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Abstract 
Sensor arrays and related signal processing methods are key technologies in many areas of 

engineering including wireless communication systems, radar and sonar as well as in 
biomedical applications. Sensor arrays are a collection of sensors that are placed at distinct 
locations in order to sense physical phenomena or synthesize wavefields. Spatial processing 
from the multichannel output of the sensor array is a typical task. Such processing is useful in 
areas including wireless communications, radar, surveillance and indoor positioning. 

In this dissertation, fundamental theory and practical methods of wavefield modeling for 
radio-frequency array processing applications are developed. Also, computationally-efficient 
high-resolution and optimal signal processing methods for sensor arrays of arbitrary geometry 
are proposed. Methods for taking into account array nonidealities are introduced as well. 
Numerical results illustrating the performance of the proposed methods are given using real-
world antenna arrays. 

Wavefield modeling and manifold separation for vector-fields such as completely polarized  
electromagnetic wavefields and polarization sensitive arrays are proposed. Wavefield modeling  
is used for writing the array output in terms of two independent parts, namely the sampling 
matrix depending on the employed array including nonidealities and the coefficient vector 
depending on the wavefield. The superexponentially decaying property of the sampling matrix 
for polarization sensitive arrays is established. Two estimators of the sampling matrix from 
calibration measurements are proposed and their statistical properties are established. 

The array processing methods developed in this dissertation concentrate on polarimetric 
beamforming as well as on high-resolution and optimal azimuth, elevation and polarization 
parameter estimation. The proposed methods take into account array nonidealities such as 
mutual coupling, cross-polarization effects and mounting platform reflections. 
Computationally-efficient solutions based on polynomial rooting techniques and fast Fourier 
transform are achieved without restricting the proposed methods to regular array geometries. 
A novel expression for the Cramér-Rao bound in array processing that is tight for real-world 
arrays with nonidealities in the asymptotic regime is also proposed. 

A relationship between spherical harmonics and 2-D Fourier basis, called equivalence matrix, 
is established. A novel fast spherical harmonic transform is proposed, and a one-to-one 
mapping between spherical harmonic and 2-D Fourier spectra is found. Improvements to the 
minimum number of samples on the sphere that are needed in order to avoid aliasing are also 
proposed. 
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Ollila, Jan Oksanen, Marian Micǎ, Adriana Chis, Pramod Mathecken,

Taneli Riihonen, Tuomas Aittomäki, Mei-Yen Cheong, Azadeh Haghparast,

Jayaprakash Rajasekharan, Hassan Naseri, among others. Dr. Stefan

Werner, Prof. Risto Wichman, Prof. Sergiy Vorobyov, and Abdullah Azremi

also deserve my gratitude. The help of secretaries Mirja Lemetyinen,

Heidi Koponen, and Marja Leppäharju in all the bureaucratic issues is

greatly appreciated. Also, special thanks to my good friends Varun Singh,

Jakub Gronicz, and Javier Martinez.

My family has had an important role during these years. I thank my

parents for having taught me the importance of integrity and humanistic

values. My sisters deserve my gratitude for all the good advices. I also

thank my uncle José Mário for his persistence in teaching me the impor-

tance, and beauty, of língua Lusófona. Finally, I thank Susana for helping

me understanding that happiness is attained through commitment to no-

ble ideals.

Espoo, September 19, 2013,

Mário Jorge Costa

ii



Contents

Acknowledgments i

Contents iii

List of publications vii

List of abbreviations ix

List of symbols xi

1. Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and scope . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Summary of the publications . . . . . . . . . . . . . . . . . . 6

2. Array processing models 11

2.1 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Ideal array models and real-world arrays . . . . . . . . . . . 18

3. Array processing in the face of nonidealities 23

3.1 Auto-calibration techniques . . . . . . . . . . . . . . . . . . . 23

3.2 Uncertainty sets on the array steering vector . . . . . . . . . 25

3.3 Array calibration measurements . . . . . . . . . . . . . . . . 27

3.4 Local interpolation of the array calibration matrix . . . . . . 30

3.5 Array mapping techniques . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Array interpolation based on virtual arrays . . . . . . 31

3.5.2 Phase-mode excitation and beamspace transform . . 32

3.6 Wavefield modeling and manifold separation - summary . . 35

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



Contents

4. Wavefield modeling and manifold separation 39

4.1 Wavefield modeling and manifold separation for scalar-fields 40

4.1.1 Relationship to local interpolation of the array cali-

bration matrix . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Relationship to array mapping techniques . . . . . . . 43

4.2 Wavefield modeling and manifold separation for vector-fields 45

4.3 Sampling matrix estimation . . . . . . . . . . . . . . . . . . . 50

4.3.1 Least-squares estimator . . . . . . . . . . . . . . . . . 50

4.3.2 Discrete vector spherical harmonic transform . . . . . 52

4.4 Equivalence matrix . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Concepts and definitions . . . . . . . . . . . . . . . . . 58

4.4.2 Wavefield modeling and manifold separation based

on 2-D Fourier basis . . . . . . . . . . . . . . . . . . . 60

4.4.3 Relationship to effective aperture distribution function 65

4.4.4 Fast vector spherical harmonic transform by 2-D FFT 66

4.5 Array calibration example . . . . . . . . . . . . . . . . . . . . 68

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. Signal processing methods for arbitrary array geometries 75

5.1 Beamforming techniques . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Conventional beamformer . . . . . . . . . . . . . . . . 77

5.1.2 Capon beamformer . . . . . . . . . . . . . . . . . . . . 78

5.2 Subspace methods . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Multiple signal classification (MUSIC) . . . . . . . . . 82

5.2.2 Root-MUSIC . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.3 Weighted subspace fitting (WSF) . . . . . . . . . . . . 86

5.3 Stochastic CRB for real-world antenna arrays . . . . . . . . 87

5.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6. Conclusions 93

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A. Appendix 97

A.1 Derivation of expression (4.25) . . . . . . . . . . . . . . . . . 97

A.2 Closed-form expression for the equivalence matrix . . . . . . 99

A.3 Derivation of expressions (4.45) and (4.46) . . . . . . . . . . . 100

Bibliography 101

iv



Contents

Errata 117

Publications 119

v



Contents

vi



List of publications

I M. Costa, A. Richter, F. Belloni, and V. Koivunen, ”Polynomial rooting-

based direction finding for arbitrary array configurations,“ in Proceed-

ing of the 5th IEEE Sensor Array and Multichannel Signal Processing

Workshop (SAM), pp. 58-62, Darmstadt, Germany, July 21-23, 2008.

II M. Costa, A. Richter, and V. Koivunen, ”Low complexity azimuth and

elevation estimation for arbitrary array configurations,“ in Proceeding

of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 2185-2188, Taipei, Taiwan, April 19-24, 2009.

III M. Costa, A. Richter, and V. Koivunen, ”Azimuth, elevation, and po-

larization estimation for arbitrary polarimetric array configurations,“ in

Proceeding of the 15th IEEE Workshop on Statistical Signal Processing

(SSP), pp. 261-264, Cardiff, Wales, August 31-September 3, 2009.

IV M. Costa, A. Richter, and V. Koivunen, ”Unifying spherical harmonic

and 2-D Fourier decompositions of the array manifold,“ in Proceeding of

the 43rd Asilomar Conference on Signals, Systems, and Computers, pp.

99-103, Pacific Grove, CA, USA, November 1-4, 2009.

V M. Costa, A. Richter, and V. Koivunen, ”Unified array manifold de-

composition based on spherical harmonics and 2-D Fourier basis,“ IEEE

Transactions on Signal Processing, vol. 58, no. 9, pp. 4634-4645, Septem-

ber, 2010.

vii



List of publications

VI M. Costa, A. Richter, and V. Koivunen, ”Steering vector modeling for

polarimetric arrays of arbitrary geometry,“ in Proceeding of the 6th IEEE

Sensor Array and Multichannel Signal Processing Workshop (SAM), pp.

265-268, Kibutz, Israel, October 4-7, 2010.

VII M. Costa, A. Richter, and V. Koivunen, ”DoA and polarization estima-

tion for arbitrary array configurations,“ IEEE Transactions on Signal

Processing, vol. 60, no. 5, pp. 2330-2343, May, 2012.

VIII M. Costa and V. Koivunen, ”Incorporating array nonidealities into

adaptive Capon beamformer for source tracking,“ in Proceeding of the

7th IEEE Workshop on Sensor Array and Multichannel Signal Process-

ing (SAM), pp. 445-448, Hoboken, New Jersey, June 17-20, 2012.

viii



List of abbreviations

AWGN additive white Gaussian noise

BIC Bayesian information criterion

CLSE constrained least-squares estimator

CRB Cramér-Rao lower bound

DF direction-finding

DFT discrete Fourier transform

DoA direction-of-arrival

DoD direction-of-departure

DSP digital signal processor

DVSHT discrete vector spherical harmonic transform

EADF effective aperture distribution function

EEF exponentially embedded families

EEG electroencephalography

EM electromagnetic

ES element-space

EVD eigenvalue decomposition

FFT fast Fourier transform

GPS global positioning system

GNSS global navigation satellite systems

IEEE Institute of Electrical and Electronics Engineers

i.i.d. independent and identically distributed

I/Q in-phase/quadrature

LS least-squares

LSE least-squares estimator

MDL minimum description length

MEG magnetoencephalography

MIMO multiple-input-multiple-output

MODE method of direction estimation

ix



List of abbreviations

MSE mean-squared error

ML maximum likelihood

MLE maximum likelihood estimator

MUSIC multiple signal classification

NLS nonlinear least-squares

PES polarimetric element-space

PRIME polynomial rooting intersection for multidimensional estimation

RARE rank reduction estimator

RF radio frequency

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

SOI signal-of-interest

SO(3) 3-D rotation group

SVD singular value decomposition

UCA uniform circular array

ULA uniform linear array

URA uniform rectangular array

VSHT vector spherical harmonic transform

WSF weighted subspace fitting

x



List of symbols
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1. Introduction

1.1 Motivation

Sensor arrays and related signal processing methods are employed in

many areas of engineering, including advanced wireless communication

systems such as multiple-input-multiple-output (MIMO) systems [13, 49,

113, 130, 137], radar systems for both military and civilian applications

such as remote sensing [75, 103], radio astronomy and cosmology [17, 89,

177], as well as in global navigation satellite systems (GNSSs) and indoor

positioning [8, 54, 70]. Measurement based modeling of the radio propa-

gation channel as well as of the acoustic and underwater channels also

employ sensor arrays [81, 84, 125, 131]. Sensor arrays are also used in

biomedical measurement systems such as electroencephalography (EEG)

and magnetoencephalography (MEG), in surveillance systems and in geo-

physical exploration [20].

Sensor arrays are a collection of sensors that are placed at distinct lo-

cations in order to sense physical phenomena and synthesize fields. Pas-

sive sensor arrays may observe propagating wavefields while active ar-

rays may transmit energy and generate a desired wavefield. For example,

sensing an electromagnetic wavefield with an antenna array may pro-

vide information regarding the location of radiating sources relative to

the antenna array. Similarly, the polarization of the sources generating

the wavefield may be estimated by employing antenna arrays. The an-

gular direction of the sources relative to the antenna array is known as

direction-of-arrival (DoA) and may be used for enhancing signals and at-

tenuating interferers from a particular direction. Antenna arrays may

also enhance desired signals or cancel interference based on the polariza-

tion state of the Electric-field or use polarization as a source of diversity.

1
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Signal of interest
Jammer

Jammer

Sensor array

Figure 1.1. Illustration of a beamforming example.

These tasks based on directional and polarimetric information are known

as polarimetric receive beamforming. Transmit beamforming aims at syn-

thesizing fields using antenna arrays such that the transmitted signals

may be coherently combined at the location and polarization of the re-

ceivers while attenuating the signals in undesired directions. Figure 1.1

illustrates a beamforming example.

Array processing methods typically require information regarding the

array manifold. The array manifold may be understood as the overall

characterization of the response of the antenna array system in sensing

and generating wavefields. The following ideal simplifying assumptions

are commonly made in the array processing literature, since they make

the derivation and analysis of signal processing methods more tractable:

• The antenna array geometry is known, namely the relative placements

and phase-centers of the antennas composing the array are known ex-

actly.

• The array elements have omnidirectional beampatterns and are free

from interactions among neighboring elements, the platform where the

array is mounted as well as from the array structure.

The above assumptions are often too simplistic in real-world sensor ar-

ray systems and applications. For example, omnidirectional antennas are

not physically realizable [65], and each array element has an individual

directional beampattern. Antenna arrays are also subject to complex elec-

tromagnetic interactions among the array elements and mounting plat-

form. These nonidealities include mutual coupling, cross-polarization ef-

fects, and mounting platform reflections. The phase-centers of array el-

2
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ements may be displaced from their intended locations because of non-

idealities. Phase-centers of the array elements provide the relative phase

information of a sensor array that is needed in DoA estimation and beam-

forming. Array processing methods that rely on the ideal assumptions

listed above typically experience a loss of performance. For example, such

a sensor array may receive signals from undesired directions and transmit

excessive energy. Array processing methods may not be able to attenuate

intentional or unintentional interference and may even cancel the desired

signals. When the sensor array is used for parameter estimation, the esti-

mates of the DoA and polarization of the sources may be biased and have

excess variance when the array nonidealities are not taken into account.

1.2 Objectives and scope

The first objective of this dissertation is to develop fundamental theory

and derive practical methods of wavefield modeling for electromagnetic

based array processing applications. By employing wavefield modeling

and manifold separation principle, the wavefield dependent part may be

decoupled from the array dependent part in the employed signal model.

Particular attention is given to array calibration measurements in devel-

oping practical methods of wavefield modeling. The focus is on antenna ar-

rays and radio-frequency signals. Scalar-fields such as acoustic pressure

and microphone arrays may be seen as a special case of the more gen-

eral vector-field model. The second objective is to develop high-resolution

and optimal array processing methods that are based on wavefield mod-

eling for diversely polarized antenna arrays and electromagnetic wave-

fields. Emphasis is given to processing in the elevation, azimuth, and

polarimetric domains. Note that processing of scalar-fields may be seen

as a special case of the more general scenario considered in this disser-

tation. The proposed signal processing methods may not rely on the spe-

cific array geometry in achieving computationally-efficient implementa-

tions. Solutions based on the fast Fourier transform and polynomial root-

ing techniques are particularly desirable. Moreover, the proposed meth-

ods should take into account array nonidealities such as mutual coupling,

cross-polarization effects, and elements’ misplacements. Antenna arrays

with individual directional beampatterns that may not be described in a

closed-form should also be taken into account by the proposed array pro-

cessing methods.

3
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1.3 Contributions

This dissertation contributes to the areas of array signal processing, wave-

field modeling and harmonic analysis (on the sphere). The contributions

are the following:

• Wavefield modeling and manifold separation for vector-fields includ-

ing completely polarized electromagnetic wavefields are proposed. Vec-

tor spherical harmonics are employed since they are orthogonal on the

sphere and do not require sector-by-sector processing. The superexpo-

nential decay of the array sampling matrix is also established. Such a

result shows that a few vector spherical harmonics describe most of the

characteristics of diversely polarized antenna arrays, including nonide-

alities. These results are general in the sense that they include scalar-

fields such as acoustic pressure and microphone arrays as special cases.

• Two estimators of the sampling matrix from array calibration mea-

surements are proposed. The Cramér-Rao Bound (CRB) for the corre-

sponding problem is established as well. The estimators are based on

least-squares method and discrete vector spherical harmonic transform.

Their statistical properties are established and compared to the CRB.

• A simple closed-form expression for the stochastic CRB in array process-

ing that is based on manifold separation for vector-fields is proposed.

The proposed bound is exact for ideal arrays such as uniform rectan-

gular arrays and tight for real-world arrays with nonidealities at high

SNR regime.

• A novel relationship among vector spherical harmonics and 2-D Fourier

basis that is called equivalence matrix is established. The equivalence

matrix provides a bijective mapping between vector spherical harmonic

spectra and 2-D Fourier spectra. Wavefield modeling and manifold sep-

aration are reformulated in terms of 2-D Fourier basis using the equiv-

alence matrix. The use of 2-D Fourier basis facilitates deriving compu-

tationally efficient array processing methods.

• A novel fast spherical harmonic transform that is based on the equiva-

lence matrix is proposed. The proposed method employs the fast Fourier

4
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transform in both elevation and azimuth angles. Improvements to well-

known equiangular sampling rules on the sphere are also proposed. A

reduction of the minimum number of samples in order to avoid aliasing

is achieved.

• High-resolution and optimal array processing methods are extended to

elevation, azimuth, and polarimetric domains using wavefield model-

ing. The proposed methods do not rely on the array geometry in or-

der to exploit the convenient Vandermonde structure of Fourier basis.

In addition, they take into account array nonidealities. In particular,

the proposed methods are extensions of the Capon beamformer, MU-

SIC and root-MUSIC methods, and weighted subspace fitting (WSF)

technique. Computationally-efficient implementations of the proposed

methods based on the fast Fourier transform and polynomial rooting

techniques are proposed.

1.4 Dissertation structure

This dissertation consists of an introductory part and eight original publi-

cations. The introductory part provides on overview of the work in publi-

cations I–VII and a survey of the state-of-the-art of the topics considered

in this thesis. The introductory part also includes novel results that are

not available in the original publications. These are given in the appendix

and explained in detail in the introductory part.

This dissertation is organized as follows. In Chapter 2, ideal sensor ar-

rays commonly used in signal processing are briefly described, and the

real-world antenna arrays employed in this work are shown. The sig-

nal model used in array processing and related assumptions are also pro-

vided.

Chapter 3 provides a review of the most relevant techniques for dealing

with array nonidealities. Auto-calibration techniques and robust methods

based on uncertainty sets are briefly described. Array calibration mea-

surements and array mapping techniques such as array interpolation and

beamspace transform are also reviewed. A summary of wavefield model-

ing and manifold separation is also given.

Chapter 4 is dedicated to wavefield modeling and manifold separation.

The equivalence matrix is described in detail as well. The emphasis is

5
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on elevation and azimuth processing for vector-fields such as completely

polarized electromagnetic wavefields. The state-of-the-art of fast compu-

tational methods for harmonic analysis on the sphere is also described

and novel results are established. An illustrative example of a typical

array calibration task is provided.

In Chapter 5, high-resolution and optimal array processing methods

are extended to arrays of arbitrary geometry by incorporating wavefield

modeling and manifold separation for completely polarized electromag-

netic wavefields. Emphasis is given to receive beamforming and subspace

methods. The proposed array processing methods may be implemented in

a computationally-efficient manner using the fast Fourier transform and

polynomial rooting methods regardless of the array geometry and nonide-

alities. A simple closed-form expression for the stochastic CRB in array

processing that is tight in the high SNR regime for real-world arrays with

nonidealities is also provided. Numerical examples of typical array pro-

cessing tasks are included.

Chapter 6 provides the concluding remarks and future work. The ap-

pendix includes details on novel results that are not available in the orig-

inal publications. In particular, improvements to the minimum number

of samples on the sphere that are needed in order to avoid aliasing are

proposed. Results showing that discrete vector spherical harmonic trans-

forms employing equiangular sampling schemes may be implemented us-

ing the 2-D fast Fourier transform are established as well. Publications

I–VII can be found in the appendix.

1.5 Summary of the publications

A brief overview of the original publications [I–VII] is given next.

In Publication I, a generalization of the beamspace transform using

manifold separation is proposed. The proposed mapping technique is not

restricted to uniform circular arrays, unlike the original beamspace trans-

form [100], and avoids sector-by-sector processing as opposed to array in-

terpolation based on virtual arrays [40]. The polynomial rooting based

weighted subspace fitting method [164], also known as MODE [148,149],

is extended to arbitrary array geometries by using the proposed mapping

technique.

In Publication II, manifold separation based on 2-D Fourier basis is em-

ployed in order to derive computationally-efficient methods for azimuth

6



Introduction

and elevation angle estimation. The polynomial rooting intersection for

multidimensional estimation (PRIME) method [56,57] is extended to sen-

sor arrays of arbitrary geometry, including conformal arrays. The pro-

posed method, called element-space PRIME, provides automatically paired

azimuth and elevation angle estimates. The estimates obtained by us-

ing the ES-PRIME method are refined by an extension of the weighted

subspace fitting (WSF) method. The proposed ES-WSF method employs

closed-form derivatives of the azimuth and elevation angles even for real-

world sensor arrays with nonidealities. This is useful in gradient-based

optimization methods as well as in establishing performance bounds.

In Publication III, manifold separation for vector-fields using 2-D Fourier

basis is employed in order to derive a novel MUSIC method for joint el-

evation, azimuth, and polarization parameter estimation. The proposed

method employs a 2-D fast Fourier transform based line search regardless

of the array geometry and nonidealities, including conformal arrays. In

case that the elevation angle of the sources is known, azimuth angles and

polarization parameters may be found by polynomial rooting. Alterna-

tively, the elevation angles of the sources may be found from the roots of a

polynomial by holding the azimuth angles fixed. Therefore, the proposed

method may be seen as an extension of the root-MUSIC method to sensor

arrays of arbitrary geometries and polarimetric domain.

In Publication IV, a novel mapping called equivalence matrix is pro-

posed. The emphasis is on scalar-fields such as acoustic pressure. It

is shown that the equivalence matrix establishes a connection between

(scalar) spherical harmonics and 2-D Fourier basis. A one-to-one mapping

between spherical harmonic spectra and 2-D Fourier spectra is also es-

tablished using the equivalence matrix. It is shown that decomposing the

array steering vector in terms of spherical harmonics or 2-D Fourier basis

achieves the same modeling accuracy.

In Publication V, a detailed analysis of the equivalence matrix and its

properties in the context of array processing for scalar-fields is conducted.

Recurrence expressions for finding the equivalence matrix are proposed.

It is shown that the equivalence matrix is independent of the sensor array

and it may be computed once in an offline manner, stored, and used when

needed by appropriate selection of its columns and rows. The equivalence

matrix is also shown to be sparse, and an upper-bound on the number

of nonzero entries is established. A novel fast spherical harmonic trans-

form that is based on the equivalence matrix and 2-D FFT is proposed.
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The rows of the 2-D Fourier spectrum of the “full-periodic” array steering

vector are shown to span the row-space of the equivalence matrix. Such a

result allows for a reduction of the estimation variance of the 2-D effective

aperture distribution function (EADF).

In Publication VI, wavefield modeling and manifold separation are ex-

tended to vector-fields such as completely polarized electromagnetic waves

and diversely polarized antenna arrays. The equivalence matrix and the

mapping it provides is also extended to vector-fields. It is shown that

the equivalence matrix establishes a connection between vector spheri-

cal harmonics and 2-D Fourier basis. A bijective mapping between vector

spherical harmonic spectra and 2-D Fourier spectra using the equivalence

matrix is also established. It is shown that wavefield modeling and mani-

fold separation may be formulated in terms of vector spherical harmonics

or 2-D Fourier basis with identical accuracy.

In Publication VII, array processing methods for elevation and azimuth

angles, and polarization estimation are proposed. The proposed methods

are based on manifold separation for vector-fields and equivalence ma-

trix. They extend the MUSIC method, noise subspace fitting as well as

the signal subspace fitting technique for polarization sensitive antenna

arrays with nonidealities. The proposed methods exploit the convenient

Vandermonde structure of 2-D Fourier basis in order to reduce their com-

putational complexity. A novel expression for the stochastic CRB in array

processing that is based on manifold separation is derived. The proposed

bound is appropriate for assessing the limiting performance of real-world

antenna arrays with nonidealities in the high SNR regime.

In Publication VIII, a novel Capon beamformer based on manifold sepa-

ration is proposed. The proposed method is based on inverse QR-updates

and finds the azimuth angles of the sources from the roots of a real-valued

polynomial. The proposed Capon method is appropriate for source track-

ing since one may employ computationally-efficient root-tracking methods

for real-valued polynomials. This is useful in tracking airplanes, vessels

or mobile users in indoor environments, for example.

The author of this dissertation is responsible for the theoretical and

numerical results in all the publications, including programming related

tasks and writing process. The co-authors have provided valuable guid-

ance and insight throughout the research work as well as in writing and

structuring the publications. The generalized beamspace transform based

on manifold separation proposed in Publication I was suggested by the co-
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authors.
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2. Array processing models

In array signal processing one is typically interested in characterizing,

synthesizing, enhancing or attenuating certain aspects of propagating

wavefields by employing a collection of sensors, known as a sensor array.

Characterizing a propagating wavefield refers to determining its spatial

spectrum, i.e. the angular distribution of energy, so that information re-

garding the location of the sources generating the wavefield can be ob-

tained, for example [143]. Synthesizing or producing a wavefield refers

to generating a propagating wavefield with a desired spatial spectrum in

order to focus the transmitted energy towards certain locations in space.

Finally, attenuating or enhancing a received wavefield based on its spatial

spectrum refers to the ability of canceling interfering sources or improv-

ing the signal-to-interference-plus-noise ratio (SINR) and maximizing the

energy received from certain directions.

The propagating wavefield is typically parameterized by the angular lo-

cation of sources generating such a wavefield, their polarization state,

bandwidth, delay profile and Doppler shift [2, 125]. The angular parame-

terization of the propagating wavefield is commonly known as the direc-

tions-of-arrival (DoAs) or directions-of-departure (DoDs), and character-

izes the spatial spectrum of the wavefield received or transmitted by the

sensor array, respectively.

