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Abstract

Background: The prediction of human gene–abnormal phenotype associations is a fundamental step toward the
discovery of novel genes associated with human disorders, especially when no genes are known to be associated
with a specific disease. In this context the Human Phenotype Ontology (HPO) provides a standard categorization of
the abnormalities associated with human diseases. While the problem of the prediction of gene–disease associations
has been widely investigated, the related problem of gene–phenotypic feature (i.e., HPO term) associations has been
largely overlooked, even if for most human genes no HPO term associations are known and despite the increasing
application of the HPO to relevant medical problems. Moreover most of the methods proposed in literature are not
able to capture the hierarchical relationships between HPO terms, thus resulting in inconsistent and relatively
inaccurate predictions.

Results: We present two hierarchical ensemble methods that we formally prove to provide biologically consistent
predictions according to the hierarchical structure of the HPO. The modular structure of the proposed methods, that
consists in a “flat” learning first step and a hierarchical combination of the predictions in the second step, allows the
predictions of virtually any flat learning method to be enhanced. The experimental results show that hierarchical
ensemble methods are able to predict novel associations between genes and abnormal phenotypes with results that
are competitive with state-of-the-art algorithms and with a significant reduction of the computational complexity.

Conclusions: Hierarchical ensembles are efficient computational methods that guarantee biologically meaningful
predictions that obey the true path rule, and can be used as a tool to improve and make consistent the HPO terms
predictions starting from virtually any flat learning method. The implementation of the proposed methods is available
as an R package from the CRAN repository.

Keywords: Human Phenotype Ontology, Hierarchical multi-label classification, Hierarchical ensemble methods,
Gene-Abnormal phenotype association, Human Phenotype Ontology term prediction, Phenotype gene prioritization

Background
In contrast to its general meaning that usually refers to
the traits or characteristics of an organism, in medical
contexts, the word “phenotype” is defined as a deviation
from normal morphology, physiology, or behavior [1]. The
analysis of phenotype is essential for understanding the
pathophysiology of cellular networks and plays a key role
in medical research and in the mapping of disease genes

*Correspondence: valentini@di.unimi.it
1Anacleto Lab - Dipartimento di Informatica, Universitá degli Studi di Milano,
Via Comelico 39, 20135 Milan, Italy
Full list of author information is available at the end of the article

[2, 3]. The Human Phenotype Ontology (HPO) project [4]
provides a standard categorization of the human abnor-
mal phenotypes and of their semantic relationships. It is
worth noting that each HPO term does not represent a
disease, but rather denotes individual signs or symptoms
or other clinical abnormalities that characterize a disease.
The HPO is currently developed using the medical lit-
erature, and OMIM [5], Orphanet [6] and DECIPHER
[7] databases, and contains approximately 11,000 terms
and over 115,000 annotations to hereditary diseases. The
HPO is structured as a direct acyclic graph (DAG), where
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more general terms are found on the top levels of hier-
archy and the term specificity increases moving towards
the lower levels of hierarchy, i.e. from root to leaves.
As a consequence, differently from tree-structured tax-
onomies such as FunCat [8], each HPO term may have
more than one parent. The HPO is governed by true-path-
rule (also known as annotation propagation rule) [2]: if
a gene is annotated with a given functional term, then it
is annotated with all the “parent” terms, and with all its
ancestors in a recursive way. On the contrary if a gene
is not annotated to a term, it cannot be annotated to its
offspring.
While the problem of the prediction of gene–disease

associations has been widely investigated [9], the related
problem of gene–HPO term prediction has been only con-
sidered in a few studies [10], despite the fact that no HPO
term associations are known for most human genes, and
the quickly growing application of the HPO to relevant
medical problems [11, 12].
“Flat” classification methods have been applied to

the prediction of gene-HPO term associations [13].
Unfortunately these methods can introduce major
inconsistencies in the classification, because labels are
independently predicted without taking into account the
hierarchical relationships within the ontology [14]. For
example, if we use the HPO to predict gene-phenotype
relations, a flat learner can associate the HPO term
“Hyperplasia of metatarsal bones” to a gene. But it
might not associate the parent term “Abnormality of the
metatarsal bones”, thus leading to an inconsistent pre-
diction. In addition flat methods do not exploit a priori
knowledge about the topology of the ontology, which may
result in a reduction in the prediction accuracy.
To properly handle the hierarchical relationships

between terms that characterize the HPO, we can apply
two main classes of structured output methods, i.e. meth-
ods able to exploit in the learning process the hierarchical
structure of terms [15]. The first category of methods
exploits joint input and output kernelization techniques
based on large margin methods for structured and inter-
dependent output variables [16, 17]. The second general
class of structured output methods is based on ensem-
bles of learning machines able to exploit the hierarchical
relationship between classes; theoretical studies [18], as
well as applications in several domains [19] showed the
effectiveness of this approach. Both these classes of meth-
ods have been applied to several bioinformatics problems,
ranging from enzyme function prediction [17, 20] to the
hierarchical prediction of Gene Ontology terms [21, 22].
In the context of HPO, Kahanda and coworkers [10] pro-
posed a structured output method, based on a joint kernel
constructed through the product of the input and the
output kernel, and showed that the proposed approach
outperforms existing methods.

To our knowledge no methods based on hierarchical
ensembles have been proposed in the context of struc-
tured output prediction of HPO terms associated with
human genes. Indeed most of the hierarchical ensemble
methods proposed in literature are conceived for tree-
structured taxonomies [23], and the few ones specific for
DAGs have been mainly applied to the prediction of the
gene and protein functions [22, 24]. Nevertheless, several
of these methods, mainly proposed in the context of GO
term classification, could be in principle applied to the
prediction of HPO terms. For a review of these approaches
we refer the reader to [15].
To fill this gap, we propose two distinct hierarchical

ensemble methods, the Hierarchical Top-Down (HTD-
DAG) and True Path Rule (TPR-DAG) forDirected Acyclic
Graphs (DAG), able to provide consistent predictions of
HPO terms and to scale nicely both in terms of the com-
plexity of the taxonomy and the cardinality of the exam-
ples. In this paper we show that the proposed approaches
present several advantages with respect to state-of-the-art
structured output methods, including their competitive
accuracy together with low computational complexity,
their modularity and capacity to enhance the predictions
of both semi-supervised and supervised flat methods, and
their ability to in principle provide any biologically consis-
tent prediction of structured association between a gene
and HPO terms.
A preliminary version of HTD-DAG and TPR-DAG

were presented at IWBBIO and MCS workshops
[25, 26], but these methods have not been previously pub-
lished in any journal. Here for the first time we present
a detailed explanation of the algorithms and provide
formal proofs of the consistency of the predictions for
both HTD-DAG and TPR-DAG. Moreover we introduce
completely new variants, such as the Adaptive Threshold
(AT) and the Descendant (D) algorithms (see below the
“Methods” section for more details). We also discuss how
the proposed methods can improve flat predictions, and we
provide several examples of the biological consistency of
the predictions obtained with both HTD and TPR-DAG
algorithms. In the “Results and discussion” section we
propose a completely new and enlarged experimental set-
up involving a genome-wide experimental comparison of
our proposed hierarchical ensembles with state-of-the-
art methods for HPO term prediction. Finally we perform
the prediction of new HPO annotations based on earlier
annotations and we also propose novel HPO annota-
tions for several genes, showing how such predictions
are confirmed by the literature or by up-to-date HPO
annotations not used during the training of the algorithm.

Methods
We present two algorithms, Hierarchical Top-Down
(HTD-DAG) and True Path Rule (TPR-DAG) for Directed
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Acyclic Graphs (DAG), specifically designed to exploit the
DAG structure of the relationships between HPO terms
to predict associations between genes and sets of HPO
terms. Both hierarchical ensemble methods adopt a two-
step learning strategy:

1. Flat learning of the terms of the ontology: each base
classifier learns a specific and individual class (HPO
term) resulting in a set of dichotomic classification
problems which are independent of each other.

