
Constructing multiple unique input/output
sequences using metaheuristic optimisation
techniques

Q. Guo, R.M. Hierons, M. Harman and K. Derderian

Abstract: Multiple unique input/output sequences (UIOs) are often used to generate robust and
compact test sequences in finite state machine (FSM) based testing. However, computing UIOs is
NP-hard. Metaheuristic optimisation techniques (MOTs) such as genetic algorithms (GAs) and
simulated annealing (SA) are effective in providing good solutions for some NP-hard problems.
In the paper, the authors investigate the construction of UIOs by using MOTs. They define a fitness
function to guide the search for potential UIOs and use sharing techniques to encourage MOTs to
locate UIOs that are calculated as local optima in a search domain. They also compare the
performance of GA and SA for UIO construction. Experimental results suggest that, after using
a sharing technique, both GA and SA can find a majority of UIOs from the models under test.

1 Introduction

Finite state machines (FSMs) have been used for modelling
systems in various areas such as sequential circuits, software
and communication protocols [1–9]. In FSM-based testing,
a standard test strategy consists of two parts, namely,
transition test and tail state verification. The former part
aims to determine whether a transition of an implementation
under test (IUT) produces the expected output while the
latter checks that the IUT arrives at the specified state when
a transition test is finished. Three techniques are proposed
for state verification: unique input/output sequence (UIO),
distinguishing sequence (DS) and characterising set (CS).
Test sequence generation methods using the above are
called the U-, D- and W-methods, respectively. In terms of
fault coverage, the U-, D- and W-Methods exhibit no
significant difference [6]. The use of UIOs has several
advantages: (i) not all FSMs have a distinguishing sequence
(DS), but nearly all FSMs have UIOs for each state [1];
(ii) the length of a UIO is no longer than that of a DS;
(iii) while UIOs may be longer than a characterising set, in
practice UIOs often lead to shorter test sequences. Aho et al.
[1] showed how an efficient test sequence may be produced
using UIOs for state verification. Shen et al. [7] extended the
method by using multiple UIOs for each state and showed
that this leads to a shorter test sequence. This paper
considers the problem of finding multiple UIOs for a given
FSM. Yang and Ural [8], Miller [9] and Hierons [10, 11]

showed that overlap can be used in conjunction with
(multiple) UIOs to further reduce the test sequence length.

Unfortunately, computing UIOs is NP-hard [4]. Lee and
Yannakakis [4] note that adaptive distinguishing sequences
and UIOs may be produced by constructing a state splitting
tree. However, no rule is explicitly defined to guide the
construction of an input sequence. Naik [12] proposes an
approach to construct UIOs by introducing a set of inference
rules. Some minimal length UIOs are found. These are used
to deduce some other states’ UIOs. A state’s UIO is
produced by concatenating a sequence to another state,
whose UIO has been found, with this state’s UIO sequence.
Although it may reduce the time taken to find some UIOs,
the inference rule inevitably increases a UIO’s length,
which consequently leads to longer test sequences.

Metaheuristic optimisation techniques (MOTs) such as
genetic algorithms (GAs) [13] and simulated annealing (SA)
[14, 15] have proven efficient in search and optimisation and
have shown their effectiveness in providing good solutions
to some NP-hard problems such as the Travelling Salesman
Problem. When searching for optimal solutions in multi-
modal functions, the use of sharing techniques is likely to
lead to a population that contains several sub-populations
that cover local optima [16]. This result is useful since in
some search problems we wish to locate not only global
optima, but also local optima.

In software engineering, MOTs have been introduced for
the generation of test data. Applications can be found in
structural coverage testing (branch coverage testing) [17,
18], worst case and best case execution time estimating [19],
and exception detecting [20].

Previous work has shown that a GA may be used to find
UIOs for an FSM [21]. The search used a fitness function
based on the state splitting tree [Note 1]. In experiments the
GA outperformed random search, especially on finding
longer UIOs. However, a significant drawback was also
noted. Some UIOs are missed with high probability.
Solutions of all UIOs form multi-modals (local optima) in

q IEE, 2005

IEE Proceedings online no. 20045001

doi: 10.1049/ip-sen:20045001

Q. Guo, R.M. Hierons and K. Derderian are with the Department of
Information System and Computing, Brunel University, Uxbridge UB8
3PH, UK

M. Harman is with the Department of Computer Science, King’s College
London, Strand, London WC2R 2LS, UK

E-mail: Qiang.Guo@brunel.ac.uk

Paper first received 20th April 2004 and in revised form 1st February 2005

Note 1: The state splitting tree will be defined in Section 2.

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 127

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the search space - a search might find only a few of these
local optima and thus miss some UIOs. To find more UIOs,
it is necessary to use some techniques to effectively detect
local optima. This paper investigates the construction of
UIOs usingMOTs combined with sharing techniques. A rule
is defined to calculate the similarity degree (SD) among
candidates. The value of SD is used as a guide to degrade the
fitness values of candidates that are highly similar to others.
Degraded individuals are less likely to be selected for the
reproduction, which helps to maintain the diversity in a
genetic pool. The proposed approach of using a GA or a SA,
with sharing, is evaluated using two FSMs. The results of
this evaluation are also used to compare the effectiveness of
GA and SA for the problem.

2 FSMs based testing

2.1 Finite state machines

A deterministic FSMM is defined as a quintuple (I,O,S,d,l),
where I,O and S are finite and nonempty sets of input
symbols, output symbols, and states, respectively; d :
S� I ! S is the state transition function; and l : S� I !
O is the output function. If the machine receives an input
a 2 I when in state s 2 S; then it moves to the state dðs; aÞ
and produces output lðs; aÞ. Functions d and l can be
extended to take input sequences in the usual way [22].

