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Abstract

Many approaches in Computational Electromagnetics (CEM) rely on the

decomposition of complex radiation and scattering behavior with a set of basis

vectors. Accurate estimation of the quantities of interest can be synthesized through

a weighted sum of these vectors. In addition to basis decompositions, sparse signal

processing techniques developed in the Compressive Sensing (CS) community can be

leveraged when only a small subset of the basis vectors are required to sufficiently

represent the quantity of interest. We investigate several concepts in which novel bases

are applied to common electromagnetic problems and leverage the sparisty property

to improve performance and/or reduce computational burden.

The first concept explores the use of multiple types of scattering primitives to

reconstruct scattering patterns of electrically large targets. Using a combination

of isotropic point scatterers and wedge diffraction primitives as our bases, a 40%

reduction in reconstruction error can be achieved.

Next, a sparse basis is used to improve Direction of Arrival (DOA) estimation.

We implement the Block-Sparse Bayesian Learning (BSBL) technique to determine

the angle of arrival of multiple incident signals with only a single snapshot of data from

an arbitrary arrangement of non-isotropic antennas. This is an improvement over the

current state-of-the-art, where restrictions on the antenna type, configuration, and a

priori knowledge of the number of signals are often assumed.

Lastly, we investigate the feasibility of a basis set to reconstruct the scattering

patterns of electrically small targets. The basis is derived from the Theory of

Characteristic Modes (TCM) and can capture non-localized scattering behavior.

Preliminary results indicate that this basis may be used in an interpolation and

extrapolation scheme to generate scattering patterns over multiple angles.
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SPARSE BASES AND BAYESIAN INFERENCE OF ELECTROMAGNETIC

SCATTERING

I. Introduction

1.1 Motivation

Radar Cross Section (RCS) reduction is a critical technology for the Department

of Defense (DOD) that has provided significant advantages for our military. It has

allowed us global access, precision delivery of munitions, and serves as a formidable

deterrence to our adversaries. However, stealth is not a static capability. Since

the inception of radar, there have been concurrent efforts in developing increasingly

effective signature control methods to defeat detection, as well as developing advanced

radar systems to detect increasingly elusive threats. This race to mitigate and/or

detect these vanishingly small signals has led to many innovations in materials science,

radar design, signal processing and a host of other adjacent fields.

Innovations in one field in particular, Computational Electromagnetics (CEM),

often come in lockstep with advances in RCS design. Any modern aircraft program

with signature control requirements will rely heavily on modeling and simulation to

achieve its objectives. As the complexity of aircraft design and the sensitivity of

threat radars increased, so too have the demands on the formulations and supporting

algorithms that are used to simulate electromagnetic scattering.

The accuracy and tractability of a simulation generally comes at the cost of

computational burden; therefore, significant efforts have been made to increase

simulation efficiency via code optimization and judicious approximations of the

relevant physics of electromagnetic scattering. In some circumstances, the availability

1



of computational resources can enable higher accuracy predictions, while in others

the resources are utilized to generate coarse predictions for larger or more complex

designs.

While modeling and simulation offer rapid design iteration, most programs also

depend on physical measurements to test and validate these designs. Again, with

increasing complexity of aircraft design and capabilities of threat systems, tolerances

for modern aircraft are often very tight and require extensive measurements to ensure

that a manufactured article performs within specifications and is consistent with

results generated from simulations. Given the current state of fabrication, installation,

and integration of materials and subsystems, physical measurements are a necessary

diagnostic and validation tool, especially during the later stages of a program’s

acquisition lifecycle.

Incidentally, this requirement leads to the burden of measuring and characterizing

objects that have inherently been designed to be nearly undetectable. The U.S.

Government funds and maintains testing facilities that have been designed to support

the unique needs of DOD programs (see Figure 1.1). Nevertheless, there are a limited

number of these facilities and the execution of the requisite measurements can be

both time- and cost-prohibitive. These limited resources are an impediment to the

lifecycle of many programs because there are no feasible alternatives for validating

the performance of a design. As a result, the DOD is frequently seeking methods to

expedite the validation process [4].

1.2 Problem Statement

It is clear that the validation of a system relies on accurate measurements of the

quantities of interest. Because measurements of the relevant quantities are often

intractable, we seek to establish and/or improve on methods where the number

2



Figure 1.1: F-16 under test and evaluation in an anechoic chamber [1].

of measurements can be minimized. Recently, the CEM community has sought

to leverage the developments of sparse signal processing within the Compressive

Sensing (CS) community to expand the capabilities and applications of CEM tools.

These developments have enabled many innovations in sensor design, defect detection,

and the the ability to accurately and reliably reconstruct signals from a very limited

number of samples [5]. Applications of traditional CS theory can only be realized if

there exists a sparse basis representation of the signal of interest. In order to reliably

recover a signal with very few measurements, the signal must also be amenable to

a compact representation where only a limited subset of basis vectors is required

to adequately represent the signal. Because of this constraint, there has been strong

interest in developing efficient bases for relevant electromagnetic quantities of interest.

With respect to improving the efficiency of the measurement and validation

process, one notable effort is to use CEM prediction codes to augment the physical

measurements that are performed on a radar instrumentation range. Rather than

3



relying solely on measurements of the physical target from a range, a surrogate

CEM model is used to provide predictions for analysis and validation. The critical

element to this approach is to synthesize a CEM model that sufficiently represents the

physical article. In practice, there are several complications that must be overcome to

make this a viable technique and the most effective implementations have leveraged

concepts from sparse signal reconstruction and CS to achieve favorable results [6, 7].

It is important to note that the ubiquity of CEM in aircraft system design and

the demand for timely results also mean that formulations are often tailored to only

address a specific class of problems. For example, the Method of Moments (MOM)

approach is a full-wave technique to solve radiation and scattering problems by

discretizing the device into a mesh of edge elements and representing the current

distribution over the device with basis functions across each edge. The distribution

of currents can be solved by enforcing boundary conditions on the total fields and

ultimately requires solving a large system of linear equations. Although this method is

theoretically accurate at all scales (with respect to the electrical size of the problem),

the fidelity afforded by this method is unnecessary at high frequencies where specular

scattering is the dominant behavior. Determining the currents on an electrically large

body with this method quickly becomes intractable because of the computational

cost of solving for the set of linear equations (i.e., inverting or otherwise decomposing

a large matrix). Therefore, alternate (and more efficient) asymptotic formulations

such as Physical Optics (PO) and Uniform Theory of Diffraction (UTD) are applied

instead. An important consequence of this is that a sparse basis may only be

applicable for a certain class of problems.

Another effort to minimize validation measurements relates to the subsystems

installed on an airframe. Specifically, there exist radar warning systems that require

precise antenna placement on the airframe because the underlying Direction of

4



Arrival (DOA) algorithms require a known (and usually uniform) separation between

the antennas. These restrictions may incur time-consuming rework on installation

and ultimately increase the time and resources expended on measurement range

validation. One way to expedite the validation process is to utilize a more robust

DOA algorithm that would relax the design and system integration constraints of

these systems.

In conjunction with the efforts to generate electromagnetic predictions from

surrogate CEM models of a physical target, we note that frequency domain methods,

such as MOM, generally require a full matrix decomposition for every frequency

of interest. Intuitively, we assume that the scattering behavior varies smoothly as

a function of frequency and that standard interpolation techniques should perform

adequately when approximating the scattering response for frequencies that are not

computed explicitly. However, certain targets that have strong resonant responses

may not be captured well with this approach. An interpolation scheme that takes

into account these resonances may be able to provide more accurate results.

1.3 Research Overview

Provided with the context that sparse bases have the potential to address

several common problems that are encountered in the measurement and validation

process, our research investigates the use of novel bases in three thrust areas. These

applications share the overarching theme of leveraging CEM to reduce the burden of

physical measurements.

The first thrust area pertains to the field of Synthetic Aperture Radar (SAR)

and Inverse Synthetic Aperture Radar (ISAR) imaging. In these radar applications,

traditional processing techniques use the backprojection algorithm to translate phase

history measurements into downrange and cross-range locations and to synthesize

images of the target scene. Under this application, there is an implicit assumption
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that all scatterers in the scene behave as isotropic point scatterers. However, in

reality, an object’s scattering response varies with respect to the incident angle and

the returns may not have direct, single-bounce paths back to the sensor. As a result,

SAR and ISAR processing may introduce blurs, shadowing effects, and phantom

returns into the image.

These imaging artifacts are particularly troublesome when ISAR is implemented

in radar ranges. ISAR processing with instrumentation radars is used as a diagnostic

tool to locate regions of a target that have significant contributions to the overall

signature. Because of this, advanced ISAR processing techniques have been proposed

(and implemented) to mitigate these artifacts. One of the most promising approaches

utilizes a collection of of scattering primitives to effectively filter out true target

returns from nuisance returns. The filtering process is performed via an l1-

minimization process, which favors sparse solutions (solution vectors with very few

non-zero elements). The performance of this approach relies heavily on providing

bases that can efficiently represent these effects (i.e., canonical scattering behavior

and contamination sources); therefore, the development of these types of bases is an

active area of research [8]. We investigate the use of several non-isotropic scattering

centers as basis sets that are to be used in conjunction with standard isotropic point

scatterer basis. These findings were published in [9].

The next thrust area addresses the DOA problem. Here, the goal is to provide

an accurate estimate of the angle of arrival of one or more signals impinging on an

array of antennas. There is a rich body of relevant literature to this problem [10–19],

but to the author’s knowledge, many of these approaches suffer from limitations that

are not easily overcome when they are applied in practice. Many techniques impose

assumptions on the configuration of antennas and the number of simultaneous incident

signals. We develop an alternative to these techniques that enables DOA estimation
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to be performed with an arbitrary array of polarized, non-isotropic antennas. Sparsity

in this case is enforced with the assumption that the number of incident signals is less

than the number of discretized sectors of the angle space [20]. These findings will be

submitted to IEEE Sensors Journal.

The final thrust addresses the feasibility of representing electrically small

scatterers with entire-domain basis functions. As stated previously, the traditional

MOM formulation discretizes a target via a mesh and the distribution of current

across the edges of the mesh. The advantage to this approach over high frequency

methods is that MOM is able to model non-localized scattering behavior caused by

surface waves traveling over the body. Literature dating back to the 1970s suggest

that the current distributions are not arbitrary and can be further decomposed into

discrete resonant distributions [21]. This decomposition, known as the Theory of

Characteristic Modes (TCM) and Characteristic Mode Analysis (CMA), has gained

interest recently. We provide a preliminary investigation into the feasibility of using

these modes as a sparse basis. While our exploration of this basis may also find

utility in the first thrust area as another basis, we limit our analysis to the frequency

interpolation problem. We demonstrate that the characteristic modes for a common

scattering calibration target vary smoothly and interpolate the values to generate

scattering patterns for frequencies that were not calculated directly via MOM.

Due to the range of topics covered in these efforts, the organization of this

document follows the scholarly article format. We provide an assessment of the

literature in each of these areas in Chapter 2. Our contribution in each of the three

thrust areas are documented in Chapters 3, 4, and 5. Finally, a summary of our

developments and findings, as well as avenues for future investigation are compiled in

Chapter 6.
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II. Literature Review

2.1 Compressed Sensing

There is an extensive body of literature covering the theory and applications of

Compressive Sensing (CS), specifically in computational electromagnetics (a recent

review of these applications is summarized in [5]). Fundamentally, CS theory asserts

that a sufficiently sparse signal of interest can be recovered with fewer measurements

than dictated by the Nyquist-Shannon theorem [22]. This claim has far-reaching

implications and can substantially affect every aspect of the signal measurement

process in many domains, including how sensors are designed and how the signals

are processed into relevant data for analysis.

The key concept of CS begins with a linear model, y = Ax, and can be

represented visually, shown in Figure 2.1, where y is a vector of measurements

= ×

Figure 2.1: Recovery of a sparse signal x with minimal measurements, y and A.

that are synthesized from a measurement process represented by A that operates

on a sparse signal x (and possibly with additive noise, ε). From a linear algebra

8



perspective, a unique solution to x when given y and A is not possible because

the system is underdetermined (by definition, x = A−1y, but A is not square and

therefore not invertible). While this is true in the general sense, a solution can be

recovered when additional constraints are imposed on the composition of A and x.

Namely, x must be sparse (shown in Figure 2.1 as a vector that consists of mostly

zeros) and that A adheres to the Restricted Isometry Property (RIP) which describes

that all subsets (of a certain size) of the columns of A have a certain degree of

orthogonality (shown in Figure 2.1 as a matrix of random values) [23].

The field gained significant attention when seminal works had proven that a

signal can be successfully recovered, even in the presence of noise, when the signal is

sufficiently sparse and the measurement operator obeys the RIP [24, 25]. This concept

was demonstrated experimentally in various contexts, including a single-pixel imaging

sensor [26]. The experimental setup, shown in Figure 2.2, uses a digital micromirror

device (DMD Array) that is driven by a random number generator (RNG) to reflect

light from the scene to a single photodiode. Each combination is recorded as a

single measurement and the process is repeated with additional randomly generated

arrangements of elements from the mirror array. From these measurements, an image

can be reconstructed where the resolution of the image (the number of pixels) exceeds

the number of measurements taken.

Figure 2.2: Single-Pixel sensor. Copyright 2007 IEEE [2].
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The arbitrary selection of mirrors contributing to each measurement is an

important aspect of the device as it provides a level of incoherency between the

measurements. This is a desirable trait because the incoherency is directly related

to the RIP [23] and effectively maximizes the amount of information collected from

each measurement. We note that most of the early theoretical work often assumes

A is a random matrix and overlooks the difficulty of creating an appropriate A that

adheres to the RIP. While the single-pixel sensor achieved this by driving the mirror

array with a random number generator, an analogous measurement setup would be

difficult to achieve in traditional radar applications.

Radar range facilities usually follow a methodical approach in their measurement

processes (often a raster scan over the angles of interest) and the signal generators

generally only operate with chirped waveforms that sweep the frequencies of

interest. Moreover, most radar facilities are only equipped to perform monostatic

measurements where the transmitter and receiver are co-located. Further, rotations

of the device under test are often limited to a fixed axis of rotation and are

intentionally performed slowly so that multiple radar pulses can be processed and

integrated together to mitigate noise in the measurements. These restrictions make

it particularly difficult to implement a measurement regimen in existing facilities

that is amenable to the CS recovery. In light of this, it has been shown through

numerical experiments that non-conventional signal waveforms, signal processing

techniques, and measurement geometries may offer viable alternatives to estimating

electromagnetic quantities of interest [27–29].

Up to this point, the discussion of CS has been limited to what is referred to as

the sampling problem. That is, the applications thus far have been focused on how

measurements are to be performed such that A adheres to the RIP. A complementary

problem is the recovery problem which relates to the issue of generating an estimate
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of the signal x after the measurements are collected. A wide variety of approaches

exist and the literature in this area tends to focus on developing and characterizing

the performance of recovery algorithms used to synthesize these estimates.

The sparsest solution is the x with the fewest non-zero elements, which can be

determined via the l0 quasi-norm, i.e.:

minimize ||x||0 subject to Ax = y (2.1)

where || · ||0 represents the norm (
∑N

i=1 |xi|p)1/p with p → 0+. However, it has

been shown that determining a solution via l0 minimization is generally an NP-hard

problem [23].

