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Abstract

Robotic multi-agent systems are envisioned for planetary exploration, but also for ter-

restrial applications like search and rescue and environmental monitoring. Autonomous

operation of robots requires estimations of their positions and orientations, which are

obtained from the direction-of-arrival (DoA) and the time-of-arrival (ToA) of radio

signals. For cooperative radio localization, signals are exchanged among all agents.

Within this thesis, we estimate the signal DoA and ToA using a multi-mode antenna

(MMA). An MMA is a single antenna element, where multiple orthogonal current

modes are excited by different antenna ports. So far, MMAs have been considered for

multiple-input multiple-output (MIMO) communications. This thesis provides a first

study on the use of MMAs for cooperative position and orientation estimation. We

specifically explore the DoA estimation capabilities of MMAs. Assuming the agents

of a cooperative network are equipped with MMAs, lower bounds on the achievable

position and orientation accuracy are derived. We realize a gap between the theoretical

lower bounds and real-world performance of a cooperative radio localization system.

The reason are biased estimates due to deviations of antenna and transceiver calibra-

tion parameters. Consequentially, we theoretically analyze in-situ antenna calibration.

We further introduce an algorithm for in-situ calibration of arbitrary multiport an-

tennas, including MMAs, and show its effectiveness by simulation. To also improve

calibration during operation, we propose cooperative simultaneous localization and

calibration (SLAC), which leverages the large number of observations within a cooper-

ative network. We show that cooperative SLAC is able to estimate antenna responses

and ranging biases of the agents together with their positions and orientations, with-

out external sensors. For that, a Bayesian filtering algorithm for cooperative SLAC

is derived and simulations are performed, showing considerable improvements of posi-

tion and orientation accuracy compared to mere localization. Finally, we validate the

results from theory and simulation by experiments with four robotic rovers equipped

with software-defined radios (SDRs). On one rover, a four-port MMA is installed. We

experimentally demonstrate DoA estimation with a single MMA, in-situ calibration of

an MMA and cooperative SLAC. In conclusion, we show that DoA estimation with an

MMA is feasible, and accuracy can be improved by in-situ calibration and SLAC.
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Zusammenfassung

Der Einsatz robotischer Multiagentensysteme für die planetare Exploration, aber auch

für terrestrische Anwendungen wie Katastrophenschutz und Umweltüberwachung, ge-

winnt zunehmend an Bedeutung. Für den autonomen Betrieb von Robotern ist eine

genaue Schätzung ihrer Position und Orientierung unerlässlich. Diese werden aus der

Ankunftszeit (time-of-arrival) und der Einfallsrichtung (direction-of-arrival) von Funk-

signalen gewonnen. Für die kooperative Radiolokalisierung werden Signale zwischen

allen Agenten ausgetauscht. Im Rahmen dieser Arbeit werden Einfallsrichtung und

Ankunftszeit mit einer Multimoden-Antenne (MMA) geschätzt. Eine MMA ist ein ein-

zelnes Antennenelement, auf dem mehrere orthogonale Moden des Oberflächenstroms

durch verschiedene Antennentore angeregt werden. Bis dato wurden MMAs für die

multiple input multiple output (MIMO) Kommunikation eingesetzt. Diese Arbeit un-

tersucht erstmals die Verwendung von MMAs für die kooperative Positions- und Ori-

entierungsschätzung, wobei ein besonderer Fokus auf der Richtungsschätzung liegt.

Zunächst werden untere Schranken für die erreichbare Positions- und Orientierungsge-

nauigkeit in einem kooperativen Netzwerk hergeleitet, dessen Agenten mit MMAs aus-

gerüstet sind. Dabei wird eine Diskrepanz zwischen den theoretischen unteren Schran-

ken und der im Experiment erzielten Genauigkeit von kooperativen Funklokalisierungs-

systemen deutlich. Die Hauptursachen sind Schätzungen mit Ablage aufgrund von

Abweichungen der Antennencharakteristiken und Kalibrierungsparameter an Sender

und Empfänger. Es wird daher die in-situ Antennenkalibrierung theoretisch analysiert.

Außerdem wird ein Algorithmus zur in-situ Antennenkalibrierung beliebiger Mehrtor-

Antennen einschließlich MMAs entwickelt und seine Wirksamkeit durch Simulationen

gezeigt. Um die Kalibrierung auch während des Betriebs zu verbessern, wird die koope-

rative, simultane Lokalisierung und Kalibrierung (simultaneous localization and calibra-

tion - SLAC) vorgeschlagen. SLAC nutzt die große Anzahl zur Verfügung stehender Be-

obachtungen innerhalb eines kooperativen Netzwerks aus und ist damit in der Lage, die

Antennencharakteristiken und Ablagen der Distanzschätzungen der Agenten zusam-

men mit deren Positionen und Orientierungen ohne externe Sensoren zu schätzen. Dazu

wird ein Bayesscher Filter für das kooperative SLAC Verfahren hergeleitet. Simulatio-

nen zeigen eine erhebliche Verbesserung der Positions- und Orientierungsgenauigkeit
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durch SLAC im Vergleich zur reinen Lokalisierung. Schließlich werden die Ergebnisse

aus Theorie und Simulation durch Experimente mit vier robotischen Rovern validiert.

Die Rover sind dazu mit software-defined radios (SDRs) ausgestattet und auf einem

der Rover ist eine MMA mit vier Toren integriert. Es werden die Richtungsschätzung

mit einer MMA, die in-situ Kalibrierung einer MMA, sowie das kooperative SLAC

Verfahren experimentell demonstriert. Zusammenfassend wird gezeigt, dass MMAs zur

genauen Richtungsschätzung geeignet sind. Die Schätzgenauigkeit kann durch in-situ

Kalibration und SLAC verbessert werden.
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Chapter 1
Introduction

1.1 Motivation

Robotic planetary exploration missions have a long history [1]. Past missions, e.g.

National Aeronautics and Space Administration’s (NASA’s) Mars Science Laboratory

mission with the robotic rover Curiosity [2], were single-robot missions. Curiosity

is often driven manually by an operator on Earth with the aid of camera images.

Considering that the one-way signal delay between Mars and Earth lies between 4min

and 24min, the rover is driven cautiously at very low speed to not risk any damage. In

more than nine years mission duration, the rover Curiosity has traveled roughly 26 km

[3]. While the mission is impressive and considered a huge success, the figure appears

small when compared to e.g. the dimensions of Valles Marineris: Valles Marineris is

a canyon on Mars, which is 4000 km long, 200 km wide and 7 km deep and an area of

high interest for planetary research [4, 5].

In order to increase the moving speed of robots and thus exploration speed, the goal

of the German Aerospace Center (DLR) and international partners is to perform future

missions with a higher level of autonomy [6, 7] and teams of robots, called robotic multi-

agent systems [8, 9]. The recent NASA mission with the robotic rover Perseverance and

the robotic helicopter Ingenuity is a first step in this direction [10]. Besides planetary

exploration, robotic multi-agent systems are also considered for terrestrial applications

like search and rescue [11] or environmental monitoring [12]. Compared to a single

robot, multi-agent systems have several advantages: Multiple agents observe the en-

vironment simultaneously at different locations, thereby increasing exploration speed.

When they cooperate by intelligent algorithms instead of acting independently of each

other, exploration efficiency is increased [13]. Inherent redundancy is provided, as the

failure of an individual agent does not automatically jeopardize the entire mission.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1. Robotic multi-agent system exploring Valles Marineris on Mars. Valles
Marineris image © ESA, DLR, G. Neukum.

Furthermore, heterogeneous teams bring together the advantages of e.g. ground-based

and airborne agents [9]. When the agents are properly synchronized, the formation can

act as a distributed sensor aperture to sense spatio-temporal processes [14]. A closely

related field is swarm robotics [15, 16, 17, 18], usually considering a large number of

agents. Swarm robotics is inspired by nature e.g. fish schools or bird flocks. Charac-

teristic for swarm robotics is a collective behavior of the robots based on simple rules.

Collectively, the robots can solve tasks that would not be possible individually.

For autonomous operation of a robotic multi-agent system, where humans only

interact with the system on a high level, reliable communication and localization is a

crucial requirement. Fig. 1.1 shows a lander and multiple robotic agents on their way

to a point of interest, exploring Valles Marineris on Mars. The figure highlights that

autonomous operation of robotic agents requires means to estimate both, positions and

orientations of the agents. The orientations are specifically needed for control, but also

to know in which direction cameras and scientific instruments are pointing. As radio

transceiver on the agents are needed for communication, radio localization, also called

radio navigation, comes naturally. Furthermore, radio localization works also at night

and e.g. during sandstorms.

Position and orientation estimation requires distance and direction information. By

radio localization, distance and direction are obtained from the time-of-arrival (ToA)
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and direction-of-arrival (DoA) of radio signals. With this thesis, we specifically study

radio localization with multi-mode antennas (MMAs). An MMA is a single antenna el-

ement, where multiple orthogonal current modes are excited by different antenna ports.

We start by showing how the signal DoA can be estimated by a single MMA. Multiple

agents equipped with radio transceivers and MMAs form a cooperative network for

radio localization. Estimation theory provides us the tools to determine lower bounds

on the achievable position and orientation estimation error of the agents. However,

experiments indicate that there is a considerable gap between the theoretical lower

bounds and the performance achieved in practice. To bring real-world performance

closer to the theoretical lower bounds, calibration and mitigating model mismatch is

crucial. To this end, we theoretically investigate in-situ antenna calibration and present

an algorithm suitable for an MMA. Furthermore, we take advantage of the coopera-

tive network and propose simultaneous localization and calibration (SLAC), where

antenna responses and ranging biases of the agents are estimated simultaneously with

their positions and orientations. Bridging theory and practice, the proposed methods

are validated by both, simulations and experiments. The main application of inter-

est is a robotic multi-agent system for planetary exploration. However, the methods

can also be applied to terrestrial radio localization, e.g. in global navigation satellite

system (GNSS) denied environments. In the following, we discuss the state-of-the-art

regarding the main topics of this thesis.

1.2 State-of-the-Art

Radio Localization Radio localization describes the process of finding the location

of an entity using radio waves. This thesis focuses on radio localization in wireless

networks, specifically robotic multi-agent systems, where all nodes transmit and re-

ceive radio signals. By localization we consider both, position and orientation, as

both are mandatory to control the robots. We assume the network consists of mobile

nodes called agents and static nodes with known position called anchors, see also

Fig. 1.1. We further distinguish between non-cooperative and cooperative radio lo-

calization. For non-cooperative localization, only agents and anchors communicate,

whereas for cooperative localization, agents also exchange radio signals among each

other. Many theoretical investigations have shown that cooperative is in general su-

perior to non-cooperative localization [19, 20, 21, 22], which has also been confirmed

by measurements [19, 23]. Cooperative localization emerged in the context of wireless

sensor networks [24] and was later also considered for cellular networks [25]. Radio

signals exchanged in cooperative networks contain rich position and orientation in-
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formation. This information can be classified as follows. Information regarding the

distance between transmitter and receiver is contained in

1) the received signal strength (RSS). Assuming certain propagation conditions,

e.g. free-space path loss (FSPL), the RSS can be used to estimate the distance.

However, the assumed propagation conditions often do not match reality, which

makes this approach prone to errors [24].

2) the carrier-phase of the received signal. The carrier phase wraps around after

one wavelength, creating the need to also estimate the integer ambiguity. Having

enough observations and good enough delay estimates of the baseband signal,

this is in general feasible and widely used in geodetic GNSS receivers [26].

3) the delay of the baseband signal. The ToA of the radio signal observed at the

receiver together with the transmit timestamp encoded into the signal can be used

to calculate the time-of-flight (ToF). In a synchronized network, the distance can

be obtained by multiplying the ToF with the speed of light. For unsynchronized

networks, signals can be sent in both directions, e.g. using a two-way ranging

(TWR) protocol. Having two observations, the clock offset is eliminated and

the round-trip time (RTT) is calculated [27]. The distance is then half the RTT

multiplied by the speed of light.

Relative velocity between transmitter and receiver leads to a carrier frequency

offset of the received signal, called Doppler shift. The Doppler shift is additive to the

carrier frequency offset caused by unsynchronized oscillators.

To obtain direction information, the radio signals observed at the receiver must

depend on the signal direction. However, the radio signals are also influenced by the

propagation channel, which is in general unknown. Thus, direction estimation must

rely on relative signal observations. An example realization is a rotating singleport

antenna with directional pattern, assuming the propagation channel to be constant

during the observation time. For a static antenna, more than one antenna port is

needed to estimate the signal direction despite the influence of the unknown prop-

agation channel. Conventionally, an antenna array, consisting of multiple antenna

elements, is considered. In this thesis, we investigate a single antenna element, where

multiple characteristic modes are excited, which is called MMA. Using the known an-

tenna response of a receiving multiport antenna, the signal DoA can be estimated

[28, 29], which is also known as direction finding. Similarly, if the antenna response of

a transmitting multiport antenna as well as the beamforming or precoding is known,

the signal direction-of-departure (DoD) can be estimated [30, 31].
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The major challenges for all radio based localization methods are the obstruction of

the line-of-sight (LoS) propagation path, leading to non-line-of-sight (NLoS) condition,

and multipath propagation in general. There are two different ways to tackle NLoS and

multipath propagation. The first approach aims at detecting whether the condition is

LoS or NLoS [32, 33] and separating the propagation paths [34, 35, 36]. When the

LoS condition is correctly detected and the separation succeeds, the LoS path can

be extracted, and the multipath influence is mitigated. By the second approach, the

additional information contained in the multipath signals is exploited for localization

[37, 38, 39, 33]. Such concepts called multipath-assisted localization can enable position

and orientation estimation in cases which would otherwise be underdetermined.

DoA & ToA Estimation For low-complexity receivers, non-coherent or power-

based DoA estimation can be performed based on RSS estimates. Non-coherent DoA

estimation can be performed with multiple directional antennas pointing into different

directions [40]. Alternatively, an actuator can be used to rotate a single antenna

[41, 42]. Instead of rotating the antenna, the motion of the whole platform, e.g. a

unmanned aerial vehicle (UAV), can be controlled [43]. To avoid physical motion or

mechanical parts, antenna beams can also be switched [44] or electronically steered [45].

High-resolution algorithms for non-coherent DoA estimation can be found in [46, 47].

The default approach is coherent DoA estimation with antenna arrays, which

requires multiple phase-coherent receiver channels. The array can span one dimension,

e.g. a uniform linear array (ULA), two dimensions, e.g. a uniform rectangular array

(URA) or a uniform circular array (UCA), or three dimensions, e.g. a conformal array.

To reduce the amount of antennas and receiver channels, sparse arrays are considered

[48, 49]. Often it is assumed that antenna arrays consist of omnidirectional or isotropic

antenna elements and the phase response, also called steering vector, is purely defined

by the geometry. We call an array following these assumptions an ideal antenna array,

in order to distinguish from the antenna response of a real-world antenna array. In

practice, there are gain-phase offsets and mutual coupling between the antenna ele-

ments, electromagnetic influences of the antenna surroundings etc. [50]. In contrast

to the acoustic domain, where wideband algorithms are needed, most radio frequency

(RF) DoA algorithms follow the narrowband assumption. Although the absolute signal

bandwidth can be large, the relative bandwidth compared to the carrier frequency is

usually small, which justifies the narrowband assumption. Furthermore, it has been

shown that as long as signal spectrum and antenna response are symmetric with re-

spect to (w.r.t.) the carrier frequency, the narrowband assumption is valid also for larger

bandwidths [51, 52, 53]. DoA estimation algorithms can be categorized into beamform-
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ing, subspace-based and parametric methods [54, 55]. For beamforming methods, a

power spectrum versus the DoA is calculated, and the peak(s) are considered as DoA

estimate(s). Conventional beamformer, Capon and minimum variance distortionless

response (MVDR) fall into this category. They are computationally efficient, but of-

ten suffer from limited accuracy and resolution of multiple simultaneously impinging

signals, especially if the impinging signals are correlated. Subspace-based methods

exploit the eigenstructure of the spatial covariance matrix to calculate a pseudospec-

trum. The most prominent example is the multiple signal characterization (MUSIC)

algorithm [56]. More recently, the partial relaxation approach was introduced [57].

Compared to beamforming methods, they provide better resolution of multiple im-

pinging signals, but suffer from poor performance for correlated or coherent signals.

Coherently impinging signals could occur e.g. in a static multipath scenario, as the

different signals originate from the same transmitter. In such a case, the rank of the

signal covariance matrix is lower than the actual number of impinging signals and the

subspace decomposition fails. Correlation or coherency of the impinging signals is not

to be confused with coherent DoA estimation mentioned earlier, which refers to the

coherency of the receiver channels. For parametric methods, the impinging signals

are assumed to be deterministic unknown or a stochastic random process. Parametric

methods require an estimate of the model order, i.e. the number of impinging signals.

The model order can be estimated based on e.g. the Akaike information criterion (AIC),

the Bayesian information criterion (BIC), the generalized likelihood ratio test (GLRT)

[58] or the information complexity criterion (ICOMP) [59, 60]. The deterministic or

stochastic maximum likelihood (ML) estimators require a search process and provide

better performance for correlated signals at the cost of higher computational complex-

ity [61]. The process of a multidimensional search for all DoAs can be separated into

multiple one dimensional searches as in the space-alternating generalized expectation

maximization (SAGE) algorithm [62].

When the transmitted signal or at least its structure is known, the signal ToA can

be estimated at the receiver. For a single impinging signal, the ML ToA estimator is

essentially a peak search of the cross-correlation of the received and a replica of the

transmitted signal. ToA estimation is usually done in frequency domain to achieve

sub-sample resolution [63]. DoA and ToA can also be estimated jointly [64, 65]. The

SAGE algorithm can also be applied to joint DoA and ToA estimation, in order to

reduce complexity of the ML estimator [34, 62].

In contrast to antenna arrays, an MMA consists only of a single antenna element.

Based on the theory of characteristic modes (TCM) [66, 67], multiple characteristic

modes are excited independently [68, 69], resulting in a multiport antenna with a dis-
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tinct antenna response for each port [70, 71, 68, 72, 73, 74, 69]. There is only one early

work suggesting to exploit modes of a biconical horn antenna for DoA estimation [75].

Otherwise, prior to the works related to this thesis, MMAs have not been considered

for DoA estimation or for localization in general. Recently, studies have shown how

an MMA based on an airplane structure [76, 77, 78] and a cubic structure [79] can be

used for DoA estimation.

Fundamental Limits for Cooperative Localization Estimation theory provides

fundamental limits in terms of lower bounds on the estimation variance or the mean

squared error (MSE). Fundamental limits are of interest in order to assess the feasibility

of an estimation task and as a benchmark for algorithms. Very popular fundamental

limits in the context of cooperative localization are the Cramér-Rao bound (CRB) for

deterministic and the Bayesian Cramér-Rao bound (BCRB) for random parameters

[80, 81]. Several other bounds exist [81], e.g. the Ziv-Zakai bound (ZZB) and the

Weiss-Weinstein bound (WWB), but are less commonly used as they usually have

to be evaluated numerically. The CRB can be calculated in closed-form and is an

asymptotically tight bound, i.e. ZZB and WWB converge to the CRB for high signal-

to-noise ratio (SNR) or large number of observations.

Most papers consider networks consisting of agents and anchors. The goal is to

estimate the agent positions w.r.t. to the coordinate system defined by the anchors,

which we call absolute localization. Interest in cooperative localization has arisen in

the context of wireless sensor networks [24], where also fundamental limits have been

investigated. In [82] a framework for calculating position and orientation error bounds

based on the CRB is presented for non-cooperative networks. [20] extends the frame-

work of [82] to cooperative localization, but does not consider orientation estimation.

Position and orientation error bounds for cooperative networks with antenna arrays are

derived in [83], where also different array geometries are compared. Both, [82] and [83]

assume ideal antenna arrays with absolute phase synchronization between all nodes.

[84] treats the more general case, where the absolute phase is unknown, but does not

consider cooperation. The benefit of cooperation is proven by [21], which considers

only the position domain. Position and orientation estimation with massive arrays is

investigated by [85, 86, 87, 88], where the papers focus on a single link. The mentioned

papers [82, 83, 84, 89, 86] are also limited to ideal antenna arrays.

Cooperation in the sense that agents exchange signals among each other is called

spatial cooperation in [90, 91, 22, 92]. Spatial cooperation can be seen as cooperation

on a per-snapshot basis. If prior knowledge on agent locations and agent dynamic

models is assumed, information is also coupled over time. Additionally exploiting
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the information coupling over time, e.g. by Bayesian filtering or recursive Bayesian

estimation [93], is called spatio-temporal cooperation in [90, 91, 22, 92].

For certain scenarios in robotic navigation, only the formation or relative position

and orientation of the agents w.r.t. each other is of interest, which is called relative or

anchor-free localization. In [94, 95] CRBs for relative localization have been derived.

Compared to absolute localization, the Fisher information matrix (FIM) for relative

localization is singular. Furthermore, the choice of coordinate frame impacts relative

localization performance. A CRB for an ideally chosen coordinate frame can be cal-

culated with the Moore-Penrose pseudoinverse. In [96] the posterior CRB for relative

tracking is derived.

The fundamental limits on cooperative localization found in the literature are lim-

ited to ideal antenna arrays, not considering nonidealities of real-world antennas like

mutual coupling etc. [50]. Moreover, they cannot be applied to other types of multiport

antennas like MMAs or co-located antennas [97, 98, 99].

In-Situ Antenna Calibration The algorithms presented in the paragraph on DoA

estimation have in common that they rely on exact knowledge of the antenna re-

sponse. Any mismatch between the assumed antenna response and the real one will

impair DoA estimation performance [50]. In practice, antennas are thus calibrated by

measuring their antenna response in a dedicated measurement chamber without

multipath propagation, also called anechoic chamber. Using e.g. wavefield modeling

and manifold separation [100, 101], a closed-form mathematical representation of the

measured antenna response can be determined and used for DoA estimation. For cost

and practicability reasons, often only the antenna alone is measured in a compact

near-field measurement chamber. The far-field antenna response is then obtained from

the near-field measurement data by a mathematical transformation [102]. Due to the

size constraint of a near-field measurement chamber, only the antenna alone can be

measured. However, the surrounding structure of an antenna influences its response.

When the antenna is integrated in its final position, e.g. on a robotic rover, the in-

stalled antenna response is in general different compared to the antenna response of

the antenna in free-space. Accurate calibration thus requires the whole device or robot

to be measured in a large measurement chamber, e.g. a compact test range, which can

become costly and impractical.

An attempt to solve the calibration issue are auto-calibration or self-calibration

methods, which estimate the antenna parameters together with the DoA(s) [103]. How-

ever, all auto-calibration methods suffer from a severe limitation: In general, both

DoA(s) and antenna parameters are not simultaneously identifiable from a collection
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of received signal snapshots, unless strong assumptions are taken [104, 105]. When the

antenna response of an ideal antenna array is assumed, it is possible to calibrate the

gain and phase errors of individual antenna elements [106, 107]. Restricting the array

geometry to ULA or UCA, it is possible to determine the mutual coupling matrix,

which is a linear transformation of the antenna response [108, 109]. A maximum a

posteriori (MAP) approach for auto-calibration, which integrates the aforementioned

calibrations, is presented in [110]. Low complexity variants can be found in [110, 111].

The limiting assumption for [110, 111] is that the disturbances of the antenna response

must be relatively small, i.e. not larger than the errors from observation noise. The as-

sumption is relaxed by [112], which allows large errors of the assumed antenna element

positions, but is still limited to ideal antenna arrays. For ideal linear antenna arrays,

sparsity-based approaches exist, which outperform conventional approaches [113, 114].

In-situ calibration methods rely on transmitters in known directions to estimate

the antenna parameters in unknown propagation conditions and without external syn-

chronization. In [115], mutual coupling and antenna element positions of an array are

calibrated. Additionally to mutual coupling and antenna element positions, also the

power patterns of the antenna elements of an array are calibrated in [116]. In [117],

mutual coupling and antenna element positions of multiple arrays are calibrated for a

localization system.

To sum up, known auto-calibration and in-situ calibration methods are restricted to

antenna arrays and cannot be applied to MMAs. Moreover, there is no guarantee that

antenna response errors are restricted to gain-phase errors, mutual coupling or antenna

element position errors. Due to manufacturing imperfections, the surrounding structure

of the antenna etc. arbitrary nonlinear transformations of the antenna response of an

ideal antenna array are possible [50].

Simultaneous Localization and Calibration As outlined in the paragraph on

fundamental limits, rich literature exists on the cooperation aspect of localization.

However, the calibration of a cooperative localization system is also of practical im-

portance, but not well covered by literature. The challenge for cooperative localization

is that an agent relies to a large extent on the observation of signals transmitted by

its neighboring agents. Depending on the application, the agent hardware can be

composed of low-cost commercial off-the-shelf (COTS) components.

For methods that rely on the propagation time of the signal like ToA or RTT,

internal group delays in the transceivers need to be calibrated. Transceiver group

delays can be calibrated by connecting the node transceivers to a calibrated reference or

signal splitter. Such a calibration can only be performed before operation. However,
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group delays of the transceiver transmit and receive chains can vary over time, e.g.

caused by temperature variations. Especially low-cost COTS hardware is susceptible

to group delay variations, which cause ranging biases [118, 119].

As highlighted in the previous paragraph, DoA estimation relies on accurate knowl-

edge of the antenna response, causing the need for antenna calibration. When the

surroundings of the antenna are changing, calibrating the antenna only once before op-

eration is conceptually problematic. An example for changing surroundings is a manip-

ulator arm on a robotic rover [120]. Furthermore, devices sent on planetary exploration

missions suffer from dust, radiation, large temperature differences etc. Proper condi-

tion of the system must thus be monitored. If anomalies are detected, a re-calibration

can only be performed during the mission.

Calibration during operation is often an integral part of simultaneous localization

and mapping (SLAM) [121, 122]. In [123] a microphone array is calibrated for sound

source localization using a SLAM approach. [124] presents SLAM with robot odom-

etry calibration. Other examples include electromagnetic localization of instruments

in a patient’s body during surgery and simultaneous calibration of electromagnetic

distortions [125]. With millimeter wave (mmWave) communications becoming popu-

lar, SLAM has recently gained attention for radio localization in 5G and 6G cellular

networks. The high temporal and spatial resolution of mmWave systems allows to es-

timate the parameters of each propagation path, which makes it possible to use NLoS

paths for localization [85]. By SLAM, a map of the radio environment is created simul-

taneously to localization [126, 127, 128], allowing position and orientation estimation

in NLoS scenarios. A SLAM approach to calibrate the ULA of an automotive radar

is proposed in [129]. The approach uses targets of opportunity, but is limited to gain-

phase calibration of the individual antenna elements. When the focus is on calibration,

the term simultaneous localization and calibration (SLAC) is used. Examples can be

found in [130], where radio-frequency identification (RFID) tags are localized, while

calibrating RFID tag positions and in [131], where indoor localization with fingerprint-

ing is performed, while a sensor and a walking model are calibrated. In the context of

non-cooperative localization in a sensor network, ranging bias calibration is proposed

in [132].

How to calibrate the antenna response of an arbitrary antenna, e.g. an MMA,

simultaneously with cooperative localization, is not part of the state-of-the-art.

Experimental Validation Antenna arrays are widely used for DoA estimation in

practical applications, see e.g. [133]. Regarding cooperative localization, the impor-

tance of experimental validation is highlighted in [23], which also provides indoor
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ultra-wideband (UWB) measurements. Further measurements with UWB ToA or RTT

ranging in indoor environments can be found in [134, 19, 32, 135, 136]. In [118], RTT

ranging and localization experiments with COTS hardware are performed.

In contrast to DoA estimation with an antenna array, DoA estimation with a single

MMA has not been validated experimentally. Furthermore, cooperative radio local-

ization for a robotic multi-agent system for planetary exploration has received less

attention compared to wireless sensor networks and indoor localization. Specifically,

experimental validation of in-situ calibration with an MMA and experimental valida-

tion of cooperative SLAC with robotic rovers is not covered.

1.3 Contributions and Structure

The main contributions of this thesis can be divided into five areas, which are linked

to Chapters 2 to 6.

DoA & ToA Estimation In Chapter 2, we introduce DoA estimation with a single

MMA. To this end, we define an appropriate signal model and show how the antenna

response of an MMA can be expressed in closed-form using wavefield modeling and

manifold separation. We then introduce a non-coherent, i.e. RSS-based, ML DoA

estimator and a reduced-complexity version. We further show how coherent DoA esti-

mation, using the phase response of the MMA, is performed. In case the polarization

of impinging signals is unknown, we present joint DoA and polarization estimation by

an MMA. Finally, we provide a performance analysis based on extensive simulations

of 2D and 3D non-coherent and coherent DoA estimation, joint DoA and polarization

estimation, as well as joint DoA and ToA estimation with a single MMA. Parts of

Chapter 2 have been published in [J1] and [C1, C2].

Fundamental Limits for Cooperative Localization In Chapter 3, we derive fun-

damental limits based on Fisher information and the CRB for cooperative position and

orientation estimation. Using wavefield modeling and manifold separation, we obtain

a closed-form expression of the FIM, which is valid for arbitrary multiport antennas,

including MMAs, real-world arrays, and co-located antennas. The derived FIM allows

an intuitive interpretation regarding the impact of unknown absolute amplitude and

phase of the received signal depending on the antenna type. Position and orienta-

tion error bounds are defined for both, absolute and relative localization. Based on

an exemplary scenario, the differences between absolute and relative localization with

MMAs are examined. We further show how the derived fundamental limits can be
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utilized to optimize a certain formation by moving one agent. Parts of Chapter 3 have

been published in [C3, C4].

In-Situ Antenna Calibration In Chapter 4, we show how an arbitrary multiport

antenna, e.g. an MMA, is calibrated in-situ without knowledge about the propagation

channel and without external synchronization. First, we derive the recursive BCRB

for in-situ calibration with noisy direction observations for one of the impinging sig-

nals, which are provided by an external sensor. We distinguish the cases of known and

unknown propagation channel. The derivation of the BCRB for the unknown propaga-

tion channel is more complicated, as the Bayesian information matrix (BIM) without

prior is singular. We perform a theoretical observability analysis based on the derived

BCRB and discuss the qualitative behavior of the BCRB. Furthermore, we introduce

an in-situ antenna calibration algorithm based on MAP estimation. The algorithm can

estimate arbitrary antenna responses and thus capture real-world antenna nonidealities

including gain-phase offsets, mutual coupling, etc. We evaluate the proposed in-situ

calibration algorithm by simulation and show that it operates close to the derived

BCRB. Chapter 4 is based on the publications [J3] and [C8].

Simultaneous Localization and Calibration In Chapter 5 we introduce coop-

erative SLAC for radio navigation, where antenna responses and ranging biases are

calibrated during operation without external sensors. We show how cooperative SLAC

is implemented as a Bayesian filtering algorithm, which is challenging due to high state

dimensionality and high nonlinearity of the observations. The algorithm uses suitable

motion and observation models and considers prior knowledge of the calibration states.