An FSMM can be viewed as a directed graphG ¼ ðV;EÞ,
where the set of vertices V represents the state set S ofM and
the set of edges E represents the transitions. An edge has
label a=o, where a 2 I and o 2 O are the corresponding
transition’s input and output. Figure 1 illustrates an FSM
represented by its corresponding directed graph.

Two states si and sj are said to be equivalent if and only if
for every input sequence a 2 I the machine produces the
same output sequence, lðsi; aÞ ¼ lðsj; aÞ: Machines M1 and
M2 are equivalent if and only if for every state inM1 there is
an equivalent state in M2, and vice versa. A machine is
minimal (reduced) if and only if no two states are
equivalent. It is assumed that any FSM being considered
is minimal since any (deterministic) FSM can be converted
into an equivalent (deterministic) minimal FSM [22].
An FSM is completely specified if and only if for each
state si and input a, there is a specified next state siþ1 ¼
dðsi; aÞ and a specified output oi ¼ lðsi; aÞ; otherwise, the
machine is partially specified. A partially specified FSM can
be converted to a completely specified one in two ways [22].

One way is to define an error state. When a machine is in
state s and receives an input a such that there is no transition
from s with input a, it moves to the error state with a given
(error) output. The other way is to add a loop transition.
When receiving an undefined input, the state of a machine
remains unchanged. At the same time, the machine produces
no output. An FSM is strongly connected if, given any
ordered pair of states ðsi; sjÞ, there is a sequence of
transitions that moves the FSM from si to sj.

It is assumed throughout this paper that an FSM is
deterministic, minimal, completely specified and strongly
connected. A partially specified machine is converted to a
completely specified one by adding an error state.

2.2 Conformance testing

Given a specification FSM M, for which we have its
complete transition diagram, and an implementationM0, for
which we can only observe its I=O behaviour (‘black box’),
we want to test to determine whether the I=O behaviour of
M0 conforms to that ofM. This is called conformance testing
[23]. A test sequence that solves this problem is called a
checking sequence. An I=O difference between the speci-
fication and implementation can be caused by either an
incorrect output (an output fault) or an earlier incorrect state
transfer (a state transfer fault). The latter can be detected by
adding a final state check after a transition. A standard test
strategy is:

1. Homing: Move M0 to an initial state s.
2. Output check: Apply an input sequence a and compare
the output sequences generated by M and M0 separately.
3. Tail state verification: Using state verification techniques
to check the final state.

The first step is known as homing a machine to a desired
initial state. The second step checks whether M0 produces
the desired output. The last step checks whetherM0 is in the
expected state s0 ¼ dðs; aÞ after the transition [22]. There are
three main techniques used for state verification:

. distinguishing sequence (DS)

. unique input=output (UIO)

. characterising set (CS).

A distinguishing sequence is an input sequence that
produces a different output for each state. Not every FSM
has a DS.

A UIO sequence of state si is an input=output sequence
x=y, that may be observed from si, such that the output
sequence produced by the machine in response to x from any
other state is different from y, i.e.lðsi; xÞ ¼ y and lðsi; xÞ 6¼
lðsj; xÞ for any i 6¼ j. A DS defines a UIO. While not every
FSM has a UIO for each state, some FSMs without a DS
have a UIO for each state.

A characterising setW is a set of input sequences with the
property that, for every pair of states (si, sj), j 6¼ i, there is
some w 2 W such that lðsi;wÞ 6¼ lðsj;wÞ. Thus, the output
sequences produced by executing each w 2 W from sj
verifies sj.

This paper focuses on the problem of generating multiple
UIOs.

2.3 State splitting tree

A state splitting tree (SST) [4] is a rooted tree T that is used to
construct adaptive distinguishing sequences or UIOs from an
FSM. Each node in the tree has a predecessor (parent) and
successors (children). A tree starts from a root node and
terminates at discrete partitions: sets that contain one state
only. The predecessor of the root node, which contains the setFig. 1 Finite state machine

IEE Proc.-Softw., Vol. 152, No. 3, June 2005128



of all states, is null. The nodes corresponding to a single state
have an empty successor. These nodes are also known as
terminals. A child node is connected to its parent node
through an edge labelled with characters. The edge implies
that the set of states in the child node is partitioned from that
in the parent node upon receiving the labelled characters. The
splitting tree is complete if the partition is a discrete partition.
An example is illustrated in Fig. 2, where an FSM

(different from the one shown in Fig. 1) has six states,
namely, S ¼ fs1; s2; s3; s4; s5; s6g. The input set is
I ¼ fa; bg, while the output set is O ¼ fx; yg. The root
node is indicated by N(0,0) [Note 2], containing the set of all
states. Suppose states fs1; s3; s5g produce x when respond-
ing to a, while fs2; s4; s6g produce y. Then fs1; s3; s5g and
fs2; s4; s6g are distinguished by a. Two new nodes rooted
from N(0,0) are then generated, indicated by N(1,1) and
N(1,2). If we then apply b, the state reached from fs1g by a
produces x, while the states reached from fs3; s5g by a
produce y. Thus ab distinguish fs1g from fs3; s5g. Two new
nodes rooted from N(1,1) are generated, denoted by N(2,1)
and N(2,2). The same operation can be applied to
fs2; s4; s6g. Repeating this process, we can get all discrete
partitions as shown in Fig. 2. Note that for some FSMs this
process might terminate without producing a complete set of
discrete partitions since there need not exist such a tree [22].
A path from a discrete partition node to the root node forms
a UIO for the state related to this node. When the splitting
tree is complete, we can construct UIOs for each state.
Unfortunately, the problem of finding data to build up the

state splitting tree is NP-hard. This provides the motivation
for investigating the use of MOTs. The problem is discussed
in the following Sections.

3 Metaheuristic optimisation techniques (MOTs)

3.1 Genetic algorithms

Genetic algorithms (GAs) [13, 16] are heuristic optimisation
techniques that simulate natural processes, utilising selec-
tion, crossover and mutation. Since Holland’s seminal work
(1975) [24], they have been applied to a variety of learning
and optimisation problems.