Algorithms to determine a sparse solution for x is an active area of research

and is constantly evolving. In one reference [30], the algorithms largely fall into

three categories: convex optimization methods (via l1 optimization), greedy methods,

and most recently, Bayesian methods. A large portion of the existing literature

that is relevant to our applications of CS principles has historically favored convex

optimization over greedy methods. Convex methods have shown to be more resilient

to noisy measurements and more robust in cases where A are not optimally orthogonal

(or when the matrix is an overcomplete dictionary) [31]. Greedy methods, such as

Matching Pursuit (MP), are iterative methods that select a vector from the basis

that maximizes the correlation between the vector and the residual from the previous

iteration step.

The popularity of the convex optimization approaches stems from early

developments that had indicated the solutions to the l0 and l1 minimization problems

are equivalent when the solution is sufficiently sparse and A is sufficiently RIP [32].

With p = 1 in Equation (2.1), this result means an intractable NP-hard problem

can now be solved in polynomial-time with readily available methods developed by

the convex optimization community. The problem is recast as the Basis Pursuit
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Denoising (BPDN) problem:

minimize ||x||1 subject to ||Ax− y||2 ≤ σ (2.2)

where an additional variable σ is introduced as a noise threshold on the measurements,

or as the Least Absolute Shrinkage And Selection Operator (LASSO) problem:

minimize ||Ax− y||2 subject to ||x||1 ≤ τ (2.3)

where the additional variable τ is introduced as a sparsity threshold on the

estimate [33]. The most popular solvers that we encountered during our literature

review are SPGL1 and L1MAGIC, although we note that there are numerous

alternatives, including entire software libraries of solvers dedicated to convex

optimization and l1 norm solutions [34–37].

Equally important, convex optimization approaches maintain adequate perfor-

mance when A is an overcomplete dictionary. In other words, it is not required for

A to consist of basis vectors that are perfectly orthogonal in order for convex opti-

mization approaches to converge to a solution. In most of the publications relating

to Inverse Synthetic Aperture Radar (ISAR) reconstruction via a forward model (the

first of our thrust areas), the use of multiple types of primitives requires the use of

an overcomplete dictionary and precludes the use of any algorithmic approach other

than convex optimization [6]. In the work by Lahaie et al., which we attempt to build

upon, they formulate their problem as a BPDN and dictionary editing problem and

led us to focusing on the SPGL1 routine exclusively for our efforts in this research

area.

Of the three classes of recovery algorithms, the Bayesian methods have seen

the most activity in recent literature. These methods assert that estimation can

be performed even in the absence of a RIP-compliant A. This further relaxation

of the requirements to implement CS principles uses prior knowledge of the sparse
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signal distribution to generate sparse solutions [38]. Some of the algorithms under

this category include Bayesian Compressive Sensing (BCS) and Block-Sparse Bayesian

Learning (BSBL), both of which are derived from work from Tipping and the concept

of the Relevance Vector Machine (RVM) [39].

The Bayesian approaches appear to have developed through the confluence of

the CS and machine learning communities. We note from the previous assertions

that effective application of CS principles may solely rely on the existence of a sparse

basis and the pursuit of such bases extend beyond the research area of CS. The

general problem of determining more compact representations of data from a given

domain is also a critical problem in machine learning, where information from a high-

dimensional vector space needs to be distilled with a transformation into a lower-

dimensional vector space. In fact, the genesis of RVM relates to a popular, non-

Bayesian approach in machine learning, the Support Vector Machine (SVM). These

similarities may explain why most of the leading researchers in CS have also made

significant contributions in the machine learning literature and vice versa.

We recall the early theoretical developments in CS had not only presumed an A

that complies with the RIP, but that a sparse basis for the signal of interest x naturally

exists, as well. This is readily satisfied in certain radar applications where there are

very few targets with respect to the number of bins in the discretized search space,

such as search radars and sea-based Synthetic Aperture Radar (SAR) collections

in open water. Such instances of natural sparsity can be exploited in a relatively

straightforward manner. However, in conjunction with sparse signal transformations,

CS principles are applicable in less intuitive situations, as well. This is clear in

the domain of natural images, where an intricate image can usually be compressed

with the Discrete Cosine Transform (DCT) or wavelet basis (the underpinnings of the
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JPEG and JPEG2000 standards, respectively), and imaging with Magnetic Resonance

Imaging (MRI).

In practice, the A matrix represents a measurement process of a quantity in

a sparse domain, but if the signal is not naturally sparse, the signal must be

transformed into a suitable sparse basis and it must be measured appropriately in

that basis. Therefore much of the literature that involves applied research of CS

theory decompose the A matrix as A = ΦΨ, where Φ is referred to as the sampling

matrix and Ψ represents the transformation from the sparse basis x. With regard to

the Bayesian approaches, the burden then lies in the development of sparse bases Ψ

that can efficiently represent electromagnetic quantities of interest.

2.2 Sparse Representations in ISAR Reconstruction

The developments within the literature have guided the trajectory of our research

efforts. The first area of investigation is aimed at providing an additional sparse basis

to the overcomplete dictionary approach to ISAR in [6]. This is affirmed by one of

their more recent contributions [8] which showed that utilizing additional scattering

bases (cavity returns in their study) can improve the performance of their BPDN-

based reconstruction technique for removing nuisance returns in ISAR measurements.

According to their dictionary-editing process, the measurements are reconstructed via

BPDN with an overcomplete dictionary of bases representing scattering and nuisance

bases. Once a sparse vector x is estimated, the nuisance bases are removed from A

and the remaining bases are multiplied with a truncated x to yield, ideally, a clearer

image with contamination from the nuisance sources removed.

Their work pursued a cavity basis due to the fact that cavity returns are not

represented well (sparsely) by the isotropic point scatterer basis used for scattering

returns. These returns appear as diffuse regions around the feature because multiple

reflections of the incident field within the cavity will delay the returns back to the
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receiver. The delays are not accurately accounted for in the backprojection algorithm

and incorrectly resolves the spatial location of the scattering source. This effect is

shown in Figure 2.3 which depicts the Radar Cross Section (RCS) returns from a

12 inch PEC pipe (capped at one end) as a function of aspect angle and range.

Aberrations are clearly visible downrange of the pipe when the aperture of the

cavity is visible to the transmitter/receiver. Conversely, at aspect angles where the

cavity is shielded from direct illumination, the downrange trace shows the expected

behavior. Because the energy from the cavity returns is non-localized, it would not

be well-characterized with the isotropic point scatterer basis and would be incorrectly

associated with one of the nuisance bases in the dictionary instead.

Figure 2.3: ISAR image aberrations from a PEC cylindrical cavity [3].

Similar in intent of the cavity basis development, our efforts in the first thrust

area concentrated on developing bases for flat plates and dihedral responses. Their

utility extends beyond ISAR image reconstruction and the provenance of this basis
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development comes from efforts in the SAR processing and feature extraction

communities. There, SAR phase history data is processed to infer properties of

targets captured in the scene. This would enable capabilities, such as target and

threat identification.

Contributions from [40, 41] were the starting point of our investigation into the

feasibility of such a basis, where 3D bistatic scattering center models were developed

for a series of canonical geometries. We note that additional developments on feature

extraction with these primitives utilized CS principles in [42] (and a similar effort

in [43]). They also observed that adherence to the RIP is difficult with the proposed

bases and instead appealed to structured dictionaries to overcome this issue. In

those efforts, an overcomplete dictionary consists of multiple subdictionaries and the

underdetermined system can be regularized by imposing sparsity constraints within

a subdictionary. Ultimately, the aim of their approach is slightly different from our

ISAR application. In contrast to a blind reconstruction for features embedded in

ISAR data, our ISAR reconstruction problem can leverage a priori knowledge of

where the scattering centers may be located, which dramatically simplifies the search

space and alleviates the issues encountered in a blind reconstruction. Specifically, [7]

encodes this a priori information as a cloud of candidate point scatterers that are

conformal to the target’s exterior surfaces.

The canonical scattering models developed in [41] were based on Physical Optics

(PO) theory and our initial investigation used a modified version of these models

(simplified to 2D and monostatic) to reconstruct RCS predictions generated from a

Method of Moments (MOM) code. These primitives were also used in conjunction

with an optimization framework that attempted to estimate the spatial location of

the scatterers in the scene. These efforts were met with limited success due to several

issues with the validity of the analytic solutions at modest grazing angles and with
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how spatially distributed scattering behavior cannot be approximated accurately as

localized behavior. These findings are documented in Appendix A and Appendix B

where we concluded that an alternative analytic solution should be investigated and

the spatial estimation framework should be omitted because it was beyond the scope

of our investigation of developing sparse bases.

The subsequent effort, documented in Chapter 3, uses analytic solutions

derived from Uniform Theory of Diffraction (UTD) instead of PO from the initial

investigation. Analogous to the cavity basis effort, the combination of two scattering

primitives — wedge diffraction primitives and isotropic point scatterers — is used to

reconstruct far-field monostatic scattering patterns of several target geometries. This

combination shows promise in addressing the shortcomings of traditional approaches

that only use a single type of primitive (e.g., approximations in analytic solutions,

slow convergence). Similar to previous efforts, an l1-norm minimization technique is

applied to determine a set of weights for the point scatterers. We show in Chapter 3

that combining these two types of primitives yields better reconstruction performance

than when each primitive type is used individually. We note that our focus of this

effort was on the basis development and its feasibility rather than the recovery process

or the removal of nuisance returns from measurements. This is due to the fact that

replicating the dictionary-editing technique in [7] would also be well beyond the scope

of this effort.

2.3 Bayesian Inference

Following the outcome of the first thrust area, we explored alternative recovery

methods reported in the literature which emphasized that signal recovery may be

possible even if the measurement process does not adhere to the RIP. We build upon

the work in [44], where single- and multi-task BCS are implemented to recover the

direction of arrival of incident plane waves over an array of antennas. We observe that
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the Bayesian treatment of this problem enables key features that previous techniques

lacked, such as the ability to generate estimates without a priori knowledge of the

number of incident signals and the ability to perform estimates with only a single

snapshot of measurements from the antenna array. These are very desirable traits in

a Direction of Arrival (DOA) system, especially for radar warning systems as they

need to be agile to the number of simultaneous threats and robust enough to generate

estimates from sporadic signals.

Fundamentally, the Bayesian approach to generating regression models simply

means that the estimates of the independent variables are informed by the dependent

variables through their prior distributions. In other words, an estimate of the sparse

vector x is informed by the measurements y. This can be determined through Bayes’

theorem where, for clarity, we provide the common terminology for each component:

posterior distribution =
likelihood× prior

marginal likelihood
⇔ p(x|y) =

p(y|x)p(x)

p(y)
. (2.4)

We see that in Bayesian formalism, all variables in the model are probability distri-

butions rather than single values, indicated with p(·) and conditional distributions

with ’|’. We can generate a point estimate from the posterior distribution by taking

the mode of the posterior distribution, known as the Maximum a Posteriori (MAP)

estimate, x̂MAP:

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x). (2.5)

Because it is the mode of the distribution, x̂MAP is the point estimate with the highest

likelihood of occurring. We note from Equation (2.5) that calculating the MAP

estimate for x bypasses the need to calculate the denominator, p(y) (i.e., the marginal

likelihood). Moreover, p(x) indicates that the x̂MAP is dependent on our assumptions

of x. Although we can specify any type of distribution for p(x), conjugate priors can

make the posterior more straightforward to solve (these types of prior distributions
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complement the likelihood distributions such that the posterior distribution is of the

same type as the prior distribution). The parameters corresponding to the prior

distribution are referred to as hyperparameters. For example, a zero-mean Gaussian

distribution would result in

p(x|α) =
N∏
n=1

( α
2π

)1/2
exp

(
−α

2
x2n

)
, (2.6)

where α is the inverse variance hyperparameter of the Gaussian distribution. Because

Gaussian distributions are self-conjugate, if we apply a Gaussian distribution with

the hyperparameter σ2 to the likelihood function to characterize the noise in the

measurements, we are left with a Gaussian posterior distribution

p(x|y, α, σ2) =
p(y|x, σ2)p(x|α)

p(y|α, σ2)
, (2.7)

where again the numerator is maximized for a MAP estimate and the denominator

can be ignored.

The RVM formulation takes Bayesian principles one step further by calculating

the full posterior distribution rather than just the point estimate from MAP. This

leads to having to approximate the marginal likelihood, but also factors in the level

of uncertainty on the estimates of the weights.

A complete derivation of the RVM technique is provided in [39, 45], where a

sparsity promoting prior is applied to x. This is done by applying a Gaussian

distribution on x as before, but with two modifications: each element in x is an

independent distribution with its own hyperparameter (α = α1, . . . , αM) and we

invoke an additional prior, a hyperprior, over the hyperparameters such that

p(x|α) =
M∏
m=1

(αm
2π

)1/2
exp

(
−αm

2
x2m

)
(2.8)

and
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p(α|a, b) =
M∏
m=1

Γ(αm|a, b), (2.9)

where Γ(·) denotes the Gamma distribution with a, b as its parameters. The

combination of a Gaussian prior and a Gamma hyperprior yields a Student-t

distribution after we marginalize over αm, which promotes the sparsity on the prior

p(x) we are seeking. The results of these developments are leveraged by [46] to

formulate BCS as the CS problem of determining a sparse x into estimating the

values for hyperparameters α and σ2, which equate to the inverse variances for x and

the variance on the additive noise on y.

BSBL, developed by [47], builds from the same theoretical approach as BCS,

but offers a more efficient way to generate estimates for the hyperparameters than

what was presented in [39]. It also provides the ability to enforce block sparsity

within the sparse x. This feature is similar to other non-Bayesian implementations

(SPGL1 offers a group sparsity as well as reconstruction where there are multiple

measurement vectors [34]), where a priori knowledge of the sparsity structure can be

enforced during the optimization process. This is a useful feature in our application

of DOA estimation because the measurements from the array are complex-valued.

We show in Chapter 4 that enforcing a block structure with the real and imaginary

components of the estimation of x improves its accuracy.

Very recent publications have presented numerical results from implementing

BSBL for DOA estimation [48]. The work of Li et al. focused on using linear spatially

separated arrays to perform DOA and polarization estimation and found that their

approach performed better than other greedy methods (Block Orthogonal Matching

Pursuit and Group Basis Pursuit). We note however that their results were generated

with an ideal, uniformly spaced array. Moreover, while BSBL can provide estimates
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with a single snapshot of voltages from the array, their results are generated using

multiple snapshots of data.

In contrast, our concurrent development of this technique leverages findings

from [49], a classical subspace method, which proposed that an arbitrarily spaced

array can provide adequate DOA estimates via a maximum likelihood method and

an orthogonalization of its calibration measurements. Using these developments

in conjunction with BSBL allows us to generate accurate DOA estimates without

requiring the array to consist of identical and linearly separated elements. This

relaxes the requirements of how a DOA array should be constructed and readily

accommodates the performance variations that often arise from manufacture and

installation.

2.4 Theory of Characteristic Modes

The final effort explores the feasibility of a basis for sparse representation of

scattering from electrically small targets. The impetus for this investigation comes

from our early observations that the ISAR reconstruction technique from the first

thrust area relied on isotropic point scatterers as the primary basis to describe all

of the target scattering behavior. Even when supplemented with additional types of

primitives, the bases in the dictionary would only be effective at higher frequencies

(or where the target is electrically large) because the scattering behavior is spatially

localized. It was evident that at lower frequencies, other types of scattering behavior

would have a significant contribution to the target’s RCS.

