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Abstract - Network equilibrium models are widely used by traffic practitioners to aid them in 

making decisions concerning the operation and management of traffic networks. The common 

practice is to test a prescribed range of hypothetical changes or policy measures through 

adjustments to the input data, namely the trip demands, the arc performance (travel time) 

functions, and policy variables such as tolls or signal timings. Relatively little use is, however, 

made of the full implicit relationship between model inputs and outputs inherent in these 

models. By exploiting the representation of such models as an equivalent optimisation 

problem, classical results on the sensitivity analysis of non-linear programs may be applied, to 

produce linear relationships between input data perturbations and model outputs. We 

specifically focus on recent results relating to the probit Stochastic User Equilibrium (PSUE) 

model, which has the advantage of greater behavioural realism and flexibility relative to the 

conventional Wardrop user equilibrium and logit SUE models. The paper goes on to explore 

four applications of these sensitivity expressions in gaining insight into the operation of road 

traffic networks. These applications are namely: identification of sensitive, �critical� 

parameters; computation of approximate, re-equilibrated solutions following a change (post-

optimisation); robustness analysis of model forecasts to input data errors, in the form of 

confidence interval estimation; and the solution of problems of the bi-level, optimal network 

design variety. Finally, numerical experiments applying these methods are reported. 

 

 

Keywords: Traffic, equilibrium network flows, robustness and sensitivity analysis, probit 

choice model. 
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1. INTRODUCTION 

The Deterministic User Equilibrium (DUE) is a multi-commodity network flow problem 

commonly found in road transport which arises from a supposed �game� between the road-

users in the style of a Nash equilibrium (Nash, 1951). In the DUE problem, a vector of 

network arc flows must be determined which is consistent with individual drivers selecting 

paths so as to minimise their own generalised travel times (a weighted combination of factors, 

in travel time equivalent units), where the arc travel times depend on the arc flows (Beckmann 

et al, 1956). Such models are used widely in practice to plan transport facilities for urban 

areas, in particular policies that may affect the demand for travel (in terms of the given trip 

rates between origin and destination nodes), the supply of road network capacity (impacting 

on the arc relationships between travel time and flow), or the non-time attributes, such as 

tolls, that impact directly on drivers� generalised travel times. The reader is referred to 

Nguyen et al (1996), for example, for a survey of the literature on the theory and application 

of such models. 

 

Despite the optimization being at the individual driver, non-cooperative level, rather than a 

system optimization, it has long been known that a modified system-level, convex 

optimization problem exists which recovers the DUE solution, at least for �separable� 

problems where an arc�s travel time is independent of flows on other arcs (Beckmann et al, 

1956), allowing efficient solution methods for convex problems to be applied (e.g. Frank & 

Wolfe, 1956). Many variants on this basic DUE model exist, with specialist solution 

techniques, such as problems with link interactions (e.g. Nguyen & Dupuis, 1984; Patriksson 

& Rockafellar, 2003), non-additive generalised path travel times (e.g. Chen et al, 2001b), and 

DUE incorporating intra-period dynamic phenomena (e.g. Wie, 1995; Chen et al, 2001a)  

 

In practice, determining all the factors impacting on generalised travel times is no trivial task, 

and in any case the perceptions of these vary across individuals and between trips. An 

attractive generalisation of DUE is therefore the Stochastic User Equilibrium (SUE) problem, 
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in which unobserved, uncertain or heterogeneous elements of the generalized travel times are 

reflected through randomly distributed additive components. Drivers select paths based on 

perceived generalized travel times ⎯ the sum of the deterministic part and random 

disturbance ⎯ based on behavioural random utility theory (Sheffi, 1985). Within the SUE 

family many specific model forms may be defined, depending on the assumed joint 

probability distribution of the random disturbance terms for the paths of the network. By far 

the most straightforward case to handle, often favoured in the literature for that reason, is the 

logit SUE (LSUE) model, where the random terms are assumed to be independent between 

paths and Weibull distributed, and a convex optimization formulation again exists that is able 

to recover the LSUE solution (see Fisk, 1980). The LSUE model, however, suffers from a 

major problem of lack of plausibility. In particular, it neglects correlations in the perception of 

overlapping paths, whereas intuitively, paths that share many common arcs will be perceived 

in a very similar way. Effectively, LSUE neglects the network structure.  

 

The implausibility of the LSUE model for network problems has led to many alternatives 

being proposed within the SUE family, with research in this area especially resurgent in 

recent years. Notable among these are SUE models based on choice fractions given by the 

probit (Daganzo & Sheffi, 1977), C-logit (Cascetta et al, 1996), nested logit (Gentile & 

Papola, 2001), cross-nested logit (Vovsha & Bekhor, 1998), paired combinatorial logit 

(Gliebe et al, 1999; Prashker & Bekhor, 1999), mixed logit (Nielsen et al, 2002) and gammit 

(Cantarella & Binetti, 2002). Effectively these models all correspond to alternative statistical 

assumptions on the correlation structure of the random disturbance terms in a random utility 

model (C-logit being a slight anomaly in that its link to random utility is through the choice 

from a implicitly-available set of alternatives, not a fixed choice set).  

 

The SUE family of models will be the focus of the present paper. The approaches we shall 

explore in sections 3 and 4 do not depend on the assumptions made regarding the particular 
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form of SUE model, and so could in principle be applied to any member of the SUE family 

described above. However, for illustration we shall choose to focus on one particular such 

model, namely the Probit SUE (PSUE). There are a number of reasons for choosing to 

analyse PSUE from the wider SUE family. Firstly, as a model with a long history its 

properties and limitations are well understood (e.g. Daganzo, 1979), whereas the research 

community is still on a learning curve in understanding the difficulties with implementing 

more recent developments, such as mixed logit. Secondly, the probit has a claim to maximal 

flexibility, in that a wide range of structural relationships for the parameters may be 

accommodated for estimation purposes. Thirdly, it can have a claim to be the most 

challenging to analyse through sensitivity analysis, as we shall do, since (i) it admits no 

known convex optimisation formulation, and (ii) it is conventionally estimated by stochastic 

approximation methods that introduce the difficulty of handling Monte Carlo error in the 

computation of derivatives.  