3.1.1 Simple GA: A simple GA starts with a
randomly generated population, each element (chromosome)

being a sequence of variables=parameters for the optimis-
ation problem. The set of chromosomes represents the search
space: the set of potential solutions. The representation
format of variable values is determined by the system under
evaluation. It can be represented in binary form, by real
numbers, by characters, etc. The search proceeds through a
number of iterations. Each iteration is treated as a generation.
At each iteration, the current set of candidates (the
population) is used to produce a new population. The quality
of each chromosome is determined by a fitness function that
depends on the problem considered. Those of high fitness
have a greater probability of contributing to the new
population.

Selection is applied to choose chromosomes from the
current population and pairs them up as parents. Crossover
and mutation are applied to produce new chromosomes.
A new population is formed from new chromosomes
produced on the basis of crossover and mutation and may
also contain chromosomes from the previous population.

Figure 3 shows a flow chart for a simple GA.
The following sub-Sections give a detailed explanation on
Selection, Crossover and Mutation. All experiments in this
work used roulette wheel selection and uniform crossover.

3.1.2 Encoding: A potential solution to a problem
may be represented as a set of parameters. These parameters
are joined together to form a string of values (often referred
to as a chromosome). Parameter values can be represented in
various forms such as binary form, real numbers, characters,
etc. The representation format should make the computation
effective and convenient.

Fig. 2 State splitting tree from an FSM

Fig. 3 Flow chart for a simple GA

Note 2: N(i, j): i indicates that the node is in the ith layer from the tree.
j refers to the jth node in the ith layer.

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 129



3.1.3 Reproduction: During the reproductive
phase of a GA, individuals are selected from the population
and recombined, producing children. Parents are selected
randomly from the population using a scheme which
favours the more fit individuals. Roulette wheel selection
(RWS) and tournament selection (TS) are the two most
popular selection regimes that are used for reproduction.
RWS involves selecting individuals randomly but weighted
as if they were chosen using a roulette wheel, where the
amount of space allocated on the wheel to each individual is
proportional to its fitness, while TS selects the fittest
individual from a randomly chosen group of individuals.

Having selected two parents, their chromosomes are
recombined, typically using the mechanisms of crossover
and mutation. Crossover exchanges information between

Fig. 5 Mutation operation in a simple GA

Fig. 4 Crossover operation in a simple GA

a Single-point crossover
b Uniform crossover

Fig. 6 Simulated annealing algorithm

IEE Proc.-Softw., Vol. 152, No. 3, June 2005130



parent chromosomes by exchanging parameter values to
form children. It takes two individuals, and cuts their
chromosome strings at some randomly chosen position, to
produce two ‘head’ segments, and two ‘tail’ segments.
The tail segments are then swapped over to produce two
new full length chromosomes (see Fig. 4a). Two offspring
inherit some genes from each parent. This is known as
single point crossover. In uniform crossover, each gene in
the offspring is created by copying the corresponding gene
from one or other parent, chosen according to a randomly
generated crossover mask. Where there is a 1 in the
crossover mask, the gene is copied from the first parent, and
where there is a 0 in the mask, the gene is copied from the
second parent (see Fig. 4b). The process is repeated with the
parents exchanged to produce the second offspring.
Crossover is not usually applied to all pairs of individuals

selected for mating. A random choice is made, where the
likelihood of crossover being applied is typically between
0.6 and 1.0 [13]. If crossover is not applied, offspring are
produced simply by duplicating the parents. This gives each
individual a chance of appearing in the next generation.
Mutation is applied to each child individually after

crossover, randomly altering each gene with a small
probability. Figure 5 shows the fourth gene of the
chromosome being mutated. Mutation prevents the genetic
pool from premature convergence, namely, getting stuck in
local maxima=minima. However, too high a mutation rate
prevents the genetic pool from convergence. A probability
value between 0.01 and 0.1 for mutation is suggested [13].

3.1.4 Sharing scheme: A simple GA is likely to
converge to a single peak, even in domains characterised by
multiple peaks of equivalent fitness. Moreover, in dealing
with multimodal functions with peaks of unequal value, GA
is likely to converge to the best peak. To identify multiple
optima in the domain, some mechanisms should be used to
force a GA to maintain a diverse population of members
throughout its search. Sharing is such a mechanism that is
proposed to overcome the above limitations. Sharing,
proposed by Holland [24] and expanded by Goldberg and
Richardson [16], aims to reduce the fitness of individuals that
have highly similar members within the population. This
rewards individuals who uniquely exploit areas of the domain
while discouraging redundant (highly similar) individuals in
a domain. This causes population diversity pressure, which
helps maintain population members at local optima.
The shared fitness of an individual i is given by

fðsh;iÞ ¼ fðiÞ=mðiÞ, where fðiÞ is the raw fitness of the individual
and mðiÞ is the peak count. The peak count is calculated by
summing a sharing function over all members of the
population mðiÞ ¼

PN
j¼i shðdði; jÞÞ. The distance dði; jÞ rep-

resents the distance between individual i and individual j in
the population, determined by a similarity measurement. If
the sharing function determines that the distance is within a
fixed radius ssh, it returns a value determined by
shðdði; jÞÞ ¼ 1� ðdði; jÞ=sshÞash ; otherwise it returns 0. ash is
a constant that regulates the shape of the sharing function.

3.2 Simulated annealing

Simulated annealing (SA) was first proposed by Kirkpa-
trick, et al. [14]. The basic principle is to iteratively improve
a given solution by performing local changes. Usually,
changes that improve the solution are accepted, whereas
those changes that make the solution worse are accepted
with a probability that depends on the temperature.
Traditionally, SA works on minimising the cost or energy

of solutions to find the global minimal solution. In this

paper, in order to make a reasonable comparison with GA,
SA is slightly modified where the maximising heuristic is
adopted.

