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Abstract
As volume of genomic data grows, computational methods become essential for providing

a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods

based on hierarchical ensemble classification techniques are particularly interesting when

interpretability of annotation results is a main concern. In these methods, raw GO-term pre-

dictions computed by base binary classifiers are leveraged by checking the consistency of

predefined GO relationships. Both formal leveraging strategies, with main focus on annota-

tion precision, and heuristic alternatives, with main focus on scalability issues, have been

described in literature. In this contribution, a factor graph approach to the hierarchical

ensemble formulation of the automated GO annotation problem is presented. In this formal

framework, a core factor graph is first built based on the GO structure and then enriched to

take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-

term predictions, an iterative message passing algorithm between nodes of the factor graph

is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomy-
ces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from

the GOMolecular Function domain showed significant improvements over competing

approaches, even when protein sequences were naively characterized by their physico-

chemical and secondary structure properties or when loose noisy annotation datasets were

considered. Based on these promising results and using Arabidopsis thaliana annotation
data, we extend our approach to the identification of most promising molecular function

annotations for a set of proteins of unknown function in Solanum lycopersicum.

Introduction
A fundamental step, and significant bottleneck, in the acquisition of biological knowledge from
genomic data is the characterization of gene products properties. The Gene Ontology (GO)
Consortium provides an ontology of terms for describing gene products properties and their
relationships in a species-independent manner. The automated association between ontologies
and genes and gene products, i.e., the automated annotation of genes, is one of the great
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challenges to bioinformatics research. In this respect, it is worth mentioning that near 28% of
the genes in a model organism like D. melanogaster lack of a GO annotation [1]. This percent-
age grows to 40% in A. thaliana [2] and can rise up to 50%, or even higher levels, in non-model
organisms like Helianthus annuus L. [3]. Standard methods for automated protein-coding
gene annotation commonly rely on sequence similarity [4–6] or protein signature [7, 8]
searches. However, in absence of clear sequence similarities or definite protein signatures, alter-
native computational methods for automated gene annotation must be considered. In the case
of protein function prediction, one possibility is to use high throughput biological experiments
for the identification of protein interaction networks and the prediction of protein functions
from those of their interacting partners [9, 10]. However, prediction accuracy in these methods
may be limited in the presence of unreliable interactions or lack of sufficient experimentally
verified annotation data. Although data integration strategies may reduce these difficulties to
some extent, they are only applicable to well-characterized model organisms [11, 12]. Alterna-
tively, these difficulties may be circumvented by using hierarchical ensemble classification
techniques [13–16]. By means of these techniques, the problem of automated gene annotation
can be cast to that of predicting individual GO-terms within a True Path Graph (TPG) [17], a
special kind of Directed Acyclic Graph (DAG) defining the meaning of GO-terms by multiple
inheritance. Since predictions of individual GO-terms are expected to be noisy and inconsistent
with the TPG, several strategies aiming to leverage them have been proposed in literature.

In [18], a core Bayes net of latent nodes modeling binary-valued GO-term variables was
first built using all parent-child relationships established in a predefined GO domain. The core
Bayes net was enriched through the addition of leaf nodes modeling real-valued GO-term pre-
dictions constrained to follow independent Gaussian distributions over positive and negative
latent GO-terms. In practice, leaf nodes are first instantiated by bootstrapped hard-margin
SVM classifiers with unthresholded outputs. Afterwards, they are leveraged by a global error-
correction strategy based on the computation of a posteriori probabilities of latent GO-terms
with standard algorithms for probabilistic inference in Bayesian networks. Although the Bayes
network approach was found to be highly effective with a yeast annotation problem involving a
GO sub-hierarchy of 105 GO-terms, it could not be used with a mouse annotation problem
involving thousands of GO-terms [19]. The main problem is that except for polytree-shaped
Bayesian networks, even approximate probabilistic inference in general Bayesian networks is
NP-hard [20], i.e., both time and space complexity are exponential in the size of the network in
the worst case. To address these scalability issues, a semi-global Bayes error correction
approach was considered in [19]. Specifically, multiple polytree-shaped Bayes nets for which
linear-time inference algorithms exist were built for each latent GO-term. In presence of rather
modest amounts of annotation data, substantial improvements in the precision and recall of
raw GO-term predictions were observed. Note, however, that latent GO-term estimations
across different sub-Bayes networks may still remain inconsistent.

