29 research outputs found

    Polarization Decomposition Algorithm for Detection Efficiency Enhancement

    Get PDF
    In the paper, a new polarization decomposition of the optimal detection algorithm in the partially homogeneous environment is presented. Firstly, the detectors Matched Subspace Detector (MSD) and Adaptive Subspace Detector (ASD) are adopted to deal with detection problems in the partially homogeneous environment. Secondly, the fitness function with polarization parameters is equivalently decomposed to enhance time detection efficiency in the algorithm. It makes the multiplication number of the fitness function from square to a linear increase along with the increase in parameters. Simulation results indicate that the proposed decomposition is much more efficient than direct use of the fitness function

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Electronic scan weather radar: scan strategy and signal processing for volume targets

    Get PDF
    2013 Fall.Includes bibliographical references.Following the success of the WSR-88D network, considerable effort has been directed toward searching for options for the next generation of weather radar technology. With its superior capability for rapidly scanning the atmosphere, electronically scanned phased array radar (PAR) is a potential candidate. A network of such radars has been recommended for consideration by the National Academies Committee on Weather Radar Technology beyond NEXRAD. While conventional weather radar uses a rotating parabolic antenna to form and direct the beam, a phased array radar superimposes outputs from an array of many similar radiating elements to yield a beam that is scanned electronically. An adaptive scan strategy and advanced signal designs and processing concepts are developed in this work to use PAR effectively for weather observation. An adaptive scan strategy for weather targets is developed based on the space-time variability of the storm under observation. Quickly evolving regions are scanned more often and spatial sampling resolution is matched to spatial scale. A model that includes the interaction between space and time is used to extract spatial and temporal scales of the medium and to define scanning regions. The temporal scale constrains the radar revisit time while the measurement accuracy controls the dwell time. These conditions are employed in a task scheduler that works on a ray-by-ray basis and is designed to balance task priority and radar resources. The scheduler algorithm also includes an optimization procedure for minimizing radar scan time. In this research, a signal model for polarimetric phased array weather radar (PAWR) is presented and analyzed. The electronic scan mechanism creates a complex coupling of horizontal and vertical polarizations that produce the bias in the polarimetric variables retrieval. Methods for bias correction for simultaneous and alternating transmission modes are proposed. It is shown that the bias can be effectively removed; however, data quality degradation occurs at far off boresight directions. The effective range for the bias correction methods is suggested by using radar simulation. The pulsing scheme used in PAWR requires a new ground clutter filtering method. The filter is designed to work with a signal covariance matrix in the time domain. The matrix size is set to match the data block size. The filter's design helps overcome limitations of spectral filtering methods and make efficient use of reducing ground clutter width in PAWR. Therefore, it works on modes with few samples. Additionally, the filter can be directly extended for staggered PRT waveforms. Filter implementation for polarimetric retrieval is also successfully developed and tested for simultaneous and alternating staggered PRT. The performance of these methods is discussed in detail. It is important to achieve high sensitivity for PAWR. The use of low-power solid state transmitters to keep costs down requires pulse compression technique. Wide-band pulse compression filters will partly reduce the system sensitivity performance. A system for sensitivity enhancement (SES) for pulse compression weather radar is developed to mitigate this issue. SES uses a dual-waveform transmission scheme and an adaptive pulse compression filter that is based on the self-consistency between signals of the two waveforms. Using SES, the system sensitivity can be improved by 8 to 10 dB

    Wavefield modeling and signal processing for sensor arrays of arbitrary geometry

    Get PDF
    Sensor arrays and related signal processing methods are key technologies in many areas of engineering including wireless communication systems, radar and sonar as well as in biomedical applications. Sensor arrays are a collection of sensors that are placed at distinct locations in order to sense physical phenomena or synthesize wavefields. Spatial processing from the multichannel output of the sensor array is a typical task. Such processing is useful in areas including wireless communications, radar, surveillance and indoor positioning. In this dissertation, fundamental theory and practical methods of wavefield modeling for radio-frequency array processing applications are developed. Also, computationally-efficient high-resolution and optimal signal processing methods for sensor arrays of arbitrary geometry are proposed. Methods for taking into account array nonidealities are introduced as well. Numerical results illustrating the performance of the proposed methods are given using real-world antenna arrays. Wavefield modeling and manifold separation for vector-fields such as completely polarized electromagnetic wavefields and polarization sensitive arrays are proposed. Wavefield modeling is used for writing the array output in terms of two independent parts, namely the sampling matrix depending on the employed array including nonidealities and the coefficient vector depending on the wavefield. The superexponentially decaying property of the sampling matrix for polarization sensitive arrays is established. Two estimators of the sampling matrix from calibration measurements are proposed and their statistical properties are established. The array processing methods developed in this dissertation concentrate on polarimetric beamforming as well as on high-resolution and optimal azimuth, elevation and polarization parameter estimation. The proposed methods take into account array nonidealities such as mutual coupling, cross-polarization effects and mounting platform reflections. Computationally-efficient solutions based on polynomial rooting techniques and fast Fourier transform are achieved without restricting the proposed methods to regular array geometries. A novel expression for the Cramér-Rao bound in array processing that is tight for real-world arrays with nonidealities in the asymptotic regime is also proposed. A relationship between spherical harmonics and 2-D Fourier basis, called equivalence matrix, is established. A novel fast spherical harmonic transform is proposed, and a one-to-one mapping between spherical harmonic and 2-D Fourier spectra is found. Improvements to the minimum number of samples on the sphere that are needed in order to avoid aliasing are also proposed