2. Hierarchical combination of the predictions:
aggregation of the classifications performed by the
base learners trained in the previous step. The
resulting consensus predictions of the ensemble take
the hierarchical relationships of the ontology into
account.

This ensemble approach is highly modular: in principle
any learning algorithm can be used to train the classifiers
in the first step, and in the second step the hierarchi-
cal relationships between the HPO terms are exploited to
achieve the final ensemble predictions of the set of HPO
terms associated with a specific gene.
The main limitation of the flat learning of the HPO

terms is that each term is separately learned without tak-
ing into account the relationships between classes. Other
methods, such as the ensemble approach proposed in [27]
can overcome this limitation by applying global models
for the multi-label classification, thus explicitly consid-
ering class interactions during the learning process. On
the other hand hierarchical ensemble methods are able to
correct flat predictions, by splitting in two separate steps
the process of learning HPO terms and the process of
evaluating the hierarchical relationships between classes.

Basic notation and definitions
The directed acyclic graph G =< V ,E > represents the
HPO taxonomy, its vertices V = {1, 2, . . . , |V |} the terms
of the ontology and the directed edges (i, j) ∈ E the hierar-
chical relationships between the parent terms i and their
children j. We define child(i) as the children of a term i,
par(i) as the set of its parents, anc(i) as its ancestors and
desc(i) as the set of its descendants.
A “flat multi-label scoring” predictor f : X → Y pro-

vides a score f (x) = ŷ, ŷ ∈ Y =[ 0, 1]|V | for a given
example x ∈ X, where X is a suitable input space for the
predictor f. In other words a flat predictor provides a score
ŷi ∈[ 0, 1] that represents the likelihood that a given gene
belongs to a given node/HPO term i ∈ V of the DAG G,
and ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >. We say that the multi-label
scoring y is consistent if it obeys the true path rule:

y is consistent ⇐⇒ ∀i ∈ V , j ∈ par(i) ⇒ yj ≥ yi
(1)

It is straightforward to show that (1) holds even with flat
classifiers that do not provide a score but a label ŷi ∈ {0, 1}
indicating that a given gene belongs (ŷi = 1) or does not
(ŷi = 0) to a given HPO term i.
It is very unlikely that the true path rule could be sat-

isfied by a flat multi-label scoring predictor, but with an
additional topology-aware score/label modification step
we can easily satisfy the constraints imposed by the true
path rule. More precisely, we can provide a prediction
function g

(
f (x)

)
: Y → Y such that the true path rule

(1) holds for all the predictions g
(
f (x)

) = ȳ: ∀i ∈ V , j ∈
par(i) ⇒ ȳj ≥ ȳi.

Flat learning of the terms of the ontology
The algorithm first utilizes a flat ensemble learning strat-
egy by which each term i ∈ V of the HPO is independently
learned through a term specific predictor fi : X →[ 0, 1].
Accordingly, the output of the flat classifier f : X → Y on
the instance x ∈ X is f (x) = ŷ:

f (x) =< f1(x), f2(x), . . . , f|V |(x) >=< ŷ1, ŷ2, . . . , ŷ|V | >

To this end any supervised or semi-supervised base pre-
dictor can be used, including also flat binary classifiers.
Indeed both learners able to provide a probability or a
score related to the likelihood that a gene is annotated
with a HPO term (that is scores ŷi ∈[ 0, 1]), and base
binary classifiers that can directly provide a label (but
not a score) about the association gene-HPO term (that
is a label ŷi ∈ {0, 1}) can be used to generate the flat
predictions. Note that the training of per-class predictors
f1, f2, . . . , f|V | can be performed in parallel, and it is easy
to achieve a linear speed-up in the number of the avail-
able processors by adopting simple parallel computational
techniques.
For the HPO predictions we used semi-supervised

(RANKS, [28]) and supervised (Support Vector Machines
– SVM [29]) machine learning methods to implement
the base learners of the proposed hierarchical ensemble
methods.
The semi-supervised approach RAnking of Nodes with

Kernalized Score functions (RANKS) is a network-based
method, that adopts a local as well as a global predic-
tion strategy. By using local learning, RANKS measures
the similarity between a gene and its neighbors using dif-
ferent score functions. Global learning is accomplished
through graph kernels that exploit the overall topology
of the network to predict node labels. In principle any
valid kernel function can be applied here. In this work
we apply the average score function and a 1, 2 and 3-
step random walk kernels (that are respectively able to
explore direct neighbors and genes at 2 or three steps
away in the network). RANKS was previously success-
fully applied in the prioritization of disease genes [30],
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the prediction of gene function [31] as well as for drug
repositioning problems [32].
It is worth noting that RANKS returns a score and not

a probability, that represents the likelihood that a gene
belongs to a given class, but the “magnitude” of the scores
may vary across different classes [31]. To make the scores
comparable across classes, we considered two distinct
normalization procedures:

1. Normalization in the sense of the maximum: the
score of each class is normalized by dividing the
score values for the maximum score of that class;

2. Quantile normalization: a method originally designed
for the normalization of probe intensity levels for
high density oligonucleotide microarray data across
multiple experiments [34]. In our case we applied
quantile normalization to make the scores
comparable across different HPO terms.

SVMs were trained for each term using the R inter-
face of the machine learning library LiblineaR [35] with
default parameter settings. Because of the high running
time of SVMs we implemented a multicore version of
LiblineaR using doParallel and foreach R packages. The
parallel implementation of SVMs is available upon request
from the authors.

Hierarchical Top-Down (HTD-DAG) ensembles
The main idea behind the Hierarchical top-down algo-
rithm (HTD-DAG) consists in modifying the predictions
of each base learner from “top to bottom”, i.e. from the
least to the most specific terms by exploiting at each step
the predictions provided by the less specific predictors,
e.g. predictors associated to parent HPO terms. This is
performed in a recursive way by transmitting the predic-
tions from each node to the their children, and from the

children to the children of the children through a propa-
gation of the information towards the descendants of each
node of the ontology. For instance in Fig. 1a the informa-
tion can flow along the path traversing nodes 1, 5, 6, 7 or
1, 3, 7, and a prediction for e.g. the node 5 depends on the
predictions performed by the base learners for the parent
nodes 4, 1 and 3. This operating mode of the ensemble is
performed in an ordered way from the top to the bottom
nodes (Fig. 1a).
More precisely, the HTD-DAG algorithm modifies

through a unique run across the nodes of the graph the
flat scores according to the hierarchy of a DAG. The flat
predictions f (x) = ŷ are hierarchically corrected to ȳ by
top-down per-level traversing the nodes of the DAG, and
by applying recursively this rule:

ȳi :=
⎧
⎨

⎩

ŷi if i ∈ root(G)

minj∈par(i) ȳj if minj∈par(i) ȳj < ŷi
ŷi otherwise

(2)

The maximum path length from the root is used to
define the node levels. More precisely, given that p(r, i)
represents a path from the root node r and a node i ∈
V , l (p (r, i)) the length of p(r, i), L = {0, 1, . . . , ξ} the
observed levels, and ξ the maximum node level, then we
can define a level function ψ : V −→ L:

ψ(i) = max
p(r,i)

l (p(r, i)) (3)