To overcome the shortcomings of the semi-global Bayes error-correction approach, a heuristic
algorithm called True Path Rule (TPR) was proposed in [21]. Originally developed for hierarchi-
cal tree-structured ontologies like FunCat [22], the TPR algorithm focuses on the global satisfia-
bility of TPG constraint, i.e., the pathway from a child term to its top-level parent(s) must always
be true [23]. In practice, the TPR algorithm performs a bottom-up flow of information that
enhances the probability that a class prediction is positive by computing a consensus probability
over direct positive descendant classes. This operation may mute a class prediction from positive
to negative and in such a case, all descendant classes predicted as positive are muted to negative.
In [21], FunCat class predictions were obtained from SVM classifiers with different types of ker-
nels depending on the specific characterization of the input annotation data, e.g., presence/
absence of protein domains or protein-protein interaction data. Since probabilistic class

A Factor Graph Approach to Automated GO Annotation

PLOS ONE | DOI:10.1371/journal.pone.0146986 January 15, 2016 2 / 16

3600, “GO functional annotation based on supervised
hierarchical classification”, National Technological
University, Argentina. Institution: National Scientific
and Technical Research Council (CONICET).
Researcher: Pilar Bulacio.

Competing Interests: The authors have declared
that no competing interests exist.



predictions were required, sigmoid fitting over SVM outputs was performed [24]. Recently, a
revised version of the TPR heuristic valid for DAG structured ontologies like GO has been pre-
sented [25]. In this new version, a two-way flow of information is performed. Experimental
results on a human annotation problem involving thousands of classes from the human pheno-
type ontology [26] suggest that the TPR algorithm is indeed effective for improving raw class pre-
dictions so they can consistently match a predefined target ontology. It should be noted,
however, that consistent TPR class predictions may not be unique and may not be optimal with
respect to the minimization of the probability of erroneous class predictions.

In this paper, a factor graph approach to the automated GO Annotation is presented.
Briefly, a factor graph is a “bipartite graph that expresses how a global function of several vari-
able factors into a product of local functions” [27]. Among their many applications [28, 29],
factor graphs are well suited for behavioral system modeling. In this type of application, a bool-
ean function over the variables of a system describes its valid configurations. If such a boolean
function can be expressed as a set of predicates over subsets of system variables, a factor graph
representation follows. Recalling that any boolean function can be represented as a rooted
DAG and that domain-specific GO structures are rooted DAGs, it follows that factor graphs
can also be used for GO modeling. On the other hand, factor graphs are also well-suited for the
probabilistic modeling of errors arising in problems of information transmission in the pres-
ence of noise. Reminding that misclassification errors of practical binary classifiers can be for-
mulated as an instance of such class of information theory problems, factor graphs can be also
used for the probabilistic modeling of noisy GO-term predictions. Having a unique factor
graph that formally includes the TPG constraint and a model of prediction noise at binary clas-
sifiers, latent GO-term predictions can be obtained from their maximum a posteriori (MAP)
probability estimates. These probabilities can be in turn computed by an iterative message
passing algorithm between nodes of the factor graph. To validate our proposal, the annotation
of protein sequences of three biological models, S. cerevisiae, A. thaliana, and D. melanogaster,
in the GOMolecular Function was first considered. These model organisms were chosen aim-
ing to encompass the tree of life, representing unicellular (prokaryotic) and multicellular
(plants and animals) organisms. To conclude, the annotation of four unknown proteins in
Solanum lycopersicum with A. thaliana annotation data was analyzed.

Method
We devise a method, hereafter called Factor Graph GOAnnotation (FGGA) that exploits the
ability of factor graphs for modeling logical and statistical constraints over system variables, e.g.,
the key TPG constraint over GO-term annotations or a convenient probability distribution of
raw GO-term predictions over actual GO-term annotations. The FGGA approach is split into
three steps. The first one deals with the construction of a core Factor Graph (FG) from a prede-
fined GO-DAG. The second one deals with the enrichment of the core factor graph to take into
account the noisy nature of GO-term predictions. Finally, the third step deals with the proper set-
ting of a message passing algorithm to infer GO annotations of unannotated samples.

Matching a GO-DAG to a core Factor Graph
Given a GO subgraph, GO-terms GO:i are mapped to binary-valued variable nodes xi of a fac-
tor graph while relationships between GO-terms are mapped to logical factor nodes fk describ-
ing valid GO:i configurations under the TPG constraint. This matching task can be
accomplished through an adapted version of the Breadth-First Search (BFS) [30] algorithm. As
shown in Fig 1a, starting from the top-root node in a given GO-DAG, the identity of visited
child nodes is preserved so that a new factor node between a parent and a child node is
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introduced only when the child node has not been previously visited; otherwise, the parent
node is attached to the early created factor node for the revisited child node.

