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Abstract. The genome-wide hierarchical classification of gene functions,
using biomolecular data from high-throughput biotechnologies, is one of
the central topics in bioinformatics and functional genomics. In this pa-
per we present a multilabel hierarchical algorithm inspired by the “true
path rule” that governs both the Gene Ontology and the Functional
Catalogue (FunCat). In particular we propose an enhanced version of
the True Path Rule (TPR) algorithm, by which we can control the flow
of information between the classifiers of the hierarchical ensemble, thus
allowing to tune the precision/recall characteristics of the overall hier-
archical classification system. Results with the model organism S. cere-
visiae show that the proposed method significantly improves on the basic
version of the TPR algorithm, as well as on the Hierarchical Top-down
and Flat ensembles.

1 Introduction

Gene function prediction is a multiclass, multilabel classification problem char-
acterized by hundreds or thousands of functional classes structured according
to a predefined hierarchy (a directed acyclic graph for the Gene Ontology [1]
or a tree forest for FunCat [2]). Functional classes are usually unbalanced (with
positive examples usually less than negatives), with labels that can be uncertain
and in many cases unknown or only partially known.

From a general standpoint several approaches have been proposed for multil-
abel classification, with applications ranging from protein function classification,
to music categorization and semantic scene classification [3].

Different approaches to the hierarchical multilabel classification of gene func-
tion have been proposed [4, 5], but schematically we can individuate two main
research lines: a) structured-output methods, based on the joint kernelization
of both input variables and output labels using perceptron-like learning algo-
rithms [6] or maximum-margin algorithms [7]; b) ensemble methods by which
different classifiers are trained to learn each class, and then combined to take
into account the hierarchical relationships between functional classes [8, 9, 10].
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Along this second line of research, we propose a multilabel ensemble al-
gorithm, specialized for tree-structured taxonomies, to predict the functional
classes of genes.

Our proposed approach is directly inspired by the true path rule that governs
the annotations of both GO and FunCat taxonomies [1]:

“An annotation for a class in the hierarchy is automatically transferred
to its ancestors, while genes unannotated for a class cannot be annotated
for its descendants”.

According to this rule the proposed ensemble method is characterized by
a two-way asymmetric flow of information that traverses the graph-structured
ensemble: positive predictions for a node influence in a recursive way its ances-
tors, while negative predictions influence its offsprings. The resulting ensemble
embeds the functional relationships between functional classes that characterize
the hierarchical taxonomy.

The proposed method predicts the annotations of genes at the level of the
entire taxonomy or considering specific subsets of the hierarchical functional
classes, and provides probabilistic and structured predictions of gene annota-
tions. Moreover, by tuning a single global parameter, it allows to regulate the
trade-off between precision and recall that characterizes gene function prediction
problems. We apply the True Path Rule (TPR) hierarchical ensemble methods to
the prediction of gene functions in yeast, using probabilistic SVMs as base learn-
ers [11], but the algorithm is general enough to be used with any probabilistic
base learner and with other model organisms. Considering that data integration
is crucial to improve prediction performances [12], TPR ensembles can be eas-
ily integrated with state-of-the-art biomolecular data integration methods [13],
such as vector-space integration [14], kernel fusion [15] or ensembles of learning
machines [16], without any modification of the algorithmic scheme.

This paper is organized as follows: in Sect. 2 the ensemble method inspired
by the true path rule is presented. Sect. 3 summarizes the experimental set-
up, while Sect. 4 show genome-wide gene function prediction results obtained
with the model organism S. cerevisiae using the proposed method compared
with hierarchical top-down and “flat” ensemble approaches. The conclusions
and future developments end the paper.

2 Methods

2.1 Basic Definitions

Genome-wide gene function prediction can be modeled as a hierarchical, multi-
class and multilabel classification problem. Indeed a gene/gene product x can be
assigned to one or more functional classes of the set Ω = {ω1, ω2, . . . , ωm}. The
assignments can be coded through a vector of multilabels y =< y1, y2, . . . , ym >∈
{0, 1}m, by which if x belongs to class ωj , then yj = 1, otherwise yj = 0.