The above level function ψ assigns each node i ∈ V to
its level ψ(i). For instance, from this definition root nodes
are {i|ψ(i) = 0}, while nodes lying at a maximum distance
ξ from the root are {i|ψ(i) = ξ}.
The consistency of the predictions is guaranteed if and

only if the levels are defined according to the maximum

(a) (b)
Fig. 1 Flow of information in hierarchical ensembles. a Top-down flow, b Bottom-up flow. See text for more explanations
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path length from the root (Correctness and consistency
of the predictions section provides a formal proof of
this fact).
Figure 2 shows the pseudo code of the second step

of HTD-DAG algorithm, by which the flat predictions
ŷ computed in the first step are combined and updated
according to top-down per-level traversal of the DAG.
The block A of the algorithm (row 1) computes themax-

imum distance of each node from the root; to this end the
classical Bellman-Ford algorithm or themethods based on
the Topological Sorting algorithm can be applied [36].
A top-down per-level traversal of the graph is imple-

mented in the block B: for each level of the graph, starting
from the nodes just below the root, the flat predictions
ŷi are top-down corrected, according to Eq. 2, and the
consensus ensemble predictions ȳi are obtained. More
precisely, the nested loops starting respectively at line 04
and 06 ensure that nodes are processed by level in an
increasing order. Lines 07–11 perform the hierarchical
correction of the flat predictions ŷi, i ∈ {1, . . . , |V |}. The
algorithm ends when nodes at distance ξ from the root are
processed (last iteration of the external loop within lines
04–13) and it finally provides the hierarchically corrected
predictions ȳ.
The complexity of block A is O(|V | + |E|) (if the

Topological Sort algorithm is used to implement Com-
puteMaxDist), while it is easy to see that the complexity

Fig. 2 The Hierarchical Top-Down algorithm for DAGs (HTD-DAG)

of block B (rows 3 − 13) is O(|V | + |E|). Hence the
overall complexity of the top-down step of HTD-DAG is
O(|V | + |E|)), that is linear in the number of nodes of the
HPO, considering that its underlying DAG is sparse.

Hierarchical true path rule (TPR-DAG) ensembles
By considering the opposite flow of information “from
bottom to top”, we can construct the prediction of the
ensemble by recursively propagating the predictions pro-
vided by the the most specific nodes toward their parents
and ancestors.
For instance in Fig. 1b a possible flow of information

could be along the path 8, 5, 4, 2, 1 or 7, 6, 5, 1, and the
prediction of the ensemble for e.g. node 3 depends on
children nodes 5, 6 and 7. The proposed True Path Rule
for DAG (TPR-DAG) adopts this bottom-up flow of infor-
mation, to take into account the predictions of the most
specific HPO terms, but also the opposite flow from top
to bottom to consider the predictions of the least specific
terms. Figure 3 provides a pictorial toy example of the
operating mode of the TPR-DAG algorithm.
This algorithm is related to the TPR algorithm for

tree-structured taxonomies [37], but despite the similar-
ity of their names, the TPR for trees cannot be applied
to the HPO, since it does not work on DAG-structured
taxonomies and provides inconsistent predictions when
applied to the HPO. In contrast to the per-level tree
traversal proposed in [37], the DAG per-level traversal
has two distinct and strictly separated steps: (1) the DAG
is inspected bottom-up per-level, followed by (2) a top-
down visit. This separation is necessary to assure the
true path rule consistency of the predictions in DAG-
structured taxonomies (see “Correctness and consistency
of the predictions” section for details). The other main
difference consists in the way the levels are computed: in
this new DAG version the levels are constructed accord-
ing to the maximum distance from the root, since this
guarantees that in the top-down step all the ancestor
nodes have been processed before their descendants, thus
assuring the true path rule consistency of the predictions
(see “Correctness and consistency of the predictions”
section for a formal proof of this fact). Moreover in this
paper we also propose novel algorithms for the bottom-up
propagation of the predictions from the most to the least
specific terms of the HPO.
TPR-DAG provides “consensus” ensemble predictions

by integrating the flat predictions ŷi through a per-level
visit of the DAG:

ȳi := 1
1 + |φi|

⎛

⎝ŷi +
∑

j∈φi

ȳj

⎞

⎠ (4)

where φi are the “positive” children of i.
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Fig. 3 A toy example of the operating mode of the TPR-DAGmethod. Left: The nodes represent different HPO terms and the numeric values the flat
scores associated to each node of the graph. The different colors represent the levels, i.e. the maximum distance of the node from the root node A.
Center: The bottom-up step introduces a correction of the flat scores by taking into account the scores of the children of each node. This procedure
is methodically repeated from the bottom to the top nodes of the DAG; as an example, the bottom part shows that the correction for the F node is
performed by averaging the flat score of the F parent node with those of the “positive” children, i.e. that children nodes having a value larger than
that of the F parent node. Right: The Top-down step introduces a further correction by taking into account the scores of the parent nodes, by
methodically parsing this time the DAG from the root node A down to descendant nodes; as an example, the bottom part of the figure shows that
the score of the F node is set to the minimum of the bottom-up scores of F and that of its parents A, B and C

Note that only positive predictions of the children obey
the true path rule. Indeed, according to this rule, we may
have a gene annotated to a term t, but not annotated to a
terms s ∈ child(t). Hence if we have a negative prediction
for the terms s it is not meaningful to use this predic-
tion to predict the term t. It is worth noting that we can
combine children predictions using aggregation strategies
other than the average. For instance using the maximum,
we could likely improve the sensitivity, but with a likely
decrement of the precision. Different strategies to select
the “positive” children φi can be applied, according to the
usage of a specific threshold to separate positive from
negative examples:

1. Constant Threshold (T) strategy. For each node the
same threshold t̄ is a priori selected: tj = t̄, ∀j ∈ V .
In this case ∀i ∈ V we have:

φi := {j ∈ child(i)|ȳj > t̄} (5)

For instance if the predictions represent probabilities
it could be meaningful to a priori select t̄ = 0.5.

2. Adaptive Threshold (AT) strategy. The threshold is
selected to maximize some performance metricM
estimated on the training data, e.g. the F-score or the
AUROC. In other words the threshold is selected to
maximize some measure of accuracy of the

predictionsM(j, t) on the training data for the class j
with respect to the threshold t. The corresponding
set of positives ∀i ∈ V is:

φi :=
{
j ∈ child(i)|ȳj > t∗j , t∗j = argmax

t
M(j, t)

}

(6)

For instance internal cross-validation can be used to
select t∗j from a set of t ∈ (0, 1).

3. Threshold Free (TF) strategy. This strategy does not
require an a priori or experimentally selected
threshold. We select as positive those children that
increment the score of their parent node i :

φi := {j ∈ child(i)|ȳj > ŷi} (7)

Accordingly, we can derive three different algorithmic
variants of the basic TPR:

a) TPR-T: TPR with constant threshold, corresponding
to strategy 1);

b) TPR-AT: TPR with adaptive thresholds,
corresponding to strategy 2);

c) TPR-TF: TPR threshold-free, corresponding to
strategy 3).
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All three TPR algorithmsmove positive predictions recur-
sively towards the ancestors so that the predictions are
propagated bottom-up. The pseudo-code of the TPR-
DAG algorithm is shown in Fig. 4 and it is structured into
three parts. At first in part A, the maximum distance for
every node Vi to the root is computed via the Bellman-
Ford algorithm. Second, block B updates the predictions
ŷi using Eq. 4 together with one of the three positive selec-
tion strategies by a bottom-up visit. After this step the
true path rule have to be fulfilled, since the bottom up
step assures the propagation of positive predictions, but
not their consistency. To this end, in the final block C,
the hierarchical top-down step is performed, like in the
HTD-DAG algorithm.
The complexity of the TPR-DAG algorithm is quadratic

in the number of nodes for the blockA, but can beO(|V |+
|E|) if the Topological Sort algorithm is used instead. It is
easy to see that the complexity is O(|V |) for both the B
and C blocks when graphs are sparse. Hence, considering

Fig. 4 Hierarchical True Path Rule algorithm for DAGs (TPR-DAG)

the sparseness of the HPO, the algorithm is linear with
respect to the number of the terms of the HPO.
To modulate the contribution to the ensemble predic-

tion of the parent node and its children, a TPR-DAG
variant similar to the weighted True Path Rule algorithms
for tree-structured taxonomies [23] can be designed for
DAGs. The TPR-W, i.e. TPR-Weighted, can be obtained
by weighting the predictions according to this rule:

ȳi := wŷi + (1 − w)

|φi|
∑

j∈φi

ȳj (8)

In this approach a weight w ∈[ 0, 1] is added to bal-
ance between the contribution of the node i and that of
its “positive” children. If w = 1 no weight is attributed to
the children and the TPR-DAG reduces to the HTD-DAG
algorithm, since in this way only the prediction for node i
is used in the bottom-up step of the algorithm. If w = 0
only the predictors associated to the children nodes “vote”
to predict node i. In the intermediate cases we attribute
more importance to the predictor for the node i or to its
children depending on the values of w. A different way to
implement a weighting strategy could be also pursued not
only considering balancing between the predictions on
node i and nodes j ∈ child(i), but including also weight-
ing with respect to the estimated accuracy of each base
learner, estimated e.g. by internal cross-validation.
As shown in [37] for the tree version of the TPR algo-

rithm, the contribution of the descendants of a given node
decays exponentially with their distance from the node
itself, and it is easy to see that this is true also for the TPR-
DAG algorithm. To enhance the contribution of the most
specific nodes to the overall decision of the ensemble, a
linear decaying or a constant contribution of the “positive”
descendants could be considered instead:

ȳi := 1
1 + |�i|

⎛

⎝ŷi +
∑

j∈�i

ȳj

⎞

⎠ (9)

where

�i = {
j ∈ desc(i)|ȳj > tj

}
(10)

In this way all the “positive” descendants of node i pro-
vide the same contribution to the ensemble prediction ȳi.
We named this TPR variant as TPR-D.

Correctness and consistency of the predictions
Hierarchical ensemble methods can improve flat predic-
tions by reducing the number of both false positives (FP)
and false negatives (FN). For instance, the Additional
file 1 (Figure S1a) shows that hierarchical ensembles
can correct FN flat predictions to TP for the gene
RGS9 (regulator of G-protein signaling 9) that encodes
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a member of the RGS family of GTPase whose muta-
tions cause bradyopsia [38], while the Additional file 1:
Figure S1b of the same additional file shows the ability
of hierarchical ensembles of correcting FP to TN for the
gene ENAM (enamelin) that encodes the largest protein
in the enamel matrix whose deficiency is associated with
amelogenesis imperfecta type 1C [39]. More precisely, in
the Additional file 1: Figure S1a the hierarchical ensem-
ble TPR-W “recovered” four TP (red rectangles), while
in Additional file 1: Figure S1b TPR-W corrected six FP
to TN. It is worth nothing that the hierarchical ensem-
ble methods can improve the correctness, but they cannot
of course guarantee the correctness of all the predictions:
when, e.g. the flat predicted scores are too bad, hierarchi-
cal ensembles may fail in improving the recovery of FP
or FN. For instance, in Additional file 1: Figure S1a TPR-
W failed in removing three FN (orange rectangles), and
in Additional file 1: Figure S1b was not able to remove
three FP.
Hierarchical ensemble methods can guarantee consis-

tent predictions, that is predictions that obey the true path
rule. To this end, the per-level visit of the hierarchical tax-
onomy should be realized by using the maximum and not
the minimum distance from the root (see the Additional
file 2 for an intuitive example showing this fact). An exam-
ple of the capability of obtaining hierarchically corrected
consistent predictions from inconsistent flat predictions
is shown in Fig. 5 for the gene C1QC (complement C1q

C chain), that encodes a 18 polypeptide chains protein
whose deficiency is associated with lupus erythematosus
and glomerulonephritis [40].
The consistency of the predictions of both the HTD-

DAG and TPR-DAG is proved through the following
theorems (proofs are available in the Additional file 3):

Theorem 1 Given a DAGG =< V ,E >, a level function
ψ that assigns to each node its maximum path length from
the root and the set of HTD-DAG flat predictions ŷ =<

ŷ1, ŷ2, . . . , ŷ|V | >, the top-down hierarchical correction of
the HTD-DAG algorithm assures that the set of ensemble
predictions ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > satisfies the following
property: ∀i ∈ V , j ∈ par(i) ⇒ ȳj ≥ ȳi

An immediate consequence of this theorem is that
HTD-DAG assures consistent predictions not only for the
parents, but also for all the ancestors of any node of a
hierarchical DAG-structured taxonomy:

Corollary 1 Given a DAG G =< V ,E >, the
level function ψ and the set of flat predictions ŷ =<

ŷ1, ŷ2, . . . , ŷ|V | >, the HTD-DAG algorithm assures that for
the set of ensemble predictions ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the
following property holds: ∀i ∈ V , j ∈ anc(i) ⇒ ȳj ≥ ȳi.

Independently of the choice of the positive children
(“Hierarchical true path rule (TPR-DAG) ensembles”

Fig. 5 Flat and hierarchical (TPR-W) HPO predictions for the gene C1QC. The numbers close to each predicted HPO term represent flat (yellow
rectangles) and hierarchically corrected (green) scores. The TPR-W predictions obey the true-path rule (the scores of the parent nodes are always
larger or equal than that of their children nodes), while flat predictions are inconsistent for 5 HPO terms highlighted in light-red: Autoimmunity,
Abnormality of complement system, Abnormal renal physiology, Abnormality of the nephron and Glomerulonephritis
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subsection), the following consistency theorem holds for
TPR-DAG:

Theorem 2 Given a DAG G =< V ,E >, a set of
flat predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > for each class
associated to each node i ∈ {1, . . . , |V |}, the TPR-DAG
algorithm assures that for the set of ensemble predictions
ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the following property holds: ∀i ∈
V , j ∈ anc(i) ⇒ ȳj ≥ ȳi.

Finally a good property of TPR-DAG is that its sensitiv-
ity is always equal or better than that of the HTD-DAG:

Theorem 3 The TPR-DAG ensemble algorithm with
“positive” children selected according to (7) achieves always
a sensitivity equal or higher than the HTD-DAG ensemble
algorithm.

Unfortunately there is no guarantee that the precision of
TPR-DAG is always larger or equal than that of the HTD-
DAG algorithm.
All the proofs and details about the above theorems are

available in the Additional file 3.

Results and discussion
We performed two different sets of experiments to com-
pare our proposed hierarchical ensemble approach with
state-of-the-art methods for the prediction of abnormal
human phenotypes structured according to the HPO.
In the first set of experiments (“Prediction of Human
Phenotype Ontology terms” subsection) we compared
HTD and TPR ensembles with state-of-the-art methods
using the same data and experimental set-up adopted by
[10]. In the second set of experiments (“HPO Predic-
tion of newly annotated genes” subsection) we evaluated
the ability of our proposed hierarchical ensemble meth-
ods to predict newly annotated genes of the April 2016
HPO release, by using annotations of a previous release
(January 2014). Finally we provided a list of currently
unannotated genes that could be possible candidate genes
for novel annotations, on the basis of the predictions per-
formed by our proposed hierarchical ensemble methods.

Prediction of Human Phenotype Ontology terms
We compared the hierarchical ensemble methods for
DAGs (HTD, “Hierarchical Top-Down (HTD-DAG)
ensembles” subsection) and TPR and its variants, (“Hier-
archical true path rule (TPR-DAG) ensembles” sub-
section) against several state-of-the-art and baseline
methods:

• PHENOstruct, a state-of-the art joint-kernel
structured support vector machine approach [10].
This method uses the product of the input and

output space kernel to construct the joint kernel. The
rationale behind this approach is that two
input/output pairs are considered similar if they are
similar in both their input feature space and their
output label space.