In addition to the propagating wavefield, a model describing the re-

sponse of the sensor array as a function of the angular location of the

sources is typically required in array processing. Such a model is known

as array steering vector and allows us to estimate the DoAs from data ac-

quired by the sensor array, for example. Similarly, steering vectors are

used to synthesize a desired wavefield and employ transmit beamforming

techniques.

This chapter includes the signal model, describing the wavefield re-
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ceived by a sensor array, that is commonly used in array processing as

well as related assumptions. Typical steering vector models found in the

array processing literature are also provided. Emphasis is given to the

limitations of such ideal array models in describing common nonidealities

that are found in real-world arrays.

2.1 Signal model

Consider that a propagating electromagnetic (EM) wavefield is gener-

ated by P ∈ N radiating sources and received by an array composed of

N ∈ N EM sensors. Examples of EM sensors include Electric and Mag-

netic dipoles, loop antennas as well as patch (also known as microstrip)

antennas. The radiating sources are assumed to be point emitters in the

sense that the field radiated by each source can be assumed to have origin

at a single location. Furthermore, the radiating sources are assumed to

be located in the far-field region of the employed sensor array. In particu-

lar, the curvature of the propagating wavefield across the array aperture

may be neglected and the radial component of the Electric-field is neg-

ligible compared to its tangential components [55]. This corresponds to

plane wave assumption where the delays (and attenuation) experienced

by the wavefront among array elements suffice in determining the angu-

lar location of the sources. Finally, the propagation medium is assumed

to be linear in the sense that the superposition principle holds as well as

homogeneous.

The signals transmitted by the sources generating the propagating wave-

field are assumed to be narrowband in the sense that the signals’ band-

width Bs is “small” compared to the inverse of the propagation time τ of

the wavefield across the array aperture. This means that the delays expe-

rienced by the signals across the array aperture are not frequency depen-

dent. A common rule of thumb is based on the time-bandwidth product

Bsτ [74]. In particular, narrowband in array processing may be defined

when sinc(Bsτ) ≈ 1 [141] [67, Ch.4]. The physical dimension of the sensor

array is known as array aperture and it is typically measured in wave-

lengths λ. The effective aperture of a sensor array refers to the projection

of the array aperture onto a line perpendicular to the direction vector, de-

noted by κ ∈ R
3×1. Figure 2.1 illustrates a typical array processing task.

The angular location of the sources relative to the employed sensor ar-

ray is known as direction-of-arrival (DoA). Under the above assumptions,
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Figure 2.1. Illustration of the array processing task considered in this research work.

the DoAs of the sources may be obtained from the spatial spectrum of the

EM wavefield received by a sensor array. Conversely, receivers equipped

with a single antenna may determine its location relative to a transmit-

ting array when the array response is known at the receivers. Such a

task is called direction-of-departure (DoD) estimation and finds applica-

tions in measurement based radio channel modeling as well as in indoor

positioning [8, 70, 125, 133]. Despite the focus of this work being on DoA

estimation and beamforming, the array models discussed herein and the

contributions presented in chapters 4 and 5 are applicable for DoD esti-

mation as well.

In case of receiving arrays, each source generating the propagating EM

wavefield is characterized by a co-elevation and azimuth angles, denoted

by ϑ ∈ [0, π] and ϕ ∈ [0, 2π), as well as by the polarization state of the

transmitted Electric-field. Polarization is a source of diversity for wireless

communications and radar. It may be used for target identification since

the state of the Electric-field changes depending on scatterers composing

the reflecting surface [60]. Polarization also provides robustness against

jammers in GNNSs by matching the receiving array to the polarization

state of the Electric-field transmitted by satellites. In the far-field, any

polarization state may be described by the relative magnitude and phase

angle between the orthogonal tangential components of the Electric-field,
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namely [26]:

γ = arctan

(
|Eφ(ϑ, ϕ)|
|Eθ(ϑ, ϕ)|

)
, β = ∠

(
Eφ(ϑ, ϕ)

Eθ(ϑ, ϕ)

)
, (2.1)

where γ ∈ [0, π/2] and β ∈ [0, 2π) parameterize the polarization ellipse of

the Electric-field. Angles and polarization parameters of the P sources

generating the propagation wavefield are called wavefield parameters,

and may be collected in vector ξ ∈ R
4P×1 as ξ = [ϑT , ϕT , γT , βT ]T . The pa-

rameterization of the polarization state of the Electric-field using (2.1) is

sometimes called Jones vector representation. Alternatively, one may de-

scribe the polarization of the Electric-field by parameterizing the polariza-

tion ellipse using the so-called ellipticity and orientation angles [104,105].

Both representations are related in a bijective manner [26].

In this work the polarization state of the Electric-field is assumed to be

a deterministic unknown quantity, as opposed to the random zero-mean

complex Gaussian assumption used in [61,91]. The latter approach is mo-

tivated by the central limit theorem and convenient in array processing

methods when polarization can be assumed to be wide-sense stationary.

The approach taken herein is usually preferred when no assumptions re-

garding the probability distribution of the polarization state can be made

but requires the polarization state to remain fixed when estimating the

array covariance matrix.

Assume that the typical nonidealities of receiver front-ends, such as I/Q-

imbalances and nonlinear distortion of low-noise amplifiers, are either

negligible compared with sensor noise variance or have been compensated

for [107, 161]. Then, the baseband discrete-time representation of the

array output at the kth time instant is a multivariate observation x(k) ∈
C
N×1 known as snapshot and may be modeled as:

x(k) = A(ϑ,ϕ,γ,β)s(k) + n(k), (2.2)

where s(k) ∈ C
P×1 and n(k) ∈ C

N×1 denote the transmitted signals and

sensor noise, respectively. In (2.2), A(ϑ,ϕ,γ,β) ∈ C
N×P is known as

array steering matrix and contains the (noise-free) array responses to the

P sources generating the wavefield as follows:

A(ϑ,ϕ,γ,β) = [a(ϑ1, ϕ1, γ1, β1), . . . ,a(ϑP , ϕP , γP , βP )]. (2.3)

In (2.3), a(ϑ, ϕ, γ, β) ∈ C
N×P is known as array steering vector and it

describes the array response as a function of the wavefield parameters.

The collection of array steering vectors over the entire parameter space is
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known as array manifold A, and it is given by:

A = {a(ϑ, ϕ, γ, β) | ϕ, β ∈ [0, 2π), ϑ ∈ [0, π], γ ∈ [0, π/2]} . (2.4)

Let aφ(ϑ, ϕ) ∈ C
N×1 denote the array steering vector due to a polarized

wavefield given by Eφ(ϑ, ϕ). Similarly, let aθ(ϑ, ϕ) ∈ C
N×1 denote the

steering vector due to Eθ(ϑ, ϕ). Vectors Eφ(ϑ, ϕ) ∈ C
2×1 and Eθ(ϑ, ϕ) ∈

C
2×1 denote an Electric-field with a component along one of the spherical

unit-vectors eφ and eθ, respectively. Figure 2.1 illustrates that Eφ(ϑ, ϕ)

and Eθ(ϑ, ϕ) may be understood as an horizontally and vertically polar-

ized wavefield when the signal sources lie in the xy-plane. In particular,

the array steering vector in the far-field may be written as follows:

a(ϑ, ϕ, γ, β) = aφ(ϑ, ϕ)vφ(γ) + aθ(ϑ, ϕ)vθ(γ, β), (2.5)

where the polarization is described by vφ(γ) = cos(γ) and vθ(γ, β) = sin(γ)ejβ.

The array steering matrix in (2.3) can then be written as:

A(ϑ,ϕ,γ,β) =
[
Aφ(ϑ,ϕ), Aθ(ϑ,ϕ)

]
V (γ,β), (2.6)

where Aφ(ϑ,ϕ) ∈ C
N×P and Aθ(ϑ,ϕ) ∈ C

N×P contain the array re-

sponses to an horizontally and vertically polarized wavefield, respectively.

Moreover, matrix V (γ,β) ∈ C
2P×P is given by V (γ,β) = [Vφ(γ),Vθ(γ,β)]

T ,

and contains the polarization parameters as:

Vφ(γ) = diag {cos(γ1), . . . , cos(γP )} , (2.7a)

Vθ(γ,β) = diag
{
sin(γ1)e

jβ1 , . . . , sin(γP )e
jβP

}
. (2.7b)

The employed sensor array is assumed to be unambiguous in the sense

that any matrices Aφ(ϑ,ϕ) and Aθ(ϑ,ϕ) are full column-rank, and that

aφ(ϑ, ϕ) 	= aθ(ϑ, ϕ), ∀(ϑ, ϕ) [85,155].

Throughout this research work, sensor noise n(k) in (2.2) is assumed

to be zero-mean complex-circular Gaussian distributed Nc(0, σ
2IN ). The

transmitted signals s(k) are modeled as random vectors obeying a zero-

mean complex-circular Gaussian distribution Nc(0,Rs). The signal co-

variance matrix Rs ∈ C
P×P has rank P ′(P ′ ≤ P ), which may be due to

specular multipath propagation or correlated source signals. In particu-

lar, if the delay between two signal replicas is larger than the coherence

time of the propagation channel then the received signals may be consid-

ered uncorrelated, otherwise they are typically fully correlated. In the

latter case, the received signals are called coherent.
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The array signal model in (2.2) is known as conditional or unconditional

model depending whether the transmitted signals are modeled as un-

known deterministic or random quantities, respectively. From an opti-

mality viewpoint the unconditional model is usually preferred since one

can derive asymptotically optimal estimators of the wavefield parameter

vector ξ that achieve the unconditional Cramér-Rao lower Bound (CRB)

[109,146]. The CRB is a lower bound on the estimation variance of any un-

biased estimator, and may be understood as a benchmark for comparing

the statistical performance of unbiased estimators [69]. Asymptotically

unbiased estimators that achieve the CRB are called asymptotically sta-

tistically efficient. The conditional CRB is typically too optimistic and, in

general, no estimator can achieve it [146]. This follows from the fact that,

under the conditional signal model, the number of unknown parameters

grows with snapshots. Thus, asymptotically efficient estimators of ξ may

be found when the number of array elements grows as well [144]. De-

tails on asymptotically statistically efficient methods and CRB are given

in Chapter 5.

Assuming wide-sense stationarity of the array output in (2.2), the array

covariance matrix Rx ∈ C
N×N is given by

Rx = A(ξ)RsA
H(ξ) + σ2IN . (2.8)

The spatially white noise assumption in (2.8) implies that the noise term

in the array output (2.2) is not affected by sensors’ gains. Such a sce-

nario is known as internally noise limited, as opposed to the externally

noise limited assumption where sensors’ beampatterns affect both the re-

ceived signals and interfering spatial field [4]. In the latter case, (2.8) may

still be employed by means of pre-whitening, given that the second-order

statistics of the interfering spatial field are known [153]. A necessary con-

dition for identifiability of the wavefield parameter vector ξ from (2.8) is

P ≤ NP ′/(P ′ + 2) [61, 155]. Such an assumption is taken in the remain-

der of this work. In practice, the theoretical covariance matrix in (2.8) is

unknown and it is typically estimated from a collection of K ∈ N array

snapshots as:

R̂x =
1

K

K∑
k=1

x(k)x(k)H . (2.9)

Most of array processing tasks such as beamforming as well as DoA and

polarization estimation employ the sample array covariance matrix in

(2.9). Such array processing methods are addressed in detail in Chapter

5. In particular, the wavefield parameter vector ξ may be estimated from
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the spatial spectrum of the received wavefield by employing beamforming

techniques, similarly to a spectrum estimation problem [143]. Such an ap-

proach is called nonparametric since it does not rely on the assumptions

taken above regarding the sources generating the propagating wavefield,

including the point-source assumption. Typically, the classification para-

metric/nonparametric in array processing refers to whether a technique

employs a finite dimensional parametric model describing the spatial dis-

tribution of power of the wavefield. This is similar to spectral estimation

since the spatial distribution of power may be understood as a spatial

spectrum [143]. Nonparametric techniques in array processing are versa-

tile but typically have poor resolution (in particular for arrays with small

apertures, relative to the wavelength) and lead to suboptimal estimates

of the wavefield parameter vector ξ. Informally, resolution refers to the

ability of distinguishing between two closely spaced sources [67, 80]. The

resolution of beamforming techniques is limited by the array aperture in

wavelengths as well as SNR (or SINR) and does not improve with increas-

ing number of array snapshots [67, Ch. 3], [80].

The resolution limit imposed by the array aperture may be improved

by assuming a particular model for the spatial spectrum of the wavefield.

One such a model employs the point-source assumption and assumes that

the wavefield’s spatial distribution of power is described by a line spec-

trum. It is further assumed that the number of signals P as well as the

rank P ′ of the signal covariance matrix are known or have been correctly

estimated from the array output, and that the necessary conditions for

identifiability of the wavefield parameter vector described above are sat-

isfied [169, 171]. Then, the array output in (2.2) obeys the so-called low-

rank signal model and the array covariance matrix in (2.8) may be written

as [80]:

Rx = UsΛsU
H
s +UnΛnU

H
n . (2.10)

Here, Us ∈ C
N×P ′ and Un ∈ C

N×(N−P ′) contain the eigenvectors of Rx

spanning the so-called signal and noise subspaces while Λs ∈ R
P ′×P ′ and

Λn ∈ R
(N−P ′)×(N−P ′) contain the corresponding eigenvalues on their diag-

onal. Techniques employing the low-rank signal model in (2.10) are called

subspace methods and are a class of high-resolution DoA estimation algo-

rithms [80]. They exploit the fact that the columns of Us span the same

subspace as the columns of A(ξ) (in the case of coherent signals Us is con-

tained in the subspace spanned by the columns of A(ξ)), and that both Us

and A(ξ) are orthogonal to the noise subspace Un. Unlike beamforming
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techniques, the resolution of subspace methods improves with increasing

number of array snapshots. A low-rank decomposition similar to (2.10)

can also be found for the sample covariance matrix as follows:

R̂x = ÛsΛ̂sÛ
H
s + ÛnΛ̂nÛ

H
n . (2.11)

Asymptotically optimal DoA estimation algorithms such as the stochas-

tic maximum likelihood estimator, and beamforming techniques such as

the Capon beamformer, are often very sensitive to uncertainties in the

array steering vector model and sensor noise (and interferers) statistics

[46, 163]. Optimal DoA estimators are subject to bias and increased vari-

ance while optimum beamformers may suffer from signal-of-interest (SOI)

cancellation effects. Uncertainty in noise statistics may be due to outliers,

i.e. observations that do not follow the same pattern as the majority of the

data, or invalid assumptions on the noise distribution [183]. For example,

man-made interference has typically a non-Gaussian heavy-tailed distri-

bution, under which (2.11) may no longer be a consistent estimator of

Rx [77, 183]. For details on array processing under uncertainty in noise

statistics the reader is referred to [77,183] and references therein.

2.2 Ideal array models and real-world arrays

Array processing models and methods require the array steering vector

of the employed sensor array. This includes knowing the gain function

and phase centers of the array elements. In order to simplify the signal

processing algorithms, and make the problem more tractable, the array

elements are typically assumed to be electrically small compared to the

wavelength. Moreover, they are assumed to be free of interactions from

the other array elements as well as from the mounting platform. Such

ideal assumptions lead to array steering vector models with simple gain

functions and element phase centers that correspond to their actual phys-

ical locations.

For example, the so-called EM vector-sensor captures the entire six com-

ponents1 of the propagating EM wavefield at a single location in space by

employing electric dipoles and loop antennas [62, 83, 90, 104, 105]. It is

typically assumed that the elements composing such an EM vector-sensor

1These are the three components of the Electric-field along the x-, y-, and z-axis,
and similarly for the Magnetic-field; see Fig. 2.1 for details. Note that far-field
conditions are assumed valid.
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Figure 2.2. Example of an ideal uniform linear array.

share the same phase center, which is at their common physical location,

and that their gain functions, denoted as gθ(ϑ, ϕ), gφ(ϑ, ϕ) ∈ R
6×1, are

given by [90]:

gθ(ϑ, ϕ) =
[
cos(ϑ) cos(ϕ), cos(ϑ) sin(ϕ), − sin(ϑ), − sin(ϕ), cos(ϕ), 0

]T
(2.12a)

gφ(ϑ, ϕ) =
[
− sin(ϕ), cos(ϕ), 0, − cos(ϑ) cos(ϕ), − cos(ϑ) sin(ϕ), sin(ϑ)

]T
.

(2.12b)

Under the assumption that the elements of an EM vector-sensor are in-

dependently located in free-space, so that elements’ interactions are neg-

ligible, the steering vectors of an N -element EM vector-sensor array are

given by:

aθ(ϑ, ϕ) =
[
ejk

T r1 , . . . , ejk
T rN

]T
⊗ gθ(ϑ, ϕ) (2.13a)

aφ(ϑ, ϕ) =
[
ejk

T r1 , . . . , ejk
T rN

]T
⊗ gφ(ϑ, ϕ), (2.13b)

where rn ∈ R
3×1 denotes the location of the nth EM vector-sensor with

respect to the assumed coordinate system, in the 3-d Euclidean space.

Typically, it is further assumed that the EM sensors are arranged in a

regular geometry such as a line, circle, sphere, or a rectangle, in addition

to a uniform spacing among them [83, 91]. These arrays are known as

uniform linear, circular, spherical, or rectangular arrays, respectively. A

uniform linear array (ULA) is illustrated in Fig. 2.2.
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However, most sensor arrays built in practice are not well described by

the models in eqs. (2.12) and (2.13) [55, 85]. For example, due to mutual

coupling, the elements composing a real-world EM vector-sensor may not

share the same phase-center. Furthermore, the phase-center of an EM

sensor typically varies with the polarization of the received EM wavefield,

and may not correspond to the physical location of the array elements.

Further complications arise when reflections from the array mounting

platform are taken into account. Figure 2.3 illustrates the phase centers

of a real-world uniform linear array.

In practical array processing applications, where DoA estimation or spa-

tial filtering is the goal, employing ideal array models that do not take into

account the various impairments discussed above typically leads to a per-

formance degradation [163]. In fact, the limiting factor in the performance

of high-resolution and optimal array processing algorithms is known to

be the accuracy of the employed array model rather than measurement

noise [66, 85, 153, 154, 163, 166]. The tightness of related theoretical per-

formance bounds is also limited by the accuracy of the employed array

model, except in the low SNR region where performance bounds such as

the CRB may not be tight. Misspecified sensor array models may also lead

to a severe performance degradation of beamforming techniques, such as

steering energy towards unwanted directions, cancellation of the SOI as

well as amplification of interfering sources [46].

Deriving the array manifold of real-world arrays is extremely challeng-

ing since it requires a mathematical model in a closed-form describing

all array nonidealities such as mounting platform reflections, mutual cou-

pling, cross-polarization effects as well as individual beampatterns. Hence,

practitioners typically acquire the array response of real-world arrays ei-

ther from numerical EM simulation software, which is typically avail-

able at the array’s design phase, or from array calibration measurements

taken in controlled environments. EM simulation software do not take

into account manufacturing errors and may not capture all of the EM in-

teractions occurring on a real-world array. Conversely, array calibration

measurements may describe the actual response of real-world arrays but

are subject to measurement noise. Note that both numerical EM simu-

lation software and array calibration measurements do not provide the

array manifold in a closed-form but only complex-valued numerical data

describing the array response. From a signal processing perspective it is

convenient to have the array manifold in a closed-form since it facilitates
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(a) Phase centers for an horizontally polarized Electric-field.
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(b) Phase centers for a vertically polarized Electric-field.

Figure 2.3. Phase centers of the real-world polarimetric uniform linear patch array
(PULPA) shown in Fig. 2.4-6. The PULPA is composed of eight dual-polarized
elements and the physical inter-element spacing is 0.4943λ. Phase centers of
real-world arrays may not match with the physical location of the elements
and vary significantly with polarization of the received wavefield.

finding performance bounds such as the CRB, and optimizing multidimen-

sional array processing methods by gradient-based techniques.

Figure 2.4 illustrates the real-world antenna arrays employed in this

research work. In particular, Fig. 2.4-1 depicts a polarimetric semi-

spherical patch array (PSSPA) composed of 21 elements while Fig. 2.4-

2 shows a 5-element inverted-F antenna array (IFA). Figures 2.4-3 and
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Figure 2.4. Real-world antenna arrays employed in this research work. Courtesy of the
Electronic Measurement Research Laboratory, Ilmenau University of Tech-
nology, Germany and Department of Radio Science and Engineering, Aalto
University, Finland.

2.4-4 illustrate a polarimetric uniform circular patch array (PUCPA) of 24

elements and a real-world uniform circular array (UCA) composed of 16

conical elements, respectively. Note that dual-polarized elements are also

known as polarimetric. In Figs. 2.4-5 and 2.4-6, a polarimetric uniform

rectangular patch array (PURPA) with 16 elements and a polarimetric

uniform linear patch array (PULPA) composed of 8 polarimetric elements

are shown. Finally, Fig. 2.4-7 illustrates a stacked polarimetric uniform

circular patch array (SPUCPA) comprised of four rings of 24 polarimet-

ric elements. The center frequency and bandwidth of the 5-element IFA

is approximately 3.5 GHz and 120 MHz, respectively [5]. The remaining

antenna arrays have been designed for a center frequency of 5.3 GHz and

a bandwidth of 120 MHz [87]. The PUCPA, UCA, PULPA, and SPUCPA

are courtesy of the Electronic Measurement Research Laboratory, Ilme-

nau University of Technology, Germany. The PSSPA, IFA, and PURPA

are courtesy of the Department of Radio Science and Engineering, Aalto

University, Finland.

Signal processing methods for real-world arrays thus require a pre-

processing stage that is able to deal with aforementioned nonidealities.

Such techniques are briefly described in the next chapter.
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3. Array processing in the face of
nonidealities

The limiting factor in the performance of high-resolution and optimal ar-

ray processing methods as well as in the tightness of related theoretical

performance bounds is known to be the accuracy of the employed array

steering vector model [46, 77, 163]. This chapter provides a review of the

most relevant techniques for dealing with array nonidealities. In particu-

lar, auto-calibration techniques and robust methods based on uncertainty

sets are briefly described. Emphasis is given to array calibration measure-

ments and array mapping techniques, including array interpolation and

beamspace transform. Wavefield modeling and manifold separation are

also briefly considered in this chapter. Chapter 4 provides a more detailed

analysis of this last approach. This chapter concludes with a qualitative

comparison of the aforementioned techniques.

3.1 Auto-calibration techniques

Auto-calibration techniques, also known as self-calibration, amount to es-

timate wavefield and array parameters simultaneously from a collection

of array snapshots. Array parameters, denoted by ρ, may represent un-

known array elements’ positions, mutual coupling, as well as other ar-

ray nonidealities. For example, array elements’ misplacements in the xy-

plane are described by a real-valued vector ρ of dimension 2N . Assume

that the array response can be described in a closed-form by both wave-

field ξ and array parameters ρ, and denote the corresponding array steer-

ing matrix by A(ξ,ρ). The parameter vector ξ may denote the DoAs of

the sources, for example. Simultaneous estimation of wavefield and array

parameters may be accomplished by the following nonlinear least-squares

(NNLS) estimator [163,172]:(
ξ̂, ρ̂

)
= argmin

ξ,ρ
tr
{
P⊥
A (ξ,ρ)R̂x

}
, (3.1)
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Figure 3.1. Illustration of a typical auto-calibration technique. A closed-form expression
of the array steering vector in terms of wavefield parameters and nonideali-
ties is required.

where P⊥
A (ξ,ρ) = IN − PA(ξ,ρ) denotes an orthogonal projection ma-

trix onto the nullspace of AH(ξ,ρ). Note that PA(ξ,ρ) ∈ C
N×N denotes

a projection matrix onto the column-space of A(ξ,ρ), and it is given by

PA(ξ,ρ) = A†(ξ,ρ)A(ξ,ρ). When measurement noise in (2.2) is zero-

mean complex-circular Gaussian distributed, and the unknown param-

eters are deterministic, (3.1) is known as deterministic, or conditional,

maximum likelihood estimator (MLE) [109,144,146,164]. Typically, crite-

rion (3.1) is minimized in an alternating manner between the wavefield ξ

and array parameters ρ [39,182]. Since the cost function in (3.1) is highly

nonlinear, and may have multiple local minima, the minimization should

be initialized with “good enough” (and possibly multiple) initial values so

that the global minimum can be found.

In general, both wavefield and array parameters are not simultane-

ously identifiable from a collection of array snapshots, unless additional

assumptions regarding the array sensors’ locations, and the number of

sources generating the wavefield are made [4,127]. For example, the DoAs

and the array elements positions are not simultaneously identifiable since

the DoA is defined by the relative phases among array elements, which in

turn depend on the array sensors’ locations. In case the DoAs and array

configuration can be determined up to a rotational ambiguity, the spatial

signature of the sources may be determined uniquely, which can be used

to estimate the transmitted signals [4].