To show the feasibility of antenna response and ranging bias calibration by cooperative

SLAC, we perform simulations with random agent trajectories and random antenna

responses. Assuming realistic ranging biases and antenna response deviations, we show

that cooperative SLAC outperforms cooperative localization and exhibits considerably

lower position and orientation errors. Chapter 5 is based on the publications [J2] and

[C9].

Experimental Validation In Chapter 6, we introduce the architecture of a coopera-

tive localization testbed based on software-defined radio (SDR). To proof the feasibility

of radio localization with a single MMA, a coherent multichannel SDR transceiver and

an MMA are integrated into a robotic rover. We then present the results of outdoor

experiments with four robotic rovers and three anchor nodes. The measurements are

utilized to validate the simulation results presented in this thesis. Firstly, we show

that DoA estimation with a single MMA is feasible in practice. Secondly, we evaluate
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the introduced in-situ calibration algorithm with measurement data. We show that

by in-situ calibration, the DoA estimation performance is improved, compared to cal-

ibrating the MMA in a near-field measurement chamber. Thirdly, we show how the

proposed cooperative SLAC algorithm improves position and orientation estimation

accuracy compared to mere localization. Parts of Chapter 6 have been published in

[J2, J3] and [C5, C8, C9].
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Chapter 2
DoA and ToA Estimation with a

Multi-Mode Antenna

In this chapter, we review the concept of an MMA and introduce two specific MMAs

investigated in this thesis. We define a signal model and show how the MMA antenna

response is represented by the sampling matrixG with wavefield modeling and manifold

separation. Then, we introduce different variants of DoA estimation with a single

MMA, as well as joint DoA and ToA estimation. Finally, we analyze the different

variants of DoA and ToA estimation with an MMA by simulation.

2.1 Multi-Mode Antennas

The theoretical foundation for multi-mode antennas (MMAs) is given by the theory

of characteristic modes (TCM). The TCM was published already in the 1970s [66,

67, 137], but has not received much attention for three decades [138]. Its popularity

started to grow in the 2000s, when antennas for compact handheld devices needed to be

developed. At that time it has been realized that for efficient radiation, the dominating

characteristic mode of the device chassis should be excited [139]. Since then, the TCM

has received an increasing amount of attention within the antenna community [138], as

it provides insight into the physics governing the antenna [140, 141]. The characteristic

modes depend only on the shape of a radiator and are independent of the excitation.

Furthermore, they are orthogonal by definition.

In order to gain an intuitive understanding of the TCM, we investigate a simple

example. Fig. 2.1 shows the surface current density distributions and corresponding

electric far-field patterns of three characteristic modes on a rectangular conducting

plate. The maxima of the three current distributions are located at distinct points on

15
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|J1| |J2| |J3|

x

y

x
y

z|E3||E1| |E2|

Figure 2.1. Absolute values of the surface current density distributions J1, J2, J3 and
electric far-field patterns E1, E2, E3 of three characteristic modes of a rectangular plate.
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J3

(a) Surface current density dis-
tributions abstracted as har-
monic modes.

J1J2

J3
J2

(b) Excitation points at the sur-
face current density distribution
maxima.

J1 J2J3

(c) Connections of the re-
spective excitation points and
antenna ports.

Figure 2.2. Simplified illustration of an MMA based on the characteristic modes on a
rectangular conducting plate.

the plate. According to the TCM, the three surface current density distributions are

orthogonal, and the three corresponding electric far-fields are also orthogonal. The or-

thogonality is not necessarily obvious from the absolute value of the total field strength

shown in Fig. 2.1, as also phase and polarization need to be considered.

When multiple-input multiple-output (MIMO) communication systems became

popular, the TCM was applied to excite multiple characteristic modes independently,

leveraging their orthogonality property [142, 143, 144, 145]. We define a multi-mode

antenna (MMA) as a multiport antenna, where each antenna port independently

excites a different characteristic mode or a combination of characteristic modes.

Examples of MMAs can be found in [70, 71, 68, 72, 73, 74, 69]. The principle of an

MMA in terms of surface current density distributions, excitation points and antenna

ports is illustrated in Fig. 2.2. To highlight that the current modes can be understood

as a resonance phenomenon, they are abstracted as fundamental and higher harmonic

modes. Excitation is performed at the respective maxima of the surface current

density distributions by inductive coupling [146]. Appropriately connecting the
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Figure 2.3. Drawing of MMA-1 in x-y-plane with coordinate system and incoming signal
© 2019 IEEE [147].

Figure 2.4. 3D power patterns for right-hand circular polarization (RHCP) of MMA-1.

excitation points to ports yields a three-port MMA, where each ports excites a specific

characteristic mode.

The first MMA investigated in this thesis, referred to as MMA-1, is based on a

modified square conducting plate shown in Fig. 2.3. The antenna has four ports. The

respective power patterns for right-hand circular polarization (RHCP) are shown in

Fig. 2.4. Details about the antenna can be found in [70]. The simulation results from

Chapter 2 are based on electromagnetic (EM) simulation data of this antenna.

The second investigated MMA, MMA-2, is a dielectric resonator antenna in the



18 CHAPTER 2. DOA AND TOA ESTIMATION WITH AN MMA

(a) MMA-2 with four ports on the bottom. (b) MMA-2 with radome.

Figure 2.5. Pictures of MMA-2.

form of a ceramic cylinder on a ground plane, see Fig. 2.5a. Four metallic feeding

strips are attached to the cylinder, leading to four ports on the bottom of the ground

plane, see [148]. For the experimental validation in Chapter 6, measurement data with

MMA-2 installed on a robotic rover has been obtained, see Section 6.1.3. For that

purpose, the antenna was protected with the radome shown in Fig. 2.5b.

2.2 Signal Model

Wideband Signal Model

The far-field antenna response for a specific polarization is defined by gain g(ω, θ, ϕ) and

phase response Φ(ω, θ, ϕ), which depend on the angular frequency ω and the direction

defined by inclination θ and azimuth ϕ, see Fig. 2.3 and [149, 150]. Assuming the

antenna is illuminated by an isotropic point source at distance d emitting a continuous

wave (CW) signal with angular frequency ω, the noiseless signal at the antenna port

takes the form

y(t) =
√
g(ω, θ, ϕ)ejΦ(ω,θ,ϕ)ejω(t−d/c)α, (2.1)

with time t, speed of light c and real-valued amplitude α [151, 152]. We now extend the

scope to a multiport antenna withM ports, e.g. an MMA. The antenna gain gm(ω, θ, ϕ)

and phase response Φm(ω, θ, ϕ) are then defined for all antenna ports m ∈ {1, ...,M}
individually. Furthermore, we assume an orthogonal frequency-division multiplexing

(OFDM) signal, which is commonly used in modern wireless communication systems

such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 Wi-Fi and

4G/5G mobile cellular networks. Nonetheless, the methods presented in this thesis
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can be generalized to other waveforms. The OFDM signal in baseband is

x(t) =
1√
N

∑
n∈Nsc

s(n) ej2πnfsct, (2.2)

with subcarrier index n, number of occupied subcarriers N = |Nsc|, complex symbol

s(n), sampling rate Bs and subcarrier spacing fsc = Bs

Nfft
with fast Fourier transform

(FFT) length Nfft. If all subcarriers are occupied, Nsc =
{
⌊−Nfft−1

2
⌋, ..., ⌊Nfft−1

2
⌋
}
.

As in general not all subcarriers are occupied, N ≤ Nfft, the occupied bandwidth

B = fsc (|min(Nsc)|+ |max(Nsc)|) ≤ Bs. The signal x(t) is modulated onto a carrier

with angular frequency ωc = 2πfc. The transmission starts at t = tTx. The receiving

multiport antenna is connected to a coherent multichannel receiver. At the receiver,

the signals are downconverted to in-phase and quadrature baseband components, low-

pass filtered and sampled at t = tRx +
k
Bs

with k = 0, ..., Nfft − 1. The relevant part

of the time-discrete complex signal is cut out and transformed to discrete frequency

domain, where the carrier frequency offset (CFO) is compensated. The signal received

at antenna port m in discrete frequency domain after CFO compensation can then be

described by the signal model

rm(n) =
√
gm(ωn, θ, ϕ)e

jΦm(ωn,θ,ϕ)︸ ︷︷ ︸
=am(ωn,θ,ϕ)

s (n, d/c+ τm(θ, ϕ) + tRx − tTx)α e
jφ+wm(n), (2.3)

where am(ωn, θ, ϕ) is the complex-valued antenna response composed of amplitude√
gm(ωn, θ, ϕ) and phase Φm(ωn, θ, ϕ), ωn = ωc+2πnfsc is the angular frequency of the

n-th subcarrier,

s(n, τ) = s(n) e−j2πnfscτ (2.4)

is a delayed version of the OFDM symbol s(n) in discrete frequency domain, d/c

is the propagation delay, τm(θ, ϕ) = −∂Φm(ωn,θ,ϕ)
∂ωn

|ωn=ωc is the group delay for the re-

spective antenna port, tTx and tRx are transmitter and receiver clock offsets, and

wm(n) ∼ CN (0, σ2
r) is independent and identically distributed (i.i.d.) circular sym-

metric Gaussian noise. We call α and φ absolute amplitude and phase, since they are

common to all ports and to distinguish them from relative amplitude and phase differ-

ences between antenna ports. The attenuation due to free-space path loss is included

in α and the carrier phase propagation delay in φ. Both are considered to be unknown.

Narrowband Signal Model

A very common assumption in array processing is that B
fc

≪ 1, i.e. the signal band-

width is small compared to the carrier frequency. Given that the signal spectrum



20 CHAPTER 2. DOA AND TOA ESTIMATION WITH AN MMA

(a) Power pattern. (b) Phase pattern.

Figure 2.6. Antenna response of MMA-2 in x-y-plane for linear vertical polarization
measured in near-field measurement chamber. Solid lines represent frequency fc, dashed
and dashed-dotted lines fc −B/2 and fc +B/2, respectively.

is symmetric, DoA estimation algorithms considering only the antenna response at

the carrier frequency are known to be robust w.r.t. nonzero bandwidth [51, 52, 53].

Thus the term narrowband DoA estimation evolved. Within this thesis, we assume an

OFDM signal with an odd number of occupied subcarriers N , which has a symmet-

ric spectrum. Fig. 2.6 shows the measured power and phase patterns of MMA-2 in

x-y-plane for linear vertical polarization. The patterns are shown for fc = 1.68GHz

and fc ± B/2 with B = 28.2MHz, which corresponds to the experimental setup in

Chapter 6. Minor deviations of the power patterns are visible at the spectrum edges,

compared to the patterns at the carrier frequency. However, the deviations are small

and occur mostly where the gain of the respective mode is low, so their influence is

very limited. The phase patterns at the spectrum edges are almost identical to the

phase pattern at the carrier frequency. Overall, the antenna response is approximately

constant w.r.t. frequency over the occupied bandwidth, which further justifies the nar-

rowband assumption. Thus, with the assumption

am(ωn, θ, ϕ) ≈ am(θ, ϕ)∀n ∈ Nsc, (2.5)

it is sufficient to consider antenna gain, phase and group delay only at the carrier

angular frequency ωc. The model (2.3) then simplifies to

rm(n) =
√
gm(θ, ϕ)e

jΦm(θ,ϕ)︸ ︷︷ ︸
=am(θ,ϕ)

s (n, d/c+ τm(θ, ϕ) + tRx − tTx)α e
jφ + wm(n). (2.6)
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Using a TWR protocol [134, 153], the transmitter and receiver clock offsets can be

eliminated. We assume that the processing time between forward and backward trans-

mission is compensated and very short, such that the impact of the relative frequency

offset of the two oscillators can be neglected. Otherwise, the oscillator behavior must

be taken into account with an appropriate clock model [154]. Assuming the antenna

group delays are also compensated, we arrive at

rm(n) =
√
gm(θ, ϕ)e

jΦm(θ,ϕ)︸ ︷︷ ︸
=am(θ,ϕ)

s (n, τ)α ejφ + wm(n) (2.7)

with the ToA τ = d/c.

We now take multipath propagation into account by assuming that P superposed

signals with index p ∈ {1, ..., P}, DoAs with inclination θ = [θ1, ..., θP ]
T and azimuth

ϕ = [ϕ1, ..., ϕP ]
T and ToAs τ = [τ1, ..., τP ]

T arrive at the multiport antenna. They

originate from the same source, but have different DoAs, ToAs, absolute amplitudes

α = [α1, ..., αP ]
T and absolute phases φ = [φ1, ..., φP ]

T . Using vector notation, the

received signal in discrete frequency domain signal r(n) = [r1(n), ..., rM(n)]T is defined

as

r(n) =
P∑
p=1

a(θp, ϕp)s(n, τp)αp e
jφp +w(n), (2.8)

with the antenna response vector

a(θ, ϕ) =
[
a1(θ, ϕ) ... aM(θ, ϕ)

]T
(2.9)

and i.i.d. circular symmetric Gaussian noise w(n) ∼ CN (0, σ2
rIM). The signal model

(2.8) is used throughout the thesis and extended or simplified where necessary. The

average transmit power is

PTx =
1

N

∑
n∈Nsc

|s(n)|2 (2.10)

and the SNR is always defined for the first propagation path p = 1 and with respect

to an isotropic antenna with unit gain, i.e.

SNR =
α2
1PTx

σ2
r

. (2.11)

2.3 Wavefield Modeling and Manifold Separation

In order to perform DoA estimation, a continuous and closed-form expression of the

antenna response (2.9) is required. For ideal antenna arrays, (2.9) is called steering
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vector and can be defined based on the underlying physics. For an MMA, however, it is

not straightforward to find an analytical expression. We thus apply wavefield modeling

and manifold separation [100, 101], which allows to decompose the antenna response

a(θ, ϕ) = Gb(θ, ϕ) (2.12)

into a product of the sampling matrix G ∈ CM×U , which describes the antenna, and

a pre-defined basis vector b(θ, ϕ) ∈ CU×1, which is a function of the DoA [100]. The

U basis functions must be orthonormal on the antenna manifold θ ∈ [0, π], ϕ ∈ [0, 2π)

for inclination and azimuth estimation and θ ∈ [−π, π) or ϕ ∈ [−π, π) for single angle

estimation in a plane. Additionally, the antenna response vector a(θ, ϕ) has to be

square integrable on the manifold. A suitable basis for 2D DoA estimation of the

inclination is given by the Fourier functions

b(θ) =
1√
2π
ejθuθ , uθ =

⌊
−U − 1

2

⌋
, ..., 0, ...,

⌊
U − 1

2

⌋
, (2.13)

where the components of the vector b(θ) are given by complex exponentials. For 2D

DoA estimation of the azimuth, b(ϕ) is defined analogously. For 3D, i.e. inclination

and azimuth estimation, the spherical harmonic functions

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos(θ))ejmϕ, (2.14)

with degree l ∈ {0, ..., L} for maximum degree L and order m ∈ {−l, ..., l} fulfill the

orthonormality condition [155]. To be consistent with the literature, l andm are used to

denote degree and order, wherem is not to be confused with the antenna port. Pm
l (·) is

the associated Legendre polynomial, see Appendix C.1. Defining Yu(θ, ϕ) := Y m
l (θ, ϕ)

with the enumeration u = (l + 1)l +m+ 1 for u ∈ {1, ..., U}, the basis

b(θ, ϕ) =
[
Y1(θ, ϕ) ... YU(θ, ϕ)

]T
(2.15)

is formed. Alternatively, the 2D Fourier functions

b(θ) =
1√
2π
ejθuθ , uθ =

⌊
−
√
U − 1

2

⌋
, ..., 0, ...,

⌊√
U − 1

2

⌋
, (2.16a)

b(ϕ) =
1√
2π
ejϕuϕ , uϕ =

⌊
−
√
U − 1

2

⌋
, ..., 0, ...,

⌊√
U − 1

2

⌋
(2.16b)
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can be used to form the basis vector

b(θ, ϕ) = bθ(θ)⊗ bϕ(ϕ), (2.17)

which is called effective aperture distribution function (EADF) in the literature [156].

With this definition, U is limited to square numbers in order to unify the definition of

U for (2.13), (2.15) and (2.17). In practice, U can be chosen arbitrarily, and may also

be different for θ and ϕ domain. However, 2D Fourier functions are orthonormal on

the torus, not on the sphere, which means the data must be expanded to be periodic

in both azimuth and inclination [101].

In [100] it is shown that when the number of coefficients U is increased, the mag-

nitude of the elements of G decays superexponentially for |uθ| > κcR, |uϕ| > κcR

and l > κcR, where κc = 2π
λc

is the carrier wavenumber and R is the radius of the

smallest sphere enclosing the antenna. As a rule of thumb, the expansion can thus

be truncated at 2κcR [100]. This leads to U ≈ 4κcR + 1 coefficients for the Fourier

series, U ≈ 8κ2cR
2 + 4κcR + 1 for spherical harmonics and U ≈ (4κcR + 1)2 for the

2D Fourier series. Alternatively, U can also be chosen such that the sampling only

contains elements with an absolute value at least one order of magnitude above the

noise floor of the calibration measurements [156].

In contrast to simulations, the true sampling matrix G is not known in practice.

Nevertheless, an estimated sampling matrix Ĝ can be obtained in different ways. In

Chapter 4, it is shown how Ĝ can be estimated by in-situ calibration and in Chapter 5

it is shown how Ĝ can be estimated by SLAC. In both cases, the propagation channel

parameters, namely absolute amplitudes α and absolute phases φ from (2.8), are

unknown. In contrast to that, by EM simulation or in a calibrated measurement

chamber, the antenna response can be observed directly at discrete DoAs. Assume the

spatial samples

eq =
[
eq,1 ... eq,M

]T
(2.18)

of the antenna response for DoAs {θq, ϕq} are available for all M ports. Writing the

spatial samples in matrix form for a total of Q DoAs, covering the entire manifold,

yields

E =
[
e1 ... eQ

]
. (2.19)

Now, the sampling matrix G for a given basis B = [b(θ1, ϕ1), ..., b(θQ, ϕQ)] can be

determined by least squares,

Ĝ0 = EBH
(
BBH

)−1
, (2.20)
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(a) Power pattern. (b) Phase pattern.

Figure 2.7. Samples from EM simulation and continuous representation by wavefield
modeling and manifold separation of the x-z-plane power and phase patterns of MMA-1
for right-hand circular polarization (RHCP).

which we call Ĝ0 to distinguish it from the estimates by in-situ calibration in Chapter 4

and SLAC in Chapter 5. For this equation to be solvable, in general it is required that

M ≤ U ≤ Q. Antenna measurements are often performed on a regular grid, which is

nonuniform on the sphere. In that case it should be ensured that Q≫ U [102].

As an alternative to wavefield modeling and manifold separation, the array interpo-

lation technique (AIT) can be used to represent the MMA antenna response [157, 147].

The AIT aims at representing the MMA antenna response by a linear transformation

of the response of an ideal antenna array, e.g. a ULA. Without excessive errors, this

is only possible for a small angular sector. With AIT, low complexity DoA estimation

algorithms for ideal arrays can be applied. However, due to sectorization, the AIT can

suffer from out-of-sector errors in the case of multiple impinging signals. AIT can also

cause discontinuities at the sector borders, which prevents the calculation of the CRB

for theoretical analysis. Within this thesis, we exclusively use wavefield modeling and

manifold separation the represent the MMA antenna response.

We now illustrate wavefield modeling and manifold separation for an x-z-plane cut

of MMA-1 using Fourier functions (2.13) with U = 15 ≈ 4κcR+1 coefficients per port.

The spatials samples E have been obtained by an EM simulation. Fig. 2.7a shows

the power pattern and Fig. 2.7b the phase pattern for RHCP. Plotted are both the

discrete spatial samples and the continuous antenna response obtained by wavefield

modeling. Continuous and discrete representation match in both, power and phase.

From the plots it is also apparent that the different ports of the MMA have distinct

characteristics, as discussed in Section 2.1. In the next section, it is shown how these

characteristics can be exploited to estimate the DoA of incoming signals.
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2.4 DoA Estimation with a Multi-Mode Antenna

2.4.1 Non-Coherent DoA Estimation

A first approach to DoA estimation with an MMA is based on the received signal power

at the different ports, called RSS. The approach does not need a coherent multichannel

receiver, and is thus suitable for low-cost and low-complexity devices. This estimator

is referred to as non-coherent and limited to a single impinging signal. Based on (2.8),

the estimated RSS of port m, averaged over N subcarriers, is calculated by

řm =
1

N

∑
n∈Nsc

|rm(n)|2. (2.21)

Due to the noise in rm(n), the estimated RSS řm follows a noncentral χ2 distribution.

In Appendix C.3 it is shown, when the number of occupied subcarriers N > 25, the

RSS observations ř = [ř1, ..., řM ]T can be approximated by a Gaussian distribution

ř ∼ N (µ̌, Σ̌) with mean

µ̌ = E{ř} = g(θ, ϕ)š+ 1Mσ
2
r (2.22)

and diagonal covariance matrix

Σ̌ = diag
{[
σ̌2
1 ... σ̌2

m ... σ̌2
M

]}
(2.23)

with elements

σ̌2
m = N−1(σ4

r + 2gm(θ, ϕ)šσ
2
r), (2.24)

where g(θ, ϕ) = [g1(θ, ϕ), ..., gM(θ, ϕ)]T is the antenna gain vector, š = α2

N

∑
n∈Nsc

|s(n)|2

is the average signal power and σ2
r = 1

N

∑
n∈Nsc

E{|wm(n)|2} the noise power. The

equations (2.22) and (2.24) contain only the real-valued antenna gain, not the complex-

valued antenna response. The expansion can thus be performed on the real-valued

antenna gain vector

g(θ, ϕ) = Gb(θ, ϕ), (2.25)

instead of the complex-valued antenna response vector as in (2.12). The basis vec-

tor b(θ, ϕ) is defined by (2.13) or (2.17), but to obtain real values, the elements of

the sampling matrix G related to negative uθ or uϕ values are fixed to the complex

conjugate of the corresponding positive uθ or uϕ values. The real-valued form of the

spherical harmonics for defining the basis b(θ, ϕ) and its derivatives are summarized

in Appendix C.2. First, the general case is considered, where both signal power š and
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noise power σ2
r are unknown. The parameters to be estimated are defined by

ζ =
[
θ ϕ š σ2

r

]T
, (2.26)

and the log-likelihood function is given by

Lř(ζ) = ln p(ř|ζ) = −M
2

ln(2π)− 1

2
ln
(
det{Σ̌}

)
− 1

2
(ř − µ̌)T Σ̌−1(ř − µ̌)

= −
M∑
m=1

(
1

2
ln(2πσ̌2

m) +
1

2σ̌2
m

(
řm − (gm(θ, ϕ)š+ σ2

r)
)2)

.
(2.27)

Based on (2.27), the non-coherent ML estimator NC-ML,

ζ̂ = argmax
ζ

Lř(ζ)

= argmin
ζ

M∑
m=1

(
ln
(
2πN−1(σ4

r + 2gm(θ, ϕ)šσ
2
r)
)
+
N(řm − gm(θ, ϕ)š− σ2

r)
2

σ4
r + 2gm(θ, ϕ)šσ2

r

)
,

(2.28)

is obtained. As a benchmark for the estimator, we derive the CRB. The CRB is

a lower bound on the achievable estimation variance of any unbiased estimator [80],

and is frequently used throughout this thesis. The CRB for the non-coherent case,

NC-CRB, is given by

var{θ̂} ≥ CRB(θ) = [I−1
ζ ]1,1, (2.29a)

var{ϕ̂} ≥ CRB(ϕ) = [I−1
ζ ]2,2, (2.29b)

where Iζ ∈ R4×4 is the FIM defined by

[Iζ]v,w = −E

{
∂2 ln p(ř|ζ)
∂[ζ]v∂[ζ]w

}
= E

{
∂ ln p(ř|ζ)
∂[ζ]v

∂ ln p(ř|ζ)
∂[ζ]w

}
. (2.30)

Since the observations follow a Gaussian distribution, the FIM elements are calculated

according to [80] as

[Iζ]v,w =
∂µ̌T

∂[ζ]v
Σ̌−1 ∂µ̌

∂[ζ]w
+

1

2
tr

{
Σ̌−1 ∂Σ̌

∂[ζ]v
Σ̌−1 ∂Σ̌

∂[ζ]w

}
=

M∑
m=1

(
1

σ̌2
m

∂[µ̌]m
∂[ζ]v

∂[µ̌]m
∂[ζ]w

+
1

2σ̌4
m

∂σ̌2
m

∂[ζ]v

∂σ̌2
m

∂[ζ]w

)
.

(2.31)

The non-linear optimization problem (2.28) has four unknowns. Solving that could

be unfavorable for a low-cost and low-complexity receiver. For that reason, a reduced
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complexity (RC) alternative to the ML estimator (2.28) is derived. It uses the fact

that often an estimate of the noise power σ̂2
r can be obtained separately, e.g. from

unoccupied time-division multiple access (TDMA) slots. The unknowns then reduce

to

ζ ′ =
[
θ ϕ š

]T
. (2.32)

Neglecting the constant and the log-term in (2.27) and maximizing the remaining term

yields

ζ̂ ′ = argmin
ζ′

||ř′ − g(θ, ϕ)š||2, (2.33)

with ř′ = ř − σ̂2
r. To further reduce the number of unknowns, we follow the principle

from [158] and plug the minimum of (2.33) w.r.t. the signal power, ˆ̌s = g(θ, ϕ)†ř′, back

into (2.33) to obtain the NC-RC estimator[
θ̂ ϕ̂

]T
= arg min

{θ, ϕ}
||
(
IM − g(θ, ϕ)g(θ, ϕ)†

)
ř′||2

= arg min
{θ, ϕ}

tr
{(

IM − g(θ, ϕ)g(θ, ϕ)†
)
ř′ř′T} . (2.34)

The number of unknowns has been reduced from four to two. In practice, to further

reduce the complexity,
(
IM − g(θ, ϕ)g(θ, ϕ)†

)
can be precomputed for a θ-ϕ grid with

required accuracy. The CRB for the non-coherent RC estimator, NC-RC-CRB, is

calculated analogous to (2.29), where the unknown vector ζ is replaced by the reduced

unknown vector ζ ′.

2.4.2 Coherent DoA Estimation

Defining the antenna response matrix

A(θ,ϕ) =
[
a(θ1, ϕ1) ... a(θP , ϕP )

]
(2.35)

for P impinging signals and gathering the other deterministic components of (2.8) into

arbitrary, deterministic signals s̃(n) ∈ CP×1, the standard array processing model

r(n) = A(θ,ϕ)s̃(n) +w(n) (2.36)

is obtained [55, 159, 28]. For geometric array models like ULA or URA, (2.35) is often

called steering matrix and describes phase relationships between the antennas, while

in our case A(θ,ϕ) is the antenna response matrix containing both gain and phase

information. The equation for the log-likelihood function however remains the same
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and is given by

Lr(θ,ϕ, s̃(1), ..., s̃(N), σ2
r) = −NM ln(πσ2

r)−
1

σ2
r

∑
n∈Nsc

||r(n)−A(θ,ϕ)s̃(n)||2. (2.37)

Based on N occupied subcarriers, we can calculate the sample covariance matrix

R̂r =
1

N

∑
n∈Nsc

r(n)rH(n) (2.38)

and obtain the coherent ML estimator C-ML[
θ̂T ϕ̂T

]T
= arg min

{θ,ϕ}
Re{tr{Π⊥

AR̂r}}, (2.39)

with the projector onto the noise subspace

Π⊥
A = IM −ΠA (2.40)

and the projector onto the signal subspace

ΠA = A(θ,ϕ)
(
AH(θ,ϕ)A(θ,ϕ)

)−1
AH(θ,ϕ), (2.41)

see e.g. [28, 55]. In [160] it is shown that the CRB matrix for the coherent case, C-CRB,

can be calculated as

CRB

([
θ̂T ϕ̂T

]T)
=

σ2
r

2N
Re{DHΠ⊥

AD ⊙ZTRs̃Z}−1, (2.42)

with

D =
[
∂a(θ1,ϕ1)

∂θ1
... ∂a(θP ,ϕP )

∂θP

∂a(θ1,ϕ1)
∂ϕ1

... ∂a(θP ,ϕP )
∂ϕP

]
, (2.43)

the selection matrix Z =
[
IP IP

]
and the signal covariance matrix Rs̃ =

1
N

∑
n∈Nsc

s̃(n)s̃H(n). This requires the partial derivatives of the basis function b(θ, ϕ)

from (2.12) w.r.t. θ and ϕ. For the Fourier functions (2.13) and 2D Fourier functions

(2.17), the partial derivatives are trivial to obtain. For spherical harmonics (2.14), the

derivatives are provided in Appendices C.1 and C.2.

2.4.3 Joint DoA and Polarization Estimation

The models (2.8) and (2.36) are valid for a single polarization component of the electric

field and can be applied when the polarization of the incoming wave is known. If the

polarization is unknown, it needs to be estimated together with the DoA(s). For



2.4. DoA Estimation with a Multi-Mode Antenna 29
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Figure 2.8. Polarization ellipse for EM wave travelling in positive z-direction out of the
page, observed at z = 0.

that, (2.36) is extended to account for polarization. Assuming free-space propagation

and far-field conditions, the EM wave radiated by an antenna can be approximated

by a plane wave. A plane wave traveling in positive z-direction, i.e. d = z, can be

decomposed into x- and y-components

E(t, z) = Ex(t, z)ux + Ey(t, z)uy. (2.44)

Fixing the location to z = 0 to observe the time behavior, we get

E(t) = Ex0 cos(ωt)ux + Ey0 cos(ωt+ β)uy, (2.45)

with the polarization phase β [161]. The polarization ellipse is visualized in Fig. 2.8

with the auxiliary angle

γ = arctan

(
Ey0
Ex0

)
. (2.46)

Together, the auxiliary angle 0 ≤ γ ≤ π
2
and the polarization phase −π ≤ β <

π parameterize the polarization state of the EM wave. For instance, for circularly

polarized waves γ = π
4
and β = ±π

2
for left/right hand circular polarization.

