285 research outputs found

    From theory to experimental evaluation: resource management in software-defined vehicular networks

    Get PDF
    Managing resources in dynamic vehicular environments is a tough task, which is becoming more challenging with the increased number of access technologies today available in connected cars (e.g., IEEE 802.11, LIE), in the variety of applications provided on the road (e.g., safety, traffic efficiency, and infotainment), in the amount of driving awareness/coordination required (e.g., local, context, and cooperative awareness), and in the level of automation toward zero-accident driving (e.g., platooning and autonomous driving). The open programmability and logically centralized control features of the software-defined networking (SDN) paradigm offer an attractive means to manage communication and networking resources in the vehicular environment and promise improved performance. In this paper, we enumerate the potentials of software-defined vehicular networks, analyze the need to rethink the traditional SDN approach from theoretical and practical standpoints when applied in this application context, and present an emulation approach based on the proposed node car architecture in Mininet-WiFi to showcase the applicability and some expected benefits of SDN in a selected use case scenario530693076FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP14/18482-

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Quality of service aware data dissemination in vehicular Ad Hoc networks

    Full text link
    Des systèmes de transport intelligents (STI) seront éventuellement fournis dans un proche avenir pour la sécurité et le confort des personnes lors de leurs déplacements sur les routes. Les réseaux ad-hoc véhiculaires (VANETs) représentent l'élément clé des STI. Les VANETs sont formés par des véhicules qui communiquent entre eux et avec l'infrastructure. En effet, les véhicules pourront échanger des messages qui comprennent, par exemple, des informations sur la circulation routière, les situations d'urgence et les divertissements. En particulier, les messages d'urgence sont diffusés par des véhicules en cas d'urgence (p.ex. un accident de voiture); afin de permettre aux conducteurs de réagir à temps (p.ex., ralentir), les messages d'urgence doivent être diffusés de manière fiable dans un délai très court. Dans les VANETs, il existe plusieurs facteurs, tels que le canal à pertes, les terminaux cachés, les interférences et la bande passante limitée, qui compliquent énormément la satisfaction des exigences de fiabilité et de délai des messages d'urgence. Dans cette thèse, en guise de première contribution, nous proposons un schéma de diffusion efficace à plusieurs sauts, appelé Dynamic Partitioning Scheme (DPS), pour diffuser les messages d'urgence. DPS calcule les tailles de partitions dynamiques et le calendrier de transmission pour chaque partition; à l'intérieur de la zone arrière de l'expéditeur, les partitions sont calculées de sorte qu'en moyenne chaque partition contient au moins un seul véhicule; l'objectif est de s'assurer que seul un véhicule dans la partition la plus éloignée (de l'expéditeur) est utilisé pour diffuser le message, jusqu'au saut suivant; ceci donne lieu à un délai d'un saut plus court. DPS assure une diffusion rapide des messages d'urgence. En outre, un nouveau mécanisme d'établissement de liaison, qui utilise des tonalités occupées, est proposé pour résoudre le problème du problème de terminal caché. Dans les VANETs, la Multidiffusion, c'est-à-dire la transmission d'un message d'une source à un nombre limité de véhicules connus en tant que destinations, est très importante. Par rapport à la diffusion unique, avec Multidiffusion, la source peut simultanément prendre en charge plusieurs destinations, via une arborescence de multidiffusion, ce qui permet d'économiser de la bande passante et de réduire la congestion du réseau. Cependant, puisque les VANETs ont une topologie dynamique, le maintien de la connectivité de l'arbre de multidiffusion est un problème majeur. Comme deuxième contribution, nous proposons deux approches pour modéliser l'utilisation totale de bande passante d'une arborescence de multidiffusion: (i) la première approche considère le nombre de segments de route impliqués dans l'arbre de multidiffusion et (ii) la seconde approche considère le nombre d'intersections relais dans l'arbre de multidiffusion. Une heuristique est proposée pour chaque approche. Pour assurer la qualité de service de l'arbre de multidiffusion, des procédures efficaces sont proposées pour le suivi des destinations et la surveillance de la qualité de service des segments de route. Comme troisième contribution, nous étudions le problème de la congestion causée par le routage du trafic de données dans les VANETs. Nous proposons (1) une approche de routage basée sur l’infonuagique qui, contrairement aux approches existantes, prend en compte les chemins de routage existants qui relaient déjà les données dans les VANETs. Les nouvelles demandes de routage sont traitées de sorte qu'aucun segment de route ne soit surchargé par plusieurs chemins de routage croisés. Au lieu d'acheminer les données en utilisant des chemins de routage sur un nombre limité de segments de route, notre approche équilibre la charge des données en utilisant des chemins de routage sur l'ensemble des tronçons routiers urbains, dans le but d'empêcher, dans la mesure du possible, les congestions locales dans les VANETs; et (2) une approche basée sur le réseau défini par logiciel (SDN) pour surveiller la connectivité VANET en temps réel et les délais de transmission sur chaque segment de route. Les données de surveillance sont utilisées en entrée de l'approche de routage.Intelligent Transportation Systems (ITS) will be eventually provided in the near future for both safety and comfort of people during their travel on the roads. Vehicular ad-hoc Networks (VANETs), represent the key component of ITS. VANETs consist of vehicles that communicate with each other and with the infrastructure. Indeed, vehicles will be able to exchange messages that include, for example, information about road traffic, emergency situations, and entertainment. Particularly, emergency messages are broadcasted by vehicles in case of an emergency (e.g., car accident); in order to allow drivers to react in time (e.g., slow down), emergency messages must be reliably disseminated with very short delay. In VANETs, there are several factors, such as lossy channel, hidden terminals, interferences and scarce bandwidth, which make satisfying reliability and delay requirements of emergency messages very challenging. In this thesis, as the first contribution, we propose a reliable time-efficient and multi-hop broadcasting scheme, called Dynamic Partitioning Scheme (DPS), to disseminate emergency messages. DPS computes dynamic partition sizes and the transmission schedule for each partition; inside the back area of the sender, the partitions are computed such that in average each partition contains at least a single vehicle; the objective is to ensure that only a vehicle in the farthest partition (from the sender) is used to disseminate the message, to next hop, resulting in shorter one hop delay. DPS ensures fast dissemination of emergency messages. Moreover, a new handshaking mechanism, that uses busy tones, is proposed to solve the problem of hidden terminal problem. In VANETs, Multicasting, i.e. delivering a message from a source to a limited known number of vehicles as destinations, is very important. Compared to Unicasting, with Multicasting, the source can simultaneously support multiple destinations, via a multicast tree, saving bandwidth and reducing overall communication congestion. However, since VANETs have a dynamic topology, maintaining the connectivity of the multicast tree is a major issue. As the second contribution, we propose two approaches to model total bandwidth usage of a multicast tree: (i) the first approach considers the number of road segments involved in the multicast tree and (ii) the second approach considers the number of relaying intersections involved in the multicast tree. A heuristic is proposed for each approach. To ensure QoS of the multicasting tree, efficient procedures are proposed for tracking destinations and monitoring QoS of road segments. As the third contribution, we study the problem of network congestion in routing data traffic in VANETs. We propose (1) a Cloud-based routing approach that, in opposition to existing approaches, takes into account existing routing paths which are already relaying data in VANETs. New routing requests are processed such that no road segment gets overloaded by multiple crossing routing paths. Instead of routing over a limited set of road segments, our approach balances the load of communication paths over the whole urban road segments, with the objective to prevent, whenever possible, local congestions in VANETs; and (2) a Software Defined Networking (SDN) based approach to monitor real-time VANETs connectivity and transmission delays on each road segment. The monitoring data is used as input to the routing approach