In both the Gene Ontology (GO) and FunCat taxonomies the functional
classes are structured according to a hierarchy and can be represented by a



directed graph, where nodes correspond to classes, and arcs to relationships
between classes. Hence the node corresponding to the class ωi can be simply
denoted by i. We represent the set of children nodes of i by child(i), and the set of
its parents by par(i). Moreover ychild(i) denotes the labels of the children classes
of node i and analogously ypar(i) denotes the labels of the parent classes of i. Note
that in FunCat only one parent is permitted, since the overall hierarchy is a tree
forest, while in the GO, more parents are allowed, because the relationships are
structured according to a directed acyclic graph. A classifier D : X → {0, 1}m

computes the multilabel associated to each example x ∈ X, and di(x) ∈ {0, 1}
is the label predicted by the classifier for class ωi. For the sake of simplicity if
there is no ambiguity we represent di(x) simply by di.

2.2 An algorithm inspired by the “True Path Rule”

In both FunCat and GO ontologies, genes annotated to a specific functional class
automatically belong to all its ancestors. Moreover, in FunCat, if a gene is not
annotated to a given class, none of its offsprings can be annotated 1.

These basic rules constitute the so called “True Path Rule” that govern both
GO and FunCat. Fig. 1 illustrates an example of the application of the true path
rule.

For a given example x, considering the parents of a given node i, a classifier
that respects the true path rule needs to obey the following rules:

{
di = 1 ⇒ dpar(i) = 1
di = 0 ; dpar(i) = 0 (1)

On the other hand, considering the children of a given node i, a classifier
that respects the true path rule needs to obey the following rules:

{
di = 1 ; dchild(i) = 1
di = 0 ⇒ dchild(i) = 0 (2)

The proposed hierarchical ensemble algorithm puts together the predictions
made at each node by local ”base” classifiers to realize an ensemble that obeys
the “true path rule”.

The basic ideas behind the true path rule ensemble algorithm can be summa-
rized as follows:

1. Training of the base learners: for each node of the hierarchy a suitable learn-
ing algorithm (e.g. a multi-layer perceptron or a support vector machine)
provides a classifier for the associated functional class

2. In the evaluation phase the trained classifiers associated to each class/node
of the graph provide a local decision about the assignment of a given example
to a given node.

1 For the GO, this rule is slightly more complicated, because the GO is structured
according to a directed acyclic graph, and even if a gene is not annotated to a class
i, it can be annotated to a child of i, say j, if it is annotated to at least one of its
parents k 6= i.
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Fig. 1: FunCat tree rooted at class 14 (Protein fate): if example x belongs to class
14.03.01.01 then it belongs also to class 14.03.01, 14.03 and 14. On the contrary, if an
example x does not belong to class 14.07 it cannot belong to any of its children (e.g.
14.07.01, 14.07.02, 14.07.03, 14.07.04, 14.07.05, 14.07.11).

3. Positive decisions may propagate from bottom to top across the graph: they
influence the decisions of the parent nodes and of their ancestors in a recur-
sive way, by traversing the graph towards higher level nodes/classes. On the
contrary negative decisions do no affect decisions of the parent node (that is
they do not propagate from bottom to top, eq. 1).

4. Negative predictions for a given node (taking into account the local decision
of its descendants) are propagated to the descendants, to preserve the con-
sistency of the hierarchy according to the true path rule. On the contrary
positive decisions do not influence decisions of child nodes (eq. 2).

The ensemble combines the local predictions of the base learners associated
to each node with the positive decisions that come from the bottom of the
hierarchy, and with the negative decisions that spring from the higher level nodes.
More precisely, base classifiers estimates local probabilities p̂i(x) that a given
example x belongs to class ωi, but the core of the algorithm is represented by
the evaluation phase, where the ensemble provides an estimate of the “consensus”
global probability pi(x).

In [17] we proposed a basic algorithm based on the “True Path Rule” (the
TPR algorithm), by which, given the set φi(x) of the children of node i for which



we have a positive prediction for a given example x:

φi(x) = {j|j ∈ child(i), dj(x) = 1} (3)

we can compute the consensus probability of the ensemble. The global consensus
probability pi(x) of the ensemble depends both on the local prediction p̂i(x) and
on the prediction of the nodes belonging to φi(x):

pi(x) =
1

1 + |φi(x)|


p̂i(x) +

∑

j∈φi(x)

pj(x)


 (4)

The decision di(x) at node/class i is set to 1 if pi(x) > t, and to 0 otherwise (a
natural choice for t is 0.5). In the leaf nodes the sum of eq. 4 disappears and
eq. 4 reduces to pi(x) = p̂i(x). In this way positive predictions propagate from
bottom to top. On the contrary if for a given node di(x) = 0, then this decision
is propagated to its subtree.

