42 research outputs found

    Analysis and modeling methods for predicting functional robustness of integrated circuits during fast transient events

    Get PDF
    La miniaturisation des circuits intégrés se poursuit de nos jours avec le développement de technologies toujours plus fines et denses. Elle permet une intégration des circuits toujours plus massive, avec des performances plus élevées et une réduction des coûts de production. La réduction de taille des circuits s'accompagne aussi d'une augmentation de leur sensibilité électrique. L'électronique automobile est un acteur majeur dans la nouvelle tendance des véhicules autonomes. Ce type d'application a besoin d'analyser des données et d'appliquer des actions sur le véhicule en temps réel. L'objectif à terme est d'améliorer la sécurité des usagers. Il est donc vital de garantir que ces modules électroniques pourront effectuer leurs tâches correctement malgré toutes les perturbations auxquelles ils seront exposés. Néanmoins, l'environnement automobile est particulièrement sévère pour l'électronique. Parmi tous les stress rencontrés, les décharges électrostatiques (ESD - Electrostatic Discharge) sont une importante source d'agression électrique. Ce type d'évènement très bref est suffisamment violent pour détruire des composants électroniques ou les perturber pendant leur fonctionnement. Les recherches présentées ici se concentrent sur l'analyse des défaillances fonctionnelles. À cause des ESD, des fonctions électroniques peuvent cesser temporairement d'être opérantes. Des méthodes d'analyse et de prédiction sont requises au niveau-circuit intégré afin de détecter des points de faiblesses susceptibles de générer des fautes fonctionnelles pendant l'exposition à un stress électrostatique. Différentes approches ont été proposées dans ce but. Une méthode hiérarchique de modélisation a été mise au point afin d'être capable de reproduire la forme d'onde ESD jusqu'à l'entrée du circuit intégré. Avec cette approche, chaque élément du système est modélisé individuellement puis son modèle ajouté au schéma complet. Un cas d'étude réaliste de défaillance fonctionnelle d'un circuit intégré a été analysé à l'aide d'outils de simulation. Afin d'obtenir plus de données sur cette faute, une puce de test a été développée, contenant des structures de surveillance et de mesure directement intégrées dans la puce. La dernière partie de ce travail de recherche est concentrée sur le développement de méthodes d'analyse dans le but d'identifier efficacement des fautes par simulation. Une des techniques développées consiste à modéliser chaque bloc d'une fonction individuellement puis permet de chaîner ces modèles afin de déterminer la robustesse de la fonction complète. La deuxième méthode tente de construire un modèle équivalent dit boite-noire d'une fonction de haut-niveau d'un circuit intégré. Ces travaux de recherche ont mené à la mise au point de prototypes matériels et logiciels et à la mise en évidence de points bloquants qui pourront constituer une base pour de futurs travaux.Miniaturization of electronic circuits continues nowadays with the more recent technology nodes being applied to diverse fields of application such as automotive. Very dense and small integrated circuits are interesting for economic reasons, because they are cheaper to manufacture in mass and can pack more functionalities with elevated performances. The counterpart of size reduction is integrated circuits becoming more fragile electrically. In the automotive world, the new trend of fully autonomous driving is seeing tremendous progress recently. Autonomous vehicles must take decisions and perform critical actions such as braking or steering the wheel. Those decisions are taken by electronic modules, that have now very high responsibilities with regards of our safety. It is important to ensure that those modules will operate no matter the kind of disturbances they can be exposed to. The automotive world is a quite harsh environment for electronic systems. A major source of electrical stress is called the Electrostatic Discharge (ESD). It is a very sudden flow of electricity of large amplitude capable of destroying electronic components, or disturb them during their normal operation. This research focuses on functional failures where functionality can be temporarily lost after an ESD with various impact on the vehicle. To guarantee before manufacturing that a module and its components will perform their duty correctly, new analysis and prediction methods are required against soft-failures caused by electrostatic discharges. In this research, different approaches have been explored and proposed towards that goal. First, a modelling method for reproducing the ESD waveforms from the test generator up to the integrated circuit input is presented. It is based on a hierarchical approach where each element of the system is modelled individually, then added to the complete setup model. A practical case of functional failure at silicon-level is analyzed using simulation tools. To acquire more data on this fault, a testchip has been designed. It contains on-chip monitoring structures to measure voltage and current, and monitor function behavior directly at silicon-level. The last part of this research details different analysis methods developed for identifying efficiently functional weaknesses. The methods rely heavily on simulation tools, and prototypes have been implemented to prove the initial concepts. The first method models each function inside the chip individually, using behavioral models, then enables to connect the models together to deduce the full function's robustness. It enables hierarchical analysis of complex integrated circuit designs, to identify potential weak spots inside the circuit that could require more shielding or protection. The second method is focused on constructing equivalent electrical black box models of integrated circuit functions. The goal is to model the IC with a behavioral, black-box model capable of reproducing waveforms in powered conditions during the ESD. In summary, this research work has led to the development of several hardware and software prototypes. It has also highlighted important modelling challenges to solve in future works to achieve better functional robustness against electrostatic discharges