Another approach to consider the identifiability issue in auto-calibration

is based on the assumption that the array parameters ρ are random quan-

tities with a known prior distribution, and proceed with Bayesian-type of

estimators [167]. In fact, the resulting maximum a posteriori estimator

may be seen as a regularization to the ML criterion, such that of (3.1),

where the regularization parameter is obtained from the prior distribu-
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tion [163]. The Bayesian approach combines prior information and ob-

served data in an optimal manner. The effect of the prior distribution di-

minishes as the number of observations grow. In principle, the Bayesian

framework also allows one to “integrate out” the unknown array parame-

ters ρ, and obtain an estimator that is a function of the wavefield parame-

ters ξ, only [69]. Typically, in array processing applications one is mainly

interested in the wavefield parameters, and ρ are commonly regarded as

nuisance parameters. However, such a task of “integrating out” the array

nonidealities is typically extremely challenging due to the non-trivial pa-

rameterization of ρ in the array response. For example, in case the param-

eter vector ρ denotes array elements’ misplacements, which are assumed

to obey a truncated Gaussian distribution, the pdf of the multivariate ob-

servations after marginalizing ρ may not be found in a closed-form.

An alternative approach consists in employing subspace-based estima-

tors for the wavefield parameters ξ that take into account the second-

order statistics of the array parameters by properly weighting the signal

or noise subspaces of the sample covariance matrix [153, 154, 166, 167].

Bayesian-type of estimators are sometimes regarded as being robust to

uncertainties in the array response [66,154,167]. In particular, the varia-

tion of the array response is taken into account in terms of a known prior

distribution for the array nonidealities. However, obtaining a prior dis-

tribution describing accurately the array nonidealities may be extremely

challenging in practice, and Bayesian-type of estimators may be sensitive

to misspecifications of the employed distribution. Figure 3.1 illustrates a

typical auto-calibration technique.

3.2 Uncertainty sets on the array steering vector

Robust array processing methods acknowledge that the underlying as-

sumptions regarding the propagating wavefield, sensor array response,

and noise statistics may not hold. They trade-off optimality for reliable

performance under such circumstances [46,48,77,92,168,183]. One such

an approach amounts at optimizing certain performance criteria under

the assumption that the uncertainty about the real-world array steering

vector can be bounded. Geometrically, this may be understood as having

an ellipsoid enclosing the maximum uncertainty regarding the real-world

array steering vector. The use of uncertainty sets may also be understood

as a minimax approach where the goal is to optimize a given performance
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Figure 3.2. Illustration of a typical robust technique based on uncertainty sets such as
the robust Capon method. A presumed array steering vector and correspond-
ing uncertainty, described by matrix C, is typically needed.

criterion under a worst-case scenario.

Let a(ξ) ∈ C
N×1 denote the steering vector of the real-world sensor ar-

ray and ā(ξ) ∈ C
N×1 the steering vector of the presumed sensor array.

The uncertainty ellipsoid may be written as [93,98]:

(a(ξ)− ā(ξ))HC−1(a(ξ)− ā(ξ)) ≤ 1, (3.2)

where C ∈ C
N×N denotes a known positive-definite matrix that charac-

terizes the shape and volume of the ellipsoid centered at ā(ξ). Ellipsoids

of the form of (3.2) are called nondegenerate ellipsoids. If the uncertainty

ellipsoids fall into a lower-dimensional space they are called flat (or degen-

erate) ellipsoids, and a representation different from that in (3.2) should

be used [93,98]. Flat ellipsoids are employed to make the uncertainty set

as tight as possible but require more prior information about the max-

imum uncertainty than that of the nondegenerate ellipsoids. Typically,

ā(ξ) and C in (3.2) are assumed known but such quantities may also

be estimated from array calibration measurements [98]. For example,

in case the uncertainty is identical for all of the array elements, C is a

scaled identity matrix. Other examples include the case when different

array elements have varying degrees of uncertainties as well as when the

elements’ uncertainties are correlated. In the former case matrix C is di-

agonal with nonidentical entries while in the latter case C has nonzero

off-diagonal elements.

Uncertainty sets on the array steering vector have been mainly em-

ployed in the context of minimum variance adaptive beamforming [93,

98, 168]. In particular, they employ the following robust estimate of the

real-world array steering vector [93]:

â(ξ) = ā(ξ)− Û(I + λ(ξ)Λ̂)−1ÛH ā(ξ), (3.3)
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where Û ∈ C
N×N and Λ̂ ∈ R

N×N denote the eigenvectors of the sample co-

variance matrix R̂x and corresponding eigenvalues, respectively. In (3.3),

λ(ξ) ∈ R is found numerically for a given uncertainty ellipsoid C centered

at ā(ξ); see [93] for details. Note that λ(ξ) may be understood as a regu-

larization of the array sample covariance matrix R̂x in terms of diagonal

loading. Such type of regularization has the effect of widening the main

beam of the Capon beamformer [18]. Chapter 5 includes a more detailed

discussion on diagonal loading.

Writing (3.3) as â(ξ) = Wā(ξ), where W = Û(I − (I + λ(ξ)Λ̂)−1)ÛH

shows that the robust estimate in (3.3) is obtained by properly weighting

the presumed array steering vector ā(ξ). A similar expression is obtained

in the robustified MUSIC method based on uncertainty sets [150]. Figure

3.2 illustrates a typical robust technique based on uncertainty sets such

as the robust Capon method.

3.3 Array calibration measurements

Array calibration aims at acquiring the array response of real-world ar-

rays through measurements from a number of different locations of an-

gles. They capture the combined effects due to mutual coupling, cross-

polarization effects, and mounting platform reflections, in addition to ar-

ray elements’ misplacements and individual beampatterns. Typically, ar-

ray calibration measurements are acquired in controlled environments

such as anechoic chambers, and allow for obtaining an accurate and com-

plete description of the radiating characteristics of real-world arrays. High-

resolution radar, satellite, and communication systems often require such

accurate antenna array responses that are typically obtained from array

calibration measurements [45].

The most commonly used approach for array calibration measurements

acquires the array response to a known active source, called probe, at dif-

ferent angles and polarizations. The antenna array is typically mounted

on a mechanical platform, known as positioner, that rotates the sensor ar-

ray in azimuth ϕ and co-elevation ϑ angles while the probe is held fixed.

Dual-polarized probes are typically employed since one may acquire the

array response to horizontal and vertical polarizations without the re-

quirement of rotating the probe as well. Figure 3.3 illustrates a typical

array calibration measurement setup. Note that the coordinate system

employed in array processing methods is defined by the relative position
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Figure 3.3. Illustration of the standard array calibration measurement setup.

between the positioner and probe.

Assume that the probe is a point-source, such as an Hertzian dipole,

located in the far-field region of the antenna array. The array output ob-

tained in array calibration measurements may be described by the follow-

ing expressions:

xθ(k, ϑq, ϕq) = aθ(ϑq, ϕq)s(k) + εθ(k) (3.4a)

xφ(k, ϑq, ϕq) = aφ(ϑq, ϕq)s(k) + εφ(k), (3.4b)

where xθ(k, ϑq, ϕq),xφ(k, ϑq, ϕq) ∈ C
N×1 denote the array output at the kth

snapshot for a vertically and horizontally polarized probe located at an-

gles (ϑq, ϕq), respectively. In practice, the array output is acquired by mea-

suring the induced voltage at each antenna, followed by down-conversion,

demodulation, and analog-to-digital conversion. In (3.4), s(k) ∈ C de-

notes a known transmitted signal with power σ2
s , and εθ(k) ∈ C

N×1 as

well as εφ(k) ∈ C
N×1 denote calibration measurement noise. In this re-

search work, calibration measurement noise are assumed to be spatially

and temporally uncorrelated zero-mean complex-circular Gaussian dis-

tributed i.e., εθ(k) ∼ Nc(0, σ
2
calIN ) and εHθ (k)εφ(k) = 0, and similarly for

εφ(k). The least-squares estimator (LSE) of the array response at angles

(ϑq, ϕq) is [163]:

âθ(ϑq, ϕq) =
K∑
k=1

xθ(k, ϑq, ϕq)s
∗(k)/

K∑
k=1

|s(k)|2 (3.5a)

âφ(ϑq, ϕq) =

K∑
k=1

xφ(k, ϑq, ϕq)s
∗(k)/

K∑
k=1

|s(k)|2. (3.5b)

Since the array responses at angles (ϑq, ϕq) may also be seen as unknown

channel coefficients, under zero-mean complex-circular Gaussian noise

assumption, the maximum-likelihood estimator (MLE) of aφ(ϑq, ϕq) and

aθ(ϑq, ϕq) are also given by (3.5) [3,69].
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Collecting âφ(ϑq, ϕq), âθ(ϑq, ϕq) for Qa ∈ N points in azimuth and Qe ∈
N points in co-elevation yields the array calibration matrix, denoted by

B = [Bθ, Bφ] ∈ C
N×2Q, where Q = QaQe denotes the total number of

calibration points and Bθ,Bφ ∈ C
N×Q are respectively given by1:

Bθ =
[
âθ(ϑ1, ϕ1), . . . , âθ(ϑ1, ϕQa), âθ(ϑ2, ϕ1), . . . , âθ(ϑQe , ϕQa)

]
(3.6a)

Bφ =
[
âφ(ϑ1, ϕ1), . . . , âφ(ϑ1, ϕQa), âφ(ϑ2, ϕ1), . . . , âφ(ϑQe , ϕQa)

]
. (3.6b)

In general, a complete characterization of real-world arrays requires that

the array calibration matrix is composed of array responses spanning the

whole angular region, i.e. ϑq ∈ [0, π], ϕq ∈ [0, 2π). The array response is

said to be acquired in the 2-sphere2 (S2). However, it may be sufficient to

collect the array responses over an angular sector only, say C ⊂ S2, if the

sensor array is to be deployed on an environment where the sources are

known a priori to be confined to such a sector C [163]. Similarly, consider-

ing angular sectors may be the only feasible option of calibrating a sensor

array due to physical limitations of the mounting platform. The impact

of incomplete array calibration measurements on high-resolution array

processing algorithms is considered in [85]. Details on the sampling grid

used in (3.6) are given in Chapter 4. It is also shown in Chapter 4 that

employing wavefield modeling and manifold separation typically leads to

an improvement of the MSE achieved by the array calibration matrix.

Typically, the array gain ‖a(ϑ, ϕ, γ, β)‖2 of real-world arrays is a function

of the angle (ϑ, ϕ) and polarization (γ, β). This may be due to the array

elements’ directivity and polarization sensitivity. Hence, it is convenient

to define the following average array gain:

1

4π

∫
S2

aH
θ (ϑ, ϕ)aθ(ϑ, ϕ) + aH

φ (ϑ, ϕ)aφ(ϑ, ϕ) dΩ = N, (3.7)

where dΩ = sin(ϑ) dϑdϕ. The normalization defined in (3.7) is employed

throughout this work and useful in describing the SNR gain obtained by

using multi-antenna systems.

In addition to calibration measurement noise, array calibration mea-

surements may be subject to other sources of errors. These include re-

1The use of a rectangular grid is not a restriction but simply a notational conve-
nience. Chapter 4 considers the case where one may acquire a single observation
at the poles, and not Qa samples.
2A 2-sphere is a surface (or 2-D manifold) in a 3-D Euclidean space where its
points satisfy (x − x0)

2 + (y − y0)
2 + (z − z0)

2 = r2, for a given center (x0, y0, z0)

and radius r. A 2-sphere refers to the usual sphere. A 1-sphere is a 1-D manifold
and it refers to the usual circle.
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flections from the anechoic chamber, imperfections of the employed posi-

tioner, attenuations and phase-drifts due to cabling, small distance be-

tween the antenna array and probe (i.e., source not in far-field), and ef-

fects of the probe (e.g., not a point-source). These errors are not considered

in this research work, and the interested reader is referred to [45, 55, 85,

159] and references therein. However, it is important to mention that a

widely used technique in array calibration measurements called spherical

near-field antenna measurements [55] has strong connections with wave-

field modeling [28–30], [VI] and manifold separation [9], [IV, V, VII]. This

is further discussed in Chapter 4.

3.4 Local interpolation of the array calibration matrix

The array calibration matrix B in (3.6) may be seen as the result of a

discretization operation on the array manifold A in (2.4) under additive

white Gaussian noise (AWGN). An approximation of the array manifold

may thus be obtained by interpolating B. However, interpolation may

overfit the data and describe measurement noise rather than the array

manifold. Alternatively, one may employ the principle of Parsimony in a

model fitting approach in order to minimize the contribution of calibration

measurement noise [111, 147]. Such an approach is further discussed in

Chapter 4 in the context of wavefield modeling and manifold separation.

Let αn(ϑ, ϕ) denote a vector composed of local basis functions such as

wavelets, splines or polynomials. Also, let Ĉn denote a coefficient matrix

obtained by interpolating the array calibration matrix B over an angular

sector Cn using αn(ϑ, ϕ). Cn may correspond to two or more columns of

B. Using local basis as the interpolating functions leads to the following

piece-wise estimate of the real-world array steering vector:

âθ(ϑ, ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ĉ1α1(ϑ, ϕ), (ϑ, ϕ) ∈ C1
Ĉ2α2(ϑ, ϕ), (ϑ, ϕ) ∈ C2

...

Ĉnαn(ϑ, ϕ), (ϑ, ϕ) ∈ Cn,

(3.8)

and similarly for âφ(ϑ, ϕ).

Local interpolation of the array calibration matrix requires the practi-

tioner to choose the local basis functions and their degree, with particular

continuity and differentiability properties, as well as the size of each an-

gular sector. Thus, local interpolation may not be convenient in array pro-
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Figure 3.4. Illustration of a typical array interpolation technique. A virtual array is
needed along with a specification of the array elements, geometry, and size of
each angular sector.

cessing when the sources may span the whole visible region. In Chapter

4 and Section 4.1, wavefield modeling and manifold separation are shown

to alleviate many of these difficulties.

3.5 Array mapping techniques

3.5.1 Array interpolation based on virtual arrays

Array interpolation techniques aim at replacing the real-world array re-

sponse in the acquired array snapshots by the response of an ideal sensor

array, known as virtual array [15, 40, 47, 63, 64]. Typically, this is accom-

plished by linearly transforming the array output data in a manner that

the transformed data approximates those acquired by employing a virtual

array. Computationally efficient array processing methods developed for

ideal ULAs and URAs, such as root-MUSIC, ESPRIT, and spatial smooth-

ing, may be employed with real-world sensor arrays and nonidealities by

exploiting the transformed data as well as the structure of the virtual ar-

ray [14, 41, 128, 139, 174]. The configuration of the virtual array as well

as the number of elements and orientation are user-parameters that need

to be specified by the practitioner. The aperture of the virtual array is

commonly designed to be enclosed by the real-world array [28,40].

Let us assume single (e.g., vertically) polarized wavefields propagating

in the xy-plane, and denote the corresponding steering vector of the vir-

tual array by ā(ϕ) ∈ C
N̄×1. The virtual array is composed of N̄ ∈ N(N̄ ≤

N) virtual elements. Also, let B̄ = [ā(ϕ1), . . . , ā(ϕQa)] ∈ C
N̄×Qa denote a

collection of virtual array steering vectors. In its simplest form, the trans-

formation matrix T̂ ∈ C
N̄×N employed by array interpolation techniques
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is the solution to the following quadratic-error criterion [40]:

T̂ls = argmin
T

‖TB − B̄‖2F , (3.9)

where B ∈ C
N×Qa denotes the calibration matrix of the real-world array.

The solution to (3.9) is well-known to be T̂ls = B̄B†. Given a collection

of snapshots X = [x(1), . . . ,x(K)], the output of the virtual array and

corresponding sample covariance matrix are found, respectively, as Y =

T̂lsX and R̂y = T̂lsR̂xT̂
H
ls , where R̂x is given in (2.9). Array processing

methods that exploit the structure of the virtual array may be applied to

Y and R̂y. Note that the virtual array should be designed so that R̂y is

full-rank. In case the condition N̄ ≤ N does not lead to a full-rank virtual

sample covariance matrix the virtual array should be re-designed [40].

Also, it is desirable to design the virtual array so that the transformation

matrix T̂ls is well-conditioned [40].

Typically, the fitting error of the transformation matrix, obtained by us-

ing T̂LS in place of T in (3.9), grows with the angular sector C spanned by

B and B̄ [40,63,64]. In general, one cannot find a perfect transformation

between the virtual and the real-world array manifolds, and the resulting

fitting error leads to a performance loss of array processing methods. In

order to reduce fitting errors to a level where they have the same order of

magnitude as the errors due to finite sample support, the angular sector

C is kept “small enough” [40, 63]. However, when there is no prior infor-

mation regarding the location of the sources, multiple angular sectors are

needed to cover the entire angular domain, which leads to multiple trans-

formation matrices (one per angular sector). Such a procedure is called

sector-by-sector processing, and the employed transformation matrices are

known to be sensitive to out-of-sector sources [63]. Robustness to out-of-

sector sources may be achieved at the cost of an increase of the fitting

error [114]. Figure 3.4 illustrates a typical array interpolation technique

and related processing stages.

3.5.2 Phase-mode excitation and beamspace transform

Phase-mode excitation is a technique employing a spatial Fourier series

representation in order to synthesize arbitrary excitation functions, and

consequently far-field patterns, of uniform circular as well as spherical

arrays [24, 25, 97, 179]. Originally developed for continuous apertures,

the phase-mode excitation technique is also applicable to practical arrays

that consist of a few elements. Continuous apertures may be understood
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as a continuum of array elements disposed on a circular geometry, for

example. In the context of array processing, the phase-mode excitation

technique is known as beamspace transform [7, 100]. Both phase-mode

excitation technique and beamspace transform have been widely used in

array processing. They allow many of the methods originally developed

for uniform linear arrays, such as polynomial rooting based DoA estima-

tors and spatial smoothing techniques, to be applied on uniform circular

as well as spherical arrays [35,52,100,156,170]. The phase-mode excita-

tion technique is also closely related to the wavefield modeling principle

and manifold separation technique. These are among the main topics of

this dissertation, and are considered in detail in Chapter 4.

Consider a uniform circular array of radius R, composed of N single-

polarized elements, and receiving a wavefield generated by single-polarized

point-sources. Assume also wavefield propagation in the xy-plane. The

phase-mode excitation technique or beamspace transform for uniform cir-

cular arrays may be written as [7,100]:

FHauca(ϕ) ≈
√
NJ (κR) d(ϕ), (3.10)

where F ∈ C
N×M denotes a block of an N × N unitary discrete Fourier

transform (DFT) matrix. In (3.10), matrix J (κR) ∈ C
M×M and vector

d(ϕ) ∈ C
M×1 are respectively given by:

J (κR) = diag{jMJM (κR), . . . , j J1(κR), J0(κR),

j J1(κR), . . . , jMJM (κR)} (3.11a)

d(ϕ) = [e−jMϕ, . . . , e−jϕ, 1, ejϕ, . . . , ejMϕ]T , (3.11b)

where d(ϕ) is comprised of spatial Fourier basis, also known as phase-

modes, and Jm(κR) ∈ R denotes the Bessel function of the first kind and

order m [1, Ch.9]. The Vandermonde structure of vector d(ϕ) in (3.10)

facilitates using techniques originally developed for uniform linear arrays

on circular array geometries. A rule of thumb for determining M is M =

�κR�, where M = 2M + 1 [25,100]. Such a rule follows from the fact that

Bessel functions decay superexponentially (i.e., faster than exponential)

when the order exceeds their argument [28,100], [1, Ch.9]. As an example,

an UCA composed of N elements with an inter-element spacing of λ/2

leads to κR = N/2.

The approximation in (3.10) is due to the aliasing introduced by employ-

ing the phase-mode excitation technique on uniform circular arrays. In

fact, for a continuous circular aperture the phase-mode excitation tech-

nique is exact and expression (3.10) holds true with strict equality [24,25,
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Figure 3.5. Illustration of the typical stages comprising beamspace transform based ar-
ray processing methods.

97, 100]. However, when dealing with uniform circular arrays, the rela-

tionship between the number of array elements and phase-modes should

satisfy N ≥ M [100]. Such a condition makes the term
√
NJ(κR) d(ϕ) in

(3.10) larger than the term due to aliasing.

Expression (3.10) may be rewritten as follows:

1√
N

J −1(κR)FHauca(ϕ) ≈ d(ϕ). (3.12)

The transformation in (3.12) is known as Davis transform, and it assumes

that {Jm(κR) 	= 0}Mm=0 [24, 25, 88, 170]. If Jm(κR) = 0 for some m ≤ �κR�
the sensor array is said to operate at the resonances of the wavefield.

The wavefield is thus essentially unobservable by such a sensor array,

and array processing methods are not expected to provide any meaningful

results [30].

Another interpretation of the phase-mode excitation technique and beam-

space transform for uniform circular (or spherical) arrays is obtained by

means of wavefield decomposition [97, 118, 156, 157, 178]. In particular,

the term J(κR) d(ϕ) in (3.10) may be understood as the spatial Fourier

coefficients of the propagating wavefield observed on a circular region of

radius R. More precisely, a unit-magnitude wavefield, propagating in the

xy-plane and generated by a single far-field point-source located at ϕ, may

be decomposed at point rn = [Rn, ϕn]
T as follows [28,157]:

Ψ(rn) =
+∞∑

m=−∞
jmJm(κRn) e

jm(ϕ−ϕn), (3.13)

Expression (3.13) is a spatial Fourier series of the wavefield, where the

mth Fourier basis and coefficient are ejmϕn and cm = jmJm(κRn) e
jmϕ, re-

spectively. The Fourier coefficients {cm}+∞
m=−∞ carry information regard-

ing the angle of the source ϕ, and may be obtained by a spatial Fourier

transform (at a fixed radius Rn = R):

cm =
1

2π

∫
S1

Ψ(R,ϕn) e
jmϕn dϕn (3.14a)

≈ 1

N

N∑
n=1

Ψ(R, 2πn/N) ejm
2πn
N , ∀m. (3.14b)
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Since the nth element of a uniform circular array of radius R sample the

wavefield at point (R, 2πn/N), using [auca(ϕ)]n = Ψ(R, 2πn/N) in (3.14b)

yields (3.10), showing that the beamspace transform is essentially a spa-

tial DFT of the propagating wavefield. Figure 3.5 illustrates the typical

stages comprising beamspace transform based array processing methods.

Extensions of the phase-mode excitation technique, or beamspace trans-

form, to uniform circular arrays in the presence of mutual coupling as well

as other perturbations of the array manifold can be found in [51,88,170].

Also, extensions of the phase-mode excitation technique to spherical ar-

rays can be found in [118, 179], forming the basis to the research topic of

spherical microphone array processing [52,119,120,122].

3.6 Wavefield modeling and manifold separation - summary

Wavefield modeling is a formalism for array processing where the array

output is written as the product of a wavefield independent matrix called

array sampling matrix and an array independent vector known as coeffi-

cient vector [28–30], [III, VII, VIII]. The sampling matrix depends on the

employed sensor array only while the coefficient vector depends on the

wavefield. Array sampling matrix and coefficient vector are independent

from each other. Manifold separation stems from wavefield modeling and

it is a spatial Fourier series of the array manifold and steering vector [9],

[IV, V, VI].

The sampling matrix fully describes the employed sensor array, includ-

ing its geometry and nonidealities, while the coefficient vector uniquely

characterizes the received wavefield. Thus, the coefficient vector carries

information regarding the wavefield parameters such as DoAs and polar-

ization of the sources in a manner that is independent from the sensor

array.

In particular, assuming that the employed sensor array is a linear sys-

tem, in the sense of superposition principle, and continuous, the array

output may be written as [28–30], [VI, VII]:

x(t) = Gψ(t) + n(t), (3.15)

where G : H → C
N and ψ(t) ∈ H denote the array sampling matrix

and coefficient vector, respectively. Moreover, vector n(k) ∈ C
N×1 denotes

measurement noise which is assumed to be zero-mean complex-circular

Gaussian distributed with covariance matrix given by Rn = σ2In. The re-
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Figure 3.6. Illustration of the key concept in array processing based on wavefield model-
ing and manifold separation. The array output is written as the product of a
wavefield independent matrix G and an array independent vector ψ(ξ).

sult in (3.15) is known as wavefield modeling. Note that (3.15) is equally

valid for sensor arrays receiving scalar-fields as well as for arrays com-

posed of polarization sensitive antennas, observing completely polarized

EM waves. Figure 3.6 illustrates the key concept in array processing

based on wavefield modeling and manifold separation.

The coefficient vector ψ(t) may describe the received wavefield either in

a non-parametric or a parametric manner, with closed-form expressions

for the DoAs and polarization of the sources. Chapter 4 includes closed-

form expressions for the coefficient vector that are applicable for scalar

and vector-fields. The array sampling matrix G is composed of infinitely

many columns but in practice one may consider only a finite number of

such columns. This follows from a key property of the array sampling ma-

trix that is known as superexponential decay. Chapter 4 provides upper-

bounds for the supexexponential decay of G for sensor arrays receiving

scalar-fields as well as for arrays composed of polarization sensitive an-

tennas.

Similarly to array interpolation, wavefield modeling and manifold sep-

aration may also be employed in sector-by-sector processing and in cases

where the sources are known a priori to span an angular sector. Such an

information may be incorporated into G, and the resulting array sampling

matrix also shares the superexponential decay property [28]. Chapter 4

provides more relationships among wavefield modeling, manifold separa-

tion, and array mapping techniques.

Wavefield modeling and manifold separation provide more insight into

applications dealing with sensor arrays. For example, such a formalism

is appropriate in assessing the fundamental performance limitations of

real-world sensor arrays. Moreover, many of the computationally-efficient

array processing methods originally developed for ULAs may be employed

36



Array processing in the face of nonidealities

Table 3.1. Qualitative comparison among array processing techniques for dealing with
nonidealities.