Note that with this basic version of the TPR algorithm there is no way to ex-
plicitly balance the local prediction p̂i(x) at node i with the positive predictions
coming from its offsprings (eq. 4). By balancing the local predictions with the
positive predictions coming from the ensemble we can explicitly modulate the
interplay between local and descendant predictors. To this end we introduce a
parent weight wp, 0 ≤ wp ≤ 1, such that if wp = 1 the decision at node i depends
only by the local predictor, otherwise the prediction is shared proportionally to
wp and 1−wp between respectively the local parent predictor and the set of its
children:

pi(x) = wp · p̂i(x) +
1− wp

|φi(x)|
∑

j∈φi(x)

pj(x) (5)

In this way we can balance the weight of the prediction between the local com-
ponent at node i and the component coming from its children, thus obtaining
the weighted TPR (TPR-w) hierarchical ensemble algorithm.

The pseudocode of the TPR-w method is presented in Algorithm 1.
The algorithm is characterized by two main for loops: the external for (from

row 1 to 30) handles a per level bottom-up traversal of the tree, while the internal
(from row 2 to 29) scans the nodes at each level. If a node is a leaf (row 3), then
the consensus probability pi is equal to the local probability p̂i(x). Note that a
positive decision is taken if pi(x) is larger than a threshold t (row 5). If a node is
not a leaf (row 10), at first the set φi(x) collects all the children nodes for which
we have a positive prediction, and the consensus probability pi of the ensemble
is computed by considering the weighted local estimate of the probability p̂i and
the weighted probabilities computed by the children nodes for which a positive
decision has been taken (row 13). In case of a negative decision for a node i, all
the predictions relative to the subtree rooted at i are set to negative and their
probabilities are set to pi if larger than pi. (rows 19-27). The algorithm provides
both the multilabels associated to the example x and the probabilities pi that a
given example belongs to the class i, 1 ≤ i ≤ m.



Algorithm 1 Weighted True Path Rule (TPR-w) hierarchical ensemble
Input:
- a test example x
- tree T of the m hierarchical classes
- set of m classifiers (one for each node) each predicting p̂i(x), 1 ≤ i ≤ m
- the weight wp of the local prediction.

1: for all levels k of T from bottom to top do
2: for all nodes i at level k do
3: if i is a leaf then
4: pi(x)← p̂i(x)
5: if pi(x) > t then
6: di(x)← 1
7: else
8: di(x)← 0
9: end if

10: else
11: φ(x)← {j|j ∈ child(i), dj(x) = 1}
12: if |φi(x)| > 0 then
13: pi(x)← wp · p̂i(x) +

1−wp

|φi(x)|
P

j∈φi(x) pj(x)
14: else
15: pi(x)← p̂i(x)
16: end if
17: if pi(x) > t then
18: di(x)← 1
19: else
20: di(x)← 0
21: for all j ∈ subtree(i) do
22: dj(x)← 0
23: if pj(x) > pi(x) then
24: pj(x)← pi(x)
25: end if
26: end for
27: end if
28: end if
29: end for
30: end for

Output:
For each node i:

- the ensemble decisions di(x) =

(
1 if x belongs to node i

0 otherwise

- the probabilities pi(x) that x belongs to the node i ∈ T

The bottom-up per level traversal of the tree assures that all the offsprings
of a given node i are taken into account for the ensemble prediction. For the
same reason we can safely set the classes belonging to the subtree rooted at i



to negative, when di(x) is set to 0. It is worth noting that we have a two-way
asymmetric flow of information across the tree: positive predictions for a node
influence its ancestors, while negative predictions influence its offsprings.

3 Experimental set-up

We predicted the functions of genes of the unicellular eukaryote S. cerevisiae
using 7 different data sets and the FunCat taxonomy.

For each data set we evaluated the performance of four different ensembles:
the Flat ensemble, that does not take into account the hierarchical structure of
the data, the Hierarchical Top-down [18, 19], the basic True Path Rule (TPR)
hierarchical ensemble and the proposed weighted variant (TPR-w described in
the previous section). The hierarchical Top-down algorithm classifies an example
x, where di(x) is the classifier decision at node i and root(T ) denotes the set of
nodes at the first level of the tree T , in the following way:

yi =





di(x) if i ∈ root(T )
di(x) if i /∈ root(T ) ∧ ypar(i) = 1
0 if i /∈ root(T ) ∧ ypar(i) = 0

For each ensemble we used as base learners linear Support Vector Machines
(SVMs) with probabilistic output [11]. The performance of the ensembles have
been compared using 5-fold cross-validation techniques. The selection of the wp

parameter in TPR-w ensembles have been performed by internal cross-validation.
The threshold t of TPR ensembles has been set to 0.5 in all the experiments.