Non-localized scattering phenomena (resonant scattering, in particular) become

more apparent when the wavelength of the incident field similar to the target’s extents.

This is well-demonstrated on a PEC sphere, where Figure 2.4 illustrates the RCS for

a fixed frequency and the circumference of the sphere is varied from 0.1λ to 100λ.

For diameters in the region near 1λ, known as the resonance region for this target,
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the incident field has extended interactions with the target, where the scattering is

highly dependent on the resonant current distributions over the entire target. The

oscillations in the RCS are caused by how well the incident field couples with the

structure to excite these resonant modes. At higher frequencies, the fields caused

by the currents wrapping around the sphere are shed more rapidly and the specular

return becomes the dominant backscattering contribution. As the frequency goes

towards infinity, the surface wave contributions are evanescent and the backscatter

return only varies as a function of the cross-sectional area of the sphere.
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Figure 2.4: RCS of PEC sphere as a function of circumference.

Given that scattering behavior in the resonance region is caused by how the fields

interact with extended portions of the target, it is clear that the scattering center

approach would not be an effective basis for objects at this scale in terms of electrical

size. Whereas the scattering center approach approximates far-field scattering by

propagating effects from point sources, scattering caused by surface waves are heavily

dependent on the overall geometry of the target. In order to capture these effects via
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a basis, each element in the basis must inherently consider the entire shape of the

target.

Theory of Characteristic Modes (TCM) provides a decomposition that addresses

the aforementioned issues [50]. The theory is an extension of the MOM pioneered

by Harrington and starts with the typical impedance matrix formulation of radiation

and scattering geometries

ZJ = V (2.10)

where Z represents the impedance operator, J represents weights for the currents

on the geometry, and V represents excitation vector. Rather than decomposing

the matrix to find an appropriate inversion operator and to ultimately determine

scattering and radiation characteristics of the geometry, it was discovered that the real

and imaginary components of the impedance matrix can be related via the generalized

eigenvalue problem

XJn = λnRJn, (2.11)

where R = Z+Z∗

2
, X = Z−Z∗

2j
, λn = 1 + νn, Jn are the eigenvectors and νn are the

eigenvalues for the nth mode (n = 1, . . . , N for a structure discretized into N edges).

This derivation applies the boundary conditions on perfectly conducting bodies and

shows that the impedance matrix defines the relationship between the tangential

electric field and the surface currents on the conducting body [51].

Critically, the decomposition of Equation (2.10) into an eigenvalue problem

implies that any arbitrarily shaped structure supports discrete current distributions,

each defined by an eigenvector and eigenvalue pair. It is assumed that the level

of discretization of the structure is sufficient (traditionally at least eight edges per

wavelength for uniform meshes) whereby N characteristic current distributions can

be calculated. However, this is analogous to the modes supported in a waveguide

structure — while the structure can theoretically support an infinite number of modes,
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only a subset of these modes are supported for a given frequency. Therefore, each

resonant mode will have characteristic current Jn and corresponding small eigenvalue

λn (we note that the majority of the Characteristic Mode Analysis (CMA) literature

refers to λn as the eigenvalues instead of νn and that small eigenvalues indicate

significant modes rather than large eigenvalues).

To demonstrate, Figure 2.5 illustrates the first nine modes of a rectangular plate.

The plots depict the current distribution (in intensity and direction) and indicate

Figure 2.5: Characteristic modes of a plate.
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that the distributions are orthogonal (a mathematical proof is provided in [50]). It

can be seen that the ninth mode has an eigenvalue several orders of magnitude larger

than the first, which indicates a mode that is not easily excited and therefore a small

contributor to the overall radiation/scattering. Due to its orthogonality property, this

further suggests that a basis can be derived from these distributions. Efforts in [52]

show that the RCS can be decomposed into the characteristic fields, En which were

derived from Jn. We seek to replicate these results as a first step in determining how

this basis could be used to expedite the measurement process.

While we are cognizant of their potential role as a sparse basis in the ISAR

effort in the first thrust area, we note that it notably contrasts with the previously

developed bases. Specifically, this basis would be tailored to a specific target, since

they are derived from the impedance matrix of the discretized body. Given this,

the basis may still be used as an element in the dictionary process to improve the

performance of noise removal process and particularly useful in identifying defects

and discrepancies between the as-measured and as-built scattering targets [6].

Given the constraints of the scope of our research efforts, we recognize that

the modal decomposition of a scattering target may be also used to expedite the

generation of wideband RCS data. Typical usage of MOM solvers to generate

scattering and radiation predictions requires running each discrete frequency of

interest individually. This is a time-consuming process since, for every frequency, we

must repeat the decomposition of the impedance matrix. Another time-consuming

process is the generation of far-field patterns after the decomposition. Each aspect

angle is a separate voltage vector (the incident field) that needs to be processed with

the decomposed impedance matrix. With a CMA-based approach, we can determine

the modal currents with a single impedance matrix and generate data for multiple

frequencies by weighting the modal currents with their respective eigenvalues. This
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determines the current distribution on the body and is independent of the incident

field. RCS can be calculated by determining the coupling between the incident field

and the current distribution, which allows for straightforward generation of both

monostatic and bistatic quantities.

We observed from the literature that, when evaluated over a range of frequencies,

the eigenvalues for some targets have smooth variations and may be defined as

continuous functions. This trait makes them more amenable to interpolation and

may be a more effective alternative to direct interpolation of the RCS over the same

frequency range. Therefore, once the results from [52] are replicated we use the

modal plots to generate RCS predictions without directly appealing to the MOM

process of decomposing the impedance matrix for every frequency of interest. This

would utlimately expedite any application where a MOM code is tasked to generate

wideband data, including [6].
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III. Sparse Representation of Targets with Mixed Scattering Primitives

It is well known that far-field scattering from a complex geometry can be

estimated by decomposing the target into simple scattering primitives and summing

their individual responses. Reconstruction of electromagnetic field quantities with

Isotropic Point Scatterer (IPS) as a basis is a fundamental principle in Synthetic

Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) processing

[1]. The use of non-isotropic scattering primitives has also been investigated in [2,3].

Moreover, in [4], a dense array of IPSs is used as a part of an overcomplete dictionary.

Sparse representations enable discrimination of target returns from nuisance returns

that can arise from the measurement process.

In this work, we also seek to reduce the number of scattering centers required by

introducing a Wedge Diffraction Primitive (WDP) derived from Geometrical Theory

of Diffraction (GTD)/Uniform Theory of Diffraction (UTD) theory. We use the WDP

to capture known scattering mechanisms based on the target’s far-field pattern and

allow the IPSs to recover the remaining coherent differences. We limit the analysis of

this approach to planar cuts of 2D geometries and compare the results to reference

data generated by a 3D Method of Moments (MOM) code. A normalization factor is

applied to translate 2D echo width predictions to 3D Radar Cross Section (RCS).

The use of multiple primitive types is also considered under the context of

Compressive Sensing (CS). The theory states that the number of measurements

required to successfully recover the sparse representation of a far-field pattern (via

Basis Pursuit or other l1-norm minimization algorithms) decreases substantially (even

below the Nyquist sampling rate) as signal sparsity increases [5]. We posit that the

sparsity of the far-field pattern representation can be improved by using WDPs to

capture diffraction behavior and IPSs to capture the remaining difference between
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the diffraction contributions and the original far-field pattern. For example, a large

portion of the monostatic response from a 2D flat plate can be accurately represented

with two WDPs located at the ends of the plate. In contrast, a solution with two IPSs

can only capture the specular response and would require significantly more points

to accurately reconstruct the sidelobes of the monostatic return.

While sparsity can be satisfied, the efficacy of this technique as an application

for CS is also dependent on the bounds of the Restricted Isometry Property (RIP)

of the measurement matrix [6]. Determining these bounds explicitly is an NP-hard

problem, but numerical experiments can provide a cursory and empirical assessment

of its performance.

In the following sections, we describe the theory behind reconstruction via

scattering centers and describe the framework that was developed to perform the

reconstruction with a mixed set of primitives. We then present two simple cases to

validate our approach, discuss the implications of their results and describe additional

areas of investigation.

Consider a collection of spatially distributed scattering centers, each associated

with a complex coefficient that modulates its magnitude and phase [7]. By adjusting

the location and the complex value of each scattering center, the superposition of every

scattering center’s far-field response may yield a pattern that matches the far-field

response of an arbitrary target geometry. This concept is illustrated in Figure 3.1(a)

and concisely summarized as

SpredIPS (k, r̂)=
N∑
n=1

γn exp(−j2kr̂ · r′n), (3.1)

where SpredIPS is the far-field value synthesized with the wavenumber k and observed

from direction r̂. SpredIPS is determined by the summation of N IPSs that are located

at r′n and modulated by the complex coefficient γn. The components of γn control

the magnitude and phase delay applied to the IPSs, while the operating frequency
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and the locations of the scattering centers with respect to the phase origin affect the

exponential term in (1) and alters the phase oscillation rate of the far-field pattern.
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Figure 3.1: Far-Field approximation of a (a) IPS and (b) WDP.

WDPs, shown in Figure 3.1(b), are coherently summed together in a similar

fashion as IPSs to generate far-field patterns. From [8], UTD diffraction coefficients

reduce to GTD coefficients when the surfaces of the wedge are flat and the observation

angles are not in the transition regions near the shadow boundaries. We implement

2D WDPs as

Ds,h(φ,m) =
− exp(jπ/4) sin (π/m)

2m
√

2πk

[
1

cos (π/m)
∓ 1

cos (π/m)− cos (2φ/m)

]
, (3.2)

where m = (2π − α)/π, α is the wedge angle and φ is the monostatic observation

angle. In the second term between the brackets, the negative term corresponds to the

soft polarization, while the positive term corresponds to the hard polarization (in our

case, θ and φ polarization, respectively). This 2D analytic solution assumes that the

diffraction edge is always aligned along the z-axis and extends towards infinity. The

RCS of a finite wedge of width w can be determined by multiplying the 2D echo width

by 2πw2/λ, where wavelength λ = 2π/k. The diffraction coefficient Ds,h replaces the
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IPS coefficient γn in (1) and yields

SpredWDS(k, r̂) =
L∑
l=1

Ds,h
l exp (−j2kr̂ · r′l), (3.3)

to generate the far-field monostatic backscatter of the L diffracting wedges.

We note that the formulation in (2) is valid for wedge angles of up to 180◦ and

does not address dihedral effects. Moreover, the scattering pattern arising from WDPs

exhibit asymptotic behavior for monostatic angles that are normal to the faces of the

wedge due to their vicinity to the shadow boundaries. These singularities occur in

pairs for finite length wedges and additional considerations need to be made when

geometries contain dihedral or concave regions.

3.1 Optimization Framework

We use the IPS and WDP formulations to estimate a solution SestFF for SrefFF by

considering

SrefFF ≈ SestFF = SpredWDS + ∆p

= SpredWDS + SrefFF − S
pred
WDS

= SpredWDS + SpredIPS ,

(3.4)

where SpredWDS utilizes a priori information about the geometry to generate a coarse

estimate of SrefFF and the coherent difference ∆p is estimated with SpredIPS . An

optimization framework, depicted in Figure 3.2, was designed to determine SpredWDS

in a preprocessing stage andSpredIPS with a sparse optimization stage.

The framework was generalized to use a constrained minimization routine to

estimate appropriate parameter values for multiple types of non-isotropic scattering

primitives (including the WDP utilized in this study). We note that the determination

of r′l and the dependent variables of Ds,h
l in (3) can be a non-trivial problem with

many local minima, especially when a priori information is limited. Because our

investigation is focused on the feasibility of reducing the number of IPSs, we bypass
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Figure 3.2: Optimization Framework.

the constrained minimization in these experiments and provide parameter values for

the WDPs based on a priori knowledge of the scattering geometry as inputs instead.

The preprocessing stage synthesizes a far-field pattern from the WDPs and

applies a global phase shift to the prediction that best matches the reference data.

This is a necessary step in the event that the reference data and WDP prediction from

the analytic geometry have different phase origins. The phase-shifted WDP solution

is then coherently subtracted from the SrefFF to yield ∆p.

Shadowed regions are also determined in the preprocessing stage of the framework

to prevent WDPs and IPSs from radiating through the boundaries of the target

geometry. This is performed by tracing a vector from each primitive and scattering

center to all far-field observation points and determining whether the ray intersects

a facet of the geometry [11].
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Modifications to support shadowing and the phase shift of the WDP solution

augment the model in (4) with additional modulation terms such that

ŜestFF (k, r̂) = SpredWDS + SpredIPS

=
L∑
l=1

βl exp (jψ)SpredWDS +
N∑
n=1

βnS
pred
IPS

=
L∑
l=1

βlD
s,h
l exp (−j[2kr̂ · r′l − ψ]) + βnγn exp (−j2kr̂ · r′n),

(3.5)

where βl,n represent the shadowing and angle constraints applied to the WDPs and

IPSs respectively and exp (jψ) represents the phase shift applied to the WDP solution.

In the sparse optimization stage, determining appropriate values of r′n and γn in

(1) often relies on l1-norm minimization techniques such as Basis Pursuit Denoising

(BPDN) in [4]. We note that BPDN provides a solution that minimizes the sum of

the magnitudes of the complex coefficients, whereas an l0-norm minimized solution

minimizes number of complex coefficients contributing to the solution (true sparsity).

A solution arising from an l1-norm minimization routine is a good approximation

to the l0-norm minimized solution when compressive sensing characteristics are met,

namely that the dictionary that is used to represent the signal satisfies the RIP.

Again, determining adherence to the RIP can be computationally intractable for non-

random matrices, therefore we proceed to apply this technique with the understanding

that l1-norm minimized solutions may not strictly be the sparsest solution. In our

framework, the SPGL1 library was leveraged to perform the BPDN optimization [9].

We note that primitive-based approaches are popular because generating far-field

scattering from the primitives is straightforward. This is a key benefit and allows the

optimization routine to iterate more quickly than in alternative approaches [10].
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3.2 Numerical Experiments

We first apply our framework on a single flat plate, to demonstrate that the

WDPs are implemented correctly and that BPDN can recover an adequate solution

to ∆p. Next, the framework is applied to an angled plate, which includes a dihedral

response that cannot be captured with the WDPs and shall be recovered with the

IPSs. Figure 3.3 illustrates the two test geometries that are used to validate our

approach.

The flat plate geometry is a 1m × 0.1m plate with zero thickness, while the

angled plate geometry consists of a 1m × 0.125m and a 0.5m × 0.125m plate joined

at one end to form a 90◦ angle (the latter dimension of each geometry is used to

translate 2D echo width to 3D RCS). While the flat plate has no thickness, two

variations of the angled plate were generated: one with zero thickness and one with

0.01m thickness. The significance of the angled plate variations is discussed in Section

IV-B.

Figure 3.3: Flat plate and angled plate test geometries.
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For all cases, only the points on the z=0 plane were used since the far-field

patterns were limited to the xy-plane (elevation θ = 90◦, azimuth φ ∈ [0◦, 360◦]) and

there is no variation in either geometry in the z-direction. In all cases, we calculated

the TM-polarized far-field backscatter response at 6 GHz (λ = 0.05m), ensuring that

both targets are electrically large and amenable to high frequency approximations.