Techniques
Features US ACM LI AIT BT WM/MS

Applicable to arbitrary

array geometries + + + + + + + + - - + +

Robustness to modeling errors + + + - - - - - - -

Characterization of real-world

array responses - - - - + - - - + +

Incorporation of prior knowledge

about sources’ locations + + + + + + + - - + +

Computational complexity - - - - - + + + +

Requirement for user-design

parameters - - - - - - - + + + +

on sensor arrays with arbitrary geometries and nonidealities. This is ad-

dressed in Chapter 5.

3.7 Discussion

This chapter provides an overview of array processing techniques for deal-

ing with nonidealities. Real-world sensor arrays are typically composed

of elements with individual directional beampatterns. They are subject to

misplacements of the array elements, mutual coupling, cross-polarization

effects, and mounting platform reflections. Dealing with such nonideali-

ties is crucial in any array processing application in order to obtain opti-

mal results as well as avoid systematic errors and excess variance. Table

3.1 includes a qualitative comparison of the array processing techniques

considered in this chapter.

Auto-calibration methods (ACM) may be useful when both wavefield pa-

rameters and array nonidealities are described in a closed-form. How-

ever, real-world directional beampatterns, cross-polarization effects, and

mounting platform reflections are extremely challenging to express in a

closed-form. Even if a closed-form expression for the uncalibrated steer-

ing vector is acquired, wavefield parameters and array nonidealities may

not be simultaneously identifiable. Such a difficulty with parameter iden-

tifiability may be relaxed by assuming that the array nonidealities are

random quantities. Typically, Bayesian-type of estimators require the

second-order statistics of the array nonidealities to be fully known, which
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may not be practical or realistic.

A more conservative approach to dealing with array nonidealities con-

sists in employing uncertainty sets (US) on the array steering vector. Un-

certainty sets do not require a closed-form expression for the array non-

idealities and may use array calibration measurements. However, uncer-

tainty sets trade-off optimality for robustness. Uncertainty sets may also

require user-design parameters for bounding the maximal uncertainty,

and the computational burden of such an approach may be prohibitive in

many array processing applications.

The beamspace transform (BT) is a rather simple and convenient tech-

nique that is amenable to many computationally-efficient array process-

ing methods. However, it requires circular or spherical arrays and its

performance is typically limited by the number of array elements. Ar-

ray interpolation techniques (AIT) are versatile since the practitioner has

the freedom to employ most of the computationally-efficient array pro-

cessing methods originally developed for ULAs on arrays with arbitrary

geometries. However, in cases where the practitioner does not have prior

knowledge regarding the location of the sources the performance of ar-

ray interpolation techniques may be rather poor and the corresponding

computational burden may be significant.

Wavefield modeling (WM) and manifold separation (MS) may be seen

as an alternative approach of describing the array output. The ability

to separate the array parameters, including the array nonidealities, from

the wavefield parameters is convenient in many array processing meth-

ods. Moreover, the linear relationship describing the array output in

terms of sampling matrix and coefficient vector makes wavefield modeling

and manifold separation a very attractive technique in signal processing.

More details regarding the advantages and limitations of wavefield mod-

eling and manifold separation are provided in the next chapter.

38



4. Wavefield modeling and manifold
separation

This chapter describes the theoretical and practical aspects of wavefield

modeling and manifold separation. The simpler case of scalar-fields such

as acoustic pressure is briefly considered. Emphasis is given to vector-

fields such as completely polarized EM waves that may propagate in the

3-D Euclidean space [III, VII, VIII]. The estimation of the array sampling

matrix from calibration measurements is also considered [V]. Such an ap-

proach is suitable for incorporating array nonidealities into array process-

ing models and methods.

A novel concept called equivalence matrix is also described in this chap-

ter [V, VI]. The equivalence matrix establishes a connection between vec-

tor spherical harmonics and 2-D Fourier basis as well as a one-to-one rela-

tionship between their spectra. The equivalence matrix is employed in or-

der to reformulate wavefield modeling and manifold separation in terms

of 2-D Fourier basis. This facilitates deriving FFT-based or polynomial

rooting-based array processing methods that are applicable regardless of

the sensor array geometry and nonidealities. A novel fast spherical har-

monic transform using the 2-D FFT is also proposed in this chapter. Novel

sampling theorems on the sphere for equiangular sampling schemes, e.g.

the Chebyshev rule, are also found by employing the equivalence matrix.

Denoising of spherical data on the 2-D Fourier domain is achieved by us-

ing the equivalence matrix as well.

The equivalence matrix is suitable in any application that deals with

data defined on a spherical manifold including geodesy [12, 175], medical

image processing, computer graphics, radioastronomy and cosmology [17,

89] as well as measurement-based radio channel modeling and related

array processing tasks [80,133,138].
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4.1 Wavefield modeling and manifold separation for scalar-fields

Consider a propagating wavefield of the form:

Ψ(t, rn) =

∫
S1


(t, ϕ) ej κ
T rndϕ, (4.1)

where rn = [Rn, ϕn]
T and 
(t, ϕ) ∈ C denote a point in the xy-plane and an

angular signal distribution known as radiation density [28], respectively.

Expression (4.1) may be used to describe spatially distributed sources due

e.g., to scattering as well as point-sources. In the latter case we may write


(t, ϕ) =
∑P

p=1 sp(t)δ(ϕp − ϕ), denoting a spatial line-spectrum. Similarly

to the wavefield decomposition used in beamspace transform in Chapter

3, wavefields of the form in (4.1) and corresponding radiation densities

may be expressed in terms of an orthogonal expansion [28]:

Ψ(t, rn) =
+∞∑

m=−∞
ψm(t) hm(rn), (4.2a)


(t, ϕ) =
+∞∑

m=−∞
ψm(t) dm(ϕ). (4.2b)

Expressions (4.2a) and (4.2b) are related to (4.1) by the expansion coeffi-

cients {ψm(t)}+∞
m=−∞ as follows:

ψm(t) =
1

jm
√
2πJm(κRn)

∫
S1

Ψ(t, rn) e
jmϕndϕn (4.3a)

=
1√
2π

∫
S1


(t, ϕ) ejmϕdϕ. (4.3b)

The spatial basis functions of (4.2a) and (4.2b) are given by hm(rn) =

jmJm(κRn) e
−jmϕn and dm(ϕ) = e−jmϕ, respectively. Note that Jm(·) ∈ R

denotes a Bessel function of the first kind and order m.

For point-sources we have ψm(t) = 1/
√
2π
∑P

p=1[s(t)]p e
jmϕp . Then, the

array output described by wavefield modeling in (3.15) simplifies to:

x(t) = G
P∑

p=1

d(ϕp) [s(t)]p + n(t), (4.4a)

= A(ϕ) s(t) + n(t), (4.4b)

where d(ϕ) ∈ H denotes a Vandermonde vector composed of spatial Fourier

basis. Note that the expression in (4.4b) is the standard array processing

model described in Chapter 2.

It follows from (4.4) that the array steering vector has the following ex-

pansion [9]:

a(ϕ) = Gd(ϕ), (4.5a)

G =

∫
S1

a(ϕ)dH(ϕ)dϕ. (4.5b)
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The result in (4.5) is known as manifold separation and shows that the

array sampling matrix may be interpreted as the spatial Fourier coeffi-

cients of the array steering vector. Wavefield modeling thus shows that,

for each frequency, the array output is the product between the spatial

Fourier coefficients of the array steering vector and those of the propagat-

ing wavefield.

The array sampling matrix G has infinitely many columns, and so does

the coefficient vector ψ(t). For practical purposes one may only consider

a finite number of columns, denoted by M. It is therefore important to

quantify the error caused by using an array sampling matrix with M
columns in the array output model (4.4) as well as in the steering vector

in (4.5a). In the following, such modeling errors are also compared to the

errors due to finite sample effects. Consider the following error-vector:

ε(ϕ,M) = a(ϕ)−
M∑

m=−M

[G]m [d(ϕ)]m, (4.6)

where M = (M−1)/2. The average squared-error as well as the maximum

error caused by employing a truncated array sampling matrix in models

(4.4) and (4.5) are:

ε̄2(M) =
1

2π

∫
S1

‖ε(ϕ,M)‖2 dϕ, (4.7a)

εmax(M) = max
ϕ

‖ε(ϕ,M)‖1, (4.7b)

respectively. These errors can be upper-bounded by [28]:

ε̄2(M) ≤ 2α2N

+∞∑
m=M+1

J2
m(κRmin), (4.8a)

εmax(M) ≤ 2αN
+∞∑

m=M+1

|Jm(κRmin)|. (4.8b)

In (4.8), α ∈ R denotes a constant (α < ∞) while Rmin ∈ R denotes

the radius of the smallest circle (in the xy-plane) enclosing the sensor

array, including the radiating mounting platform. Since the Bessel func-

tions Jm(κRmin) in (4.8) decay superexponentially as m → +∞ beyond

|m| = κRmin [1, Ch.9], both error expressions in (4.7) are O(e−M) for

M > κRmin. Note that the errors due to finite sample size in the estima-

tion of the array covariance matrix are typically O(1/
√
K). Consequently,

the modeling errors caused by employing a truncated array sampling ma-

trix are negligible for a sufficiently large but finite number of columns

M.
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The result in (4.8) is called superexponential property of the array sam-

pling matrix, and may be understood by interpreting sensor arrays as

spatial filters since it reflects their finite aperture. The sampling ma-

trix G may be seen as the array’s spatial frequency response, where the

passband, stopband, and cutoff frequencies are approximately given by

|m| < κRmin, |m| > κRmin, and |m| = κRmin, respectively. For example,

it is well-known that sensor arrays with a large aperture have increased

resolution since they sample the propagating wavefield over a large area

or volume. This is reflected on the array sampling matrix by an increase

of the passband region |m| < κRmin, since the radius of the smallest circle

enclosing the sensor array increases. A larger number of wavefield coef-

ficients {ψm(t)}+∞
m=−∞ fall in the passband region of the sampling matrix,

increasing the received power and leading to a more accurate description

of the propagating wavefield as well as to increased resolution.

It is also useful to note that the result in (4.8) appears in the context of

multiple-antenna channel capacity as well [71,117]. There, the number of

spatial degrees of freedom, a key quantity that allows a linear increase on

the channel capacity, is shown to be limited by the minimum sphere en-

closing the employed antenna arrays based on arguments that are similar

to the superexponential property of the sampling matrix. This suggests

that wavefield modeling and manifold separation may play a fundamental

role in any sensor array application.

4.1.1 Relationship to local interpolation of the array calibration
matrix

Prior knowledge on the location of the sources generating the received

wavefield may be incorporated to the array sampling matrix [28]. This

is useful when the sources are known to be confined to an angular sec-

tor C. Wavefield modeling and manifold separation are then valid over

C, only. The basis functions employed in manifold separation and in ob-

taining the coefficient vector ψ(k) in wavefield modeling are then orthog-

onal on the angular sector C and not in whole angular domain S1. This

prevents from using Fourier basis since such basis functions are not, in

general, orthogonal on C. Orthogonal basis on an angular sector C may

be obtained from Fourier basis by means of Gram-Schmidt orthogonaliza-

tion, for example [28].

Let bn(ϕ) and Gn denote an orthogonal basis set on Cn and correspond-

ing array sampling matrix, respectively. Also, let C1 ∪ C2 . . . ∪ Cn = S1.
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Then, manifold separation may also be written as:

a(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G1b1(ϕ), ϕ ∈ C1
G2b2(ϕ), ϕ ∈ C2

...

Gnbn(ϕ), ϕ ∈ Cn.

(4.9)

The above expression is similar to local interpolation of the array calibra-

tion matrix, described in Chapter 3. However, using the array sampling

matrices in (4.9) may be more convenient than the coefficient matrices ob-

tained in the standard local interpolation approach due to the superexpo-

nential decaying property of the former. In fact, using (4.9) one may bound

both the average squared-error and maximal error, similarly to (4.8), thus

ensuring convergence of the array steering vector expansion [28].

Suppose one does not have any prior knowledge regarding the location

of the sources generating the received wavefield. One may still consider

using local basis for decomposing the array steering vector in a piece-wise

manner, such as in (4.9), rather than global basis. Typically, such an ap-

proach increases the computational complexity of array processing tech-

niques and may reduce the convergence rate of gradient-based optimiza-

tion methods. For example, using (4.9) with the root-MUSIC technique

requires finding the roots of n different polynomials while the maximum

step-size of gradient-based methods is limited by the size of each angular

sector C.

Wavefield modeling and manifold separation using global basis, with a

single array sampling matrix, are thus generally preferred when a sensor

array is to be deployed on an environment where the sources may span

the whole angular region. This is the case considered throughout this

research work.

4.1.2 Relationship to array mapping techniques

Wavefield modeling and manifold separation provide more insight into

array interpolation techniques as well as beamspace transform. Let G ∈
C
N×M and Ḡ ∈ C

N̄×M denote the truncated array sampling matrices

of the employed sensor array and that of the virtual array, respectively.

Also, consider the following compact singular value decomposition (SVD)

G = UGΣGV
H
G , where UG ∈ C

N×N and VG ∈ C
M×N denote the left and

right singular vectors, and ΣG ∈ C
N×N contain the singular values of G.

Using manifold separation in the LS formulation of the array interpola-
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tion (3.9), described in Chapter 3, yields Tls = ḠG†. Then, by applying the

linear transform Tls to the array output and employing wavefield model-

ing, results in:

Tlsx(k) = ḠVGV
H
G ψ(k) + Tlsn(k) (4.10a)

y(k) ≈ Ḡψ(k) + Tlsn(k). (4.10b)

Thus, array interpolation may be understood as a technique that aims

at determining the spatial Fourier coefficients of the wavefield, i.e. the

coefficient vector ψ(k), in order to synthesize the output of the virtual

array.

Let Guca denote the sampling matrix of an N -element uniform circular

array with radius R. The (n,m)th element of Guca is [28]

[Guca]n,m =
√
2π jmJm(κR) e−jm 2πn

N . (4.11)

By letting F ∈ C
N×M̄ denote a block of the N×N unitary DFT matrix, and

employing wavefield modeling, the beamspace transform may be written

as:

FHx(k) = FHGucaψ(k) + FHn(k) (4.12a)

≈
√
NJ (κR)ψ̄(k) + FHn(k), (4.12b)

where J (κR) ∈ C
M̄×M̄ is given in (3.11a) and ψ̄(k) ∈ C

M̄×1 denotes a

truncated coefficient vector since M̄ < M. Similarly, the Davis transform

[24,25,88] yields:

1√
N

J −1(κR) FHx(k) ≈ ψ̄(k) +
1√
N

J −1(κR) FHn(k). (4.13)

Beamspace and Davis transform are aiming at exploiting the convenient

structure of uniform circular arrays in order to acquire an approximation

of the coefficient vector ψ(k) by diagonalizing a block of Guca.

The aforementioned diagonalization approach to determining an approx-

imation of the coefficient vector ψ(k) may be employed in sensor arrays

of arbitrary geometries and nonidealities [I]. Let G ∈ C
N×M denote the

sampling matrix of a sensor array and J ∈ N
M̄×M a selection matrix

given by J = [0
... IM̄

... 0], where M̄ ≤ N . The manifold separation based

Davis transform may be formulated as [I]:

T = argmin
T

‖TGF − JF ‖2F , (4.14)

where F ∈ C
M×M denotes a DFT matrix. Note that the selection matrix

J is found prior to solving (4.14) by model-order selection methods, for
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example [22, 126, 147]. The least-squares solution to (4.14) is Tls = J G†,

and the corresponding linearly transformed array output is given by:

Tls x(k) = JVGV
H
G ψ(k) + Tlsn(k) (4.15a)

y(k) ≈ ψ̄(k) + Tlsn(k). (4.15b)

Typically, Tls is not a unitary matrix so that pre-whitening may be needed

before applying array processing methods to (4.15b). Recall also that

the truncated coefficient vector for P point-sources simplifies to ψ̄(k) =∑P
p=1 d̄(ϕp)sp(t), where d̄(ϕ) ∈ C

M̄×1 is a Vandermonde vector composed

of spatial Fourier basis. Array processing methods originally developed

for ULAs may thus be applied to sensor arrays of arbitrary geometries

using the manifold separation based Davis transform and the resulting

array output model (4.15b) [I].

4.2 Wavefield modeling and manifold separation for vector-fields

Additional degrees-of-freedom and sources of diversity are obtained by

taking into account the co-elevation angle and polarization of the sources,

in addition to their azimuth angles. In multiple-input-multiple-output

(MIMO) systems, such degrees-of-freedom can be used for increasing ca-

pacity and link reliability in the face of channel fading [117,138]. Employ-

ing arrays with polarization diversity allows one to transmit independent

data streams to users that share the same frequency and location but

operate with different polarization states. Polarization diversity may be

exploited even in line-of-sight (LOS) channels. In global navigation satel-

lite systems (GNSS), the polarization state of electromagnetic waves may

also be used in achieving robustness to jammers as well as improving

positioning accuracy in indoor environments [8, 19]. One may attenu-

ate jammers that operate at a different polarization state than that of

the signal-of-interest (SOI), and may receive multiple copies of the same

signal that are independently faded due to their polarization states. In

radar, polarization diversity typically leads to improved target detection

and tracking by designing waveforms that exploit the polarimetric infor-

mation of the target and environment [62]. Neglecting the polarization of

radio waves typically leads to a performance degradation of array process-

ing tasks [85]. This section considers wavefield modeling and manifold

separation in azimuth, elevation, and polarization domains.

Let Ψ(t, r) ∈ C
2×1 denote a propagating EM wavefield generated by
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narrowband far-field sources. Such a wavefield may take the following

form:

Ψ(t, r) =

∫
S2


(t, ϑ, ϕ) ejκ
T r dΩ, (4.16)

where dΩ = sinϑ dϑ dϕ and 
(t, ϑ, ϕ) ∈ C
2×1 denotes the radiation density

vector. Both wavefield and radiation density may be uniquely written in

terms of the following orthogonal expansions [55,65,78]:

Ψ(t, rn) =
+∞∑
ξ=1

ψξ(t)hξ(rn) (4.17a)


(t, ϑ, ϕ) =
+∞∑
ξ=1

ψξ(t)yξ(ϑ, ϕ), (4.17b)

where rn = [Rn, ϑn, ϕn]
T and {ψξ(t)}+∞

ξ=1 ∈ C denote a point in the 3-d

Euclidean space and the expansion coefficients, respectively. In (4.17),

hξ(rn) ∈ C
2×1 and yξ(ϑ, ϕ) ∈ C

2×1 denote the orthogonal basis functions

used in decomposing the wavefield and radiation density, respectively.

The summation in (4.17) is a compact representation for
∑2

s=1

∑+∞
�=1

∑+�
m=−�

with the corresponding index given by ξ = 2(�(�+1)+m− 1)+ s. The har-

monic indices � and m and called levels and modes, respectively.

The basis functions {yξ(ϑ, ϕ)}+∞
ξ=1 are known as vector spherical harmon-

ics, and are given by [65,78]:

y1m�(ϑ, ϕ) =
1√

�(�+ 1)

{
1

sinϑ

∂Y m
� (ϑ, ϕ)

∂ϕ
eθ −

∂Y m
� (ϑ, ϕ)

∂ϑ
eφ

}
(4.18a)

y2m�(ϑ, ϕ) =
1√

�(�+ 1)

{
∂Y m

� (ϑ, ϕ)

∂ϑ
eθ +

1

sinϑ

∂Y m
� (ϑ, ϕ)

∂ϕ
eφ

}
, (4.18b)

where eθ, eφ ∈ R
2×1 denote the spherical tangential unit-vectors. In (4.18),

Y m
� (ϑ, ϕ) =

√
(2�+1)
4π

(�−m)!
(�+m)!P

m
� (cosϑ)ejmϕ denotes a scalar spherical har-

monic, which is composed of associated Legendre functions Pm
� (cosϑ) ∈ R.

The basis functions hξ(r) in (4.17a) may be obtained by using yξ(ϑ, ϕ) in

(4.16); see [Appx. A.1] for details. Vector spherical harmonics form a com-

plete orthonormal basis set in the Hilbert space of tangential vector-fields

on the 2-sphere, and are invariant under rotations on SO(3) [78]. In par-

ticular, vector spherical harmonics satisfy the following orthonormality

property [78]:∫
S2

yH
1m�(ϑ, ϕ)y1m�(ϑ, ϕ) dΩ = 1,

∫
S2

yH
2m�(ϑ, ϕ)y2m�(ϑ, ϕ) dΩ = 1

(4.19a)∫
S2

yH
1m�(ϑ, ϕ)y2m�(ϑ, ϕ) dΩ = 0,

∫
S2

yH
2m�(ϑ, ϕ)y1m�(ϑ, ϕ) dΩ = 0.

(4.19b)
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Note that vector spherical harmonics as given in (4.18) may suffer from

numerical inaccuracies due to the term 1/ sinϑ. Analytically, such a term

does not cause any singularities at the poles since 1
sinϑ

∂Y m
� (ϑ,ϕ)
∂ϕ

∣∣∣
ϑ=0,π

=

const. for m = ±1, and zero otherwise [55, Appx. A1]. However, when

computing vector spherical harmonics numerically using (4.18), erroneous

results may be obtained due to finite precision arithmetic [78]. This is

particularly problematic in synthesis equations since for the analysis ex-

pression one may choose a sampling scheme that does not acquire obser-

vations at the poles. One approach for avoiding such numerical inaccura-

cies is to write the term 1
sinϑ

∂Y m
� (ϑ,ϕ)
∂ϕ as a linear combination of associated

Legendre functions, and evaluate such an expression for each elevation

angle [55, Appx. A1]. An alternative approach is described in Section

4.4 by employing the equivalence matrix as well as the 2-D fast Fourier

transform (FFT) [IV, V, VI].

For a wavefield generated by P point-sources, the radiation density vec-

tor is [VI, VII]:


(t, ϑ, ϕ) =
P∑

p=1

vp [s(t)]p δ(ϕ− ϕp) δ(cosϑ− cosϑp), (4.20)

where vp ∈ C
2×1 describes the polarization state of the Electric-field gen-

erated by the pth source, as described in Chapter 2. The coefficient vec-

tor is then given by [ψ(k)]ξ =
∑P

p=1 [[yθ(ϑp, ϕp)]ξ [yφ(ϑp, ϕp)]ξ]vp [s(k)]p for

ξ = 1, . . . ,+∞, and the wavefield modeling reduces to the signal model

employed in Chapter 2 [IV, V, VI]:

x(k) = G
P∑

p=1

[yθ(ϑp, ϕp), yφ(ϑp, ϕp)]v(γp, βp) [s(k)]p + n(k) (4.21a)

= A(ϑ,ϕ,γ,β) s(k) + n(k). (4.21b)

In (4.21), vectors yθ(ϑ, ϕ),yφ(ϑ, ϕ) ∈ H contain the complex-conjugate vec-

tor spherical harmonics, for all indices ξ = 1, . . . ,+∞, in eθ and eφ, re-

spectively. From (4.21), manifold separation is now given by [VI, VII]:

a(ϑ, ϕ, γ, β) = G [yφ(ϑ, ϕ), yθ(ϑ, ϕ)]v(γ, β) (4.22a)

G =

∫
S2

aθ(ϑ, ϕ)y
H
θ (ϑ, ϕ) + aφ(ϑ, ϕ)y

H
φ (ϑ, ϕ) dΩ. (4.22b)

Hence, the array sampling matrix contains the vector spherical harmonic

coefficients of the array steering vector.

The array steering vector in (4.22) may be considered spatially bandlim-

ited, leading to an array sampling matrix composed of L columns, where
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L = 2L2 + 4L and L denotes the bandwidth of (4.22) in the vector spher-

ical harmonic domain. Such an assumption causes a modeling error that

is typically negligible compared to finite sample effects as well as mea-

surement and quantization noise. To see this consider the following error

vectors:

εθ(ϑ, ϕ, L) = aθ(ϑ, ϕ)−
L∑

ξ=1

[G]ξ [yθ(ϑ, ϕ)]ξ, (4.23a)

εφ(ϑ, ϕ, L) = aφ(ϑ, ϕ)−
L∑

ξ=1

[G]ξ [yφ(ϑ, ϕ)]ξ. (4.23b)

The following average-squared error and maximum errors

ε̄2(L) =
1

4π

∫
S2

‖εθ(ϑ, ϕ, L)‖2 + ‖εφ(ϑ, ϕ, L)‖2 dΩ, (4.24a)

εmax(L) = max
(ϑ,ϕ)

‖εθ(ϑ, ϕ, L)‖1 + ‖εφ(ϑ, ϕ, L)‖1, (4.24b)

are bounded by the following expressions:

ε̄2(L) ≤ Nα2
+∞∑

�=L+1

(2�+ 1)

(
j2� (κRmin) +

(
j�−1(κRmin)−

�

κRmin
j�(kRmin)

)2
)
,

(4.25a)

εmax(L) ≤ Nα

+∞∑
�=L+1

(2�+ 1)

(
|j�(κRmin)|+

∣∣∣∣j�−1(κRmin)−
�

κRmin
j�(kRmin)

∣∣∣∣) ,

(4.25b)

see [Appx. A.1] for details. Here, Rmin ∈ R denotes the radius of the small-

est sphere enclosing the antenna array and j�(·) ∈ R denotes a spherical

Bessel function of the first kind and order � [1, Ch. 10]. The upper-bounds

in (4.25) assume that the number of terms in the summation in the right-

hand-side of (4.23) satisfy the following condition L > �κRmin�. Note also

that the spherical Bessel function j�(κRmin) decays superexponentially as

� → +∞ beyond � = κRmin [28]. Hence, the modeling errors caused by

employing an array sampling matrix composed of L columns are O(e−cL)

for L > �κRmin�, where L = 2L2+4L and c ≥ 1 denotes a positive constant.