In order to enable local search to escape from local
optima through downhill moves, Metropolis et al. [15]
proposed an algorithm parametrised by a temperature t. A
move that produces a reduction of d in the fitness is accepted
with probability minð1; e�d=tÞ. Figure 6 illustrates the
general SA scheme.

4 Apply MOTs to FSMs

4.1 Solution representation

When applying MOTs to an FSM, the first question that has
to be considered is what representation is suitable. In this
work, the potential solutions in a genetic pool are defined as
strings of characters from the input set I. A Do not care
character ‘]’ is also used to further maintain diversity [21].
When receiving this input, the state of an FSM remains
unchanged and no output is produced. When a solution is
about to be perturbed to generate a new one in its
neighbourhood, some of the characters in this solution are
replaced with characters randomly selected from the rest of
the input set, including ‘]’.

4.2 Fitness definition

A key issue is to define a fitness function to (efficiently)
evaluate the quality of solutions. This function should
embody two aspects: (i) solutions should create as many
discrete units as possible; (ii) the solution should be as
short as possible. The function needs to make a tradeoff
between these two points. This work uses a function that
rewards the early occurrence of discrete partitions and
punishes the chromosome’s length. An alternative would
be to model the number of state partitions and the length
of a solution as two objectives and then treat them as
multi-object optimisation problems (for more information
on multi-object optimisation problems with GA see, for
example, [13]).

A fitness function is defined to evaluate the quality of an
input sequence. While applying an input sequence to an
FSM, at each stage of a single input, the state splitting tree
constructed is evaluated by (1):

fðiÞ ¼
xie

ðdxiÞ

l
g
i

þ a
ðyi þ dyiÞ

li
ð1Þ

where i refers to the ith input character. xi denotes the
number of existing discrete partitions, while dxi is the
number of new discrete partitions caused by the ith input. yi
is the number of existing separated groups, while dyi is the
number of new groups. li is the length of the input sequence
up to the ith element (Do Not Care characters are excluded).
a and g are constants. It can be noted that a partition that
finds a new discrete unit creates new separated groups as
well.

Equation (1) consists of two parts: exponential part,
feðiÞ ¼ xie

ðdxiÞ=lgi , and linear part, flðiÞ ¼ aðyi þ dyiÞ=li.
It can be seen that the occurrence of discrete partitions
makes xi and dxi increase. Consequently, xie

ðdxiÞ is increased
exponentially. Meanwhile, with the input sequence’s length
li increasing, l

g
i is reduced exponentially (g should be greater

than 1). Suppose xi and li change approximately at the same
rate, that is dxi � dli; as long as eðdxiÞ has faster dynamics
than l

g
i , feðiÞ increases exponentially, causing fi to be

increased exponentially. However, if, with the length of
the input sequence increasing, no discrete partition is found,

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 131



feðiÞ decreases exponentially, causing fi to be decreased
exponentially. feðiÞ thus performs two actions: encouraging
the early occurrence of discrete partitions and punishing the
increment of an input sequence’s length.

flðiÞ also affects fðiÞ in a linear way. Compared to feðiÞ, it
plays a less important role. This term rewards partitioning
even when discrete classes have not been produced. Figure 7
shows two patterns with no discrete partition. We believe
pattern B is better than A since B might find more discrete
units in the forthcoming partitions.

Individuals that find discrete partitions at the first several
inputs but fail to find more in the following steps may obtain
higher fitness values than others. They are likely to
dominate the population and cause the genetic pool to
converge prematurely. To balance the evaluation, after all
input characters have been examined, the final fitness value
for an input candidate is defined as the average of (1):

F ¼ 1

N

XN
i¼1

fðiÞ ð2Þ

where N is the sequence’s length.

4.3 Sharing application

4.3.1 Similarity measurement: Before reducing
a candidate’s fitness, a mechanism should be used to
evaluate the similarities between two solutions. There are
two standard techniques that are proposed to measure the
distance between two individuals, namely Euclidian dis-
tance and Hamming distance. However, both methods are
not suitable in this work since inputs for an FSM are ordered
sequences. The order of characters plays a very important
role in evaluating the similarity. This work defines a
similarity degree (SD) to guide the degrade of a candidate’s
fitness value.

Definition 1: A valid partition (VP) is defined as a partition
that gives rise to at least one new separated group when
responding to an input character.

Figure 8 illustrates two patterns of partition. In the Figure,
A is valid since the parent group is split into two new
groups, while B is invalid since the current group is identical
to its parent group and no new group is created. A UIO can
be formed by a mixture of valid and invalid partitions.

Definition 2: The max length of valid partition (MLVP) is
the length up to an input that gives rise to the occurrence of
the last valid partition.

Definition 3: The max discrete length (MDL) is the length
up to an input character that gives rise to the occurrence of
the last discrete partition.

Since a discrete partition defines a valid partition, MDL
can never be greater than MLVP in a state splitting tree.

Definition 4: Similarity degree (SD) between two ordered
sequences is defined as the length of a maximum length
prefix sequence of these two sequences.

If elements in two ordered sequences are the same before
the Nth character and different at the Nth, the SD is N � 1
(] is excluded from the calculation).

4.3.2 Fitness degrade: In order to prevent the
population from converging at one or several peaks in the
search space, at each iteration of computation, some
candidates (that are not marked as degraded) that have
high SD value should have the fitness value reduced by
the mechanism as follows: (i) if a candidate’s SD is
greater than or equal to its MDL, its fitness value should
be degraded to a very small value; else (ii) if SD=MLVP
passes a threshold value Y, its fitness value is reduced to
ð1� SD=MLVPÞ � VOrg, where VOrg is its original value.