Several mesh discretizations were generated to assess sparsity requirements for a given

BPDN solution. Lastly, the BPDN parameters for error tolerance and maximum

iterations were set to 10−3 and 103, respectively, and were held constant over all

experiments.

The reference data SrefFF in our comparisons was generated with a MOM-based

code to mitigate any contribution from measurement artifacts. We utilize a relative

error norm as our metric for comparison, calculated as Σk,̂r

∣∣∣∣SrefFF − SestFF

∣∣∣∣
2
/
∣∣∣∣SrefFF

∣∣∣∣
2
,

where
∣∣∣∣ · ∣∣∣∣

2
is the l2-norm.

3.2.1 Flat Plate.

Figure 3.4 illustrates our results from the flat plate geometry and compares the

reference data against our method: the top plot compares the reference data SrefFF

against the diffraction solution from the preprocessing stage ŜpredWDS as well as the

combined solution ŜestFF = ŜpredWDS+ŜpredIPS ; the middle plot illustrates the performance of

the sparse optimization stage by comparing the IPS solution ŜpredIPS with the difference

pattern ∆p that the optimization attempts to recover; finally, the bottom plot depicts

the coherent difference between SrefFF and ŜestFF .

ŜpredWDS was generated by defining two WDPs at the ends of the plate with α = 0◦.

The singularities from each primitive sum to generate the specular lobe at φ = 90◦.

We observe that the diffraction solution compares well with the reference data until

the monostatic angle approaches the grazing angle of the flat plate (a known deficiency
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Figure 3.4: Reference, WDP and IPS solutions for a flat plate (magnitude).

Discrepancies between the reference and WDP solution (top) are corrected with an

IPS solution (middle) to yield low reconstruction error (bottom).

in GTD analytic solutions). The coherent difference from the preprocessing stage

stays largely within the -20 and -40 dB range and yields a relative error of 0.0731.

After ŜpredWDSis generated, ∆p is supplied to BPDN to synthesize ŜpredIPS . The

result of the sparse optimization stage shows a well-converged solution and has a

coherent difference that is largely below -60 dB. When the WDP and IPS solutions are

combined to yield ŜestFF , we see overlay agreement with SrefFF . The combined solution

achieves a relative error of 0.0011.
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In contrast to our combined method, traditional scattering center reconstruction

of far-field data utilizes IPSs exclusively to reconstruct the reference data rather

than the delta pattern. We can assess the efficacy of the traditional approach by

calculating the relative error as a function of the number of IPSs used to perform the

reconstruction, as shown in Figure 3.5. Using a λ/3 sampling to generate the IPSs

candidates provides N = 61 points. We see that both methods require all points

to achieve the lowest errors, and the traditional method achieves a relative error of

0.0019, compared to 0.0011 when the combined method is used (the WDP solution

does not vary as a function of the number of IPSs).

We also observe that when scattering centers with the smallest magnitudes

are removed from contributing to the far-field pattern, the error of the traditional

approach increases more quickly than the combined approach. In this example, the

traditional approach exceeds the error of the WDP solution when fewer than N = 60

points are used for the reconstruction.

Figure 3.5: Relative error norm of the flat plate.

These results indicate that a solution generated from a combination of WDPs and

IPSs can achieve a more accurate reconstruction than either of the two separately.
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Moreover, for any desired level of error, the combined solution is sparser than the

traditional method.

3.2.2 Angled Plate.

The angled plate geometry provides a more challenging far-field pattern to

reconstruct than the flat plate. In addition to the flat plate responses, a strong

dihedral response will occur in the far-field azimuth sector φ ∈ (180◦, 270◦). Knowing

that the current implementation of WDPs cannot reconstruct the dihedral response,

we limit their contributions to angles exclusive of the dihedral sector via βl in (5).

We note that even with the applied angle constraints, the WDPs may be

inaccurate outside of the dihedral region, as well. According to [12], UTD WDPs

fail near the shadow boundaries on concave shapes due to the fact that one of the

WDPs is shadowed by obstructing geometry. The authors propose a separate type of

diffraction coefficient to address dihedral effects by tracking rays that have multiple

diffraction and reflection interactions on the target. Without introducing a third type

of scattering center into the framework, we apply two additional WDPs located on

the shared edge of the two plates (both with α = 0◦). This is analogous to two

independent flat plates, where the additional WDPs complement the primitives on

the open edges of the angled plate and compensate for the singularities that arise

from those primitives. In total, five WDPs are used: two for each flat plate and one

for exterior corner of the angled plate and with α = 90◦. This arrangement yields a

good approximation when compared to the reference data. The relative error norm

over the far-field sector where the WDP solution is valid was calculated to be 0.0992

and is similar to the relative error norm achieved by the WDP solution for the flat

plate geometry.

We note that IPSs will also encounter issues in pattern reconstruction of the

angled plate due to the dihedral sector. We observed that the IPSs on a zero-
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thickness angled plate failed to generate an adequate reconstruction since there is

a large contrast in the far-field response of the dihedral and non-dihedral regions.

Implementing a finite thickness model, shown in Figure 3.6, and enforcing shadow

boundaries mitigated these effects: an optimization of the zero thickness geometry

resulted in an error of 0.7210, while the finite thickness geometry achieved an error

of 0.0477.

However, even with the finite thickness geometry, additional non-physical

aberrations are evident in the solution. We can observe the source of these errors

by considering the angle sectors where each IPS contributes to the far-field. These

sectors are discretized and plotted as vectors in Figure 3.6.

Figure 3.6: Active IPSs for φ ∈ [0◦, 270◦] (red vectors) and φ ∈ [270◦, 360◦] (green

vectors).

The figure indicates that there are IPSs located in the interior region of the

angled plate that contribute to both the dihedral and non-dihedral sectors of the

far-field response. Moreover, the number of interior points contributing to the non-

dihedral sector varies as the shadow boundary sweeps across the interior sector of
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the angled plate from φ ∈ [116◦, 180◦] and [270◦, 296◦]. This variation causes the

discontinuities in the far-field pattern shown in Figure 3.7 and we see that the severity

of the discontinuities decrease when the rate of variation decreases, namely when angle

approaches either of the normal incident angles (φ = 180◦ and 270◦).

If the IPSs from the finite thickness model are used in the proposed method

to reconstruct ∆p for the entire azimuth range φ ∈ [0◦, 360◦], these discontinuities

significantly degrade the reconstruction in the regions where the ŜpredWDS is already very

good: under this arrangement, the method achieves a relative error norm of 0.0964

(0.0905 for λ/4, 0.0830 for λ/5). While it is a slight improvement over the solution

generated by WDPs alone, it does not provide a better solution than the traditional

method. We speculate that, in addition to the discontinuities, the dynamic range of

the delta pattern increases because the WDPs are restricted from contributing to the

dihedral sector of SrefFF . These effects ultimately make ∆p more difficult to reconstruct

with IPSs.

Figure 3.7: Discontinuities in non-dihedral sector of IPS solution due to interior

IPS contributions.
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As an alternative, we enforce additional constraints on the finite thickness model

via βn such that the interior and exterior IPSs only contribute to the non-dihedral and

dihedral sectors, respectively. Using this strict separation, ŜestFF from the combined

method yields an improved relative error norm of 0.0238 and exceeds the performance

of the traditional method. The results of this experiment are shown in Figure 3.8.

Figure 3.8: Reference, WDP and IPS solutions for an angled plate (magnitude only).

Discrepancies between the reference data and WDP solution (top) are corrected with

an IPS solution (middle) to yield low reconstruction error (bottom).

The figure also clearly shows the large dynamic range of ∆p where much of the

dihedral sector stays above 0 dB and non-dihedral sector stays largely below -20 dB.
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With our proposed method of synthesizing ŜestFF , the errors achieved mostly fall below

-20 dB.

Mirroring the analysis performed on the flat plate, we assess the trade between

relative error norm and the number of IPSs used in the reconstruction of SrefFF and

∆p, shown in Figure 3.9. We note that the figure includes an additional dataset to

show that, while the strict separation of the contributions of the inner IPSs to the

dihedral sector and the outer IPSs to the non-dihedral sector was an effective strategy

for synthesizing ∆p, it was not effective when the IPSs were used to reconstruct SrefFF .

We speculate that the configuration that enforces strict separation does not provide

an adequate number of IPSs to generate the narrow lobes that are present near the

edges of the dihedral region in the far-field reference pattern. Conversely, the more

permissive shadowing scheme provides enough of these point scatterers to generate

narrow (but discontinuous) peaks to match the far-field reference pattern well, but

detrimentally impacts the solution when they are used to match ∆p (which has lower

and wider lobes).

We also observe a discontinuity in the solutions that rely exclusively on IPSs

whereas the flat plate tests exhibited a monotonically decreasing error. This is because

the magnitudes of the coefficients supporting the dihedral sector are significantly

higher than those supporting the non-dihedral sector. For example, in the test case

where ∆p was recovered via IPSs only, the removal of the lowest magnitude coefficients

from reconstruction will incrementally degrade the non-dihedral sector and only after

the 39th largest coefficient is removed will the dihedral reconstruction degrade.

Overall, the results are consistent with those in the flat plate experiment. That

is, the traditional approach that utilizes only IPSs to reconstruct far-field reference

data is unable to reach the error levels that are achieved with the proposed approach.

Moreover, if the smallest (in magnitude) non-zero coefficients are discarded from the
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Figure 3.9: Relative error norm of the angled plate.

reconstruction, the degradation of the solution from the proposed method is more

gradual than the traditional method.

Our numerical experiments are summarized in Table 1. We see with both

geometries that a lower error is achieved when combining a WDP solution with

an IPS solution to the delta pattern instead of the relying exclusively on WDPs

or IPSs to reconstruct the far-field data. In the case of the angled plate, the result

required manually setting boundaries on the range of angles where each primitive

type contributes to the far-field pattern. Nonetheless, this is a valuable insight—if

the primary goal is to find a compact representation of far-field data, this approach

would prove to be very useful. With the proposed method, we can achieve a lower

error with approximately the same number of point scatterers (WDPs and IPSs).

Likewise, we have solutions that degrade more slowly with respect to how many IPSs

are used to reconstruct the pattern when the IPSs are applied to a delta pattern

rather than the far-field data.
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Table 3.1: Relative Error and (total point scatterer count) of λ/3 discretized

geometries

Flat Plate Angled Plate*

WDS Only 0.0731 (2) 0.0992 (5)

IPS Only 0.0019 (61) 0.0477 (184)

Combined 0.0011 (63) 0.0238 (189)

*WDS case evaluated for non-dihedral sector only.

3.3 Sparse Reconstruction Considerations for Compressive Sensing

In addition to investigating the reconstruction accuracy of the proposed method,

we seek to understand how well IPSs perform as a sparse basis in the context

of CS. With both the flat plate and angled plate geometries, we tested for

solution convergence and robustness. Figure 3.10 depicts the results from multiple

discretizations of the flat plate geometry and how their solutions degrade as the

weakest scattering centers are incrementally removed from the solution.

CS literature states that the recovery of signal is robust to noise and

reconstruction accuracy should degrade gracefully with a given basis set due to the

RIP (more specifically, the Null Space Property) [13]. We can see that the IPS basis

can used to reconstruct ∆p in the proposed method and reconstruct SrefFF in the

standard method. We noted previously that the degradation of ŜestFF in the proposed

method is more gradual than the far-field reconstruction in the standard method and

we see that this remains true for other discretizations as well. However, the data

also indicates that the solutions generated by the BPDN are not optimally sparse.

The delta pattern and far-field pattern do not vary with respect to discretization, yet

the number of IPSs required to reconstruct those patterns does vary with respect to

discretization.
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We also observe that the numbers of candidate IPSs are N = 61, 81 and 101 for

λ/3, λ/4 and λ/5, respectively. At 6 GHz, the plate is 20λ long and the solutions are

effectively using all of the available scattering centers to determine a solution, even

though it is known that a sparser solution exists (because the coarse discretizations

are able to recover an equally accurate solution with fewer IPSs). While BPDN

determines solutions with the smallest
∑

n |γn|, it does not guarantee a solution that

minimizes the cardinality of γ unless other CS criteria are met. These findings suggest

that a basis set from IPSs does not satisfy the RIP.

Figure 3.10: Robustness of proposed and traditional method solutions for λ/3 to

λ/5 discretizations of the flat plate.

A similar analysis is performed on the data for the angled plate dihedral region,

depicted in Figure 3.11. Again, the number of IPSs required to reach a given level of

error depends on the number of available IPSs. The rate of degradation is different

from the flat plate case, however: the presence of longer tails on the reconstructions

with the proposed method suggest that they have converged and while they are not
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ideal and optimally sparse solutions, they seem to be sparser and more robust than

the reconstructions with the traditional method.

Figure 3.11: Robustness of proposed and traditional method solutions for λ/3 to

λ/5 discretizations of the angled plate.

These numerical experiments show that, while the technique is successful in

generating point scatterer based (WDP and IPS) representations of the targets, there

may be limited utility as a basis for compressive sensing applications. The results show

empirically that when a sparse representation of the target is used to generate far-field

patterns (the traditional approach), perturbations in the sparse representation will

introduce excessively large errors for the purpose of interpolation and extrapolation.

The sparsity is slightly improved when IPS are employed to reconstruct delta patterns

(the proposed approach), but their efficacy seems to be geometry dependent.

These initial results reveal areas that merit additional investigation. It would

be prudent to integrate solutions for dihedral scattering mechanisms [14] into the

framework which would allow the IPSs to recover a more simplified delta pattern.

Additionally, we observed that the number of shadowed IPSs can vary rapidly
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and would introduce unwanted discontinuities in synthesized solution. Tapering or

adjusting the angles that an IPS contributes to may address this issue and would

improve how the IPSs perform on concave targets. Lastly, the optimization framework

can be expanded to support multiple frequencies, multiple polarizations, non-planar

observation geometries and bistatic quantities to possibly aid the convergence of the

optimization routines and expand its applicability to a wider variety of test cases.

3.4 Conclusion

Using WDPs in conjunction with IPSs to reconstruct far-field patterns shows

merit in simple cases and when they are applied judiciously. In our numerical

experiments, we show that this approach can reduce the overall number of scattering

centers required to replicate the scattering response of a flat and a right-angled plate.

We also observed that l1-norm minimization techniques may have difficulty finding

maximally sparse solutions when IPSs are used as a basis set. Despite this, synthesized

solutions are more robust when they are used to reconstruct a coherent difference

pattern rather than the far-field data.
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IV. Direction of Arrival via Block-Sparse Bayesian Learning with

Polarized Non-Uniform Arrays

In this thrust we address the area of improving Direction of Arrival (DOA)

performance. It was observed empirically that the basis developed in the first thrust

likely does not satisfy the Restricted Isometry Property (RIP). An alternative

approach to solving Compressive Sensing (CS) recovery problems asserts that

Bayesian inference can be leveraged to bypass the need for the linear system to be

RIP [5, 46]. We use this concept as a foundation for extending the utility of current

DOA algorithms.