 

Focussing henceforth on the PSUE model, we shall see that it is able to address the problem 

of correlated paths in an appealing, intuitive manner. The random elements of path 

generalized travel times are implied from random components for arc generalized travel 

times; in its most general form, the random components of arc generalized travel times follow 

a multivariate Normal distribution. A commonly used special case assumes the random 

elements to be independent between arcs, yet the implied path random elements are still 

correlated when paths overlap. While an equivalent optimisation exists for PSUE (Sheffi & 

Powell, 1982), evaluation of this function is problematic, involving a multivariate integral 

(expectation) of dimension equal to the number of paths. In practice, Monte Carlo based, 

stochastic approximation methods are in common use (see Powell & Sheffi, 1982, based on 

Blum, 1954), as will be adopted in the present paper. 

 

Specifically, we shall consider linear sensitivity analysis of the PSUE solution. Having 

described recent research by the authors addressing this issue, the paper goes on to illustrate a 
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number of direct applications of such a sensitivity analysis, relevant to practical urban traffic 

problems, which are derived through alternative interpretations of the sensitivity parameters. 

  

2. SENSITIVITY ANALYSIS OF PROBIT SUE: EXISTENCE, DERIVATION, 

COMPUTATION 

Sensitivity analysis is concerned with the implicit relationship between the solution to a 

problem (e.g. optimisation problem) and changes in the input parameters to that problem. 

Given a solution for particular values of the input parameters, the objective of a first order 

sensitivity analysis is to obtain an approximate linear relationship between changes 

(�perturbations�) to those input parameter values and changes to the solution. In the context of 

traffic network equilibrium, a variety of problem formulations have been used for the purpose 

of sensitivity analysis (optimization, variational inequality, fixed point formulations), with 

techniques derived for DUE (Tobin & Friesz, 1988; Cho et al, 2000; Patriksson & 

Rockafellar, 2003), logit SUE (Bell & Iida, 1997; Ying & Miyagi, 2001) and nested logit 

SUE (Gentile & Papola, 2001). Here we shall focus on probit SUE (PSUE), the basic 

definition of which is as a fixed point problem: 

(1)    ⇔    a PSUE is *
v ( )∑ ∑

= ∈
δ=

W

w wRr

ww
rarwa Pqv

1

)(*)(* )( Σvc              

 ),...,2,1( Aa =
where  

  = flow on arc av ),...,2,1( Aaa = , with v the vector of flows across all arcs 

  = flow on arc *
av ),...,2,1( Aaa =  at a PSUE solution (i.e. a satisfying (1))  *

v

  = flow on origin-destination movement w  wq ),...,2,1( Ww =  

  = index set of acyclic paths serving origin-destination movement w wR

  = indicator variable, equal to 1 if path r contains arc a, equal to 0 otherwise arδ

  = generalized travel time on path r as a function of the arc flow vector v )(vrc

  = vector of functions )()( ⋅w
c )()( wr Rrc ∈⋅ , for each Ww ,...,2,1=  
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 )( ΣμrP   = for a given movement, probit probability of using path r as a function of 

        the path travel time disturbance mean vector μ  and covariance matrix    Σ
 

(2) )()( ⋅⋅w
P  = vector of functions )()( wr RrP ∈⋅⋅ , for each Ww ,...,2,1=   (used later) . 

In this formulation, the path travel time functions are assumed link-additive, inferred from arc 

travel time functions (which we shall henceforth assume are �separable�, i.e. depend only on 

the flow on the arc in question): 

(3)                           ∑
=

δ=
A

a
araar vtc

1

)()(v ),...,2,1;( WwRr w =∈  

where 

)( aa vt  = generalized travel time on arc a as a function of flow   av ),...,2,1( Aa =

  = vector of functions )(vt ),...,2,1()( Aavt aa =   (used later) . 

Under mild regularity conditions (for example, assumptions (A2)�(A4) in the subsequent 

discussion suffice), a unique PSUE link flow vector  is guaranteed to exist (Sheffi, 1985). 

Furthermore, unlike its better known DUE counterpart, the existence of such a unique 

implies the existence of a unique PSUE path flow vector, , derived from  by: 

*
v

*
v *f

*
v

 ( ))(*)(* Ȉ)( ww
rwr Pqf vc=  ),...,2,1;( WwRr w =∈ . 

 

One of the main advantages of the probit model is that the path travel time disturbance 

covariance matrices  may be inferred from an arc travel time disturbance covariance 

matrix , with their elements linked by: 

)(wΣ

Λ

(4)            ∑ ∑
= =

δδ=
A

a

A

b
abbsar

w
rs

1 1

)( ΛΣ ),...,2,1;,( WwRsr w =∈  

Assuming  to be a continuous and increasing function of , an equivalent 

unconstrained optimisation formulation of PSUE is (Sheffi & Powell, 1982):  

(.)at av
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where )( ΣμwS , known as the satisfaction function, denotes the expected minimum perceived 

travel time on movement w corresponding to a probit )()( Σμw
P  choice model ⎯ the only 

property of this function needed for later analysis is that  )( wr
r

w RrPS ∈=μ∂
∂

. 

 

Let us now suppose there is a real parameter vector ε , which may parameterise either 

changes to the input demand flows ( Wwqq ww ,...,2,1),İ( == ) or changes to the arc 

generalised travel time functions ( ),( εaaa vtt = , Aa ,...,2,1= ). For example, in the first case 

the perturbations may represent the impact of a new development in generating or attracting 

trips, and in the latter case might represent network changes to link capacities, signal timings 

or tolls. For a given ε  we may solve (5), and denote the solution by . By now varying 

, each time solving (5) for fixed , then  defines an implicit relationship between the 

PSUE flows and the perturbation vector 

)(* εv

ε ε )(* εv

ε . Applying classical sensitivity analysis for non-

linear optimisation problems (Fiacco, 1983) to problem (5) then yields a linear approximation 

to this implicit relationship, in the neighbourhood of ε = 0, as (Clark & Watling, 2000, 2002): 

(6) ( )εεε o)()()()( 1** ++= −
0N0M0vv       

where the matrix M is given by:  

(7)  ( ) tcPcM vvȝv ∇+∇∇−∇=ε ∑
=

W

w

www
w wq

1

T)()()( )(.).()( )(

and where the form of the N matrix depends on the kind of parameterisation represented by ε: 

(8) Origin-destination demand:  

T

T)()(

1

.)(..)( ⎥
⎦

⎤
⎢
⎣

⎡
∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇= ∑

=
tPN v

ww
W

w
wq Δε ε

(9) Arc function parameters: 

  

T

1

)()()( ..)( )(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇∇∇=ε ∑

=

W

w

www
w wq cPcN İȝv
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where  is the arc-path incidence matrix for movement w, with elements  

 as defined earlier.  