Recall that the errors due to finite sample effects are typically O(1/
√
K).

Figure 4.1 illustrates the error expressions in (4.24) and correspond-

ing upper-bounds in (4.25) for a uniform circular array composed of EM

vector-sensors. Results show that wavefield modeling and manifold sep-

aration may employ an array sampling matrix composed of L columns,

given that � > �κRmin�, since the modeling errors are negligible. In the

remainder of this thesis, and unless explicitly stated, the array sampling
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Figure 4.1. Array steering vector modeling errors caused by employing a sampling ma-
trix composed of L(L = 2�2 + 4�) columns. The exponential function e−� is
illustrated for comparison. A uniform circular array composed of 8 EM vector-
sensors is considered. The inter-element spacing is λ/2. Results show that
both average-squared error and maximum error decay superexponentially as
� → +∞ beyond � > �κRmin�. Wavefield modeling and manifold separation
may thus be employed with an array sampling matrix composed of L columns,
given that � > �κRmin�, since the modeling errors are negligible.

matrix G is assumed to be composed of L columns, and similarly for vec-

tors yθ(ϑ, ϕ),yφ(ϑ, ϕ).

Wavefield modeling and manifold separation may also be extended to

near-field scenarios, where both the curvature of the wavefront and ra-
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dial component of the EM wavefield needs to be considered. In fact, the

approach of writing the transmitting and receiving antenna characteris-

tics in the near-field in terms of an orthogonal expansion forms the basis

of spherical near-field antenna measurements [55, 76, 108, 158, 159]. Note

also that the results regarding wavefield modeling and manifold separa-

tion for vector-fields provided in this section may be seen as an extension

of the phase-mode excitation principle and beamspace transform to polar-

ization sensitive antenna arrays.

4.3 Sampling matrix estimation

The array sampling matrix may be found in a closed-form using (4.22b).

Such an approach may be understood as a vector spherical harmonic trans-

form (VSHT) of each array element, and requires a closed-form expres-

sion for the array steering vector. However, such closed-form expressions

are often unavailable for real-world antenna arrays since they require a

model describing the complex EM interactions occurring on antenna ar-

rays built in practice. Even if a closed-form expression for the array steer-

ing vector is acquired, it may be rather tedious and extremely challenging

to find the sampling matrix analytically.

This section addresses the estimation of the sampling matrix from ar-

ray calibration measurements. Two estimators are considered, namely, a

least-squares estimator and an estimator that is based on a discrete vec-

tor spherical harmonic transform (DVSHT) [42,78,119], [IV, V, VI]. Their

statistical properties are also considered. The methods described herein

are also applicable when the array response is obtained from numerical

EM software, or even in cases when the array response is described in

a closed-form. Consequently, the effort of solving (4.22b) analytically for

each and every antenna array is avoided.

4.3.1 Least-squares estimator

Let B = [Bθ,Bφ] ∈ C
N×2Q denote the array calibration matrix obtained

by calibration measurements, as described in Chapter 3. Matrix B is

composed of the measured array responses from Qa ∈ N azimuth angles

and Qe ∈ N co-elevation angles for both vertically and horizontally po-

larized wavefields. Such array responses are denoted by Bθ ∈ C
N×Q and

Bφ ∈ C
N×Q, respectively. The number of points on the 2-sphere is de-
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noted by Q = QaQe. Using manifold separation for vector-fields, the array

calibration matrix may be written as follows [V, VI]:

B = GY + E , (4.26)

where Y ∈ C
L×2Q and E ∈ C

N×2Q denote matrices composed of vector

spherical harmonics and calibration measurement noise, respectively. Re-

call that matrix G ∈ C
N×L denotes the array sampling matrix. Matrices

Y and E are given by:1

Y = [yθ(ϑ1, ϕ1), · · · , yθ(ϑQe , ϕQa), yφ(ϑ1, ϕ1), · · · , yφ(ϑQe , ϕQa)], (4.27a)

E = [εθ(1, 1), · · · , εθ(Qe, Qa), εφ(1, 1), · · · , εφ(Qe, Qa)]. (4.27b)

The task at hand is to estimate the array sampling matrix G from (4.26).

Assuming that the number of calibration points is larger than the number

of columns of the array sampling matrix, i.e. 2Q > L (an overdetermined

system of equations), expression (4.26) may be seen as a low-rank model

for array calibration measurements. The part of the observations describ-

ing the array response is confined to a subspace of dimension NL of the

2NQ-dimensional complex measurement space. Describing real-world ar-

rays in terms of G rather than B facilitates denoising array calibration

measurements as well as compressing the antenna array response in an

angle-independent manner [9,22], [V, VI].

Consistent estimation and identifiability of the sampling matrix from

array calibration measurements requires that the number of columns of

G, denoted by L, is known and the condition 2Q ≥ L holds. The lat-

ter condition is typically satisfied in practice since calibration measure-

ments usually oversample the antenna array under consideration [55,84].

Here, oversampling means that the number samples employed in calibra-

tion measurements is larger than the strictly necessary to avoid alias-

ing. Oversampling reduces the estimation variance of the measured ar-

ray responses since array calibration is always corrupted by measurement

noise. The number of columns of the array sampling matrix may be es-

timated using state-of-the-art model order techniques, such as the mini-

mum description length (MDL), the Bayesian information criterion (BIC),

or the exponentially embedded families (EEF) [22, 68, 126, 147]. One ap-

proach for relaxing the condition 2Q ≥ L is obtained by assuming that

1In calibration measurements the transmitted signals are assumed known and
therefore not explicitly considered herein for the sake of clarity; see expression
(3.5).
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the array sampling matrix is random, obeying a known prior distribution,

and estimating G using Bayesian methods [69]. This thesis work assumes

that the array sampling matrix is an unknown deterministic quantity, and

the condition 2Q ≥ L is assumed herein.

When the assumption above hold, and matrix Y in (4.26) is of full row-

rank, the least-squares estimator (LSE) of the array sampling matrix is:

Ĝlse = BY †. (4.28)

In case the columns of the measurement noise matrix E in (4.27b) are

i.i.d. zero-mean complex-circular Gaussian distributed, the estimator in

(4.28) is also an MLE. The estimator Ĝ ∈ C
N×L is unbiased and the error

covariance matrix is given by:

Clse � E

{
(vec{ĜT

lse} − vec{GT })(vec{ĜT
lse} − vec{GT })H

}
= σ2

calIN ⊗ (Y ∗Y T )−1. (4.29)

Ensuring that matrix Y in (4.26) is full row-rank typically requires em-

ploying an appropriate sampling grid in calibration measurements. Such

a sampling grid may be designed so that the Gramian matrix Y ∗Y T is

well-conditioned. However, such an approach may lead to sampling grids

that are not practical due to limitations of the positioner employed in ar-

ray calibration measurements. A common rule of thumb is the choice of an

equiangular sampling scheme since it is practical. The number of samples

should satisfy 2Q � L [123, 159], [55, Ch. 4]. A more rigorous approach

for determining the minimum number of calibration points, given an an-

tenna array described by a sampling matrix composed of L columns, em-

ploys a discrete vector spherical harmonic transform. Such an approach

is described next.

4.3.2 Discrete vector spherical harmonic transform

An alternative approach to the LSE is based on the discrete vector spher-

ical harmonic transform (DVSHT) and numerical integration on the 2-

sphere. The integration needed in the vector spherical harmonic trans-

form in (4.22b) may be done numerically by means of appropriate sam-

pling grids and weights, given that the integrand function is bandlim-

ited in the spherical harmonic domain. Examples of such sampling grids

and weights, also known as quadrature rules, include the Chebyshev rule,

Gauss-Legendre rule, and Lebedev rule [12,42,78,119].
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Discrete vector spherical harmonic transform is analogous to the dis-

crete Fourier transform of one-dimensional bandlimited periodic signals.

Topologically, such signals may be understood as being defined on a circle

or 1-sphere. The quadrature rule is the well-known equidistant sampling

over one period where the weights are given by the inverse of the total

number of samples. The DVSHT deals with discrete signals on a spheri-

cal manifold. It differs from the 2-D DFT since the latter considers signals

defined on the torus2. Indeed, 2-D periodic signals on the plane may be

understood as being defined on the torus [175]. A more detailed discus-

sion regarding signals defined on the 2-sphere and torus is included in

sections 4.4.2 – 4.4.4.

Let matrix Y ∈ C
L×2Q be composed of vector spherical harmonics, as

given in (4.27a), and discretized according to a quadrature rule on the 2-

sphere. Also, let the diagonal matrix W ∈ R
Q×Q contain the weights for

the corresponding quadrature rule. The array sampling matrix estimator

based on the DVSHT is given by:

Ĝdvsht = B (I2 ⊗W )Y H . (4.30)

Employing quadrature rules ensures that the discretized vector spherical

harmonics are orthogonal in the sense that Y (I2⊗W )Y H = IL. Assuming

that the columns of matrix E in (4.27b) are i.i.d. and obey a multivariate

zero-mean complex-circular Gaussian distribution with covariance CE =

σ2
calIN , the estimator in (4.30) is unbiased with an error covariance matrix

given by:

Cdvsht = σ2
calIN ⊗ Y ∗(I2 ⊗W 2)Y T . (4.31)

Typically, the error variance of (4.30) is larger than that of (4.28). How-

ever, the excess variance of the array sampling matrix estimator based

on DVSHT is often not significant, as illustrated in Fig. 4.2. The ma-

jor advantage of using Ĝdvsht rather than Ĝlse is the ability to determine

the minimum number of calibration points Q that are needed in order to

uniquely estimate an array sampling matrix composed of L columns.

For an array sampling matrix composed of L(L = 2L2+4L) columns, the

Chebyshev rule requires a minimum of Qa = 2(L + 1) points in azimuth

and Qe = 2L + 3 points in co-elevation [42, 78, 119]. On the other hand,

Qa = 2(L+1) points in azimuth and Qe = (L+1) points in co-elevation suf-

fice when employing the Gauss-Legendre rule [42,119]. Other quadrature

rules available in the literature may require a minimum of Q = (L + 1)2

2This is a torus as it is commonly understood, and not a degenerate torus.
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Figure 4.2. Estimation variance of array sampling matrix estimators and corresponding
CRB. Results are given for an array sampling matrix of 5 levels (L = 75), 10
levels (L = 240), and 20 levels (L = 880). The excess variance of the sampling
matrix estimator based on DVSHT is negligible since the plots overlap with
the CRB.

points on the 2-sphere but the sampling grids following from such schemes

are typically not practical and may not be exact since they do not en-

sure that the following orthogonality condition holds: Y (I2⊗W )Y H = IL

[119].

The Chebyshev rule is extremely useful in array calibration measure-

ments since it employs an equiangular sampling scheme in both co-eleva-
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(a) Chebyshev (equiangular) grid. (b) Gauss-Legendre grid.

Figure 4.3. Quadrature grids on the 2-sphere employed in this thesis work. The mini-
mum number of points employed by the Gauss-Legendre grid that is needed
to uniquely estimate a sampling matrix from array calibration measure-
ments is close to half than that of the Chebyshev grid but the latter is more
practical for array calibration measurements.

tion and azimuth angles. Other equally useful rules that employ similar

sampling schemes may be found in [59, 78, 101]. In particular, the equiv-

alence matrix, described in Section 4.4, is the key quantity in the quadra-

ture rule proposed in [101]. The equiangular grid may be written as:

ϑqe =
πqe

Qe − 1
, qe = 0, . . . , Qe − 1, (4.32a)

ϕqa =
2πqa
Qa

, qa = 0, . . . , Qa − 1. (4.32b)

The corresponding Chebyshev weights are [42]:

wqe =
2

Qe − 1
h(qe, Qe − 1)

Qa/2∑
q=0

h(q,Qa/2)
2

1− 4q2
cos

(
2πqeq

Qa

)
(4.33a)

wqa =
2π

Qa
, (4.33b)

where h(q,Q) is a function that equals ’1/2’ for q = 0, Q, and ’1’, otherwise.

The Gauss-Legendre rule employs a sampling grid that is equiangular

in azimuth only. The sampling grid and weights along co-elevation are

found from the roots of Legendre polynomials. Let {xqe}
Qe−1
qe=0 ∈ R denote

the roots of the Qeth-degree Legendre polynomial, denoted by PQe(x) ∈ R.

Note that Legendre polynomials and the associated Legendre functions

used in (4.18) are related as follows P�(x) = P 0
� (x), where x = cosϑ. Con-

sequently, the sampling grid for the Gauss-Legendre rule is then given

by [1, Ch.25]:

ϑqe = arccos(xqe), qe = 0, . . . , Qe − 1, (4.34a)

ϕqa =
2πqa
Qa

, qa = 0, . . . , Qa − 1, (4.34b)
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Figure 4.4. Quadrature weights on the 2-sphere employed in this thesis work. Only the
weights along co-elevation angle are shown. For a fixed co-elevation angle
the weights along azimuth angle are identical.

while the corresponding weights are [1, Ch.25]:

wqe =
2

(1− x2qe)(∂PQe(x)/∂x|x=xqe
)2
, wqa =

2π

Qa
. (4.35a)

The Chebyshev and Gauss-Legendre sampling grids are illustrated in Fig.

4.3 while the corresponding weights along co-elevation are shown in Fig.

4.4.
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In the next section, a novel computationally-efficient method for finding

the DVSHT is described. It is an additional contribution to the work in

[IV, V, VI]. The method is based on the equivalence matrix and assumes

an equiangular sampling scheme such as (but not necessarily) the Cheby-

shev rule. The equivalence matrix provides more insight into discrete

spherical harmonic transforms. It is also shown that the equivalence ma-

trix contains the coefficients of the Legendre polynomials, thus facilitating

the computation of the Gauss-Legendre sampling grid and weights.

4.4 Equivalence matrix

Vector spherical harmonics may be written in terms of a 2-D Fourier se-

ries [IV, V, VI]. In a matrix-vector notation, the coefficients of such a de-

composition are contained in a matrix that is called equivalence matrix

[IV]. The equivalence matrix plays a fundamental role in numerous ap-

plications that deal with data on a spherical manifold including harmonic

analysis and spectral estimation on the sphere, measurement-based radio

channel modeling [133,138], 3-D beamforming, and related array process-

ing tasks [80]. The equivalence matrix is an original contribution of this

thesis work. It is proposed and further studied in the following publi-

cations [IV, V, VI]. This section describes the key concepts and results

regarding the equivalence matrix while Chapter 5 considers such a quan-

tity in the context of computationally-efficient signal processing methods

for arbitrary array geometries.

The equivalence matrix shows that both the LS and the DVSHT based

array sampling matrix estimators, described in Section 4.3, may be writ-

ten in terms of 2-D Fourier basis. Such estimators may be implemented

using the 2-D FFT given that an equiangular sampling scheme is em-

ployed. A by-product of such a result is that a novel fast spherical har-

monic transform that is based on the 2-D FFT may be derived. This is an

important result since many of the applications employing discrete spher-

ical harmonic transforms may take full advantage of the robustness and

efficiency of fast Fourier transform based computations. The equivalence

matrix may also be employed in order to reformulate wavefield modeling

and manifold separation in terms of 2-D Fourier basis. Such a result gives

a rigorous theoretical foundation for using the 2-D effective aperture dis-

tribution function (EADF) in any array processing application. The 2-D

EADF is a 2-D DFT of the “full-periodic” array calibration matrix. It is
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widely used in measurement-based radio channel modeling as well as in

related array processing tasks [42,43,84,86,125,133].

4.4.1 Concepts and definitions

Let yθ(ϑ, ϕ) ∈ C
L×1 and yφ(ϑ, ϕ) ∈ C

L×1 be composed of vector spherical

harmonics up to level L, or index L = 2L2 + 4L. Also, let d(ϑ, ϕ) ∈ C
M×1

denote a vector composed of 2-D Fourier basis, where M = (2L + 1)2.

Such a vector may written as d(ϑ, ϕ) = d(ϕ)⊗ d(ϑ), where d(ϑ) ∈ C

√M×1

and d(ϕ) ∈ C

√M×1 are Vandermonde vectors comprised of 1-D Fourier

basis in co-elevation and azimuth angles, respectively3. Vector spherical

harmonics and 2-D Fourier basis are related as follows [IV, V, VI]:

yθ(ϑ, ϕ) = Ξθ d(ϑ, ϕ), yφ(ϑ, ϕ) = Ξφ d(ϑ, ϕ), (4.36)

where matrix Ξ̄ = [Ξθ, Ξφ] ∈ C
L×2M is known as equivalence matrix [IV].

A vector spherical harmonic of mode m and degree � may thus be written

as a weighted double sum up to Fourier modes (2� + 1) and (2m + 1) in

co-elevation and azimuth angles, respectively.

The equivalence matrix may be found in a closed-form or numerically

from recurrence expressions [V], [Appx. A.2]. The latter approach is more

attractive from a computational viewpoint since it requires only linear op-

erations. In finite precision arithmetic, recurrence expressions may suffer

from error propagation but many methods for preventing such numerical

instabilities can be found in the literature; see [44] and references therein.

Consider the following three-term recurrence expressions [V]:

cm�+1 =
2�+ 1

2(�−m+ 1)
c̄m� − �+m

�−m+ 1
c̄m�−1 (4.37a)

cm+1
� = J�

[
j(�−m)c̄m� − 2j(�+m)c̄m�−1

]
, (4.37b)

where vectors c̄m� ∈ C
(2�+3)×1 and c̄m�−1 ∈ C

(2�+3)×1 are given by:

c̄m� = [0, 0, cm
T

� ]T + [cm
T

� , 0, 0]T , c̄m�−1 = [0, 0, cm
T

�−1, 0, 0]
T . (4.38)

The recurrence expressions in (4.37) may be initialized with c00 = 1 and

c01 = [(1/2), 0, (1/2)]T , while J� ∈ N
(2�+1)×(2�+3) is a selection matrix that

can be found in [V]. Also, let matrices Ze,Za ∈ C
(L/2+1)×√M be given as

3The dimensions of vectors d(ϑ) and d(ϕ) are assumed identical for the sake of
clarity. Hence,

√
M is an integer. The results in this thesis work are equally

valid for 1-D Fourier vectors with nonidentical dimensions.
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follows [V, VI]4,5:

Ze =
[
c00

... · · ·
... cLL

]T
, (4.39a)

Za =
[
1

... I3
... · · ·

... I√M

]T
. (4.39b)

Similarly, let matrix Z̃e ∈ C
(L/2+1)×√M be given by:

Z̃e =
[
c̃00

... · · ·
... c̃LL

]T
, (4.40)

where c̃ ∈ C
(2�+1)×1 is found from the following expression:

c̃m� = [0, I2�+1,0]

[
j
4
(�−m+ 1)(�+m)c̄m−1

� +
j
4
c̄m+1
� +

m

2
c̄m�

]
, (4.41)

where m and � denote the mode and level indices, respectively.

The equivalence matrix Ξ̄ ∈ C
L×2M may be written in terms of the above

matrices as follows:

Ξ̄ =

[
CLJ1

⎡⎣ J2(Za ⊗CyZ̃e)

J2(Za ⊗CyZeCe)

⎤⎦
︸ ︷︷ ︸

Ξθ

, CLJ1

⎡⎣−J2(Za ⊗CyZeCe)

J2(Za ⊗CyZ̃e)

⎤⎦
︸ ︷︷ ︸

Ξφ

]
, (4.42)

where CL ∈ R
L×L and Ce ∈ C

√M×√M denote diagonal matrices contain-

ing the normalization coefficients 1/
√
�(�+ 1), � = 1, . . . , L in (4.18) and

the following vector [−j(
√
M− 1)/2, . . . , 1, . . . , j(

√
M− 1)/2]T , respectively.

Moreover, J1 ∈ R
L×(L+2) denotes a selection matrix given by:

J1 =
[
0

... J3
... 0

... J4

]
, (4.43)

where J3 ∈ N
L×L/2 and J4 ∈ N

L×L/2 are sparse matrices containing a sin-

gle ’1’ in all of the columns and in each ’odd’ or ’even’ row, respectively.

Finally, the diagonal matrix Cy ∈ C
(L/2+1)×(L/2+1) and the selection ma-

trix J2 ∈ N
(L/2+1)×(L/2+1)2 in (4.42) may be found in [V].

The equivalence matrix in (4.42) may be computed once in an offline

manner, stored, and used when needed by appropriate selection of its

columns and rows [V]. Such an approach may require a large amount

of storage capacity when L � 1 but it is computationally efficient, espe-

cially in cases when the equivalence matrix is used often. Note also that

the equivalence matrix is sparse since the number of nonzero elements is

4Note that
√
M is an integer. Note also that L is even so that L/2 is an integer

as well.
5Note that matrix Za is a concatenation of identity matrices. The zero entries
of matrix Za that are needed in order to have consistent dimensions are not
explicitly written for notational convenience.
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Figure 4.5. Illustration of the structure and sparseness of the equivalence matrix for
L = 20. Dark entries denote nonzero elements. Typically, less than 2% of all
the elements composing the equivalence matrix are nonzero.

O(L1.5) [V]. Typically, less than 2% of all the entries of the equivalence ma-

trix are nonzero. This follows from the observation that the equivalence

matrix may be understood as the 2-D DFT of the “full-periodic” vector

spherical harmonics; see [Appx. A.2] for details. Making vector spheri-

cal harmonics “full-periodic”, which may be understood as extending such

basis functions onto the torus, introduces redundancy in the angular do-

main which is translated into sparseness in the 2-D Fourier domain. The

sparsity of the equivalence matrix is a key property for improving the

computational complexity of the various methods employing Ξ̄, including

the fast vector spherical harmonic transform proposed in Section 4.4.4.

Figure 4.5 illustrates the structure and sparseness of Ξ̄.

4.4.2 Wavefield modeling and manifold separation based on 2-D
Fourier basis

Expressions for the sampling matrix estimators, given in Section 4.3, that

are based on the 2-D fast Fourier transform may be derived using the

equivalence matrix. Also, wavefield modeling and manifold separation

may be re-parameterized in terms of 2-D Fourier basis as well as equiva-

lence matrix. In the following, it is assumed that array calibration mea-

surements employ an equiangular sampling grid.

Let Bθ ∈ C
N×2(Q−Qa) and Bφ ∈ C

N×2(Q−Qa) denote the full-periodic ar-

ray calibration matrices corresponding to Bθ and Bφ, respectively. The
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term “full-periodic” means that the array calibration matrices (Bθ and

Bφ) are extended in a manner that the measured co-elevation angle be-

comes periodic with period 2π. Let ϑ̃ ∈ [0, 2π) denote such an extended, or

periodic, co-elevation angle, and note that the standard array calibration

matrices Bθ and Bφ are not periodic in co-elevation since the standard

co-elevation angle is defined as ϑ ∈ [0, π]. The full-periodic calibration

matrices Bθ and Bφ may be obtained by two consecutive calibration mea-

surements or directly from Bθ and Bφ. The latter approach is more con-

venient since it does not require additional calibration measurements. In

particular, the full-periodic calibration matrices may be obtained by mir-

roring the standard calibration measurements in the south-pole, rotating

the measurements in azimuth by π, and shifting the phase of the data by

180◦. Algebraically, such an operation may be accomplished as Bθ = BθR,

and similarly for Bφ, where matrix R ∈ N
Q×2(Q−Qa) is given by:

R = (IQa ⊗ [IQe , 0]) +

(
IQa ⊗

[
0, −

[
0, ĨQe−2,0

]T])
. (4.44)

Matrix R may be understood as extending a function on the 2-sphere onto

the torus.

The least-squares estimator of the array sampling matrix in (4.28) may

now be written as follows [Appx. A.3]:

Ĝlse =
[BθW lseFHJ , BφW lseFHJ

]︸ ︷︷ ︸
2-D FFTs

Ξ̄H

×
(
Ξ̄
(
I2 ⊗ JTFRTC2RFHJ

)
Ξ̄H

)−1
, (4.45)

where F ∈ C
2(Q−Qa)×2(Q−Qa) denotes a 2-D discrete Fourier transform

matrix. In (4.45), matrices W lse ∈ R
2(Q−Qa)×2(Q−Qa) and C ∈ R

Q×Q denote

diagonal weighting matrices, and J ∈ N
2(Q−Qa)×M denotes a selection

matrix, respectively. These matrices are described in detail in [Appx. A.3].

Note that the matrix product in the right-hand side of (4.45) is full-rank.

Similarly, the DVSHT-based array sampling matrix estimator in (4.30)

can also be written as follows [Appx. A.3]:

Ĝdvsht =
[BθWdvshtFHJ , BφWdvshtFHJ

]︸ ︷︷ ︸
2-D FFTs

Ξ̄H , (4.46)

where the diagonal matrix Wdvsht ∈ R
2(Q−Qa)×2(Q−Qa) is composed of

quadrature weights such as the Chebyshev weights in (4.33a). Details

are given in [Appx. A.3].