    LTE Indoor MIMO Performance and Antenna Configuration

    Get PDF
    Long-term evolution (LTE) and multiple input multiple output (MIMO) have earned reputations to be a cutting‒edge technology, which can boost significantly wireless communication performances. However, many aspects influence on LTE MIMO efficiency; those include propagation environments and antenna configurations. The goal of the thesis is to study performances of LTE MIMO on downlink in indoor. MIMO gains over transmit diversity and single antenna are the objective. Additionally, the study compares MIMO indoor performances with different antenna configurations at LTE base station and UE, including space diversity and polarization diversity. Some results obtained in this thesis follow the expectations what have been studied in literature and previous practical studies but some differences are also pointed out. Medium access control throughput (MAC TP) and some system parameters in LTE network that are linked with TP are analysed; those parameters are CQI, MCS as well as MIMO utilization. Effects of indoor propagation, such as LoS, NLoS, good and bad signal levels on SNR strength and MIMO utilization are clarified. In overall, MIMO outperforms transmit diversity (TxDiv) and single antenna in LTE indoor. The overall MIMO MAC TP gains are about nearly 40.0% over TxDiv and more than 20.0% over single stream. LoS environment boost SNR strength. Hence, up to 35.0% TP gain over single antenna is achieved. However, LoS signals make the channel become correlated due to lack of multipaths, causing that MIMO is not fully utilized. The gain of MIMO over single antenna is reduced at no LoS environments, particularly only around 17.0% and 21.0% MAC TP gains are recorded at NLoS channels with good signal levels and weak signal strength, relatively. The overall TP gain the UE experiences by using TxDiv over single antenna is roughly more than 20.0%, but LoS environment limits TxDiv performance. Hence, at LoS channel, TxDiv performance is reduced by around 2.0% compared to single stream. The worse the channel, the better TxDiv performs. The highest gain is at cell edge environment when TxDiv improves throughput more than 40.0% over single antenna. Clearly, antenna configuration impacts network performance. Large horizontal separation (7λ) between antenna elements outperforms small separation (0.5λ) in terms of SNR, MIMO utilization and MAC TP. The MAC TPs of large separation by using omni-directional and directional antennas are almost similar, around 27.0 Mbps. Space diversity with omni-directional antennas provides roughly 14.0% MAC TP improvement while only approximately 4.5% TP gain can be achieved with directional antennas. Vertical‒horizontal polarization pair deployed at LTE base station is found to provide better performance over vertical‒vertical polarization and X‒pol pairs. Signals also appear to be more correlated with vertical-horizontal polarization pair since MIMO utilization gets better values, MIMO utilization gains are around 18.0% over vertical-vertical polarization pair and 6.0% over X-pol pair, resulting in around 31.7% and 17.0% MAC TP gains over the two latter, relatively. The results also point out that changing polarizations at UE do not give clear MAC TP and MIMO utilization improvements. From the radio network planning point of view, the results obtained in this thesis can be considered as guidelines for indoor network planning and optimization for network operators. It is important to conclude that based on the measurements made in this thesis, space diversity (7λ) with omni-directional antennas and vertical-horizontal polarization pairs appear to give optimal indoor performance. However, it should be taken into consideration that all results presented in this thesis are highly dependable on the chosen antennas, LTE network systems, devices and indoor environment where the measurements are carried out. Hence, the results may vary with the factors mentioned