• Clus-HMC-Ens, a state-of-the art Hierarchical
Multilabel classification (HMC) based on decision
tree ensembles [27]. Differently from the proposed
HTD-DAG and TPR-DAG methods, where each
base learner solves a separate binary classification
problem, each decision tree in the Clus-HMC-Ens
ensemble is a “global” model built to predict all
classes at the same time, thus allowing to explicitly
take into account the relationships between the
classes just at the level of each base learner.

• SSVM → disease → HPO method, an indirect
two-step method that first predicts gene-disease
associations and then maps them to HPO terms using
the associations available on the HPO website [10].

• PhenoPPIOrth, a computational tool that can predict
a set of OMIM diseases for given human genes using
protein-protein interaction and orthologous proteins
data and then maps the predicted OMIM terms to
HPO terms by direct mapping [13].

• Probabilistic support vector machines (SVMs) [41].
This is a variant of the classical SVM algorithm, by
which the output of the SVM is fitted to a sigmoid in
order to provide an estimation of the probability that
a given example belongs to the class to be predicted.

• RANKS, a semi-supervised method base on
kernelized score functions [28], resulted one of the
top-ranked methods in the recent CAFA2 challenge
for HPO term prediction [42]. This is a
semi-supervised node-label ranking algorithm that
applies graph kernels to the gene network to exploit
its global topological characteristics, and then simple
local learning functions on the resulting kernelized
graph to provide a ranking of the nodes (genes).

We used both a semi-supervised (RANKS [28])
and a supervised (Support Vector Machines – SVM)
machine learning method to implement the base learn-
ers of the proposed hierarchical ensemble methods
(see “Flat learning of the terms of the ontology” subsection
for more details).

Data and experimental set-up
We used the same data and the same experimental set-
up applied in [10] for a fair comparison with previously
proposed methods [10, 13, 27]. Indeed, to our knowledge,
[10] presented one of the largest comparative evaluation
of different methods for the prediction of HPO terms at
genome-wide level. Moreover PHENOStruct, described in
the same paper, was one one of the top-ranked method
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in the recent CAFA2 challenge [42]. The generaliza-
tion performance of the methods was evaluated through
a classical 5-fold cross-validation procedure, according
to [10].
It is worth noting in the training phase we selected the

negative examples (genes) according to a “basic” selection
strategy [23], i.e. for positives we used all the instances
annotated with that HPO term, while for negatives we
simply used all the not annotated instances. In principle
other more refined strategies to select negatives may lead
to improved performances [43, 44].

Data sources We used the same version of the the
STRING (v. 9.1, [45]) and BioGRID (v. 3.2.106, [46])
databases used in [10]. More precisely we downloaded
physical and genetic experimental interactions relative to
4970 proteins from BioGRID 3.2.106, and the integrated
protein-protein interaction and functional association
data for 18172 human proteins from STRING 9.1. From
the same STRING website we also downloaded the pro-
tein aliases file to map proteins to genes, using as identi-
fiers respectively the Locus STRING ID and the ENTREZ
Gene ID. Moreover, starting from the Gene Ontology
annotations for the three main sub-ontologies (Biologi-
cal Process, Molecular Function and Cellular Component
[47]) and from OMIM annotations [48], both represented
as binary feature vectors, we constructed 4more networks
by using the classical Jaccard index to represent the edge
weight (functional similarity) between the nodes (genes)
of the resulting network. In our context the Jaccard index
of two genes measures the ratio between the cardinality
of their common annotations and the cardinality of the
union of their annotations. The rationale behind the usage
of this index is that two genes are similar if they sharemost
of their annotations. All these annotations were obtained
by parsing the raw text annotation files made available
by Uniprot knowledge-base considering only its SWIS-
Sprot component (release May 2013). Finally the resulting
n = 6 networks were integrated by averaging the edge
weights wd

ij between the genes i and j of each network d ∈
{1, n} after normalizing their weights in the same range
of values wd

ij ∈[ 0, 1] (Unweighted Average (UA) network
integration, [30]):

w̄ij = 1
n

n∑

d=1
wd
ij (11)

The weighted adjacency matrices representing the
obtained networks have been directly used as the input of
network-based transductive methods (e.g. RANKS), while
the input for supervised feature-based inductive methods
(e.g. SVM) has been constituted by the rows of the same
adjacency matrices. In other words for each gene its input

features are represented by the interactions and functional
similarities with all the other genes of the network.

HPO DAG and annotations Following the same experi-
mental set-up of [10], we considered separately the three
main sub-ontologies of the HPO (January 2014 release):
Organ Abnormality, Mode of Inheritance and Onset and
Clinical Course. Organ Abnormality is the main ontol-
ogy and includes terms related to clinical abnormalities.
Mode of Inheritance is a relatively small ontology and
describes the inheritance pattern of the phenotypes.Onset
and Clinical Course contains classes that describe typical
modifiers of clinical symptoms, as the speed of progres-
sion, and the variability or the onset. For the sake of
simplicity for the rest of the paper we refer to these sub-
ontologies respectively as Organ, Inheritance and Onset.
Following the experimental set-up of [10], we pruned the
HPO terms having less than 10 annotations in the January
2014 release, thus resulting in DAGs having respectively
2134 (Organ), 13 (Inheritance) and 23 (Onset) terms.

Performancemetrics
Since typically molecular biologists and physicians are
interested in knowing both the set of genes associated
with a certain HPO term and the phenotypic abnormal-
ities associated with a particular human gene, we evalu-
ated the results using two different performance metrics:
(i) term-centric and (ii) gene-centric. These two types of
evaluations were chosen to address the following related
questions: (i) what are the genes associated with a spe-
cific abnormal phenotype? and (ii) what are the abnormal
phenotypes associated with a particular gene?
1. Gene-centric metric. Precision (Pr), Recall (Rc) and

themaximum achievable F−score (Fmax) using thresholds
τ ∈[ 0, 1] are calculated as follows:

Pr(τ ) = 1
N

N∑

j=1

∑
i 1

(
i ∈ Pgj(τ ) ∧ i ∈ Tgj

)

∑
i 1

(
i ∈ Pgj(τ )

) (12)

Rc(τ ) = 1
N

N∑

j=1

∑
i 1

(
i ∈ Pgj(τ ) ∧ i ∈ Tgj

)

∑
i 1

(
i ∈ Tgj

)) (13)

Fmax = maxτ

{
2 · Pr(τ ) · Rc(τ )

Pr(τ ) + Rc(τ )

}
(14)

where i denotes an abnormal phenotype (HPO term) in
the human ontology (excluding the root node), Pgj(τ )

denotes the set of terms that have a predicted scores
greater than or equal to τ for a given gene gj, Tgj denotes
the set of experimentally determined terms for a given
gene gj, N the number of examples having at least one
annotation with an HPO term and 1 indicates a stan-
dard indicator function. In other words the Fmax measure
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is the maximum hierarchical F-score achievable by “a
posteriori” setting the optimal decision threshold [42].
We warn the reader that the hierarchical F − score

as defined in eq. 14 provides an over-optimistic assess-
ment of the hierarchical score. Indeed the threshold τ in
eq. 14 is by definition “a posteriori” selected, by choosing
the optimal τ ∗ that optimizes the F − score having a set
of pre-computed scores. An unbiased evaluation should
embed the selection of the optimal τ within the learn-
ing process. Nevertheless, we use this measure since it
is the reference gene-centric metric within the computa-
tional biology community, as witnessed by its usage in the
CAFA2 international challenge [42], and in the ongoing
CAFA3 challenge.
2. Term-centric metric. For each term i we computed

the classical Area Under the Receiver Operating Charac-
teristic Curve (AUROC). The ROC curve is created by
plotting the sensitivity (or recall) against false positive rate
(or 1 − specificity), measured at different threshold levels.
The sensitivity (Sn) and specificity (Sp) at at a given score
threshold τ for a particular functional term i are defined
as:

Sni(τ ) =
∑

j 1
(
ygji > τ ∧ gj ∈ i

)

∑
j 1

(
gj ∈ i

) (15)

Spi(τ ) =
∑

j 1
(
ygji ≤ τ ∧ gj /∈ i

)

∑
j 1

(
gj /∈ i

) (16)

where ygji ∈[ 0, 1] is the predicted score (probability) that
gene gj is associated with the HPO term i and τ ∈[ 0, 1]
is a given threshold, and 1 indicates the standard indica-
tor function. The ROC curve is computed by computing
the sensitivity and 1 - specificity at different values of
τ ∈[ 0, 1]. The AUROC can assume values in [ 0 . . . 1]; val-
ues close to 0.5 denote random predictions and values
substantially larger than 0.5 denote good predictive ability.
For both measures, by averaging across genes or terms,

we can obtain an overall picture of the prediction perfor-
mance of the methods.