Practically, logical factor nodes fk are implemented with truth tables of 2#child+#parents entries.
At each of these entries, the specific parent/child role of participating variable nodes is required
to check the TPG constraint. As shown in Table 1 where 1/0 denotes positive/negative annota-
tion respectively, the logical factor f3 in Fig 1b ensures that the TPG constraint over variable
nodes x2, x3 and x4 is fulfilled whenever x4 is a child node and x2 and x3 are its parent nodes
(multiple inheritance over x4).

Formally, logical factor nodes fk over subsets of variable nodes ensure the local satisfiability
of the TPG constraint. With this aim, two logical rules are repeatedly evaluated. Specifically, if
a child GO-term is annotated positive, then its parent GO-term(s) must also be annotated posi-
tive. On the other hand, if a parent GO-term is annotated negative, then its children GO-term
must also be annotated negative. In predicate logic language [31], let is_a(GO:j, GO:i) denotes
GO:i parent of GO:j child. Similarly, let annotated(�) denote the positive annotation of any GO-
term. As a result, at least one of the following rules Eqs (1) or (2) must be active and fullfilled
by any pair of GO-terms involved within a is_a relationship:

r1 : 8i; j is aðGO : j;GO : iÞ ^ annotatedðGO : jÞ ! annotatedðGO : iÞ ð1Þ

r2 : 8i; j is aðGO : j;GO : iÞ ^ :annotatedðGO : iÞ ! :annotatedðGO : jÞ ð2Þ

Fig 1. Matching a GO-DAG to a core FG. (a) GO-DAGwhereGO:i nodes are GO-terms and edges are is_a
relationships (b) Core GO-FG where xi are variable nodes representing positive/negativeGO:i annotations
and fk are logical factor nodes modeling TPG constraint.

doi:10.1371/journal.pone.0146986.g001
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Regarding Table 1, let “x4 is the child of x3” and “x4 is the child of x2” denote the two is_a
relations between GO:4, GO:3 and GO:2 terms. For both these relations, rule 2 is active and ful-
filled at row 1 and thus, f3 is true. On the other hand, rule 1 is active for both relations at row 4
but fulfilled by only one of them and thus, f3 is false.

Enrichment of the core GO-FG
In practice, actual GO:i annotations of unannotated samples are estimated as accurately as pos-
sible with binary classifiers. Therefore, variable nodes xi in the core GO-FG must be considered
latent behind a new class of variable leaf nodes yi modeling observable, but uncertain, GO:i
term predictions. The enrichment of the core GO-FG with variable leaf nodes yi requires the
introduction of a new class of probabilistic factor nodes gimodeling their statistical dependence
on latent variable nodes xi (see Fig 2). For this purpose, a communication channel model
between latent binary inputs xi and observable real-valued outputs yi can be assumed. Hence,
latent binary inputs xi (±1) corrupted with additive white zero mean Gaussian noise zi of vari-
ance ηi, so that yi = xi+zi holds, can be assumed [32]. In such a case, probabilistic factor nodes
gi can be set [33] to pðxijyiÞ ¼ 1

1þe
�2�yi �xi

Zi

.

To completely describe a FG model for the automated GO annotation problem, the estima-
tion of noise variances ηi remains to be done. Under the assumption of symmetrical condi-
tional probability distributions for predictions yi over latent annotations xi, variances ηi can be
easily estimated using a validation dataset of positively/negatively annotated samples. Specifi-

cally, let D be a validation dataset with L+ positively annotated samples. Hence, Ẑi ¼
1

Lþ�1
PLþ

l¼1 ðyli � xliÞ2 where xli ¼ 1 is the positive annotation of the l-th data sample to the GO:i

term and yli is the corresponding real-valued classifier prediction.

Message passing algorithm in FGGA
Once a factor graph model F for the automated GO annotation problem has been defined, an
iterative message passing algorithm [34] between nodes of F can be used to compute maximum
a posteriori (MAP) estimates x̂ i of variable nodes xi modeling actual GO:i annotations. Given
an unannotated input sample s, all variable leaf nodes yi in F gets instantiated by a set Y(s) of
real-valued GO-term predictions issued by a set of base binary classifiers. Without loss of gen-
erality, let binary classifier’s outputs be characterized by a set of variances η describing condi-
tional Gaussian probability distributions of real-valued GO-term predictions yi over latent
annotations xi. Hence, starting from instantiated variable leaf nodes yi, an iterative message

Table 1. The truth table of the logical factor node f3. Positive/negative annotations of variable nodes x2, x3
and x4 are depicted as 1/0. Parent variable nodes x2 and x3 are shown in bold.