If a candidate’s SD is greater than or equal to its MDL, it
implies that, in terms of finding discrete partitions, this
solution has been significantly represented by others and
becomes redundant. Generally, the fitness value of a
redundant candidate needs to be zero to keep it from
reproduction. However, in the experiments, we set the value
to 1% of its original value, allowing it to be selected with a
low probability. If not, ð1� SD=MLVPÞ controls the degree
of decrement. The more information in a candidate that is
represented in others, the more it is reduced. After a
candidate’s fitness value is reduced, it is marked as
‘Degraded’.

Since a discrete partition defines a valid partition, MDL
can never be greater than MLVP ðMDL � MLVPÞ.
ð1� SD=MLVPÞ is applied only when SD<MDL. Since
SD<MDL � MLVP, ð1� SD=MLVPÞ is positive. When
SD is greater than or equal to MDL, a fitness is reduced to
a small value but still positive. So, the fitness value of an
individual is always positive.

Threshold value Y might be varied from different
systems. Since it is enabled only when SD is less than
MDL, a value between 0 and 1 can be applied. In the first
model under test, we used 2=3 while in the second model we
used 1=2.

4.4 Extending simple SA

Simple SA works on a single solution. In order to find all
possible UIOs, multi-run based SA needs to be applied.
Several papers involve the studies on multi-run based SA
[25, 26]. In this paper, population based simulated annealing
(PBSA) is used. Each individual in the genetic pool refers to
a solution and is perturbed according to the simple SA
scheme. All individuals in a population follow the same
temperature drop control. During the computation, individ-
uals in the genetic pool are compared with others. Those
individuals that have been significantly represented by
others have the fitness value reduced according to the
sharing scheme.Fig. 8 Patterns of partitions

Fig. 7 Two patterns of partitions

IEE Proc.-Softw., Vol. 152, No. 3, June 2005132



5 Experiments and discussions

Reference [21] has already investigated the construction
of UIOs using a simple GA, finding that it outperformed
random generation. This paper focuses on the studies of
UIO distribution. In this Section we report the results
of experiments that investigate the impact of sharing
techniques when constructing multiple UIOs using GA
and SA. Two models are used for experiments shown in
Figs. 9 and 10, respectively. The first model has 10 states
while the second has 9 states. Both FSMs use the same
input and output sets. They are: I ¼ fa; b; c; dg and
O ¼ fx; y; zg. In order to compare the set of UIOs
produced with a known complete set, the search was
restricted to UIOs of length 4 or less. With such a
restriction, 44 ¼ 256 input sequences can be constructed.
There are 86 UIOs for Model 1 listed in Table 1 and 30
UIOs for Model 2 listed in Table 2. In the Tables, SQ
stands for the input from a UIO sequence and NS refers to
the number of states this sequence can identify. In all

Fig. 9 First FSM under test Fig. 10 Second FSM under test

Table 1: UIO list of Model 1

SQ NS SQ NS SQ NS SQ NS SQ NS SQ NS SQ NS SQ NS

aaaa 8 aaa 5 bcca 5 accd 4 caab 4 bcc 3 aadc 2 ca 1

aaab 7 aabc 5 bccb 5 bab 4 cbaa 4 bcd 3 abd 2 aad 1

cca 7 aacc 5 cbcd 5 baca 4 cbb 4 caac 3 acbd 2 acb 1

ccb 7 abca 5 Ccc 5 bacb 4 cbcb 4 cabc 3 ba 2 ada 1

aaad 6 acaa 5 aabb 4 bbc 4 aab 3 cacc 3 caa 2 adba 1

aaca 6 acad 5 aabd 4 bca 4 aba 3 cbab 3 cabb 2 adbc 1

acca 6 baa 5 abcc 4 bcba 4 abb 3 cbd 3 cabd 2 adbd 1

accb 6 bba 5 abcd 4 bcbc 4 abc 3 aacb 2 caca 2 adc 1

accc 6 bbb 5 Aca 4 bcbd 4 bacc 3 ccb 2 cacb 2 cd 1

cbca 6 bcad 5 acba 4 bccc 4 bad 3 aacd 2 cad 2

cbcc 6 bcbb 5 acbb 4 caaa 4 bb 3 aada 2 cb 2

Table 2: UIO list of Model 2

SQ NS SQ NS SQ NS SQ NS SQ NS SQ NS SQ NS SQ NS

cbb 7 cbca 6 bca 5 cacc 4 ab 4 ca 3 aa 3 a 2

bcb 7 bcc 6 ccb 4 caca 4 ccc 3 bcbc 3 cc 2 bc 1

bb 7 cacb 5 cbc 4 caa 4 cca 3 acc 3 bcba 2

cbcc 6 vab 5 cba 4 acb 4 cb 3 aca 3 ba 2

Fig. 11 UIO distribution for GA without sharing in Model 1

Legends indicate number of states that input sequences identify

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 133



experiments, a and g are set to 20 and 1.2, respectively.
Section 5.4 explains the reason for choosing such values.
The population size is set to 600 in all experiments.

5.1 Experiments on using GA

Experiments in this Section investigated the performance on
the construction of UIOs using a simple GA. In [13], effects
on choosing crossover and mutation rates have been studied.
In this work, we simply follow the suggestions.
The parameter settings are [Note 3]: XRate ¼ 0:75;
MRate ¼ 0:05; MGen ¼ 300: These settings remain
unchanged throughout all experiments. The experiments
used Model 1 first, and then Model 2. Threshold value y is
set to 2=3 for Model 1 and 1=2 for Model 2.

The first experiment studied the UIO distribution when
using GA without sharing. The experiment was repeated 10
times. Figure 11 shows the UIO distribution of the best
result. It can be seen that a majority of individuals move to
a subpopulation that can identify seven states. The rest
scatter among some other subpopulations that can identify
8, 6, 5, 4, 3, 2, 1 states. Owing to such an uneven
distribution, some sequences that define UIOs of 6, 5, 4, 3,
2, 1 states are likely to be missed. Only 59 are found and so
27 were missed.