)(wΔ arδ

;,...,2,1( Aa = )wRr∈

⎯  

For this analysis, a number of assumptions will be made: 

 

Assumption (A1): The perturbation Jacobians ),...,2,1( Wwqw =∇İ  and 

exist. ),...,2,1()( Www =∇ cİ

 

Assumption (A2): 
For each Ww ,...,2,1= , the probit choice model )( )()()( www ȈȝP  

has a covariance matrix that is independent of the mean  . 
)(wȈ )(wȝ

 

Assumption (A3): 
For each Ww ,...,2,1= , the covariance matrix  is non-singular.  

)(wȈ

 

Assumption (A4): The link travel time functions  are 

differentiable and strictly increasing in their argument. 

),...,2,1()( Aavt aa =

 

It is then possible to establish the following result: 

 

Lemma 1 (Existence of Sensitivity Analysis) Under assumptions A1�A4, the linear model 

(6) is well-defined, in the sense that all required derivatives and inverses exist.  

 

Proof  Assumption (A3) ensures that  defines a random utility model over the full set of 

alternative routes (see Daganzo, 1979, for a definition), and then (A2) ensures additionally 

that  defines a regular random utility model (Daganzo, 1979; Cantarella & Cascetta, 

)(w
P

)(w
P
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1995). For any regular random utility model, it is known that the Jacobian  exists, 

since  is equal to the Hessian of a convex function, known as the satisfaction 

function (Daganzo, 1979). Coupled with assumptions (A1) and (A4), we have thus 

established that all required derivatives for the matrices M(0) and N(0) in (6) exist. It remains 

to show that M(0) is invertible. Now (A4) implies that the Jacobian 

)(
)(

w
w Pȝ∇

)(
)(

w
w Pȝ∇−

tv∇  in (7) is diagonal 

with positive entries, and so is positive definite. Considering, then, the sum of matrices over w 

in (7), it has been noted above that under (A2) and (A3), each Jacobian  is equal 

to the Hessian of a convex function and so is positive semi-definite. Then 

)(
)(

w
w Pȝ∇−

( ) T)()()( )(.. )(
www

w cPc vȝv ∇∇−∇ is a quadratic form of non-zero terms (  non-

zero under assumption (A4)) applied to a positive semi-definite matrix, and so this quadratic 

form is also positive semi-definite. According to (7),  is therefore the sum of positive 

semi-definite matrices and a positive definite matrix, and so is positive definite. Hence the 

inverse of exists, as required in (6), since all positive definite matrices are non-singular, 

and the proof is complete.  

)(wcv∇

)(İM

)(0M

 

 

Regarding these assumptions, (A1) trivially holds for all cases considered in the present 

paper, where linear perturbations are made to the origin-destination demand levels and to the 

parameters of the link travel time functions, these latter functions being continuously 

differentiable in their parameters. (A2) is ensured by defining the link variance components in 

section 3 to be a function of the free flow travel time, rather than (say) the SUE travel time. 

(A4) also trivially holds for all travel time functions of the power-law form adopted here 

(assuming appropriate parameter values to ensure strictly increasing functions). The only 

condition that turns out to be not guaranteed a priori is (A3), and so we discuss this in some 

detail below. The derivatives in (7), (8) and (9) are commonly straightforward to compute, 
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aside from the probit path choice Jacobians , for which an attractive result due to 

Daganzo (1979) is exploited, expressing the off-diagonal terms as: 

)(
)(

w
w Pȝ∇

(10) ( ) ( )),(),,(),(exp
2

),(),(
2
1 srsrPsrk

srP
r

s

r Σμ
Σ

ΣΣμ
π

=
μ∂

∂
       );,( srRsr w ≠∈

where the right hand probit probability relates to a problem with alternative path s deleted. 

The matrix  is obtained from ( ) 1
),(
−srΣ 1−Σ  by adding row s to row r, adding column s of the 

resultant matrix to column r, and finally deleting row s and column s of the resultant matrix. 

The vector ),(),(),( srsrsr Σμ d= , where  is obtained from by adding (then 

deleting) the s

),( srd
1−Σμ

th element to the rth. Finally, , a scalar.  T1T),(),(),(),( μΣμΣ −−= srsrsrsrk dd

 

The choice probability for the �reduced problem� (i.e. the ( )),(),,( srsrPr Ȉȝ  term in (10)) is 

estimated by Monte Carlo simulation. This method may be implemented with a path-based 

variant of the Method of Successive Averages (MSA) algorithm (Powell & Sheffi, 1982) to 

compute the �unperturbed� (ε = 0) PSUE solution; only paths that are �active� (carry positive 

flow) in the unperturbed state are considered in the analysis. It should be noted that while, in 

theory, all paths should be active at the PSUE solution, at the termination of any finite 

number of MSA iterations a number of paths will be so improbable that they will not have 

been sampled, and so the restriction to a smaller active path set effectively represents an 

estimate of a most probable set of paths. It is noted in passing that this is somewhat different 

to the selection of an arbitrary path set as suggested in some sensitivity analyses of DUE (e.g. 

Tobin & Friesz, 1988). 

 

This latter feature, namely that the estimated PSUE path flow solution generally uses 

somewhat less than the full path set turns out to be a key element of our proposed 

computational method. In particular, it ensures that⎯for most origin-destination movements 

in larger networks⎯condition (A3) will be met, which effectively requires that for each 
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movement, each active path has a link that is unique to that path, not used by other paths on 

that movement. However, it will be typically be the case that at least for some movements, the 

active path set is so large that (A3) fails, meaning that the Jacobian elements (10) cannot be 

computed. Two questions arise, then: (i) what causes this ill-conditioning, and (ii) how may it 

be overcome? 

 

Considering, firstly, the cause of the ill-conditioning. This arises due to our decomposition of 

the derivative of the PSUE model into the product of the path travel time vs link flow 

Jacobian, and the path choice vs path travel time Jacobians. Such a decomposition is not 

guaranteed to be well-defined. The ill-conditioning could be avoided by decomposing into the 

product of a link travel time vs link flow Jacobian, and link choice vs link flow Jacobians for 

each movement, the latter referring to the proportion of flow on a particular movement that, 

across all paths for that movement, would use each link. The disadvantage of this alternative 

decomposition is, however, that the appealing computational result (10) does not apparently 

generalise to allow efficient computation of probit link choice Jacobians. That is to say, the 

ill-conditioning problem noted is not fundamental to performing sensitivity analysis of PSUE, 

but arises from the particular way we propose to compute the sensitivity analysis by 

exploiting result (10). 