For the prediction of gene function in the yeast we used 7 bio-molecular data
sets. For each data set we selected only the genes annotated to FunCat 2, using
the HCgene R package [20]. We also removed the genes annotated only with the
”99” FunCat class (”Unclassified proteins”) and selected classes with at least
20 positive examples, in order to get a not too small set of positive examples
for training. As negative examples we selected at each node/class genes not
annotated to that node, but annotated to its parent. From the data sets we
removed also uninformative features (e.g. features with the same value for all
the available examples). At the end of these pre-processing steps we obtained
data whose characteristics are summarized in Tab. 1.

Considering the unbalance between positive and negative examples, we adopted
the classical F-score to jointly take into account the precision and recall of the
ensemble for each class of the hierarchy.

Moreover, we used also the Hierarchical F-measure that represents a general-
ization of the classical F-measure, in order to take into account the hierarchical
nature of functional annotation [27].

Viewing a multilabel as a set of paths, hierarchical precision measures the
average fraction of each predicted path that is covered by some true path for

2 We used funcat-2.1 scheme, and funcat-2.1 data 20070316, available from the MIPS
web site (http://mips.gsf.de/projects/funcat).



Table 1: Data sets

Data set Description n.samples n. feat. n.class

Pfam-1 protein domain binary data from Pfam [21] 3529 4950 211

Pfam-2 protein domain log E data from Pfam [22] 3529 5724 211

Phylo phylogenetic data [14] 2445 24 187

Expr gene expression data [23, 24] 4532 250 230

PPI-BG PPI data from BioGRID [25] 4531 5367 232

PPI-VM PPI data from von Mering experiments [26] 2338 2559 177

SP-sim Sequence pairwise similarity data [15] 3527 6349 211

that gene. Conversely, hierarchical recall measures the average fraction of each
true path that is covered by some predicted path for that gene. More precisely,
given a general taxonomy G representing the graph of the functional classes,
for a given gene/gene product x consider the graph P (x) ⊂ G of the predicted
classes and the graph C(x) of the correct classes associated to x, and let be
l(P ) the set of the leaves (nodes without children) of the graph P . Given a leaf
p ∈ P (x), let be ↑p the set of ancestors of the node p that belong to P (x), and
given a leaf c ∈ C(x), let be ↑c the set of ancestors of the node c that belong to
C(x). The original definitions of Hierarchical Precision (HP), Hierarchical Recall
(HR) and Hierarchical F-score (HF) [27], with the tree forests of FunCat can be
simplified as follows:

HP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x) ∩ ↑p|
| ↑p|

HR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑c ∩ P (x)|
| ↑c|

HF =
2 ·HP ·HR

HP + HR
(6)

An overall high hierarchical precision is indicative of most predictions being
ancestors of the correct predictions, or in other words that the predictor is able
to detect the most general functions of genes/gene products. On the other hand
a high average hierarchical recall indicates that most predictions are successors
of the actual, or that the predictors are able to detect the most specific functions
of the genes.

4 Results

At first we compared the performance of ensemble methods considering the “per
class” F-measure averaged across all FunCat classes for each data set. The results
show that hierarchical methods largely outperform flat ensembles: flat ensembles
obtain an average F-measure across the 7 data sets used in the experiments of



Table 2: Per class F-measure results. Flat: flat ensemble; HTD: Hierarchical Top-
Down ensembles; TPR: True Path Rule hierarchical ensembles; TPR-w True Path
Rule weighted hierarchical ensembles.

Data set Flat HTD TPR TPR-w

Pfam-1 0.2816 0.4041 0.3622 0.4037

Pfam-2 0.1153 0.2056 0.1562 0.2197

Phylo 0.0711 0.0067 0.0625 0.0906

Expr 0.0752 0.0623 0.0702 0.0773

PPI-BG 0.1730 0.2690 0.2344 0.2946

PPI-VM 0.2145 0.3589 0.2613 0.3558

SP-sim 0.1121 0.2489 0.1306 0.2540

Average 0.1489 0.2222 0.1824 0.2414

0.15 against respectively 0.22, 0.18 and 0.24 with Top-down, TPR and TPR-w
ensembles (Tab. 2).