An experiment was then designed to investigate the use of
the sharing technique. This experiment was repeated 10

times. The best result is shown in Fig. 12 (in B-H, sequences
of legends indicate input sequences that define UIOs). It can
be seen that, after applying sharing technique, the
population is generally spread out, forming nine subpopu-
lations. Each subpopulation contains UIO sequences that
identify 0, 1, 2, 3, 4, 5, 6, 7, 8 states correspondingly. Only 4
UIOs were missed - the performance of the search had
improved dramatically. However, the distributions in
subpopulations do not form a good shape. Each subpopu-
lation is dominated by one or several UIOs.

The impact of sharing techniques was further investigated
by using Model 2. Figure 13 shows the best result from the
five experiments. It can be seen that the distribution of input
sequences is similar to that of GA with sharing in Model 1.
Generally, the population is spread out, forming several
subpopulations. However, each subpopulation is dominated
by several individuals. We found that two UIOs were
missed.

Experimental results above suggest that, when construct-
ing UIOs using GA, without sharing technique, the
population is likely to converge at several individuals that
have high fitness values. The distribution of such a
population causes some UIOs to be missed with high
probability. This is consistent with the results of [21].
After applying the sharing technique, the population is
encouraged to spread out and forms several subpopulations.
These subpopulations are intended to cover all optima in the
search space. The search quality significantly improved and
more UIOs were found.

Fig. 12 UIO distribution for GA with sharing in Model 1

Note 3: XRate:Cross Rate; MRate:Mutation Rate; MGen:Max Generation

IEE Proc.-Softw., Vol. 152, No. 3, June 2005134



Convergence rates have also been studied when con-
structing UIOs for both models. Figures 14 and 15 show the
average fitness values when constructing UIOs for Models 1
and 2, respectively. From the Figures it can be seen that, in
Model 1, the genetic pool begins to converge after 200
generations, while in Model 2 genetic pool converges after
60 generations.

5.2 Experiments on using SA

Experiments in this Section aimed to study the performance
of SA. As described above, a population based SA (PBSA)
was used. Each individual in the genetic pool referred to a
solution and was updated according to a simple SA’s
scheme. Individuals in the genetic pool were compared with
others according to the sharing scheme. All individuals in a

population followed the same temperature drop control. We
also made a further restriction on the creation of a new
solution. When an individual was required to generate a new
solution, it was continuously perturbed in its neighbourhood
until the new solution found at least one discrete partition. In
order to make a comparison with GA, max generation is set
to 300.

Two temperature drop control schema were considered.
In the first experiment, the temperature was reduced by a
normal exponential function nTðiþ 1Þ ¼ 0:99 nTðiÞ
(Fig. 16a), and a sharing technique was applied. The
experiment was repeated 10 times and the best result is
shown in Fig. 17.

From the Figure it can be seen that the general
distribution and subpopulation distributions are quite

Fig. 13 UIOs distribution for GA with sharing Model 2

0
1 43 85 127 169 211 253 295

generations

fit
ne

ss
 v

al
ue

100

200

300

Fig. 15 Average fitness values when constructing UIOs using
GA: Model 2

0
1 41 81 121 161 201 241 281

generations

20

40

60

fit
ne

ss
 v

al
ue

80

Fig. 14 Average fitness values when constructing UIOs using
GA: Model 1

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 135



similar to that of GA with sharing. The population was
formed with several subpopulations. Each subpopulation
was dominated by several individuals. A total of eight UIOs
were missed. Compared to the experiments studied
in Section 5.1, this figure is quite high. To improve the
search quality, the temperature drop scheme was changed
to nTðiþ 1Þ ¼ 0:99 nTðiÞ þ nSðiþ 1Þ sinð10 p iÞ, where
nSðiþ 1Þ ¼ 0:95 nSðiÞ. The curve of the function is shown
in Fig. 16b. Generally, the tendency of temperature control

is still exponentially decreasing, but local bumps occur. The
best result from 10 experiments is shown in Fig. 18. We find
that the distribution of population and subpopulation have
no significant changes. However, only two UIOs were
missed. The performance is much better than the previous
one.

Two SA methods were further studied by using Model 2.
Figure 19 shows the best result on the normal temperature
drop control, while Fig. 20 shows the best result for the

Fig. 16 SA temperature drop schema

Fig. 17 UIOs distribution for SA with normal exponential temperature drop in Model 1

IEE Proc.-Softw., Vol. 152, No. 3, June 2005136



rough temperature drop control. From these Figures it can
be seen that, compared to the experiments using Model 1,
the distribution of input sequences has no significant
changes. Both temperature control schemes achieve a
good performance. In the normal temperature drop exper-
iment, three UIOs are missed, while two UIOs are missed in
the rough temperature drop experiment.
Figures 21 and 22 present the average fitness values when

constructing UIOs for Models 1 and 2 using the rough
temperature drop control scheme, respectively. The Figures
show that, when using Model 1, the genetic pool begins to
converge after 250 generations while, when using Model 2,
the genetic pool converges after 200 generations. Compared
to Figs. 14 and 15, it can be seen that SA converges more
slowly than GA.

5.3 General evaluation

Experimental results above suggest that, when constructing
UIOs using GA and SA, without the sharing technique, the
population is likely to converge at several individuals that
have high fitness values. The distribution of such a
population causes some UIOs to be missed with high
probability. After applying the sharing technique, the
population is encouraged to spread out and forms several
subpopulations. These subpopulations are intended to cover
all optima in the search space. The search quality
significantly improved and more UIOs were found. Tables
3 and 4 give the number of UIOs that are missed for each
experiment using GA, SA, GA with sharing and SA with

sharing. From these Tables it can be seen that the sharing
technique is effective in finding multiple UIOs. It can also
be noted that the search performance is comparatively
stable.