x2 x3 x4 f3(x2, x3, x4)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

doi:10.1371/journal.pone.0146986.t001
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passing algorithm is performed until some convergence criteria ξ, e.g. ξ = 10−3, or a maximum
number Imax of iterations is set, e.g. Imax = 50. At this stage, marginal probabilities p(xi|Y(s))
can be approximated by their iterative version pt(xi|Y(s)) provided by a Sum-Product algorithm
at the t − th iteration step. In message passing terms, probabilities pt(xi|Y(s)) follow from the
product of the last incoming and outgoing messages at any of the xi linking edges. From these
probabilities, MAP estimates x̂ i can be computed and used to provide consistent GO:i annota-
tions of unannotated samples s in a predefined GO domain. As a result, the following FGGA
algorithm (see Alg. 1) follows:

Algorithm 1 FGGA

Input:
GO factor graph F with n GO-terms, a sample s to be annotated, a set Y of n
predictions over s, a set η of prediction noise variances, a convergence
criteria ξ, a maximum number Imax of iteration steps

Output:
MAP estimates x̂ i actual GO-term annotations on s, i = 1, . . ., n

1: for t = 1 to Imax do
2: pt (xi j Y(s))jni¼1  Sum-Product(F, η, Y(s))
3: if jptðxi j �Þ � pt�1ðxi j �Þj < x 8xi then
4: break
5: end if
6: end for
7: return x̂ i ¼ argmax

xi
ptðxi j �Þjni¼1

Fig 2. (a) Core GO-FG. (b) Enriched core GO-FG where xi are latent variable nodesmodeling actual positive/negativeGO:i annotations and fk are
logical factor nodesmodeling the TPG constraint over them, yi are observable variable leaf nodesmodeling real-valuedGO:i predictions and gi are
probabilistic factor nodesmodeling their statistical dependence on latent variable nodes xi.

doi:10.1371/journal.pone.0146986.g002
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Results and Discussion

Experimental Protocol
Three models organisms, S. cerevisiae [35], A. thaliana [36], and D. melanogaster [37] were
considered. For each of them, robust and loose annotation datasets in the GOMolecular Func-
tion domain were generated using different subsets of GO annotation evidence codes (see
Table 2). Robust annotation datasets were built from protein sequences with defined GO exper-
imental evidence codes (http://geneontology.org/page/guide-go-evidence-codes), i.e., inferred
from mutant phenotype (IMP), inferred from genetic interaction (IGI), inferred from physical
interaction (IPI), inferred from expression pattern (IEP) and inferred from direct assay (IDA).
On the other hand, loose annotation datasets were built from protein sequences with former
experimental evidence codes, traceable author statement (TAS) evidence codes and inferred
from electronic annotation (IEA) evidence codes. Recalling that a minimum amount of anno-
tation data is required for the prediction of individual GO-terms, GO sub-graphs with a mini-
mum of 50/10 positively annotated protein sequences per individual GO-term were
respectively considered for robust/loose annotation datasets. To assemble conveniently bal-
anced binary training datasets [38], positive annotated protein sequences to individual GO-
terms were complemented with negative annotated instances using the inclusive separation
policy described in [39].

Concerning characterization methods of individual protein sequences in terms of a fixed
number of input features, the presence/absence of conserved domains in the Pfam database
[40] and the measurement of 457 physicochemical/secondary structure properties, 453 of the
physicochemical type [41] and four of the secondary structure type [42, 43], were considered.
Pfam data was obtained for each protein as a binary vector where each element indicates the
presence/absence of domains. Physicochemical and secondary structure data was obtained for
each protein as a real vector where each element indicates the value of a physicochemical/sec-
ondary structure property. The choice of these baseline characterization methods was guided
by the desire to develop in-silico annotation methods of broad applicability across organisms,
including non-model instances for which more advanced characterizations, e.g., gene expres-
sion or protein-protein interaction data [44], are unlikely to be available. Actually, for many
genes coding for proteins of unknown function and thus no significant Pfam hit, the naive
physicochemical and secondary structure characterization, hereafter “Physicochemical+”,

Table 2. S. cerevisiae, A. thaliana andD. melanogaster datasets in the GO-Molecular Function domain.

Training Organism # GO-terms Characterization # Features # Samples

robust S. cerevisiae 103 Pfam 3070 3223

Physicochemical+ 457 3223

A. thaliana 54 Pfam 3323 2863

Physicochemical+ 457 3856

D. melanogaster 226 Pfam 4823 8636

Physicochemical+ 457 8636

loose S. cerevisiae 435 Pfam 3070 3223

Physicochemical+ 457 3223

A. thaliana 659 Pfam 3789 19601

Physicochemical+ 457 24150

D. melanogaster 656 Pfam 4825 8655

Physicochemical+ 457 9320

doi:10.1371/journal.pone.0146986.t002
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remains valid. Practically, protein sequence characterization methods were implemented with
the help of the EMBL-EBI Pfam [45] database services and the Bio.SeqsUtils [46] package.