Expressions (4.45) and (4.46) show that both least-squares and DVSHT-

based sampling matrix estimators may employ the 2-D fast Fourier trans-

form, thus making such methods amenable to practical implementation in
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any digital signal processor (DSP). Also, (4.46) gives more insight into the

well-known discrete transform for vector spherical harmonics [12,42,78].

In particular, the DVSHT may be understood as inherently making the

spherical data full-periodic, followed by a weighted 2-D DFT and a map-

ping from the Fourier to the spherical harmonic spectra. These observa-

tions hold true for any equiangular sampling grid, that includes at least

one of the poles, and it is not restricted to the Chebyshev rule. Expres-

sion (4.46) is a key result in the novel fast spherical harmonic transform

described in Section 4.4.4.

Another important consequence of expression (4.45) is that most of qua-

drature rules that are based on equiangular grids typically employ more

samples than necessary in order to avoid aliasing. For example, the Cheby-

shev rule requires Qe = 2L+3 samples in co-elevation angle so that alias-

ing may be avoided [12, 42, 119]. However, one may observe from (4.45)

that such a requirement follows from the inherent convolution between

the “full-periodic” data (Bθ,Bφ) and the corresponding diagonal weight-

ing matrix Wdvsht. Since the bandwidth of (Bθ,Bφ) in the 2-D Fourier

domain is M = (2L + 1) × (2L + 1) [IV, V, VI], the Chebyshev rule needs

only to consider Qe = L + 1 points in order to avoid aliasing6. Hence, a

reduction of the number of samples by more than half is obtained. This is

the reasoning behind the recent quadrature rule proposed in [101]. How-

ever, the method in [101] employs specific quadrature weights while the

aforementioned observations hold for any quadrature rule that employs

an equiangular grid. A detailed relationship between this thesis work

and the method proposed in [101] is established in Section 4.4.4.

A bijective mapping between the array sampling matrix and the 2-D

Fourier spectra of the extended (or full-periodic) array steering vectors

ãθ(ϑ̃, ϕ) ∈ C
N×1 and ãφ(ϑ̃, ϕ) ∈ C

N×1 is obtained by employing the equiv-

alence matrix as well [IV, V, VI]:

G Ξ̄ = Φ, G = ΦΞ̄†. (4.47)

Here, Φ ∈ C
N×2M is composed of the 2-D Fourier spectra of the extended

array steering vectors as follows Φ = [Φθ,Φφ]. In particular, Φθ ∈ C
N×M

and Φφ ∈ C
N×M denote the 2-D Fourier spectrum of ãθ(ϑ̃, ϕ) and ãφ(ϑ̃, ϕ),

respectively. Note that matrices Bθ and Bφ may be understood as the cal-

ibration data of ãθ(ϑ̃, ϕ) and ãφ(ϑ̃, ϕ), respectively. Figure 4.6 illustrates

6Note that extending a function on the sphere onto the torus nearly doubles the
number of samples.
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Periodic
Full

Sphere

Torus

Vector Spherical Harmonic Transform

2−D Fourier Transform

aφ(θ, φ) aθ(θ, φ)

ãφ(θ̃, φ) ãθ(θ̃, φ)

G

Ξ̄

ΦθΦφ

Figure 4.6. Block diagram illustrating the relationship among array steering vectors, ex-
tended steering vectors, and their spectra. The equivalence matrix provides a
bijective mapping between spherical harmonic spectra and 2-D Fourier spec-
tra.

the relationships among array steering vectors, extended steering vectors,

and their spectra.

The result in (4.47) shows that a function defined on the 2-sphere and

bandlimited on the spherical harmonic domain is associated with a unique

extended function defined on the torus and bandlimited on the 2-D Fourier

domain. Moreover, their spectra are related in a bijective manner by the

equivalence matrix. Even though matrix Φ has more elements than ma-

trix G, i.e. 2NM > NL, the former may be uniquely identified by NL
coefficients [IV, V, VI]. This follows from the result that the rows of Φ

span (or are contained in) the row-space of the equivalence matrix [IV, V,

VI]:

R{Φ} ⊆ R{Ξ̄}. (4.48)

Note that the dimension of R{Ξ̄} is L. The following results also follow

from (4.48) [IV, V, VI]:

ΦPΞ̄ = Φ, ΦP ⊥̄
Ξ = 0, (4.49)

where PΞ̄ ∈ C
2M×2M is an orthogonal projection matrix onto the row-

space of the equivalence matrix, and it is given by PΞ̄ = Ξ̄†Ξ̄. Similarly,

P ⊥̄
Ξ

= IM − PΞ̄ is a projection matrix onto the orthogonal complement of

R{Ξ̄}. Note that both PΞ̄ and P ⊥̄
Ξ

are idempotent and Hermitian matrices.

The structure of Φ, expressed in (4.48) and (4.49), may be understood as

the result of extending a function defined on the 2-sphere onto the torus

since such an extension introduces redundancy.

Another result that follows from the equivalence matrix consists in writ-

ing the manifold separation in (4.22) as follows [IV, V, VI]:

a(ϑ, ϕ, γ, β) = [Φθ,Φφ] (I2 ⊗ d(ϑ, ϕ))v(γ, β). (4.50)
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Note that (4.50) is a decomposition of the array steering vector defined on

a spherical manifold in terms of 2-D Fourier basis. Similarly to the array

sampling matrix G, also Φθ and Φφ may be found in a closed-form given

that an algebraic model for the array steering vector is known. However,

a numerical method for finding Φ may be more useful in practice since

it does not rely on closed-form expressions for array steering vectors. In

particular, matrix Φ in (4.50) may be estimated from array calibration

measurements using the following constrained least-squares estimator

(CLSE) [69, Ch. 8], [53]:

Φ̂clse = B(I2 ⊗D†)P Ξ̄, (4.51)

where D ∈ C
M×Q is a matrix composed of 2-D Fourier basis, and it is

given by:

D =
[
d(ϑ1, ϕ1), . . . ,d(ϑQe , ϕQa)

]
. (4.52)

Moreover, matrix P Ξ̄ ∈ C
2M×2M in (4.51) ensures that Φ̂clse satisfies the

equality constraint in (4.49). Such a matrix is given by:

P Ξ̄ = I2M − (P ⊥̄
Ξ (I2 ⊗ (DDH)−1)P ⊥̄

Ξ )†(I2 ⊗ (DDH)−1). (4.53)

In case of calibration measurement noise that is i.i.d. zero-mean complex-

circular Gaussian distributed, Φ̂clse is statistically efficient in the sense

that it achieves the constrained CRB [53].

An important observation is that array processing methods may now

employ the steering vector model in (4.50) and exploit the convenient Van-

dermonde structure of d(ϑ, ϕ) regardless of the array geometry or nonide-

alities. This is significantly different from the array mapping techniques

described in Chapter 3. In particular, the accuracy of array mapping tech-

niques is limited by the number of elements comprising the real sensor

array, and degrades rapidly with increasing sector-size. However, the ac-

curacy of wavefield modeling and manifold separation is limited by the

variance of the calibration measurement noise, and not by the number of

array elements. Typically, the number of columns of the sampling matrix

found by calibration measurements is much larger than the number of

array elements. Indeed, in case the sampling matrix is found in a closed-

form, wavefield modeling and manifold separation can be as accurate as

desired since the number of columns of the sampling matrix can be chosen

freely. The cost is an increase of the computational complexity of signal

processing methods. Finally, it is important to emphasize that the sam-

pling matrix is not sector-dependent since it denotes the spherical har-

64



Wavefield modeling and manifold separation

monic coefficients of the array elements. Recall that spherical harmon-

ics are global rather than local orthogonal basis functions, and therefore

avoid sector-by-sector processing.

4.4.3 Relationship to effective aperture distribution function

The 2-D effective aperture distribution function (EADF) is a 2-D discrete

Fourier transform of the “full-periodic” array calibration matrices Bθ and

Bφ [86]. The 2-D EADF is thus an estimate of the 2-D Fourier spectra

of the extended array steering vectors ãθ(ϑ̃, ϕ) and ãφ(ϑ̃, ϕ). The EADF

has been widely used in measurement-based radio channel modeling and

related array processing tasks [42, 43, 84–86, 125, 132–134]. A decompo-

sition of the extended array steering vector in 2-D Fourier basis has also

been employed in direction-finding applications based on power measure-

ments [94–96].

However, a rigorous theoretical analysis regarding the bandlimited as-

sumption of sensor arrays in the 2-D Fourier domain and convergence rate

of such an expansion has not been considered in the aforementioned re-

search work. The results in [IV, V, VI], and in particular the equivalence

matrix, overcome such a limitation by establishing a relationship between

the array sampling matrix G and 2-D Fourier spectrum Φ of the extended

array steering vector. In particular, a sensor array that is modeled by a

sampling matrix composed of L columns may be equally described (with

the same modeling error) by matrix Φ, the latter being composed of addi-

tional (6L2 + 4L+ 2) columns [IV, V, VI].

The 2-D EADF does not exploit the structure of matrix Φ, expressed

in (4.48)-(4.49), and therefore it is not a statistically efficient estimator

[V]. A simple approach for reducing the estimation variance of the EADF

consists in employing the equivalence matrix. In particular, let the 2-D

EADF be written as

Φ̂eadf = [Bθ,Bφ](I2 ⊗FHJ), (4.54)

where F ∈ C
2(Q−Qa)×2(Q−Qa) and J ∈ N

2(Q−Qa)×M denote a unitary 2-D

DFT matrix and a selection matrix, respectively. The estimation variance

of (4.54) may be reduced by projecting Φ̂eadf onto the row-space of the

equivalence matrix as follows [V]:

Φ̂Ξ̄ = Φ̂eadfPΞ̄. (4.55)

The estimation variance of (4.55) is strictly smaller than that of (4.54)

[V]. This is because the 2-D DFT does not exploit the structure of the 2-D
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Fourier spectrum of the extended data (Bθ,Bφ), expressed in (4.48)-(4.49).

Moreover, the estimator Φ̂Ξ̄ is computationally more attractive than that

in (4.51) since it may be implemented by the 2-D FFT. However, the esti-

mator Φ̂clse in (4.51) is the method of choice when statistical optimality is

the goal.

4.4.4 Fast vector spherical harmonic transform by 2-D FFT

A novel computationally efficient discrete vector spherical harmonic trans-

form may also be derived by using the equivalence matrix [V, VI]. Compu-

tational advances in discrete spherical harmonic transforms have been an

intensive field of research for the past two decades [27,32,59,78,101,140].

Many areas of engineering deal with data on a spherical manifold, and a

computationally-efficient solution to harmonic analysis on the 2-sphere

is in some cases the only feasible approach to process the acquired data.

Fields of signal processing where data are defined on the 2-sphere include

geodesy [12, 175], radioastronomy and cosmology [17, 89], measurement-

based radio channel modeling [133, 138], 3-D beamforming and related

array processing tasks [80].

Research efforts towards a fast spherical harmonic transform have been

mainly focused on computationally-efficient solutions for associated Leg-

endre functions. Indeed, a simple separation of variables makes it possi-

ble to employ the fast Fourier transform in azimuth-angle for each point

in co-elevation. Such an approach assumes that an equiangular grid in

azimuth is employed. Even though fast spherical harmonic transforms

for non-equidistant sampling do exist [82], they are typically approximate

quadrature rules and may be numerically unstable. Most of fast spherical

harmonic transforms thus employ an equiangular grid in both azimuth

and co-elevation angles [32,59,78,102]. The most efficient method for dis-

crete spherical harmonic transform has a complexity of O(L2 log2 L) [59].

However, such a technique assumes that the bandwidth of the signals un-

der consideration is a power of two. Moreover, the technique in [59] is

known to be numerically unstable [78]. Indeed, fast spherical harmonic

transforms that are exact and known to be stable are still O(L3) [78].

The fast spherical harmonic transform that is obtained by employing

the equivalence matrix is also O(L3) [V, VI]. Nonetheless, it allows one

to use the fast Fourier transform in both azimuth and co-elevation angles

given that an equiangular grid is employed. Even though the complex-

ity remains O(L3), using the 2-D FFT leads to significant computational
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Table 4.1. Summary of the fast vector spherical harmonic transform based on the equiv-
alence matrix.

Step 1: Acquire Q samples of both orthogonal tangential components

of a vector-valued function [bθ(ϑ, ϕ), bφ(ϑ, ϕ)]
T . Denote the

sampled components by bθ ∈ C
Q×1 and bφ ∈ C

Q×1.

Step 2: Obtain the “full-periodic” data as bθ = RTbθ and bφ = RTbφ,

and weight the data using the diagonal matrix Wdvsht.

Step 3: Take the 2-D fast Fourier transform as f̃θ = FFT2{Wdvshtbθ}
and f̃φ = FFT2{Wdvshtbφ}.

Step 4: Select the M Fourier coefficients as fθ = JT
1 f̃θ and fφ = JT

1 f̃φ.

Step 5: Obtain the vector spherical harmonic coefficients as g =

Ξ̄∗[fT
θ ,f

T
φ ]

T .

savings in applications where a few hundreds coefficients are relevant,

such as in array processing. Harmonic analysis on the sphere using the

2-D FFT is also convenient from an implementation viewpoint and leads

to improved numerical stability. Table 4.1 summarizes the proposed fast

vector spherical harmonic transform.

The proposed fast vector spherical harmonic transform has a complex-

ity of O(Q logQ) given that Q � L. The latter condition means that the

number of samples Q in the 2-sphere is much larger than the bandwidth

L of the observed function. Note that no oversampling may be needed

in noise-free scenarios or in cases where the bandwidth of the observed

function is known. In cases where the observations are corrupted by mea-

surement noise, or the bandwidth of the function is unknown and needs to

be estimated by model order selection methods, oversampling is usually

employed. Typically, oversampling leads to reduced estimation variance.

Array calibration measurements usually oversample the sensor array un-

der consideration due to the aforementioned reasons [55,84].

The idea of using the 2-D fast Fourier transform in harmonic analy-

sis on the sphere goes back to [27]. However, the method in [27] is ap-

proximate and may lead to discontinuities. Perhaps the first contribution

establishing a relationship between spherical harmonic spectra and 2-D

Fourier spectra through a “full-periodic” extension of the function defined

on the sphere can be found in [140]. It is important to emphasize that

the equivalence matrix proposed in this thesis work was found in an in-

dependent manner from the result in [140]. Moreover, the work in [140]

is restricted to scalar-fields while the equivalence matrix is valid for both
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scalar and vector-fields. Note that vector-fields are of high-importance in

signal processing using antenna arrays and radio-frequency signals. Also,

the structure of the 2-D Fourier spectrum of the extended function is not

addressed in [140]. Exploiting such a structure is crucial in obtaining

minimum variance estimates, as described in the previous section.

More recently, a novel sampling rule on the 2-sphere has been proposed

that has remarkable connections with the equivalence matrix [101]. In-

deed, the work in [101] is based on a representation of Wigner D-functions

in terms of Fourier basis [55, Appx. A2]. Since Wigner D-functions (also

known as Wigner D-matrix) are identical, up to a normalization term,

to spherical harmonics [79], the coefficients Δ�
m′m used in [101] may be

understood as being the elements of the equivalence matrix; see [Appx.

A.2] for details. The work in [101] also leads to a fast spherical harmonic

transform with a complexity of O(L3). However, the method in [101] em-

ploys specific quadrature weights while the technique proposed in Table

4.1 is applicable regardless of the quadrature weights, including those

in [101]. This is important since one may employ the 2-D FFT without

compromising the statistical performance or optimality of the estimated

spherical harmonic coefficients. Recall that the error covariance matrix of

the estimators based on the DVSHT depend on the employed quadrature

weights.

4.5 Array calibration example

A practical example illustrating the contributions in this chapter is now

given by considering a typical array calibration task. Let Bθ and Bφ de-

note the calibration matrices of the 5-elements inverted-F antenna array

(IFA), illustrated in Fig. 2.4-2. Assume that calibration measurements

are taken using an equiangular grid. Consider that an estimate of the

corresponding array sampling matrix is obtained from the acquired cali-

bration matrices by a discrete vector spherical harmonic transform, and

denote it by Ĝdvsht. Similarly, let Φ̂Ξ̄ denote the constrained estimator of

the 2-D Fourier spectrum of the 5-elements IFA.

Figure 4.7 illustrates the estimation results for Ĝdvsht and Φ̂Ξ̄, in terms

of normalized power for three calibration measurement scenarios: 1) Q =

35 × 34 calibration points with SNRcal = 20dB; 2) Q = 35 × 34 calibra-

tion points with SNRcal = 30dB; and Q = 61 × 60 calibration points with

SNRcal = 30dB. Figure 4.8 illustrates the corresponding MSEs for the
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Ĝdvsht: 30dB, 61× 60

(a) Estimates of the array sampling matrix based on discrete vector

spherical harmonic transform.
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(b) Constrained estimates of the 2-D Fourier spectrum.

Figure 4.7. Illustration of estimates obtained by Ĝdvsht and Φ̂Ξ̄, in terms of normalized
power, for three calibration measurement scenarios. Coefficients for large
levels/modes may be discarded since their power is negligible compared to
the estimation variance.

third calibration measurement scenario, as a function of the number of

columns employed by the estimators in order to reconstruct the array

steering vector.
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Figure 4.8. Illustration of the mean-squared-error obtained from the sampling matrix
estimator based on DVSHT, constrained estimator of the 2-D Fourier spec-
trum, and array calibration matrix. The calibration measurement scenario
is given by Q = 61 × 60 calibration points with SNRcal = 30dB. Truncating
the sampling matrix at �opt = 10 improves the MSE in comparison to the
array calibration matrix by ∼ 15dB. Employing manifold separation in array
calibration measurements may be understood as denoising the calibration
data.

The definitions of normalized power used in Fig. 4.7 are given by:

P (�) =
1

4�+ 2

2�2+4�∑
ξ=1

∥∥∥[Ĝ]ξ

∥∥∥2 , (4.56)

P (m) =
1

2
√
M

√M∑
ξ=1

∥∥∥[Φ̂θ]m+M+(ξ−1)
√M

∥∥∥2 + ∥∥∥[Φ̂φ]m+M+(ξ−1)
√M

∥∥∥2 , (4.57)

where M = (
√
M+ 1)/2. Also, mean-squared-error is defined as follows:

MSE =
1

4π
E

{∫
S2

‖aθ(ϑ, ϕ)− âθ(ϑ, ϕ)‖2

+ ‖aφ(ϑ, ϕ)− âφ(ϑ, ϕ)‖2dΩ
}
, (4.58)

=
1

4π
E

⎧⎨⎩
+∞∑
ξ=1

‖[G]ξ − [Ĝ]ξ‖2
⎫⎬⎭ , (4.59)

where âθ(ϑ, ϕ) =
∑L

ξ=1[Ĝ]ξ[yθ(ϑ, ϕ)]ξ, and similarly for âφ(ϑ, ϕ). Finally,

calibration signal-to-noise-ratio, denoted by SNRcal, is given by:

SNRcal =
σ2
s

Nσ2
cal

1

4π

∫
S2

‖aθ(ϑ, ϕ)‖2 + ‖aφ(ϑ, ϕ)‖2dΩ (4.60)

=
σ2
s

Nσ2
cal

‖G‖2F
4π

. (4.61)

Results show that the response of real-world antenna arrays, includ-

ing their nonidealities, may be equally well described by a discrete vector
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spherical harmonic transform of the calibration matrix or by projecting

the 2-D EADF onto the row-space of the equivalence matrix. These esti-

mators may outperform the array calibration matrix, in terms of MSE, by

an appropriate selection of the columns of Ĝ and Φ̂Ξ̄. Such a selection may

be done in a rigorous manner and free of heuristic design-parameters by

employing model order selection methods [22,68,126,147]. The main the-

oretical contributions of this thesis work, namely the equivalence matrix

and the superexponential decay of the sampling matrix for polarization

sensitive antenna arrays, are thus shown to facilitate denoising of array

calibration measurements as well as compressing the calibration data and

modeling the steering vector of real-world arrays.

4.6 Discussion

Wavefield modeling and manifold separation are important results in many

fields of engineering employing sensor arrays. The array output is decom-

posed into two independent parts: the coefficient vector depending on the

wavefield only and the sampling matrix depending only on the sensor ar-

ray, including nonideaities. Describing array nonidealities as well as the

array geometry and directional beampatterns of the array elements in

a nonparametric manner by the sampling matrix is convenient in array

processing. Indeed, such an approach overcomes the challenging task of

describing complex electromagnetic interactions among array elements in

a closed-form. These results allow for employing high-resolution and op-

timal array processing methods in real-world arrays with nonidealities.

Array calibration measurements do not limit the practical relevance of

wavefield modeling or manifold separation. The sampling matrix may

also be estimated from the array output in multipath channels given that

the spatial distribution of the wavefield is known. This is equivalent to

know the coefficient vector used in wavefield modeling. Also, the ratio-

nal behind auto-calibration methods may be employed for relaxing the

requirement of a fully known coefficient vector when estimating the sam-

pling matrix.

The superexponential decay of the sampling matrix is one of the most

important properties in wavefield modeling and manifold separation. It

is useful in a variety of tasks including array processing, calibration mea-

surements, MIMO systems, and indoor positioning [8, 70, 71, 117]. The

superexponential decay is a rigorous argument for considering that a few
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columns of the sampling matrix describe most of the array characteris-

tics including its nonidealities. Such a result also leads to denoising of

calibration measurements and data compression. The physical interpre-

tation of the superexponential decay is that of attenuating the coefficients

of the wavefield corresponding to spatial harmonics for increasing orders.

It may be understood as the well-known limit in resolution of sensor ar-

rays imposed by their finite aperture.

The equivalence matrix is useful in many areas of engineering dealing

with data on a spherical manifold. The ability to write vector spherical

harmonics in terms of an exact and finite 2-D Fourier basis expansion as

well as the one-to-one relationship among spherical harmonic spectra and

2-D Fourier spectra provides more insight into many of the well-known

discrete spherical harmonic transforms. The equivalence matrix proves

useful in array processing by enabling a reformulation of wavefield mod-

eling and manifold separation in terms of 2-D Fourier basis. This is im-

portant since array processing methods may exploit the computational

efficiency and widespread usage of the FFT regardless of the sensor ar-

ray geometry. Moreover, a rigorous theoretical justification for using the

2-D EADF in any array processing task as well as for improving its esti-

mation variance is obtained by employing the equivalence matrix as well.

Other important results that follow from the equivalence matrix include

a novel fast vector spherical harmonic transform and sampling theorems

for exact reconstruction on the 2-sphere.

Sector-by-sector processing on the sphere is not considered in this the-

sis work. However, it is important to emphasize that wavefield modeling

and manifold separation may also incorporate prior information regarding

the location of the sources. The resulting sampling matrix can be shown

to retain the superexponential decay property as well [28, 29, 29]. Note

also that spherical harmonics may be used in sector-by-sector process-

ing by using appropriate window functions [72]. Hence, the equivalence

matrix may be employed in related fast transforms [73]. This is useful

when calibration measurements may only be acquired on a limited an-

gular sector, for example. Even though wavefield modeling and manifold

separation as well as the equivalence matrix are by no means the only

approach to sector-by-sector processing or multi-resolution on the sphere,

the contributions of this chapter are certainly an attractive alternative to

the methods in [14,15,40,47,64,163,176].

In the next chapter, wavefield modeling and manifold separation as well
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as the equivalence matrix are employed in the context of computationally

efficient signal processing methods for arbitrary array geometries and in

the face of nonidealities.
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5. Signal processing methods for
arbitrary array geometries

High-resolution and optimal array processing methods are known to be

sensitive to misspecification of the array response [46, 77, 163]. These

may be due to mismodeling of array nonidealities, misplacement of ar-

ray elements, and uncertainties on the location and polarization of the

signal-of-interest (SOI). This chapter extends well-known array process-

ing methods in order to taken into account array nonidealities such as

mutual coupling, cross-polarization effects, and mounting platform reflec-

tions [I, II, VIII, III, VII]. The proposed methods are based on wavefield

modeling, manifold separation, and equivalence matrix.

The array processing methods proposed in this chapter extend the con-

ventional and Capon beamformers to azimuth, elevation and polarimetric

domains. Similarly, subspace methods including multiple signal classifi-

cation (MUSIC), root-MUSIC, and weighted subspace fitting (WSF) are

extended to angle and polarization estimation using manifold separation.

The proposed methods do not assume any specific array geometry. The

employed antenna array may have a regular geometry or be composed

of elements arranged on an arbitrary configuration. Also, the array el-

ements need not be identical and each of them may have an individual

directional beampattern. Note that the array steering vector, including

nonidealities, need not be known in a closed-form in order to achieve high-

resolution capability and optimal performance [II, VIII, III]. This is an im-

portant feature since cross-polarization effects and elements’ directional

beampatterns are extremely challenging to describe in a closed-form.

The equivalence matrix introduced in [V, VI] and in Chapter 4 allows

one to improve the computational complexity of the array processing meth-

ods that are based on manifold separation. Many optimization tasks

needed in array processing may exploit the fast Fourier transform and

polynomial rooting based computational methods. This is achieved with-
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out restricting the proposed methods to regular array geometries. For

example, the computationally-efficient root-MUSIC method may be ex-

tended to conformal or volumetric arrays in the face of nonidealities [II,

VIII, III].