It has also been shown that, with the sharing technique,
there is no significant difference between GA and SA on
the search for UIOs. Both techniques force their
populations to maintain diversity by forming subpopu-
lations. In the two models under test, with the sharing
technique, both GA and SA are effective. When applying
SA, the rough exponential temperature drop seems to be
better than the normal exponential temperature drop.
Since the sharing technique tactically reduces some
individuals’ fitness values, some information might be
lost during the computation. Local bumping in the rough
exponential temperature drop gives the experiments a
second chance for amendments, which might help to
prevent such information from being lost. This could
explain why the performance of the rough SA was
consistently better than that of a simple SA.

The results on convergence rates imply that, when
constructing UIOs, GA converges faster than SA. A
simple GA works on population based exploration. New
solutions (children) inherit information from previous
solutions (parents) through a crossover operator, while SA
generates a new solution based on the search in the
neighbourhood of an existing solution. A simple GA is
more exploitative than a SA. That might explain why GA
converges faster than SA.

Fig. 18 UIO distribution for SA with rough exponential temperature drop in Model 1

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 137



5.4 Parameters settings

Parameter settings on crossover and mutation rates follow
the suggestions from [13]; population size used in all
experiments is fixed to 600. Using a larger size for a
population may increase the chance of finding more UIOs,
but it increases the computational cost as well. This paper
did not investigate the effects on varying crossover rate,
mutation rate and the population size. Future work will
address these issues.

Parameter settings on a and g affect the performance of
computation significantly. g is defined to control the
dynamic behaviour of the exponential part in the fitness
function, while a adjusts the weight of the linear part. To
counteract the effect of xie

dxi , g must be set to a value that is
greater than 1. However, it can also be noted that too big a
value of g causes the calculation of an individual’s fitness a
continuous decrement even when some discrete partitions
are found. Therefore, a comparatively small value that is
greater than 1 should be considered. In this work, we found
that setting g between 1.2 and 1.5 achieves better
performance than other values.

a is defined to reward the partitions when no discrete
class has been found. Normally, at the beginning of
computation when no discrete class is found, the linear
part plays the major role in the calculation of the fitness
value. However, with the computation going further and
some discrete classes being found, the exponential part
takes over the role and becomes the major factor.
Individuals that switch the role too slowly might obtain

low fitness values and become unlikely to be selected for
reproduction. This effect might cause some patterns (some
UIOs) to be missed. For example, Fig. 23 shows two
patterns of state splitting trees in the first model. In
pattern A (corresponding to aaaa), there are five discrete
units in the fourth layer (corresponding to the first three
inputs) and three units in the fifth layer (corresponding to
the first four inputs). In pattern B (corresponding to ccac),
there is 1 discrete unit in the third layer (corresponding to
the first two inputs) and six units in the fourth layer
(corresponding to the first three inputs). ccac acquires a
much higher fitness value than that of aaaa. aaaa is
therefore likely to be missed during the computation. To
compensate this effect, a comparatively high a value
might be helpful since it enhances the effect of linear
action. In this work, we set a to 20. We have also tested
values that are below 15 and found that no experiment
discovered the pattern A (aaaa).

Threshold value y decides whether the fitness value of a
candidate can be reduced. A value between 0 and 1 can be
applied. The setting of y should be suitable and may vary in
different systems. If y is set too low, candidates that are not
fully represented by others may be degraded, causing some
UIOs to be missed. For instance, abcab and abaac are two
candidates. If y is set less than 0.4, compared with abcab,
the fitness value of abaac can be degraded. However, it can
be seen that abaac is not fully represented by abcab. abaac
might be missed in the computation due to inappropriate
operations; at the same time, too high a value of y might

Fig. 19 UIO distribution for SA with normal exponential temperature drop in Model 2

IEE Proc.-Softw., Vol. 152, No. 3, June 2005138



make the operation of fitness degrade ineffective. If y is set
to 1, no degrade action occurs. In our experiments, 2=3 was
used in the first model, while 1=2 was selected for the

second model; these values were chosen after some initial
experiments.

6 Conclusion

This paper investigated the use of metaheuristic optimis-
ation techniques (MOTs), with sharing, in the generation of
unique input/output sequences (UIOs) from a finite state
machine (FSM). A fitness function, based on properties of a
state splitting tree, guided the search for UIOs. A sharing

Fig. 20 UIO distribution for SA with rough exponential temperature drop in Model 2

Fig. 21 Average fitness values when constructing UIOs using SA
(rough T drop): Model 1

0
1 41 81 121 161 201 241 281

generations

100

200

300

fit
ne

ss
 v

al
ue

Fig. 22 Average fitness values when constructing UIOs using SA
(rought T drop): Model 2

Table 3: Missing UIOs of the first model

GA SA GA=S SA=N SA=R

1 27 56 4 14 2

2 29 49 6 18 4

3 30 62 6 15 4

4 31 37 7 11 3

5 29 55 5 9 6

6 28 48 8 13 5

7 30 44 7 10 2

8 27 51 8 13 6

9 29 39 4 15 4

10 32 46 7 10 3

Avg 29.2 48.7 6.2 12.8 4.1

IEE Proc.-Softw., Vol. 152, No. 3, June 2005 139



technique was introduced to maintain the diversity in a
population by defining a mechanism that measures the
similarity of two sequences.

Two FSMs were used to evaluate the effectiveness of a
genetic algorithm (GA), GA with sharing and simulated
annealing (SA) with sharing. Experimental results show
that, in terms of UIO distributions, there is no significant
difference between GA with sharing and SA with sharing.
Both outperformed GA without sharing. With the sharing
technique, both GA and SA can force a population to form
several subpopulations, and these are likely to cover many

local optima. By finding more local optima, the search
identifies more UIOs. However, a problem was also noted.
All subpopulations were dominated by one or several
individuals. More work needs to be carried out to study this
problem.

