ +1)ω2

r −ω2 (14)

5 Adjoint Sensitivity

In the optimization, calculating the sensitivity using stan-
dard finite differences is computationally costly, since there are
many thickness design variables in the design parameter vector b.
To alleviates this issue an adjoint sensitivity is used to calculate
the transmission loss and its sensitivity to the design parameter
vector [7]. In this approach, the transmission loss and its sensi-
tivity is calculated in one step without needing to recompute the
eigenvalues and eigenvectors every time. The following shows
the formulation for the transmission loss sensitivity to a design
variable x:

dT L
dx

=
∂T L
∂H

[
∂H
∂x

+
n

∑
r=1

(
∂H
∂ur

dur

dx
+

∂H
∂ µr

dµr

dx

)]
(15)

In this equation, the first term in the bracket ∂H
∂x is the explicit

derivative of H (resonator assembly frequency response) to a de-
sign variable in (5) and their dependencies in (6). For thickness
design variables this term is zero. The second term represents the
implicit dependence of transmission loss on the design variables
and requires the computation of the eigenvectors sensitivity du

dx .
Utilizing the modal method [7], the sensitivity of the eigenvector
is computed according to:

dur

dx
=

l

∑
j=1

cr ju j (16)

where l is the number of mode shapes, and

cr j =
uT

j

(
d[K]
dx −µ

d[M]
dx

)
ur

(µr−µ j)uT
j [M]u j

, (17)

In evaluating (17) the derivative of stiffness and mass matrices is
calculated using forward finite difference. The derivative of the
eigenvalues µ is:

dµ

dx
=

uT
(

d[K]
dx −µ

d[M]
dx

)
u

uT [M]u
. (18)

The remaining explicit derivatives are evaluated by taking deriva-
tive to eigenvectors:

∂H
∂ur

=
−h12h21

(δv3 +h22)2
∂δv3

∂ur
(19)
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where

∂δv3

∂ur
=

(uT
r A)δ p+A(uT

r δ p)
(1+ iγ)ω2

r −ω2 (20)

and eigenvalues

∂H
∂ µr

=
−h12h21

(δv3 +h22)2
∂δv3

∂ µr
(21)

where

∂δv3

∂ µr
=−(1+ iγ)

uT
r AuT

r δ p

[(1+ iγ)ω2
r −ω2]2

. (22)

Finally the derivatives of explicit term is:

∂T L
∂H

= iω
20
|β |2

β

Ln(10)
ρa

2Aduct
(23)

6 Verification
The numerical transmission loss function and adjoint sensi-

tivity are verified in the following sections.

6.1 Model Verification
The circular plate was discretized into the meshes shown in

Figure 2. The mesh in Figure 2a is constructed by subdivid-
ing a master quadrilateral element using the block command in
FEAP. The mesh in Figure 2b is constructed using a blending
function [15, 17]. Both meshes yield good results in computing
the natural modes and transmission loss function. For example,
utilizing 768 quadrilateral plate elements in the block mesh, the
frequencies of first four modes are calculated and compared to
the analytical result(see Table 2).

natural frequency (rad/sec) ω1 ω2 ω3 ω4

Percent error 0.591 0.659 0.381 0.743

TABLE 2: Percent error when comparing natural frequencies pro-
duced from FEM model and analytical analysis from [9]

Also, for different excitation frequencies the analytical and
finite element results for the transmission loss of the baseline res-

(a) Block mesh (b) Blended mesh

FIGURE 2: Plate finite element mesh

onator (geometric parameters are shown in Table 1) is displayed
in Figure 3. In the analytical model three modes are included
in the solution. However, the finite element solution uses six
modes (n = 6) and 972 elements of blocked mesh for one solu-
tion and 950 elements of blended mesh for a second solution. An
excellent match in transmission loss between the two solutions
is observed (see Figure 3). Also, the blended mesh provided a
better match to the analytical result than the blocked mesh (see
Table 3).
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FIGURE 3: Transmission loss function for baseline geometry.

6.2 Sensitivity Verification
To verify the adjoint sensitivity calculations for the flexi-

ble plate, forward finite difference results were used to compare
the sensitivity results. For this purpose, sensitivity results were
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Model Analytical Block FEA Blended FEA

(4 modes) (972 elements, 6 modes) (950 elements, 6 modes)

Baseline ∆T L 6.833 7.319 6.875

TABLE 3: Comparison of prediction of ∆T L
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(a) Finite difference sensitivity results
for six modes
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(b) Adjoint sensitivity results for 18
modes

FIGURE 4: Sensitivity of objective for mesh of 108 design vari-
ables (elements)
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(b) Adjoint sensitivity results for 30
modes

FIGURE 5: Sensitivity of objective for mesh of 432 elements

computed and compared for the baseline plate dimensions (see
Section 2).
First, the sensitivity was calculated for the FEA method using a
block-type mesh of 108 plate elements and for the finite differ-
ence method. The finite difference sensitivity converged using
six modes, but 18 modes were required to converge using the
adjoint method. The calculated sensitivity for the two methods
varied significantly (see Figure 4).
Next, the number of FEA elements was increased from 108 to
432 and both the adjoint method and finite difference method
yielded similar results (see Figure 5); therefore, the adjoint sen-
sitivity calculations were verified. The fine mesh increased the
accuracy of the finite difference sensitivity results by increasing
the accuracy of the response. However, more modes were still
required for the adjoint method to converge than for the finite
difference method to converge.