Experimental results
The best results have been obtained with the STRING
network (“Data and experimental set-up” subsection)
and among the different variants of the TPR algorithm,
TPR-W (Eq. 8), with the Threshold Free (TF) strategy
(Eq. 7) to select the set of “positive” children, achieved
the best results. For this reason we firstly report the
results obtained with STRING and the TPR-W ensem-
ble, while the detailed results obtained with the other
variants of the TPR algorithm as well as those obtained
with the UA integrated network are available in the
Additional files 4 and 5.

Table 1 summarizes the results achieved by the pro-
posed hierarchical ensemble methods HTD and TPR ,
using as base learner RANKS (TPR-W-RANKS and HTD-
RANKS) and a linear SVM (TPR-W-SVM andHTD-SVM).
The results were compared with those achieved by state-
of-the-art methods and the two flat methods used as base
learner by the hierarchical ensembles (RANKS and SVM).
HTD and TPR ensembles achieve statistically sig-

nificant better results than state-of-the-art methods in
terms of term-centric measures, independently of the
base learner used: indeed, by applying the Wilcoxon rank
sum test, the Bonferroni corrected p-value for multiple
hypothesis testing resulted in a family wise error rate
FWER ≤ 10−4.
Considering the hierarchical multi-label score (Fmax),

TPR-W-SVM achieves significantly better results with
respect to the other methods, with the only exception of
the smallest HPO sub-ontology (Inheritance) that includes
only 13 HPO terms (Table 1). Interestingly enough, the
hierarchical ensemble methods are always able to improve
the results of the flat methods used as base learner; in
particular we have large improvement of the Fmax when
RANKS is used as base learner, while the improvement
is smaller with the AUROC, for which RANKS alone
achieves relatively high values. These results also show
that the performance of hierarchical ensembles largely
depends on that of the flat base learners: for instance
HTD-RANKS and TPR-W-RANKS achieve a significantly
larger average AUROC than HTD-SVM and TPR-W-SVM
(Table 1). This is not surprising since the improvement
introduced by hierarchical methods depends also on the
ability of the underlying flat base learners to provide cor-
rect and at least partially consistent predictions. Indeed
not always flat scores can be improved by hierarchical
ensemble methods, as shown for instance in (Additional
file 1: Figure S1): when very noisy or incorrect flat scores
are provided, it is unlikely that hierarchical ensemble
methods can improve the predictions. In the opposite
case too, i.e. when flat scores are very close to optimal
Bayes predictions, it is of course hard to improve perfor-
mances for any method, including also HTD-DAG and
TPR-DAG.
Overall, these results show that the proposed hierarchi-

cal ensemble methods are competitive with state-of-the-
art methods such as PHENOstruct and Clus-HMC-Ens
and moreover show that they can improve the results of
different flat methods, such as the network-based semi-
supervised RANKS algorithm and the supervised SVM
classifier. Detailed results obtained with different variants
of TPR, including TPR-W, TPR-TF, TPR-T and TPR-D
(“Hierarchical true path rule (TPR-DAG) ensembles” sub-
section) are shown in additional file 4: TPR-W achieves
most times the best results thanks to the tuning of the
w parameter. The w parameter was selected through a
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Table 1 Cross-validated prediction of genes associated with
HPO terms of the Organ, Inheritance and Onset sub-ontology

AUROC Fmax Precision Recall

Organ sub-ontology

TPR-W-RANKS 0.89 0.40 0.34 0.48

TPR-W-SVM 0.77 0.44 0.38 0.51

HTD-RANKS 0.88 0.37 0.30 0.49

HTD-SVM 0.75 0.43 0.37 0.49

PHENOstruct 0.73 0.42 0.35 0.56

Clus-HMC-Ens 0.65 0.41 0.39 0.43

PhenoPPIOrth 0.52 0.20 0.27 0.15

SSVM→ Dis →HPO 0.49 0.23 0.16 0.41

RANKS 0.87 0.30 0.23 0.43

SVM 0.74 0.42 0.36 0.50

Inheritance sub-ontology

TPR-W-RANKS 0.91 0.57 0.45 0.80

TPR-W-SVMs 0.82 0.69 0.59 0.82

HTD-RANKS 0.90 0.57 0.44 0.81

HTD-SVMs 0.81 0.69 0.59 0.82

PHENOstruct 0.74 0.74 0.68 0.81

Clus-HMC-Ens 0.73 0.73 0.64 0.84

PhenoPPIOrth 0.55 0.12 0.16 0.10

SSVM→ Dis →HPO 0.46 0.11 0.07 0.25

RANKS 0.90 0.56 0.43 0.81

SVMs 0.82 0.69 0.59 0.82

Onset sub-ontology

TPR-RANKS 0.86 0.44 0.33 0.70

TPR-SVMs 0.75 0.48 0.38 0.66

HTD-RANKS 0.86 0.42 0.30 0.69

HTD-SVMs 0.74 0.46 0.37 0.67

PHENOstruct 0.64 0.39 0.31 0.52

Clus-HMC-Ens 0.58 0.35 0.27 0.48

PhenoPPIOrth 0.53 0.25 0.25 0.24

SSVM→ Dis →HPO 0.49 0.07 0.06 0.10

RANKS 0.83 0.41 0.30 0.67

SVMs 0.74 0.47 0.37 0.63

Average AUROC across terms and average Fmax , Precision and Recall across genes
of HTD, TPR-W ensembles and state-of-the-art methods. Best results for each metric
are highlighted in bold

classical double cross-validation procedure: the general-
ization performance was evaluated by the external cross-
validation, while the “optimal”w parameter was chosen by
internal cross-validation at each step of the external cross-
validation. In this way we never accessed the examples
of the test set for the selection of the w parameter. It is

worth noting that the performance of other competing
methods such as PHENOstruct or Clus-HMC-Ens could
be enhanced by finely tuning their learning parameters.
Nevertheless, TPR-W can further enhance its perfor-
mance, by fine tuning the learning parameters of its base
learners. We also observe that other TPR variants achieve
competitive results without the need of tuning any param-
eter. For instanceTPR-D-SVM shows an average Fmax very
close to that of TPR-W-SVM with the largest sub-ontology
(Organ), and TPR-TF-SVM an average Fmax very close to
that of TPR-W-SVM with the Inheritance sub-ontology.
Additional file 5 shows the results attained through the
UA integrated network. Results are in most cases worse
than those obtainedwith STRINGdata alone: this is not so
surprising since STRING just combines different sources
of information to construct the integrated network.

HPO Prediction of newly annotated genes
In this section we assess the capacity of our proposed hier-
archical ensemble methods to predict novel HPO annota-
tions for human genes. To this end we used annotations
of an old HPO release (January 2014) to predict the newly
annotated genes of a recent HPO release (April 2016).

Data sources As data source we used the STRING 9.1
network, i.e one of the data sets used in the previous
experiments (paragraph “Data sources”). Indeed the pre-
vious experiments as well as the experiments performed
by [10] revealed that STRING 9.1 was the most infor-
mative source of information for the prediction of HPO
terms. We did not use the most recent release of the
STRINGdatabase (v.10, [49]), since wemight introduce an
indirect bias in the prediction, considering that STRING
10 was not available when the January 2014 HPO version
was released.