Using β and γ, the signal model (2.36) can be extended to perform joint DoA and

polarization estimation [162, 163, 164]. First, we define the partial antenna response

vectors for a single impinging signal and antenna port m,

aco,m(θ, ϕ) =
√
gco,m(θ, ϕ)e

jΦco,m(θ,ϕ), (2.47a)

across,m(θ, ϕ) =
√
gcross,m(θ, ϕ)e

jΦcross,m(θ,ϕ). (2.47b)
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Here, aco,m(θ, ϕ) is the antenna response when being illuminated by a wave with the

reference polarization, arriving from DoA {θ, ϕ}, and across,m(θ, ϕ) results from a wave

with orthogonal polarization. Correspondingly, gco,m(θ, ϕ) and gcross,m(θ, ϕ) are the

partial gains and Φco,m(θ, ϕ) and Φcross,m(θ, ϕ) the partial phase responses. Defining

the partial antenna response vectors

aco(θ, ϕ) =
[
aco,1(θ, ϕ) ... aco,M(θ, ϕ)

]T
, (2.48a)

across(θ, ϕ) =
[
across,1(θ, ϕ) ... across,M(θ, ϕ)

]T
, (2.48b)

the polarimetric antenna response vector is given by

a(θ, ϕ, γ, β) = sin(γ)ejβaco(θ, ϕ) + cos(γ)across(θ, ϕ). (2.49)

Defining γ = [γ1, ..., γP ]
T and β = [β1, ..., βP ]

T for P impinging signals, the polarimetric

antenna response matrix

A(θ,ϕ,γ,β) =
[
a(θ1, ϕ1, γ1, β1) ... a(θP , ϕP , γP , βP )

]
(2.50)

is constructed, and the signal model (2.36) is extended to

r(n) = A(θ,ϕ,γ,β)s̃(n) +w(n). (2.51)

The polarimetric ML estimator, P-ML, is given by[
θ̂T ϕ̂T γ̂T β̂T

]T
= arg min

[θ,ϕ,γ,β]
Re{tr{Π⊥

AR̂r}}, (2.52)

where it is assumed that the polarization parameters are constant during the observa-

tion time. The CRB matrix (2.42) is extended for the polarimetric P-CRB as

CRB

([
θ̂T ϕ̂T γ̂T β̂T

]T)
=

σ2
r

2N
Re
{
DHΠ⊥

AD ⊙ZTRs̃Z
}−1

. (2.53)

Setting ap = a(θp, ϕp, γp, βp),

D =
[
... ∂ap

∂θp
... ∂ap

∂ϕp
... ∂ap

∂γp
... ∂ap

∂βp
...
]

(2.54)

is defined analogously to (2.43) for p ∈ {1, ..., P} and Z =
[
IP IP IP IP

]
. The

DoA estimators introduced in this section, as well as their corresponding estimation

variance bounds given by the CRB, are summarized in Table 2.1.
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Table 2.1. DoA estimators and corresponding Cramér-Rao bounds.

Signal model Estimator CRB

Non-coherent
NC-ML (2.28) NC-CRB (2.26) and (2.29)
NC-RC (2.34) NC-RC-CRB (2.29) and (2.32)

Coherent C-ML (2.39) C-CRB (2.42)

Polarimetric P-ML (2.52) P-CRB (2.53)

Figure 2.9. Simulated RMSE for θ estimation with non-coherent ML estimator (2.28),
non-coherent RC estimator (2.34), coherent ML estimator (2.39) and their respective
CRBs versus θ for SNR = 20dB © 2019 IEEE [147].

2.4.4 Simulation Results

2D DoA Estimation

Extensive simulations are performed to assess the DoA estimation performance of

MMA-1, see Section 2.1, using the different estimators introduced in Sections 2.4.1

to 2.4.3 based on wavefield modeling and manifold separation introduced in Section 2.3.

For the simulations, the received signals are generated based on the signal models (2.8)

and (2.36) and the true antenna response is given by the original EM simulation data

with a 5◦ sampling grid. In this section, the focus is on estimating θ for a transmitter

located in the x-z-plane of the antenna, i.e. ϕ = 0◦. The number of occupied sub-

carriers is N = 1000 and 1000 Monte Carlo runs are performed to evaluate the DoA

estimation root-mean-square error (RMSE). For the non-coherent estimators, the rela-

tion between signal power š and noise variance σ2
r is nonlinear. For the simulations, we

assume σ2
r = kBTnB with Boltzmann constant kB, noise temperature Tn = 290K and

bandwidth B = 1MHz. For the non-coherent reduced-complexity (NC-RC) estimator,

σ̂2
r is estimated from N = 1000 noise samples, where no signal is present.
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Figure 2.10. Simulated RMSE for θ estimation with non-coherent ML estimator (2.28),
coherent ML estimator (2.39) and their respective CRBs versus SNR© 2019 IEEE [147].

Fig. 2.9 shows the RMSE for the estimation of the inclination θ with the non-

coherent, i.e. RSS based, and coherent estimators for SNR = 20 dB. The non-coherent

ML estimator performs close to the corresponding CRB. However, the performance of

non-coherent DoA estimation strongly depends on θ. The RMSE of the RC estimator is

mostly close to the corresponding CRB, except around θ = 0◦. There, errors are likely

caused by large gain differences between the ports together with the approximation

in (2.33). The coherent ML estimator operates close to its CRB for all θ values.

Moreover, the performance is relatively constant over θ compared to the non-coherent

ML estimator.

For Fig. 2.10, the RMSE is calculated over θ ∈ [−85◦, 85◦] for 170◦ field of view

(FoV), and over θ ∈ [−85◦, 0◦] and θ ∈ [0◦, 85◦] for 85◦ FoV, corresponding to the beam

of the antenna. The plot reveals that the non-coherent estimator for 170◦ FoV exhibits

much higher errors in the low SNR regime compared to 85◦ FoV. This can be explained

by the relatively symmetric power pattern, see Fig. 2.7a, which makes it difficult for the

estimator to distinguish positive and negative θ values. For SNR ≥ 13 dB, both curves

asymptotically approach the CRB. The coherent estimator asymptotically approaches

the corresponding CRB for SNR > 7 dB. For lower SNR values, the difference between

170◦ FoV and 85◦ FoV is much smaller compared to the non-coherent case. The

phase response of the MMA, see Fig. 2.7b, provides valuable information to distinguish

between positive and negative θ, which explains the better performance of the coherent

estimator.

Fig. 2.11 shows the RMSE over θ ∈ [−85◦, 85◦] versus SNR for both non-coherent

ML and RC estimator. For the RC estimator, σ̂2
r is again estimated from N = 1000

noise samples. Thus σ2
r is omitted from the unknowns of the non-coherent RC estima-
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Figure 2.11. Simulated RMSE for θ estimation with non-coherent ML estimator (2.28),
non-coherent RC estimator (2.34) and their respective CRBs versus SNR © 2019 IEEE
[147].

Figure 2.12. Simulated RMSE for the coherent ML estimator and CRB for two impinging
signals from directions θ1 ∈ [−90◦, 90◦] and θ2 = 30◦. The second signal has 6 dB less
power © 2019 IEEE [147].

tor, see (2.32), and the corresponding CRB with fewer unknowns is lower. The ML and

RC estimators perform similar. However, in contrast to the RC estimator, the ML es-

timator asymptotically approaches the corresponding CRB. We conclude that the RC

estimator is a suitable alternative for low-complexity non-coherent DoA estimation.

In Fig. 2.12, coherent DoA estimation for P = 2 incoming signals is investigated.

The first signal arrives from a variable angle θ1 ∈ [−90◦, 90◦]. The second signal arrives

from θ2 = 30◦ with 6 dB less power. The results reveal that the estimator is able to

separate the two signals and the RMSEs are close to the respective CRBs, unless the

two signals are very closely spaced. When approaching each other, separation becomes
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(a)
√
CRB(θ) (left) and

√
CRB(ϕ) (right)

(b)
√
MSE(θ) (left) and

√
MSE(ϕ) (right)

(c)
√
MSE(θ)/

√
CRB(θ) (left) and√

MSE(ϕ)/
√
CRB(ϕ) (right)

Figure 2.13. Simulated RMSE for θ and ϕ estimation with the non-coherent ML esti-
mator (2.28) and corresponding CRB (2.26) and (2.29) with SNR = 10dB. Radius of the
polar plots represents θ ∈ [0◦, 90◦], angle represents ϕ ∈ [0◦, 360◦) © 2019 IEEE [147].

more challenging, leading to increasing RMSE and CRB. In the limit, for very closely

spaced signals, separation is not possible any more.

3D DoA Estimation

In order to evaluate DoA estimation performance on a finer θ and ϕ grid of 1◦ compared

to the original EM simulation data with 5◦ resolution, we interpolate the EM simula-

tion data. To ensure accurate interpolation, we use wavefield modeling with spherical

harmonic functions (2.15) as basis and U = 144 coefficients. The estimator for 3D

DoA estimation of inclination θ and azimuth ϕ uses spherical harmonic functions with

U = 64 ≈ 8κ2cR
2 + 4κcR + 1 coefficients.

Fig. 2.13 shows the simulated RMSE and CRB for 3D non-coherent DoA estimation
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(a)
√
CRB(θ) (left) and

√
CRB(ϕ) (right)

(b)
√

MSE(θ) (left) and
√
MSE(ϕ) (right)

(c)
√
MSE(θ)/

√
CRB(θ) (left) and√

MSE(ϕ)/
√
CRB(ϕ) (right)

Figure 2.14. Simulated RMSE for θ and ϕ estimation with the coherent ML estimator
(2.39) and corresponding CRB (2.42) with SNR = 10dB. Radius of the polar plots repre-
sents θ ∈ [0◦, 90◦], angle represents ϕ ∈ [0◦, 360◦) © 2019 IEEE [147].

of θ and ϕ. The CRB for non-coherent DoA estimation strongly depends on θ and ϕ.

The ratio between the RMSE of the non-coherent ML estimator and the CRB is shown

in Fig. 2.13c. When the ratio is close to one, the estimator approaches the CRB. For the

non-coherent estimator, this is only the case for certain angles with inclination θ < 60◦.

For θ ≥ 60◦, excessive estimation errors occur and the RMSE is far from the CRB. This

behavior can be explained by the antenna power pattern, see Figs. 2.4 and 2.7a. When

θ approaches 90◦, antenna gain and thus SNR values are very low. Another explanation

is that the non-coherent estimator suffers from estimation ambiguities, which we also

discuss in connection with Figs. 2.10 and 2.15.

The simulated RMSE and CRB for 3D coherent DoA estimation are visualized in

Fig. 2.14. Compared to the non-coherent case from Fig. 2.13, both RMSE and CRB
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Figure 2.15. Log-likelihood functions for the C-ML (2.37), left, and NC-ML estimator
(2.27), right, normalized to [−1, 0], for a signal coming from θ = 35◦, ϕ = 178◦ (red cross)
with SNR = 15dB. Radius of the polar plot represents θ ∈ [0◦, 90◦], angle represents
ϕ ∈ [0◦, 360◦) © 2019 IEEE [147].

Figure 2.16. Simulated RMSE for joint estimation of θ, ϕ, γ, β with the polarimetric
ML estimator (2.52) and corresponding CRBs © 2019 IEEE [147].

are lower and more uniform. The ratio between RMSE and CRB shown in Fig. 2.14c

shows that the RMSE of the coherent estimator is close to the CRB for θ < 45◦. For

θ ≥ 45◦, the RMSE deviates from the bound for certain angles. However, compared to

the non-coherent estimator, the deviation of the coherent estimator from the CRB is

small. The non-coherent estimator is clearly outperformed in the 3D case.

To further investigate the performance difference between coherent and non-

coherent estimator, the corresponding log-likelihood functions for a signal arriving

from a fixed DoA are shown in Fig. 2.15. It is apparent that the coherent log-likelihood

function has only one sharp peak at the true DoA. In contrast to that, the non-coherent

log-likelihood function has multiple peaks. In the presence of noise, the estimator

may choose the wrong peak, leading to a larger RMSE and thus a deviation of the

non-coherent estimator from the CRB, see Fig. 2.13.

Fig. 2.16 shows the simulated RMSE for joint estimation of θ, ϕ, γ, β with the
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polarimetric ML estimator (2.52). The RMSE is calculated for the estimated DoA

parameters θ ∈ [0◦, 80◦), ϕ ∈ [0◦, 360◦) and the polarization parameters γ ∈ [10◦, 80◦]

and β ∈ [−180◦, 180◦). For SNR ≥ 2 dB, the estimation RMSE of all parameters

asymptotically approaches the respective CRB. MMA-1 can thus be used to determine

the signal polarization.

2.5 Joint DoA and ToA Estimation with a Multi-

Mode Antenna

2.5.1 Joint DoA and ToA Estimation

For localization, valuable information is contained not only in the DoA of the received

signal, but also the ToA, see Section 1.2. A successive approach to DoA and ToA

estimation with an MMA is to first estimate the DoA(s) {θ̂, ϕ̂} by (2.39) and then

coherently combine the signals from the different antenna ports by beamforming, fol-

lowed by ToA estimation. The weight vector for the conventional beamformer [55, 28]

for the respective DoA {θp, ϕp} is

wBF,p =
a
(
θ̂p, ϕ̂p

)
∥∥∥a(θ̂p, ϕ̂p)∥∥∥ , (2.55)

which is applied to linearly combine the received signals

rBF,p(n) = wH
BF,p r(n). (2.56)

The log-likelihood function for successive ToA estimation is then

LrBF,p
(τp, αp, φp, σ

2
r) = −N ln(πσ2

r)−
1

σ2
r

∑
n∈Nsc

∣∣rBF,p(n)− s(n, τp)αpe
jφp
∣∣2, (2.57)

with

rBF,p =
[
... rBF,p(n) ...

]T
, n ∈ Nsc. (2.58)

Plugging the maximum of (2.57) w.r.t. αp and φp back into (2.57), defining

s(τp) =
[
... s(n, τp) ...

]T
, n ∈ Nsc (2.59)
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and neglecting the constant term, we obtain the concentrated log-likelihood function

L̃rBF,p
(τp) =

1

σ2
r

|sH(τp)rBF,p|2

∥s(τp)∥
, (2.60)

and the T-ML estimator

τ̂p = argmax
τp

L̃rBF,p
(τp). (2.61)

However, this successive approach has two drawbacks. First, the impinging signals

must be separable in DoA domain. Second, as shown in Section 2.5.2, performance for

low SNR values is worse compared to a joint approach.

Instead, one can also estimate DoA and ToA jointly based on the joint log-likelihood

function

Lr(θ,ϕ, τ ,α,φ, σ
2
r) = −N ln(πσ2

r)−
1

σ2
r

∑
n∈Nsc

∥∥∥∥∥r(n)−
P∑
p=1

a(θp, ϕp)s(n, τp)αpe
jφp

∥∥∥∥∥
2

,

(2.62)

with

r =
[
... rT (n) ...

]T
, n ∈ Nsc. (2.63)

Plugging the maximum of (2.62) w.r.t. α and φ back into (2.62), see [65, 158], and

neglecting the constant term, we obtain the concentrated log-likelihood function

L̃r(θ,ϕ, τ ) =
1

σ2
r

∥∥V ⊥r
∥∥2 (2.64)

with

V ⊥ = V (V HV )−1V H , (2.65)

where V ∈ CMN×P is defined column-wise by

[V ]:,p = vec
{
a(θp, ϕp)s

T (τp)
}
. (2.66)

The joint DoA-ToA ML estimator, J-ML, is then given by

{θ̂, ϕ̂, τ̂} = argmax
θ,ϕ,τ

L̃r(θ,ϕ, τ ). (2.67)

In Section 3.2 and Appendix C.4, the CRB for joint DoA and ToA estimation (3.13)

is derived. As the off-diagonal elements of (3.13) are zero, the CRBs for joint estima-

tion are equal to the individual DoA and ToA estimation CRBs. The independence

of DoA and ToA estimation in terms of the CRB is a consequence of the narrowband

assumption and the symmetric signal spectrum, see Section 3.2 and Appendix C.4.
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Table 2.2. DoA-ToA estimators and corresponding Cramér-Rao bounds.

Approach Estimators CRB

Successive C-ML (2.39), T-ML (2.61) C-CRB (2.42), T-CRB (2.68)

Joint J-ML (2.67) C-CRB (2.42), T-CRB (2.68)

However, the CRB is a tight bound only for high SNR values. As we show in Sec-

tion 2.5.2, joint estimation of DoA and ToA estimation is nevertheless beneficial in the

low SNR regime. The DoA estimation CRB is thus given by (2.42). From (3.13) and

[63], the ToA estimation CRB for an OFDM signal, abbreviated as T-CRB, is given

by

CRB(τp) =
σ2
r

2α2
pN∥a(θp, ϕp)∥2β̄2

, (2.68)

with the mean square bandwidth β̄2 defined by (3.14). The ToA CRB (2.68) is valid

for a single propagation path (P = 1). However, given that the different propagation

paths are resolvable in ToA domain, i.e. |τp − τq| ≫ 1
B
∀ p ̸= q; p, q ∈ {1, ..., P} [165],

the CRB (2.68) also applies in the multipath case [166]. The estimators introduced in

this section together with their CRBs are summarized in Table 2.2.

2.5.2 Simulation Results

Simulations are performed to compare the successive approach of DoA estimation with

C-ML (2.39), coherent combining (2.56) and subsequent ToA estimation with T-ML

(2.61) to the joint DoA-ToA ML estimator (2.67). For this simulation, we assume

the antenna response of MMA-2, see Section 2.1. We are interested in estimating the

azimuth ϕ, focusing on the x-y-plane of the antenna. The transmitted signal is a Zadoff-

Chu sequence [167] of length N = 463, which is mapped onto 925 subcarriers out of

Nfft = 1024 by occupying every second subcarrier, see also Section 6.1.1. The SNR is

defined by (2.11). 1000 Monte Carlo runs are performed to calculate the estimation

RMSEs, where the mean is also taken over the manifold ϕ ∈ [−180◦, 180◦[. Theoretical

lower bounds are given in terms of the CRBs (2.42) and (2.68) for DoA and ToA,

respectively.

First, we have a look at the DoA estimation RMSE shown in Fig. 2.17. Both

C-ML and J-ML asymptotically approach the CRB for high SNR values. However, J-

ML enters the threshold region at approximately 7 dB lower SNR. Furthermore, J-ML

operates close to the CRB already in the beginning of the asymptotic region, whereas

C-ML slowly approaches it. Despite performance being very similar in the mid to high

SNR region, joint estimation is clearly superior in the low SNR regime.
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Figure 2.17. Simulated RMSE of DoA estimation with DoA ML estimator (2.39) and
joint DoA-ToA ML estimator (2.67).

Figure 2.18. Simulated RMSE of ToA estimation with coherent combining after DoA
estimation in conjunction with the ToA ML estimator (2.61), and with the joint DoA-ToA
ML estimator (2.67).

Next, we investigate the ToA estimation RMSE plotted in Fig. 2.18. Both, T-ML

and J-ML asymptotically approach the CRB. However, T-ML is close to the CRB for

SNR > −9 dB on, whereas J-ML is close to the CRB for SNR > −16 dB. Thus also

for ToA, joint estimation outperforms the successive approach in the low SNR region.



Chapter 3
Fundamental Limits for Cooperative

Position and Orientation Estimation

In this chapter, we define a cooperative network. Using the antenna response represen-

tation from Chapter 2, we derive the Fisher information for nodes equipped with MMAs

in ToA and DoA domain and perform the transformation to position and orientation

domain. We then derive position and orientation error bounds based on the CRB for

absolute and relative localization and investigate exemplary formations. Finally, we

discuss how theoretical error bounds relate to errors observed in experiments.

3.1 Definition of a Cooperative Network

The network consists of agents (for example robotic rovers) denoted by the agent

set R, and anchors denoted by the anchor set A. Together, they form the node set

N = R ∪ A. Agents are mobile radio nodes with unknown position and orientation,

whereas anchors are static radio nodes with known position and orientation. The focus

in this chapter is on the static case. In Chapter 5, the definition of a cooperative

network is extended to moving agents. The basic geometric relationships are shown in

Fig. 3.1 for two exemplary agents i and j. The figure contains three coordinate frames.

A common frame for the entire network, span by the x and y axes, and two body frames

of agents i and j, which are fixed to the respective agent center and rotate with the

agent. The position of agent i, pi =
[
xi yi

]T
, is defined in the common frame. The

orientation ψi describes the rotation of the body frame of agent i w.r.t. the common

frame. Furthermore, the distance di,j between the two agents and the DoAs ϕi,j and

ϕj,i, defined in the respective body frames of the agents are shown. The entities of other

agents are defined analogously. For the derivation of the fundamental limits, we follow

41
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x

y

agent j

agent i

ϕj,i

xi

yi

ψi

ϕ′
i,j

−ϕi,j di,j

Figure 3.1. Two agents i and j, the distance di,j between the agents, the DoAs ϕi,j and
ϕj,i and the position pi = [xi yi]

T and orientation ψi of agent i, as well as two optional
anchors.

the commonly used synchronization assumption [20, 39]. In [82] it is shown, that the

lower bounds for an asynchronous network are larger or equal to the lower bounds of a

synchronous network. Lower bounds derived with the synchronization assumption are

thus also lower bounds for asynchronous networks. Furthermore, employing a TWR

protocol, the clock biases can be eliminated [134, 153]. Assuming that the processing

time between forward and backward transmissions is compensated and very short, the

impact of the relative frequency offset of the two clocks can be neglected [166]. Under

the stated assumption, the ToA of a signal received by agent i, sent by agent j, is then

given by

τi,j =
di,j
c

=
∥pj − pi∥

c
. (3.1)

The signal DoA measured in the body frame of agent i is defined as

ϕi,j = ϕ′
i,j − ψi = arctan2 (yj − yi, xj − xi)− ψi. (3.2)

The position and orientation states of agent i are thus given by

xi =
[
(pi)

T ψi

]T
. (3.3)

The state vector for the entire network is formed by stacking the agent states,

x =
[
(x1)

T ... (xi)
T ... (x|R|)

T
]T
. (3.4)
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In order to obtain a true fundamental limit, we take the received signals as observations,

instead of extracted signal metrics such as ToA or DoA. The signal model is based on

(2.8), where we add indices for the transmitting and receiving agent. To focus on the

cooperative aspect and since the propagation environment is unknown in practice, we

assume P = 1. A signal transmitted by node j and received by node i is then written

in discrete frequency domain as

ri,j(n) = ai(ϕi,j)s(n, τi,j)αi,je
jφi,j +wi,j(n), (3.5)

where ai(ϕi,j) is the antenna response of the receiving antenna. Each node i receives

signals from its neighboring nodes in the set Li ⊆ N\{i}. If e.g. the link between node

i and a certain neighboring node is blocked, the neighboring node is not a member of

the set Li.

3.2 Fisher Information in ToA and DoA Domain

We start by deriving the Fisher information in ToA and DoA domain. Defining l(i, j)

as a function returning the index of the link between transmitting node j and receiving

node i, we can form a vector containing the ToA τi,j and DoA ϕi,j for the respective

link,

ll(i,j) =
[
τi,j ϕi,j

]T
, (3.6)

and the vector

l =
[
... lTl(i,j) ...

]T
(3.7)

containing ToAs and DoAs of all links. Although not of direct interest, we must also

estimate the unwanted parameters absolute amplitude αi,j and absolute phase φi,j. We

collect both parameters in a vector for the respective link,

nl(i,j) =
[
αi,j φi,j

]T
, (3.8)

and for all links in the network

n =
[
... nT

l(i,j) ...
]T
. (3.9)

The elements of the FIM I ∈ R4L×4L for Gaussian noise wi,j(n) are then given by

[I]p,q =
2

σ2
r

Re

{∑
i∈N

∑
j∈Li

∑
n∈Nsc

∂ E {ri,j(n)}H

∂[lT nT ]p

∂ E {ri,j(n)}
∂[lT nT ]q

}
, (3.10)
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see [80]. We partition the FIM into sub-matrices,

I =

[
Il Iln

ITln In

]
, (3.11)

in order to separate the parameters of interest from the unwanted parameters. The

ToA-DoA equivalent Fisher information matrix (EFIM) [82] is then

Ie
l = Il − IlnI

−1
n ITln ∈ R2L×2L. (3.12)

The EFIM contains the Fisher information for the ToAs and DoAs, while considering

the impact of the unknown absolute amplitudes and phases. It is calculated with the

Schur complement [168]. In Appendix C.4, we derive the following compact form of

the ToA-DoA EFIM (3.12):

[Ie
l ]l(i,j),l(i,j) =

2α2
i,jNPTx∥a(ϕi,j)∥2

σ2
r

[
β̄2 0

0 γ̄2(ϕi,j)− ᾱ2(ϕi,j)− φ̄2(ϕi,j)

]
. (3.13)

We assume that the number of occupied subcarriers N is odd and the signal spectrum

is symmetric, |s(−n)| = |s(n)| ∀n ∈ Nsc. The average transmit power PTx is defined

by (2.10). The different entities of the ToA-DoA EFIM (3.13) are defined by (3.14)

and (3.16) to (3.18). The mean square bandwidth of an OFDM signal is given by

β̄2 :=

∑
n∈Nsc

∣∣∣∂s(n,τi,j)∂τi,j

∣∣∣2∑
n∈Nsc

|s(n, τi,j)|2
=

4π2f 2
sc

NPTx

∑
n∈Nsc

n2|s(n)|2, (3.14)

see [63]. The mean square bandwidth [80], also called squared effective bandwidth [166],

is an indicator how well a certain signal is suited for ToA estimation. However, being

a measure of the curvature of the autocorrelation function mainlobe at zero, it does

not consider sidelobes [169]. For phase-shift keying (PSK) with uniformly distributed

energy and fully occupied subcarriers, N = Nfft, the mean square bandwidth is given

by

β̄2 =
1

3
π2f 2

sc(N
2 − 1). (3.15)

Similarly,

γ̄2(ϕi,j) :=

∥∥∥∂a(ϕi,j)∂ϕi,j

∥∥∥2
∥a(ϕi,j)∥2

(3.16)
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indicates how well the antenna response is suited for DoA estimation. The impact of

the unknown absolute amplitude αi,j on DoA estimation is represented by

ᾱ2(ϕi,j) :=
Re
{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}2

∥a(ϕi,j)∥4
, (3.17)

and the impact of unknown absolute phase φi,j on DoA estimation by

φ̄2(ϕi,j) :=
Im
{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}2

∥a(ϕi,j)∥4
. (3.18)

The ToA-DoA EFIM (3.13) allows insights: It is evident that β̄2 and γ̄2 show up

with a positive sign, corresponding to an information gain, whereas ᾱ2(ϕi,j) and φ̄
2(ϕi,j)

have a negative sign, corresponding to information loss. Furthermore, the off-diagonal

elements of (3.13), called baseband-carrier correlation in [84], are zero. The inverse

of the ToA-related element of (3.13) is equivalent to the ToA estimation CRB (2.68),

which is also found in the literature [63]. In Appendix C.7 it is shown that the inverse of

the DoA-related element of (3.13) is equivalent to the coherent DoA estimation CRB C-

CRB (2.42), which can also be found in [160]. Thus, the CRBs for joint estimation are

equal to the individual DoA and ToA estimation CRBs. The independence of DoA and

ToA estimation in terms of the CRB is a consequence of the narrowband assumption

and the assumed symmetric spectrum of the signal, see Appendix C.4. Intuitively, ToA

is estimated from the observation of a delayed baseband signal, while DoA is estimated

from relative amplitudes and phases between the ports, see also [14]. However, the

CRB is a tight bound only for high SNR values. As we show in Section 2.5.2, joint

estimation of DoA and ToA estimation is nevertheless beneficial in the low SNR regime.

Compared to (2.42) and [160], the representation of the DoA estimation CRB in (3.13)

allows further interpretation. Two special cases are of interest. For ideal antenna

arrays, ᾱ2(ϕi,j) = 0, see the proof in Appendix C.5. For an ideal antenna array, the

unknown absolute amplitude αi,j does not impact DoA estimation performance. For

an ideal UCA, also φ̄2(ϕi,j) = 0, see the proof in Appendix C.6. For an ideal UCA, the

unknown absolute phase φi,j also does not impact DoA estimation.
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3.3 Fisher Information in Position and Orientation

Domain

For cooperative localization, the domains of interest are position and orientation. Thus,

we perform a transformation [80] of the FIM (3.11),

I ′ = T TI T , (3.19)

with the Jacobian matrix

T =
∂[lT nT ]T

∂[xT nT ]T
=

[
∂l
∂x

02L

02L×3|R| I2L

]
. (3.20)

The elements of ∂l
∂x

∈ R2L×3|R| are given by

[
∂l

∂x

]
l(i,j),i

=

 ∂τi,j
∂pi

∂τi,j
∂ψi

∂ϕi,j
∂pi

∂ϕi,j
∂ψi

 , (3.21)

[
∂l

∂x

]
l(i,j),j

=

 ∂τi,j
∂pj

∂τi,j
∂ψj

∂ϕi,j
∂pj

∂ϕi,j
∂ψj

 , (3.22)

and correspondingly for l(j, i). The Jacobian matrix ∂l
∂x

represents the formation of

the agents and its elements are given by (3.23) to (3.26). The partial derivative of ToA

τi,j, see (3.1), w.r.t. position evaluates to

∂τi,j
∂pi

=
−(pj − pi)

c||pj − pi||
= −∂τj,i

∂pi
= −∂τi,j

∂pj
. (3.23)

Since ToA does not provide orientation information, we have

∂τi,j
∂ψi

= 0. (3.24)

The partial derivative of DoA ϕi,j, see (3.2), w.r.t. position is given by

∂ϕi,j
∂pi

=
−(pj − pi)

||pj − pi||2

[
0 1

−1 0

]
= −∂ϕi,j

∂pj
, (3.25)

and w.r.t. orientation by
∂ϕi,j
∂ψi

= −1. (3.26)
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Inserting (3.11) and (3.20) into (3.19), we obtain

I ′ =

[(
∂l
∂x

)T
Il
(
∂l
∂x

) (
∂l
∂x

)T
Iln

ITln
(
∂l
∂x

)
In

]
. (3.27)

Applying the Schur complement [168], we obtain the position and orientation EFIM

Ie
x =

(
∂l

∂x

)T
Il

(
∂l

∂x

)
−
(
∂l

∂x

)T
IlnI

−1
n ITln

(
∂l

∂x

)
=

(
∂l

∂x

)T
Ie
l

(
∂l

∂x

)
.

(3.28)

The structure of (3.28) allows insight into the determining factors of the available

position and orientation information: First, position and orientation information is

determined by the ToA and DoA information Ie
l defined in (3.13). Second, position

and orientation information is influenced by the formation geometry represented by

the Jacobian matrix ∂l
∂x
.

3.4 Absolute Position and Orientation Error

Bounds

When the anchors uniquely define a 2D Cartesian coordinate system, the position and

orientation EFIM is full rank rank {Ie
x} = 3 |R|. This is the case, when at least three

parameters are known, e.g. the x and y coordinates of one anchor and either x or y of

a second anchor. Thus in practice, at least two anchors with singleport antenna are

required. Alternatively, one anchor whose orientation is known and which is equipped

with multiport antenna capable of DoA estimation is also sufficient. When the EFIM

is full rank, the corresponding CRB

CRB(x) = (Ie
x)

−1 (3.29)

can be obtained by taking the inverse. The lower bound on the covariance of the posi-

tion estimate for agent i is obtained by extracting the corresponding 2× 2 submatrix,

cov {p̂i} ≽ CRB(pi) :=

[
[CRB(x)]3i−2,3i−2 [CRB(x)]3i−2,3i−1

[CRB(x)]3i−1,3i−2 [CRB(x)]3i−1,3i−1

]
. (3.30)
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By an eigendecomposition,

CRB(pi) = Q

[
λ1 0

0 λ2

]
QT , (3.31)

the square root of the position CRB can be interpreted as an ellipse with major axis
√
λ1

and minor axis
√
λ2 rotated by the rotation matrix Q. The variance of the orientation

estimate of agent i is lower bounded by

var
{
ψ̂i

}
≥ CRB(ψi) := [CRB(x)]3i,3i. (3.32)

We now investigate an exemplary formation of six agents and three anchors. The

system parameters comply with the validation in Chapter 6, i.e. the transmitted signal

is a Zadoff-Chu sequence [167] of length N = 463, which is mapped onto 925 subcarriers

out of Nfft = 1024 by occupying every second subcarrier, see also Section 6.1.1. For

the sampling rate Bs = 31.25MHz, the occupied bandwidth is thus B ≈ 28.2MHz.