Orthogonalized basis vectors are used in lieu of steering vectors to improve

the performance of Direction of Arrival (DOA) estimation. The proposed method

overcomes several limitations of current state-of-the-art techniques: it allows the

estimation of multiple simultaneous signals (an improvement over some Maximum

Likelihood methods [49]), single-snapshot estimation with no a priori knowledge of the

number of incident signals (an improvement over subspace methods [53]), estimation

of polarized incident signals with non-isotropic array elements (an improvement

over Bayesian Compressive Sensing [44]), and estimation with arrays of arbitrary

configuration (an improvement over Sparse Bayesian Learning [54]). Computational

simulations show good performance in DOA estimation when coupled with a Block-

Sparse Bayesian Learning (BSBL) algorithm.

4.1 Introduction

Accurate and reliable DOA estimation has important applications in many fields,

including communications and radar systems. These systems operate in increasingly

challenging environments and must estimate the direction of multiple arbitrarily

polarized incident signals without prior knowledge of the number of incoming signals
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and with as few measurements as possible. Moreover, the sensing array may consist

of antenna elements that have complex gain patterns and the elements of the array

may deviate from their as-designed specifications due to manufacturing tolerances.

While some of these issues have been addressed individually in the literature, none

have addressed them collectively.

We propose an approach that addresses the aforementioned issues by combining

aspects from several existing techniques. Many research efforts that consider the

DOA estimation problem appeal to either subspace methods or, more recently,

sparse methods derived from CS. Estimation via subspace methods such as

Multiple Signal Classification (MUSIC) [10–13], Estimation of Signal Parameters via

Rotational Invariance Technique (ESPRIT) [14–16], and Machine Learning (ML) [17–

19] assume that the number of incident signals is less than the number of available

measurements [53]. Conversely, sparse methods such as Bayesian Compressive Sensing

(BCS) [44, 55–57] and Block-Sparse Bayesian Learning (BSBL) [47, 58, 59] only

assume that the number of incident signals is less than the number of discretized

sectors of the angle space [20]. Recent efforts propose a multi-resolution strategy to

iteratively refine the DOA sectors to increase the accuracy and precision of the DOA

estimates [60]. In our work, we incorporate an orthogonolization process derived from

an ML approach [49] into BCS and BSBL. This modification, which we refer to as

Steering Vector Orthogonalization (SVO), extends the utility of CS-based methods by

enabling DOA estimates of polarized incident signals with an arbitrary configuration

of array elements.

To date, few publications investigate the feasibility of sparse methods when

applied to non-uniform arrays or arrays with non-isotropic antenna elements [48]. Our

work demonstrates via computational simulations of SVO-enabled BCS and BSBL

that the modified BSBL approach has superior performance in DOA estimation. The
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next section describes our approach as a series of modifications to the generic snapshot

model that is the basis for nearly all DOA techniques. The formulation section is

then followed by simulation results, an assessment of algorithm performance, and

suggestions for additional areas of investigation.

4.2 Problem Formulation

4.2.1 Snapshot Model for Arbitrary Arrays.

For an arbitrary array of M antenna elements and K incident signals, a single

snapshot of measurements, y ∈ CM×1, is a vector of voltage values from the feeds of

each antenna element and is represented as

y = Φ(θ)x + n, (4.1)

where θ=[θ1, . . . , θN ] is a set of DOA angles, Φ(θ) ∈ CM×N is a collection of M×1

steering vectors for those angles, x ∈ CN×1 is a sparse vector with K non-zero

values, and n ∈ CM×1 is white Gaussian noise. Every DOA technique generates an

estimate x̂ such that Φ(θ)x̂ approximates y and is, ideally, also K-sparse with non-

zero elements corresponding to the incident DOA angles in θ. In an arbitrary array,

each element may have different gain and performance characteristics. Therefore,

the first modification to the snapshot model is to represent the n=[1, . . . , N ] steering

vectors as

Φ(θn) = g(θn)�


exp( j2π

λ
r1s(θn))

...

exp( j2π
λ

rMs(θn))

 , (4.2)

where � is the Hadamard product, g ∈ CM×1 accounts for the gain patterns for the

M antennas, rm for m =[1, . . . ,M ] is the position vector of the mth array element,

and s(θn) is the unit vector of a signal originating from the direction θn. Φ(θ) can
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be determined through simulation or, when unknown perturbations of the antenna

elements are present, via calibration by illuminating the array with a known signal.

4.2.2 Steering Vector Orthogonalization (SVO).

Per [17], the snapshot model is construed as a weighted sum of two voltage

vectors generated from two known polarizations. That is, an incident planar

field originating from θn and with polarization ψ can be represented as the sum

of two complex-weighted DOA vectors from θn with orthogonal polarizations.

Further, [49] demonstrates that the DOA vectors can be recast as an arbitrary

pair of orthogonalized basis vectors. This implies that calibration via orthogonal

polarizations is unnecessary and an orthogonal basis can be generated as a post-

processing step. In our implementation, we utilize QR factorization to generate

orthogonal vectors. With these changes, the second modification to (4.1) leads to

y =

[
U1(θ) U2(θ)

]x1

x2

+ n, (4.3)

where U1(θ),U2(θ) ∈ CM×N are arrays of the orthogonalized steering vectors (which

span the same subspace as the original set of vectors) and x1,x2 ∈ CN×1 are K-sparse

weight vectors. Ultimately, this orthogonalization and stacking procedure allows the

signal model to describe an arbitrarily polarized incident planar field. The problem

posed is to determine a sparse solution x̂1 and x̂2 that satisfies (4.3).

Sparse methods exploit the assumption of a K-sparse weight vector to generate

solutions for linear systems that would otherwise be under-determined and ill-

posed. Specifically, the Bayesian interpretation of CS is to determine the posterior

distribution for each value in x through the likelihood function of y and a sparse prior

on x. We leverage the BCS routine from [61] which implements an efficient Relevance

Vector Machine (RVM) algorithm. The technique solves for the posteriors by

marginalizing over x and determining values for its hyperparameters instead [39]. As
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noted in their work, and counter to traditional Bayesian theory, the marginalization

of x also mitigates the need for informed (non-uniform) hyperpriors.

The BSBL approach has a similar provenance as BCS and also relies on the

marginalization of x. Variations of CS exist that exploit the commonality between

multiple vectors of y to determine a sparse solution of x. In particular, [47]

reinterprets Multiple Measurement Vector (MMV) as a Single Measurement Vector

(SMV) problem and enforces sparsity over groups within a single x. With respect to

(4.3), x1 and x2 should share the same sparsity pattern under most circumstances.

That is, the indices of the non-zero values in x1 and x2 should be identical and

therefore and can be taken advantage of by BSBL. We note that this assumption

may fail when the polarization of an incident signal is perfectly aligned with one

of the two orthogonalized basis vectors. While the likelihood of this occurring is

low (especially when the antenna elements have non-uniform perturbations in their

orientations), we reconcile the two solutions such that x̂(n)= max (|x̂1(n)|, |x̂2(n)|).

4.2.3 BCS and BSBL for Complex Weights.

A third modification to (4.1) is made to accommodate the BCS and BSBL

formulations. Because the standard implementations only support real-valued weight

vectors [47, 55], the arrays from (4.3) are recast such that, for α=[1, 2],

Uα(θ)=

Re(Uα(θ)) − Im(Uα(θ))

Im(Uα(θ)) Re(Uα(θ))

 , xα=

Re(xα)

Im(xα)

 . (4.4)

Substituting (4.4) into (4.3) yields y=

Re(y)

Im(y)

 and y can be reconstructed as

y= Re(y)+j Im(y).

Such a formulation treats the real and imaginary components of the complex

weights as strictly independent variables. As noted in [62], this approach does not

take advantage of the fact that the sparsity of the real and imaginary components of
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xα are correlated. Namely, a non-zero element in xα is unlikely to be purely real or

purely imaginary. This may be detrimental to the convergence to an accurate DOA

estimate and we again appeal to the group-sparsity feature of BSBL to further reduce

the space spanned by the basis vectors.

With these modifications, Φ(θ) and x from the original signal model in (4.1) are

extended to sizes 2M×4N and 4N×1, respectively. We note that under the concept

of block sparsity, the column vectors of Φ(θ) are reordered so that, index-wise, the

columns corresponding to each θ are contiguous.

4.3 Simulation Results

Two computational simulations are presented to demonstrate the efficacy of our

modifications to BCS-DOA and BSBL-DOA. The first simulation is a validation effort

to illustrate the advantage of SVO over non-SVO BCS and BSBL for generating

DOA estimates of multiple polarized incident signals. The second simulation is a

more comprehensive assessment of the DOA estimation performance over various

combinations of incident angles, polarizations and array configurations.

4.3.1 Approach.

Simulations are performed using a computational tool to model planar incident

fields impinging on a collection of dipole antennas. The software implements a Method

of Moments (MOM) formulation, which provides full-wave electromagnetic solutions

to the currents induced on the array and accounts for any mutual coupling effects

that may arise when elements are in close proximity to one another [63]. The arrays

are modeled as Perfect Electric Conductor (PEC) dipoles with a finite thickness and

length. The simulation calculates the induced currents (which determine gain patterns

g(θ)) and the input impedances at each antenna feed of the array (which determine

voltage values for the steering vectors Φ(θ)).
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Figure 4.1 illustrates quantities of interest on a representative array placed in our

reference coordinate system. To reduce the computational burden in our analysis, for

all simulations, we restrict the DOA estimation to one parameter where azimuth is

fixed to zero and elevation θ=[0◦, 90◦]. We recognize, however, that the algorithms

can be generalized to perform DOA estimation for both azimuth and elevation. s1 and

s2 represent two incident signals from the θ1 and θ2 direction and with polarizations

ψ1 and ψ2, respectively.

x

y

z

θ1

θ2

ψ1

ψ2s1

s2

Figure 4.1: Reference coordinate system: a notional seven-element linear dipole

array has two incident signals s1 and s2, with directions θ1 and θ2, and polarizations

ψ1 and ψ2, respectively.

Figure 4.2 depicts three array configurations used in our simulations. For all

three arrays, M=10 and consist of λ/2-length dipoles (λ/10 in width) and that the

centers of each dipole (the feed locations) are constrained to the xz-plane.

Configuration (a) is an ideal linear array of dipoles where the alignment of each

element alternates between the x- and y-axis and the feeds of each dipole are equally

spaced λ/2 apart. Configuration (b) is a perturbed linear array where the dipoles are

no longer perfectly aligned with the axes. The perturbations on the orientation of

each element is defined by a tilt vector, whose values, in degrees, are drawn from a
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Figure 4.2: (a) Ideal linear, (b) Perturbed linear, and (c) Perturbed conformal

array configurations. Feed locations are projected onto Cartesian planes to indicate

the non-uniform separation of the array elements in (b) and (c).

normal distribution N (0,0.1). The spacing between the elements (in the x-direction)

is also perturbed by a random value in the uniform distribution U(-0.25,0.25)λ.

Configuration (c) conforms an array to a quarter ellipse, where both the alignment

and the spacing (in both the x- and z-direction) of the dipoles are altered with the

same process and random distributions as the perturbed linear array.

4.3.2 SVO Validation.

The ideal linear array is employed to determine the effectiveness of SVO on

BCS- and BSBL-DOA estimation of three fixed incident signals (K=3) and across

multiple polarization combinations. The angular space spans θ=[0◦,90◦] in N=91
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sectors. The incident angles θk, are set to {20◦, 35◦, 62◦} and the polarizations ψk are

randomly generated for the first trial. Subsequent trials jointly rotate the polarization

vectors over 175◦ discretized into P=36 sectors (the angular difference between the

polarization vectors, ∆ψ = {ψ1 − ψ2, . . . , ψK−1 − ψK}, remains constant). Gaussian

noise N (0, 10−6) is added to the real and imaginary components of the voltage vector.

This translates to approximately −87 dBm of noise power and was selected initially

to make the recovery problem non-deterministic.

Figure 4.3 illustrates our simulation results for the four combinations of with and

without SVO for BCS and BSBL. Each trial p=1, . . . , P , yields a complex-valued

weight vector and we depict the DOA estimate as x̂p(n) = |x̂p(n)|/max(|x̂p(n)|).

Regardless of method, the DOA estimation is poor without SVO (Figures 4.3(a)

and (c)). BCS fails to estimate the correct DOA solution in many polarization

combinations, while BSBL provides correlated estimates with many false positives.

With SVO, BCS performs slightly better than without, while SVO BSBL shows nearly

perfect DOA estimation performance.

These results suggest that without SVO, Φ(θ) only consists of a single set of

DOA vectors and is an insufficient basis to span signals from other polarizations.

With SVO, the basis set is doubled, but BCS often converges to incorrect solutions

and is likely due to a severely overcomplete basis. Using BSBL to enforce grouping

of non-zero elements within x̂ mitigates this by leveraging the block sparsity of the

solution to discriminate within the larger basis.

Although we focus on single-snapshot performance in this study, the results

from this simulation imply that SVO-BSBL will also work well in a multi-snapshot

construct. We observe that, over multiple snapshots, the DOA of the incident signals

may vary only slightly in angle or polarization. As such, the simulation results show

very little angular spread in the DOA estimates across all polarizations ψk.
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Figure 4.3: SVO validation: (a) BCS without SVO, (b) BCS with SVO, (c) BSBL

without SVO, and (d) BSBL with SVO. Accurate reconstruction is achieved with

SVO-BSBL, while others show significant false estimation errors.

4.3.3 Impact of Signal and Array Variations on SVO.

While the previous simulation demonstrates good SVO-BSBL performance for

a specific set of incident signals with fixed angle separation, it is well known that

the performance of DOA estimation algorithms often suffer when the incident signals

are not adequately separated [64]. In addition, estimation performance is highly

56



dependent on the configuration of the array. The second simulation characterizes

how SVO performs with respect to these issues.

In contrast to the previous simulation, the three array configurations in Figure 4.2

are evaluated with two incident signals instead of three. Moreover, each pair of

incident signals is varied in both polarization ψk and separation ∆ψ. The angular

space spans [0◦,90◦] in 5◦ increments (N=19), ∆ψ spanned [0◦,90◦] in 15◦ increments

(P=7), and ψk spanned [0◦175◦] in 5◦ increments (Q=36). The performance metric

∆x(θ1, θ2) =

Q∑
q=1

P∑
p=1

N∑
n=1

|x̂(n)− x(n)| (4.5)

measures accuracy of estimate x̂ for each DOA combination.

Figures 4.4–4.6 summarize the performance of the three array configurations

in this simulation. Each figure is a composite plot, illustrating the SVO-BCS

performance in the upper diagonal and the SVO-BSBL performance in the lower

diagonal, for each pair of θk. We observed ∆x is symmetric across the diagonal when

no noise is applied and nearly symmetric in simulations with noise set to N (0, 10−3)

(approximately −27 dBm of noise power).

For the ideal linear array with no noise applied, SVO-BSBL generally performs

better than SVO-BCS, but both perform poorly when one of the incident signals is

near end-fire angles of the array (n = 19). This is a known issue [65], and is likely

compounded by the fact that array elements are separated by exactly λ/2. We also see

performance degradation where the θ1,2 are similar. We surmise that, in these cases,

x̂ estimates two signals in the same sector, which is correct on the main diagonal but

incorrect elsewhere, causing the banded behavior seen in Figures 4.4 and 4.5. For

SVO-BCS, the mean and median values of ∆x were 355.7 and 214, respectively; for

SVO-BSBL mean and median values of ∆x were 80.5 and 0, respectively.
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Figure 4.4: Ideal linear array performance, noise variance=0. For SVO-BSBL,

accurate DOA estimates are achieved in most angle and polarization permutations

except near end-fire and closely separated sectors.