Concerning baseline binary classifiers, differently from [18, 19] where the costly bootstrap
aggregation of hard-margin linear Support Vector Machines (SVM) classifiers with unthre-
sholded outputs was used to fulfill the Gaussian assumption of prediction noise, single soft-
margin linear SVMs with default constant complexity C = 1 were used for both the FGGA and
TPR-DAG methods. To fulfill the Gaussian assumption in the FGGA approach, real valued Yi

predictions were set to the margin of SVM classifier outputs. On the other hand, probabilistic
linear SVM outputs required by the TPR-DAG method were computed using the standard
Platt’s sigmoid fitting approach. Practically, SVMs were implemented with the e-1071 R pack-
age [47].

Concerning the TPR-DAG method, the algorithm described in [25] was implemented in C+
+. Briefly, for each GO-term in a given GO subgraph, its maximum distance to the root node is
first computed. Starting from the set of most distant GO-terms, flat SVM predictions of indi-
vidual GO-terms are updated using the TPR heuristic. Therefore, a consensus prediction for
each GO-term is obtained by averaging its flat SVM prediction and those of positive child GO-
terms. Without loss of generality, the threshold for positive predictions is set to 0.5. This bot-
tom-up update process over flat SVM predictions is repeated until the root node is reached. To
accomplish a consistent set of hierarchical GO-term predictions, a final top-down update pro-
cess on consensus GO-term predictions is performed. As a result, a child GO-term with a con-
sensus prediction stronger than any of its parents is forced to update its value with that of its
weakest parent. This process is repeated until most distant GO-terms are reached.

Concerning the evaluation of the predictive performance of the FGGA approach, a 5-fold
cross-validation test was performed using the TPR-DAG algorithm as a reference comparison.
To shed light on the absolute improvements of FGGA predictions, baseline SVM classifiers
were also evaluated. Aiming to rank the prediction accuracy of FGGA, TPR-DAG leveraged
binary classifiers and baseline SVM classifiers, per GO-term average AUC scores [48] were
computed. Taking into account that GO annotation gets harder as deeper levels of the hierar-
chy are considered [49], prediction performance was measured by means of the hierarchical
precision (HP), the hierarchical recall (HR), and the hierarchical balanced F-score (HF) reflect-
ing their trade-off. Comparisons between the FGGA and TPR-DAG methods were performed
with the Wilcoxon rank sum test at the pvalue = 0.01 significance level. Finally, to evaluate the
ability of the FGGA approach to extend biological knowledge, a molecular function annotation
problem in tomato (Solanum lycopersicum cv. Heinz 1706) [50] was considered.

Prediction performance on held-out data
Whatever the organism, characterization and training data policy, FGGA improved both base-
line SVM and TPR-DAG classifiers. This was particularly evident in the annotation of D. mela-
nogaster protein sequences for which the deeper, broader and richer, in terms of jumping
edges, GO-DAGs were observed. As shown in Fig 3, with Pfam characterization and loose
annotation data, both TPR-DAG and FGGA classifiers improve the average AUC of their base-
line SVM classifiers. However, FGGA improvements are remarkably higher. Similar results
were observed in other experimental conditions (see, e.g., S1 Fig).

Specific average AUC improvements of FGGA over TPR-DAG classifiers for D. melanoga-
ster protein sequences and Pfam characterization are shown in Fig 4. FGGA improvements
reached roughly 87% of the GO-terms, independently of the use of robust (198 out of 226 GO-
terms) or loose (581 out of 656 GO-terms) annotation data at the training stage. In the latter
case, a closer look revealed 21 GO-terms belonging to the deeper levels of the GO hierarchy,
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their minimum level was 6, with an average AUC above the 10% margin. On the other hand,
only 8 GO-terms above the 10% margin where identified for TPR-DAG classifiers. Conversely,
these GO-terms belonged to rather superficial levels, their maximum level was 5, of the GO
hierarchy. Similar results were obtained for A. thaliana (see S1 Fig), S. cerevisae (see S2 Fig)
and for the Physicochemical+ characterizacion (see S3 Fig). Overall, these results suggest the
usefulness of the FGGA approach for tackling specific GO annotations in the presence of lim-
ited amounts of annotation data.