HPODAG and annotations The experiments presented
here are based on the January 2014 HPO release (10,320
terms and 13,549 between-term relationships) to pre-
dict the newly annotated genes of the April 2016 HPO
release (11,673 terms and 15,459 between-term relation-
ships). Since in different releases some terms could have
been removed, others changed or become obsolete, we
mapped the old HPO terms to the new ones by pars-
ing the annotation file of the January 2014 HPO release
using as key the alt-ID taken from the obo file of the
April 2016 HPO release. From the same HPO releases
we downloaded all the corresponding gene-term asso-
ciations. Then we pruned HPO terms having less than
10 annotations obtaining a final HPO DAG composed
of 2445 terms and 3059 between-terms relationships, to
avoid the prediction of HPO terms having a too few
annotations for a reliable assessment.
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Experimental set-up and performancemetrics
We compared the generalization performance ofHTD and
TPR hierarchical ensemble methods versus PHENOs-
truct, the best performing state-of-the-art method in the
previous set of experiments (“Prediction of Human Phe-
notype Ontology terms” subsection).
We denote withT the set of genes having at least 1 anno-

tation with an HPO term of the “old” January 2014 HPO
release (2804 genes) and with S the set of newly annotated
genes, i.e. genes having at least one new annotation in the
“new” April 2016 HPO release, but previously unanno-
tated in the January 2014 HPO release (608 genes). Hence
we have that S ∩ T = ∅. We used the set T as train-
ing set and the set S as test set, and we applied a classical
hold-out procedure to assess the capability of predicting
newly annotated genes using only the annotations of the
previous HPO release. In this way we predicted the newly
annotated 608 genes of the test set, having on the average
about 100 annotations per gene, distributed across 2445
HPO terms. For the HTD and TPR methods we used
the SVMs as base learners. To evaluate the performance
of PHENOstruct, we downloaded and adapted the freely
available C++ PHENOstruct code to perform the hold-out
procedure described above.
As performance metrics we used the same gene-centric

and term-centric measures mentioned in “Performance
metrics” subsection. In addition we added a further term-
centric measure: the Area Under the Precision Recall
Curve (AUPRC), to take into account the imbalance of
annotated vs. unannotated HPO terms [50]. Unlike the
previous experimental part (“Prediction of Human Phe-
notype Ontology terms” subsection), in the experiments
presented here we considered the whole HPO, without
splitting it up in its main sub-ontologies.

Experimental results
Table 2 shows that TPR-W and HTD are able to pre-
dict newly annotated genes, even if with a certain decay
in the overall performance, as expected, with respect
to the cross-validated results of Table 1. Hierarchical
ensemble methods attain significantly better results than
PHENOstruct both in terms of average AUPRC and Fmax
(Wilcoxon paired rank sum test, p-value < 10−9), while

Table 2 Prediction of newly annotated human genes

Method AUROC AUPRC Fmax Precision Recall

SVM 0.6506 0.1230 0.3774 0.3457 0.4155

HTD 0.6464 0.1207 0.3794 0.3581 0.4033

TPR-W 0.6512 0.1237 0.3826 0.3512 0.4202

PHENOstruct 0.6661 0.1089 0.3635 0.3040 0.4519

Average AUROC and AUPRC across terms and average Fmax , Precision and Recall
across genes. Results significantly better than the others according to the Wilcoxon
Rank Sum test (α = 10−9) are highlighted in bold

PHENOstruct achieves the best AUROC results. It is
worth noting that the precision of TPR-W and HTD
is higher than that of PHENOstruct at any recall level
(Fig. 6a), and these results are confirmed also by the “per-
gene” hierarchical Fmax score:TPR-W “wins” with 431 and
“loses” with 177 human genes (Fig. 6b). Results obtained
with other different TPR variants are comparable with
those obtained by TPR-W (see Additional file 6). We
observe that on this task the SVM performance is close
to that of the hierarchical ensemble methods. If on the
one hand TPR-W achieves better results than the SVM,
on the other hand not always the difference is statistically
significant: more precisely the difference is statistically
significant with the Fmax measure, while for the per-term
metric AUPRC no statistical difference is detected. These
results show that on this task is difficult to improve also
on relatively simple baseline methods, and more research
is needed to significantly enhance the performance.
We note that the best method (TPR-W ) for about half

of the newly annotated genes (296) obtained a reasonable
accuracy, i.e. Fmax > 0.3, as well as a relatively large area
under the curve (AUROC> 0.7) for about 800HPO terms.
Results limited to these best predicted genes and terms
are summarized in Table 3). Figure 7 shows the distribu-
tion of the best “per-term” AUROC and AUPRC results of
HTD and different variants of TPR, and in the Additional
file 7 are shown their best results in terms of average
AUROC, AUPRC and Fmax.
While the results of Fig. 7 and those shown in Additional

file 7 are biased in favor of TPR-W (only the genes and
terms best predicted byTPR-W are included), Fig. 8 shows
that hierarchical ensemble methods achieve competitive
results in terms of precision at any recall level indepen-
dently if the best predicted HPO terms are selected with
respect to TPR-W or PHENOstruct best predictions.
The empirical computational time of hierarchical

ensemble methods is significantly lower than that of state-
of-the-art joint kernel structured output methods. Indeed
the overall training and test time for the hold-out pro-
cessing is about 12 min with HTD and about 18 h with
PHENOstruct using an Intel Xeon CPU E5-2630 2.60GHz
with 128 GB of RAM. The overall computation time with
TPR-W is significantly larger than HTD (about 3 h), due
to the tuning of the w parameter of the algorithm, but
in any case significantly lower than PHENOstruct. It is
worth noting that the overall computational time of the
hierarchical ensemble methods depend on the training
time of the base learner, and may of course vary with the
complexity of the base learner used. We can also observe
that TPR-W usually achieves slightly better results than
HTD (Tables 1 and 3), but if the computational time is
an issue, we can safely use HTD or other TPR variants
with lower computational complexity, such as TPR-TF or
TPR-D, with only a small decay in performance.
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(a) (b)
Fig. 6 (a) Compared precision at different recall levels averaged across 2444 HPO terms. (b) Scatter plot of Fmax values. Each point represent one of
the 608 genes of the test set. PHENOstruct values are in abscissa, TPR-W values in ordinate

New “candidate genes” predicted by the hierarchical
ensemble
In this section we provide a list of currently unannotated
genes that could be possible candidate for novel annota-
tions. To this purpose we at first selected a list of the HPO
terms best predicted by the hierarchical ensemble meth-
ods, and then we selected among these HPO terms, those
currently unannotated genes that achieved a hierarchi-
cal score larger than those of the annotated genes. More
precisely, by exploiting the scores computed by TPR-W
in the hold-out experiments (“HPO Prediction of newly
annotated genes” subsection), we selected genes not anno-
tated in the April 2016 release of HPO, but predicted
to be annotated by our method to specific HPO terms,
thus resulting to be possible candidate genes for being
annotated with that term.
First of all, by considering the hierarchical ensem-

ble TPR-W-SVM, that achieved the best results in the
detection of newly annotated genes (“HPO Prediction of
newly annotated genes” subsection), we selected the HPO
terms best predicted by our method, i.e. terms predicted
with AUROC larger than a given threshold. To this end we
considered the 130 HPO terms that obtained an AUROC
value higher than 0.95 (Additional file 8). From this set
of HPO terms we selected the most specific nodes of the

Table 3 Prediction of newly annotated human genes
considering only the best predictions

Method AUROC AUPRC Fmax Precision Recall

SVM 0.8208 0.1589 0.4727 0.4560 0.4908

HTD 0.8155 0.1551 0.4716 0.4429 0.5042

TPR-W 0.8219 0.1594 0.4793 0.4572 0.5037

PHENOstruct 0.7565 0.1241 0.4297 0.3583 0.5366

Results significantly better than the others according to the Wilcoxon Rank Sum test
(α = 10−9) are highlighted in bold

hierarchy, that is those that correspond to the leaves of the
HPO DAG (65 HPO terms).
Finally we selected for these most specific and best pre-

dicted terms, the genes candidate to be annotated for that
term. To this end, for each of the selected 65 HPO terms
we adopted the following procedure:

1. Sort in descending order all the genes on the basis of
the TPR-W-SVM scores;

2. Select the first top 5 ranked genes (set S);
3. Select the top ranked genes in S annotated for the

HPO term (set A ⊆ S);
4. Select the maximum score s̄ among the annotated

genes belonging to A;
5. The candidate genes are those unannotated genes in

S (the top ranked 5 genes) having a score larger or
equal than s̄, or all the genes in S if A = ∅.