On the perturbed linear array with measurement noise added, we observe that

x̂ in the end-fire region improve due to the spatial variation of the elements in the x-

axis, but performance is slightly degraded for other combinations of θ1,2. Nevertheless,

BSBL still outperforms BCS by a significant margin, especially when the two incident

angles are well separated. In contrast to the previous case, the results can vary due

to the non-deterministic noise values, but the variance over multiple simulations was

observed to be minor. In the trial shown in Figure 4.5, for SVO-BCS, the mean and

median values of ∆x were 153 and 125.5, respectively; for SVO-BSBL, the mean and

median values of ∆x were 8.2 and 0, respectively.
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Figure 4.5: Perturbed linear array performance, noise variance=10−3. DOA

estimates improve under both methods, but SVO-BSBL continues to exhibit better

performance than SVO-BCS.

Finally, with the conformal array and with noise applied, we observe SVO-BSBL

maintains good estimation performance throughout all combinations of DOA and

polarizations and continues to outperform SVO-BCS. Issues near the endfire region

are resolved with the conformal array. A moderate level of error is diffuse across

all DOA pairs with SVO-BCS, but the error statistics remain constant between the

perturbed linear array and the conformal array: in the trial shown in Figure 4.6, for

SVO-BCS, the mean and median values of ∆x were 136.7 and 92, respectively; for

SVO-BSBL, the mean and median values of ∆x were 9.5 and 0, respectively. The

banding from previous results is resolved due to the spatial diversity of the conformal
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array elements, which improves the array’s sensitivity to phase differences between

two closely separated signals [66].

Figure 4.6: Perturbed conformal array performance, noise variance=10−3. Further

improvements in DOA estimation are seen in the end-fire and closely separated sectors

of the SVO-BSBL result.

4.4 Conclusion

Our computational simulations with SVO applied to both BCS and BSBL show

that the SVO-BSBL technique is a viable solution to generating accurate DOA

estimates in non-ideal environments. We demonstrate good performance with a single

snapshot measurement of multiple polarized signals incident on a perturbed, non-

uniform array of dipole antennas.
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Given these results, it would be prudent to further investigate the robustness

of this technique. Trade studies may be performed to understand its performance

under lower SNR scenarios, with multiple snapshots of measurements, other array

configurations (non-uniform elements), and expanding the formulation for DOA

estimates in azimuth and elevation.
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V. Scattering Interpolation via Theory of Characteristic Modes

5.1 Introduction

The final thrust area for this dissertation is an investigation of characteristic

modes as an alternative basis set. The primary driver for such a basis is to

address non-localized scattering phenomena that occurs when the frequency of the

illuminating radar falls within the resonance region of the target. These distributed

effects are poorly represented with the bases we investigated previously and the unique

properties of characteristic modes seem well-suited to address this shortcoming.

Developing such a basis may ultimately enable the use of Inverse Synthetic

Aperture Radar (ISAR) reconstruction and noise removal techniques proposed in [6]

at lower frequencies or for smaller targets. While one of the long term goals is

to incorporate the Theory of Characteristic Modes (TCM)-derived basis into these

techniques, our efforts to date primarily consist of an assessment and verification of

the theory. We note that most of the applied research available in the Characteristic

Mode Analysis (CMA) literature has focused on radiation for antenna design and

performance characterization. However, because the underlying theory is based on

Method of Moments (MOM), much of the formulation should be equally applicable

to scattering problems as well. Given this, as an intermediate step, we reinterpret the

formulation for scattering problems and leverage TCM principles to interpolate (and

extrapolate) Radar Cross Section (RCS) quantities from a limited set measurements.

5.2 Theoretical Framework

TCM is based on an eigendecomposition of the linear model that underpins

MOM. The electric field boundary condition states that the tangential component

of the electric field is zero at a Perfect Electric Conductor (PEC) interface. In other
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words, for an incident field Ei, the sum of its tangential component with the tangential

component of the scattered field Es must be zero at the boundary between PEC and

free-space, i.e.,

− Es
tan = Ei

tan. (5.1)

The scattered field at any point in free-space r′ can be determined from integrating

the currents over all points r on the target’s surface S and radiating to the observation

point via the free-space Green’s function G(r, r′) = (e−jk|r−r
′|)/(4π|r− r′|). This leads

to the linear model

[Z(J)]tan = Ei
tan, (5.2)

where

Z(J) =
jk0η0

4π

(ˆ
S

J(r′)G(r, r′)dS ′ +
1

k20
∇
ˆ
S

∇′ · J(r′)G(r, r′)dS ′
)
. (5.3)

which follows from the Helmholtz wave equation using the electric and magnetic

vector potentials [50]. The linear operator Z is known as the impedance operator and

J represents weights for the currents on the geometry. Z operates on the unknown

weights in J to determine an equivalent scattered electric field that cancels the incident

field. From a linear algebra perspective, inverting the impedance operator will yield

the unknown current distribution over the body.

Computationally, the Z is implemented as an N × N matrix that represents a

discretization of the scattering target into a mesh of triangular facets with a total of

N edges. The Rao-Wilton-Glisson (RWG) basis function is applied over each pair of

triangles to represent the current over two triangles. Applying the Galerkin method,

where the basis functions are also used as the testing functions, yields a symmetric

impedance matrix [67].

The symmetry of Z provides several favorable properties. Critically, it guarantees

that Z is diagonalizable and it allows the real and imaginary components (Z =
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R + jX) to be R = Z+Z∗

2
and X = Z−Z∗

2j
, respectively. Given the eigenvalue problem

Z(Jn) = υnW(Jn) (5.4)

and allowing W = R and υn = 1 + jλn, Equation (5.4) reduces to the generalized

eigenvalue problem

(R + jX)(Jn) = (1 + jλn)R(Jn),

XJn = λnRJn.

(5.5)

Because R and X are real and symmetric, the eigenvectors Jn and eigenvalues λn are

also real and Jn are orthogonal. This derivation implies that the original impedance

operator formulation can be decomposed into a basis of characteristic modes: Jn

are independent current distributions (characteristic currents) with corresponding

weights λn that indicate the significance of each mode n = 1, . . . , N . An orthonormal

basis can be created by ensuring the inner product 〈J∗n,RJn〉 = 1 for all n.

From this generalized eigenvalue problem formulation, other quantities are

defined to facilitate analysis. Because the characteristic modes are orthogonal, the

total current distribution on the target J can be determined through the superposition

of the characteristic currents and, likewise, the radiated fields from the target E can

be determined by the superposition of the characteristic fields

J =
∑
n

anJn,

E =
∑
n

anEn,

(5.6)

where each characteristic current is weighted with a complex coefficient an.

Substituting Equation (5.6) into Equation (5.2) and and taking the inner product

with Jm on both sides yields

∑
n

an 〈Z(Jn),Jm〉 =
〈
Ei

tan,Jm
〉
. (5.7)
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Because the characteristic currents are orthogonal, there is only one non-zero term in

the summation on the left hand side of Equation (5.7) and we see that

an =
〈Ei

tan(r),Jn〉
1 + jλn

. (5.8)

We note that the numerator of Equation (5.8) is referred to as the modal excitation

coefficient. Equation (5.8) clearly indicates that, while the characteristic currents

Jn and characteristic fields En are independent of excitation, the overall current

distribution formed on the body J and the overall fields scattered by the body E are

not. They both depend on the modal excitation coefficient, which represents how the

tangential incident field of the source Ei
tan couples with the characteristic current Jn

for each mode. Intuitively, from an antenna perspective, the radiation of the body

depends on the location of the feed. Likewise, from a scattering perspective, the RCS

depends on the direction (and polarization) of the incident field. Additionally, the

magnitude of the denominator in Equation (5.8) is referred to as the modal significance

(MS = |1/(1 + jλn)|). This term is also consistent with the previous assertion that

modes with smaller eigenvalues correspond to characteristic currents that have larger

contributions to the overall current and field distributions.

5.3 Methodology

Using the concepts highlighted in the previous section, we investigate the

feasibility of using a TCM-derived basis to perform RCS interpolation across

frequencies and angles. Much of the literature is focused on antenna design and

creating geometries to exploit characteristic modes for efficient radiation. Of the few

that pertain to scattering, it was shown that the overall RCS can also be decomposed

into its characteristic modes. We first attempt to replicate the results found in [52],

which presents results of a numerical RCS reconstruction experiment of the NASA

Almond target.
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The scattering target, shown in Figure 5.1, is a common benchmark RCS

target for numerical codes and radar range tests because it provides a combination

of specular and non-localized scattering effects. It also has a simple parametric

description which facilitates the repeatability of experiments [68]. The model is 0.25 m

in length and was discretized into 974 triangular facets (1461 edges). At 1.2 GHz,

the target is approximately 1 wavelength long with a mesh density of 25 samples per

wavelength; at 2 GHz, the target is 1.67 wavelengths long with a mesh density of 15

samples per wavelength. The mesh is sufficiently dense for all frequencies of interest

(0.5 GHz to 2 GHz) and was used in all of our evaluations to ensure consistency in

the results.

Figure 5.1: NASA Almond geometry.

We propose two methods to generate RCS predictions without performing the

full MOM process. In the first method, we recall from Equation (5.6) that the total

scattered field can be reconstructed as a weighted sum of the characteristic fields. The

weight term an is a function of the eigenvalue, characteristic current and the incident
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electric field for a given mode n and incident angle. If these terms are relatively

constant for small deviations in frequency and/or can accurately be interpolated, then

RCS predictions from the interpolated values may be feasible. Figure 5.2 illustrates

the behavior of the eigenvalues between 0.5 and 2 GHz. We see that the although

the number of significant modes (λn ≈ 0) increases as a function of frequency, each

mode has a stable trajectory across the frequencies of interest.

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

-20

0

20

Figure 5.2: Trajectory of the first 50 eigenvalues of the NASA Almond.

With respect to the characteristic currents, Figure 5.3 shows, for the first mode,

that the distributions remain similar for small deviations in frequency for the lowest,

center, and highest frequency of interest. Correspondingly, the characteristic fields,

shown in Figure 5.4, are determined from the characteristic currents, and they too

show very similar patterns for small deviations in frequency.

Through interpolation of the eigenvalues λn, we can determine the weights

an for the characteristic currents and fields for adjacent frequencies without the

computational expense of decomposing the impedance matrix. We theorize that this

67



Figure 5.3: Characteristic currents of the first mode for (a) 0.5 GHz, (b) 0.525 GHz,

(c) 1.2 GHz, (d) 1.225 GHz, (e) 1.975 GHz, and (f) 2 GHz.
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Figure 5.4: Comparison of characteristic fields (magnitude) from the first mode for

0.5, 0.525, 1.2, 1.225, 1.975, and 2 GHz.

interpolation should perform better than a direct interpolation of the RCS predictions,

since the TCM basis captures the inherent resonances of the target that the direct

RCS interpolation would not.

In the second method, we leverage the orthogonality property of the modal

currents to determine a sparse solution for a traditionally underdetermined problem.

That is, like the previous thrust areas, we use a sparsity-promoting solver to determine

a solution for the eigenvalues of each modal current distribution. The weights are

then used to generate RCS predictions for monostatic angles that were not directly

measured and provided to the solver. This approach also assumes that the signal

we are attempting to reconstruct has a sparse representation. Figure 5.5 shows, as a

function of modal significance, the number of the characteristic currents required to

reconstruct the signature over the frequency band of interest. Again, we see that while

the level of sparsity decreases as a function of frequency, the number of significant

modes is still minimal relative to the number of modes that the target can theoretically
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support. We speculate that these characteristics satisfy the fundamental tenets of

Compressive Sensing (CS) and may enable recovery of full signature patterns with a

limited number of measurements.
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Figure 5.5: Sparsity of significant modes. The number of modes with high modal

significance values drops off quickly for all frequencies of interest.

To facilitate our investigation, we leverage an open-source CMA library for

MATLAB [69]. The software provides a convenient means of generating an impedance

matrix and most of the the salient CMA quantities to perform our analysis. The

routines generally followed the numerical implementation described in [50, 70]. The

library was developed primarily for radiation problems, therefore additional code

was developed to generate planar incident fields and to calculate far-field quantities

for RCS calculations (specifically, the quantities to compute the modal excitation

coefficient in Equation (5.8)). The CMA routines also follow an unconventional

coordinate system where the body is rotated instead of altering the direction of the

incident and scattered field. Using this system, the polarization and direction vectors
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for the incident field remain static in our routines and the tangential component of

the electric field Ei
tan is calculated by taking the dot product of the incident field and

the normal vector for each facet of the mesh.

5.4 Numerical Experiments and Observations

5.4.1 Reference Data Discrepancies.

With respect to replicating the results found in [52], a common reference dataset

must first be established. We utilized the MOM-based RCS routine in MATLAB to

generate reference data for the NASA Almond and compared it to the reference data

cited in Bouche. It was observed that the reference data reported in Bouche was offset

from the MATLAB predictions by approximately 20 dB, as shown in Figure 5.6.
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Figure 5.6: Reference dataset is overpredicting by 20 dB.

A third government-sponsored MOM code was leveraged to resolve this

discrepancy. There was near overlay agreement between the results from MATLAB

and the government-sponsored codes, lending credence to the MATLAB predictions.

Given this result, we speculate that a normalization issue exists in the code that
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Bouche used to generate the reported results. In fact, follow-on work from [71]

which uses the same theoretical concepts and codebase presents a slightly different

expression for the RCS quantity. While neither paper annotates their plots with

units, RCS is generally assumed to be reported as a ratio relative to a square meter

(dBsm). These discrepancies further suggest that the MATLAB predictions are the

more accurate reference data set.

5.4.2 Replication of Prior Results.

Using the sample code provided by [69] and additional routines we developed, we

observed that our CMA reconstruction of RCS predictions suffers from normalization

issues as well. Figure 5.7 shows that the reconstructed 1.2 GHz signature, using the

first 16 modes to be consistent with the reconstruction results reported in Bouche,

needed to be offset by 7 dB to align with Bouche and 27 dB to align with the MATLAB

predictions. While the general shape seems to be consistent with the reference data,

the RCS predictions for aspect angles near the tip and back of the target diverge by

approximately 1 dB. Further, the nulls that are present in the reference data are not

captured well with our reconstruction.

Figure 5.8 illustrates the MATLAB and CMA reconstruction (with the offset

applied) across all frequencies between 0.5 GHz and 2 GHz (in 0.025 GHz increments),

as well as a third plot depicting the absolute difference between the two data sets.

In all cases, a maximum of 23 modes were used to reconstruct the signature for each

frequency.

Qualitatively, the majority of the discrepancies appear to occur either near nulls

or where the reference signature drops below 0 dBsm. While it is common for the

sharp nulls of an RCS pattern to drift slightly in angle or magnitude due to numerical

precision of the computations, the severity of the discrepancies observed in these

results suggest other underlying issues are involved.
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Figure 5.7: CMA reconstruction for 1200MHz using first 16 modes.