To setup a noise level for internal receiver noise [133], we assume PTx = −15 dBm

transmit power, Tn = 290K receiver noise temperature, a noise figure of 8 dB and free-

space path loss for fc = 1.68GHz. Fig. 3.2a shows the position error bounds for agents

equipped with dipole antennas, thus not capable of DoA estimation. Fig. 3.2b shows

the position and orientation error bounds for agents equipped with MMAs, which can

estimate DoAs. The position error bounds are drawn as ellipses according to (3.31) and

the orientation error bounds are drawn as sectors. As the position error bounds are

in the order of centimeters, and the orientation error bounds in the sub-degree range,

300σ position and orientation error bounds are plotted to make them visible. With

dipole antennas, no orientation information of the agents can be obtained. When the

agents are equipped with MMAs, in addition to the gained orientation information,

the position error bounds of the agents are smaller. The position and orientation error

bounds of agents #1,#2 and #4, which are closest to anchors, are smallest. Agent #5,

which has the largest distance to the anchors, has the largest position and orientation

error bounds. Thus, for fixed system parameters and antenna types, the position and

orientation error bounds depend on the SNR, i.e. the distance, and the geometry of

the formation.

The derived bounds can be used to asses the quality of a certain swarm formation

for position and orientation estimation, or to optimize formations. As an example, we

answer the question where agent #6 of the formation shown in Fig. 3.2 should move

to obtain the lowest position and orientation error bounds. For that we calculate the

average position error bound
√

1
|R|
∑|R|

i=1 tr {CRB(pi)} and the average orientation er-
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(a) Agents with dipole antennas. (b) Agents with MMAs.

Figure 3.2. 300σ position and orientation error bounds for exemplary formation of six
agents and three anchors.

ror bound
√

1
|R|
∑|R|

i=1CRB(ψi) over all agents. Fig. 3.3a shows the average position

error bound and Fig. 3.3b shows the average orientation error bound, depending on

the position of agent #6. The assumed maximum communication range is 50m. The

dark blue areas are favorable positions for agent #6. These areas of favorable posi-

tions are similar for position and orientation estimation. For the given formation, the

interpretation is that agent #6 should move to a position where it can better aid the

localization of agent #5, which has the largest position and orientation error bounds,

see Fig. 3.2b. Agent #6 is plotted in red at the position where the lowest position

and orientation error bound is obtained, respectively. The positions are different for

position and orientation, however it should be noted that the entire dark blue area is

favorable, with little performance difference within the area.

3.5 Relative Position and Orientation Error

Bounds

Without anchors, although it is not possible to estimate positions and orientations

w.r.t. a global coordinate system, it is still possible to estimate the relative positions

and orientations of the agents. For the anchor-free case, rank {Ie
x} = 3|R| − 3, i.e.

the position and orientation EFIM is rank deficient by three. The rank deficiency

corresponds to one rotational and two translational degrees of freedom [95]. Hence
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(a) Average position error bound. (b) Average orientation error bound.

Figure 3.3. Average position and orientation error bounds depending on the position of
agent #6 according to position error bound.

the regular EFIM inverse does not exist. However, one can define three parametric

constraints [95, 170] to obtain a constrained CRB [171]. In [95] it is shown that the

constrained CRB can also be expressed with the Moore-Penrose pseudoinverse of the

EFIM,

CRB(x) = (Ie
x)

† . (3.33)

The relative position and orientation errors bounds for the respective agents can be

extracted from (3.33) by (3.30) and (3.32). The CRB (3.33) inherently assumes that

an optimal coordinate system is chosen for relative position and orientation estimation

[95]. Other sub-optimal choices would lead to an increase of the CRB.

Fig. 3.4 shows the relative position and orientation error bounds for relative lo-

calization without anchors. The formation is the same as in the absolute localization

case shown in Fig. 3.2. For Fig. 3.4a the agents are equipped with dipole antennas,

which means they cannot estimate the DoA. For Fig. 3.4b the agents are equipped with

MMAs and are thus capable of DoA estimation. Similar to the absolute case, orien-

tations can only be determined with MMAs, not with dipoles. Moreover, the position

error bounds are smaller when MMAs are employed, compared to dipoles. Compared

to the absolute position and orientation error bounds from Fig. 3.2, which differ largely

depending on the distance to the anchors, the relative position and orientation error
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(a) Agents with dipole antennas. (b) Agents with MMAs.

Figure 3.4. Relative position and orientation error bounds for exemplary formation of
six agents.

bounds in Fig. 3.4 are more uniform. However, agent #5 still has the largest error

bounds due to unfavorable geometry.

With the same assumptions as in the last section, but this time without anchors,

we optimize the formation of Fig. 3.4. Depending on the position of agent #6, the

average position error bound is shown in Fig. 3.5a and the average orientation error

bound in Fig. 3.5b. It is striking that the dark blue areas, corresponding to favorable

positions of agent #6, appear to be similar as in the absolute case in Fig. 3.3. Also, the

favorable areas are again similar for position and orientation estimation. As agent #5

has the largest error bounds also for relative localization, see Fig. 3.4b, it is intuitive

that again agent #6 should move to a position, where it can help to improve the

localization accuracy of #5. The optimum positions of agent #6 plotted in red in

Fig. 3.5 are different compared to Fig. 3.3, however, performance differences within

the dark blue areas are negligible. The exact position of the minimum within theses

areas is thus of subordinate importance. As a further step, they could also be used

to control the swarm formation to ensure accurate position and orientation estimation

[14], which however is beyond the scope of this thesis.

3.6 From Theory Towards Practice

The derived position and orientation CRBs are a versatile tool to determine how fa-

vorable a certain formation is for localization, to obtain a benchmark for algorithms
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(a) Average position error bound. (b) Average orientation error bound.

Figure 3.5. Average relative position and orientation error bounds depending on the
position of agent #6 according to position error bound.

and to take localization uncertainty into account for control algorithms [14]. It is im-

portant to keep in mind that the CRB is only a bound on the estimation variance [80].

However, the MSE is composed of variance and bias, and in practice often bias is the

dominating factor.

For RTT ranging it has been shown that in practically relevant settings, the ranging

bias is often much larger than the ranging variance due to observation noise [23, 119].

RTT ranging is sensitive to group delay variations in the transmit and receive chains,

from the antenna to the digital domain. For instance due to temperature variations,

transceiver internal group delay can change over time, leading to a ranging bias. Low-

cost COTS hardware is especially vulnerable to group delay variations.

Similarly, the limiting factor for DoA estimation performance is usually the accuracy

of the assumed antenna response, not the observation noise [50, 103, 111]. The antenna

response is e.g. influenced by the surrounding structure of the antenna. When only the

antenna alone is measured in a near-field measurement chamber before it is integrated

into a vehicle or robot, the true antenna response can deviate from the measurement.

Furthermore, the surroundings of the antenna could be changing, consider e.g. a robot

with a manipulator arm to grab and carry boxes [120].

The statements from the literature are very much in line with the experiences

from our own measurements, see Chapter 6, where we have also found that bias and
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model mismatch are limiting the performance. Consequently, the next two chapters of

this thesis are dedicated to mitigate bias and model mismatch and bring the practi-

cal performance closer to the theoretical fundamental limits. In the next Chapter 4,

we investigate how the assumed antenna response can be improved by in-situ calibra-

tion. Chapter 5 is dedicated to calibrating ranging biases and antenna responses and

simultaneously estimating positions and orientations by SLAC.
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Chapter 4
In-Situ Antenna Calibration

In Chapters 2 and 3, we have assumed that the true sampling matrix G describing

the antenna response is known, which is not realistic in practice. Instead, only an

estimated sampling matrix Ĝ0 according to (2.20) is available, which could be based

on EM simulation data or antenna measurements in a measurement chamber. However,

EM simulation cannot take manufacturing imperfections into account. Often, only the

antenna alone is measured in a near-field measurement chamber. When the antenna is

later mounted onto e.g. a robot, the antenna response changes due to the influence of

the surrounding structure. Thus, in general Ĝ0 will deviate from the true G.

This chapter is dedicated to obtaining a better estimate of the sampling matrix Ĝ by

in-situ antenna calibration of an arbitrary multiport antenna, e.g. an MMA, and thus

to improving the DoA estimation performance. Therefore, we define the state space

and observation model and introduce a Bayesian in-situ antenna calibration algorithm.

To analyze in-situ antenna calibration theoretically by Bayesian information, we derive

the recursive BCRB. We discuss the qualitative behavior of the BCRB and analyze the

observability. The observability analysis of in-situ antenna calibration, focusing on a

single transmitter and receiver, also paves the way for SLAC in Chapter 5. Finally, we

evaluate the in-situ calibration algorithm by simulation, where we consider the BCRB

as benchmark.

4.1 Concept

An exemplary in-situ antenna calibration setup is shown in Fig. 4.1. A robotic rover

with installed MMA is rotating on the spot, while receiving signals with snapshot in-

dex s ∈ {1, ..., S} from a fixed transmitter. As the duration of the individual signal

snapshots is very short and the rotation is slow, the DoAs of the impinging signals are

approximately constant for one snapshot. An external sensor on the robotic rover is

55
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ϕs1 = E{ϕsobs}

ϕs3

ϕs2

Reflecting surfaces

LoS

Figure 4.1. Example in-situ antenna calibration scenario, where the LoS and two mul-
tipath signals, i.e. P = 3 impinging signals, arrive at the antenna to be calibrated. The
robotic rover is turning on the spot.

also part of the setup, which measures the DoA ϕs1 of the LoS signal from the trans-

mitter. The general procedure is analogous to antenna calibration in a measurement

chamber. The calibration is done by received signals from discrete DoAs, which span

the entire manifold. However, there are three important differences to calibration in a

measurement chamber. First, there is no external synchronization between transmitter

and receiver by cable. Second, the environment is not an anechoic chamber. Due to

multipath propagation, multiple superposed signals arrive at the MMA from different

DoAs ϕsp. Third, in contrast to an antenna positioner in a measurement chamber, the

external sensor measuring the LoS DoA ϕs1 is not close to perfect. Such an external

sensor could be e.g. a multi-antenna GNSS real-time kinematic (RTK), providing the

orientation of the robotic rover. Together with the transmitter and rover positions, the

LoS DoA ϕs1 can be calculated. Thus, instead of the true LoS DoA ϕs1, only the noisy

observable DoA ϕsobs is available.

4.2 State Definition

In Chapters 4 and 5 of this thesis, we interpret the sampling matrix G as a random

variable in a Bayesian framework, which allows to consider the sampling matrix from

EM simulation or near-field measurement Ĝ0, see (2.20), as prior sampling matrix.

The goal of in-situ calibration is to obtain a better estimate Ĝ, thus a better estimate

of the antenna response

â(ϕ) = Ĝb(ϕ). (4.1)

For notational convenience, we vectorize the sampling matrix

g = vec {G} (4.2)
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and split it into real and imaginary parts,

gRI =

[
gR

gI

]
=

[
Re {g}
Im {g}

]
. (4.3)

In the following, we use G, g or gRI depending on the context. The vectorized versions

of the estimated sampling matrix Ĝ and the prior sampling matrix Ĝ0 are defined

analogously. The prior probability density function (pdf) in logarithm domain is then

defined as

ln p(g0) = −MU ln(πσ2
g0)−

1

σ2
g0

∥∥g0 − ĝ0
∥∥2, (4.4)

which is a circular symmetric Gaussian distribution with mean ĝ0 = E {g0} and vari-

ance σ2
g0 = 1

MU
tr
{
E
{
(g0 − ĝ0)(g0 − ĝ0)H

}}
. Empirically, we have found that (4.4)

is a feasible model to describe antenna response deviations, see also Section 4.8.1.

Including the DoAs of the P impinging signals

ϕs =
[
ϕs1 ... ϕsP

]T
, (4.5)

the state vector for snapshot s, which contains the parameters to be estimated, is

defined as

xs =

[
gRI

ϕs

]
∈ R(MU+P )×1, (4.6)

and the state vector for all snapshots s ∈ {1, ..., S} is

x1:S =

[
gRI

ϕ1:S

]
∈ R(MU+PS)×1 (4.7)

with

ϕ1:S =
[
(ϕ1)T ... (ϕS)T

]T
. (4.8)

4.3 Observation Model

At time instances t = sT , the transmitter sends out signal bursts, which are referred

to as snapshots with index s ∈ {1, ..., S} and interval T . Based on the signal model

(2.8), the received signals are described in discrete frequency domain by

rs(n) =
P∑
p=1

a(ϕsp)s(n, τ
s
p )α

s
pe

jφs
p +ws(n), (4.9)
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where n is the subcarrier index and N = |Nsc| is number of occupied subcarriers. For

convenience, we define the vector

rs =
[
... (rs(n))T ...

]T
, n ∈ Nsc. (4.10)

The log-likelihood function for the received signals,

Lrs(ϕs, τ s,αs,φs, σ2
r, g) = −N ln(πσ2

r)−
1

σ2
r

∑
n∈Nsc

∥∥∥∥∥rs(n)−
P∑
p=1

a(ϕsp)s(n, τ
s
p )α

s
pe

jφs
p

∥∥∥∥∥
2

,

(4.11)

is then defined according to (2.62). The concentrated log-likelihood function of the

DoAs ϕ and the sampling matrix elements g is

L̃rs(ϕs, g) =
1

σ2
r

∥∥V ⊥rs
∥∥2 (4.12)

according to (2.64), with V ⊥ defined by (2.65) and (2.66). In order to focus on the

antenna calibration aspect, in this chapter we assume that the ToAs τ s = [τ s1 , ..., τ
s
P ]
T

are known or estimated separately. For medium to high SNR values, ToA and DoA can

be estimated independently, see Sections 2.5.2 and 3.2, which justifies the assumption.

For the scope of this thesis, we also assume that the model order P is known. In

practice, it can be estimated [58, 59, 60].

As explained in Section 4.1, we assume that the DoA of the first impinging signal

(p = 1) can be observed by an external sensor. The noisy observable DoA is given by

ϕsobs = ϕs1 + wsϕobs , (4.13)

which is the true DoA ϕs1 with additive errors following a von Mises distribution wsϕobs ∼
M(0, κϕobs) with concentration κϕobs [172]. The concentration κϕobs is expected to be

high, so the von Mises distribution can be approximated by a Gaussian distribution

wsϕobs ∼ N (0, σ2
ϕobs

= 1/κobs), see [172]. The log-likelihood function of the observed

DoA is then defined as

Lϕsobs(ϕ
s
1) = ln p(ϕsobs|ϕs1) = −1

2
ln(2πσ2

ϕobs
)− 1

2σ2
ϕobs

(ϕsobs − ϕs1)
2. (4.14)

Putting together (4.10) and (4.13), the observation vector for snapshot s is

zs =

[
rs

ϕsobs

]
∈ C(MN+1)×1. (4.15)
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Algorithm 1 In-Situ Antenna Calibration

1: Given ĝ0
RI, r

s and ϕsobs ∀ s ∈ {1, ..., S}
2: Initialize with prior ĝ1

RI = ĝ0
RI

3: Initialize DoAs ϕ̂1 with ML estimator (2.39)
4: for s = 2 to S do
5: Solve (4.19) for x̂1:s

MAP by BFGS initialized with

x0:s
init =

 ĝ
(s−1)
RI

ϕ̂1:(s−1)

ϕ̂(s−1) + 1P

(
ϕsobs − ϕ

(s−1)
obs

)


using gradient (4.20)
6: end for

4.4 In-Situ Antenna Calibration Algorithm

The posterior pdf is given by

p(x0:S|z1:S) =
p(z1:S|x0:S)p(x0:S)

p(z1:S)

∝ p(x0)
S∏
s=1

p(zs|xs) p(xs|x(s−1)),

(4.16)

where we have used Bayes theorem and the first order Markov assumption. We assume

a stationary sampling matrix, non-informative transition and prior pdfs for ϕs, and

independent noise for the received signal (4.9) and the observable DoA (4.13). Inserting

(4.6) and (4.15) into (4.16) yields

p(x0:S|z1:S) ∝ p(g0)
S∏
s=1

p(rs, ϕsobs|ϕs, g)

= p(g0)
S∏
s=1

p(rs|ϕs, g) p(ϕsobs|ϕs1).

(4.17)

Defining

q(x0:S) := − ln p(g0)−
S∑
s=1

L̃rs(ϕs, g)−
S∑
s=1

Lϕsobs(ϕ
s
1), (4.18)

which is proportional to the negative posterior pdf in logarithm domain, the maximum

a posteriori (MAP) estimator is given by

x̂1:S
MAP = argmax

x0:S
p(x0:S|z1:S) = argmin

x0:S
q(x0:S). (4.19)

Solving (4.19) is a challenging nonlinear optimization problem with 2MU + PS un-
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knowns. For example, with the assumed parameters from the simulation results in

Section 4.8, this would be 1052 unknowns for P = 1 impinging signal and 3052 un-

knowns for P = 3 impinging signals. We use the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm, which is a quasi-Newton method to solve unconstrained nonlinear

optimization problems [173]. BFGS requires an analytical expression of the gradient.

In our case, the gradient of (4.18) has the structure

∇q(x0:S) =



∂q(x0:S)
∂gR

∂q(x0:S)
∂gI

∂q(x0:S)
∂ϕ1

...
∂q(x0:S)
∂ϕS


. (4.20)

The partial derivatives contained in (4.20) are derived in Appendix C.9. Global con-

vergence of BFGS has been proven for convex functions [173]. Problem (4.19) is non-

convex, hence we must ensure an initialization close to the global solution, so that

local convergence is sufficient. To ensure sufficiently close initialization, we propose

Algorithm 1. For each snapshot s ∈ {1, ..., S}, we apply the BFGS algorithm to obtain

x̂1:s
MAP =

[
ĝs

ϕ̂1:s

]
. (4.21)

Hereby, the result of the previous step is used to initialize the current step, see Al-

gorithm 1. By gradually adding more snapshots, the convergence is improved. The

simulation results shown in Section 4.8 demonstrate the convergence of Algorithm 1.

As a benchmark for the proposed algorithm, in the next two sections we derive the

BCRB as a lower bound on the achievable estimation MSE.

4.5 Information from Observations

The parameters of interest are defined by the state vector (4.6). We also need to

consider the nuisance parameters absolute amplitude αs = [αs1, ..., α
s
P ]
T and absolute

phase φs = [φs1, ..., φ
s
P ]
T for P impinging signals, see (4.9). Thus, we augment the state

vector (4.6) to

x̃s =

x
s

αs

φs

 . (4.22)
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For the calculation of the recursive BCRB in Section 4.6 according to [81], we need the

information that is contained in the single-snapshot observation vector zs,[
Ĩs
]
v,w

:=Ex̃s

{
Ezs|x̃s

{
∂ ln p(zs|x̃s)

∂[x̃s]v

∂ ln p(zs|x̃s)
∂[x̃s]w

}}
=Ex̃s

{
[Is]v,w

}
,

(4.23)

which is the expectation of the snapshot FIM Is w.r.t. the augmented state vector x̃s.

According to [80], the snapshot FIM is given by

[Is]v,w = 2Re

{
∂ Ezs|x̃s {zs}H

∂[x̃s]v
Σ−1

z

∂ Ezs|x̃s {zs}
∂[x̃s]w

}
(4.24)

with the covariance matrix

Σz = diag
{[
σ2
r1

T
MN , 2σ

2
ϕobs

]T}
. (4.25)

Inserting (4.15), we obtain

[Is]v,w =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂[x̃s]v

∂ Ers(n)|x̃s {rs(n)}
∂[x̃s]w

}

+
1

σ2
ϕobs

Re

{
∂ Eϕsobs|x̃s {ϕsobs}

H

∂[x̃s]v

∂ Eϕsobs|x̃s {ϕsobs}
∂[x̃s]w

}
.

(4.26)

We partition Ĩs from (4.23) into

Ĩs =

 Ĩsg Ĩsgϕ Ĩsgn

(Ĩsgϕ)
T Ĩsϕ Ĩsϕn

(Ĩsgn)
T (Ĩsϕn)

T Ĩsn

 = Ex̃


 Isg Isgϕ Isgn

(Isgϕ)
T Isϕ Isϕn

(Isgn)
T (Isϕn)

T Isn


 . (4.27)

The first main diagonal matrix block corresponds to the sampling matrix elements

Isg =

[
IsgR IsgRgI

(IsgRgI
)T IsgI

]
, (4.28)

which are split into real part IsgR and imaginary part IsgI . The second main diagonal

matrix block Isϕ refers to the DoAs. The third main diagonal matrix block

Isn =

[
Isα Isαφ

(Isαφ)
T Isφ

]
(4.29)
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corresponds to the nuisance parameters, which are split into real-valued absolute am-

plitudes Isα and phases Isφ. The off-diagonal matrix blocks

Isgϕ =

[
IsgRϕ

IsgIϕ

]
, (4.30)

Isgn =

[
IsgRα IsgRφ

IsgIα IsgIφ

]
, (4.31)

Isϕn =
[
Isϕα Isϕφ

]
, (4.32)

refer to the relationship between sampling matrix and DoAs Isgϕ, the relationship

between sampling matrix and nuisance parameters Isgn and the relationship between

sampling DoAs and nuisance parameters Isϕn, respectively. The elements of (4.28)

to (4.32) are derived in Appendix C.10.

4.6 Recursive Bayesian Cramér-Rao Bound

For the derivation of the recursive BCRB, we distinguish the two cases where the

propagation channel described by the absolute amplitudes αs and absolute phases φs

of all impinging signals is known and unknown. The conceptually simpler case where

αs and φs are known is treated in Section 4.6.1 and the case where αs and φs are

unknown in Section 4.6.2.

4.6.1 Known Propagation Channel

Applying the Schur complement [81] to the snapshot information matrix Ĩs defined by

(4.24), we derive the equivalent Bayesian information matrix (EBIM) for the sampling

matrix elements

J s
g,sync = J (s−1)

g,sync + Ĩsg − Ĩsgϕ

(
Ĩsϕ

)−1

(Ĩsgϕ)
T (4.33)

with subscript sync to indicate perfect propagation channel knowledge. The sampling

matrix EBIM quantifies the Bayesian information for the sampling matrix elements,

while considering the impact the unknown DoAs. Equation (4.33) is calculated re-

cursively, by adding up the information contained in individual snapshots, starting

with J0
g,sync. With prior, J0

g,sync =
2
σ2
g0
I2MU is a diagonal matrix according to the prior

pdf (4.4). Without prior, J0
g,sync = 02MU is a zero matrix. Defining the MSE of the

sampling matrix elements as the trace of the MSE matrix divided by the number of
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complex coefficients MU ,

MSE {ĝs} =
1

MU
tr
{
Ez,x̃

{
(ĝs − g)(ĝs − g)H

}}
, (4.34)

we can now state the BCRB as a lower bound on the estimation MSE of the sampling

matrix elements for the known propagation channel case,

MSE {ĝs} ≥ BCRBsync(g) :=
1

MU
tr
{(

J s
g,sync

)−1
}
. (4.35)

Again applying the Schur complement, we obtain the EBIM for the DoAs

J s
ϕ,sync = Ĩsϕ − (Ĩsgϕ)

T
(
J (s−1)
g,sync + Ĩsg

)−1

Ĩsgϕ (4.36)

and the BCRB as a lower bound on the estimation MSE of the p-th DoA for the known

propagation channel case,

MSE
{
ϕ̂sp

}
≥ BCRBsync(ϕ

s
p) :=

[
(J s

ϕ,sync)
−1
]
p,p
. (4.37)

4.6.2 Unknown Propagation Channel

Now, we derive the recursive BCRB for the case where absolute amplitudes αs and

phasesφs of the impinging signals are unknown. Again applying the Schur complement,

but now for both, DoAs ϕs and nuisance parameters αs and φs, we obtain the EBIM

for the sampling matrix elements

J s
g = J (s−1)

g + Ĩsg −
[
Ĩsgϕ Ĩsgn

] [ Ĩsϕ Ĩsϕn

(Ĩsϕn)
T Ĩsn

]−1 [
(Ĩsgϕ)

T

(Ĩsgn)
T

]
. (4.38)

The rank of J s
g depends on whether a prior sampling matrix is considered or not, so

these two cases are distinguished.

With Prior

Considering the prior pdf (4.4), we have J0
g = 2

σ2
g0
I2MU . Since J0

g is positive definite,

and by (4.38) we recursively add the Schur complement of the expectation of the FIM,

which is positive semidefinite, the sampling matrix EBIM J s
g is positive definite with

full rank. Thus, we can obtain the BCRB of the sampling matrix elements by the

inverse of the EBIM,

MSE {ĝs} ≥ BCRB(g) :=
1

MU
tr
{
(J s

g)
−1
}
. (4.39)
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The MSE matrix MSE {ĝs} is again defined by (4.34). Since J s
g has full rank, we can

apply the Schur complement to obtain the EBIM for the DoAs

J s
ϕ = Ĩsϕ −

[
(Ĩsgϕ)

T Ĩsϕn

] [J (s−1)
g + Ĩsg Ĩsgn

(Ĩsgn)
T Ĩsn

]−1 [
Ĩsgϕ

(Ĩsϕn)
T

]
, (4.40)

and the BCRB as a lower bound on the estimation MSE of the p-th DoA,

MSE
{
ϕ̂sp

}
≥ BCRB(ϕsp) :=

[
(J s

ϕ)
−1
]
p,p
. (4.41)

Without Prior

When no prior is considered, J0
g = 02MU . Calculating (4.38) recursively, one can

observe that

lim
s→∞

rank
{
J s
g

}
= 2MU − 2, (4.42)

which is also discussed at the beginning of Section 4.7. As the absolute amplitude

and phase of the antenna are not observable, J s
g will be rank deficient by two in the

limit. The absolute amplitude and phase do not contain DoA information, which is

only contained in the relative amplitudes and phases of the antenna ports, see the

proof in Appendix C.8. Thus, the non-observability of absolute amplitude and phase

is not problematic for DoA estimation. However, a consequence is that by in-situ

calibration, we do not estimate the true antenna response, but an antenna response

which is equivalent for DoA estimation. This implies that the power pattern of the

equivalent antenna response does not necessarily reflect the antenna gain. Still, the non-

observability of the absolute amplitude and phase has implications on the theoretical

analysis, as J s
g cannot be inverted. As a way forward, we can write explicit constraints

on the sampling matrix in the form

f(G) = 0, (4.43)

for an arbitrary function f(G). An example of such a function is

f1(G) =
1

2πM

∫ π

−π

M∑
m=1

|[Gb(ϕ)]m|dϕ− 1 = 0, (4.44a)

f2(G) =
1

2πM

∫ π

−π

M∑
m=1

arg{[Gb(ϕ)]m}dϕ = 0, (4.44b)
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Table 4.1. MSE definitions, BCRBs and respective equations.

Channel Prior
Sampling matrix

MSE
Sampling matrix

BCRB
DoA BCRB

Known
yes MSE {ĝs} (4.34) BCRBsync(g) (4.35) BCRBsync(ϕ

s
p) (4.37)

no MSE {ĝs} (4.34) BCRBsync(g) (4.35) BCRBsync(ϕ
s
p) (4.37)

Unknown
yes MSE {ĝs} (4.34) BCRB(g) (4.39) BCRB(ϕsp) (4.41)
no MSE′ {ĝs} (4.45) BCRB′(g) (4.46) BCRB′(ϕsp) (4.48)

which constrains absolute amplitude and phase. Being able to write down explicit

constraints as (4.43), we can derive a meaningful BCRB on the constrained estimation

problem by applying the Moore-Penrose pseudoinverse, see [174, 95, 96]. However,

we also need to define a modified MSE′ {ĝs} for the sampling matrix elements ĝs, as

with the standard MSE definition, absolute amplitude and phase offsets would count

as estimation errors. To this end, we apply an appropriate transformation [95] to the

estimated sampling matrix elements ĝs. Intuitively, the transformation adjusts the

absolute amplitude and phase of ĝs, such that they match the absolute amplitude and

phase of g. This can be achieved by multiplying ĝs by the complex coefficient (ĝs)†g.

We thus define the modified MSE on the sampling matrix elements

MSE′ {ĝs} =
1

MU
tr
{
Ez,x̃

{(
ĝs(ĝs)†g − g

) (
ĝs(ĝs)†g − g

)H}}
. (4.45)

The BCRB as a lower bound on the modified MSE is then defined with the pseudoin-

verse as

MSE′ {ĝs} ≥ BCRB′(g) :=
1

MU
tr
{
(J s

g)
†} . (4.46)

Again applying the pseudoinverse, we can calculate the EBIM for the DoAs,

J s
ϕ = Ĩsϕ −

[
(Ĩsgϕ)

T Ĩsϕn

] [J (s−1)
g + Ĩsg Ĩsgn

(Ĩsgn)
T Ĩsn

]† [
Ĩsgϕ

(Ĩsϕn)
T

]
, (4.47)

and the BCRB as a lower bound on the estimation MSE of the p-th DoA,

MSE′
{
ϕ̂sp

}
≥ BCRB′(ϕsp) :=

[
(J s

ϕ)
−1
]
p,p
. (4.48)

The MSE definitions and BCRBs derived for the different cases are summarized in

Table 4.1.
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Figure 4.2. Eigenvalues of Jsg for unknown propagation channel with prior. The two
smallest eigenvalues are marked with circles and crosses © 2022 IEEE [175].

4.7 Qualitative Behavior of the BCRB

We now discuss the behavior of the different BCRBs derived in Section 4.6, in order to

gain an intuitive understanding of in-situ calibration. The parameters used to generate

the results in this section are the same as for the simulation results, see Section 4.8.1,

but are not relevant for a qualitative assessment. The expectation in (4.27) is evaluated

numerically. First we analyze the behavior of the sampling matrix EBIM J s
g for the

unknown channel case with prior, see (4.38). The eigenvalue decomposition of the

real-valued symmetric matrix J s
g is

J s
g = QΛQT , (4.49)

where Q is an orthonormal basis and Λ is a diagonal matrix containing the eigenvalues

λ1, ..., λv, ...λ2MU . The evolution of the eigenvalues, when taking more snapshots into

account, is shown in Fig. 4.2, assuming the unknown channel case with prior. For

s = 0, due to the prior (4.4), all eigenvalues have a value of 2/σ2
g0

= 22.22. Since

E
{
ϕsobs − ϕ

(s−1)
obs

}
= 1◦, see Section 4.8.1, one 360◦ turn corresponds to approximately

360 snapshots. During the first turn, the eigenvalues increase monotonically with

increasing snapshot index, except for two eigenvalues, which remain at their initial

value. The steep increase corresponds to a large information gain. After s = 360,

the eigenvalues increase slowly, which means the information gain is small. The two

eigenvalues remaining at the initial value of 2/σ2
g0

= 22.22 correspond to the non-

observable absolute amplitude and phase, which is previously discussed in Section 4.6.2.
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Figure 4.3. BCRB for estimating the elements of the sampling matrix G without and
with prior information on G and without and with known propagation channel © 2022
IEEE [175].