    Gateway Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment

    Get PDF
    This document is a tailored version of MIL-STD-461, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, for the Gateway Program. While many of the requirements contained herein correspond with a MIL-STD-461 requirement, some are unique to the Gateway Program in order to meet the specific needs of the program. Nearly all limits are tailored specifically for Gateway elements, systems, and subsystems

    Design of reliable and energy-efficient high-speed interface circuits

    Get PDF
    The data-rate demand in high-speed interface circuits increases exponentially every year. High-speed I/Os are better implemented in advanced process technologies for lower-power systems, with the advantages of improved driving capability of the transistors and reduced parasitic capacitance. However, advanced technologies are not necessarily advantageous in terms of device reliability; in particular device failure from electrostatic discharge (ESD) becomes more likely in nano-scale process nodes. In order to secure ESD resiliency, the size of ESD devices on I/O pads should be sufficiently large, which may potentially reduce I/O speed. These two conflicting requirements in high-speed I/O design sometimes require sacrifice to one of the two properties. In this dissertation, three different approaches are proposed to achieve reliable and energy-efficient interface circuits. As the first approach, a novel ESD self-protection scheme to utilize “adaptive active bias conditioning” is proposed to reduce voltage stress on the vulnerable transistors, thereby reducing the burden on ESD protection devices. The second approach is to cancel out effective parasitic capacitance from ESD devices by the T-coil network. Voltage overshoot generated by magnetic coupling of the T-coil network can be suppressed by the proposed “inductance halving” technique, which reduces mutual inductance during ESD. The last approach employs system-level knowledge in the design of an ADC-based receiver for high intersymbol interference (ISI) channels. As a system-level performance metric, bit-error rate (BER) is adopted to mitigate a bit-resolution requirement in “BER-optimal ADC”, which can lead to 2× power-efficiency in the flash ADC and achieve a better BER performance

    Functional modelling and prototyping of electronic integrated kinetic energy harvesters

    Get PDF
    The aim of developing infinite-life autonomous wireless electronics, powered by the energy of the surrounding environment, drives the research efforts in the field of Energy Harvesting. Electromagnetic and piezoelectric techniques are deemed to be the most attractive technologies for vibrational devices. In the thesis, both these technologies are investigated taking into account the entire energy conversion chain. In the context of the collaboration with the STMicroelectronics, the project of a self-powered Bluetooth step counter embedded in a training shoe has been carried out. A cylindrical device 27 Ă— 16mm including the transducer, the interface circuit, the step-counter electronics and the protective shell, has been developed. Environmental energy extraction occurs exploiting the vibration of a permanent magnet in response to the impact of the shoe on the ground. A self-powered electrical interface performs maximum power transfer through optimal resistive load emulation and load decoupling. The device provides 360 ÎĽJ to the load, the 90% of the maximum recoverable energy. The energy requirement is four time less than the provided and the effectiveness of the proposed device is demonstrated also considering the foot-steps variability and the performance spread due to prototypes manufacturing. In the context of the collaboration with the G2Elab of Grenoble and STMicroelectronics, the project of a piezoelectric energy arvester has been carried out. With the aim of exploiting environmental vibrations, an uni-morph piezoelectric cantilever beam 60Ă—25Ă—0.5mm with a proof mass at the free-end has been designed. Numerical results show that electrical interfaces based on SECE and sSSHI techniques allows increasing performance up to the 125% and the 115% of that in case of STD interface. Due to the better performance in terms of harvested power and in terms of electric load decoupling, a self-powered SECE interface has been prototyped. In response to 2 m/s2 56,2 Hz sinusoidal input, experimental power recovery of 0.56mW is achieved demonstrating that the device is compliant with standard low-power electronics requirements

    Electromagnetic Interference and Compatibility

    Get PDF
    Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials

    Design of Novel Sensors and Instruments for Minimally Invasive Lung Tumour Localization via Palpation

    Get PDF
    Minimally Invasive Thoracoscopic Surgery (MITS) has become the treatment of choice for lung cancer. However, MITS prevents the surgeons from using manual palpation, thereby often making it challenging to reliably locate the tumours for resection. This thesis presents the design, analysis and validation of novel tactile sensors, a novel miniature force sensor, a robotic instrument, and a wireless hand-held instrument to address this limitation. The low-cost, disposable tactile sensors have been shown to easily detect a 5 mm tumour located 10 mm deep in soft tissue. The force sensor can measure six degrees of freedom forces and torques with temperature compensation using a single optical fiber. The robotic instrument is compatible with the da Vinci surgical robot and allows the use of tactile sensing, force sensing and ultrasound to localize the tumours. The wireless hand-held instrument allows the use of tactile sensing in procedures where a robot is not available