Fig 3. Scatter-plot of the average AUC after versus before TPR-DAG and FGGA classification. Annotation of D. melanogaster protein sequences to the
GO-Molecular Function domain with Pfam characterization and loose annotation data is considered. (Left) The average AUC for TPR-DAG versus baseline
SVM classifiers. (Right) The average AUC for FGGA versus baseline SVM classifiers.

doi:10.1371/journal.pone.0146986.g003

Fig 4. Scatter-plot of the average AUC for FGGA and TPR-DAG classifiers on the annotation ofD. melanogaster protein sequences to the
GO-Molecular Function domain with a Pfam characterization. Points above the diagonal show AUC improvements by FGGA. Points above the dashed
line show 10%margin improvements. (Left) GO with 226 terms, 10 levels and robust annotation data. (Right) GO with 656 terms, 14 levels and loose
annotation data.

doi:10.1371/journal.pone.0146986.g004

A Factor Graph Approach to Automated GO Annotation

PLOS ONE | DOI:10.1371/journal.pone.0146986 January 15, 2016 9 / 16



Average AUC results per individual GO-term correlate well with hierarchical metrics of
annotation performance. As shown in Table 3, whatever the experimental arrangement, FGGA
outperforms TPR-DAG based on hierarchical F-score results (pvalue = 0.01). This is consistent
with hierarchical precision and recall results showing FGGA improvements over TPR-DAG in
at least 8 of 12 experimental instances and equaling in remaining cases. Furthermore, although
the use Physicochemical+ characterization strongly reduces hierarchical precision levels in
both methods, a more precise annotation performance is still accomplished by FGGA which
outperforms TPR-DAG in 5 of the 6 experimental instances (pvalue = 0.01). For the sake of
completeness, hierarchical F-scores of baseline SVM classifiers were also evaluated. As
expected, the value of consistent FGGA predictions against independent ones in baseline SVM
classifiers can be clearly appreciated (see S1 Table).

Complementary evaluations were performed to shed some light on the relation between the
variance of base binary classifiers and FGGA hierarchical F-scores when increasing annotation
noise. This would be the case of using the naive Physicochemical+ characterization or the loose
training policy. As expected, whatever the organism, the variance of base binary classifiers aug-
mented with the Physicochemical+ characterization and these variations were more evident

Table 3. Average hierarchical precision(HP), recall (HR) and F-score (HF) of the FGGA and TPR-DAG
methods in the GOMolecular Function.Organisms are S. cerevisiae, A. thaliana and D. melanogaster.
Characterizations are Pfam and physicochemical/secondary structure (PhyChe+) properties. Training poli-
cies are robust and loose. For each model organism, characterization and training policy, the best performing
method according to the Wilcoxon rank sum test (pvalue = 0.01) is shown in bold.

Organism Characterization Training Method HP HR HF

S. cerevisiae Pfam robust FGGA 0.62 0.76 0.64

TPR-DAG 0.62 0.66 0.61

loose FGGA 0.53 0.78 0.60

TPR-DAG 0.53 0.70 0.56

PhyChe+ robust FGGA 0.46 0.81 0.57

TPR-DAG 0.45 0.79 0.55

loose FGGA 0.46 0.84 0.54

TPR-DAG 0.40 0.83 0.52

A. thaliana Pfam robust FGGA 0.74 0.80 0.70

TPR-DAG 0.71 0.73 0.69

loose FGGA 0.78 0.90 0.80

TPR-DAG 0.76 0.90 0.77

PhyChe+ robust FGGA 0.49 0.86 0.60

TPR-DAG 0.47 0.84 0.59

loose FGGA 0.37 0.87 0.50

TPR-DAG 0.33 0.84 0.46

D. melanogaster Pfam robust FGGA 0.71 0.86 0.75

TPR-DAG 0.70 0.81 0.72

loose FGGA 0.57 0.82 0.65

TPR-DAG 0.51 0.80 0.59

PhyChe+ robust FGGA 0.43 0.84 0.55

TPR-DAG 0.40 0.84 0.52

loose FGGA 0.37 0.87 0.50

TPR-DAG 0.33 0.85 0.47

doi:10.1371/journal.pone.0146986.t003
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with the loose training policy. For D. melanogaster and robust training, variances of base binary
classifiers grew from an average of 0.27 to 0.33 when changing from the Pfam to the
Physicochemical+ alternative. This was consistent with a reduction of the hierarchical F-score
from 0.75 to 0.55. Likewise, with loose training, variances grew from an average of 0.30 to 0.41
with a reduction of the F-scores from 0.65 to 0.50. Similar results were observed for the other
two model organisms. Overall, these results suggest that within the FGGA framework, aug-
menting the confidence of binary base classifiers by reducing their variances may be effectively
rewarded by improving annotation performance.