 

Secondly, then, we address the question of how to overcome the ill-conditioning noted. The 

problem has structural similarity to a known problem in the maximum likelihood estimation 

of probit choice model parameters, where particular parameterisations may not be estimable 

(Daganzo, 1979, pp 93-105). Daganzo suggests, at least for some simple types of problem, 

how the parameterisation may be adapted to avoid this problem. Alternatively, one may drop 

the appealing manner of defining the PSUE covariance matrix purely in terms of link error 

components (4). For example, Yai et al (1997) include additional path-specific error terms in 

their specification of the probit model, which we could simply require to satisfy (A3). While 

this approach has theoretical appeal, in that all ill-conditioning problems disappear and still 
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(10) may be exploited, it generates a new practical problem of how to generate/estimate the 

path-specific terms (unless they are treated as arbitrary, �small� disturbances). In any case, the 

appealing practical appeal of PSUE, in defining the error terms as link components and letting 

the network structure define the path covariances, is lost.  

 

In practice, neither of the strategies suggested above was adopted, but instead a simple 

technique was employed to �prune� the path set in order to satisfy (A3). The aim of the 

heuristic is, for any origin-destination movement for which (A3) fails, to choose a linearly-

independent subset of the active paths that explains the greatest proportion of the demand for 

that movement, in the unperturbed state. A simple greedy heuristic, whereby the active paths 

are ranked by flow carried in the unperturbed state, has been seen to overcome this problem at 

no appreciable loss of information (Clark & Watling, 2002). For paths not selected, the flows 

are held constant during the sensitivity analysis.  

 

3 . SPECIFICATION OF TEST NETWORKS 

In order to illustrate applications of the results above, two test networks will be used. The first 

is an artificial five-arc network, which has previously been used in the literature on related 

problems (Suwansirikul et al, 1987; Cho & Lo, 1999). The network structure and travel time 

functions are given in Figure 1. The origin-destination demand for the single movement is q = 

100. The arc travel time disturbance covariance matrix Λ⎯which infers a path covariance 

matrix (in general, non diagonal) through (4)⎯is assumed to be diagonal, with the square root 

of the diagonal elements (standard deviations) proportional to the free-flow arc travel times. 

The base case used in all tests reported in section 3 uses a proportionality of 0.3, yielding: 

  . 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

81.00000

025.2000

0036.000

00024.30

000044.1

9.00000

05.1000

006.000

0008.10

00002.1

2

2

2

2

2

Λ

 13



In conducting the sensitivity analysis, an unperturbed PSUE  is first required; this is 

estimated using 32,000 iterations of the MSA algorithm, the large number of iterations used in 

order to minimise the confounding effect of Monte Carlo error in our test comparisons. 

)(*
0v

 

The second network considered, referred to as the Headingley network, represents an area of 

some 6km×3km in the city of Leeds, UK, based around the main arterial A660 Otley Road to 

the north-east of the city centre. It contains some 123 arcs, 29 origin zones and 29 destination 

zones, with a peak-hour demand matrix totalling 6,260 vehicles/hour, and with link travel 

time functions of the BPR form (Bureau of Public Roads, 1964). The path travel time 

covariance matrix is specified in an analogous way to that for the five-arc network, based on a 

diagonal arc travel time covariance matrix with standard deviations equal to 0.3 of free flow 

travel time. To compute the base case PSUE solution, 1,000 iterations of the MSA algorithm 

were used. Without loss of generality, travel time is assumed to be the only component of 

generalised travel time; in practice, all of the analyses presented are easily adapted to include 

non-time attributes such as vehicle operating cost and tolls within the generalised travel times. 

 

Clearly, a key element of these network specifications that is particular to the present paper 

concerns the assumptions regarding the probit path choice covariance matrix. Now, before 

proceeding, while it is not the main purpose of this paper to compare alternative equilibrium 

models, it might reasonably be asked what the PSUE model adds, compared to the already-

known (and arguably, more straightforward to implement) results for DUE and logit SUE 

sensitivity analysis. In fact, since PSUE is able to approximate both such models, we may 

gain insight into the effect of such alternative model forms simply by varying the covariance 

structure of the probit model. As a preliminary step, then, to illustrate the alternative structural 

specifications that are possible with the probit model, we report some illustrative results here 

for the five-arc network. 
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As a first test, the impact is examined of including the additional random, unobserved terms; 

since, as the probit covariance matrix approaches the zero matrix, PSUE will approach DUE, 

this suggests examining the impact of increasing variance. Three cases, with arc covariance 

matrices of Λ
9
1 , Λ

9
4 ,  (corresponding to proportionalities 0.1, 0.2, 0.3), are considered. 

For the sensitivity analysis,  represents a scalar, namely a single additive perturbation to the 

travel time function on arc 3, so that 

Λ

ε

ε+=ε )(),( 3333 vtvt  and )(),( aaaa vtvt =ε  .  )3( ≠a

 

The first three columns of Table 1 give the approximate linear sensitivity relationship 

between the PSUE arc flows and ε , for the three cases defined above. Evidently, as the 

random variation decreases in magnitude, so the arc flows become more sensitive to ε. This is 

to be expected since with lower variation, the deterministic component of travel time is more 

critical. This demonstrates that the random terms do not simply cancel; ultimately neglecting 

unobserved attributes (as in DUE) will lead to different sensitivities, and therefore different 

predicted impacts of a transport policy. 

 

The comparison above establishes a case for including random terms, yet this still may be 

achieved (with much greater simplicity than for probit) by use of the logit SUE. Logit SUE, 

however, lacks the intuitive correlation in travel times between overlapping paths. To 

demonstrate how different sensitivities can arise if this correlation is neglected, a further 

comparison is made with a �zero path correlation� case, obtained by re-setting all off-diagonal 

terms to zero in the implied path covariance matrix corresponding to arc covariance matrix 

. Comparing the Λ Λ  and �zero path correlation� columns in Table 1, there is evidence that 

less positive correlation implies less sensitivity; this is logical since in neglecting path 

overlaps, we suppose drivers are over-optimistic in believing there will be an attractive 

substitute path available when one path is perceived as unattractive. This demonstrates that 

the simplistic assumption of uncorrelated paths can give rise to misleading effects that neglect 

the network structure. In fact, logit is even more extreme than the probit �zero path 
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correlation� case considered here, since the former also requires the path disturbance terms to 

be identically distributed, whereas in the latter case we have still permitted differential 

variance terms across the diagonal.  