Without prior, the two eigenvalues would be zero, which means we must apply the

pseudoinverse in (4.46) and (4.47) to invert the EBIMs.

Next, we discuss the BCRB behavior qualitatively, where we start with the BCRBs

of the sampling matrix elements g shown in Fig. 4.3. A single impinging signal (P = 1)

is assumed. The BCRBs for the known propagation channel case (4.35) are plotted

in red. The known channel BCRB without prior decreases steeply during the first

360 snapshots, i.e. the first 360◦ turn, then it flattens. With prior, the BCRB first

decreases slowly, before decreasing steeply between s = 180 and s = 360. In this

region, the known channel BCRBs with and without prior converge. Apparently, more

than half of the manifold must have been observed in order to considerably improve

the sampling matrix prior. When the entire manifold has been observed once, both

known channel BCRBs decrease only slowly with increasing number of snapshots. The

sampling matrix estimate is then only refined by averaging over noisy observations. For

in-situ calibration, it is thus vital that the entire manifold is observed at least once.

Now we focus on the unknown propagation channel BCRBs plotted in black. The

unknown channel BCRB without prior (4.46) behaves similar as the known channel

BCRB without prior. A steep decrease in the beginning is followed by a slow decrease

after approximately 360 snapshots. However, for the unknown channel case, the BCRB

in the slowly decreasing region is almost one order of magnitude higher. The unknown

channel BCRB with prior (4.39) starts at the same value as the known channel BCRB

with prior, but decreases only slightly and then reaches a floor. As discussed in the

context of Fig. 4.2, two eigenvalues of J s
g will remain 2/σ2

g0 when s → ∞. These two

eigenvalues correspond to the non-observable absolute amplitude and phase. The two
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Figure 4.4. BCRB for the estimation of ϕs1 without and with prior information on G
and without and with known propagation channel. CRB for known antenna response, i.e.
known G, is plotted for comparison © 2022 IEEE [175].

dominant eigenvalues of (J s
g)

−1 will thus be σ2
g0/2, which means

lim
s→∞

BCRB(g) = lim
s→∞

tr
{
(J s

g)
−1
}

MU
=

σ2
g0

MU
. (4.50)

For the chosen parameters detailed in Section 4.8.2, we have
√

σ2
g0/MU = 0.05, which

is precisely the floor value to which the unknown channel BCRB with prior converges

in Fig. 4.3. In Section 4.6.2, we discuss that absolute amplitude and phase offsets

defined by the prior count as errors for the regular MSE matrix (4.34). The floor of

the unknown channel BCRB with prior (4.39) relates to the regular MSE matrix and

is thus not a meaningful bound to asses the estimation error of the sampling matrix

elements. For the case without prior, we find that

lim
s→∞

BCRB′(g) = lim
s→∞

tr
{
(J s

g)
†}

MU
= 0. (4.51)

Since the true antenna response described by the sampling matrix elements is constant,

it can be estimated perfectly when an infinite number of observations is available.

Analyzing the sampling matrix BCRB behavior helps to gain an intuitive under-

standing of in-situ calibration. However, it is not straightforward to determine what

a certain error of the estimated sampling matrix elements ĝs means for the achievable

DoA estimation accuracy. In Fig. 4.4, we thus plot the BCRBs of the DoA ϕs1. Initially,

the observed DoA by the external sensor is more accurate than the estimated DoAs

from the received signal based on the prior sampling matrix Ĝ0, causing all BCRBs

to start at σϕobs for s = 0. First, we focus on the BCRBs without prior for the known
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channel case (4.37) and unknown channel case (4.48), which are plotted as dashed-

dotted lines. The unknown channel BCRB without prior decreases, until it flattens

after the first turn or approximately 360 snapshots. After the second turn or approx.

720 snapshots, another small decrease is evident. The behavior of the known channel

BCRB without prior is similar, but it can be calculated only for s ≥ 70, when the

EBIM (4.36) has full rank. Next, we have a look at the BCRBs with prior for the

known channel case (4.37) and unknown channel case (4.41) plotted as dashed lines,

which both decrease quickly within the first few snapshots. We attribute the quick

decrease in the beginning to the estimation of the parameters observable by a single

snapshot like amplitude and phase offsets of the antenna ports. These parameters are

not modeled explicitly, instead they are covered by the sampling matrix G. Similar

as for the sampling matrix elements, the DoA BCRBs with and without prior start to

converge towards the end of the first full turn. The snapshot DoA estimation CRB

(2.42), assuming the antenna response is perfectly known, is shown with a dotted line

for comparison. Slight variations are visible due to the direction dependency of the

CRB. The BCRB for known propagation channel almost reaches the known antenna

response CRB after one full turn. Since the manifold is sampled dense enough and the

SNR of the received signal is high, this is expected. However, it should be noted that

the CRB with known antenna response is not a lower bound for the BCRB, as ϕobs

is neglected by the CRB. Nevertheless, the CRB can serve as an indicator of close to

optimum performance. For the chosen settings, the BCRB for unknown channel does

not fully approach the known antenna response CRB, but comes fairly close.

4.8 Simulation Results

4.8.1 Simulation Setup and Random Antenna Response

To demonstrate that the proposed in-situ calibration algorithm can handle arbitrary

antenna responses, we perform a Monte Carlo simulation with a randomly generated

antenna response for each run. The random antenna response is generated based on a

UCA with M = 4 antenna elements and radius R = 0.9/(4 sin(π/M)), which can be

described by

am,UCA(ϕ) = ej2πR cos(ϕ−2π m
M ), (4.52)

aUCA(ϕ) =
[
a1,UCA(ϕ) ... aM,UCA(ϕ)

]T
, (4.53)
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(a) Power pattern. (b) Phase pattern.

Figure 4.5. Example realization of a random antenna response a(ϕ) = Gb(ϕ) withM = 4
plotted with solid and prior antenna response â0(ϕ) = Ĝ0b(ϕ) plotted with dashed-dotted
lines.

see e.g. [28]. The UCA sampling matrix GUCA with U = 9 basis functions is then

obtained by (2.19) and (2.20) with (4.53) evaluated at a fixed angular grid

E =
[
aUCA(ϕ1) ... aUCA(ϕQ)

]
, (4.54)

with ϕ1, ..., ϕQ and Q = 360. For each run, a random sampling matrix is obtained by

distorting the UCA sampling matrix

G = GUCA +WG (4.55)

with circular symmetric Gaussian noise

WG =
[
w1

g ... wU
g

]
, (4.56a)

wu
g ∼ CN (0, σ2

gIM), (4.56b)

with σg = 0.3. We choose this procedure to model deviations of the installed antenna

response of a real-world UCA compared to the ideal model (4.53). Deviations can

occur due to manufacturing tolerances, influence of the surrounding structure, mutual

coupling and other nonidealities.

The prior sampling matrix Ĝ0 is obtained by sampling the prior pdf (4.4). A real-

ization of the random antenna response a(ϕ) = Gb(ϕ) based on the random sampling

matrix (4.55) and a realization of the prior antenna response â0(ϕ) = Ĝ0b(ϕ) are

shown in Fig. 4.5 in terms of their power and phase patterns.

Furthermore, for this simulation we assume that the first DoA ϕs1 can be observed
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Figure 4.6. Simulated RMSE for estimating the elements of the sampling matrix G
calculated using the transformed MSE′ (4.45) and the regular MSE (4.34). BCRB without
and with prior are plotted for comparison © 2022 IEEE [175].

with σϕobs = 2◦. For each of the 500 Monte Carlo runs, we consider S = 1000 snapshots.

The DoAs evolve according to ϕsp = ϕ
(s−1)
p + us, where us ∼ U(0◦, 2◦) is uniformly

distributed. The SNR, see (2.11), is chosen as 10 dB and the signal is defined in

Section 2.5.2.

4.8.2 Single Impinging Signal

We first investigate the case of a single impinging signal (P = 1). The RMSE of the es-

timated sampling matrix elements is shown in Fig. 4.6. Comparing the untransformed

MSE (4.34) to the BCRB with prior (4.39), we see that the two curves overlap en-

tirely. Both curves decrease during the first full turn and then reach a floor. Since the

absolute amplitude and phase offsets defined by the prior count as errors, they limit

the untransformed MSE. In contrast, the transformed MSE′ (4.45) proves to be useful

to assess the estimation error of the sampling matrix errors. At first, MSE′ behaves

similar to MSE, but then the transformed MSE′ reaches much lower values and gets

close to the BCRB without prior (4.46). After one full turn, the MSE of the estimator

with prior and the BCRB without prior are very close. Our interpretation is that after

a full turn, the observations brought so much information that the prior can virtually

be neglected.

Fig. 4.7 shows the DoA estimation RMSE of ϕ̂s1 and the corresponding BCRB

(4.41). As the prior sampling matrix Ĝ0 deviates from the real sampling matrix, the

initial estimation error is determined by σϕobs . The RMSE drops quickly when the

first snapshots are received. As discussed in the context of Fig. 4.4, the parameters
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Figure 4.7. Simulated RMSE for the estimation of ϕs1. BCRB and snapshot CRB with
known antenna response are plotted for comparison © 2022 IEEE [175].

Figure 4.8. Simulated DoA estimation RMSE. The mean is taken over the manifold,
i.e. over q = 1, ..., Q DoAs ϕq lying on a regular grid. CRB for known antenna response
is plotted for comparison © 2022 IEEE [175].

which are observable by a single snapshot, like absolute amplitude and phase offset

of the antenna ports, are estimated during the first snapshots. These parameters are

implicitly contained in the sampling matrix G. Then the error decreases slowly until

the end of the first turn, where it drops quickly. Most information is gathered during

the first full turn. With increasing number of snapshots s, it slowly approaches the

snapshot CRB for known antenna response (2.42). The snapshot CRB is not a lower

bound for the BCRB, but can nevertheless serve as an indicator of good performance.

The external sensor providing the observable DoA ϕobs is only present during in-situ

calibration. During operation, the external sensor is not present anymore. Thus for

a practical application, the DoA estimation error after the in-situ calibration phase,
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Figure 4.9. Simulated RMSE for the estimation of ϕs1, ϕ
s
2 and ϕs3. BCRBs and snapshot

CRBs with known antenna response are plotted for comparison © 2022 IEEE [175].

i.e. with the estimated sampling matrix Ĝs, is of major interest. Fig. 4.8 shows how

the DoA estimation RMSE without observable DoA evolves with increasing number of

snapshots. The RMSE is calculated over a discrete set of DoAs ϕq with q ∈ {1, ..., Q}
and Q = 72, which span a regular grid over the manifold. A lower bound is given by the

snapshot CRB for the known sampling matrix. With σϕobs = 2◦, sub-degree accuracy

DoA estimation is possible after one full turn. After the first turn, the DoA RMSE

decreases slowly. To show the influence of the observable DoA on in-situ calibration,

the simulation is also performed with σϕobs = 0.5◦. In this case, the DoA estimation

RMSE comes close to the snapshot CRB after the first turn.

4.8.3 Multiple Impinging Signals

In contrast to calibration in a dedicated measurement chamber, in-situ calibration

is not performed in a controlled environment and thus propagation conditions may

be non-optimum. To evaluate the performance of the proposed in-situ calibration

algorithm under multipath conditions, we perform a simulation for P = 3 impinging

signals. For the first signal, the SNR is equal to 15 dB. We assume that the second

and third signals arrive from reflections at fixed locations with ϕs2 = ϕs1 + 45◦ and

ϕs3 = ϕs1 + 90◦ with ToAs τ2 = τ1 + 48 ns and τ3 = τ1 + 96 ns with an SNR 3dB lower

than the first signal. We further assume σϕobs = 0.5◦ for the observable DoA of the first

signal. The RMSE for the estimated DoAs ϕ̂s1, ϕ̂
s
2 and ϕ̂s3 together with the BCRBs

(4.41), and the known antenna response snapshot CRBs (2.42), is shown in Fig. 4.9.

The RMSE of the first DoA ϕ̂s1 behaves similar as in Fig. 4.7, i.e. the case without

multipath propagation. In contrast to ϕ̂s1, which is observable by ϕsobs, the estimation
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of ϕ̂s2 and ϕ̂s3 relies completely on an accurately known antenna response described by

the sampling matrix Ĝs. In the beginning, ϕ̂s2 and ϕ̂s3 are estimated with an RMSE

> 10◦, which quickly decreases to 1◦ − 2◦. As discussed also for Figs. 4.4 and 4.7, the

quick decrease in the beginning is attributed to antenna response parameters, which

are observable by a single snapshot. When the first 360◦ turn is completed, the RMSEs

of ϕ̂s2 and ϕ̂
s
3 approach the respective snapshot DoA estimation CRBs, which are higher

compared to ϕ̂s1 due to 3 dB lower SNR. Based on the simulation result for the artificial

multipath scenario, we conclude that in-situ calibration with the proposed algorithm

can also be performed in multipath environments. However, it must be noted that the

impinging signals should be separable in at least either DoA or ToA domain.



Chapter 5
Cooperative Simultaneous Localization and

Calibration

In addition to in-situ calibration from Chapter 4, in this chapter we address calibration

during operation. For this purpose, we develop an algorithm for cooperative simultane-

ous localization and calibration (SLAC), where the antenna responses and the ranging

biases of the agents are estimated and tracked simultaneously with their positions and

orientations. To this end, we define the state space, again parameterizing the antenna

response by the sampling matrix G, as well as motion and observation models. Then

we derive a Bayesian filtering algorithm for cooperative SLAC. For nodes with a multi-

port antenna, for example an MMA, a prior antenna response is considered. The prior

antenna response could e.g. come from an EM simulation or from a measurement of

the antenna in a near-field measurement chamber before installation on a robot. The

antenna response is then gradually refined over time, taking into account the observed

signals. Furthermore, ranging biases of all nodes in the network are estimated. We

show by simulation that cooperative SLAC is able to estimate calibration states with-

out external sensors. Thereby, cooperative SLAC considerably improves position and

orientation accuracy compared to localization-only.

5.1 Concept

SLAC considers a moving multi-agent system. The agents form a cooperative network

of radio nodes, which includes also static anchors. We thus extend the definition of a

static cooperative network in Section 3.1 to the dynamic case by including the snapshot

index s, which corresponds to discrete time. Fig. 5.1 shows two static anchors k and l

and two moving agents i and j at two time instances, the previous snapshot s−1 and the

75
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Figure 5.1. Two anchors k and l and two moving agents i and j at previous snapshot

s− 1 and current snapshot s, the respective positions p
(s−1)
i =

[
x
(s−1)
i , y

(s−1)
i

]T
and psi =

[xsi , y
s
i ]
T of agent i, the respective orientations ψ

(s−1)
i and ψsi of agent i, the respective

distances d
(s−1)
i,j and dsi,j as well as DoAs ϕ

(s−1)
i,j and ϕsi,j between agents i and j.

current snapshot s. The respective positions p
(s−1)
i =

[
x
(s−1)
i , y

(s−1)
i

]T
, psi = [xsi , y

s
i ]
T

and orientations ψ
(s−1)
i , ψsi of agent i and the respective distances d

(s−1)
i,j , dsi,j between

agents i and j and the respective DoAs ϕ
(s−1)
i,j , ϕsi,j for the signal received by agent i

from agent j are shown as well.

By cooperative radio localization, positions and orientations of the agents and their

evolution over time are estimated based on radio signals exchanged among the agents.

By exchanging signals, state estimates, observations and payload data, e.g. telecom-

mand and sensor data, can be communicated. For a centralized estimation approach,

observations from all nodes are communicated to a central processing unit, which esti-

mates the states. The estimated states and covariances are then communicated back

to the nodes. By decentralized or distributed estimation, neighboring nodes exchange

their estimated states and/or their observations. Thereby, their individual estimations

converge to a common result.

Position and orientation estimation requires direction and distance information.

Direction information is obtained by the DoA of radio signals, which requires accurate

knowledge of the multiport antenna response. However, the antenna response can

change during operation, for instance by changing surroundings of the antenna. As an

example, consider a robot with a manipulator arm and the ability to carry payloads, e.g.

[120]. For compact robots, both the manipulator arm and possibly present payloads are

in close vicinity to the antenna. Thus, they influence the antenna response. Deviations

of the true antenna response from the antenna response assumed for estimation lead to
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a model mismatch and impaired DoA estimation performance. Distance information is

obtained by the ToA of the delayed baseband signal, considering also the transmit time.

In unsynchronized networks, the TWR protocol is applied to eliminate transmitter and

receiver clock offsets. Hence, only the propagation time of the signal in free-space is

related to the distance. Thus, other impacts on the signal delay like group delays in

transmit and receive chains of the node transceivers must be calibrated and eliminated.

However, transceiver group delays vary over time, e.g. due to changing temperature,

which leads to ranging biases and thus impaired localization performance.

To cope with these challenges, we propose cooperative SLAC to calibrate antenna

responses and ranging biases during operation. Thereby, we leverage the large number

of observations available in cooperative networks. Considering for instance a fully con-

nected network of |N| nodes, there are |N|(|N| − 1) observed signals. By simultaneous

calibration, cooperative SLAC mitigates model mismatch and thereby improves local-

ization performance. To demonstrate the feasibility of the SLAC concept, we restrict

ourselves to radio signal observations. Thus, we do not use any external sensors like

accelerometers or gyroscopes. Nonetheless, the Bayesian filtering approach would allow

to integrate sensors and control inputs available on robotic platforms.

5.2 State Space

5.2.1 State Definition

As introduced in Section 3.1, the network is defined by the node set N = R ∪ A
consisting of mobile agents R and static anchors with known position and orientation

A. The node state vector

xsi =


[
(xsi,loc)

T (xsi,cal)
T

]T
if i ∈ R

xsi,cal if i ∈ A
(5.1)

of node i is defined differently for agents and anchors. For agents, the node state vector

xsi consists of the agent kinematic states xsi,loc and the node calibration states xsi,cal.

For anchors, the node state vector only contains the node calibration states xsi,cal. The

agent kinematic states are given by

xsi,loc =
[
(psi )

T vsi ψsi ωsi

]T
, (5.2)

with position psi , linear velocity v
s
i , orientation ψ

s
i , and angular velocity ωsi .

As mentioned in Section 2.2, we consider a TWR protocol [134, 153] to eliminate the
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transmitter and receiver clock offsets. Furthermore, we assume that the processing time

Tj,proc between forward and backward transmission is very short, such that the influence

of the relative frequency offset can be neglected [166]. Otherwise, the oscillator behavior

must be considered by an appropriate clock model [154]. As discussed in Section 5.1,

varying group delays in the transceiver RF components lead to a ranging bias of the

respective node. Considering the ranging biases δsi and δsj of nodes i and j defined in

distance domain and the transmit time of the forward signal τ̄ si,j at node i, the ToA of

the backward signal received by node i is defined as

τ si,j = τ̄ si,j +
2(dsi,j − δsi − δsj )

c
+ Tj,proc. (5.3)

The processing time Tj,proc at node j is known. Thus, we assume Tj,proc = 0 s without

loss of generality. To calibrate the antenna response

asi (ϕ) = Gs
i b(ϕ) (5.4)

of the multiport antenna installed on node i, we represent the sampling matrix Gs
i , see

(2.12), in vectorized form of real and imaginary parts,

gsRI,i =

[
Re {vec {Gs

i}}
Im {vec {Gs

i}}

]
. (5.5)

The node calibration states are then defined as

xsi,cal =

δ
s
i if Mi = 1[
δsi (gsRI,i)

T

]T
if Mi > 1,

(5.6)

depending on the antenna type of the respective node. For agents with singleport

antenna (Mi = 1), only the ranging bias δsi is estimated. For agents with multiport

antenna (Mi > 1), ranging bias δsi and sampling matrix elements gsRI,i are estimated.

The state vector for the whole network

xs =
[
(xs1)

T ... (xsi )
T ... (xs|N|)

T
]T

(5.7)

is created by stacking the node states. We also define the vectors ιi, ιi,loc, ιi,cal con-

taining the indices of the elements of xsi , x
s
i,loc, x

s
i,cal in the state vector xs, such that

[xs]ιi = xsi , [x
s]ιi,loc = xsi,loc and [xs]ιi,cal = xsi,cal.
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5.2.2 State Transition

The state transition of the agent kinematic states (5.2) from the previous snapshot

s− 1 to the current snapshot s is defined by the motion model

xsi,loc = f
(
x
(s−1)
i,loc

)
+ws

xi,loc
∀ i ∈ R. (5.8)

We use the constant velocity constant turn model from [176, 177]. By trigonometric

identities, it can be shown that the transition equations for position and orientation

are a special case of the motion model proposed in [178] for robotic rovers. For time

interval T between two consecutive snapshots, the motion model is defined as

f
(
x
(s−1)
i,loc

)
=



x
(s−1)
i − v

(s−1)
i

ω
(s−1)
i

sin
(
ψ

(s−1)
i

)
+

v
(s−1)
i

ω
(s−1)
i

sin
(
ψ

(s−1)
i + ω

(s−1)
i T

)
y
(s−1)
i +

v
(s−1)
i

ω
(s−1)
i

cos
(
ψ

(s−1)
i

)
− v

(s−1)
i

ω
(s−1)
i

cos
(
ψ

(s−1)
i + ω

(s−1)
i T

)
v
(s−1)
i

ψ
(s−1)
i + Tω

(s−1)
i

ω
(s−1)
i


. (5.9)

The process noise in (5.8) is Gaussian,

ws
xi,loc

∼ N (05,Σ
s
xi,loc

), (5.10)

Σs
xi,loc

=


0 0 0 0 0

0 0 0 0 0

0 0 Tσ2
v̇ 0 0

0 0 0 1
3
T 3σ2

ẇ
1
2
T 2σ2

ẇ

0 0 0 1
2
T 2σ2

ẇ Tσ2
ẇ

 , (5.11)

where Σs
xi,loc

is the process noise covariance matrix. Changes in linear and angular

velocity between two snapshots are reflected by the process noise parameters σ2
v̇ and σ

2
ẇ.

Consequently, in some literature also the term nearly constant velocity model is used.

The calibration states are assumed to be constant over time, xsi,cal = x
(s−1)
i,cal ∀ i ∈ N,

with zero process noise.

5.2.3 Observation Model

Based on (2.8), a signal transmitted by node j and received by node i at snapshot s

expressed in discrete frequency domain with subcarrier index n is

rsi,j(n) = ai(ϕ
s
i,j)s(n, τ

s
i,j)α

s
i,j e

jφs
i,j +ws

i,j(n). (5.12)
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Vectorizing (5.12), we obtain

rsi,j =
[
... (rsi,j(n))

T ...
]T
, n ∈ Nsc. (5.13)

We consider a centralized estimation approach, where all observations are available at

a central computing unit. Thus, the signals received by all nodes in the network are

collected in the observation vector

zs =
[
... (rsi,j)

T ... (rsj,i)
T ...

]T
. (5.14)

We consider a TWR protocol with forward signal rsi,j and backward signal rsj,i.

Many cooperative localization algorithms follow the two-step approach [24, 19, 179].

In a two-step approach, first the distances and/or directions are extracted from the sig-

nals and then positions and/or orientations are estimated by a subsequent algorithm.

Since the antenna response must be observable by the algorithm, the two-step approach

is not feasible for SLAC. Thus, to enable antenna response calibration, we directly eval-

uate the log-likelihood functions for the received signals (5.17) and (5.20), which are

introduced separately for singleport and multiport antennas in the following. Position

and/or orientation estimation directly based on the received signals is called direct

localization, see e.g. [180]. Direct localization is known to be more robust w.r.t. mul-

tipath propagation than the two-step approach, especially in two cases: First, when

the number of antennas is large and massive arrays are employed [181, 182, 183], and

second, when the number of links is large and the cooperative network is dense [184].

Singleport Antenna

If nodes with singleport antenna (Mi = 1) are equipped with an omnidirectional an-

tenna, they are not capable of DoA estimation. As an example, we consider a dipole

oriented along the z-axis with the antenna response

ai(ϕ) =
√

10
2.15 dBi

10 = 1.28 (5.15)

independent of the DoA ϕ. Analogous to (2.57), the log-likelihood function for the

received signal (5.12) is given by

Lrs
i,j
(τ si,j, α

s
i,j, φ

s
i,j) = −N ln(πσ2

rs
i,j
)− 1

σ2
rs
i,j

∑
n∈Nsc

∣∣rsi,j(n)− s(n, τ si,j)α
s
i,je

jφs
i,j

∣∣2. (5.16)



5.3. Cooperative SLAC Algorithm 81

Analogous to (2.60), the log-likelihood function concentrated to the ToA τ si,j is given

by

L̃rs
i,j
(τ si,j) =

1

σ2
rs
i,j

∣∣sH(τ si,j)rsi,j∣∣2∥∥s(τ si,j)∥∥2 (5.17)

with

s(τ si,j) =
[
... s(n, τ si,j) ...

]T
, n ∈ Nsc. (5.18)

The noise variance σ2
rs
i,j

is considered known. In practice, it can be estimated from the

receiver noise floor. For a receiver with calibrated power level, the average received

signal power is řsi,j =
1
N

∑
n∈Nsc

|rsi,j(n)|2 and SNR(rsi,j) =
řsi,j−σ2

rs
i,j

σ2
rs
i,j

represents the SNR.

Alternatively, the noise variance σ2
rs
i,j

can be eliminated from the concentrated log-

likelihood function (5.17) by plugging the maximum of (5.16) w.r.t. σ2
rs
i,j

into (5.17),

which corresponds to ML SNR estimation based on the known transmitted signal [185].

Multiport Antenna

Nodes with Mi > 1 are equipped with a multiport antenna, e.g. an MMA. Analogous

to (2.62), the log-likelihood function for the received signals (5.12) is given by

Lrs
i,j
(ϕsi,j, τ

s
i,j, α

s
i,j, φ

s
i,j, g

s
RI,i) =

−N ln(πσ2
rs
i,j
)− 1

σ2
rs
i,j

∑
n∈Nsc

∥∥rsi,j(n)− asi (ϕ
s
i,j)s(n, τ

s
i,j)α

s
i,je

jφs
i,j

∥∥2, (5.19)

where the sampling matrix elements gsRI,i are part of the parameters and are contained

in asi (ϕ
s
i,j), see (5.4) and (5.5). Analogous to (2.64), the log-likelihood function con-

centrated to the DoA ϕsi,j, ToA τ si,j and sampling matrix elements gsRI,i is given by

L̃rs
i,j
(ϕsi,j, τ

s
i,j, g

s
RI,i) =

1

σ2
rs
i,j

∥∥∥∥∥vsi,j(vsi,j)H(vsi,j)
Hvsi,j

rsi,j

∥∥∥∥∥
2

, (5.20)

with vsi,j = vec
{
a(ϕsi,j)s

T (τ si,j)
}
. The noise variance is treated analogously to the

singleport antenna case.

5.3 Cooperative SLAC Algorithm

As outlined in Section 5.1, we derive a Bayesian filtering algorithm for SLAC. Thus, we

calculate the posterior pdf p (xs|z1:s) recursively with the help of Bayes rule by predic-

tion and update steps [178, 93]. Bayesian filtering for cooperative SLAC is challenging
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for two reasons. First, the observation models (2.60) and (2.64) are highly nonlinear,

which is challenging for instance for the extended Kalman filter (EKF). Second, the

state vector (5.7) has high dimensionality due to the sampling matrix elements describ-

ing the antenna response. For example, the state vector dimension is 99 and 131 for

the simulation scenario in Section 5.4 and the measurement scenario in Section 6.2.3,

respectively. Sampling based approaches, like particle filters, experience difficulties

with high state dimension. Thus, we use an algorithm similar to an iterated extended

Kalman filter (IEKF) [93]. The algorithm can cope with high observation model non-

linearities and can also handle high state dimensionality, albeit at the price of higher

computational complexity compared to an EKF.

5.3.1 Prediction

For the prediction step of the Bayesian filter, the pdf of the station transition

p
(
xs|x(s−1)

)
is incorporated into the posterior pdf of the previous snapshot,

p
(
x(s−1)|z1:(s−1)

)
, which yields

p
(
xs|z1:(s−1)

)
=

∫
p
(
xs|x(s−1)

)
p
(
x(s−1)|z1:(s−1)

)
dx(s−1). (5.21)

We assume that the pdf in (5.21) is approximately Gaussian distributed,

p
(
xs|z1:(s−1)

)
≈ N (x̄s, Σ̄s), (5.22)

with the predicted mean x̄s and covariance matrix Σ̄s. For the kinematic states of the

agents R, prediction is defined by

x̄si,loc = f
(
x̂
(s−1)
i,loc

)
∀ i ∈ R, (5.23)

where the motion model (5.9) is applied to the estimated agent kinematic states at the

previous snapshot x̂
(s−1)
i,loc . The calibration states remain constant,

x̄si,cal = x̂
(s−1)
i,cal ∀ i ∈ N, (5.24)

where x̂
(s−1)
i,cal are the estimated node calibration states at the previous snapshot. The

predicted covariance matrix

Σ̄s = F (s−1)Σ̂(s−1)
(
F (s−1)

)T
+Σs

x (5.25)
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is obtained by linearization as in the EKF, where Σ̂(s−1) is the estimated covariance

matrix at the previous snapshot, F (s−1) is the Jacobian matrix of the state transition

and Σs
x is the process noise covariance matrix. The nonzero elements of F (s−1) are

given by [
F (s−1)

]
ιi,loc,ιi,loc

=
∂f
(
x
(s−1)
i,loc

)
∂x

(s−1)
i,loc

∣∣∣∣∣
x
(s−1)
i,loc =x̂

(s−1)
i,loc

(5.26a)

[
F (s−1)

]
ιi,cal,ιi,cal

=

1 if Mi = 1

I2MiU+1 if Mi > 1,
(5.26b)

where the Jacobian matrix of the motion model
∂f

(
x
(s−1)
i,loc

)
∂x

(s−1)
i,loc

is derived in Appendix C.11

and the nonzero elements of the process noise covariance matrix Σs
x are given by

[Σs
x]ιi,loc,ιi,loc = Σs

xi,loc
, (5.27)

with Σs
xi,loc

defined in (5.11).

5.3.2 Update

By the update step of the Bayesian filter, the posterior pdf of the current snapshot s is

obtained by taking the observation likelihood p (zs|xs) into account using Bayes rule,

p
(
xs|z1:s

)
=
p (zs|xs) p

(
xs|z1:(s−1)

)
p (zs|z1:(s−1))

, (5.28)

where p
(
xs|z1:(s−1)

)
is the posterior pdf after prediction from (5.21). Again we assume

p
(
xs|z1:s

)
≈ N (x̂s, Σ̂s), (5.29)

i.e. the posterior pdf is approximately Gaussian distributed with mean x̂s and covari-

ance matrix Σ̂s. Using a MAP approach [93, 186], the update of the state estimate

x̂s = argmax
xs

p
(
xs|z1:s

)
= argmax

xs
p (zs|xs) p

(
xs|z1:(s−1)

) (5.30)

becomes a maximization problem, for which the denominator of (5.28) is constant.