Annotation of proteins of unknown function in plants
The physical distribution of gene in plants seems to be not random and physical clusters of
genes with related functional classes can be expected [51]. We consider a GOMolecular Func-
tion annotation problem in Solanum lycopersicum cv Heinz 1706. Four small heat shock pro-
tein (shsp) genes [52], Solyc06g076520, Solyc06g076540, Solyc06g076560 and Solyc06g076570,
of well-known chaperone function in fruit ripening and heat shock stress [53, 54] map together
to a* 15 Kbp region in chromosome 6 suggesting the existence of a region of functional
related genes. In a wider region of* 30 Kbp, these genes map together with a Phosphoserine
phosphatase SerB gene (Solyc06g076510) and four genes of unknown function,
Solyc06g076500, Solyc06g076530, Solyc06g076580 and Solyc06g076590.

We hypothesize that FGGA classifiers trained on loose A. thaliana annotation datasets char-
acterized by naive physicochemical/secondary structure properties may shed some light on the
four genes of unknown function in Solanum lycopersicum. To support this hypothesis,
Solyc06g076540 and Solyc06g076510 were first used as positive controls. Since Solyc06g076540
lacks of a GO molecular function annotation, the “protein-self association” annotation of its
HSP17.8 ortholog in A. thaliana was used. On the other hand, “phosphatase activity” and
“magnesium ion binding” GO annotations were used for Solyc06g076510. Recalling that for
hierarchical classifiers, a prediction is considered correct provided it is included in the pre-
dicted graph, the two controls were satisfied (see S5 and S6 Figs). Based on these positive anno-
tation results, FGGA predictions on the four genes of unknown function were performed.

Aiming to recover most specific and confident FGGA predictions for guiding experimental
studies, a cut threshold of 0.95 for leaf nodes was set for the analysis predicted graphs, i.e., leaf
GO-terms whose estimated probabilities were below the threshold were disregarded. For
Solyc06g076500, a subgraph containing 122 out of the 659 original GO-terms, 54 of them
being leaf GO-terms, was recovered (see S7 Fig). Among the top five scoring leaf GO-terms,
GO:0016893 -endonuclease activity, active with either ribo- or deoxyribonucleic acids- whose
ancestor is GO:0004518 -nuclease activity- appears as a candidate annotation term [55]. For
Solyc06g076530, a subgraph containing 185 out of the 659 original GO-terms, 75 of them
being leaf GO-terms, was recovered. Among the top five scoring leaf GO-terms, GO:0004722
-protein serine/threonine phosphatase activity- whose ancestor is GO:0016791 -phosphatase
activity- appears as a candidate annotation term [56]. For Solyc06g076580, a subgraph contain-
ing 52 out of the 659 original GO-terms, 21 of them being leaf GO-terms, was recovered.
Among the top five scoring leaf GO-terms, GO:0016209 -antioxidant activity- appears as a can-
didate annotation term [57]. Finally, for Solyc06g076590, a subgraph containing 45 out of the
659 original GO-terms, 31 of them being leaf GO-terms, was recovered. Among the top five
scoring leaf GO-terms, GO:0046983 -protein dimerization activity- whose ancestor is
GO:0005515 -protein binding- appears as a candidate annotation term [58]. Altogether, these
results suggest that all genes in the target region could be involved in a chaperone network
induced during fruit ripening or heat shock stress [59, 60].
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Conclusions
A factor graph based method for automated GO annotation has been presented. The method,
called FGGA, embodies elements of predicate logic, communication theory, supervised learn-
ing and inference in graphical models. Elements of predicate logic allow a formal, yet intuitive,
treatment of relationships between GO-terms. Although only the main is_a relationship has
been practically considered, other types of transitive relationships, such as part of or has part,
are also possible. Likewise, elements of communication theory allow a formal, yet practical,
treatment of the uncertainty in practical GO-term predictions. Since these predictions are
issued by practical binary classifiers, key factors affecting the generalization performance of the
resulting ensemble can then be practically considered. In particular, under the assumption of a
Gaussian communication channel model corrupting ideal GO-term predictions, the variances
of base binary classifiers can be used to model their individual confidences. Similarly, under
the assumption of linear soft-margin SVM binary classifiers, observed margins can be used to
model the confidence of GO-term predictions. Both types of confidences, known to affect the
generalization of overall ensemble classifiers [61, 62], are fully exploited within the FGGA
framework. This is accomplished at the FGGA inference stage with an adapted version of the
widely used sum-product algorithm of factor graphs. This iterative message passing algorithm
is used to approximate MAP of latent GO-term annotations. Evaluations on S. cerevisiae, A.
thaliana, and D. melanogaster protein sequences suggest that improvement of the correctness
(precision) and the completeness (recall) of annotation results with respect to the TPR-DAG
heuristic is the payoff for FGGA modeling efforts. In this regard, an insight into the power of
the FGGA approach for studying proteins of unknown function has been presented.