 

Having made a case, therefore, for considering the computationally more complex probit 

SUE, the remainder of the paper will focus on this particular model. 

 

4. APPLICATIONS OF PSUE SENSITIVITY EXPRESSIONS 

4.1 Interpretations of sensitivity analysis 

In section 2, techniques for computing a sensitivity analysis of the PSUE model were 

described; in section 4, we shall explore various applications of the results (6)−(10) through a 

series of numerical examples. The interpretations we shall give to sensitivity analysis in these 

applications are not, however, the only ones that are possible. Since an appreciation of our 

particular manner of interpretation is important in understanding the philosophy and 

motivation behind the numerical tests, we explicitly address this issue here. 

 

In particular, the applications reported have a common theme of exploiting (6) as a linear 

model, relating the perturbation vector  to the equilibrium flow vector . Two points can 

be made regarding this interpretation. Firstly, the underlying relationship between  and İ  

is certainly non-linear, and so (6) can only be regarded as an approximation to the true 

relationship. A strict interpretation of (6) is then that the approximation is only valid in a local 

neighbourhood of İ  = 0, yet our computational experience with the PSUE model has 

suggested that (at least for demand perturbations) it can hold as a reasonable approximation 

over a rather wider range: see Clark & Watling (2000, 2002), as well as the comparisons we 

shall implicitly make with the underlying non-linear relationship in sections 4.2 to 4.6.  

İ *v

*v
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It is our belief that there are two features of the PSUE model, not possessed by DUE, that 

particularly contribute to the strength of this approximation. These features are namely: (i) the 

probabilistic choice mechanism in PSUE has a smoothing effect relative to the �discrete� 

nature of DUE, where effectively changes in the active path set lead to non-smooth behaviour 

at the DUE arc flow level, as parameter perturbations are made; and (ii) the large number of 

active paths, per origin-destination movement, in the PSUE sensitivity analysis effectively 

allows changes in the dominant path set (the paths carrying most of the demand flow) as İ  is 

changed, effectively �smoothly� mimicking the active path set changes in DUE. For example, 

a number of paths with a negligible PSUE flow at İ  = 0, but active in the sensitivity analysis, 

may attract a non-negligible PSUE flow as  is moved far away from 0.  İ

 

This latter feature can be empirically confirmed even when a sequence of PSUE solutions are 

estimated by Monte Carlo methods, for gradually changing values of , specifically from the 

graph of some measure (path flow of significant paths, total travel time, �) evaluated at 

PSUE versus İ⎯the reader is referred to the examples reported in Clark and Watling (2000, 

2002). (Of course, this requires care in setting up the sequence of Monte Carlo runs with a 

common random number seed, initial condition and initial permissible/universal path set, and 

in allowing a large number of iterations to minimise convergence error). This is the case even 

when, given some slight change to İ , the active PSUE path set arising from the Monte Carlo 

algorithm includes a previously-unused path or drops a previously-active path. The reason for 

this is that such paths were previously inactive in the Monte Carlo algorithm because they had 

an extremely low probability of being chosen, and even when active in the perturbed situation 

will continue to have an extremely low probability of being chosen, and hence an extremely 

small effect on the flows on the significant paths used in the network. Such behaviour would 

not be expected with a path flow analysis of models such as DUE, since in that case the active 

paths generated by an algorithms are entirely arbitrary (path flows non-unique); in contrast, in 

İ
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the DUE case, one cannot infer anything about the unattractiveness of the inactive paths, and 

so the argument used here for PSUE cannot be extended to the DUE model. 

 

Returning, then, to the issues concerning the interpretation of the sensitivity analysis, the 

point we would make secondly is that at no stage shall we apply the interpretation of the 

sensitivity analysis as a gradient (or sub-gradient) of  at İ  = 0, as one may do, for 

example, in some applications to bi-level optimisation (Suh & Kim, 1992; Davis, 1994; 

Josefson & Patriksson, 2003; Patriksson, 2004). In particular, our algorithm in section 4.6 

makes no explicit use of the sensitivity analysis as a gradient. Throughout the paper, our key 

requirement is that an approximate linear relationship exists between  and İ ; our concern 

will therefore be with the quality of this approximation relative to the underlying non-linear 

relationship, not with gradient properties. This is in truth a rather subtle point, since the case 

we prove for existence of the sensitivity analysis effectively can be used to establish it as a 

gradient, under some additional natural technical conditions. The point we are making, rather, 

is that the philosophy of the techniques we subsequently describe for utilising the sensitivity 

analysis do not exploit gradient properties; this is not intended as a technical point, so much 

as to explain our philosophy in using sensitivity analysis for wider issues than simply 

inferring gradient properties. 

)(* İv

*v

 

The specific applications described in the following sections 4.2�4.6 are derived from 

alternative interpretations of ε , either as a given perturbation vector, a random vector with a 

given joint probability distribution, or a vector variable to be optimised. It is noted also that 

we shall use the different applications to illustrate the interpretation of ε  as a perturbation to 

both the travel demand and the network characteristics. Numerical results are given for both 

the five-arc network with arc travel time disturbance matrix  as defined at the start of 

section 3, and for the Headingley network also defined in section 3. 

ȁ
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4.2 Identification of sensitive parameters 

Perhaps the most direct practical use of the sensitivity expressions is to gain an understanding 

of how responsive the arc flows within the network are to changes in the parameters. Where 

there are high sensitivities (in absolute terms) then there is a need to concentrate resources so 

as to ensure that such regions of the network are accurately described. We suppose here that 

 is a vector representing an additive perturbation to the arc functions, so  ε

αε+=ε )(),( aaaa vtvt  . For example, for the test network of Figure 1, we then 

obtain: 

),...,2,1( Aa =
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26.326.376.251.051.0

26.326.376.251.051.0

76.276.292.417.217.2

51.051.017.267.267.2

51.051.017.267.267.2

90.56

10.43

39.12

52.44

48.55

This matrix may be used to infer the importance of any errors that might be made by the 

model-user in estimating the arc travel time functions, in terms of the errors that would ensue 

in the resulting equilibrium arc flows. For example, suppose that in a particular policy context 

it was particularly important to accurately estimate the flow on arc 3, then it can be seen from 

the third row of the matrix in (11) that  is most sensitive to errors in , so that any 

additional resources which are available to estimate the travel time function parameters more 

accurately are wisely spent on those for arc 3. 