This chapter also includes an expression for the widely-used stochastic

CRB for the DoA and polarization estimation problem that is based on

the equivalence matrix as well as manifold separation [VII]. Such an ex-

pression is particularly useful in assessing the performance achievable by

real-world antenna arrays.

5.1 Beamforming techniques

Beamforming refers to combining signals received or transmitted by sen-

sor arrays in order to separate radiating sources or users based on their

spatial locations. It amounts at steering energy to or from desired di-

rections and polarizations. Receive beamforming may be understood as

a spatial filter aiming at enhancing a signal-of-interest (SOI) while at-

tenuating interfering sources. Transmit beamforming aims at generating

a propagating wavefield so that the transmitted signals are coherently

combined only at the desired users. Receive and transmit beamform-

ing exploit the degrees-of-freedom provided by the spatial and polarimet-

ric domains in addition to temporal, waveform, and frequency diversity.

Beamforming finds applications in radar and sonar, wireless communica-

tions and radio channel modeling, audio processing, radio astronomy, and

many others [17, 80, 121, 160, 162]. This section considers receive polari-

metric beamforming in the context of wavefield modeling and manifold

separation. A survey on beamforming including many transmit schemes

can be found in [48,162].

Let wp ∈ C
N×1 and x(k) ∈ C

N×1 denote a beamformer weight vector

towards the pth source and the output of a polarization sensitive array,

as described in Chapter 2, respectively. The transmitted signal sp(k) ∈ C

may be estimated as follows:

ŝp(k) = wH
p x(k). (5.1)

Note that employing polarization sensitive arrays allows one to sepa-

rate co-located sources based on the polarization state of the transmitted

Electric-fields.

The polarimetric spatial spectrum P (ϑ, ϕ, γ, β) ∈ R describes the distri-
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bution of power around the antenna array in the 3-D Euclidean space in

terms of elevation and azimuth angles as well as polarization. The polari-

metric spatial spectrum may be used for direction-finding purposes and

to estimate the angle and polarization of the sources needed in many re-

ceive and transmit beamformers. An estimate of the polarimetric spatial

spectrum may be obtained from the beamformer weight vector as follows:

P̂ (ϑ, ϕ, γ, β) = wH(ϑ, ϕ, γ, β) R̂xw(ϑ, ϕ, γ, β), (5.2)

where R̂x ∈ C
N×N denotes the array covariance matrix estimate, de-

scribed in Chapter 2.

Beamformers may be classified either as data-independent or statisti-

cally optimum methods [162]. A common optimality criterion for beam-

formers is given by the array output SINR [46,162]:

SINRout =
σ2
soi|wHasoi|2
wHRi+nw

, (5.3)

where asoi ∈ C
N×1 and σ2

soi ∈ R denote the steering vector due to the SOI

and corresponding received power, respectively. Moreover, Ri+n ∈ C
N×N

denote the “interference-plus-noise” covariance matrix. Two widely used

beamformers are considered next in the context of wavefield modeling and

manifold separation, namely the conventional beamformer and the Capon

beamformer.

5.1.1 Conventional beamformer

The conventional beamformer, also known as Bartlett beamformer, is ar-

guably the simplest and most well-known beamforming method. It is a

data-independent beamformer and may be understood as a spatial (and

polarimetric) matched-filter aiming at equalizing the antenna gains as

well as coherently combining the output of an antenna array [80, 162].

The weight vector of the conventional beamformer, in the context of wave-

field modeling and manifold separation, matched to the angle (ϑp, ϕp) and

polarization (γp, βp) is [80,160], [VII]:

wbf(ϑp, ϕp, γp, βp) =
Φ(I2 ⊗ d(ϑp, ϕp))v(γp, βp)√
vH(γp, βp)N(ϑp, ϕp)v(γp, βp)

, (5.4)

where matrix N(ϑ, ϕ) ∈ C
2×2 is given by:

N(ϑ, ϕ) = (I2 ⊗ dH(ϑ, ϕ))ΦHΦ(I2 ⊗ d(ϑ, ϕ)). (5.5)

Note that matrix N(ϑ, ϕ) is positive-definite given that the polarization

sensitive array is unambiguous in the sense defined in Chapter 2.
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The polarimetric spatial spectrum estimated by the conventional beam-

former is:

P̂bf(ϑ, ϕ, γ, β) =
vH(γ, β)Mbf(ϑ, ϕ)v(γ, β)

vH(γ, β)N(ϑ, ϕ)v(γ, β)
, (5.6)

where matrix Mbf(ϑ, ϕ) ∈ C
2×2 is given by:

Mbf(ϑ, ϕ) = (I2 ⊗ dH(ϑ, ϕ))ΦHR̂xΦ(I2 ⊗ d(ϑ, ϕ)). (5.7)

Expression (5.6) is a generalized Rayleigh quotient, and may thus be

efficiently optimized by maximizing the largest eigenvalue μmax(ϑ, ϕ) ∈ R

of the matrix pencil (Mbf(ϑ, ϕ),N(ϑ, ϕ)) with respect to (ϑ, ϕ), as well as

finding the corresponding eigenvector umax(γ, β) ∈ C
2×1. Such a matrix

pencil involves (2×2) matrices, and therefore its eigenvalues/eigenvectors

may be found in a closed-form by solving the corresponding characteristic

polynomial of 2nd degree [151]. Moreover, maximizing the largest eigen-

value μmax(ϑ, ϕ) may be efficiently implemented by an FFT-based 2-D line

search in both azimuth and elevation angles [VII].

Assuming that a single source impinges on the sensor array, in the

presence of spatially white measurement noise, the conventional beam-

former maximizes the array output SINR in (5.3) [80], [49, Ch. 2]. There-

fore, the conventional beamformer is the deterministic maximum likeli-

hood estimator of the angle (ϑp, ϕp) and polarization (γp, βp) for a single

source [145, 146, 148]. However, the resolution of the conventional beam-

former is limited by the array aperture and does not improve with in-

creasing snapshots [80, 162]. Hence, it does not converge to the spatial

spectrum of the wavefield for a fixed array aperture. This is an important

limitation in applications employing array apertures in the order of one

wavelength.

5.1.2 Capon beamformer

The Capon beamformer, also known as minimum variance distortionless

response (MVDR) beamformer, is one of the most well-known optimum

beamformers [16, 48, 80, 92, 162], [49, Ch. 2], [143, Ch. 6]. It aims at

minimizing the array output power under a unit-gain constraint towards

the direction and polarization of the SOI. The weight vector of the Capon

beamformer, in the context of wavefield modeling and manifold separa-

tion, towards the angle (ϑp, ϕp) and polarization (γp, βp) is [21,46,80,162],

[VII]:

wcapon =
R̂−1

x Φ(I2 ⊗ d(ϑp, ϕp))v(γp, βp)

vH(γp, βp)Mcapon(ϑp, ϕp)v(γp, βp)
, (5.8)
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where matrix Mcapon(ϑ, ϕ) ∈ C
2×2 is given by:

Mcapon(ϑ, ϕ) = (I2 ⊗ dH(ϑ, ϕ))ΦHR̂−1
x Φ(I2 ⊗ d(ϑ, ϕ)). (5.9)

The polarimetric spatial spectrum estimated by the Capon beamformer

is [21,46,80,162], [VII]:

P̂capon(ϑ, ϕ, γ, β) =
1

vH(γ, β)Mcapon(ϑ, ϕ)v(γ, β)
, (5.10)

and its optimization typically requires an exhaustive 4-D search. How-

ever, a high-SINR approximation of (5.10) may be optimized efficiently

in a similar manner to that in (5.6) [21]. Such a result is a good ap-

proximation even at low and moderate SINRs. In particular, angle and

polarization estimates may be found by minimizing the determinant of

Mcapon(ϑ, ϕ), and finding the eigenvector umin(γ, β) ∈ C
2×1 corresponding

to the smallest eigenvalue of Mcapon(ϑ, ϕ) [21]. Since Mcapon(ϑ, ϕ) is a

(2 × 2) matrix its eigenvalues and eigenvectors may be found in a closed-

form. Moreover, minimizing the determinant of Mcapon(ϑ, ϕ) with respect

to (ϑ, ϕ) may be efficiently implemented by an FFT-based 2-D line search

in both azimuth and elevation angles [21].

The Capon beamformer maximizes the array output SINR in (5.3) given

that both array covariance matrix and array steering vector are fully

known [48, 162], [49, Ch. 2]. Indeed, for a scenario where a single source

impinges the antenna array in spatially white Gaussian noise, the follow-

ing relationship can be found wcapon ∝ wbf [46]. However, in scenarios

comprised of spatially interfering fields, the Capon beamformer typically

outperforms the conventional beamformer in terms of resolution as well

as in array output SINR. Even though the resolution of the spatial spec-

trum in (5.10) is limited by the array aperture, its resolution improves

for increasing snapshots and SINR [21, 106], [160, Ch. 9]. Figure 5.1 il-

lustrates the polarimetric spatial power spectra of the conventional and

Capon beamformers.

The performance of the Capon beamformer degrades significantly when

the array sample covariance matrix is ill-conditioned [18, 46, 92]. This

may be the case when the number of acquired snapshots is not sufficient

for building the rank of R̂x. In such cases a regularized sample covariance

matrix, denoted by R̃x, is typically used in (5.8) and (5.10) in place of R̂x.

In the context of array processing and Capon beamformer, a widely used

regularization method, known as diagonal loading, is given as follows

[18,23,46,48]:

R̃x = R̂x + λIN , (5.11)
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(a) Conventional beamformer. (b) Capon beamformer.

Figure 5.1. Polarimetric spatial power spectra of conventional beamformer and Capon
beamformer. Two uncorrelated point-sources, with an SNR = 20dB, are as-
sumed to impinge on the PSSPA depicted in Fig. 2.4-1 from ϑ = [30◦, 25◦]T

and ϕ = [60◦, 90◦]T . The polarization parameters of the sources are γ =

[10◦, 50◦]T and β = [0◦, 30◦]T . The Capon beamformer outperforms the con-
ventional beamformer in terms of resolution since the Capon beampattern is
close to the ideal Dirac-delta.

where λ ∈ R
+ is called loading factor. Diagonal loading may be under-

stood as artificially increasing the noise power. Such an approach im-

proves the condition number of the array sample covariance matrix, and

thus the resulting Capon beampattern, at the cost of making the Capon

beamformer less sensitive to weak interferences [18]. Typically, diagonal

loading also increases the width mainlobe of the resulting beampattern.

The loading factor in (5.11) is typically a user-design parameter but some

regularization techniques that find a suitable λ in a manner that is free

of design-parameters can be found in [33,34].

The Capon beamformer is also sensitive to misspecification of the ar-

ray steering vectors [46, 48, 92]. This may be due to array nonideali-

ties that are not considered by the steering vector model or inaccurate

DoA and polarization estimates of the SOI. Measurement noise in ar-

ray calibration may also deteriorate significantly the performance of the

Capon beamformer in terms of array output SINR [21], [VIII]. Employing

robust methods based on uncertainty sets, as described in Chapter (3),

in the context of wavefield modeling and manifold separation allows for

making the Capon beamformer robust to the aforementioned uncertain-

ties [21,48,93,98,168], [VIII]. In particular, the denoising of array calibra-

tion measurements obtained by exploiting manifold separation typically

leads to increased array output SINR of robust Capon beamformers. It is

important to note that robust Capon beamformers based on uncertainty

sets or worst-case performance optimization may be understood as finding

the optimal loading factor in (5.11) given a tolerable uncertainty between
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the actual and presumed steering vectors [48,93,98,168].

5.2 Subspace methods

Subspace methods exploit the eigenstructure of the array covariance ma-

trix and its sample estimate in estimating wavefield parameters [80],

[160, Ch. 9]; see also Chapter 2. In particular, the DoAs and polariza-

tion of the sources impinging on a sensor array may be estimated from the

eigenvectors and eigenvalues of the array sample covariance matrix. Typ-

ically, subspace methods outperform beamforming techniques in terms of

resolution and estimation variance [80]. Unlike beamforming techniques,

the resolution of subspace methods improves with increasing number of

snapshots. Moreover, subspace methods are computationally more attrac-

tive that optimal maximum likelihood approaches [110]. Even thought

maximum likelihood approaches outperform most subspace methods in

terms of estimation variance, especially in highly-correlated scenarios,

asymptotically statistically efficient subspace methods can also be found

in the literature [148,164].

Subspace methods typically rely on a low-rank model for the array out-

put. In particular, given that the number of array elements N and radi-

ating point-sources P satisfies P < N , the exact array covariance matrix

may be written as follows (see also Chapter 2) [80]:

Rx = UsΛsU
H
s +UnΛnU

H
n , (5.12)

where Us ∈ C
N×P ′ and Un ∈ C

N×(N−P ′) contain the eigenvectors of Rx

spanning the signal and noise subspaces while Λs ∈ R
P ′×P ′ and Λn ∈

R
(N−P ′)×(N−P ′) contain the corresponding eigenvalues on their diagonal.

Subspace methods are based on the result that the columns of Us span the

same subspace as the columns of A(ξ) (in the case of coherent signals Us

is contained in the subspace spanned by the columns of A(ξ)), and that

both Us and A(ξ) are orthogonal to Un. In the more practical case when

a sample estimate of the array covariance matrix is obtained, subspace

methods employ the corresponding estimates of the eigenvectors Ûs, Ûn

and eigenvalues Λ̂s, Λ̂s; see also Chapter 2.

The low-rank model in (5.12) is applicable when both point-source and

narrowband assumptions hold true. Subspace methods are thus para-

metric techniques, similarly to spectral estimation, unlike nonparametric

beamforming methods [143]. The impact of spatially distributed sources
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on subspace methods as well as the effects due to increasing bandwidth

of the signals can be found in [10, 141]. Subspace methods may also

be sensitive to modeling errors of the array steering vector [163]. This

may be due to array nonidealities that are challenging to represent in

a closed-form or calibration measurement noise. Such modeling errors

typically result in parameter estimates with large bias and excess vari-

ance [7,37,38,88,153,154,166].

In this section, two well-known subspace methods are considered in the

context of wavefield modeling and manifold separation, namely the MU-

SIC and weighted subspace fitting (WSF) methods. The usefulness of

wavefield modeling and manifold separation is twofold. Firstly, it is a con-

venient way of taking into account array nonidealities such as mutual cou-

pling, cross-polarization effects, and individual directional beampatterns

into subspace based array processing methods. Secondly, computationally-

efficient solutions for finding the DoAs and polarization of the sources may

be found, similarly to the case with ULAs.

5.2.1 Multiple signal classification (MUSIC)

The MUltiple SIgnal Classification (MUSIC) method is perhaps the most

widely-used and well-known subspace method in array processing [58,80,

129, 136, 144, 180], [160, Ch. 9]. Indeed, most of the research efforts in

subspace based array processing methods follow the seminal work in [136]

as well as Pisarenko’s method in [116]. The MUSIC method measures the

squared-length of the steering vectors projected onto the noise subspace of

the array sample covariance matrix. In particular, the MUSIC expression,

in the context of wavefield modeling and manifold separation, is given

by [36,136,173], [III, VII]:

fmusic(ϑ, ϕ, γ, β) =
1

vH(γ, β)Mmusic(ϑ, ϕ)v(γ, β)
, (5.13)

where matrix Mmusic(ϑ, ϕ) ∈ C
2×2 is given by:

Mmusic(ϑ, ϕ) = (I2 ⊗ dH(ϑ, ϕ))ΦHÛnÛ
H
n Φ(I2 ⊗ d(ϑ, ϕ)). (5.14)

Expression (5.13) is known as pseudo-spectrum since it is an index of or-

thogonality between a steering vector a(ξ) and the whole noise subspace

Ûn, rather than a power-spectrum.

The MUSIC estimates of DoA and polarization may be found efficiently

by minimizing the determinant of Mmusic(ϑ, ϕ), and finding the eigenvec-

tor umin(γ, β) ∈ C
2×1 corresponding to the smallest eigenvalue of (5.14)
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[36,115,173], [III, VII]. Such an approach may be understood as an asymp-

totic approximation to minimizing the smallest eigenvalue of Mmusic(ϑ, ϕ).

Typically, optimizing the determinant of an Hermitian matrix is more con-

venient than minimizing the smallest eigenvalue.

In particular, the determinant of Mmusic(ϑ, ϕ) may be written as follows

[III, VII]:

det{Mmusic(ϑ, ϕ)} = d̄H(ϕ)Cd̄(ϑ), (5.15)

where d̄(ϑ) ∈ C
(4
√M−3)×1 and d̄(ϕ) ∈ C

(4
√M−3)×1 denote Vandermonde

structured vectors composed of 1-D Fourier basis. Moreover, the coeffi-

cients matrix C ∈ C
(4
√M−3)×(4

√M−3) can be found in a computationally-

efficient manner as follows [VII, III]:

C = FFT2

{(N−P∑
i=1

∣∣∣IFFT2{Cφ
i

}∣∣∣2)�
(N−P∑

i=1

∣∣∣IFFT2{Cθ
i

}∣∣∣2)

−
∣∣∣N−P∑

i=1

IFFT2
{
Cφ

i

}
� IFFT2

{
ĨCθc

i Ĩ
}∣∣∣2}, (5.16)

where Cφ
i = ivec{[Ûn]

H
i Gφ} ∈ C

√M×√M and similarly for Cθ
i ∈ C

√M×√M.

Note that each FFT2/IFFT2 operation in (5.16) should be taken using

at least (4
√
M − 3) × (4

√
M − 3) points, and by zero-padding in order to

avoid aliasing. Expression (5.15) may be minimized in an efficient manner

using an FFT-based line search. The complexity of such an approach is

O(Q logQ) given that Q >> M and Q is a power of 2 [VII].

Expressions (5.15) and (5.16) may also be useful in optimizing the Capon

spatial spectrum (5.6). In particular, using the square-root factor of the

array sample covariance matrix in place of Ûn in (5.15) and (5.16) results

on a high SINR approximation to minimizing the smallest eigenvalue of

Mcapon(ϑ, ϕ) [21]. This may be understood by noting that the MUSIC

pseudo-spectrum and Capon spatial spectrum are related as follows [21]:

Pcapon(ϑ, ϕ, γ, β) →
1

σ2
i+n

fmusic(ϑ, ϕ, γ, β), when SINR → +∞, (5.17)

where the σ2
i+n is assumed fixed.

Once the angle estimates (ϑ̂, ϕ̂) of the P sources are found, the polariza-

tion parameters may be estimated as follows [173], [III, VII]:

γ̂p = arccos {[vp]1} β̂p = ∠[vp]2, p = 1, . . . , P, (5.18)

where vp = up
[uc

p]1
|[up]1| , and up ∈ C

2×1 denotes the eigenvector correspond-

ing to the smallest eigenvalue of Mmusic([ϑ̂]p, [ϕ̂]p). Note that the above

normalization of vector vp ensures that γ̂p ∈ R [173]. It is also important
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to emphasize that the eigenvector up may be found in a computationally-

efficient manner using either Rayleigh quotient iterations or Lanczos me-

thod [50]. In fact, the eigenvalues and eigenvectors of (2 × 2) matrices,

such as those of Mmusic(ϑ, ϕ), may be found in a closed-form.

5.2.2 Root-MUSIC

Root-MUSIC is a method for finding the P maxima of the MUSIC pseudo-

spectrum that is based on polynomial rooting [6]. Root-MUSIC is known

to have higher resolution than the spectral MUSIC [124]. However, it typ-

ically requires regular array geometries such as uniform linear arrays. In

the following, manifold separation is employed for finding the P maxima

of the polarimetric MUSIC pseudo-spectrum in (5.13) by polynomial root-

ing. It is assumed that the co-elevation angles of the sources are known.

Conversely, the azimuth-angles of the sources may be held fixed and the

co-elevation angles found by polynomial rooting. When both co-elevation

and azimuth angles are unknown one could employ the above procedure

in an alternating fashion. However, such an approach may require solving

of a large number of polynomials.

The root-MUSIC proposed in this thesis is applicable for antenna arrays

of arbitrary geometries, including nonidealities. It may be understood

as an extension of the element-space root-MUSIC [9] for polarimetric ar-

rays, and co-elevation angles. Using manifold separation overcomes the

requirement of uniform circular arrays in beamspace root-MUSIC and

sector-by-sector processing in interpolated root-MUSIC methods [7, 100,

173].

In particular, the P minima of det{Mmusic(ϑ0, ϕ)} in (5.15), for a fixed

co-elevation angle ϑ0, may be found from the roots of the following poly-

nomial:

p(z) = c2
√M−2z

2
√M−2, . . . , c1 z, c0, c−1 z

−1, . . . , c−(2
√M−2)z

−(2
√M−2),

(5.19)

where {cm ∈ C}−(2
√M−2)

m=2
√M−2

are the elements of vector c = Cd̄(ϑ0). Alterna-

tively, the P minima of det{Mmusic(ϑ, ϕ0)}, for a fixed azimuth-angle ϕ0,

may be found from the roots of a polynomial similar to (5.19) with coeffi-

cients taken from cH = d̄H(ϕ0)C.

The polynomial p(z) in (5.19) is a Laurent polynomial since its coeffi-

cients have the following property {cm = c∗−m}2
√M−2

m=0 [135]. This may be

understood by noting that Mmusic(ϑ, ϕ) in (5.13) is an Hermitian matrix,
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and the MUSIC pseudo-spectrum is real-valued. Indeed, Laurent polyno-

mials such as p(z) have a number of useful properties [135]. In particu-

lar, the roots of p(z) are so-called conjugate-reciprocal in the sense that

if z0 ∈ C is a zero of p(z) then 1/z∗0 also vanishes p(z). Furthermore, if

det{Mmusic(ϑ0, ϕ)} > 0, ∀ϕ then p(z) has (2
√
M − 2) zeros strictly inside

the unit circle (0 < |z| < 1), and similarly (2
√
M− 2) roots strictly outside

the unit circle.

One may thus proceed in a manner similar to the root-MUSIC for ULAs,

and estimate the DoAs from the phase-angles of the P roots closest to the

unit circle by discarding the (2
√
M− 2) zeros that lie strictly outside the

unit circle, for example. However, such an approach may be inefficient

since it requires finding all of the (4
√
M − 4) roots of (5.19)1. Typically,

roots of polynomials are found from the eigenvalues of the associated com-

panion matrix, and such an approach is O(n2) [11,112].

A more computationally-efficient method for finding the P roots clos-

est to the unit-circle consists in factorizing p(z) in (5.19) in terms of two

polynomials, each of them containing the roots inside and outside the

unit-circle separately [135, 181]. The P roots associated with the sources

may then be found from the “extreme eigenvalues” (largest or smallest

magnitude) of the associated companion matrix by means of Arnoldi it-

eration [50, Ch.9], [181]. Another approach for finding the P minima of

det{Mmusic(ϑ0, ϕ)} consists in determining the roots of a real-valued poly-

nomial [21], [VIII]. Such a method is particularly useful in nonstationary

environments since computationally efficient root tracking techniques for

real-valued polynomials can be found in [152], for example. Note that

the above observations are also applicable in finding the P minima of the

Capon spatial-spectrum in (5.10) [21], [VIII].

A comment regarding the Fourier-domain (FD) root-MUSIC is now in

place [129]. Such a method expresses the MUSIC null-spectrum in terms

of a polynomial in ϕ, similarly to (5.19). The FD root-MUSIC finds the

polynomial coefficients by sampling the MUSIC null-spectrum followed

by a discrete Fourier transform. Such an approach of obtaining the poly-

nomial coefficients may outperform the method based on manifold sep-

aration in (5.16) in terms of average-squared error. This may be un-

derstood by noting that the polynomial coefficients of the MUSIC null-

spectrum may be obtained from an auto-correlation of the array sampling

1As an example, for a polarimetric array with an aperture of one wavelength it
may be required to find 28 roots
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matrix [29]. Since the auto-correlation of the sampling matrix involves

all of the columns of G, a larger modeling error results from truncating G

prior to the auto-correlation operation, as it is done in manifold separa-

tion.

However, the approach followed by the FD root-MUSIC has two limi-

tations with respect to using manifold separation. Firstly, the pseudo-

spectrum of the FD root-MUSIC is not strictly positive and may take

negative values [129]. Consequently, one may not employ the polyno-

mial factorization described in [135, 181], and the FD root-MUSIC may

still require finding all of the (4
√
M − 4) roots in order to estimate the

DoAs. Secondly, when the array response is acquired from calibration

measurements, the polynomial coefficients obtained by using manifold

separation typically have a lower MSE than those found by the FD root-

MUSIC. This follows from the observation that the auto-correlation of a

zero-mean white complex Gaussian vector of dimension Q is Chi-squared

distributed with 2Q degrees-of-freedom, at the zero-lag. Therefore, trun-

cating the sampling matrix prior to the auto-correlation operation, as in

manifold separation, decreases the estimation variance of the polynomial

coefficients since such a truncation reduces the degrees-of-freedom of the

so-obtained Chi-squared distributed coefficients.