Although throughout this paper only the automated annotation of protein sequences has
been practically considered, the annotation of other types of striking functional gene products
is also possible, e.g., long non-coding RNAs [63]. Since these RNA sequences are weakly con-
served across species [64] except in mammals [65], uncovering their functional annotation
entails a challenging bioinformatics problem [66]. FGGA may bring an opportunity for
improving the annotation of long non-coding RNA sequences through boosting the confidence
of base binary classifiers by the integration of multiple sources of annotation data, e.g., Rfam
database [67]. Interestingly, the complexity of such integration process could remain hidden at
base binary classifiers.

Supporting Information
S1 Fig. TPR-DAG and FGGA versus baseline SVM classifiers. Scatter-plot of the average
AUC after versus before TPR-DAG and FGGA classification. Annotation of A. thaliana pro-
tein sequences to the GO-Molecular Function domain with Physicochemical+ characterization
and loose annotation data is considered. (Left) The average AUC for TPR-DAG versus baseline
SVM classifiers. (Right) The average AUC for FGGA versus baseline SVM classifiers.
(EPS)

S2 Fig. FGGA versus TPR-DAG on A. thaliana with Pfam characterization. Scatter-plot of
the average AUC for FGGA and TPR-DAG classifiers on the annotation of A. thaliana protein
sequences to the GO-Molecular Function domain with a Pfam characterization. Points above
the diagonal show AUC improvements by FGGA. Points above the dashed line show 10% mar-
gin improvements. (Left) GO with 54 terms, 6 levels and robust annotation data. (Right) GO
with 659 terms, 14 levels and loose annotation data.
(EPS)
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S3 Fig. FGGA versus TPR-DAG on S. cerevisae with Pfam characterization. Scatter-plot of
the average AUC for FGGA and TPR-DAG classifiers on the annotation of S. cerevisae protein
sequences to the GO-Molecular Function domain with a Pfam characterization. Points above
the diagonal show AUC improvements by FGGA. Points above the dashed line show 10% mar-
gin improvements. (Left) GO with 103 terms, 10 levels and robust annotation data. (Right) GO
with 435 terms, 14 levels and loose annotation data.
(EPS)

S4 Fig. FGGA versus TPR-DAG on A. thaliana with Physicochemical+ characterization.
Scatter-plot of the average AUC for FGGA and TPR-DAG classifiers on the annotation of A.
thaliana protein sequences to the GO-Molecular Function domain with a Physicochemical+

characterization. Points above the diagonal show AUC improvements by FGGA. Points above
the dashed line show 10% margin improvements. (Left) GO with 54 terms, 6 levels and robust
annotation data. (Right) GO with 659 terms, 14 levels and loose annotation data.
(EPS)

S5 Fig. Positive control Solyc06g076540. Predicted graph for Solyc06g076540 using A. thali-
ana loose annotation data for FGAA training and a Physicochemical+ characterization. The
graph contains 171 GO-terms. Annotation control is shown in white.
(EPS)

S6 Fig. Positive control Solyc06g076510. Predicted graph for Solyc06g076510 using A. thali-
ana loose annotation data for FGGA training and a Physicochemical+ characterization. The
graph contains 162 GO-terms. Annotation control is shown in white.
(EPS)

S7 Fig. Solyc06g076500 of unknown molecular function. Prunned graph containing 122
GO-terms, 54 of them being leaf nodes, for the prediction of Solyc06g076500 molecular func-
tion. A. thaliana loose annotation data with a Physicochemical+ characterization is used for
FGGA training. Leaf prunning with a cut threshold of 0.95 is considered. Top five scoring leaf
GO-terms along with their MAP estimates are shown in blue.
(EPS)

S1 Table. Table FGGA and baseline SVM classifiers. Average hierarchical precision(HP),
recall (HR) and F-score (HF) of the FGGA method and baseline SVM classifiers (Flat) in the
GOMolecular Function. Organisms are S. cerevisiae, A. thaliana and D. melanogaster. Charac-
terizations are Pfam and physicochemical/secondary structure (PhyChe+) properties. Training
policies are robust and loose. For each model organism, characterization and training policy,
the best performing method according to the Wilcoxon rank sum test (pvalue = 0.01) is shown
in bold.
(EPS)
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