*
3v 3ε

 

4.3 Computation of approximate, re-equilibrated solutions (�post-optimisation�) 

There are many practical situations in which it is required to determine a number of traffic 

equilibrium solutions for problems with slightly modified input data; Nguyen et al (1996) cite 

examples ranging from on-line route guidance, to origin-destination matrix estimation from 

arc counts under equilibrium constraints on the flows. Determining the required equilibria 

sequentially, based on already-determined equilibria, has the potential for large computational 

savings.  
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Thus, one immediate application of (6) that may be envisaged is as a means of arriving at an 

approximate PSUE solution following some given change to the base input data. By way of 

illustration, for the five-arc network we write the origin-destination demand as ε+= 100q  

(here  is a scalar), and give in Table 2 a comparison between the linear estimate and re-

estimated PSUE solution for the case 

ε

10=ε . The agreement between the methods in terms of 

flows is good, and compares favourably with the computationally simpler logit-based results 

reported by Ying & Miyagi (2001). In our tests, while the computational times for both 

methods (linear estimation of PSUE and re-estimated PSUE) were small, the linear estimate 

took a fraction of the time needed for the re-estimated solution.  

 

The main potential for computational savings arises in larger network applications. For 

illustration, in the Headingley network, a single origin-destination flow was increased by 

10%, representing in practice (say) the impact of a small in-fill housing development. The 

solutions were compared from two methods: linear approximation from the unperturbed case, 

and re-estimation of the equilibrium. The network impact on arc flows is illustrated in Figure 

2, with the width of the arc lines representing the absolute increase in flow relative to the base 

case. On a 450MHz Pentium II PC, the time to compute the sensitivity expressions was 14 

minutes, but subsequently any number of linear-approximated equilibria resulting from 

changes to any demand or any travel time function could be computed in negligible time. On 

the other hand, re-computing an equilibrium took around 1 minute. Comparing the 

approximate and re-estimated solutions on an arc-by-arc level, the average percentage 

absolute difference in arc flows was 0.19%, with the largest error only 2.99%. The 

distribution of these differences is illustrated in Figure 3. On a network-wide level, the 

increase in demand led to a forecast increase in total network travel time of 1.124% by the 

linear approximation method, comparing favourably with the forecast 1.118% increase 

obtained by re-estimation of the equilibrium. 
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4.4 Estimating confidence intervals for equilibrium flows 

The major items of input data to a traffic network model are the origin-destination trip matrix 

and arc travel time functions. In practice, such input data are prone to potentially large 

estimation errors, yet typically no effort is made to quantify the impact on the resulting 

prediction errors in the model outputs. In statistical terms, a sensible interpretation would 

seem to be that the conventional predictions of flows from an equilibrium model are point 

estimates of mean flows, but we may reasonably ask for standard errors and/or confidence 

intervals for these point predictions. For this purpose, we explore the use of (6) with both ε  

and its linear estimator (transformation)  assumed now to be random vectors, and with a 

given probability distribution representing the sampling error in 

)(* εv

ε . For example, in the case 

of the origin-destination demand matrix, the sampling error represents the uncertainty in 

estimating the mean demands from some given survey data.  

 

Three alternative techniques were tested for estimating output sampling distributions from 

given input sampling distributions for the trip matrix and link capacities: 

• Re-estimation: Monte Carlo simulation with the full non-linear model: i.e. simulate from 

assumed input data sampling distributions, and solve a PSUE for each simulated scenario. 

• Linear simulation: Monte Carlo simulation with linear approximation (6): i.e. simulate 

from the input data sampling distributions, then use sensitivity expressions (6)−(10). 

• Linear analytic: By (6), ( ) ( ) ( )( T1-1-1-** var)0(var)( )r NMNMNMvv εεε =+≈  iva s used to 

propagate standard errors; and by assuming Normality, confidence intervals are 

computed. 

These approaches have alternative merits: re-estimation is the most computationally 

demanding, using the correct non-linear relationships but being subject to Monte Carlo error; 

linear simulation reduces the computational demand, but is subject to linearisation error in 
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addition to Monte Carlo error; linear analytic is the most computationally attractive, but is 

subject to linearisation error, and must also assume a particular (e.g. Normal) output sampling 

distribution.  

 

To illustrate each of these techniques, the five-arc network is considered with a (scalar) 

origin-destination demand of ε+=100q , where ε  is a random variable representing the 

sampling error in the estimation of the mean demand level. In particular, we assume  to be 

Normal with zero mean and variance 25 (such an assumption could be justified, for example, 

based on a Normal approximation to underlying Poisson demand variation, if the mean 

demand were estimated from  sampled observations). For both the re-estimation and 

linear simulation techniques, 400 realisations of q

ε

4=n

 were sampled and the empirical 5% and 

95% percentiles obtained from the resultant 400 sets of estimated PSUE link flow patterns 

corresponding to the sampled demand levels. With the linear analytic technique, the 5×5 arc-

flow covariance matrix  was calculated using the M and N matrices, with var(ε) = 

25.  

))(var( * εv

 

Table 3 shows how the percentiles compare across the three techniques. There is generally 

quite good agreement between all three methods. The re-estimation and linear simulation 

estimates show the greatest similarity, indicating that the linearisation error is relatively small; 

since they are based on the same Monte Carlo draws of the demand, the Monte Carlo effect 

can be neglected. Turning attention, then, to a comparison of the linear simulation and linear 

analytic techniques, while differences in the estimates produced by the two methods could in 

principle be attributable to either Monte Carlo error (in the linear simulation estimates) or 

violation of the Normal approximation (made in the linear analytic results), the latter source 

may be ruled out in the present case. This is due to the fact that demands have been sampled 

from a Normal distribution, and so link flows are linear combinations of Normal variables 

(under the linearised model) and so are themselves Normal. Thus, the difference in the results 
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can be entirely attributed to Monte Carlo error in the linear simulation estimates. Taken with 

the earlier conclusions that linearisation error appears to be small, the overall implication is 

that one should place greatest confidence in the linear analytic results, the differences with the 

alternative two methods being attributable mainly to Monte Carlo error (this was also 

confirmed by re-applying the linear simulation method with an increased number of pseudo-

random draws). While, clearly, the Monte Carlo error can always be reduced by increasing 

the number of random draws, there will always be the question of how many draws should be 

performed, an issue that does not arise with the linear analytic method.  

