25 research outputs found

    Automated gene function prediction through gene multifunctionality in biological networks

    Get PDF
    As the number of sequenced genomes rapidly grows, Automated Prediction of gene Function (AFP) is now a challenging problem. Despite significant progresses in the last several years, the accuracy of gene function prediction still needs to be improved in order to be used effectively in practice. Two of the main issues of AFP problem are the imbalance of gene functional annotations and the 'multifunctional properties' of genes. While the former is a well studied problem in machine learning, the latter has recently emerged in bioinformatics and few studies have been carried out about it. Here we propose a method for AFP which appropriately handles the label imbalance characterizing biological taxonomies, and embeds in the model the property of some genes of being 'multifunctional'. We tested the method in predicting the functions of the Gene Ontology functional hierarchy for genes of yeast and fly model organisms, in a genome-wide approach. The achieved results show that cost-sensitive strategies and 'gene multifunctionality' can be combined to achieve significantly better results than the compared state-of-the-art algorithms for AFP

    Gene Ontology consistent protein function prediction: the FALCON algorithm applied to six eukaryotic genomes

    Get PDF
    Gene Ontology (GO) is a hierarchical vocabulary for the description of biological functions and locations, often employed by computational methods for protein function prediction. Due to the structure of GO, function predictions can be self- contradictory. For example, a protein may be predicted to belong to a detailed functional class, but not in a broader class that, due to the vocabulary structure, includes the predicted one.We present a novel discrete optimization algorithm called Functional Annotation with Labeling CONsistency (FALCON) that resolves such contradictions. The GO is modeled as a discrete Bayesian Network. For any given input of GO term membership probabilities, the algorithm returns the most probable GO term assignments that are in accordance with the Gene Ontology structure. The optimization is done using the Differential Evolution algorithm. Performance is evaluated on simulated and also real data from Arabidopsis thaliana showing improvement compared to related approaches. We finally applied the FALCON algorithm to obtain genome-wide function predictions for six eukaryotic species based on data provided by the CAFA (Critical Assessment of Function Annotation) projec
    corecore