As explained in the experimental set-up (Sect. 3), the F hierarchical mea-
sure is a more appropriate performance metric for the hierarchical classification
of gene functions. Tab. 3 shows that on the average TPR-w achieves the best
results: 0.34 versus 0.25 (TPR) and 0.29 (Top-down ensembles). Note that TPR-
w obtains equal or better results than Top-down ensembles with respect to all
the data sets. More precisely considering 5-fold cross validation results for each
of the 7 considered data sets TPR-w reported better results than Top-down at
0.05 significance level on 5 tasks, according to the 5-fold cross-validated paired
t-test [28]. The basic TPR ensemble on the contrary achieves slightly worse re-
sults than the Top-down. These results show that we need the weighted version
of TPR ensembles to significantly enhance Top-down predictions.

Table 3: Hierarchical F-measures results. HTD: Hierarchical Top-Down ensembles;
TPR: True Path Rule hierarchical ensembles; TPR-w True Path Rule weighted hier-
archical ensembles. Statistically significant difference at 0.05 significance level are in
boldface.

Data set HTD TPR TPR-w

Pfam-1 0.4123 0.3080 0.4131

Pfam-2 0.3406 0.2684 0.3700

Phylo 0.0497 0.2010 0.2174

Expr 0.1166 0.1696 0.1784

PPI-BG 0.3226 0.2670 0.3485

PPI-VM 0.3977 0.2796 0.4000

SP-sim 0.4251 0.2398 0.4472

Average 0.2949 0.2468 0.3392
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Fig. 2: Tree of the FunCat classes rooted at Funcat ID=01 (Metabolism).

Even if the main goal of this work consists in the development of a hierarchical
algorithm that can be applied to the prediction of the overall taxonomy of a gene,
we can restrict the analysis to specific subtrees of the taxonomy. For instance,
Tab. 4 shows the results restricted to the subtree rooted at the “Metabolism”
FunCat class (FunCat ID = 01, Fig.2).

A specific advantage of the TPR-w ensembles is the capability of tuning pre-
cision and recall rates, through the parameter parent-weight wp (eq. 5). Fig. 3
shows, the hierarchical precision, recall and F-measure as functions of the pa-
rameter wp. For small values of wp (wp can vary from 0 to 1) the weight of the
decision of the parent local predictor is small, and the ensemble decision depends
mainly by the positive predictions of the offsprings nodes (classifiers): as a con-
sequence we obtain a higher hierarchical recall for the TPR-w ensemble. On the
contrary higher values of wp correspond to a higher weight of the “parent” local
predictor, with a resulting higher precision. The opposite trends of precision and
recall are quite clear in all graphs of Fig. 3. The best F-score is in “middle”
values of the parameter parent-weight: in practice in most of the analyzed data
sets the best F-measure is achieved for wp between 0.5 and 0.8, but if we need
higher recall rates (at the expense of the precision) we can choose lower wp val-



Table 4: Classification results on the FunCat tree rooted at ”Metabolism”, using
Pfam-1 data. Each row represents a functional class of the FunCat taxonomy. Prec.
stands for precision, Rec. recall, Sp. specificity, F F-measure, Acc. accuracy.