As a result, for each HPO term we selected the top
ranked unannotated genes having a TPR-W-SVM score
higher or equal than the highest score achieved by the
genes annotated for that term. In other words the pro-
cedure selects those unannotated genes that TPR-W
strongly thinks to be annotated for that term. The pro-
cedure limits the analysis to the top 5 ranked genes for
each best predicted and most specific term, in order
to provide a list of genes well-characterized about their
abnormal phenotype and possibly reliable, according to
the performance of the TPR-W-SVM ensemble. It is worth
noting that following the above procedure for selecting the
candidate genes, not necessarily for each HPO leaf term
we have always five candidate genes. Indeed it may hap-
pen that for a given HPO term an annotated gene fills,
e.g., the third position in the rank, and hence for that term
we will have only two candidate genes. The full list of
the the genes candidate to be annotated for the best pre-
dicted andmost specific 65 HPO terms are available in the
Additional file 9.
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(a) (b)
Fig. 7 Distribution of the AUROC and AUPRC values across the best predicted terms (778 HPO terms). a AUROC, b AUPRC. HTD and different
TPR variants are compared with PHENOstruct

We note that some of the newly predicted associa-
tions gene-HPO term have been confirmed in the most
recent HPO release (March 2017). For instance the
predicted association of the gene XRCC2 with HPO
term HP:0100760 (Clubbing of toes) has been con-
firmed in the March 2017 HPO release, as well as the
association of the gene LIPE (that encodes the protein
LIPE E) with the HPO term HP:0000831 (Insulin-
resistant diabetes mellitus). Interestingly enough LIPE
is correlated also with the disease LIPE-related familial
partial Lipodystrophy (ORPHA:435660). The March 2017
HPO release also confirmed the predicted association
of gene IGF2, that encodes a member of the insulin
family of polypeptide growth factor, with the pheno-
type HP:0100631 (Neoplasm of the adrenal gland), and
moreover recent works postulated the association of
IGF2 with adrenal tumors ed in particular with adreno-
cortical carcinomas and pheochromocytomas [51].
Besides the aforementioned evidence of associations,
the novel predicted gene-HPO term pairs show a clear

relationship with specific diseases, according to the most
recent literature. For example the human gene ECHS1,
that encodes the enzyme that catalyzes the second
step of the mitochondrial fatty acid β-oxidation (FAO)
pathway, is correlated with the phenotype HP:0004359
(Abnormality of fatty-acid metabolism) and from
literature is also known being associated with FAO
disorders and in particular with the Leigh syndrome
[52]. Moreover the predicted association between the
Complement factor B (CFB) and the term HP:0002725
(Systemic lupus erythematosus) is supported by recent
literature, since CFB is an important activator of the
alternative complement pathway and increasing evidence
supports reducing factor B as a potential novel therapy to
lupus nephritis [53]. Another strong evidence of associa-
tions between the gene–HPO term pair predicted by our
ensemble method and the corresponding disease is given
by the work of Hersh et al. [54]. In this work the authors
demonstrated the importance of TGFBR3 gene (encod-
ing the transforming growth factor (TGF)-beta type III

(a) (b)
Fig. 8 Precision at different recall levels of the newly annotated genes, considering only the best predicted terms. a Results considering only the
HPO terms predicted with AUROC > 0.7 by TPR-W (778 terms); b results considering only the HPO terms predicted with AUROC > 0.7 by
PHENOstruct (852 terms)
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receptor) in the Chronic Obstructive Pulmonary Disease
(COPD), confirming the prediction made by our method
which associated TGFBR3 gene with the HPO term
Emphysema (HP:0002097). Furthermore the predicted
association between the gene BARD1 and Nephroblas-
toma, also known as Wilms’ tumor (HP:0002667), is
supported in the very recent work of Fu et al. [55], in which
the authors claim that the BARD1 gene polymorphism is
significantly associated with increased nephroblastoma
risk. As stated in [56], frameshift mutations in the MSH3
gene play an important role in the development of breast
cancer (HP:0003002), supporting in this way the selfsame
gene–HPO term association predicted by our meth-
ods. The predicted association between the CAD gene
(encoding for a tri-functional enzyme involved in the
pyrimidine biosynthesis) and the phenotype HP:0004353
(Abnormality of pyrimidine metabolism) is confirmed by
the fact that a mutation in CAD impairs de novo pyrim-
idine biosynthesis [57]. Another interesting example is
represented by the predicted association between the
COX10 gene (Cytochrome c Oxidase) and the phenotype
Abnormal mitochondria in muscle tissue (HP:0008316),
supported by literature evidence that correlates the
COX10 dysfunction with mitochondrial disease [58].
Overall, the novel annotations in the recent (March 2017)
HPO release as well as recent bio-medical literature sup-
port the novel predictions obtained with our hierarchical
ensemble methods.

Conclusions
The experimental results show that hierarchical ensem-
ble methods are able to predict associations between
genes and abnormal phenotypes with results competitive
with state-of-the-art algorithms. The low computational
complexity of the hierarchical correction step of both
HTD and TPR (linear with respect the number of nodes
of the HPO) enables its efficient application using dif-
ferent types of base learners. Indeed we showed that the
proposed hierarchical algorithms are able to improve the
predictions of both semi-supervised flat methods, such
as the RANKS algorithm, that resulted one of the top
ranked method in the recent CAFA2 challenge for HPO
term prediction [42], and of supervised methods such as
SVM. By exploiting the modular structure of HTD and
TPR, we speculate that in principle any flat method,
used as base learner within our proposed hierarchical
algorithms, can in principle improve its performance for
the prediction of HPO terms. We also proved that both
HTD and TPR always provide consistent predictions that
obey the true path rule, a fundamental fact to assure bio-
logically coherent predictions of HPO terms. Moreover
we provided a list of currently unannotated genes that
could be possible candidate for novel HPO annotations,
and we showed that several predicted gene - HPO term

associations have been confirmed in the current HPO
release (March 2017) and in recent bio-medial literature.
Since for several disorders no disease genes have been
discovered (e.g. for about half of Mendelian diseases no
causative genes are known [59]), our methods can con-
tribute to the discovery of such genes, and to unravel the
full spectrum of phenotypes associated with them.
Even if the overall results show the effectiveness of state-

of-the-art methods for the prediction of HPO terms, the
estimated absolute value of both AUPRC and Fmax for
genome-wide HPO term predictions cannot be consid-
ered fully satisfactory, showing that there is room for
further research on this topic.
Finally we point out that our methods are general

enough to be applied to other prediction problems
in computational biology characterized by taxonomies
structured as directed acyclic graphs. For instance, the
proposed approach could be safely applied to the pre-
diction of Gene Ontology terms, assuring biological con-
sistency of the predictions and at the same time likely
improving predictions obtained with flat learning meth-
ods. Furthermore, since a tree is a DAG, our proposed
algorithms can be also safely applied to tree-structured
taxonomies, such as the FunCat [8].
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