7 References

1 Aho, A.V., Dahbura, A.T., Lee, D., and Uyar, M.U.: ‘An optimization
technique for protocol conformance test generation based on UIO
sequences and rural Chinese postman tours’, IEEE Trans. Commun.,
1991, 39, (3), pp. 1604–1615

2 Hierons, R.M., and Ural, H.: ‘UIO sequence based checking sequences
for distributed test architectures’, Inf. Softw. Technol., 2003, 45,
pp. 793–803

3 Huang, C.M., Chiang, M.S., and Jiang, M.Y.: ‘UIO: a protocol test
sequence generation method using the transition executability analysis
(TEA)’, Comput. Commun., 1998, 21, pp. 1462–1475

4 Lee, D., and Yannakakis, M.: ‘Testing finite state machines: state
identification and verification’, IEEE Trans. Comput., 1994, 43, (3),
pp. 306–320

5 Pomeranz, I., and Reddy, S.M.: ‘Functional test generation for full scan
circuits’. Proc. Conf. on Design, Automation and Test in Europe, 2000,
pp. 396–403

6 Sidhu, D.P., and Leung, T.K.: ‘Formal methods for protocol testing:
a detailed study’, IEEE Trans. Softw. Eng., 1989, 15, (4), pp. 413–426

7 Shen, Y.N., Lombardi, F., and Dahbura, A.T.: ‘Protocol conformance
testing using multiple UIO Sequences’, IEEE Trans. Commun., 1992,
40, (8), pp. 1282–1287

8 Yang, B., and Ural, H.: ‘Protocol conformance test generation using
multiple UIO sequences with overlapping’. ACM SIGCOMM:
Communications, Architectures, and Protocols, Twente, The Nether-
lands, North-Holland, The Netherlands, 24-27 Sep, 1990, pp. 118–125

9 Miller, R.E., and Paul, S.: ‘On the generation of minimal-length
conformance tests for communication protocols’, IEEE/ACM Trans.
Netw., 1993, 1, (1), pp. 116–129

10 Hierons, R.M.: ‘Extending test sequence overlap by invertibility’,
Comput. J., 1996, 39, (4), pp. 325–330

11 Hierons, R.M.: ‘Testing from a finite-state machine: extending
invertibility to sequences’, Comput. J., 1997, 40, (4), pp. 220–230

12 Naik, K.: ‘Efficient computation of unique input/output sequences
in finite-state machines’, IEEE/ACM Trans. Netw., 1997, 5, (4),
pp. 585–599

13 Goldberg, D.E.: ‘Genetic algorithms in search, optimization, and
machine learning’ (Addison-Wesley, Reading, MA, 1989)

14 Kirkpatrick, S., Gelatt, C.D., Jr., and Vecchi, M.P.: ‘Optimization by
simulated annealing’, Science, 1983, 220, (4598), pp. 671–680

15 Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and
Teller, E.: ‘Equations of state calculations by fast computing machines’,
J. Chem. Phys., 1953, 21, pp. 1087–1092

16 Goldberg, D.E., and Richardson, J.: ‘Genetic algorithms with sharing
for multimodal function optimization’. Proc. 2nd Int. Conf. on Genetic
Algorithms, Lawrence Erlbaum Associates, Hillsdale, NJ, 1987,
pp. 41–49

17 Jones, B.F., Eyres, D.E., and Sthamer, H.H.: ‘A strategy for using
genetic algorithms to automate branch and fault-based testing’,Comput.
J., 1998, 41, (2), pp. 98–107

18 Michael, C.C., McGraw, G., and Schatz, M.A.: ‘Generating software
test data by evolution’, IEEE Trans. Softw. Eng., 2001, 27, (12),
pp. 1085–1110

19 Wegener, J., Sthamer, H., Jones, B.F., and Eyres, D.E.: ‘Testing real-
time systems using genetic algorithms’, Softw. Qual., 1997, 6, (2),
pp. 127–135

20 Tracey, N., Clark, J., Mander, K., and McDermid, J.: ‘Automated test-
data generation for exception conditions’, Softw. Pract. Exp., 2000, 30,
(1), pp. 61–79

21 Guo, Q., Hierons, R.M., Harman, M., and Derderian, K.: ‘Computing
unique input/output sequences using genetic algorithms’. Formal
Approaches to Testing (FATES’03), Lect. Notes Comput. Sci., 2004,
2931, pp. 164–177

22 Lee, D., and Yannakakis, M.: ‘Principles and methods of testing finite
state machines – a survey’, Proc. IEEE, 1996, 84, (8), pp. 1090–1122

23 ITU-T, ‘Recommendation Z.500 framework on formal methods in
conformance testing’, International Telecommunication Union,
Geneva, Switzerland, 1997

24 Holland, J.H.: ‘Adaptation in natural and artificial systems’ (University
of Michigan Press, Ann Arbor, MI, 1975)

25 Atkinson, A.C.: ‘A segmented algorithm for simulated annealing’, Stat.
Comput., (2), pp. 221–230

26 McGookin, E.W., Murray-Smith, D.J., and Li, Y.: ‘Segmented
simulated annealing applied to sliding mode controller design’. Proc.
13th World Congress of IFAC, San Francisco, USA, Vol. D,
pp. 333–338

Fig. 23 Two patterns of state splitting tree in the first model

a State splitting tree for ‘aaaa’
b State splitting tree for ‘ccac’

Table 4: Missing UIOs in Model 2

GA SA GA=S SA=N SA=R

1 7 15 2 3 2

2 7 17 4 4 2

3 9 21 4 3 2

4 7 19 2 3 3

5 7 20 3 3 2

Avg 7.2 18.4 3 3.2 2

GA:simple GA without sharing; SA:simple SA without sharing; GA=S:GA

with sharing; SA=N:SA with sharing using normal T drop; SA=R:SA with

sharing using rough T drop

IEE Proc.-Softw., Vol. 152, No. 3, June 2005140