FunCat ID Description Prec. Rec. Sp. F Acc.
01 Metabolism 0.83 0.59 0.93 0.69 0.80
01.01 amino acid metabolism 0.62 0.34 0.98 0.45 0.94
01.01.03 assimilation of ammonia, metabolism of the glutamate group 0.27 0.15 0.99 0.19 0.98
01.01.03.02 metabolism of glutamate 0.37 0.32 0.99 0.34 0.99
01.01.03.05 metabolism of arginine 0.00 0.00 0.99 0.00 0.99
01.01.06 metabolism of the aspartate family 0.38 0.22 0.99 0.28 0.98
01.01.06.05 metabolism of methionine 0.53 0.29 0.99 0.37 0.99
01.01.09 metabolism of the cysteine - aromatic group 0.49 0.26 0.99 0.34 0.97
01.01.13 regulation of amino acid metabolism 0.10 0.03 0.99 0.05 0.98
01.02 nitrogen, sulfur and selenium metabolism 0.55 0.20 0.99 0.29 0.97
01.02.07 regulation of nitrogen, sulfur and selenium metabolism 0.27 0.11 0.99 0.16 0.99
01.03 nucleotide/nucleoside/nucleobase metabolism 0.65 0.35 0.98 0.46 0.95
01.03.01 purin nucleotide/nucleoside/nucleobase metabolism 0.72 0.40 0.99 0.52 0.98
01.03.01.03 purine nucleotide/nucleoside/nucleobase anabolism 0.61 0.29 0.99 0.39 0.99
01.03.04 pyrimidine nucleotide/nucleoside/nucleobase metabolism 0.63 0.42 0.99 0.51 0.98
01.03.16 polynucleotide degradation 0.52 0.27 0.99 0.36 0.98
01.03.16.01 RNA degradation 0.54 0.29 0.99 0.37 0.98
01.04 phosphate metabolism 0.81 0.61 0.98 0.70 0.94
01.05 C-compound and carbohydrate metabolism 0.79 0.50 0.97 0.61 0.91
01.05.02 sugar, glucoside, polyol and carboxylate metabolism 0.65 0.35 0.99 0.46 0.98
01.05.02.04 sugar, glucoside, polyol and carboxylate anabolism 0.55 0.33 0.99 0.41 0.99
01.05.02.07 sugar, glucoside, polyol and carboxylate catabolism 1.00 0.09 1.00 0.18 0.98
01.05.03 polysaccharide metabolism 0.78 0.25 0.99 0.38 0.98
01.05.25 regulation of C-compound and carbohydrate metabolism 0.47 0.16 0.99 0.24 0.96
01.06 lipid, fatty acid and isoprenoid metabolism 0.75 0.44 0.98 0.56 0.95
01.06.02 membrane lipid metabolism 0.76 0.41 0.99 0.54 0.98
01.06.02.01 phospholipid metabolism 0.69 0.36 0.99 0.48 0.98
01.06.05 fatty acid metabolism 0.42 0.15 0.99 0.22 0.99
01.06.06 isoprenoid metabolism 0.65 0.34 0.99 0.45 0.99
01.06.06.11 tetracyclic and pentacyclic triterpenes metabolism 0.61 0.23 0.99 0.34 0.99
01.06.10 regulation of lipid, fatty acid and isoprenoid metabolism 0.86 0.24 0.99 0.37 0.99
01.07 metabolism of vitamins, cofactors, and prosthetic groups 0.74 0.29 0.99 0.42 0.96
01.07.01 biosynthesis of vitamins, cofactors, and prosthetic groups 0.72 0.32 0.99 0.44 0.97
01.20 secondary metabolism 0.80 0.11 0.99 0.20 0.98

ues, and higher values of wp are needed if precision is our first aim. It is worth
noting that we may vary the threshold t to obtain precision recall curves for a
fixed value of wp. In other words we may obtain different precision-recall curves
for different value of wp: the parent weight is a global parameter that affect the
general precision/recall characteristics of the ensemble.

5 Conclusions

F hierarchical measures results show that TPR-w achieves equal or better re-
sults than the basic TPR algorithm and the Top-down hierarchical strategy,
and all the hierarchical strategies achieve significantly better results than flat
classification methods, using the classical ”per-class” F-measure.

Another advantage of TPR-w consists in the possibility of tuning precision
and recall by using a global strategy: large values of the parent weight improve
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Fig. 3: Hierarchical Precision, Recall and F-measure as a function of the parent weight
in TPR-w ensembles. Horizontal lines refers to top-down ensembles. (a) Protein domain
binary data; (b) PPI BioGRID data; (c) PPI Von Mering data (d) Pairwise sequence
similarity data.

the precision, and small values the recall. The choice to favour precision or recall
depends on the researcher’s experimental objectives. In most data sets the best
compromise between precision and recall is achieved for weights in the range
between 0.5 and 0.8, that is giving a weight equal or larger to the local predictor
with respect to the predictions taken by its offsprings.

Results show that also using a single source of evidence we can obtain a very
high precision and recall for specific trees of the FunCat forest, but the overall
results need to be improved for the genome-wide prediction of gene function.
To this end, we need to integrate multiple data sources to obtain methods to
predict function of hypothetical genes, or to discover or complete the functional
annotation of genes whose function is incomplete or unknown. To this end the
proposed approach can be easily integrated with at least three different general



strategies for biomolecular data integration: vector space integration [14], kernel
fusion [15] and ensemble methods [16]. Indeed for each node/class of the tree
we may substitute a classifier trained on a specific type of biomolecular data
with a classifier trained on concatenated vectors of different data, or trained on
a (weighted) sum of kernels, or with an ensemble of learners each trained on a
different type of data.
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