5.2.3 Weighted subspace fitting (WSF)

Subspace fitting is a unified framework for parameter estimation in ar-

ray processing [10, 66, 110, 148, 149, 164]. Most of array processing meth-

ods found in the literature may be seen as special cases of the more gen-

eral subspace fitting expression, including the deterministic maximum-

likelihood estimator and the MUSIC method. Weighted subspace fitting

(WSF) is obtained by employing an appropriate positive-definite weight-

ing matrix on the subspace fitting criterion. The resulting parameter es-

timates attain the stochastic CRB asymptotically under the assumption

of complex Gaussian noise [109]. The asymptotically statistically efficient

method of direction estimation (MODE) [148, 149] may also be seen as a

weighted subspace fitting approach [110]. The MODE method is based on

the noise subspace of the array sample covariance matrix while the WSF

exploits the corresponding signal subspace. The latter is thus appropriate

for scenarios where fully correlated sources may be present.

The WSF criterion in the context of wavefield modeling and manifold

separation is obtained in a straightforward manner from the results in
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[164,165], and it is given by [III, VII]:

ξ̂ = argmin
ξ

tr
{
P⊥
Φ (ξ)ÛsWÛH

s

}
, (5.20)

where P⊥
Φ (ξ) ∈ C

N×N and PΦ(ξ) ∈ C
N×N denote projection matrices.

They are given by P⊥
Φ (ξ) = IN − PΦ(ξ) and

PΦ(ξ) = Φ(I2 ⊗D(ϑ,ϕ))V (γ,β) (Φ(I2 ⊗D(ϑ,ϕ))V (γ,β))†, (5.21)

respectively. The weighting matrix W ∈ R
P ′×P ′ ensures asymptotically

statistically efficient parameter estimates under complex Gaussian noise,

and can be found in [164,165].

Expression (5.20) is convenient since the parameterization of ξ is fixed

regardless of the geometry of the antenna array and nonidealities. More-

over, closed-form expressions for the gradient and Hessian of (5.20) can be

found in a straightforward manner [VII]. Such expressions are typically

needed in optimizing expression (5.20) [165].

5.3 Stochastic CRB for real-world antenna arrays

The Cramér-Rao bound (CRB) is a lower bound on the estimation error

variance of any unbiased estimator [69]. In array processing, the stochas-

tic (or unconditional) CRB is a well-known and widely used benchmark

for assessing the performance of array processing methods, especially in

the high SNR regime [109, 142, 146]. Conversely, it facilitates the prac-

titioner to decide whether a given antenna array is appropriate for the

parameter estimation task under consideration. Manifold separation is a

convenient approach for finding an approximate but tight CRB expression

for real-world antenna arrays, including nonidealities. In particular, the

stochastic CRB is given by [109,142], [VII]:

CRB(ξ) =
σ2
n

2K
�
{
(ḊH

(ξ)P⊥
Φ (ξ)Ḋ(ξ))� (JTRsV

H(γ,β)

(I2 ⊗DH(ϑ,ϕ))ΦHR−1
x Φ(I2 ⊗D(ϑ,ϕ))V (γ,β)RsJ)

T
}−1

,

(5.22)

where Ḋ(ξ) ∈ C
N×4P is composed of partial derivatives and J ∈ N

P×4P

denotes a selection matrix. Both of these matrices can be found in [VII].

Expression (5.22) is an extension of the stochastic CRB for array pro-

cessing [142] since it does not require closed-form expressions for the ar-

ray steering vectors. This is an important feature since array nonideali-

ties such as mutual coupling, cross-polarization effects and elements’ di-

rectional beampatterns should be taken into account by the CRB but are
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typically extremely challenging to describe in a closed-form. The bound in

(5.22) overcomes such a difficulty by using manifold separation since the

array nonidealities can be isolated from the wavefield parameters.

The tightness of the bound in (5.22) depends on the accuracy of the array

sampling matrix, and thus to the accuracy of Φ in (5.22). When the array

response is fully known, expression (5.22) is exact in terms of numerical

accuracy of the digital processor. In case of array calibration measure-

ments, where measurement noise is unavoidable, expression (5.22) is typ-

ically tight for most of the calibration SNR employed in practice [55, 84].

Both of these observations follow from the superexponential decay of the

sampling matrix, addressed in Chapter 4.

It should be noted that expression (5.22) is equivalent to the expression

proposed in [108], where a representation in vector spherical harmonics

is used. This follows from the equivalence matrix, described in Chapter 4.

The advantages of using 2-D Fourier basis along with the equivalence ma-

trix include simplicity of the derivatives and numerical accuracy. Indeed,

vector spherical harmonics may suffer from numerical instabilities [78].

5.4 Numerical examples

The performance of the proposed array processing methods is illustrated

next by numerical examples. First, two completely polarized signals are

assumed to impinge on the polarimetric semi-spherical patch array de-

picted in Fig. 2.4-1. The signals are uncorrelated and their co-elevation

angles are assumed to be identical and known (ϑ1 = ϑ2 = π/2). The az-

imuth angles of the sources are ϕ = [70◦, 80◦]T while their polarization

parameters are given by γ = [20◦, 10◦]T and β = [10◦, 30◦]T . The SNR of

both sources is 10dB. Figure 5.2 illustrates the performance of the polari-

metric element-space root-MUSIC method in terms of root mean-squared

error (RMSE) for a varying number of snapshots. The stochastic CRB is

illustrated for comparison as well. It is a particular case of that in (5.22)

and may be found in [21]. A discussion regarding the tightness of the CRB

expression in (5.22) for real-world arrays can be found in Section 5.3 as

well as in [VII].

The second example considers two fully-correlated signals impinging on

the PSSPA. The co-elevation and azimuth angles are ϑ = [70◦, 90◦]T and

ϕ = [40◦, 60◦]T , respectively. The polarization parameters of the sources

are γ = [20◦, 10◦]T and β = [10◦, 30◦]T . Figure 5.3 illustrates the per-
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(c) Polarization parameter estimates.

Figure 5.2. Performance of the proposed PES root-MUSIC method in terms of RMSE for
a varying number of snapshots. Two uncorrelated signals, with a signal-to-
noise ratio of SNR = 10dB, are assumed to impinge on the PSSPA depicted
in Fig. 2.4-1 from ϕ = [70◦, 80◦]T . The co-elevation angle of the sources
is assumed to be identical and known at ϑ1 = ϑ2 = π/2. The polarization
parameters of the sources are γ = [20◦, 10◦]T and β = [10◦, 30◦]T . The PES
root-MUSIC has a performance close to the stochastic CRB.

formance of the polarimetric element-space WSF in terms of RMSE for

varying SNR. It is assumed that K = 50 snapshots are acquired at the

array output. The stochastic CRB is illustrated as well.

The last numerical example illustrates that using manifold separation

in the robust Capon beamformer may increase the array output SINR.

The robust Capon beamformer based on uncertainty sets is considered

[93, 98, 168]. The SOI is assumed to impinge on the PSSPA from angles

ϑsoi = 10◦ and ϕsoi = 20◦. The polarization of the SOI is described by γsoi =

5◦ and βsoi = 10◦. The SOI is observed in the presence of 8 equi-power
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(d) Polarization parameter estimates.

Figure 5.3. Performance of the proposed PES WSF method in terms of RMSE for in-
creasing SNR. Two fully correlated (coherent) signals are assumed to im-
pinge on the PSSPA depicted in Fig. 2.4-1 from ϑ = [70◦, 90◦]T and ϕ =

[40◦, 60◦]T . The polarization parameters of the sources are γ = [20◦, 10◦]T

and β = [10◦, 30◦]T . The number of snapshots acquired at the array output is
K = 50. The PES WSF method has a performance very close to the stochastic
CRB.

interfering signals as well as zero-mean complex circular Gaussian noise.

Two types of errors in the steering vector are considered. In particular,

they are due to uncertainties in the angle and polarization of the SOI as

well as due to calibration measurement noise. The errors on the angle

and polarization parameters are ϑ̃soi = 5◦, ϕ̃soi = 3◦, γ̃soi = 2◦, β̃soi = 5◦.

Moreover, array calibration measurements are acquired with Q = 35× 34

samples. The number of array snapshots is K = 30. Figure 5.4 illustrates

the performance of the standard robust Capon beamformer (RCB) and

the RCB obtained by using manifold separation technique (MST). Results

show that employing manifold separation leads to improved array output

SINR since it may capture array nonidealities and denoise calibration

measurements.
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(b) Performance of the robust Capon beamformer for varying

calibration measurement SNR and SINR = 10dB.

Figure 5.4. Performance of the standard robust Capon beamformer and the RCB ob-
tained by using MST in terms of array output SINR. The SOI is assumed
to impinge on the PSSPA from angles ϑsoi = 10◦ and ϕsoi = 20◦. The po-
larization of the SOI is described by γsoi = 5◦ and βsoi = 10◦. The SOI is
observed in the presence of 8 equi-power interfering signals as well as zero-
mean complex circular Gaussian noise. The number of array snapshots is
K = 30. Two types of errors in the steering vector are considered, namely
due to uncertainties in the angle and polarization of the SOI as well as due
to calibration measurement noise. Employing manifold separation leads to
improved SINR since it may capture array nonidealities and denoise calibra-
tion measurements.

5.5 Discussion

This chapter focuses on receive beamforming and subspace methods in

the context of wavefield modeling and manifold separation. In particular,
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the conventional and Capon beamformers are reformulated using mani-

fold separation and equivalence matrix. Similarly, the MUSIC method,

root-MUSIC, and weighted subspace fitting (WSF) approach are consid-

ered in the context of manifold separation based on 2-D Fourier basis.

The proposed beamformers and subspace methods take into account ar-

ray nonidealities and exploit the azimuth, elevation, and polarimetric do-

mains of the sources. Significant computational savings are obtained by

exploiting the Vandermonde structure of Fourier basis, namely the fast

Fourier transform and polynomial rooting methods.

The proposed root-MUSIC method is based on manifold separation and

equivalence matrix is not restricted to regular array geometries such as

uniform linear arrays. The PES root-MUSIC estimates the azimuth an-

gles and polarization of the sources by polynomial rooting for a fixed co-

elevation angle. Alternatively, the co-elevation angles and polarization

of the sources may be found from the roots of a polynomial by fixing the

azimuth-angle. The proposed PES root-MUSIC is a computationally ef-

ficient method and fully takes into account array nonidealities that are

common in real-world antenna arrays.

Estimating both azimuth and co-elevation angles by polynomial rooting

is not considered in this chapter. A polynomial rooting method known

as PRIME [56] has been considered in the context of manifold separa-

tion for joint azimuth and co-elevation angle estimation in [II]. However,

such a method is of practical interest for antenna arrays with apertures

in the order of one wavelength. Another approach for joint azimuth and

co-elevation angle estimation consists in employing the rank reduction

estimator (RARE) with manifold separation based Davis transform [115],

[I]. See also Chapter 4. However, such an approach is appropriate for so-

called oversampled arrays, only [31]. Informally, sensor arrays are called

oversampled when the number of array elements is larger than the num-

ber of columns of the employed sampling matrix. Note that oversampled

arrays are similar to large-scale MIMO systems [130].

It is important to emphasize that the complexity of the array processing

methods proposed in this chapter scales with the number of columns of

the sampling matrix. This may be a limiting factor for antenna arrays

with very large apertures, relative to the wavelength. In such cases one

may consider wavefield modeling and manifold separation in the context

of sector-by-sector processing. Indeed, the number of columns of the sam-

pling matrix may be reduced by processing data in angular sectors [28,29].
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6.1 Summary

Array signal processing is used in many areas of engineering including

wireless communications systems, radio astronomy and cosmology, radar

and sonar applications, global navigation satellite systems and indoor

positioning as well as in biomedicine. This dissertation contributes to

wavefield modeling, array processing for arbitrary array geometries in

the face of nonidealities. Moreover, novel results on harmonic analysis on

the sphere are provided.

A rigorous generalization of wavefield modeling and manifold separa-

tion to vector-fields and diversely polarized antenna arrays is proposed.

Scalar-fields such as acoustic pressure are a special case of the more gen-

eral vector-field model. This contribution is important since many array

processing applications deal with radio-frequency signals, and the polar-

ization of the received signals may not be known. Exploiting the polari-

metric domain may provide increased capacity, diversity and robustness

to channel fading even in line-of-sight scenarios. The proposed generaliza-

tion of manifold separation is important in many array processing tasks

including parameter estimation and detection of fully correlated signals

as well as in receive and transmit beamforming. These contributions are

also useful in source tracking as well as in computationally-efficient solu-

tions for high-resolution DoA estimation using sensor arrays of arbitrary

geometries and in the face of nonidealities.

The proposed generalization of wavefield modeling and manifold sepa-

ration to vector-fields employs vector spherical harmonic basis functions.

This basis have a number of useful properties, including orthogonality

on the sphere, invariance under rotations on SO(3), and may be used to
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give a compact representation of the array response. A rigorous deriva-

tion of the superexponential decaying property of the sampling matrix is

provided, thus filling an important theoretical gap in the literature deal-

ing with diversely polarized antenna arrays. The practical implications

of these contributions are in indoor positioning based on antenna arrays,

array calibration (measurements), and in large-scale MIMO systems.

A relationship between vector spherical harmonics and 2-D Fourier ba-

sis called equivalence matrix is established in this dissertation. This is

important in areas of engineering dealing with data on a spherical man-

ifold including measurement based radio channel modeling, biomedicine,

3-D beamforming and related array processing tasks. A number of results

that follow from the equivalence matrix are established. These include

a novel fast spherical harmonic transform, a reformulation of wavefield

modeling and manifold separation in terms of 2-D Fourier basis, and a re-

duction of the estimation variance of the 2-D effective aperture distribu-

tion function (EADF). The theoretical implications of these contributions

give more insight into the well-known discrete spherical harmonic trans-

form, show the one-to-one mapping between spherical harmonic spectra

and 2-D Fourier spectra, and lead to improvements of the minimum num-

ber of samples on the sphere that are needed in order to avoid aliasing.

The practical relevance of the equivalence matrix is the possibility of em-

ploying the 2-D fast Fourier transform, along with its numerical robust-

ness and low computational complexity, in areas of engineering that deal

with data on a spherical manifold.

Signal processing methods for arbitrary array geometries and in the face

of nonidealities are proposed. This is important since diversely polarized

antenna arrays are typically subject to complex electromagnetic interac-

tions among the array elements, thus changing the phase-centers and

beampatterns of the array elements. Taking these array nonidealities into

account prevents from steering unnecessary energy towards unwanted di-

rections and from canceling the signal-of-interest. The conventional and

Capon beamformers are extended to elevation, azimuth, and polarimet-

ric domains by means of manifold separation and equivalence matrix.

Similarly, the MUSIC method, root-MUSIC, and WSF technique are ex-

tended to elevation, azimuth, and polarization estimation as well as to ar-

bitrary array geometries and arrays with nonidealities. Computationally-

efficient implementations of the proposed beamforming techniques and

subspace methods are provided. They are based on 2-D fast Fourier trans-
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forms and polynomial rooting techniques. The practical relevance of these

contributions are threefold. Firstly, the tedious task of describing array

nonidealities using a high-dimensional parametric model is avoided. Sec-

ondly, establishing statistical performance bounds for sensor arrays with

nonidealities is facilitated. Finally, computationally-efficient solutions to

high-resolution signal processing methods are achieved without restrict-

ing the methods to regular array geometries.

6.2 Future research

Future research may consider employing auto-calibration techniques in

the context of wavefield modeling. Array calibration in anechoic cham-

bers may not be possible when the sensor array is mounted on a large

platform such as an airplane or a vessel. In such a scenario, sector-by-

sector processing and local basis may also be considered. Auto-calibration

methods may exploit the array output model given by wavefield modeling,

where the part depending on the wavefield is decoupled from that of the

sensor array, and estimate both sampling matrix and coefficient vector in

an alternating manner, for example.

A theoretical study of the condition number of the equivalence matrix is

also desirable. Numerical results illustrate that the mapping provided by

the equivalence matrix is numerically stable but a more rigorous analysis

is necessary. It may also be useful to apply the equivalence matrix in

other areas of engineering in addition to array processing.

Parametric estimation of distributed sources may also be considered in

the context of wavefield modeling and manifold separation. The point-

source model employed in this dissertation is not appropriate for describ-

ing rich scattering environments or large sources such as a ship hull,

and if optimality is the goal, parametric estimation of distributed sources

should be considered. Extensions of the Von-Mises distribution to the

sphere include the Fisher as well as the Kent distributions [99].

Also, given that the sampling matrices of a group of users is known at

the transmitter, one may synthesize a wavefield that is observable only

by a desired user. This follows from the observation that the nullspace of

the sampling matrix has nonzero dimension. Such a result may be useful

in secure and multi-user communications.

Wavefield modeling may also be used in order to apply compressive sens-

ing methods in rich scattering environments. This is important since most
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of array processing methods based on compressive sensing exploit spar-

sity in the angular domain (point-source model), and may fail to work in

rich scattering environments. However, the auto-correlation function of

the coefficient vector in wavefield modeling is sparse even in rich scat-

tering environments, which may be used to overcome the aforementioned

limitation of compressive sensing methods. Such an observation follows

from the so-called uncertainty principle and it is similar to the time-

bandwidth product in spectral analysis [143, Ch. 2].
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A. Appendix

A.1 Derivation of expression (4.25)

Let us start with the average-squared error:

ε̄2(L) =
1

4π

∫
S2

‖εθ(ϑ, ϕ, L)‖2 + ‖εφ(ϑ, ϕ, L)‖2 dΩ,

=
N∑

n=1

1

4π

∫
S2

|εθn(ϑ, ϕ, L)|2 + |εφn(ϑ, ϕ, L)|2 dΩ. (A.1.1)

Using the Lipschitz condition [28] we may write:

1

4π

∫
S2

|εθn(ϑ, ϕ, L)|2 + |εφn(ϑ, ϕ, L)|2 dΩ

≤ 1

4π

∫
S2

α2 1
4π
3 R3

min

∫ Rmin

0

∫
S2

‖Ψ(r)−Ψ(r, L)‖2 r2dΩ′drdΩ. (A.1.2)

Here, Ψ(r, L) ∈ C
2×1 denotes the wavefield decomposition in (4.17a) in-

volving L terms, where L = 2L2 +4L. Note that the time-domain variable

t has been dropped for convenience. Moreover, α(α < +∞) denotes a finite

constant, r = [r, ϑ′, ϕ′]T denotes a point in the 3-D Euclidean-space and

dΩ′ = sinϑ′dϑ′dϕ′. Using Parvesal’s theorem we get:

1

4π

∫
S2

‖Ψ(r)−Ψ(r, L)‖2 dΩ =
1

4π

+∞∑
ξ=L+1

‖hξ(r)‖2,

=
1

4π

+∞∑
�=L+1

(2�+ 1)

4π

(
j2� (κr) +

(
j�−1(κr)−

�

κr
j�(κr)

)2
)
, (A.1.3)
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where the following results have been used [55, Appx. A1], [65, Ch. 9]:

h1m�(r) = j�(κr)y1m�(ϑ
′, ϕ′), (A.1.4a)

h2m�(r) =
1

κr

∂

∂(κr)
{κrj�(κr)}y2m�(ϑ

′, ϕ′), (A.1.4b)

+�∑
m=−�

‖y1m�(ϑ
′, ϕ′)‖2 =

+�∑
m=−�

‖y2m�(ϑ
′, ϕ′)‖2 = 2�+ 1

4π
, (A.1.4c)

1

κr

∂

∂(κr)
{κrj�(κr)} = j�−1(κr)−

�

κr
j�(κr). (A.1.4d)

Assuming that L > �κRmin�, and absorbing constant terms into α, we may

upper-bound the right-hand-side of expression (A.1.2) and finally obtain

the following result:

ε̄2(L) ≤ Nα2
+∞∑

�=L+1

(2�+1)

(
j2� (κRmin) +

(
j�−1(κRmin)−

�

κRmin
j�(κRmin)

)2
)
.

(A.1.5)

Let us now consider the following maximum error:

εmax(L) = max
(ϑ,ϕ)

‖εθ(ϑ, ϕ, L)‖1 + ‖εφ(ϑ, ϕ, L)‖1,

= max
(ϑ,ϕ)

N∑
n=1

|εnθ (ϑ, ϕ, L)|+ |εnφ(ϑ, ϕ, L)|. (A.1.6)

Using the Lipschitz condition, followed by triangle inequality and Parse-

val’s theorem we get:

|εnθ (ϑ, ϕ, L)|+ |εnφ(ϑ, ϕ, L)|

≤ α

⎛⎝ 1
4π
3 R3

min

∫ Rmin

0

∫
S2

‖
+∞∑

ξ=L+1

ψξ(ϑ, ϕ)hξ(r)‖2 r2dΩ′dr

⎞⎠1/2

, (A.1.7a)

≤ α

+∞∑
ξ=L+1

(
1

4π
3 R3

min

∫ Rmin

0

∫
S2

‖ψξ(ϑ, ϕ)hξ(r)‖2 r2dΩ′dr

)1/2

, (A.1.7b)

=
α√
4π/3

+∞∑
�=L+1

+�∑
m=−�

|ψ1�m(ϑ, ϕ)||j�(κRmin)|

+ |ψ2�m(ϑ, ϕ)|
∣∣∣∣j�−1(κRmin)−

�

κRmin
j�(κRmin)

∣∣∣∣ . (A.1.7c)

Finally, using (A.1.4c) and Hölder’s inequality we get:

εmax(L) ≤ Nα
+∞∑

�=L+1

(2�+1)

(
|j�(κRmin)|+

∣∣∣∣j�−1(κRmin)−
�

κRmin
j�(κRmin)

∣∣∣∣) .

(A.1.8)
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A.2 Closed-form expression for the equivalence matrix

The equivalence matrix may be found in a closed-form using the following

results:

[y1m�(ϑ, ϕ)]θ = −1

2

√
2�+ 1

4π

[
jm−1Δ�

1 + jm+1Δ�
−1

]T
diag{Δ�

m}d(ϑ)ejmϕ

(A.2.1a)

[y1m�(ϑ, ϕ)]φ =
1

2

√
2�+ 1

4π

[
jm−1Δ�

1 − jm+1Δ�
−1

]T
diag{Δ�

m}d(ϑ)ejmϕ,

(A.2.1b)

where Δ�
m ∈ R

(2�+1)×1 is given by

Δ�
m = [Δ�

−�,m, . . . , 0, . . . ,Δ�
+�,m]T . (A.2.2)

Here, Δ�
−�,m denotes a so-called Wigner-d function evaluated at π/2 [55,

Appx. A2], [79]. Note also that:

[y2m�(ϑ, ϕ)]θ = −[y1m�(ϑ, ϕ)]φ, (A.2.3a)

[y2m�(ϑ, ϕ)]φ = [y1m�(ϑ, ϕ)]θ. (A.2.3b)

The following results may also be useful:

Ξ̄ =
1

2(Q−Qa)
Y (I2 ⊗RFHJ) (A.2.4)

Y = Ξ̄(I2 ⊗ JTFRTC), (A.2.5)

where R ∈ N
Q×2(Q−Qa) is given in (4.44) and F ∈ C

2(Q−Qa)×2(Q−Qa) de-

notes the 2-D DFT matrix. Such a matrix is defined as follows F =

FQa ⊗ FQe , where FQa ∈ C
Qa×Qa and FQe ∈ C

(2Qe−Qe)×(2Qe−Qe) denote

1-D DFT matrices. In (A.2.4), J ∈ N
2(Q−Qa)×M is a selection matrix given

by:

J =
[
0

... I√M
...0
]
⊗
[
0

... I√M
...0
]
, (A.2.6)

while C ∈ R
Q×Q is given by:

C = IQa ⊗

⎡⎢⎢⎣
1

1
2IQe−2

1

⎤⎥⎥⎦ . (A.2.7)
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A.3 Derivation of expressions (4.45) and (4.46)

Using (A.2.4) in the least-squares estimator of the array sampling matrix

(4.28) we get:

Ĝlse = B(I2 ⊗CRFHJ)Ξ̄H(Ξ̄(I2 ⊗ JTFRTC2RFHJ)Ξ̄H)−1 (A.3.1)

= [BθW lseFHJ , BφW lseFHJ ]Ξ̄H

× (Ξ̄(I2 ⊗ JTFRTC2RFHJ)Ξ̄H)−1, (A.3.2)

where W lse ∈ R
2(Q−Qa)×2(Q−Qa) denotes a diagonal matrix given by:

W lse = diag
{
diag {C}T R2

}
. (A.3.3)

Here, R2 ∈ N
Q×2(Q−Qa) is given by:

R2 = (IQa ⊗ [IQe , 0]) +

(
IQa ⊗

[
0,
[
0, ĨQe−2,0

]T])
. (A.3.4)

Using (A.2.4) in the DVSHT-based sampling matrix estimator (4.30) we

get:

Ĝdvsht = B(I2 ⊗WCRFHJ)Ξ̄H (A.3.5)

= [BθWdvshtFHJ , BφWdvshtFHJ ]Ξ̄H , (A.3.6)

where Wdvsht ∈ R
2(Q−Qa)×2(Q−Qa) denotes a diagonal matrix given by:

Wdvsht = diag
{
diag {WC}T R2

}
. (A.3.7)

Note that W ∈ R
Q×Q denotes a diagonal matrix containing the quadra-

ture weights of the employed equiangular sampling rule.
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In eq. (21), the parameter vector ξ should be given by

ξ = [θT ,φT ,γT ,βT ,ρT , σ2
η]

T ,

where ρ can be found in [142].
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