    Minimum power design of RF front ends

    Get PDF
    This thesis describes an investigation into the design of RF front ends with minimum power dissipation. The central question is: "What are the fundamental limits for the power dissipation of telecommunication front ends, and what design procedures can be followed that approach these limits and, at the same time, result in practical circuits?" After a discussion of the state of the art in this area, the elementary operations of a front end are identified. For each of these elementary operations, the fundamental limits for the power dissipation are discussed, divided into technology imposed limits and physics imposed limits. A traditional DECT front end design is used to demonstrate the large difference between the fundamental limits and the power dissipation of existing circuits. To improve this situation, first the optimum distribution of specifications across individual subcircuits needs to be determined, such that the requirements for a specific system can be fulfilled. This is achieved through the introduction of formal transforms of the specifications of subcircuits, which correspond with transforms of the subcircuit itself. Using these transforms, the optimum distribution of gain, noise, linearity and power dissipation can be determined. As it turns out, this optimum distribution can even be represented by a simple, analytical expression. This expression predicts that the power dissipation of the DECT front end can be reduced by a factor of 2.7 through an optimum distribution of the specifications. Using these optimum specifications of the subcircuits, the boundaries for further power dissipation reduction can be determined. This is investigated at the system, circuit and technology level. These insights are used in the design of a 2.5GHz wireless local area network, implemented in an optimized technology ("Silicon on Anything"). The power dissipation of the complete receiver is 3.5mW, more than an order of magnitude below other wireless LAN receivers in recent publications. Finally, the combination of this minimum power design method with a platform based development strategy is discussed

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Fast short-circuit protection for SiC MOSFETs in extreme short-circuit conditions by integrated functions in CMOS-ASIC technology

    Get PDF
    Wide bandgap power transistors such as SiC MOSFETs and HEMTs GaN push furthermore the classical compromises in power electronics. Briefly, significant gains have been demonstrated: better efficiency, coupled with an increase in power densities offered by the increase in switching frequency. HV SiC MOSFETs have specific features such as a low short-circuit SC withstand time capability compared to Si IGBTs and thinner gate oxide, and a high gate-to-source switching control voltage. The negative bias on the gate at the off-state creates additional stress which reduces the reliability of the SiC MOSFET. The high positive bias on the gate causes a large drain saturation current in the event of a SC. Thus, this technology gives rise to specific needs for ultrafast monitoring and protection. For this reason, the work of this thesis focuses on two studies to overcome these constraints, with the objective of reaching a good performance compromise between “CMS/ASIC-CMOS technological integration level-speed–robustness”. The first one, gathers a set of new solutions allowing a detection of the SC on the switching cycle, based on a conventional switch control architecture with two voltage levels. The second study is more exploratory and is based on a new gate-driver architecture, called multi-level, with low stress level for the SiC MOSFET while maintaining dynamic performances. The manuscript covers firstly the SiC MOSFET environment, (characterization and properties of SC behavior by simulation using PLECS and LTSpice software) and covers secondly a bibliographical study on the Gate drivers. And last, an in-depth study was carried out on SC type I & II (hard switch fault) (Fault under Load) and their respective detection circuits. A test bench, previously carried out in the laboratory, was used to complete and validate the analysis-simulation study and to prepare test stimuli for the design stage of new solutions. Inspired by the Gate charge method that appeared for Si IGBTs and evoked for SiC MOSFETs, this method has therefore been the subject of design, dimensioning and prototyping work, as a reference. This reference allows an HSF type detection in less than 200ns under 400V with 1.2kV components ranging from 80 to 120mOhm. Regarding new rapid and integrated detection methods, the work of this thesis focuses particularly on the design of a CMOS ASIC circuit. For this, the design of an adapted gate driver is essential. An ASIC is designed in X-Fab XT-0.18 SOICMOS technology under Cadence, and then packaged and assembled on a PCB. The PCB is designed for test needs and adaptable to the main bench. The design of the gate driver considered many functions (SC detection, SSD, segmented buffer, an "AMC", ...). From the SC detection point of view, the new integrated monitoring functions concern the VGS time derivative method which is based on a detection by an RC analog shunt circuit on the plateau sequence with two approaches: the first approach is based on a dip detection, i.e. the presence or not of the Miller plateau. The second approach is based on slope detection, i.e. the variability of the input capacitance of the power transistor under SC-HSF compared to normal operation. These methods are compared in the third chapter of the thesis, and demonstrate fault detection times between 40ns and 80ns, and preliminary robustness studies and critical cases are presented. A second new method is partially integrated in the ASIC, was designed. This method is not developed in the manuscript for valorization purposes. In addition to the main study, an exploratory study has focused on a modular architecture for close control at several bias voltage levels taking advantage of SOI isolation and low voltage CMOS transistors to drive SiC MOSFETs and improve their reliability through active and dynamic multi-level selection of switching sequences and on/off states
    corecore