Our review of the source code did not uncover any inconsistencies between the

implementation and the formulation presented in [50]. However we note that, while

they may be consistent, there may be issues inherent with formulation. In one of

the few resources that cover the computational implementation of CMA [72], the

authors describe two methods for computing the far-field quantity: either through

the computation of the radiation vector with surface currents over each facet or by

interpreting the edges of the mesh as an infinitesimally small dipole and integrating

over all the edges to compute a far (or near) field pattern. The trade between these

methods is primarily accuracy at the expense of computation time. The CMA code

we leveraged for this study implements the dipole method and therefore a future effort

should investigate the latter approach.

We also observe from our experiments that the level of agreement does not

necessarily improve monotonically as we increase the number of modes contributing

to the far-field. This is unexpected behavior because it is assumed that including

additional modes will always improve the accuracy of the reconstruction and
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Figure 5.8: RCS predictions from MATLAB (top), CMA reconstructed (middle),

and the magnitude difference (bottom).
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eventually converge to the standard MOM prediction. In this experiment, going

beyond the first 23 modes introduced artifacts and yields poorer reconstruction for

some frequencies, as shown in Figure 5.9. This behavior is acknowledged in other

references [72] which attribute these spurious modes to several possibilities, such as

ill-conditioned impedance matrices and over-discretized meshes of the target.
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Figure 5.9: RCS Reconstruction with first 24 modes.

In a similar vein, we also see that there are discontinuities in the reconstruction

across frequencies. In the CMA-reconstructed data shown in Figure 5.8, there is a

sharp shift in the signature in the 0◦ to 20◦ and 160◦ to 180◦ sectors near 1.8 GHz

that is likely non-physical. We observed that these discontinuities arise whenever the

set of the most significant modes changes. To illustrate this, if the entire range of

frequencies is reconstructed with only the three most significant modes, as shown in

Figure 5.10, discontinuities in the plot occur at at 0.8 and 1.6 GHz. These frequencies

correspond to particular intersections of the modes in the modal significance plot,

shown in Figure 5.11. Specifically, at these frequencies, the mode represented in
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red overtakes the mode represented in yellow at 0.8 GHz and, similarly, where the

mode represented in cyan overtakes the mode represented in orange at 1.6 GHz. We

note that the discontinuities in the far-field reconstruction only occur when there is

a change in the set of the most significant modes and not necessarily where there is

a change in the ranking. For example, there is no discontinuity in the RCS plot at

0.95 GHz, where the modes represented by the red and orange curve swap ranks.
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Figure 5.10: RCS Reconstruction with first three modes.
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Figure 5.11: Modal significance for NASA Almond.
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The discontinuities are especially prominent in Figure 5.10 because the three

modes have high modal significance values. This observation suggests that the

reconstruction shown in Figure 5.8 using 23 modes has not converged. This is

corroborated by the fact that the discontinuity near 1.8 GHz with 23 modes (shown in

Figure 5.8) is largely resolved when a 24th mode is introduced (shown in Figure 5.9).

However, due to the artifacts introduced by the spurious modes discussed previously,

a more accurate reconstruction can not be achieved until the spurious modes are

identified and omitted from the reconstruction process.

Incidentally, with respect to the convergence of the reconstruction results, we

note that a number of references indicate that modal significance values greater than

1/
√

2 may be used to discriminate between significant from non-significant modes [50].

However, this metric was not valid from our empirical observations of the NASA

Almond target. From Figure 5.5, we see that only one to six modes are above this

threshold for the entire frequency band. However, many more modes were required

to achieve a reasonable reconstruction. We also note that Bouche required at least

17 modes to achieve the reported results.

5.4.3 RCS Predictions via Eigenvalue Interpolation.

Due to unresolved issues with validating the scattering reconstruction, an end-to-

end test of the technique could not be performed. Instead, we present an assessment

of the feasibility of the interpolation approach as a separate exercise from the

reconstruction results in the previous section. To do this, we use our previously

reconstructed results as our reference data instead of the predictions generated by

the MATLAB RCS routine. Doing so prevents us from confounding the errors from

the CMA implementation with errors in the interpolation.

As shown previously, the frequency range of interest was limited to 0.5 to 2 GHz

and RCS predictions were generated in increments of 0.025 GHz. The most basic
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implementation of the interpolation approach is to allow the characteristic currents

to span 0.05 GHz. That is, every other frequency is calculated by reusing the modal

currents from an adjacent frequency in a nearest neighbor approach. The eigenvalues

would normally be generated via an interpolation scheme. However, as a proof-of-

concept, we use the CMA-calculated values to make a preliminary assessment of the

approach. The results of this experiment are shown in Figure 5.12.
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Figure 5.12: Performance of Interpolation of CMA eigenvalues.
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The approach achieves mixed results and there are clearly large discontinuities

between each frequency in the interpolated results. This is an unexpected result

because most of the components contributing to the modal excitation coefficient do

not vary greatly over small perturbations in frequency. Moreover, the level of error

exhibited by the approach seems to be concentrated around the higher frequencies of

the bandwidth. This may be due to the fact that there are more modes (with higher

modal significance values) contributing to the higher frequencies, therefore may suffer

from more accumulated error due to the interpolation.

A second attempt at this interpolation approach involved recalculating the

tangential component of the incident electric field for each frequency. Whereas in the

previous experiment only the denominator of Equation (5.8) varies, we now account

for the fact that the incident electric field is a function of frequency and therefore

should vary along with the eigenvalue in the interpolation. Although this requires

recomputing the tangential component of the electric field on each facet of the mesh,

we can still avoid the regeneration of the impedance matrix for every frequency.

However, as Figure 5.13 shows, accounting for the variation in Ei
tan yields minimal

improvement in the interpolation performance.

We surmise that the interpolation approach does not provide adequate

performance because, while the magnitude of the characteristic fields remains constant

for small variations in frequency, the phase does not. As Figure 5.14 illustrates, these

phase shifts are neither constant across frequencies, angles, nor modes. The small

changes in phase likely cause a significant cumulative effect on the reconstruction.

Because the change in phase increases as a function of frequency, this may also explain

why the interpolation performance is worse at higher frequencies.
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Figure 5.13: Performance of Interpolation of CMA eigenvalues (Ei
tan recalculated).
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Figure 5.14: Comparison of the phase of the characteristic fields from the first (top),

second (middle), and third (bottom) modes for 0.5, 0.525, 1.2, 1.225, 1.975, and 2

GHz.
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5.4.4 Mode-Tracking Ambiguities.

Through our numerical simulations of the first interpolation schemes, we observe

additional limitations to the applicability of the proposed method. Computing the

eigenvalues over a frequency band yields a series of points, shown in Figure 5.15, that

seem easily interpretable as the modal curves shown previously in Figure 5.2.

Figure 5.15: Eigenvalues for NASA Almond.

However, tracking the evolution of the modes over a band of frequencies is a non-

trivial issue. In the case of the NASA Almond, most of the modal curves seem to

monotonically converge to zero, but there are some that do not. We also observe

small oscillations in the modes as they approach zero at the higher frequencies. In

regions where the the modes cross over, the trajectory of the mode may be unclear.

An example of this is shown in Figure 5.16.

Because of these ambiguities, an eigenvalue may be incorrectly associated to a

characteristic current, resulting in an errors in the RCS reconstruction. Moreover,

the tracking ambiguities are further exacerbated at higher frequencies, where many of
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Figure 5.16: Ambiguity in mode tracking.

the modes are approaching zero. We found that these ambiguities can sometimes be

resolved by increasing the sampling rate and performing an eigenvalue decomposition

at an intermediate frequency to refine the trajectories. However, this may not always

be sufficient since numerical noise from the eigenvalue decomposition may provide

inaccurate values. Solutions to this tracking issue have been cited and proposed

in [50, 73, 74], but were beyond the scope of this effort.

5.4.5 Interpolation and Extrapolation via CMA as a Sparse Basis.

Whereas the first interpolation scheme sought to generate RCS predictions for

frequencies that were not directly measured or computed, the second scheme seeks

to interpolate and extrapolate RCS predictions for monostatic angles that were not

directly measured or computed. Recall that the MOM formulation states that the

far-field RCS of a target is the result of an induced current distribution over the

target. Moreover, TCM states that this current distribution is a weighted sum

of characteristic currents and only a limited number of these modal distributions

is necessary to reconstruct the overall current distribution. The proposed scheme
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leverages characteristic modes as a sparse basis and uses a sparse solver to estimate

a solution for the currents over the entire scattering target with only a limited set

of far-field observations. From this estimate of the overall current distribution, RCS

predictions can be generated for the missing observation angles.

Algebraically, we return to the linear model, y = Ax+n. In this application, y is

an M×1 vector of monostatic complex-valued far-field measurements, A is an M×N

operator that maps the charateristic fields to the total scattered field, x is the sparse

N×1 vector of weights for each mode, and n is an M×1 vector of measurement noise.

Similiar to previous applications, M < N and yields a classically underdetermined

system.

To generate this system, we recall from Equation (5.6) that the total scattered

field is a summation of the characteristic fields En that are weighted by the complex

term, an. We can further isolate sparse parameter such that A is a collection of N

M × 1 column vectors, where

A(n) = En

〈
Ei

tan,Jm
〉

(5.9)

and each element in the vector x is related to the modal significance

x(n) =
1

1 + jλn
(5.10)

for all modes n = 1, . . . , N . As shown in Figure 5.5, most of the elements in x should

be zero in the frequency range of 0.5 to 2 GHz.

Similar to the first interpolation approach, we use synthesized data instead of the

MOM solutions from MATLAB as the set of measurements y to bypass the unresolved

issues with our CMA reconstruction. The measurement values are perturbed from

their ideal values with the addition of noise via n. In all of our numerical simulations,

we apply −20 dBm of white Gaussian noise to each measurement to make the sparse

recovery problem non-deterministic.
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Because the sparse vector of modal weights x is complex-valued, we again appeal

to the Block-Sparse Bayesian Learning (BSBL) sparse solver to take advantage of the

group sparsity between the real and imaginary terms of each weight. We again assume

that x(n) is unlikely to be purely real or imaginary and the same modification found

in the Direction of Arrival (DOA) thrust area (specifically, Equation (4.4)) is applied.

Given a limited set of far-field observations, the solver is tasked to determine a sparse

solution for the weight vector such that the currents on the body support the far-field

observations. The solution for x is then used to generate far-field predictions of the

target at unmeasured sectors (additional rows of A).

The first numerical simulation aimed to interpolate the NASA Almond 2 GHz

RCS data. The sparse solver was provided with M = 19 measurements uniformly

spaced between 0◦ to 180◦. The measurements values were selected from the reference

dataset and perturbed by −20 dBm of white Gaussian noise. The results illustrated
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Figure 5.17: Scattering estimate from CMA-BSBL interpolation (19 uniform

samples).

in Figure 5.17 show overlay agreement with the reference data and captures the
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deep null near 180◦ that a standard interpolation algorithm would have missed. It

is important to note, however, that the estimate of x generated by BSBL does not

match the weights that were used to generate the reference and measurement data,

as shown in Figure 5.18 This result indicates that there is an inconsistency between
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Figure 5.18: Modal significance estimate from CMA-BSBL interpolation (19

uniform samples).

the theory and our observed results. Namely, in addition to the sparsity seen in

Figure 5.5, TCM states that the modal currents are orthogonal. This satisfies the

general requirements for a CS-amenable problem and implies that there is a unique

solution to the weight parameters. It is unclear why our results are able to achieve

overlay agreement (in both magnitude and phase) using a different distribution of

weights and remains an open question.

The next simulation is identical to the previous one, except a random selection

of 20 measurements from the 180 degree sector was chosen and provided to the

sparse solver instead of a uniformly spaced set of measurements. We again see

overlay agreement between the interpolated result and the reference data shown in
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Figures 5.19. In this example, the RCS estimate accurately tracks many of the features

of the reference data and clearly demonstrates the efficacy of this interpolation

scheme. Instead of interpolating the RCS data directly, the sparse solver successfully

generates a feasible solution such that the overall current distribution supports the

given far-field measurements. This approach to inverse scattering is aided by the fact

that the current distribution is not completely arbitrary. Rather, the distribution is

determined by the geometric properties of the scatterer and therefore has a limited

set of resonant modes it can support. This effectively reduces the search space of

feasible current distributions and allows the interpolation scheme to predict trends in

in the far-field data that a general interpolation scheme cannot.
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Figure 5.19: Scattering estimate from CMA-BSBL interpolation (20 random

samples).

We note that the performance of the interpolation depends not only on the

noise added to the measurements, but the location of the provided measurements as

well. Intuitively, there is more uncertainty in the estimate of the target’s current

distribution if the provided measurements are not informative of the currents at
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Figure 5.20: Modal significance estimate from CMA-BSBL interpolation (20

random samples).

certain aspect angles or locations. This can be seen in some of the trials where

the random samples were in the less informative angles. While the sparse basis of

characteristic currents is well suited to capture distributed scattering phenomena,

there are limitations in how well it can perform where there are sharp discontinuities

in the current distribution or in shadowed areas of the target.

Given this, it is clear that the extrapolation performance of the proposed scheme

would be relatively limited when compared to the interpolation simulations. In our

first extrapolation experiment, one contiguous half of the far-field data (M = 91

measurements from 0◦ to 90◦) was provided to the BSBL solver. We also applied the

extrapolation approach to the 1.2 GHz data where the current distribution has less

oscillatory behavior (see Figure 5.3) and fewer modes will be necessary for adequate

characterization.

The results shown in Figure 5.21 show that, even though an entire contiguous 90◦

sector is omitted, the approach is still capable of predicting the lobe centered at 130◦.

We note, however, that the variance of these estimates is significant — Figure 5.22
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shows 50 trials of the simulation overlaid with the reference data. The plot indicates

that, while the estimates of the current distribution are accurate enough to predict the

remaining features in the signature between 91◦ and 180◦, the approach is sensitive to

the noise in the provided measurements and introduces significant variations in the

extrapolated data.

20 40 60 80 100 120 140 160 180

0

5

10

Figure 5.21: CMA-BSBL 1.2 GHz extrapolation (0◦ − 90◦).

Finally, we show one additional extrapolation simulation, where we include

multiple adjacent frequencies to the sparse solver. Using multiple frequencies in the

extrapolation scheme may help the BSBL routine determine a more accurate sparse

solution for x. This is similar to the argument made in the previous interpolation

scheme where we leverage the fact that adjacent frequencies will likely have the same

set of significant modes (but the weights may be different). Therefore, we can enforce

group sparsity across the adjacent frequencies such that a non-zero weight in one

frequency will favor solutions where the mode is also non-zero in the other frequencies.

We test this hypothesis by providing the solver M = 121 measurements uniformly

spaced between 31◦ and 151◦ and extrapolate five frequencies between 1.9 and 2
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Figure 5.22: 50 trials of CMA-BSBL 1.2 GHz extrapolation (0◦ − 90◦).

GHz. Ten trials of this simulation were performed and, for clarity, we focus on

the performance of the extrapolation on the center frequency. Figures 5.23 and 5.24

qualitatively illustrates the reduction variance when five adjacent frequencies are used

instead of one.
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Figure 5.23: CMA-BSBL 1.95 GHz extrapolation over one frequency with

measurements between 31◦ − 151◦.
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Figure 5.24: CMA-BSBL 1.95 GHz extrapolation over five frequencies with

measurements between 31◦ − 151◦.