 

Further tests were conducted on the three methods (re-estimation, linear simulation, linear 

analytic) in realistic networks under various assumptions on the demand levels, input 

variation levels, and input sampling distributions (Poisson, Normal, Lognormal). The detailed 

results are not given here, but overall a similar pattern in the results was evident to that 

reported above. In particular, the difference between the methods in estimating the limits of 

95% link flow confidence intervals was seen to be less than 2% (based on 100 Monte Carlo 

replications), but both methods which used the linear sensitivity result gave an enormous 

saving in computational effort. 

 

4.5 Estimating a confidence interval for total travel time 

The approach described in section 4.4 may be further extended to quantify the uncertainty in 

what is a primary practical measure of network performance, total travel time. Suppose the 

arc functions are of a form consistent with the commonly used Bureau of Public Roads form 

(for other forms, a polynomial Taylor series approximation may be used): 

(12)          (an
aaaaa vvt β+α=)( Aan aaa ,...,2,1;0;0integer; and0 =≥β≥α≥ ) 

then the mean and sampling variance in the total travel time may be written: 
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Expressions (13) and (14) are used to exploit knowledge of the link flow covariance matrix 

from the linear analytic method of section 4.4. The flow variances and covariances on the 

right-hand side of (14) depend on flow moments and cross-moments, and supposing the joint 

link flow sampling distribution is approximately multivariate Normal, these required 

moments may be computed from standard expressions for multivariate normal moments (e.g. 

Isserlis, 1918). By a further Normality approximation for the total travel time sampling 

distribution, a confidence interval is thereby computed. 

 

This technique was applied to the Headingley network, assuming there to be sampling error in 

the origin destination trip demands. Assuming, for each O-D movement w, Poisson variation 

in the underlying flows with mean (approximated, for large  by a Normal distribution), 

then for a survey based on n independent observations of flows the sampling distribution for 

 (sample mean flow for O-D movement w) would be approximately Normal with a 

variance of 

wq wq

wİ

n

qw . The tests reported here correspond to n = 1, a not unusual case in practice. In 

Figure 4, the base situation corresponds to a �Demand Multiplier� of 1 on the horizontal axis. 

Other scenarios involve multiplying all O-D matrix elements in the base model by a constant 

factor (the Demand Multiplier), which by the Poisson assumption infers an increase by this 

factor in both the mean and variance in the underlying O-D flows. On the vertical axis, a 

corresponding 95% confidence interval in the total network travel time is illustrated. Clearly, 

the width of the interval varies with the demand, an illustration that the magnitude of the 

uncertainty in the model outputs is context-dependent.  
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In practice, such confidence intervals may be used in a before-and-after study of some 

hypothetical policy measure, in order to test whether the measure is forecast to lead to a 

statistically significant improvement in traffic conditions, in the light of the uncertainty in the 

forecasts that arises from the uncertainty in the input data. Thus statistical hypothesis testing 

may be integrated with the equilibrium analysis of networks, allowing conservative decisions 

to be made in the face of uncertainty in the model predictions. Furthermore, such techniques 

could also be applied in the context of survey design, such as the problem of determining the 

minimum sample size required to achieve a given level of precision. For example, in the 

application reported above, one question that could be addressed is: what sample size n is 

required when estimating the O-D demand levels, in order that total travel time may be 

estimated to within some given level of precision, at a given level of confidence. 

 

On a technical level, it should also be noted that the simple normality assumption adopted 

above (for the total travel time distribution) is not critical to the analysis. It may reasonably be 

argued that total travel time is much more likely to follow some form of positively skew 

distribution, for example. In such a case, more general families of probability densities may 

be estimated using higher order moments, using elements of the techniques reported in Clark 

& Watling (2004). 

 

4.6 Network Design 

The ability to vary �design parameters� of a network in order to optimise a network 

characteristic, while anticipating the response of drivers to the changed parameters, is 

commonly termed network design. Yang & Bell (1998) review the algorithms known and 

adopted by the transportation field for solving such problems. In the continuous network 

design problem, the design parameters may, for example, be road widths/capacities, traffic 

signal timings or road tolls. For illustration here, we re-visit an example considered by 

Suwansirikul et al (1987) for the DUE case, on the five-arc network of Figure 1. The travel 
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time functions given in Figure 1 are re-written with constrained design variables ε  

(representing capacity changes) introduced in the flow divisor for each arc:  

(15)  
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so that for example, 40,6.0,4 111 =κ=β=α . Here, the network design problem has as its 

upper level the criterion of total travel time plus a penalty term to reflect the cost of making 

changes to the design variables (with below, 25421 ==== dddd  and ): 13 =d
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which is optimised in our case subject to a lower level PSUE (rather than DUE) relationship: 

(17) v is a PSUE given ε, based on arc functions (15). 

 

As noted by Fisk (1984), this problem has the structure of a Stackelberg game (van 

Stackelberg, 1952), with the planner ⎯ who is responsible for network changes ⎯ acting as a 

�leader�, and the road users as a collection of �followers� (albeit here with unobserved 

components represented as random variables in the road users� decision process). With (5) 

used to represent the lower level (17), the network design problem (16)/(17) has the form of a 

bi-level optimisation. The implicit, non-linear, lower level constraints (17) make this a 

demanding problem to solve, yet a number of authors have reported success in exploiting 

sensitivity analysis information in this context (Yang & Bell, 1998). One potential use of 

sensitivity analysis in this context is as a gradient function for the lower level (see the 

comments and references to such applications in section 4.1), but we shall continue with the 

interpretation of sensitivity analysis as a linear approximation model, particularly exploring 

whether a single sensitivity analysis could be sufficient to use throughout the course of the 

upper level optimisation. We test this hypothesis on the five-arc network by comparing the 

�optimal� solution estimated by using a single linear approximation with that obtained by 

using the full, implicit PSUE relationship.    
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To solve the example problem, we used Powell�s method (Powell, 1964) for the optimisation, 

a well-known gradient-free method, based on two alternative approaches for evaluating the 

objective function. In what we shall call the re-estimation method, for a single function 

evaluation  at a given ε, we solve a full PSUE problem (17), and then substitute the 

resulting flows with the given ε into (16). (The random seed was re-set to the same value for 

each function evaluation, in order to minimise the potential for problems with Monte Carlo 

error in estimating the PSUE solution.) This method thus follows in the spirit (though not the 

specific approach) of the study of derivative-free techniques for the network design problem 

