29,547 research outputs found

    Two new methods for solving the path‐based stochastic user equilibrium problem

    Get PDF
    In this paper, we present two new methods for the path-based logit stochastic user equilibrium problem, and investigate their convergence properties. First, a two level partial linearization method is proposed. Second, a dual method is developed. Both of these two methods use second order approximation of the objective function. Our novel methods are compared to Damberg's partial linearization method (Damberg, 1996), which is known to be one of the best performing methods. Numerical results on the Sioux Falls and Winnipeg networks show that, if properly scaled, our new methods can significantly improve the performance of Damberg’s method

    Applications of sensitivity analysis for probit stochastic network equilibrium

    Get PDF
    Network equilibrium models are widely used by traffic practitioners to aid them in making decisions concerning the operation and management of traffic networks. The common practice is to test a prescribed range of hypothetical changes or policy measures through adjustments to the input data, namely the trip demands, the arc performance (travel time) functions, and policy variables such as tolls or signal timings. Relatively little use is, however, made of the full implicit relationship between model inputs and outputs inherent in these models. By exploiting the representation of such models as an equivalent optimisation problem, classical results on the sensitivity analysis of non-linear programs may be applied, to produce linear relationships between input data perturbations and model outputs. We specifically focus on recent results relating to the probit Stochastic User Equilibrium (PSUE) model, which has the advantage of greater behavioural realism and flexibility relative to the conventional Wardrop user equilibrium and logit SUE models. The paper goes on to explore four applications of these sensitivity expressions in gaining insight into the operation of road traffic networks. These applications are namely: identification of sensitive, ‘critical’ parameters; computation of approximate, re-equilibrated solutions following a change (post-optimisation); robustness analysis of model forecasts to input data errors, in the form of confidence interval estimation; and the solution of problems of the bi-level, optimal network design variety. Finally, numerical experiments applying these methods are reported

    Modelling network travel time reliability under stochastic demand

    Get PDF
    A technique is proposed for estimating the probability distribution of total network travel time, in the light of normal day-to-day variations in the travel demand matrix over a road traffic network. A solution method is proposed, based on a single run of a standard traffic assignment model, which operates in two stages. In stage one, moments of the total travel time distribution are computed by an analytic method, based on the multivariate moments of the link flow vector. In stage two, a flexible family of density functions is fitted to these moments. It is discussed how the resulting distribution may in practice be used to characterise unreliability. Illustrative numerical tests are reported on a simple network, where the method is seen to provide a means for identifying sensitive or vulnerable links, and for examining the impact on network reliability of changes to link capacities. Computational considerations for large networks, and directions for further research, are discussed

    Delay-Optimal User Scheduling and Inter-Cell Interference Management in Cellular Network via Distributive Stochastic Learning

    Full text link
    In this paper, we propose a distributive queueaware intra-cell user scheduling and inter-cell interference (ICI) management control design for a delay-optimal celluar downlink system with M base stations (BSs), and K users in each cell. Each BS has K downlink queues for K users respectively with heterogeneous arrivals and delay requirements. The ICI management control is adaptive to joint queue state information (QSI) over a slow time scale, while the user scheduling control is adaptive to both the joint QSI and the joint channel state information (CSI) over a faster time scale. We show that the problem can be modeled as an infinite horizon average cost Partially Observed Markov Decision Problem (POMDP), which is NP-hard in general. By exploiting the special structure of the problem, we shall derive an equivalent Bellman equation to solve the POMDP problem. To address the distributive requirement and the issue of dimensionality and computation complexity, we derive a distributive online stochastic learning algorithm, which only requires local QSI and local CSI at each of the M BSs. We show that the proposed learning algorithm converges almost surely (with probability 1) and has significant gain compared with various baselines. The proposed solution only has linear complexity order O(MK)

    Energy-Efficient Resource Management in Ultra Dense Small Cell Networks: A Mean-Field Approach

    Full text link
    In this paper, a novel approach for joint power control and user scheduling is proposed for optimizing energy efficiency (EE), in terms of bits per unit power, in ultra dense small cell networks (UDNs). To address this problem, a dynamic stochastic game (DSG) is formulated between small cell base stations (SBSs). This game enables to capture the dynamics of both queues and channel states of the system. To solve this game, assuming a large homogeneous UDN deployment, the problem is cast as a mean field game (MFG) in which the MFG equilibrium is analyzed with the aid of two low-complexity tractable partial differential equations. User scheduling is formulated as a stochastic optimization problem and solved using the drift plus penalty (DPP) approach in the framework of Lyapunov optimization. Remarkably, it is shown that by weaving notions from Lyapunov optimization and mean field theory, the proposed solution yields an equilibrium control policy per SBS which maximizes the network utility while ensuring users' quality-of-service. Simulation results show that the proposed approach achieves up to 18:1% gains in EE and 98.2% reductions in the network's outage probability compared to a baseline model.Comment: 6 pages, 7 figures, GLOBECOM 2015 (published
    • 

    corecore