Going to logarithm domain, assuming independent process noise for the nodes and

independent observation noise for the signals received by the nodes and inserting the
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logarithm of the Gaussian pdf from (5.22), we arrive at

x̂s = argmax
xs

∑
i∈N

ln p (zsi |xs) + ln p
(
xs|z1:(s−1)

)
= argmax

xs

∑
i∈N

∑
j∈Ls

i

Lrs
i,j

(
xsi ,x

s
j

)
+

1

2
(xs − x̄s)T

(
Σ̄s
)−1

(xs − x̄s)

︸ ︷︷ ︸
=:−h(xs)

. (5.31)

According to Section 3.1, the neighbor set Lsi ⊆ N\{i} contains the neighboring nodes,

from which node i has received signals for snapshot s. If e.g. the link between nodes i

and k is blocked for snapshot s, then k /∈ Lsi and i /∈ Lsk. The double sum in (5.31) thus

accumulates all observations by all nodes N in the network, which corresponds to a

centralized approach. The formulation in (5.31) is similar to an IEKF [93]. The IEKF

is based on the standard EKF, for which a linearization, i.e. a first order Taylor series

expansion of state transition and observation equations, is applied. For the IEKF, the

update step of the EKF is replaced by a MAP estimate, which is obtained by iteration.

The iterations amount to relinearization of the observation equation. Thus, compared

to the EKF, the IEKF is superior for highly nonlinear observation models at the cost

of higher computational complexity. The log-likelihood function in (5.31) for a signal

transmitted by node j and received by node i,

Lrs
i,j

(
xsi ,x

s
j

)
=

L̃rs
i,j

(
τ si,j
)

if Mi = 1

L̃rs
i,j

(
ϕsi,j, τ

s
i,j, g

s
RI,i

)
if Mi > 1,

(5.32)

is defined separately for receiving nodes with singleport and with multiport antennas.

For a singleport antenna, L̃rs
i,j

(
τ si,j
)
is defined by (5.17) and for a multiport antenna,

L̃rs
i,j

(
ϕsi,j, τ

s
i,j, g

s
RI,i

)
is defined by (5.20). The minimization problem for the update step

of the Bayesian filter,

x̂s = argmin
xs

h(xs), (5.33)

is solved by the BFGS algorithm, which requires the gradient

∇h(xs) = −
∑
i∈N

∑
j∈Ls

i

∂Lrs
i,j

(
xsi ,x

s
j

)
∂xs

−
(
Σ̄s
)−1

(xs − x̄s). (5.34)

The partial derivative of the log-likelihood function w.r.t. the state vector
∂Lrs

i,j
(xs

i ,x
s
j)

∂xs

in (5.34) is derived in Appendix C.12. BFGS is a quasi-Newton method [173]. Since

h(xs) in (5.33) is in general non-convex, care must be taken to ensure convergence.

First, an informative prior p(x0) is required for the initialization of the SLAC algo-
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rithm at s = 0, which is detailed in Section 5.3.3. Second, the filter update rate

must be chosen according to the system dynamics. A sufficiently high update rate

is required, such that the position and orientation changes between two consecutive

snapshots are small. Thus, the estimated state after prediction x̄s, which is the start-

ing point for BFGS, is always close to the estimated state after the update x̂s. The

simulation results in Section 5.4 show that the SLAC algorithm converges despite un-

certainty in antenna responses and initializations. Furthermore, measurement results

in Section 6.2.3 demonstrate convergence of SLAC with vague antenna response prior.

Whether initialized with a prior antenna response obtained by EM simulation or in

a near-field measurement chamber, cooperative SLAC converges to approximately the

same DoA estimation performance, despite the antenna response from EM simulation

deviates considerably from the true antenna response.

When the updated states estimate x̂s is calculated, the Laplace approximation [187]

is applied to obtain the updated covariance matrix

[Σ̂s]v,w =

(
∂2h(xs)

∂[xs]v∂[xs]w

∣∣∣∣
xs=x̂s

)−1

(5.35)

by numerically calculating the inverse of the Hessian matrix at the obtained minimum

in (5.33).

5.3.3 Prior

For s = 0, the Bayesian filter must be initialized. For that, we need an informative

prior pdf for every node i ∈ N,

p(x0) =
∏
i∈N

p(x0
i ). (5.36)

We assume the node prior pdf is Gausssian

p(x0
i ) = (2π)−

5
2 det(Σ̂0

i )
− 1

2 e−
1
2
(x0

i−x̂0
i )

T Σ̂0
i (x

0
i−x̂0

i ), (5.37)

with mean

x̂0
i =

[
(p̂0

i )
T

v̂0i ψ̂0
i ω̂0

i δ̂0i
(
ĝ0
RI,i

)T]T
(5.38)

and covariance matrix

Σ̂0
i = diag

{[
12σ

2
p0/2 σ2

v0 σ2
ψ0 σ2

ω0 σ2
δ0 12MUσ

2
g0

]}
. (5.39)
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Figure 5.2. Example simulation scenario with anchors A1, A2, A3 and randomly gen-
erated trajectories for agents R1 (UCA), R2, R3, R4 © 2022 IEEE [190].

For nodes with singleport antenna, the sampling matrix elements ĝ0
RI,i are omitted

from the prior. The kinematic states of anchors are known exactly. For s = 0, the

prior agent positions p̂0
i = [x̂0i , ŷ

0
i ]
T
and orientations ψ̂0

i with variances σ2
p0 and σ2

ψ0

can be obtained by a snapshot-based cooperative localization algorithm, e.g. one of

the algorithms [179, 188, 189], based on estimated distances and directions among the

nodes. We assume that initially the agents are not moving, so we have v̂0i = 0m/s

and ω̂0
i = 0 ◦/s. The ranging bias is expected to be small compared to the actual

distance, so we initialize it as δ̂0i = 0m. We further assume that a prior antenna

response is available, e.g. from EM simulation or an antenna measurement in a near-

field measurement chamber, see Section 2.3. Thus we have a matrix Ei available,

which contains spatial samples of the antenna response at discrete directions, see (2.18)

and (2.19). The prior sampling matrix

Ĝ0
i = EiB

H(BBH)−1 (5.40)

is then obtained as in (2.20), where we have added the subscript i to denote the

respective agent.

5.4 Simulation Results

5.4.1 Simulation Setup

We evaluate the performance of the cooperative SLAC algorithm derived in Section 5.3

by simulation. For that, we compare SLAC to localization-only. To provide a fair
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comparison, the same Bayesian filtering algorithm is applied to both, SLAC and

localization-only. For localization-only, the node calibration states (5.6) are omitted

from the node state vector (5.1). For the simulation, we assume a setup that is inspired

by the experimental validation in Chapter 6. An example scenario is shown in Fig. 5.2.

We have three anchors A1, A2, A3 and four moving agents R1, R2, R3, R4. The agent

R1 is assumed to be equipped with a UCA with Mi = 4 antenna elements. The other

agents and the anchors are equipped with singleport antennas. We perform a Monte

Carlo simulation with 100 runs. For each run, we generate random trajectories for all

agents based on the motion model (5.8) to (5.11). We assume an update interval of

T = 0.1 s. The process noise parameters of the motion model (5.11) are σv̇ = 0.015m/s1.5

for the linear and σω̇ = 0.3 ◦/s1.5 for the angular velocity. One example realization of

the random trajectories is shown in Fig. 5.2. By simulating random trajectories, we

ensure that SLAC is not limited to specific motion patterns.

Furthermore, we randomly generate a sampling matrixGi for the multiport antenna

of agent R1 for each run. The random sampling matrix is generated by distorting the

antenna response of a UCA, as outlined in Section 4.8.1, where we assume σg = 0.2.

Thus, we also demonstrate that SLAC is not limited to a specific antenna response.

The ranging biases are also chosen randomly by δi ∼ N (0, σ2
δ ) with σδ = 0.2m. The

assumed standard deviations of the Gaussian prior (5.37) are σp0 = 2m, σv0 = 0.01m/s,

σψ0 = 7.5◦, σω0 = 0.01 ◦/s, σδ0 = 0.01σδ and σg0 = 0.01σg. For the ranging biases

and the sampling matrix elements, we have chosen a low prior covariance. Too fast

adjustment of the ranging bias or the antenna response could cause the numerical

optimization in (5.33) to get caught in a local minimum. At the beginning of each

simulation run, position, orientation and the sampling matrix elements are initialized

randomly by sampling from the Gaussian prior (5.37). Ranging bias and velocity states

are initialized with zeros as described in Section 5.3.3.

The transmitted signals are Zadoff-Chu sequences [167] of length N = 463, which

are mapped onto 925 subcarriers out of Nfft = 1024 by occupying every second subcar-

rier. A unique sequence is assigned to each node. The sequences are chosen to have low

cross correlation. The sampling rate is Bs = 31.25MHz and the occupied bandwidth

is B ≈ 28.2MHz. We further assume PTx = −15 dBm transmit power, Tn = 290K

receiver noise temperature, 8 dB noise figure, fc = 1.68GHz carrier frequency and free-

space path loss. The system parameters are chosen to be in line with the experimental

validation in Chapter 6, as summarized in Table 6.1.
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(a) Position RMSE.

(b) Orientation RMSE.

Figure 5.3. Position and orientation RMSEs of agents R1, R2, R3, R4 for simulation
with 100 random trajectories. Localization-only is plotted with dashed, SLAC with solid
lines.

5.4.2 Position and Orientation Estimation

First, we compare the position RMSE of localization-only to SLAC on the basis of

Fig. 5.3a. In the beginning, the position RMSEs are dominated by the prior. For

localization-only, the position RMSEs drop quickly at the beginning. Then they stay

relatively constant around 0.4m to 1.0m. With SLAC, due to the estimation of the

calibration states, the position RMSEs decreases much more and reach cm level after

approximately 1000 snapshots. Until s = 2300 the position RMSEs decrease further,

as the estimations of the calibration states are refined. After s = 2300, the position

RMSEs stay approximately constant. For localization-only and until s = 2300 also

for SLAC, the position RMSE of R1 equipped with a multiport UCA is slightly worse
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compared to the agents R2, R3 and R4, which are equipped with singleport antennas.

The increased position RMSE is caused by a mismatch of assumed and true antenna

response of R1. When the antenna response of R1 has been estimated by SLAC after

s = 2300, its position RMSE is approximately the same as the position RMSE of the

other agents. Nevertheless, the simulation for the chosen parameters, see Section 5.4.1,

shows that SLAC is able to improve the position RMSEs by more than one order of

magnitude compared to localization-only.

Second, we compare the orientation RMSE of localization-only to SLAC shown in

Fig. 5.3b. With localization-only, the orientation RMSEs of agents R2, R3 and R4

with singleport antennas are around 5◦ to 25◦. Agents R2, R3 and R4 are equipped

with singleport antennas and by that are not able to observe their orientation directly.

Instead, they can only infer their orientation over time through the motion model (5.9)

when moving. Thus, the estimated orientations appear noisy. Agent R1 can observe

its orientation not only indirectly through the motion model, but also directly by the

UCA with four elements. Thus its orientation RMSE is around 3◦, which is lower

compared to the other agents. With SLAC, the orientation RMSEs of agents R2, R3

and R4 decrease to sub-degree level until s = 500. The ranging biases are estimated,

which leads to more accurate distance information. The positions are estimated with

higher accuracy, see Fig. 5.3a, and thus the position differences become more accurate,

which leads to improved orientation accuracy. Furthermore, the UCA of agent R1 is

being calibrated, which allows higher orientation accuracy for R1. After s = 2000, the

orientation RMSE of R1 (UCA) is below 0.1◦. The figure shows that for the chosen

simulation parameters, see Section 5.4.1, SLAC improves also the orientation RMSE

by more than one order of magnitude.

The analysis of position and orientation RMSEs shows the overall performance of

SLAC. However, position and orientation RMSEs are subject to different aspects such

as the geometry of the formation, the SNR and the motion model. In the following, we

thus investigate antenna response calibration and ranging bias calibration separately.

5.4.3 Antenna Calibration

To investigate the antenna response calibration by SLAC, we evaluate the achieved DoA

estimation performance over time. We apply the C-ML estimator (2.39) to estimate

DoAs ϕq with q ∈ {1, ..., Q} and Q = 360 spanning a regular grid over the manifold

with step size 1◦. The DoA estimation RMSE is then calculated over both, this grid

and 100 different trajectories and antenna responses, see Section 5.4.1. Fig. 5.4 shows

the resulting DoA estimation RMSE using the antenna response estimated by SLAC

âsi (ϕ) = Ĝs
ib(ϕ), and the prior antenna response â0

i (ϕ) = Ĝ0
ib(ϕ) for comparison.
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Figure 5.4. ML DoA estimation RMSE calculated over manifold and 100 random tra-
jectories and random antenna responses. The C-ML estimator (2.39) uses either the
prior antenna response â0

i (ϕ) = Ĝ0
i b(ϕ) or the antenna response estimated by SLAC

âsi (ϕ) = Ĝs
ib(ϕ) © 2022 IEEE [190].

With the prior antenna response, the DoA estimation RMSE is approximately 11◦ due

to the deviation of prior and true antenna response. When SLAC estimates the an-

tenna response, initially the DoA estimation RMSE slightly increases. Then the DoA

estimation RMSE using SLAC decreases, after s = 2200 to sub-degree accuracy. From

the continuous improvement of the DoA estimation RMSE, we conclude that the esti-

mated antenna response converges towards an antenna response which is equivalent to

the true antenna response for DoA estimation, see Section 4.6.2. In summary, antenna

response calibration by SLAC is feasible and improves DoA estimation performance.

5.4.4 Ranging Bias Calibration

Finally, we investigate ranging bias calibration by SLAC. Fig. 5.5 shows the ranging

bias RMSEs for all nodes over time. The RMSE is also calculated over 100 Monte Carlo

runs. The true ranging biases are of the order of several decimeters, see Section 5.4.1.

Since the ranging bias prior is zero, this order of magnitude is directly reflected in the

RMSEs of the estimated ranging biases. At the beginning, the ranging bias RMSEs of

all nodes decrease quickly. After around s = 1000, the ranging bias RMSEs decrease

more slowly and reach sub-centimeter levels after s = 2100. Interestingly, the ranging

bias RMSE curves are visually separated into three distinct groups. The ranging bias

RMSEs of the anchors A1, A2 and A3 reach the lowest values, which can be explained

by their known positions. The agents R2, R3 and R4 with singleport antennas achieve

lower ranging bias RMSEs than the agent R1 with four-element UCA. For R1, also

the antenna response must be estimated simultaneously, which impacts ranging bias
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Figure 5.5. Simulated ranging bias RMSEs over 100 random trajectories for agents R1,
R2, R3, R4 and anchors A1, A2, A3 © 2022 IEEE [190].

calibration. In conclusion, with SLAC the ranging biases of all nodes are estimated

successfully for the simulated random trajectories. Ranging bias estimation by SLAC

enhances the accuracy of distance information, which contributes to improved position

and orientation estimation performance, see Fig. 5.3.
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Chapter 6
Experimental Validation

In this chapter, we describe experiments, which we have conducted for validating the

theoretical and simulation results obtained in the previous chapters. We introduce

the cooperative localization testbed based on SDR and the hardware integration into

robotic rovers for an outdoor experiment with multiple agents. Then we demonstrate

DoA estimation with a single MMA. The in-situ antenna calibration algorithm pro-

posed in Chapter 4 is evaluated with measurement data. Furthermore, we analyze the

performance of antenna response and ranging bias calibration by cooperative SLAC.

6.1 Cooperative Localization Testbed

6.1.1 System Architecture

The experiments are based on a joint communication and localization system for robotic

planetary exploration developed at the DLR [191]. The system is designed to enable

joint communication with high update rates and high data rates and cooperative lo-

calization on the physical layer. Decentralized localization, exploration and control

algorithms often require multiple iterations of information exchange over the network.

Thus, high update rates are needed for a dynamic system [192], and the exchanged

packets typically have low to medium size. High data rates are required e.g. to transfer

data from scientific payloads or to allow remote operation of robots for special tasks.

Channel access is provided by a self-organized TDMA scheme, in order to prevent a

single point-of-failure. The system uses OFDM, as it is spectrally efficient and used

in state-of-the-art communications systems, e.g. IEEE 802.11 Wi-Fi and 4G and 5G

cellular networks. The self-organized TDMA scheme and the OFDM frame structure

are visualized in Fig. 6.1. An OFDM frame consists of a guard time (GT), a preamble

symbol with cyclic prefix (CP), and one or more data symbols with CP.

93
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Figure 6.1. TDMA scheme and OFDM frame structure with guard time (GT), cyclic
prefix (CP), preamble and data symbols.

Table 6.1. Joint communication and localization system parameters.

Parameter Variable Value

Carrier frequency fc 1.68GHz
Sampling rate Bs 31.25MHz
Occupied bandwidth B ≈ 28.2MHz
FFT length Nfft 1024
Occupied subcarriers (preamble) N 463
Occupied subcarriers (data) 924
Subcarrier spacing ffsc ≈ 30.5 kHz
CP length 50 samples
TDMA schedule 100ms
Transmit power PTx -15 dBm

The joint communication and localization system is designed as a flexible framework

that can be tailored to specific mission requirements. The system parameters such as

carrier frequency, bandwidth, number of subcarriers, number of OFDM symbols per

frame etc. can be adapted. For the conducted experiments, the system parameters were

chosen according to Table 6.1. The preamble is a Zadoff-Chu sequence [167] of length

N = 463, which is mapped on 925 subcarriers by occupying every second subcarrier.

The allocation of every second subcarrier enables efficient OFDM frame synchroniza-

tion by differential correlation [193]. Every node in the network is assigned a unique

Zadoff-Chu sequence, where the sequences are chosen to have low cross-correlation.

The preamble is thus used for OFDM frame synchronization, node identification, ToA

and channel estimation. For the experiments we used Nfft = 1024 FFT length and

Bs = 31.25MHz sampling rate, resulting in B ≈ 28.2MHz occupied bandwidth. The

transmit power was PTx = −15 dBm.
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Figure 6.2. Schematic of the SDR implementation in GNU Radio.

6.1.2 Software-Defined Radio Implementation

A demonstrator of the joint communication and localization system has been imple-

mented as SDR. For the four-portMMA-2 introduced in Section 2.1, an Ettus Research

Universal Software Radio Peripheral (USRP) N310 was used as coherent multichannel

radio transceiver. The real-time signal processing was performed on a computer with

signal processing blocks implemented within the GNU Radio software. The structure

is shown in Fig. 6.2. The sampled signals are first passed to a block for OFDM frame

detection and coarse frame synchronization [193]. The CFO is compensated and the

signals are transformed to discrete frequency domain by an FFT. At this point, the

signal samples in discrete frequency domain are also stored for post-processing together

with meta data like timestamp etc. For the evaluations in Section 6.2 we use the stored

preamble symbols, which we call snapshots. The transmitting node is identified from

the preamble, then DoA and ToA of the signal are estimated, see Chapter 2. Then the

received data symbols are demodulated and decoded. Based on the decoded transmit

time stamp and the ToA, the signal RTT is calculated. Due to the delay between

forward and backward transmission, see the TDMA schedule in Table 6.1, the relative

frequency offset of transmitter and receiver oscillators is compensated, see [154] for

more details. Data to be transmitted is encoded and modulated and the transmission

is scheduled according to the self-organized TDMA scheme. For the nodes with single-

port antenna, the Ettus Research USRP B200mini SDR is used. The signal processing

in GNU Radio is analogous to Fig. 6.2, except without DoA estimation.
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Figure 6.3. USRP N310 setup with external LO.

(a) Internal LO. (b) External LO.

Figure 6.4. Phase difference between USRP N310 channels, averaged over snapshot
length of Nfft = 1024 samples. Left and right figures have different y-axis scale.

In Chapter 2 it is shown that for an MMA, DoA information is contained in both,

amplitude and phase of the received signals at the different antenna ports. To fully

exploit the DoA information, the receiver channels connected to the antenna ports must

be phase-coherent. For the applied USRP N310, phase-coherency is achieved when the

local oscillator (LO) is supplied externally. The setup is shown in Fig. 6.3. An external

frequency synthesizer followed by a four-way splitter is used to generate four LO signals

for Tx LO and Rx LO of each of the two radio-frequency integrated circuits (RFICs)

inside the USRP N310. To verify phase coherency of the receiver channels, a CW

signal is supplied to all four channels via an RF splitter. Phase differences between the

channels are calculated and averaged over a snapshot length of Nfft = 1024 samples,

which corresponds to one OFDM symbol. The resulting phase differences between the

channels with internal LO are shown in Fig. 6.4a and with external LO in Fig. 6.4b.

With internal LO, phase differences between channel two and channel one are small, as

they share the same RFIC. However, for channels three and four, quickly varying phase
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Figure 6.5. Transmit power patterns of MMA-2 for linear vertical polarization, when a
single antenna port or a combination of two antenna ports are used for transmission.

differences w.r.t. channel one in the order of 1◦ − 3◦ are apparent. With external LO,

the phase differences among all channels are below 0.1◦, making this setup suitable for

coherent DoA estimation. Constant amplitude imbalances and phase offsets between

the channels are compensated by a calibration procedure.

The concept of the communication and localization system is based on broadcast

transmission. However, the power pattern of MMA-2, which was used for the exper-

iments, is highly direction-dependent, see Fig. 2.6a. For a broadcast system, omnidi-

rectional coverage is desirable. A more omnidirectional power pattern of MMA-2 is

obtained when using multiple modes, i.e. multiple antenna ports, simultaneously for

transmission. Fig. 6.5 shows the resulting transmit power pattern of MMA-2 transmit-

ting either on a single port or on two ports simultaneously. For the two port case, the

same signal is fed to both antenna ports in-phase. For the experiments, a combination

of ports 1 and 2 was used, resulting in a transmit power pattern varying from -1.7 dB

to 2.3 dB.

6.1.3 Hardware Integration

Fig. 6.6a shows the multichannel SDR setup from Section 6.1.2 integrated into a custom

assembly on top of a Robotnik SUMMIT-XL rover. On the top plate, the MMA-

2, and two GNSS antennas for a commercial two-antenna GNSS RTK system are

mounted [194]. The GNSS RTK system also uses inertial sensors internally and provides

position and orientation ground truth for the experiments. The MMA is connected

to the Ettus Research USRP N310 SDR. The LO for the USRP N310 is provided

by an external frequency synthesizer via a splitter, see Fig. 6.3. The USRP N310
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(a) Rover Dias with USRP N310 and MMA. (b) Anchor node.

Figure 6.6. Multichannel SDR Ettus Research USRP N310 with external LO and MMA-
2 integrated on robotic rover Dias and an anchor node.

is connected to a computer, where the real-time signal processing is performed in

GNU Radio according to the schematic in Fig. 6.2. Three anchors are each equipped

with a dipole antenna, the singlechannel SDR Ettus Research USRP B200mini and

a computer for real-time signal processing. One of the anchors is shown in Fig. 6.6b.

Fig. 6.7 shows three Robotnik SUMMIT-XL rovers Drake, Magellan and Vespucci with

custom assembly next to the experimental site. The three rovers are equipped with

a singleport dipole antenna. Equal to the anchors, they are each equipped with the

singlechannel SDR Ettus Research USRP B200mini and a computer for real-time signal

processing. Furthermore, they are also equipped with a commercial two-antenna GNSS

RTK system for ground truth.

6.2 Measurement Results

We use two different sets of measurement data, the single-agent scenario and the multi-

agent scenario, for the experimental validation. Recorded data from the single-agent

scenario is used to demonstrate DoA estimation with a single MMA in Section 6.2.1

and to evaluate the in-situ antenna calibration algorithm in Section 6.2.2. To analyze

the performance of cooperative SLAC in Section 6.2.3, we use data from themulti-agent

scenario.
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Figure 6.7. Robotic rovers Vespucci, Drake and Magellan and the outdoor control center
next to the experimental site.

Figure 6.8. Map of the single-agent scenario with the trajectory of the robotic rover Dias
with MMA and three anchors A1, A2 and A3.
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Figure 6.9. SNR of the signals received by the MMA on Dias from the anchors nodes
A1, A2 and A3 for the single-agent scenario.

Figure 6.10. Absolute DoA estimation error |ϕ̂si,j −ϕsi,j | for signals received from anchor
A2 using non-coherent ML estimator (NC-ML) (2.28), non-coherent RC estimator (NC-
RC) (2.34) or coherent ML estimator (C-ML) (2.39) for the single-agent scenario.

6.2.1 DoA Estimation with a Multi-Mode Antenna

Fig. 6.8 shows a map of the single-agent scenario with three anchor positions and the

ground truth trajectory of the robotic rover Dias with installed MMA. The anchor

positions were measured with a tachymeter. The rover was driving with a speed in the

range of 0.3m/s to 0.6m/s.

The estimated SNR of the signals received by the MMA installed on Dias from the

three anchors is shown in Fig. 6.9, where an ML SNR estimator based on the known

preambles was used [185]. The SNRs vary due to changing distances, but also due to

fading caused by the ground reflection.

First, we experimentally validate the simulation results presented in Chapter 2,
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Figure 6.11. Empirical CDF of the absolute DoA estimation error |ϕ̂si,j − ϕsi,j | for all
signals received from the anchors A1, A2 and A3 using non-coherent ML estimator (NC-
ML) (2.28), non-coherent RC estimator (NC-RC) (2.34) or coherent ML estimator (C-
ML) (2.39) for the single-agent scenario.

where we compare different DoA estimators for an MMA. We consider the non-coherent

ML estimator (NC-ML) (2.28) and the non-coherent reduced-complexity estimator

(NC-RC ) (2.34). The non-coherent estimators are based solely on RSS estimates of

the different antenna ports and aim at simpler receiver architectures. For the NC-

RC estimator, the noise variance is estimated separately from the receiver noise floor.

We also analyze the coherent ML estimator (C-ML) (2.39), which requires a coherent

multichannel receiver to account for the MMA phase response. For the estimators, we

use the antenna response of MMA-2 measured in a near-field measurement chamber,

see Figs. 2.6 and 6.13. Fig. 6.10 shows the absolute DoA estimation error |ϕ̂si,j − ϕsi,j|
over time using the three different estimators for the signals received from anchor A2.

Both non-coherent estimators show large outliers up to 180◦. The outliers are caused

by estimation ambiguities, see Section 2.4.4. For the coherent DoA estimator, the

absolute estimation error always remains < 15◦ without outliers. The outliers of the

non-coherent estimators are sparse, but also in between outliers the error is larger

compared to the coherent estimator.

To further investigate the performance of the different DoA estimators, we analyze

the empirical cumulative distribution function (CDF) of the absolute DoA estimation

error |ϕ̂si,j − ϕsi,j| for the signals received from A1, A2 and A3, shown in Fig. 6.11. The

CDF reveals that for both non-coherent estimators, less than 15% of the observations

are outliers. If they can be filtered out, non-coherent DoA estimation with an MMA is a

feasible option for low-cost receivers with less strict requirements on DoA accuracy. For

|ϕ̂si,j−ϕsi,j| < 30◦, the performance of NC-ML and NC-RC is comparable. However, NC-
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Figure 6.12. Aerial view of the in-situ calibration with MMA assembly on turntable and
anchors A1, A2, A3.

RC has also slightly more outliers. From the empirical CDF, but also from Fig. 6.10, we

see that there are two groups of outliers, one in the range of 60◦ < |ϕ̂si,j − ϕsi,j| < 110◦

and one in the range of 160◦ < |ϕ̂si,j − ϕsi,j| ≤ 180◦. The outliers indicate 90◦ and

180◦ estimation ambiguities for the non-coherent DoA estimation. The coherent DoA

estimator outperforms both non-coherent estimators and shows a 90th percentile DoA

estimation error of 9.3◦. In conclusion, the experiment has shown that DoA estimation

with a single MMA is feasible. The simulation results from Section 2.4.4 have been

confirmed regarding the difference between non-coherent and coherent DoA estimation.

However, the accuracy level predicted by theory and simulation could not be achieved in

practice. The reason are biased estimates due to a mismatch of the antenna response

used by the estimator and the true antenna response of the MMA. To reduce the

model mismatch and improve DoA estimation performance, we perform in-situ antenna

calibration.

6.2.2 In-Situ Antenna Calibration

For the validation of the in-situ antenna calibration introduced in Chapter 4 we

recorded measurement data, where the assembly with installed MMA was mounted

on a turntable, see Fig. 6.12. The MMA assembly on the turntable was placed in
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Figure 6.13. Power pattern and phase pattern of ports 1-4 of the MMA obtained by EM
simulation, in a near-field measurement chamber and by in-situ calibration.

between the three anchors. Two full turns of the turntable were performed, during

which a total of S = 2264 snapshots were received, 757 from A1, 750 from A2 and 747

from A3. The average estimated SNR of the received signals was 12 dB for A1, and

9 dB for A2 and A3.

The in-situ calibration algorithm introduced in Section 4.4 was applied to the

recorded data. The antenna responses of the MMA-2 from EM simulation, obtained in

a near-field measurement chamber and by the in-situ calibration algorithm are shown

as power and phase patterns in Fig. 6.13. The antenna response from the near-field

measurement chamber was used to initialize the in-situ calibration algorithm. The

antenna response of the MMA from EM simulation deviates considerably from the

measured antenna response, as the antenna was simulated in free-space and the simu-

lation does not account for imperfect manufacturing etc. The antenna response from

in-situ calibration is closer to the measured antenna response, nevertheless deviations

in power and phase are visible.

Fig. 6.14 shows the absolute DoA estimation error of the coherent C-ML estimator

(2.39) using the three different antenna responses for the signals received from anchor

A2 over time. Again, we use the recorded measurement data from the single-agent

scenario. Using the antenna response from EM simulation clearly shows the highest

DoA estimation errors up to 29.5◦. With the antenna response from the near-field

measurement chamber, the DoA estimation errors are reduced to a maximum error

of 14.3◦. This error curve is identical to C-ML from Fig. 6.10. With the antenna
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Figure 6.14. Absolute DoA estimation error |ϕ̂si,j −ϕsi,j | with the C-ML estimator (2.39)
for the signals received from anchor A2 using the antenna response from EM simulation,
from the near-field measurement chamber and from in-situ calibration for the single-agent
scenario.

Figure 6.15. Empirical CDF of the absolute DoA estimation error |ϕ̂si,j − ϕsi,j | with the
C-ML estimator (2.39) for the signals received from the anchors A1, A2, A3 using the
antenna response from EM simulation, from the near-field measurement chamber and from
in-situ calibration for the single-agent scenario.

response from in-situ calibration, the lowest DoA estimation errors are achieved and

the maximum error is reduced to 9.4◦.