    Compact antenna arrays for efficient direction of arrival estimation

    Get PDF
    In recent years, a modern topic that has received major attention in diverse areas of research is the miniaturization of communication and non-communication devices. Society has demanded increasingly smaller and more compact equipments that allow for mobility with lower level of effort. Fields of research that have recently demanded compactness of devices include radio emitter localization, and more specifically, the localization in terms of Direction of Arrival (DoA), also referred to as direction finding. Applications for direction finding include RADAR systems, channel sounding, satellite navigation, and security applications, among others. High-resolution direction finding systems include a receiving array of antennas responsible to capture the impinging signals and feed the output to a DoA estimator. Miniaturization of such systems is accomplished by optimizing the antenna array with respect to the total volume occupied. There are two possible outcomes of array miniaturization: reduced size and lighter individual sensors or placement of elements in the array closer together. The second solution for compactness implies inter-element spacing smaller than half of the free-space wavelength, giving rise to stronger mutual coupling in the array, which causes adverse effects such as radiated far-fields pattern distortion, reduced bandwidth, and power and polarization mismatch. The contribution of this thesis is to show how the impairment that arises from strong electromagnetic interaction between neighboring elements in compact arrays affects the antenna capabilities for direction finding. We propose a solution to decouple and match compact antenna arrays, which is based on an eigenmode decomposition approach for the design of Decoupling and Matching Networks (DMN) comprised of distributed elements. We demonstrate the benefits of using the proposed DMN, to restore impairment caused by compactness, for direction finding of emitters in diverse scenarios. With the aim of evaluating and optimizing antenna arrays for direction finding based applications, we propose a workbench that connects the antenna design parameters to performance metrics for DoA estimation. Although the proposed decoupling and matching technique significantly enhances the direction finding performance of compact arrays, the frequency bandwidth may still be a limiting factor. This thesis contributes to this issue by proposing a multiband antenna array comprised of sub-arrays optimized for different frequencies. As an outlook, we evaluate wideband antenna arrays comprised of magnetic loops with respect to DoA estimation acuracy and discuss possible solutions for matching and decoupling over a wide frequency bandwidth.Ein wissenschaftliches Thema, welches in den letzten Jahren in den verschiedensten Bereichen der Forschung große Aufmerksamkeit erlangt hat, ist die Miniaturisierung von elektronischen Geräten insbesondere in den Anwendungsfeldern Kommunikation und Ortung. Die Gesellschaft und der zunehmende Grad der digitalen Industrialisierung fordern immer kleinere und kompaktere Geräte, die die Mobilität mit möglichst geringerem Aufwand ermöglichen. Forschungsgebiete, die eine besondere Kompaktheit von Geräten fordern, umfassen die Lokalisierung/Ortung von Radioemissionen und genauer die Bestimmung dessen Richtungsinformation (Direction of Arrival, kurz DoA). Klassische Anwendungen für die Richtungserkennung sind RADAR-Systeme, Channelsounding, Satellitennavigation oder Sicherheitsanwendungen. Hochauflösende Richtungssuchsysteme bestehen aus einem Empfangsantennenarray, welches für die Erfassung der ausgesendeten Signale und deren Weiterleitung zum DoA-Schätzer verantwortlich ist. Die Miniaturisierung derartiger Systeme erfolgt durch Optimierung der Antennenanordnung bezüglich des eingenommenen Gesamtvolumens. Es gibt zwei mögliche Ansätze zur Antennenminiaturisierung: reduzierte Größe und leichtere individuelle Sensoren oder dichtere Platzierung der Elemente innerhalb des Antennenarrays. Die zweite Lösung impliziert einen Elementabstand, der kleiner als die Hälfte der Freiraumwellenlänge ist. Dies führt zu einer stärkeren gegenseitigen Kopplung in dem Antennenarray und somit nachteilige Effekte, wie zum Beispiel eine Verzerrung der Fernfeldantenneneigenschaften, verringerte Bandbreite und Leistung- sowie Polarisationsdiskrepanz. Diese Arbeit soll zeigen, wie die Beeinträchtigung, die durch starke elektromagnetische Wechselwirkungen zwischen benachbarten Elementen in kompakten Anordnungen entsteht, die Fähigkeiten des Antennenentwurfs für die Richtungsfindung beeinflusst. Es wird eine Lösung zur Entkopplung und Anpassung kompakter Antennenarrays vorgeschlagen, die auf einem Eigenmodenzerlegungsansatz für den Entwurf von Entkopplungs- und Anpassungsnetzwerken (Decoupling and Matching Network, kurz DMN) basiert. Die Vorteile dieses Ansatzes werden in verschiedenen Szenarien für den Anwendungsfall der Richtungsfindung demonstriert. Mit dem Ziel, Antennenarrays für richtungsbezogene Anwendungen zu evaluieren und zu optimieren, wird ein Entwurfsfluss vorgeschlagen, der die Parameter der Antennenkonfiguration mit den Kenngrößer einer DoA-Schätzung verbindet. Obwohl die vorgeschlagene Entkopplungs- und Anpassungstechnik die Leistungsfähigkeit der Richtungsfindung mittels kompakter Anordnungen beträchtlich verbessert, kann die Frequenzbandbreite immer noch ein begrenzender Faktor sein. Diese Dissertation trägt zu diesem Thema bei, indem sie ein Mehrbandantennenarray vorschlägt, dass aus Subarrays besteht, die für verschiedene Frequenzen optimiert sind. Als Ausblick wird ein Breitbandantennenarray aus magnetischen Schleifen in Bezug auf die DoA Schätzgenauigkeit untersucht und mögliche Lösungen für die Anpassung und Entkopplung über eine große Frequenzbandbreite diskutiert