6.3 Optimization Results
In this section optimal results for a non-uniform plate thick-

ness for two different Helmholtz resonators with flexible plates
are provided: 1) the baseline resonator and 2) a resonator that
was previously optimized for maximum transmission loss and
minimum resonator size (Optimal Design-1 Resonator). Table 1
shows the resonator and uniform plate dimensions for the two
resonators, prior to the optimization of the plate thickness.

The optimization search was completed for two different fi-
nite element meshes, a block mesh and a blended mesh. The
block-mesh offered consistent element size but lacked radial
symmetry. The blended mesh allowed for radial symmetry but
lacked element size consistency [17]. A one-to-one ratio of el-
ements and number of design variables was considered for this
study. Additionally, initial studies indicated the existence of mul-
tiple optimal designs, and the convergence to the optimal design
depended on the selection of the initial plate thickness. The re-
sults reported here are based on the initial plate thickness that
provided the most optimum transmission loss results.

6.3.1 Baseline Resonator Optimization For the
baseline resonator, two meshes were considered to discretize the
plate, a one-to-one coarse mesh of 108 elements of block type
and 148 elements of blended type. The optimization results are
shown in Figure 6 for both meshes. By allowing the plate thick-
ness to vary, the transmission loss of the baseline resonator is
significantly improved (see Table 4). The results show that the
block mesh produces a design with a slightly better transmission
loss than the blended mesh, while the blended mesh produces a
design with a lighter plate (smaller volume) as compared to the
block mesh and the baseline designs.

Resonator ∆T L Vf (plate volume)

Baseline with uniform

thickness plate 6.833(dB) 7.6536×10−6(m3)

Baseline with non-uniform

thickness plate (block mesh) 8.89(dB) 7.7723×10−6(m3)

Baseline with non-uniform

thickness plate (blended mesh) 8.72(dB) 7.3274×10−6(m3)

TABLE 4: ∆T L Comparison for uniform and non-uniform thick-
ness plate in the baseline resonator

To study the influence of mesh size on the optimization re-
sults, a refined block mesh design utilizing 432 elements (design
variables) was used, again for the baseline resonator. The opti-
mization results are shown in Figure 7 and the results are sum-
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marized in Table 5. A finer mesh produced an optimal resonator
design with an improved transmission loss and a reduced plate
volume. In this case, the optimal design favors a more uniform
thickness with sections of higher thickness near the boundary.

Resonator ∆T L Vf (resonator volume) number of elements

Baseline with non-uniform

thickness plate (block mesh) 8.89(dB) 7.7723×10−6(m3) 108

Baseline with non-uniform

thickness plate (block mesh) 9.08(dB) 7.6585×10−6(m3) 423

TABLE 5: Influence of the mesh size on weighted transmission
loss for the baseline resonator with a non-uniform thickness plate
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FIGURE 6: Optimization results of the baseline geometry. (a)
block mesh: ∆T L = 8.89 dB (b) blended mesh: ∆T L = 8.72 dB
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FIGURE 7: Optimization result for the baseline geometry
(∆T L = 9.08 dB)

6.3.2 Level-2 Optimization of the Design-1 Res-
onator For the resonator that was previously optimized for
maximum transmission loss and minimum resonator size (Op-
timal Design-1 Resonator) the optimization results for a non-
uniform plate thickness are shown in Figure 8 and the transmis-
sion loss results are summarized in Table 6. In this case, the
blended mesh design improved the transmission loss by only 2
percent while decreasing the plate volume by 4 percent from the
Optimal Design-1 Resonator. In the case of block mesh, the opti-
mization reduced the volume of the plate but the amount of trans-
mission loss was reduced.

 1.98E-04
 2.04E-04
 2.09E-04
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(a)
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 3.02E-04

_________________ Thickness       

               Time = 0.00E+00

(b)

FIGURE 8: Optimization results of optimal Design-1 geometry.
(a) Block mesh: ∆T L = 9.05 dB, (b) Blended mesh: ∆T L =
10.48 dB

Resonator ∆T L Vf (resonator volume) number of elements

Design-1 (level-1) 10.23(dB) 7.6536×10−6(m3) N/A

Design-1 (level-2)

(block mesh) 9.05(dB) 7.1857×10−6(m3) 108

Design-1 (level-2)

(blended mesh) 10.48(dB) 7.1653×10−6(m3) 108

TABLE 6: Level-2 optimization results for the Design-1 res-
onator

7 Conclusion
The use of Helmholtz resonators to attenuate noise requires

the selection of a resonator geometry such that noise attenuation
is a maximum at the desired frequency. With the goal of im-
proving transmission loss, this work investigated two questions:
how much can a flexible endplate with optimized, varying end-
plate thickness 1) improve the transmission loss of a baseline
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resonator with a uniform plate thickness (with no other changes
to geometry) and 2) improve the transmission loss of a resonator
with a uniform thickness flexible endplate previously optimized
for transmission loss and minimum resonator size.
To perform the studies, a finite element model of a resonator
end plate of varying thickness was coupled to a single-degree-
of-freedom model of the resonator. A sequential quadratic pro-
gramming algorithm was then used to complete a gradient based
optimization search.
By allowing the plate thickness to vary while applying the opti-
mization technique described in this paper, the transmission loss
of the baseline resonator was significantly improved (28 percent).
If the size of the resonator is not a concern, it is beneficial to per-
form this optimization. If the resonator has previously been op-
timized for both maximum transmission loss and minimum res-
onator volume, extending the optimization to allow for the end
plate thickness to vary only increases the transmission loss by 2
percent; therefore, the further optimization is not necessary.
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