To further evaluate in-situ antenna calibration, we have a look at the empirical CDF

of the absolute DoA estimation error |ϕ̂si,j − ϕsi,j| shown in Fig. 6.15. The figure shows

the individual curves for the signals received from anchors A1, A2 and A3, respectively.

For all three anchors, DoA estimation performance using the antenna response from

in-situ calibration is superior to the antenna response from the near-field measurement.

DoA estimation with the antenna response from the near-field measurement performs
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Figure 6.16. Aerial view of the multi-agent scenario with the trajectories of agents Dias
(MMA) in blue, Drake in orange, Vespucci in yellow and the positions of agent Magellan
and anchors A1, A2, A3.

better than with the antenna response from EM simulation. A1 shows higher DoA

errors than A2 and A3 with antenna responses from near-field measurement and in-

situ calibration, despite higher SNR values. A potential cause could be that the dipole

antenna of A1 is not perfectly vertical, which also leads to a model mismatch. With

in-situ calibration, the 90th percentile DoA estimation error for the signals received

from all three anchors has improved from 9.5◦ to 6.7◦ compared to antenna calibration

in a near-field measurement chamber, see also Fig. 6.20.

6.2.3 Cooperative Simultaneous Localization and Calibration

Position and Orientation Estimation

To experimentally validate SLAC introduced in Chapter 5, we conducted the multi-

agent scenario experiment shown in Fig. 6.16 with the robotic rovers Dias with MMA,

Drake, Vespucci and Magellan. The total duration of the experiment was 12min 30 s.

For the first part of the experiment, only Dias was moving. For the second part

starting around 6min, Drake and Vespucci were moving as well. Magellan remained

static during the whole experiment. Dias traveled a total distance of 326m, Drake
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Figure 6.17. Map of the multi-agent scenario with the positions of anchors A1, A2, A3
and the trajectories estimated by SLAC of agents Dias (MMA) in blue, Drake in orange,
Vespucci in yellow, Magellan in purple and underlaid ground truth agent trajectories in
black. The markers at the end of the respective trajectories show the estimated agent
orientation and ground truth.

201m and Vespucci 211m. Again, all received signals were recorded and evaluated in

post-processing.

The parameters for the SLAC algorithm were chosen identical to the simulation

from Section 5.4.1. To account for experimental effects like shaking of the rovers due

to rough terrain, the noise standard deviation of the received signals σrs
i,j

was multiplied

by two to increase the assumed observation variance. Fig. 6.17 shows the estimated

trajectories of the robotic rovers Dias with MMA, Drake, Vespucci and Magellan by

SLAC. The estimated trajectory of each agent is underlaid with the corresponding

ground truth in black. All trajectories are very close to the ground truth, which

indicates accurate position estimation by SLAC.

Analogous to the simulation results shown in Section 5.4, we compare SLAC

to localization-only for a detailed performance analysis. For a fair comparison, the

Bayesian filtering algorithm derived in Section 5.3 is applied to both SLAC and

localization-only. For localization-only, the calibration states (5.6) are not part of the

state vector. Fig. 6.18 shows the absolute position error of the agents for the second

part of the measurements, from 6min to 12min 30 s, when all agents except Magellan

are moving. For the agents Dias with MMA, Drake and Vespucci, cooperative SLAC

considerably improves the position estimation compared to localization-only. For

Dias, the 90th percentile position error was reduced by a factor of two, from 0.6m
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Figure 6.18. Empirical CDFs of the absolute position error ∥p̂si − psi∥ of the agents for
localization-only and SLAC.

Figure 6.19. Empirical CDFs of the absolute orientation error |ψ̂si − ψsi | of the agents
for localization-only and SLAC.

to 0.3m. Magellan remained static during the experiment, which causes impaired

observability of the calibration states and incorrectly estimated ranging bias for the

first part, see Fig. 6.22. Thus the CDF curve of Magellan in Fig. 6.18 shows an

amount of position estimates with larger position errors, which we attribute to the

beginning of the second part, before the estimated ranging bias is corrected. We also

see that the positioning performance of Dias with MMA is slightly better compared

to Drake and Vespucci, which are equipped with singleport antennas. In conclusion,

cooperative SLAC considerably improves the positioning performance compared to

localization-only, which confirms the simulation results.

We now have a look at the empirical CDF of the absolute orientation error in

Fig. 6.19. It stands out that the orientation estimation of Drake and Vespucci with
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Figure 6.20. Empirical CDF of the absolute DoA estimation error over all signals
received by Dias (MMA), using the antenna response from EM simulation, from the near-
field measurement chamber, from in-situ calibration and by SLAC.

singleport antenna is considerably worse than the orientation estimation of Dias with

the MMA. As we do not use additional sensors like gyroscopes, the agents with sin-

gleport antenna can observe their orientation only indirectly through position changes

over time and the motion model (5.9). As Magellan is not moving, it cannot estimate

its orientation and is not shown in Fig. 6.19. In the simulation results, orientation es-

timation of the agents with singleport antenna is also considerably worse compared to

the agent with multiport antenna, see Fig. 5.3b. Fig. 6.19 shows that SLAC improves

the orientation estimation compared to localization-only, the 90th percentile orienta-

tion error of Dias with MMA was reduced from 6.7◦ to 5.0◦. The improvement is not

as pronounced as in the position domain. A possible explanation could be found in the

motion model (5.9). The model assumes constant linear velocity and constant angular

velocity, which leads to overshoots or undershoots of the estimation when the veloci-

ties are changing. This could be solved by including other sensors, e.g. a gyroscope or

wheel odometry, which could be considered by the Bayesian filter. However, our goal

was to analyze the pure radio localization performance, without the influence of other

sensors.

Position and orientation performance is influenced by different aspects like the

geometry of the formation, propagation conditions, SNR, and the chosen motion model.

To analyze the impact of calibration in a more isolated fashion, we treat antenna and

ranging bias calibration separately.
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Figure 6.21. Empirical CDF of the absolute DoA estimation error over all signals re-
ceived by Dias (MMA), using the prior antenna response from a near-field measurement
chamber (Meas. prior) and the antenna response estimated by non-cooperative and coop-
erative SLAC. A second case with the prior antenna response from EM simulation (Sim.
prior) is shown with dashed lines.

Antenna Calibration

To analyze antenna calibration by SLAC, Fig. 6.20 shows the empirical CDF of the

absolute DoA estimation error |ϕ̂si,j − ϕsi,j|. Similar to Fig. 6.15, in Fig. 6.20 we com-

pare coherent DoA estimation with the C-ML estimator (2.39) using different antenna

responses, but now for the multi-agent scenario. We consider the signals received by

the MMA on Dias from all neighbors. DoA estimation is performed using the antenna

response from EM simulation, near-field measurement chamber, in-situ calibration and

the final estimation by SLAC, respectively. Fig. 6.20 shows that both, SLAC and in-

situ calibration perform considerably better than antenna calibration in the near-field

measurement chamber. Interestingly, SLAC slightly outperforms in-situ calibration.

Next, we want to investigate two aspects of antenna response calibration by SLAC

in more detail. First, we want to analyze the benefit of cooperation. Thus, we com-

pare non-cooperative SLAC, where no agent to agent links are present, to cooperative

SLAC. Second, we are interested in the impact of the prior and the robustness of SLAC

regarding a vague prior. Fig. 6.21 shows the empirical CDF of the absolute DoA esti-

mation error using the prior antenna response and the final estimated antenna response

by SLAC. We compare two cases with different prior antenna response, from near-field

measurement chamber and EM simulation, respectively. For each case we analyze

both, cooperative and non-cooperative SLAC. The DoA estimation error curves us-

ing directly the prior antenna responses from the near-field measurement and the EM

simulation are identical to Fig. 6.20, but are shown again for comparison. With the
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Figure 6.22. Estimated ranging biases δ̂si for all nodes.

prior antenna response from the near-field measurement chamber, cooperative SLAC

is slightly better than non-cooperative SLAC. From Fig. 6.13, we see that the antenna

response from the EM simulation deviates considerably and is thus considered as vague

prior, where we assume σg0 = 0.3 for the standard deviation of the Gaussian prior pdf

of the sampling matrix elements. With the vague prior from EM simulation, the DoA

estimation performance is improved by non-cooperative SLAC, but it remains slightly

worse than using directly the antenna response from the near-field measurement. Co-

operative SLAC, in contrast, achieves almost the same performance as with the more

accurate prior antenna response from the near-field measurement. This result demon-

strates the robustness of the SLAC algorithm w.r.t. a vague antenna response prior.

From literature, it is known that cooperation improves position and orientation accu-

racy [20, 83, 22, 21, 23]. Applied to SLAC, cooperation leads to faster convergence

of the antenna response calibration due to improved localization accuracy and higher

number of observations.

Ranging Bias Calibration

Finally, we analyze ranging bias calibration by SLAC. The estimated ranging biases

δsi of all nodes over time are shown Fig. 6.22. Starting from the initial value 0m, the

ranging biases converge to preliminary estimates, which stay approximately constant

from 3min to 6min. When Drake and Vespucci start moving at 6min, the estimated

ranging biases change again. After 8min they stay approximately constant until the

end. We conclude that motion is very important for the observability of the ranging

biases. During the first part, where only Dias is moving, not all ranging biases are

observable.
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Figure 6.23. Ranging RMSE over all links in the network without ranging bias correction
(RTT) and with non-cooperative and cooperative SLAC.

To evaluate the ranging accuracy with estimated ranging biases, we calculate the

ranging RMSE over all links in the network
√∑

i∈N(
∑

j∈Ls
i
|d̂si,j − dsi,j|2/|Lsi |)/|N|. From

(5.3), the estimated distance with ranging bias correction by SLAC is d̂si,j = c(τ̂ si,j −
τ̄ si,j)/2 + δ̂si + δ̂sj . Without ranging bias correction (RTT), the estimated distance is

obtained by the signal RTT, d̂si,j = c(τ̂ si,j − τ̄ si,j)/2. Fig. 6.23 shows the ranging RMSE

without ranging bias correction and with ranging bias correction by non-cooperative

and cooperative SLAC. For the first part until 6min, non-cooperative and cooperative

SLAC perform similar and both outperform RTT without ranging bias correction. For

the second part from 6min to the end, the ranging RMSE with non-cooperative SLAC

remains the same. By cooperative SLAC, the ranging RMSE can be further improved,

which is explained by the corrected ranging bias estimates of Drake, Magellan and A3,

see Fig. 6.22. When the estimated ranging biases have converged, the ranging RMSE

by cooperative SLAC is less than half of the RTT ranging RMSE. The spikes of the

ranging RMSE affect all methods and are attributed to propagation conditions. In

conclusion, cooperation is vital for the observability of the ranging biases.
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Chapter 7
Conclusion and Outlook

7.1 Conclusion

In this thesis, we have investigated cooperative position and orientation estimation in

radio networks. The estimation of positions and orientations requires distance and

direction information. In the context of radio localization, distance and direction in-

formation is obtained by the ToA and DoA of radio signals.

To this end, we have started the analysis with a single MMA. An MMA is a single

antenna element with multiple ports. Based on the excitation of orthogonal char-

acteristic modes, it is especially promising in applications with tight size or shape

constraints. The orthogonality property of the characteristic modes leads to orthog-

onal far-field characteristics of the antenna. Thus, the antenna response of an MMA

strongly depends on the DoA, which enables DoA estimation, given the antenna re-

sponse is known. While the potential of MMAs for MIMO communications had been

realized earlier, we have provided a first study on their use for localization, specifically

DoA estimation. As a first step, we have shown how a continuous representation of the

MMA antenna response is obtained by wavefield modeling and manifold separation.

Then different types of estimators have been studied. Their performance has been

validated by simulations and experiments, for which a four-port MMA and an SDR

have been integrated into a robotic rover. For low-complexity receivers, non-coherent

DoA estimation solely based on RSS estimates of the different antenna ports is a suit-

able approach. Especially for the 3D case, i.e. azimuth and inclination estimation,

the non-coherent approach suffers from ambiguities, which lead to estimation outliers.

Better performance can be achieved including the phase response with coherent DoA

estimation, which requires a receiver with multiple coherent channels. We have further

shown how the polarization of incoming EM waves can be estimated jointly with the

113
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DoAs using the investigated MMA. In conclusion, DoA estimation with a single MMA

has been shown to be feasible and accurate by simulations and experiments.

We have then extended the perspective to a cooperative multi-agent system, where

each agent is equipped with an MMA. We have performed a theoretical analysis by

investigating the Fisher information for ToA and DoA. The Fisher information for

ToA and DoA reveals the asymptotic independence of ToA and DoA estimation for

high SNR, assuming a narrowband signal with symmetric spectrum. Intuitively, for

separate estimation, ToA is estimated from the observation of a delayed baseband

signal, while DoA is estimated from the relative amplitudes and phases of the antenna

ports. Nevertheless, joint estimation of ToA and DoA is beneficial in the low SNR

regime. We have then derived the CRB as a lower bound on the achievable position

and orientation error for absolute and relative localization with MMAs. It allows to

determine the impact of the agent formation on the localization accuracy and serves

as a benchmark. However, the CRB is a variance bound. From both, literature and

our own experiments, we have seen that the major contribution to the estimation

MSE stems from the bias instead of the variance. Thus, there is a considerable gap

between the performance achieved in practice and theoretical lower bounds. The biased

estimates are caused by model mismatches. Specifically, we have identified two causes

of estimation bias for radio localization. First, group delay variations in RF components

of the transceiver hardware lead to ranging biases. Second, deviations of the antenna

response assumed by the estimation algorithm from the true antenna response lead to

biased DoA estimation.

To mitigate model mismatch and improve DoA estimation, we have investigated

in-situ calibration of arbitrary multiport antennas, including MMAs. For in-situ cali-

bration, we do not require a measurement chamber and synchronization between trans-

mitter and receiver. The propagation channel is considered unknown for in-situ cal-

ibration, with possible multipath propagation. An external, noisy sensor is available

to observe the LoS DoA. We have first performed a theoretical study of in-situ an-

tenna calibration. Specifically, we have derived the Bayesian information for in-situ

calibration to analyze the observability and to obtain the BCRB as benchmark. When

the propagation channel is unknown, the absolute amplitude and phase of the antenna

response cannot be observed. As DoA estimation is invariant to the absolute ampli-

tude and phase, we propose to estimate an equivalent antenna response. In that case,

the regular MSE is not a meaningful error metric, as absolute amplitude and phase

offsets count as errors. Instead, we have introduced a transformed MSE as a figure

of merit. The derived Bayesian information matrix for in-situ calibration is rank defi-

cient when the propagation channel is unknown and no prior information is available.
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Still, a meaningful BCRB can be obtained, which is a lower bound for the trans-

formed MSE. We have then proposed an in-situ calibration algorithm based on a MAP

estimator. The algorithm takes arbitrary nonidealities of real-world antennas like gain-

phase offsets and mutual coupling into account. We have shown by simulation that

the algorithm operates close to the BCRB. DoA estimation performance using in-situ

calibration asymptotically approaches the case where the antenna response is perfectly

known. We have also validated our in-situ calibration algorithm by an experiment. For

that, we have mounted a rover assembly with integrated MMA onto a turntable. With

in-situ calibration, the 90th percentile DoA estimation error for a measurement data

set has improved from 9.5◦ to 6.7◦ compared to antenna calibration in a near-field mea-

surement chamber. We conclude that in-situ antenna calibration for DoA estimation

in unknown propagation conditions is feasible, provided an external direction sensor is

available.

In addition to in-situ calibration, we have also addressed calibration during op-

eration. We have introduced cooperative SLAC, which leverages the large amount

of observations available in a cooperative network. Cooperative SLAC estimates and

tracks antenna responses and ranging biases of the agents simultaneously with their po-

sitions and orientations, without external sensors. Implementing cooperative SLAC as

a Bayesian filter poses two challenges. First, considering antenna response calibration

causes a high state dimensionality. Second, evaluating the received signals directly,

which is required for the observability of the antenna response, results in a highly

nonlinear observation model. We have consequentially derived a Bayesian filter for

cooperative SLAC similar to an IEKF with Laplace approximation for the covariance

update. Analogous to in-situ calibration, our algorithm can handle arbitrary antenna

types and nonidealities. By simulations, we have shown that cooperative SLAC is able

to accurately estimate ranging biases and antenna response deviations. Thus, rang-

ing and DoA estimation are enhanced, which leads to a considerable improvement in

position and orientation accuracy. We have demonstrated cooperative SLAC also ex-

perimentally for a multi-agent system with four robotic rovers and three anchors. With

cooperative SLAC, the 90th percentile position error was reduced from 0.6m to 0.3m

and the 90th percentile orientation error was reduced from 6.7◦ to 5.0◦ for the robotic

rover with MMA compared to localization-only. We have found that cooperation and

movement of the agents is crucial for the estimation of the ranging biases. The coop-

erative SLAC algorithm is robust regarding a vague antenna response prior, in which

case we have shown a considerable cooperation gain. In conclusion, cooperative SLAC

is a promising approach to perform or improve calibration during operation without
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external sensors. Cooperative SLAC mitigates model mismatches and thus improves

localization performance.

With this thesis, we have improved cooperative radio localization regarding multiple

aspects. We have shown that MMAs can be employed for position and orientation esti-

mation. Bridging theory and practice, we have proposed novel approaches to mitigate

model mismatch and reduce the gap between theoretical lower bounds and real-world

performance. Specifically, we have introduced in-situ calibration for arbitrary antennas

and cooperative SLAC.

7.2 Outlook

In this thesis, we have shown the feasibility of DoA and ToA estimation with a single

MMA by simulations and experiments. The two investigated MMAs were not specif-

ically designed for that purpose. In order to further explore the potential of MMAs

for localization, an interdisciplinary approach is required, as the requirements for radio

localization should already be considered in the design phase of the MMA. Specific

localization requirements include the polarization and the radiation characteristic, e.g.

omnidirectional for ground-based robots or hemispherical if also aerial vehicles are con-

sidered. Regarding propagation time based approaches, the group delay and especially

the direction dependency of the group delay of the antenna should be considered. Ul-

timately, the MMA response could be optimized for DoA estimation. We consider it

promising to apply estimation theory already at the design phase of the antenna, to

minimize DoA estimation lower bounds and improve ambiguity resolution.

By simulation, we have shown 3D DoA estimation of both azimuth and inclination

with a single MMA in this thesis. Experimentally, we have demonstrated azimuth

estimation with an MMA, as we were constrained to robotic rovers moving on a 2D

plane. To demonstrate the full potential of MMAs for localization, an experimental

validation of 3D DoA estimation would be worthwhile. For the 3D case, accurate

knowledge of the antenna response might even be more critical, thus an extension of

the in-situ antenna calibration algorithm to 3D would be of interest. Furthermore, also

the extension of cooperative SLAC to 3D position and 3D orientation estimation would

be a promising direction of future research, for instance to include also aerial vehicles

into the multi-agent system.

We have introduced the concept of cooperative SLAC and shown an implementa-

tion of SLAC as a centralized Bayesian filtering algorithm. In practice, a centralized

approach implies that all observations in the network must be transmitted to a central

computing unit, where the states of all nodes are estimated. The estimated states must
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then be transmitted back to the nodes. In case not all nodes have a direct connection to

the central computing unit, multi hop transmissions are required, leading to increased

latency. In case of communication outages e.g. due to deep fading, nodes do not receive

state updates. For centralized approaches, communication load grows quickly with the

network size, posing a problem for larger networks. Furthermore, the central comput-

ing unit is a single point of failure, which is unfavorable especially for space missions.

Thus, further research should investigate a decentralized implementation of cooperative

SLAC, which avoids a single point of failure. We consider decentralized cooperative

SLAC a promising approach to improve scalability by distributing the computational

load among nodes and reducing the communication requirement for larger networks.
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Appendix A
List of Acronyms and Abbreviations

AIC Akaike information criterion

AIT Array interpolation technique

BCRB Bayesian Cramér-Rao bound

BFGS Broyden–Fletcher–Goldfarb–Shanno

BIC Bayesian information criterion

BIM Bayesian information matrix

CDF Cumulative distribution function

CFO Carrier frequency offset

COTS Commercial off-the-shelf

CP Cyclic prefix

CRB Cramér-Rao bound

CW Continuous wave

DLR German Aerospace Center

DoA Direction-of-arrival

DoD Direction-of-departure

EADF Effective aperture distribution function

EBIM Equivalent Bayesian information matrix

EFIM Equivalent Fisher information matrix

EKF Extended Kalman filter

EM Electromagnetic

FFT Fast Fourier transform

FIM Fisher information matrix

FoV Field of view

FSPL Free-space path loss

GLRT Generalized likelihood ratio test

GNSS Global navigation satellite system
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GT Guard time

i.i.d. Independent and identically distributed

ICOMP Information complexity criterion

IEEE Institute of Electrical and Electronics Engineers

IEKF Iterated extended Kalman filter

LO Local oscillator

LoS Line-of-sight

MAP Maximum a posteriori

MIMO Multiple-input multiple-output

ML Maximum likelihood

MMA Multi-mode antenna

mmWave Millimeter wave

MSE Mean squared error

MUSIC Multiple signal characterization

MVDR Minimum variance distortionless response

NLoS Non-line-of-sight

OFDM Orthogonal frequency-division multiplexing

pdf Probability density function

PSK Phase-shift keying

RC Reduced complexity

RF Radio frequency

RFIC Radio-frequency integrated circuit

RFID Radio-frequency identification

RHCP Right-hand circular polarization

RMSE Root-mean-square error

RSS Received signal strength

RTK Real-time kinematic

RTT Round-trip time

SAGE Space-alternating generalized expectation maximization

SDR Software-defined radio

SLAC Simultaneous localization and calibration

SLAM Simultaneous localization and mapping

SNR Signal-to-noise ratio

TCM Theory of characteristic modes

TDMA Time-division multiple access

ToA Time-of-arrival

ToF Time-of-flight



141

TWR Two-way ranging

UAV Unmanned aerial vehicle

UCA Uniform circular array

ULA Uniform linear array

URA Uniform rectangular array

USRP Universal Software Radio Peripheral

UWB Ultra-wideband

w.r.t. With respect to

WWB Weiss-Weinstein bound

ZZB Ziv-Zakai bound



142 APPENDIX A. LIST OF ACRONYMS AND ABBREVIATIONS



Appendix B
List of Mathematical Notations

Subscripts and superscripts written in gray are optional. Optional sub-/superscripts

occur frequently for indices referring to the receiving (Rx) node i, the transmitting

(Tx) node j, the impinging signal p and the snapshot s.

General and Constants
:= Equal by definition

c Speed of light

kB Boltzmann constant

Scalars
a∗ Complex conjugate

|a| Absolute value

|A| Cardinality of set A

⌊a⌋ Floor function

j Imaginary unit

R Set of real numbers

C Set of complex numbers

Re{·}, Im{.} Real and imaginary part

arg{·} Complex argument

Vectors
a Column vector

[a]v Element v

||a|| Euclidean norm

1N Column vector of ones of length N
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0N Column vector of zeros of length N

∇f(a) Gradient

Matrices
A Matrix

[A]v,w Element in row v and column w

[A]v,: Row vector of v-th row

[A]:,w Column vector of w-th column

[A]ι,ι Submatrix of element indices ι

AT Transpose

AH Conjugate transpose

A−1 Inverse

A† Moore-Penrose pseudoinverse

||A||F Frobenius norm

A⊙B Hadamard-Schur product

A⊗B Kronecker product

IN Identity matrix of size N ×N

0N Zero matrix of size N ×N

tr {A} Trace

det{A} Determinant

rank{A} Rank

diag{a} Diagonal matrix

diag{A} Vector of diagonal elements of matrix A

vec{A} Vectorization by stacking columns

A = QΛQT Eigendecomp. of symmetric matrix

λ1,...,λN Eigenvalues

A ≽ B A−B is positive semidefinite
∂f(a)
∂a

Jacobian matrix

[H ]v,w = ∂2f(a)
∂[a]v∂[a]w

Hessian matrix

Estimation Theory
â Estimate

N Gaussian distribution

CN Complex circular symmetric Gaussian distribution

U Uniform distribution

χ2 Chi-square distribution

E{·} Expectation
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var{·} Variance

cov{·} Covariance matrix

MSE{·} Mean squared error

p(a) Probability density function (pdf)

p(a|b) Conditional pdf

La(b) = ln p(a|b) Log-likelihood function

L̃a(b) Concentrated log-likelihood function

I Fisher information matrix (FIM)

Ie Equivalent Fisher information matrix (EFIM)

J Bayesian information matrix (BIM)

J e Equivalent Bayesian information matrix (EBIM)

CRB(a) Cramér-Rao bound (CRB)

BCRB(a) Bayesian Cramér-Rao bound (BCRB)

Signal Model
t Continuous time

y(t) Time domain RF signal

x(t) Time domain baseband signal

k Discrete time domain sample index

λc Carrier wavelength

fc =
c
λc

Carrier frequency

κc =
2π
λc

Carrier wavenumber

ω Angular frequency

ωc = 2πfc Carrier angular frequency

n Subcarrier index

ωn Angular frequency of n-th subcarrier

Nsc Set of occupied subcarriers

N = |Nsc| Number of occupied subcarriers

Nfft FFT length

Bs Sampling rate

B Occupied bandwidth

fsc Subcarrier spacing

s(n) OFDM symbol

s(n, τ) Delayed OFDM symbol

s(τ) ∈ CN×1 Delayed OFDM symbol vector

p Signal index

P Number of impinging signals
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s Snapshot index

S Number of snapshots

T Snapshot interval

τ sp ToA (of p-th signal at snapshot s)

τ si,j ToA (Rx node i, Tx node j, snapshot s)

τ s ToA vector (at snapshot s)

αsp Absolute amplitude (of p-th signal at snapshot s)

αsi,j Absolute amplitude (Rx node i, Tx node j, snapshot s)

αs ∈ RP×1 Absolute amplitude vector (at snapshot s)

φsp Absolute phase (of p-th signal at snapshot s)

φsi,j Absolute phase (Rx node i, Tx node j, snapshot s)

φs ∈ RP×1 Absolute phase vector (at snapshot s)

rsi,j(n) ∈ CM×1 Received signal in discrete frequency domain (Rx node i,

Tx node j, snapshot s)

rsi,j ∈ CMN×1 Received signal vector in discrete frequency domain (Rx

node i, Tx node j, snapshot s)

wm(n) Noise at port m

wsi,j(n) Noise (Rx node i, Tx node j, snapshot s)

ws
i,j(n) ∈ CM×1 Noise vector (Rx node i, Tx node j, snapshot s)

σ2
rs
i,j

Noise variance

Tn Receiver noise temperature

PTx Average transmit power

SNR Average SNR

Antenna
m Antenna port

Mi Number of antenna ports (of node i)

θsp Inclination DoA (of p-th signal at snapshot s)

θ ∈ RP×1 Inclination DoA vector

ϕsp Azimuth DoA (of p-th signal at snapshot s)

ϕsi,j Azimuth DoA (Rx node i, Tx node j, snapshot s)

ϕs ∈ RP×1 Azimuth DoA vector (at snapshot s)

g(ω, θ, ϕ) Antenna gain for angular frequency ω

gm(θ, ϕ) Antenna gain of port m

gco,m(θ, ϕ) Antenna gain of port m for co-polarization

gcross,m(θ, ϕ) Antenna gain of port m for cross-polarization

g(θ, ϕ) ∈ RM×1 Antenna gain vector
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Φ(ω, θ, ϕ) Antenna phase response for angular frequency ω

Φm(θ, ϕ) Antenna phase response of port m

Φco,m(θ, ϕ) Antenna phase response of port m for co-polarization

Φcross,m(θ, ϕ) Antenna phase response of port m for cross-polarization

τm(θ, ϕ) Antenna group delay of port m

a(ω, θ, ϕ) Antenna response for angular frequency ω

am(θ, ϕ) Antenna response of port m

a(θ) ∈ CM×1 Antenna response vector for inclination θ

asi (ϕ) ∈ CM×1 Antenna response vector for azimuth ϕ (of node i at snap-

shot s)

a(θ, ϕ) ∈ CM×1 Antenna response vector for inclination and azimuth

A(θ) ∈ CM×P Antenna response matrix for inclination θ

A(ϕ) ∈ CM×P Antenna response matrix for azimuth ϕ

A(θ, ϕ) ∈ CM×P Antenna response matrix for inclination and azimuth

θq Sampled inclination

ϕq Sampled azimuth

q Spatial sample index

Q Number of spatial samples

eq,m Sampled antenna response with index q of port m

eq ∈ CM Sampled antenna response vector with index q

Ei ∈ CM×Q Sampled antenna response matrix (of node i)

R Radius of sphere enclosing antenna

γp Auxiliary angle (of p-th signal)

γ ∈ RP×1 Auxiliary angle vector

βp Polarization phase (of p-th signal)

β ∈ RP×1 Polarization phase vector

aco,m(θ, ϕ) Partial antenna response of port m for co-polarization

across,m(θ, ϕ) Partial antenna response of port m for cross-polarization

aco(θ, ϕ) ∈ CM×1 Partial antenna response vector for co-polarization

across(θ, ϕ) ∈ CM×1 Partial antenna response vector for cross-polarization

a(θ, ϕ, γ, β) ∈ CM×1 Polarimetric antenna response vector

A(θ,ϕ,γ,β)∈ CM×P Polarimetric antenna response matrix

Wavefield Modeling
u Coefficient index

U Number of coefficients

b(θ) ∈ CU×1 Basis vector for inclination θ
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b(ϕ) ∈ CU×1 Basis vector for azimuth ϕ

b(θ, ϕ) ∈ CU×1 Basis vector for inclination and azimuth

B ∈ CU×Q Basis matrix

Gs
i ∈ CM×U Sampling matrix (of node i at snapshot s)

Ĝ0
i ∈ CM×U Prior sampling matrix (of node i)

g ∈ CMU×1 Vectorized sampling matrix

gR ∈ RMU×1 Real part of vectorized sampling matrix

gI ∈ RMU×1 Imaginary part of vectorized sampling matrix

gsRI,i ∈ R2MU×1 Real and imaginary parts of vectorized sampling matrix (of

node i at snapshot s)

ĝ0
RI,i ∈ R2MU×1 Real and imaginary parts of vectorized prior sampling ma-

trix (of node i)

Different use of l and m:

Y m
l (θ, ϕ) Spherical harmonics of degree l and order m

Nm
l Normalization factor of degree l and order m

Pm
l (x) Associated Legendre polynomial of degree l and order m

Pl(x) Legendre polynomial of degree l

DoA and ToA Estimation
š Reference signal power

řm Estimated RSS on port m

ř ∈ RM×1 Estimated RSS vector

řsi,j Estimated RSS for Rx node i, Tx node j and snapshot s

µ̌ ∈ RM×1 Mean vector of RSS observations

Σ̌ ∈ RM×M Covariance matrix of RSS observations

σ̌2
m Variance of RSS observations of port m

ζ Parameter vector for non-coherent DoA estimation

ζ ′ Reduced parameter vector for non-coherent DoA estima-

tion

s̃(n) ∈ CP×1 Arbitrary deterministic signals

Rs̃ ∈ CP×P Signal covariance matrix

R̂r ∈ CM×M Sample covariance matrix

ΠA ∈ CM×M Projector onto signal subspace

Π⊥
A ∈ CM×M Projector onto noise subspace

D ∈ CM×2P Matrix of derivatives

Z ∈ CP×2P Selection matrix

wBF,p ∈ CM×1 Conventional beamforming weight vector
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rBF,p(n) Received signal after beamforming

rBF,p ∈ CN×1 Received signal vector after beamforming

β̄2 Mean square bandwidth

γ̄2(ϕi,j) DoA estimation capability of antenna

ᾱ2(ϕi,j) Unknown absolute amplitude impact on DoA estimation

φ̄2(ϕi,j) Unknown absolute phase impact on DoA estimation

Cooperative Network
R Agent set

A Anchor set

N Node set

i Rx node index

j Tx node index

Lsi Neighbor set of node i (at snapshot s)

l(i, j) Link index

ll(i,j) Link metrics for one link

l Link metrics for all links

nl(i,j) Link unknowns for one link

n Link unknowns for all links

psi = [xsi , y
s
i ]
T Position of agent i (at snapshot s)

dsi,j Distance between nodes i and j (at snapshot s)

ψsi Orientation of node i (at snapshot s)

vsi Linear velocity of node i at snapshot s

ωsi Angular velocity of node i at snapshot s

δsi Ranging bias of node i at snapshot s

xs State vector (at snapshot s)

x̃s Augmented state vector (at snapshot s)

xsi Node state vector (at snapshot s)

xsi,loc Node kinematic states at snapshot s

xsi,cal Node calibration states at snapshot s

xs Network state vector (at snapshot s)

zs Observation vector (at snapshot s)

x1:S States from snapshots 1 to S

z1:S Observations from snapshots 1 to S

f
(
x
(s−1)
i,loc

)
Motion model for agent i

ws
xi,loc

Kinematic process noise for agent i

Σs
xi,loc

Kinematic process noise covariance matrix for agent i
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F (s−1) State transition Jacobian matrix

Σs
x Process noise covariance matrix

In-Situ Antenna Calibration
ϕsobs Observable DoA from external sensor at snapshot s

wsϕobs Observable DoA noise at snapshot s

σ2
ϕobs

Observable DoA noise variance

J s
g,sync EBIM for the sampling matrix elements with known prop-

agation channel at snapshot s

J s
ϕ,sync EBIM for the DoAs with known propagation channel at

snapshot s

J s
g EBIM for the sampling matrix elements at snapshot s

J s
ϕ EBIM for the DoAs at snapshot s

q(xs) In-situ calibration MAP estimator cost function

am,UCA(ϕ) UCA antenna response of port m

aUCA(ϕ) UCA antenna response vector / steering vector

GUCA UCA sampling matrix

WG Sampling matrix noise matrix

wu
g Sampling matrix noise vector

σ2
g Sampling matrix noise variance

Cooperative SLAC
p(x0) Prior pdf

p
(
x0:S|z1:S

)
Posterior pdf

p
(
xs|x(s−1)

)
State transition pdf

p (zs|xs) Observation likelihood

x̄s Estimated mean after prediction

Σ̄s Estimated covariance after prediction

x̂s Estimated mean after update

Σ̂s Estimated covariance after update

x̂0
i Mean of Gaussian prior

Σ̂0
i Covariance of Gaussian prior

ιi Vector containing the indices of the elements of xsi in xs

ιi,loc Vector containing the indices of the elements of xsi,loc in xs

ιi,cal Vector containing the indices of the elements of xsi,cal in xs

h(xs) SLAC update step cost function



Appendix C
Definitions, Proofs and Derivations

C.1 Legendre Polynomials and Derivatives of Complex Spher-

ical Harmonics

The spherical harmonics (2.14) with degree l and order m can be calculated with the

associated Legendre polynomial [155]

Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm
Pl(x) (C.1)

and the Legendre polynomial

Pl(x) =
1

2l l!

dl

dxl
(x2 − 1)l. (C.2)

The partial derivatives of the spherical harmonics (2.14) with respect to θ and ϕ are

∂

∂θ
Y m
l (θ, ϕ) = m cot(θ)Y m

l (θ, ϕ) +
√

(l −m)(l +m+ 1)e−jϕY m+1
l (θ, ϕ), (C.3a)

∂

∂ϕ
Y m
l (θ, ϕ) = jmY m

l (θ, ϕ). (C.3b)

C.2 Real Spherical Harmonics and their Derivatives

The real version of the spherical harmonic functions, which can be applied in (2.15)

for the non-coherent DoA estimator described in Section 2.4.1, are given by

Y m
l (θ, ϕ) =


√
2Nm

l cos(mϕ)Pm
l (cos(θ)) if m > 0

N0
l P

m
l (cos(θ)) if m = 1

√
2N

|m|
l sin(|m|ϕ)P |m|

l (cos(θ)) if m < 0,

(C.4)
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with degree l = 0, ..., L, order m = −l, ..., l and Pm
l (.) given by (C.1). The normaliza-

tion factor Nm
l is defined as

Nm
l =

√
2l + 1

4π

(l −m)!

(l +m)!
. (C.5)

The derivative of the real spherical harmonics with respect to θ is given by

∂

∂θ
Y m
l (θ, ϕ) =


√
2Nm

l cos(mϕ)
∂Pm

l (cos(θ))

∂θ
if m > 0

N0
l
∂Pm

l (cos(θ))

∂θ
if m = 1

√
2N

|m|
l sin(|m|ϕ)∂P

|m|
l (cos(θ))

∂θ
if m < 0.

(C.6)

It contains the derivative of the associated Legendre polynomial [155]

∂Pm
l (cos(θ))

∂θ
= 1 + l −m sin(θ)Pm

l+1(cos(θ))−
l + 1

tan(θ)
Pm
l (cos(θ)). (C.7)

The derivative of the real spherical harmonics with respect to ϕ is given by

∂

∂ϕ
Y m
l (θ, ϕ) =


√
2Nm

l (−m) sin(mϕ)Pm
l (cos(θ)) if m > 0

0 if m = 1
√
2N

|m|
l (−m) cos(mϕ)P

|m|
l (cos(θ)) if m < 0.

(C.8)

C.3 Proof that RSS Observations are Approximately Gaus-

sian Distributed

Defining rm,R(n) = Re{rm(n)} and rm,I(n) = Im{rm(n)}, the sum of the squared

magnitude of the received signal

r̃m =
∑
n∈Nsc

|rm(n)|2

=
∑
n∈Nsc

r2m,R(n) + r2m,I(n)

∼ χ2(2N,Λm, σ
2
r/2)

(C.9)
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follows a noncentral χ2 distribution [195] with 2N degrees of freedom. The noncentral-

ity parameter can be derived as

Λm =
∑
n∈Nsc

(
E{rm,R(n)}2 + E{rm,I(n)}2

)
=
∑
n∈Nsc

(
Re{am(θ, ϕ)s(n)}2 + Im{am(θ, ϕ)s(n)}2

)
=
∑
n∈Nsc

|am(θ, ϕ)|2|s(n)|2

=
∑
n∈Nsc

gm(θ, ϕ)|s(n)|2

= Ngm(θ, ϕ)š.

(C.10)

The pdf of the noncentral χ2 distribution is given by

pr̃m(x) =
1

σ2
r

(
x

Λm

)N
2

e
−Λm+x

σ2
r IN

(
2
√
Λmx

σ2
r

)
, (C.11)

where Iν(.) is the modified Bessel function of the first kind, see [155]. Since řm is just

a scaled version of that, its distribution can be obtained by transformation přm(x) =

Npr̃m(Nx). By inserting (C.10), we obtain the pdf

přm(x) =
N

σ2
r

(
x

gm(θ, ϕ)š

)N
2

e−
N(gm(θ,ϕ)š+x)

σ2 IN

(
2N
√
gm(θ, ϕ)šx

σ2
r

)
. (C.12)

The mean and variance are derived as

µ̌m = E{řm}

= N−1 E{r̃m}

= N−1(Nσ2
r + Λm)

= gm(θ, ϕ)š+ σ2
r,

(C.13)

σ̌2
m = var{řm}

= N−2 var{r̃m}

= N−2(Nσ4
r + 2σ2

rΛm)

= N−1(σ4
r + 2gm(θ, ϕ)šσ

2
r).

(C.14)

For a growing number of occupied subcarriers N , (C.12) approaches a Gaussian dis-

tribution řm ∼ N (µ̌m, σ̌
2
m) due to the central limit theorem. The approximation is

reasonable for N > 25 [196].
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C.4 Derivation of Fisher Information in ToA and DoA Do-

main

First, we calculate the entities (C.15), (C.17) and (C.18). We have∑
n∈Nsc

|s(n, τi,j)|2 =
∑
n∈Nsc

|s(n)|2 = NPTx, (C.15)

see (2.10). With the derivative of (2.4),

∂

∂τi,j
s(n, τi,j) = −j2πnfscs(n)e

−j2πnfscτi,j , (C.16)

and assuming that the number of occupied subcarriersN is odd and the signal spectrum

is symmetric, |s(−n)| = |s(n)| ∀n ∈ Nsc, we have

∑
n∈Nsc

s∗(n, τi,j)
∂s(n, τi,j)

∂τi,j
= −j2πfsc

∑
n∈Nsc

n|s(n)|2 = 0, (C.17)

see also [84]. Again with (C.16), we find that

∑
n∈Nsc

∣∣∣∣∂s(n, τi,j)∂τi,j

∣∣∣∣2 = 4π2f 2
sc

∑
n∈Nsc

n2|s(n)|2. (C.18)

With (3.10), the sub-matrices of (3.11) are defined by (C.19) to (C.21).

[Il]l(i,j),l(i,j) =
2

σ2
r

∑
n∈Nsc


∥∥∥∂ E{ri,j(n)}∂τi,j

∥∥∥2 Re
{
∂ E{ri,j(n)}H

∂τi,j

∂ E{ri,j(n)}
∂ϕi,j

}
Re
{
∂ E{ri,j(n)}H

∂τi,j

∂ E{ri,j(n)}
∂ϕi,j

} ∥∥∥∂ E{ri,j(n)}∂ϕi,j

∥∥∥2


(C.19)

[Iln]l(i,j),l(i,j) =
2

σ2
r

∑
n∈Nsc

Re
{
∂ E{ri,j(n)}H

∂τi,j

∂ E{ri,j(n)}
∂αi,j

}
Re
{
∂ E{ri,j(n)}H

∂τi,j

∂ E{ri,j(n)}
∂φi,j

}
Re
{
∂ E{ri,j(n)}H

∂ϕi,j

∂ E{ri,j(n)}
∂αi,j

}
Re
{
∂ E{ri,j(n)}H

∂ϕi,j

∂ E{ri,j(n)}
∂φi,j

}


(C.20)

[In]l(i,j),l(i,j) =
2

σ2
r

∑
n∈Nsc


∥∥∥∂ E{ri,j(n)}∂αi,j

∥∥∥2 Re
{
∂ E{ri,j(n)}H

∂αi,j

∂ E{ri,j(n)}
∂φi,j

}
Re
{
∂ E{ri,j(n)}H

∂αi,j

∂ E{ri,j(n)}
∂φi,j

} ∥∥∥∂ E{ri,j(n)}∂φi,j

∥∥∥2


(C.21)
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Using the definitions (3.14) and (3.16) and (C.15), (C.17) and (C.18), the elements of

Il evaluate to (C.22) to (C.24).

∑
n∈Nsc

∥∥∥∥∂ E {ri,j(n)}
∂τi,j

∥∥∥∥2 = α2
i,j4π

2f 2
sc∥a(ϕi,j)∥2

∑
n∈Nsc

n2|s(n)|2

= α2
i,jNPTxβ̄

2∥a(ϕi,j)∥2
(C.22)

∑
n∈Nsc

Re

{
∂ E {ri,j(n)}H

∂τi,j

∂ E {ri,j(n)}
∂ϕi,j

}
=α2

i,j2πfscRe

{
jaH(ϕi,j)

∂a(ϕi,j)

∂ϕi,j

∑
n∈Nsc

n|s(n)|2
}

=0

(C.23)

∑
n∈Nsc

∥∥∥∥∂ E {ri,j(n)}
∂ϕi,j

∥∥∥∥2 = α2
i,jNPTx

∥∥∥∥∂a(ϕi,j)∂ϕi,j

∥∥∥∥2
= α2

i,jNPTxγ̄
2∥a(ϕi,j)∥2

(C.24)

Again using (C.15), (C.17) and (C.18), the elements of Iln evaluate to (C.25) to (C.28).

∑
n∈Nsc

Re

{
∂ E {ri,j(n)}H

∂τi,j

∂ E {ri,j(n)}
∂αi,j

}
= αi,j2π∥a(ϕi,j)∥2

∑
n∈Nsc

Re
{
jn|s(n)|2

}
= 0

(C.25)

∑
n∈Nsc

Re

{
∂ E {ri,j(n)}H

∂τi,j

∂ E {ri,j(n)}
∂φi,j

}
= −α2

i,j2π∥a(ϕi,j)∥2
∑
n∈Nsc

n|s(n)|2

= 0

(C.26)

∑
n∈Nsc

Re

{
∂ E {ri,j(n)}H

∂ϕi,j

∂ E {ri,j(n)}
∂αi,j

}
= αi,j Re

{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

} ∑
n∈Nsc

|s(n)|2

= αi,jNPTxRe

{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}
(C.27)

∑
n∈Nsc

Re

{
∂ E {ri,j(n)}H

∂ϕi,j

∂ E {ri,j(n)}
∂φi,j

}
= α2

i,j Re

{
j
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

} ∑
n∈Nsc

|s(n)|2

= −α2
i,jNPTx Im

{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}
(C.28)
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Finally, the elements of In evaluate to (C.29) to (C.31).

∑
n∈Nsc

∥∥∥∥∂ E {ri,j(n)}
∂αi,j

∥∥∥∥2 = ∥a(ϕi,j)∥2
∑
n∈Nsc

|s(n)|2

= NPTx∥a(ϕi,j)∥2
(C.29)

∑
n∈Nsc

Re

{
∂ E {ri,j(n)}H

∂αi,j

∂ E {ri,j(n)}
∂φi,j

}
= αi,j∥a(ϕi,j)∥2

∑
n∈Nsc

Re
{
j|s(n)|2

}
= 0

(C.30)

∑
n∈Nsc

∥∥∥∥∂ E {ri,j(n)}
∂φi,j

∥∥∥∥ = α2
i,j∥a(ϕi,j)∥2

∑
n∈Nsc

|s(n)|2

= α2
i,jNPTx∥a(ϕi,j)∥2

(C.31)

Inserting the above equations into (C.19) to (C.21) and using definitions (3.17)

and (3.18), we obtain

[Il]l(i,j),l(i,j) =
2

σ2
r

[
α2
i,jNPTx∥a(ϕi,j)∥2β̄2 0

0 α2
i,jNPTx∥a(ϕi,j)∥2γ̄2

]
(C.32)

and

[IlnI
−1
n ITln]l(i,j),l(i,j)

=
2

σ2
r

[
0 0

αi,jNPTxRe
{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}
−α2

i,jNPTx Im
{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}]
[
NPTx∥a(ϕi,j)∥2 0

0 α2
i,jNPTx∥a(ϕi,j)∥2

]−1

[
0 0

αi,jNPTxRe
{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}
−α2

i,jNPTx Im
{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}]T

=
2

σ2
r

0 0

0
α2
i,jNPTx Re

{
∂aH (ϕi,j)

∂ϕi,j
a(ϕi,j)

}2

∥a(ϕi,j)∥2 +
α2
i,jNPTx Im

{
∂aH (ϕi,j)

∂ϕi,j
a(ϕi,j)

}2

∥a(ϕi,j)∥2


=

2

σ2
r

[
0 0

0 α2
i,jNPTx∥a(ϕi,j)∥2 (ᾱ2 + φ̄2)

]
.

(C.33)
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With (3.12), we finally arrive at

[Ie
l ]l(i,j),l(i,j) =

2α2
i,jNPTx∥a(ϕi,j)∥2

σ2
r

[
β̄2 0

0 γ̄2(ϕi,j)− ᾱ2(ϕi,j)− φ̄2(ϕi,j)

]
. (C.34)

C.5 Proof that ᾱ2(ϕi,j) = 0 for an Ideal Antenna Array

An arbitrary ideal antenna array located in the x-y-plane with the antenna element

positions pm = [xm, ym]
T for m ∈ {1, ...,M}, is described by the steering vector or

antenna response

am(ϕi,j) = e−j2π(xm cos(ϕi,j)+ym sin(ϕi,j))/λc , (C.35)

see e.g. [28]. Realizing that

Re

{
∂a∗m(ϕi,j)

∂ϕi,j
am(ϕi,j)

}
= Re

{
−j2π

λc
(−xm sin(ϕi,j) + ym cos(ϕi,j))

}
= 0 (C.36)

for all m, thus

Re

{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}
= 0 (C.37)

and with (3.17)

ᾱ2(ϕi,j) = 0. (C.38)

C.6 Proof that φ̄2(ϕi,j) = 0 for an Ideal UCA

For a UCA with radius R measured in wavelengths, the steering vector or antenna

response is given by

am(ϕi,j) = ej2πR cos(ϕi,j−2πm−1
M ), (C.39)

see e.g. [28]. The derivative of (C.39) w.r.t. ϕi,j is

∂a∗m(ϕi,j)

∂ϕi,j
am(ϕi,j) = −j2πR sin

(
ϕi,j − 2π

m− 1

M

)
. (C.40)

Realizing that

Im

{
∂aH(ϕi,j)

∂ϕi,j
a(ϕi,j)

}
= Im

{
M∑
m=1

∂a∗m(ϕi,j)

∂ϕi,j
am(ϕi,j)

}

= −2πR
M∑
m=1

sin

(
ϕi,j − 2π

m− 1

M

)
= 0

(C.41)
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and with (3.18)

φ̄2(ϕi,j) = 0. (C.42)

C.7 Proof that DoA CRB from (3.13) is Equal to C-CRB

(2.42)

According to the assumptions from Section 3.1, we estimate only the azimuth ϕ of a

single impinging signal (P = 1). With (2.36) and (3.5), we have s̃(n) = s(n, τ)αejφ

and the signal covariance matrix becomes

Rs̃ =
1

N

∑
n∈Nsc

s̃(n)s̃H(n) = α2PTx. (C.43)

Thus (2.42) simplifies to

CRB(ϕ) =
σ2
r

2α2PTxN
Re{DHΠ⊥

AD}−1

=
σ2
r

2α2PTxN
Re

{
∂aH(ϕ)

∂ϕ

(
IM − a(ϕ)aH(ϕ)

aH(ϕ)a(ϕ)

)
∂a(ϕ)

∂ϕ

}−1

=
σ2
r

2α2PTxN

∥∥∥∥∂a(ϕ)∂ϕ

∥∥∥∥2 −
∣∣∣∂aH(ϕ)

∂ϕ
a(ϕ)

∣∣∣2
∥a(ϕ)∥2


−1

.

(C.44)

Omitting the agent indices and taking the inverse of the DoA related EFIM element

from (3.13) yields

CRB(ϕ) =
σ2
r

2α2PTxN∥a(ϕ)∥2
(
γ̄2(ϕ)− ᾱ2(ϕ)− φ̄2(ϕ)

)−1

=
σ2
r

2α2PTxN∥a(ϕ)∥2


∥∥∥∂a(ϕ)∂ϕ

∥∥∥2
∥a(ϕ)∥2

−
Re
{
∂aH(ϕ)
∂ϕ

a(ϕ)
}2

∥a(ϕ)∥4
−

Im
{
∂aH(ϕ)
∂ϕ

a(ϕ)
}2

∥a(ϕ)∥4


−1

=
σ2
r

2α2PTxN

∥∥∥∥∂a(ϕ)∂ϕ

∥∥∥∥2 −
∣∣∣∂aH(ϕ)

∂ϕ
a(ϕ)

∣∣∣2
∥a(ϕ)∥2


−1

,

(C.45)

which is equivalent to (C.44).
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C.8 Proof that DoA Estimation is Invariant to Absolute Am-

plitude and Phase of the Antenna Response

The coherent DoA estimator C-ML (2.39) evaluates the projector onto the signal sub-

space (2.41), which requires any subset of P antenna response vectors a(θp, ϕp) to be

linearly independent. This is equivalent to rank{A(θ,ϕ)} = P . Assume that instead

of the antenna response matrix A(θ,ϕ), we have an antenna response matrix

Ã(θ,ϕ) =
[
a(θ1, ϕ1)α(θ1, ϕ1)e

jφ(θ1,ϕ1) ... a(θP , ϕP )α(θP , ϕP )e
jφ(θP ,ϕP ),

]
(C.46)

which is corrupted by arbitrary direction-dependent absolute amplitudes α(θp, ϕp) and

absolute phases ejφ(θp,ϕp). Rewriting in matrix form yields

Ã(θ,ϕ) = A(θ,ϕ)C(θ,ϕ) (C.47)

with

C(θ,ϕ) = diag

{[
α(θ1, ϕ1)e

jφ(θ1,ϕ1) ... α(θP , ϕP )e
jφ(θP ,ϕP )

]T}
. (C.48)

The projector onto the signal subspace (2.41) assuming Ã(θ,ϕ) is then

ΠÃ = Ã(θ,ϕ)
(
ÃH(θ,ϕ)Ã(θ,ϕ)

)−1

ÃH(θ,ϕ)

= A(θ,ϕ)C(θ,ϕ)
(
CH(θ,ϕ)AH(θ,ϕ)A(θ,ϕ)C(θ,ϕ)

)−1
CH(θ,ϕ)AH(θ,ϕ)

= A(θ,ϕ)C(θ,ϕ)C−1(θ,ϕ)
(
AH(θ,ϕ)A(θ,ϕ)

)−1(
CH(θ,ϕ)

)−1
CH(θ,ϕ)AH(θ,ϕ)

= A(θ,ϕ)
(
AH(θ,ϕ)A(θ,ϕ)

)−1
AH(θ,ϕ),

(C.49)

which is identical to (2.41). The coherent DoA estimator C-ML (2.39) is thus invariant

to absolute amplitude and phase variations of the antenna response.

C.9 Gradient of In-Situ Calibration MAP Estimator Cost

Function

The parts of the gradient ∇q(x0:S) (4.20) are given by the partial derivatives (C.50)

to (C.52).

∂q(x0:S)

∂gR

=
−1

σ2
r

S∑
s=1

∂L̃rs(ϕs, g)

∂gR

+
gR − g0

R

σ2
g0

(C.50)
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∂q(x0:S)

∂gI

=
−1

σ2
r

S∑
s=1

∂L̃rs(ϕs, g)

∂gI

+
gI − g0

I

σ2
g0

(C.51)

∂q(x0:S)

∂ϕs
= −


∂L̃rs (ϕ

s,g)
∂ϕs1
...

∂L̃rs (ϕ
s,g)

∂ϕsP

+

[
1

σ2
ϕobs

(ϕs1 − ϕsobs)

0

]
(C.52)

With the partial derivative of (4.12) w.r.t. the complex matrix V ,

∂L̃rs(ϕs, g)

∂V
= −2

(
V ⊥r − r

) (
rHV (V HV )−1

)
, (C.53)

from which we extract the p-th column ∂Vp =
[
∂L̃rs (ϕ

s,g)
∂V

]
:,p
, we apply the chain rule

to obtain (C.54) to (C.56).

∂L̃rs(ϕs, g)

∂gR

=
P∑
p=1

Re
{(

b∗(ϕp)s
H(τp)⊗ IM

)
∂Vp

}
(C.54)

∂L̃rs(ϕs, g)

∂gI

=
P∑
p=1

Im
{(

b∗(ϕp)s
H(τp)⊗ IM

)
∂Vp

}
(C.55)

∂L̃rs(ϕs, g)

∂ϕp
= Re

{
∂V H

p vec

{
G
∂b(ϕp)

∂ϕp
sT (τp)

}}
(C.56)

C.10 Derivation of In-Situ Calibration FIM Elements

For the derivation of the elements of the FIMs (4.28) to (4.32), we write the expectation

of (4.9) in different forms using matrix and vector notations,

Ers(n)|x̃s {rs(n)} =
P∑
p=1

a(ϕsp)s(n, τ
s
p )α

s
pe

jφs
p

=A(ϕs)C(αs,φs)s(n, τ s)

=
(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)
(gR + jgI)

=
(
(C(αs,φs)s(n, τ s))T ⊗G

)
vec {B(ϕs)}

=
(
sT (n, τ s)⊗A(ϕs)

)
vec {C(αs,φs)} ,

(C.57)
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with

A(ϕs) = GB(ϕs) ∈ CM×P , (C.58)

B(ϕs) =
[
b(ϕs1) ... b(ϕsP )

]
∈ CU×P , (C.59)

C(αs,φs) =


αs1e

jφs
1

. . .

αsP e
jφs

P

 ∈ CP×P , (C.60)

s(n, τ s) =


s(n, τ s1 )

...

s(n, τ sP )

 ∈ CP×1. (C.61)

We define the signal covariance matrix

Rs =
1

N

∑
n∈Nsc

s(n, τ s)sH(n, τ s) (C.62)

and the Jacobian matrices (C.63) to (C.65).

Bϕs :=
∂ vec {B(ϕs)}

∂ϕs
∈ CP×P (C.63a)

[Bϕs ]p,p =
∂b(ϕsp)

∂ϕsp
, p ∈ {1, ..., P} (C.63b)

Cαs :=
∂ vec {C(αs,φs)}

∂αs
∈ CP 2×P (C.64a)

[Cαs ]P (p−1)+p,p = ejφp , p ∈ {1, ..., P} (C.64b)

Cφsj :=
∂ vec {C(αs,φs)}

∂φs
∈ CP 2×P (C.65a)

[Cφsj]P (p−1)+p,p = αpe
jφp , p ∈ {1, ..., P} (C.65b)

Using the appropriate forms of (C.57) and the Kronecker product property

(A⊗B)H(C ⊗D) = AHC ⊗BHD, (C.66)
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the elements of (4.28) to (4.32) are given by (C.67) to (C.81).

IsgR =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gR

∂ Ers(n)|x̃s {rs(n)}
∂gR

}

=
2

σ2
r

Re

{ ∑
n∈Nsc

(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)H
(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)}
=

2N

σ2
r

Re
{
B(ϕs)C(αs,φs)RsC

H(αs,φs)BH(ϕs)⊗ IM
}

(C.67)

IsgI =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gI

∂ Ers(n)|x̃s {rs(n)}
∂gI

}

=
2

σ2
r

Re

{ ∑
n∈Nsc

(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)H
(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)}
= IsgR (C.68)

IsgRgI
=

2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gR

∂ Ers(n)|x̃s {rs(n)}
∂gI

}

=
2

σ2
r

Re

{ ∑
n∈Nsc

(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)H
(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)
j

}
=

2N

σ2
r

Im
{
B(ϕs)C(αs,φs)RsC

H(αs,φs)BH(ϕs)⊗ IM
}

(C.69)

IsgRϕ =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gR

∂ Ers(n)|x̃s {rs(n)}
∂ϕs

}

=
2

σ2
r

Re

{ ∑
n∈Nsc

(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)H
(
(C(αs,φs)s(n, τ s))T ⊗G

)
Bϕs

}



163

=
2N

σ2
r

Re {(B∗(ϕs)C∗(αs,φs)R∗
sC(αs,φs)⊗G)Bϕs} (C.70)

IsgRα =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gR

∂ Ers(n)|x̃s {rs(n)}
∂αs

}

=
2

σ2
r

Re

{∑
n∈Nsc

(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)H (
sT (n, τ s)⊗A(ϕs)

)
Cαs

}

=
2N

σ2
r

Re {(B∗(ϕs)C∗(αs,φs)R∗
s ⊗A(ϕs))Cαs} (C.71)

IsgRφ =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gR

∂ Ers(n)|x̃s {rs(n)}
∂φs

}

=
2

σ2
r

Re

{∑
n∈Nsc

(
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)H (
sT (n, τ s)⊗A(ϕs)

)
Cφsj

}

=
−2N

σ2
r

Im {(B∗(ϕs)C∗(αs,φs)R∗
s ⊗A(ϕs))Cφs} (C.72)

IsgIϕ =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gI

∂ Ers(n)|x̃s {rs(n)}
∂ϕs

}

=
2

σ2
r

Re

{ ∑
n∈Nsc

((
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)
j
)H

(
(C(αs,φs)s(n, τ s))T ⊗G

)
Bϕs

}
=

2N

σ2
r

Im
{(

B∗(ϕs)C∗(αs,φs)R∗
sC

T (αs,φs)⊗G
)
Bϕs

}
(C.73)

IsgIα =
2

σ2
r

Re

{∑
n∈Nsc

∂ Ers(n)|x̃s {rs(n)}H

∂gI

∂ Ers(n)|x̃s {rs(n)}
∂αs

}

=
2

σ2
r

Re

{ ∑
n∈Nsc

((
(B(ϕs)C(αs,φs)s(n, τ s))T ⊗ IM

)
j
)H

(
sT (n, τ s)⊗A(ϕs)

)
Cαs

}
=

2N

σ2
r

Im {(B∗(ϕs)C∗(αs,φs)R∗
s ⊗A(ϕs))Cαs} (C.74)



164 APPENDIX C. DEFINITIONS, PROOFS AND DERIVATIONS
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C.11 Jacobian Matrix of the Motion Model

The Jacobian matrix of the motion model f
(
x
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)
defined in (5.9) is
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with (C.83a) to (C.83f), where for notational brevity we use s9 := s− 1 to denote the

previous snapshot index.
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C.12 Partial Derivative of Log-Likelihood Function w.r.t.

State Vector for Gradient of SLAC Update Step

By the definition of the state vector (5.7) we have
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with different definition for agents R and anchors A according to (5.1), such that
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The partial derivatives w.r.t. the node kinematic states (5.2) evaluate to
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with
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(5.32), the log-likelihood function is defined separately for nodes with singleport and
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and
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Finally, the partial derivative of the log-likelihood function for nodes with singleport

antenna (5.17) evaluates to
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and the partial derivative of the log-likelihood functions for nodes with multiport an-

tenna (5.20) evaluate to
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[J8] E. Staudinger, S. Zhang, R. Pöhlmann, and A. Dammann, “The role of time in

a robotic swarm: A joint view on communications, localization, and sensing,”

IEEE Communications Magazine, vol. 59, no. 2, pp. 98–104, Feb. 2021.

Conference Publications
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[C4] R. Pöhlmann, S. Zhang, A. Dammann, and P. A. Hoeher, “Fundamental limits

for joint relative position and orientation estimation with generic antennas,” in

Proc. 26th European Signal Processing Conf. (EUSIPCO), Rome, Italy, 2018,

pp. 697–701.
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dermayer, R. Giubilato, M. Vayugundla, H. Lehner, P. Lehner, F. Steidle,

L. Meyer, K. Bussmann, J. Reill, W. Stürzl, I. von Bargen, R. Sakagami,

M. Smisek, M. Durner, E. Staudinger, R. Pöhlmann, S. Zhang, C. Braun,
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