(Suwansirikul et al, 1987; Friesz et al, 1992). In contrast, with what we shall term the 

linearised method, to evaluate  at a given ε we use the linear relationship (6) (as an 

approximation to (17)), and substitute the approximate flows with the given ε into (16); this 

follows in the spirit of the sensitivity-based techniques studied by Bell & Iida (1997). For this 

latter method, a single linear approximation ((6) evaluated at ε=0) is deduced before the 

optimisation commences. In both the re-estimation and linearised methods, the stopping 

criterion used was that the difference between objective function values over successive 

iterations should be less than 10

)(εf

)(εf

-4. An initial condition of ε=0 was used; other initial 

conditions were tested, but did not find other local optima.  

Table 4 presents the results of these experiments. denotes the final solution obtained by the 

linearised method. This method crucially assumes the linear approximation about ε=0 to be 

valid across the whole feasible region; a check on whether this might be reasonable can be 

made by comparing the linear approximate and re-estimated PSUE flows at the final 

solution, . This comparison is given in the table, and a close correspondence is observed, 

indicating that the linearisation may be reasonable. The final solution from the re-estimation 

method, , took around 435 seconds to compute, compared with less than 1 second to 

compute . The objective function values produced by the various methods are also given; 

Lε

Lε

Rε

Lε
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and for information, the initial value of the objective function is 70.1259)( =0f . The final 

values of the design variables from the two methods are extremely close, and the resulting 

value of the objective function almost identical. It is noted finally that the solutions obtained 

here were appreciably different, though the same order of magnitude, as the optimal values 

(1.35, 1.22, 0.00, 0.95, 1.08) obtained by Cho & Lo (1999) for the case of DUE. 

 

5. CONCLUSION 

The development of network equilibrium methods has been geared towards the efficient 

estimation of point solutions at given values of the input parameters. They are much less 

suitable for applications in which an explicit relationship is needed between variations in the 

input parameters and the model predictions. We have demonstrated that, by using a linear 

approximation to this explicit relationship, it is possible to address in a natural way problems 

of statistical inference and network optimisation. Direct applications of these techniques 

include, for example, the determination of optimal toll levels, hypothesis testing of before-

and-after studies and survey design.  

 

There are many possible directions for further developments of these methods. One such class 

of developments involves generalisation of the model, e.g. to account for elastic origin-

destination demand (where the demands are a function of the generalized travel times), non-

separable travel time functions, and multiple classes of traveller.  
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Figure 1: Five-arc example network (Suwansirikul et al, 1987), OD demand  100=q
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Figure 2: Diagrammatic representation of increase in arc flows following increase in an 

origin-destination flow (Headingley network) 
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Figure 3: Arc-by-arc comparison, distribution of percentage differences in arc flows between 

linear appoximate and re-estimated solutions (Headingley) 
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Figure 4: 95% confidence interval in total network travel time (Headingley network, O-D 

matrix uniformly factored by �Demand Multiplier�) 

 

Arc a Λ  Λ
9
4  Λ

9
1  Zero path correlation 

1 55.48 − 2.1650 ε 54.79 − 2.4185 ε 53.89 − 2.7823 ε 56.62 − 2.0620 ε 

2 44.52 + 2.1650 ε 45.21 + 2.4185 ε 46.11 + 2.7823 ε 43.38 + 2.0620 ε 

3 12.39 − 4.9211 ε 10.82 − 5.4996 ε 8.77 − 6.3242 ε 14.54 − 4.6292 ε 

4 43.10 + 2.7558 ε 43.97 + 3.0811 ε 45.12 + 3.5419 ε 42.08 + 2.5672 ε 

5 56.90 − 2.7558 ε 56.03 − 3.0811 ε 54.88 − 3.5419 ε 57.92 − 2.5672 ε 

Table 1: Linear sensitivity estimate of PSUE arc flows as a function of additive perturbation ε 

to the travel time function for arc 3, for alternative covariance assumptions (five-arc network) 
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Arc 

a 

Base 

  )0(*
av

Flow change 

per unit ε  

Linear approx.  

to  )10(*
av

Re-estimation 

of   )10(*
av

Percentage 

difference 

1 55.4843   0.4818 60.3023 60.3041  0.00% 

2 44.5157   0.5182 49.6977 49.6959  0.00% 

3 12.3875 -0.0408 11.9795 11.9900 -0.09% 

4 43.0970   0.5226 48.3230 48.3140  0.02% 

5 56.9030   0.4774 61.6770 61.6860 -0.01% 

Table 2: Linear approximate and re-estimated solution for an 10=ε  unit increase in q      

(five-arc network) 

 

5% percentile 95% percentile  

 

Arc (a) 

Re-

estimated 

Linear 

simulated 

Linear 

analytic 

Re-

estimated 

Linear 

simulated 

Linear 

analytic 

1 
52.06 52.01 51.58 60.07 60.06 59.39 

2 
40.74 40.78 40.19 49.44 49.44 48.84 

3 
12.01 12.00 11.93 12.75 12.68 12.84 

4 
39.31 39.33 38.74 48.06 48.06 47.45 

5 
53.49 53.47 53.03 61.45 61.44 60.77 

Table 3: 90% Confidence intervals for PSUE arc flows (five-arc network) 
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 Linearised method Re-estimated method 

Arc 

(a) 

Final 

solution  
Lε

Approximated 

flows at   
Lε

Re-estimated 

flows at  
Lε

Final 

solution  
Rε

Re-estimated 

flows at  
Rε

1 1.4672 55.8933 55.8968 1.4469 55.8719 

2 1.0538 44.1067 44.1032 1.0804 44.1281 

3 0.0044 13.1704 13.1813 0.0002 13.1313 

4 0.8086 42.7181 42.7157 0.8433 42.7406 

5 1.2256 57.2819 57.2843 1.2017 57.2594 

)(εf   1214.39 1214.68  1214.39 

Table 4: Network design solutions for re-estimation and linearised methods (five-arc network) 

 

 37


	Applications of sensitivity analysis cover.pdf
	Applications of sensitivity analysis.pdf