    Sparse Bases and Bayesian Inference of Electromagnetic Scattering

    Get PDF
    Many approaches in CEM rely on the decomposition of complex radiation and scattering behavior with a set of basis vectors. Accurate estimation of the quantities of interest can be synthesized through a weighted sum of these vectors. In addition to basis decompositions, sparse signal processing techniques developed in the CS community can be leveraged when only a small subset of the basis vectors are required to sufficiently represent the quantity of interest. We investigate several concepts in which novel bases are applied to common electromagnetic problems and leverage the sparsity property to improve performance and/or reduce computational burden. The first concept explores the use of multiple types of scattering primitives to reconstruct scattering patterns of electrically large targets. Using a combination of isotropic point scatterers and wedge diffraction primitives as our bases, a 40% reduction in reconstruction error can be achieved. Next, a sparse basis is used to improve DOA estimation. We implement the BSBL technique to determine the angle of arrival of multiple incident signals with only a single snapshot of data from an arbitrary arrangement of non-isotropic antennas. This is an improvement over the current state-of-the-art, where restrictions on the antenna type, configuration, and a priori knowledge of the number of signals are often assumed. Lastly, we investigate the feasibility of a basis set to reconstruct the scattering patterns of electrically small targets. The basis is derived from the TCM and can capture non-localized scattering behavior. Preliminary results indicate that this basis may be used in an interpolation and extrapolation scheme to generate scattering patterns over multiple frequencies

    Cooperative Position and Orientation Estimation with Multi-Mode Antennas

    Get PDF
    Robotic multi-agent systems are envisioned for planetary exploration and terrestrial applications. Autonomous operation of robots requires estimations of their positions and orientations, which are obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio signals exchanged among the agents. In this thesis, we estimate the signal DoA and ToA using a multi-mode antenna (MMA). An MMA is a single antenna element, where multiple orthogonal current modes are excited by different antenna ports. We provide a first study on the use of MMAs for cooperative position and orientation estimation, specifically exploring their DoA estimation capabilities. Assuming the agents of a cooperative network are equipped with MMAs, lower bounds on the achievable position and orientation accuracy are derived. We realize a gap between the theoretical lower bounds and real-world performance of a cooperative radio localization system, which is caused by imperfect antenna and transceiver calibration. Consequentially, we theoretically analyze in-situ antenna calibration, introduce an algorithm for the calibration of arbitrary multiport antennas and show its effectiveness by simulation. To also improve calibration during operation, we propose cooperative simultaneous localization and calibration (SLAC). We show that cooperative SLAC is able to estimate antenna responses and ranging biases of the agents together with their positions and orientations, leading to considerably better position and orientation accuracy. Finally, we validate the results from theory and simulation by experiments with robotic rovers equipped with software-defined radios (SDRs). In conclusion, we show that DoA estimation with an MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC

    Wideband reconfigurable vector antenna for 3-D direction finding application

    Get PDF
    Direction finding plays a crucial role in various civilian and military applications, related to either radionavigation or radiolocation. Most of the direction finding antennas operate over a wide frequency band, but only a minority of them enable the direction of arrival estimation of an incoming electromagnetic field over a 3-D angular coverage (i.e., estimation of both azimuth and elevation angles). An original approach to obtain a 3-D angular coverage consists in measuring the six components of the incident electromagnetic field through a so-called vector antenna. The aim of this Ph.D. is to design a passive, compact and wideband vector antenna in order to cover a maximum of applications. Two vector antennas have been designed, manufactured and experimentally characterized. Unlike conventional topology, they enable the measurement of the components of an incoming electromagnetic field thanks to the radiation pattern reconfigurability of an original arrangement of Vivaldi antennas. The first prototype is mounted over a finite metallic support and enables the direction of arrival estimation of vertically-polarized electromagnetic fields over a 1.69:1 bandwidth while the second one can be used regardless of the polarization of the incoming electromagnetic fields over a 8:1 bandwidth. Moreover, the direction finding performances of these vector antennas have been improved in terms of estimation accuracy, sensitivity, robustness to angular ambiguity and polarization mismatch by synthesizing new radiation patterns in the estimation process. A method based on the Cramer-Rao lower bound has been proposed to select efficiently and rapidly the additional radiation pattern
    corecore