5.5 Areas for Future Investigation

Our experiments with CMA have thus far seen mixed results. While the theory

presented in the literature is sound, our attempts to replicate the findings that were

previously reported in the literature have had limited success. Applying the theory to

a practical problem and investigating the feasibility of an interpolation scheme also

revealed other practical limitations.

Clearly, there are issues with the implementation of CMA we are working with.

In addition to the inconsistencies between the results reported in Bouche and our

evaluations with two MOM-based codes, our attempt to replicate the results with

an open source and freely available CMA code also required a significant offset to

show agreement with the reference data. We believe that there is a normalization

or constant factor that has been omitted from the computation. Future efforts

should focus on identifying the root cause of this. Alternatively, we note that

CMA has grown in popularity such that it is being supported as a feature in some
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commercially available codes, including FEKO and HFSS. Leveraging commercially-

developed codes may offer more quality assurance (but may also limit the flexibility

since the source code is generally not available) and provide additional clarity on the

applicability of CMA in scattering problems.

We also observed instances where the inclusion of additional modes in the

reconstruction detrimentally affects the reconstruction. This behavior has not been

explicitly identified in the literature, but some of the research that focuses on the

applied and computational aspects of CMA offer some potential explanations of what

we observed empirically. It would be prudent to generate predictions of other types

of targets to see if this behavior is observed and to determine if they are caused by

mesh discretization and/or numerical accuracy of the codes.

From our analysis, it is also clear that some modal tracking algorithm must be

implemented in order to accurately reconstruct and interpolate scattering patterns

over multiple frequencies, even for smaller targets where the eigenvalues vary

smoothly. While our experiment only encompassed the NASA Almond target, it

is reasonable to believe that other types of targets will have eigenvalues and modes

that cross over each other or have slight oscillations that have significant impacts on

the RCS reconstruction. Again, some commercially available codes may provide these

features as well.

Of the two interpolation schemes we investigated, the second method that

leveraged CMA as a sparse basis for BSBL holds the most promise. We have

demonstrated that the method can accurately interpolate far-field RCS data using a

very limited set of measurements and outperforms general interpolations methods. We

also demonstrated that the scheme can provide reasonable extrapolation performance,

especially when additional frequencies are solved with BSBL simultaneously.
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While these simulation results are promising, this proof-of-concept also raises

additional questions. Notably, in our CMA-BSBL investigation, we observed that

sparsity can be synthetically satisfied by increasing the density of the mesh. The

theory behind CMA simply states that a target discretized into N edges will have

an N × N impedance matrix and can, theoretically, support N modes. It would be

prudent to investigate how mesh density affects the interpolation and extrapolation

performance.

Another open question is the extrapolation capabilities of CMA-BSBL. Because

the method attempts to describe the currents on the body in order to generate

scattering quantities, it is unclear whether the extrapolation can provide accurate

estimates on other types of targets. For example, if a target has a significant scattering

feature (e.g. a cavity), it would be helpful to characterize the extrapolation accuracy

in several measurement configurations, such as having the cavity completely hidden

from the measurements or to only provide shallow or grazing measurements to the

sparse solver.

Additional extensions may include the application of the method to additional

types of targets and to increase the frequencies of interest. Although beyond the

scope of our current work, Harrington and his contemporaries have several papers the

outlined the application of CMA to non-PEC objects [75–77]. Successful application

of our interpolation scheme to these recent innovations in CMA may greatly expand

the utility of out interpolation method.
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VI. Conclusions

Through this document, we have investigated the concept of sparse basis

representation of electromagnetic phenomena. We provided a review of the

fundamental concepts behind sparse bases and how they are critical to a successful

application of compressed sensing. We discussed the current state-of-the art with

respect to Compressive Sensing (CS) formulations as well as the recent developments

in their adoption into the electromagnetic community. We highlighted the confluence

of CS and Machine Learning (ML) and the shift to leverage Bayesian inference

to further enhance the utility of sparse bases in problems of interest to the

electromagnetic community. We also recognized the limitations of sparse bases and

the tendency for bases to be tailored for the class of problems at hand. From this body

of knowledge, we identified three areas in which sparse bases and Bayesian inference

may improve upon existing approaches.

In the first research area, we investigated the use of primitive-based scattering

centers to augment isotropic point scatterers in Radar Cross Section (RCS)

reconstruction. Our review of the literature revealed that methods to remove artifacts

from RCS measurements rely heavily on the use of an overcomplete dictionary and

an l1-minimization routine to separate nuisance returns from the desired ones. While

these dictionaries do not strictly adhere to the Restricted Isometry Property (RIP),

they have shown to be very effective in this application. Critically, the performance

of this approach requires the basis to be efficient in characterizing the scattering

phenomena present in the measurements.

Until recently, the bases considered in this approach were developed to address

several types of nuisance returns but the desired returns were characterized by the

Isotropic Point Scatterer (IPS) basis exclusively. We hypothesized that specular
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scattering from a target can be more efficiently represented by introducing non-

isotropic scattering centers into the reconstruction process. Our contribution in this

area explored the use of one such alternative basis, a Wedge Diffraction Primitive

(WDP) derived from Geometrical Theory of Diffraction (GTD) and Uniform Theory

of Diffraction (UTD) theory, to reduce the overall number of scattering centers that is

required to represent the RCS of a target. Our simulations of a flat plate and an angled

plate showed that a more accurate reconstruction is possible with the addition of the

WDP basis, but requires a judicious placement of these points on the target. Future

efforts may consider implementing an optimization approach to site these primitives

prior to (or in parallel with) the l1-minimization routine for RCS reconstruction.

Our process of implementing and evaluating the WDP revealed issues regarding

shadowing on concave targets that introduced artificial discontinuities in the recon-

struction results. Most of the IPS elements that contributed to the reconstruction

were used to correct these discontinuities. More efficient representations of the RCS

may be achieved if a dihedral basis were included in the overcomplete dictionary, as

well. These findings were published in [9].

The second research area investigated the application of sparse bases in the

Direction of Arrival (DOA) estimation problem. The extensive body of literature

regarding DOA focused on refining subspace methods that were developed nearly

fifty years ago. And yet, these methods still require a priori knowledge of the number

of signals incident on the array to generate a DOA estimate. More recent literature

appealed to CS approaches with the recognition that, in most applications, the DOA

problem only considers a limited number of simultaneous signals within a large range

of directions and is a naturally sparse problem.

Our contributions in this area focused on using two sparse methods, Bayesian

Compressive Sensing (BCS) and Block-Sparse Bayesian Learning (BSBL), to generate
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DOA estimates of multiple simultaneous incident signals with non-uniform antenna

arrays. The key innovation in our treatment of this problem is to use orthogonalized

basis vectors in lieu of the standard steering vectors to achieve a generalized method

for DOA estimation with an arbitrarily configured array. With the steering vectors

orthogonalized, each antenna in the array may have a unique non-isotropic gain

pattern and can be in a non-uniformly spaced or aperiodic arrangement. This, in

addition to the single-snapshot and blind estimation capabilities afforded by sparse

methods in general, provides a flexible and robust approach to DOA estimation that

addresses many of the limitations of existing approaches.

Using the proposed method, our numerical simulations showed that the group

sparsity feature of BSBL significantly improved the accuracy of DOA estimates when

compared to BCS. We demonstrated this effect with several notional arrays under

multiple testing configurations that varied the number, direction and polarization of

the incident signals to be estimated. The results of these simulations consistently

indicate that this is a viable DOA technique that warrant additional investigation.

To further validate this approach, it would be prudent to explore its resiliency

to more substantial levels of noise. Additionally, the range of element and

array configurations can be expanded to further characterize the DOA estimation

performance in multiple dimensions and possibly provide polarization estimates of

the incoming signals, as well. These findings will be submitted for review to IEEE

Sensors Letters.

The last research area explored the use of characteristic modes as another

basis for RCS reconstruction in low frequency and/or electrically large scattering

targets. Our review of the literature showed that the application of the Theory of

Characteristic Modes (TCM) focused almost exclusively on radiation and antenna

performance optimization. We reinterpreted the theoretical framework in the context
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of electromagnetic scattering and attempted to verify TCM principles and apply the

theory through two proposed interpolation schemes.

Due to limited resources, some of the discrepancies we discovered between

the results from our implementation of Characteristic Mode Analysis (CMA) and

results found in the literature were not completely rectified. Although we also found

differences between the published results and our evaluations with two well-validated

Method of Moments (MOM) codes, it is likely that a normalization factor was omitted

from our implementation. It is very likely that a commercially-developed code with

CMA capabilities would be in agreement with our MOM results. Therefore, any future

efforts in this area will need to redress these discrepancies, either through tracing

the root cause in our implementation or through the use of another code. Other

inconsistencies were observed between the theory and our empirical results, such

as spurious modes (which prevented monotonic improvements in the reconstruction

accuracy) and discontinuities in the reconstructed results due to changes in the set

of contributing significant modes.

With respect to the interpolation schemes, we saw limited success in the first

approach, which attempted to generate RCS predictions by reusing the characteristic

fields over multiple frequencies. It was determined that the change in phase in the

characteristic fields had a cumulative effect that negatively impacted the accuracy of

the interpolated results, especially at higher frequencies. One possible alternative is

to interpolate the characteristic field (particularly the phase) data to generate a more

accurate estimation of the phase at the interpolated frequency.

The second interpolation approach, which leverages the sparsity of the

characteristic modes as a basis, showed much more promising results. Using the

NASA Almond as the scattering target, we utilized the BSBL solver to generate

a sparse solution of weights for each characteristic mode and to infer a current
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distribution over the body with only a limited set of measurements. We observed

excellent interpolation performance and the solver was able to accurately predict

features in the signature that a standard, general-purpose interpolation algorithm

would not. We also showed that extrapolation performance was reasonably effective,

predicting general features in the RCS pattern, but was very sensitive to the noise

in the provided measurements. Extrapolation performance can be further improved

when multiple adjacent frequencies are solved simultaneously with BSBL solver.

To our knowledge, this is one of the first investigations into the use of

characteristic modes as a sparse basis. While our preliminary investigation yielded

new insights, they invariably provoked additional questions that merit further

investigation. One of the more compelling questions to answer is the relationship

between interpolation success and sparsity. Specifically, if sparsity can be satisfied

by artificially increasing the density of the mesh, the utility of this interpolation

approach may extend to scattering beyond the resonance region of a target.

Additionally, implementing this interpolation approach with a CMA formulation that

accommodates non-PEC materials would significantly broaden the scope of applicable

scattering targets of interest.

It is clear from our efforts in the three thrust areas that there are many potential

avenues for sparse bases to be applied to electromagnetics. While the fundamental

tenets of CS may not always be rigorously satisfied, sparse bases and CS-derived

solvers can still be quite effective in generating satisfactory solutions to relevant

problems and are further improved when applied in the context of Bayesian inference.

We maintain that the areas we have focused on have benefited from our contributions,

raised compelling questions, and are burgeoning paths for continued development.
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Appendix A: Scattering Primitives Based on an Approximation to

Physical Optics Solutions

In another SAR application, [41] developed several canonical scattering models

and pursued their use in target detection and feature extraction from three-

dimensional bistatic measurements. The 3D canonical shapes, derived from 2D

primitives, are analytic solutions that parameterized the high frequency scattering

behavior of simple shapes, such as a flat plate and a dihedral, based on spatial

properties (i.e., dimensions and orientation). The solutions from these formulas

matched well against numeric solutions generated by a well-validated, industry

standard Physical Optics (PO) solver. Because they provided an efficient means

of replicating scattering behavior from elemental shapes, they seemed well suited as

additional bases for the point scattering model described in the previous section.

Figure A.1: Plate and Dihedral geometry.

To introduce directed scattering centers, an additional operation is applied to

each of the scattering points in Equation (3.1)
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SpredFF (k, r̂) =
∑
n

Mγne
−j2kr̂·~r′ . (A.1)

This is consistent with the model presented in [41] where the operator is a

function of the incident field to the point, as well as the point’s spatial parameters:

location, dimensions and orientation. The operator, M , effectively modulates each

scattering center according to its spatial properties and the incident field. For the

complex primitives, the operator applies the monostatic form of the analytic solutions

to the canonical shapes. Likewise, for isotropic scatterers, the operator is inactive and

simply multiplies the point by a series of ones.

The simplest and most useful primitives (with respect to the types of targets we

are interested in) were pursued first: the flat plate and the dihedral. The monostatic

analytic solutions (approximates to the PO solutions) were formed by equating the

transmit and receive angle pairs (θt = θr, φt = φr):

Mflat =
jk√
π
Asinc [kL sin(φ) cos(θ)] sinc [kH sin(θ)] ; θ =

[
−π

2
,
π

2

]
, φ =

[
−π

2
,
π

2

]
;A = LH

(A.2)

Mdihedral =
jk√
π
Asinc [kL sin(φ) cos(θ)]×

 sin(θ); θ =
[
0, π

4

]
cos(θ); θ =

[
π
4
, π
2

] , φ =
[
−π

2
,
π

2

]
;A = 2LH

(A.3)

where L and H are the length and height of the canonical scatters, respectively. In

this form, the canonical shapes are oriented along the +x and +z axes (centered at

the origin) and alternate poses of the primitives will need to have rotations applied

to correct their scattering response. Translations of the primitives around the scene

are handled via the differential range of the primitive to the phase center of the scene

(origin).
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Figure A.2: MoM vs approximated PO solution of a 2 × 1 m plate at (top) and

1× 1 m dihedral (bottom) at 1GHz, φφ polarization.
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Appendix B: Non-Linear, Constrained Minimization of Primitive Spatial

Parameters

The primary goal of the project is to determine a primitive-based representation

of a complex scattering target. To that end, some a priori knowledge of the target

is available and is used to generate a coarse representation of the target prior to

making use of SPGL1 to recover the remaining discrepancies between the coarse

predictions (σprim) and the measurements (σtruth). One extension of this is to explore

whether optimization can be applied to automatically site, pose, and dimension the

complex primitives. In contrast to the SPGL1 process of determining a sparse solution

of weights for a cloud of isotropically scattering points, the determination of the

spatial parameters is not intuitively sparse (an argument was made in to exploit

the Group Sparsity form of SPGL1 to site each primitive, but the other spatial

parameters do not seem well suited for sparse representation). Therefore, we must

appeal to another method of optimization. The most immediate solution would be to

utilize the Optimization Toolbox for MATLAB, specifically the constrained nonlinear

solver, fmincon [78]. We constrain the spatial parameters to reasonable ranges (a

bounded region of where the primitive should be located, a limited range of feasible

orientations, and a bound on each of the dimensions) to limit the extents of the search

space as much as possible. We also provide the solver with the forward operator

to map the parameter space to the space of far-field patterns. Lastly, we provide

an objective function to the solver that provides a metric with which to evaluate

solutions from the forward model against the measurement dataset. Unlike SPGL1,

fmincon only requires the forward operator to converge to a solution.

We note that the solution space, unless highly constrained, will likely have many

local minima and the solver may converge on one of these solutions rather than the
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global minimum. Therefore, it is imperative to provide as small of a search space

as possible and to seed the optimization with the best guess of where the solution

should be in order for this minimization to succeed. This can be done by limiting the

range of the parameters, as described above, as well as by providing a large set of

measurements (frequencies and/or angles) to the solver. This will, ideally, allow the

objective function to discriminate between solutions more easily (differences between

the datasets will be more apparent when the datasets being compared at each iteration

are large).
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