    The Trap Coverage Area Protocol for Scalable Vehicular Target Tracking

    Get PDF
    Vehicle target tracking is a sub-field of increasing and increasing interest in the vehicular networking research area, in particular for its potential application in dense urban areas with low associated costs, e.g., by exploiting existing monitoring infrastructures and cooperative collaboration of regular vehicles. Inspired by the concept of trap coverage area, we have originally designed and implemented an original protocol for vehicle tracking in wide-scale urban scenarios, called TCAP. TCAP is capable of achieving the needed performance while exploiting a limited number of inexpensive sensors (e.g., public-authority cameras already installed at intersections for traffic monitoring), and opportunistic vehicle collaboration, with high scalability and low overhead if compared with state-of-the-art literature. In particular, the wide set of reported results show i) the suitability of our TCAP tracking in the challenging urban conditions of high density of vehicles, ii) the very weak dependency of TCAP performance from topology changes/constraints (e.g., street lengths and speed limits), iii) the TCAP capability of self-adapting to differentiated runtime conditions

    On the realization of VANET using named data networking: On improvement of VANET using NDN-based routing, caching, and security

    Get PDF
    Named data networking (NDN) presents a huge opportunity to tackle some of the unsolved issues of IP-based vehicular ad hoc networks (VANET). The core characteristics of NDN such as the name-based routing, in-network caching, and built-in data security provide better management of VANET proprieties (e.g., the high mobility, link intermittency, and dynamic topology). This study aims at providing a clear view of the state-of-the-art on the developments in place, in order to leverage the characteristics of NDN in VANET. We resort to a systematic literature review (SLR) to perform a reproducible study, gathering the proposed solutions and summarizing the main open challenges on implementing NDN-based VANET. There exist several related studies, but they are more focused on other topics such as forwarding. This work specifically restricts the focus on VANET improvements by NDN-based routing (not forwarding), caching, and security. The surveyed solution herein presented is performed between 2010 and 2021. The results show that proposals on the selected topics for NDN-based VANET are recent (mainly from 2016 to 2021). Among them, caching is the most investigated topic. Finally, the main findings and the possible roadmaps for further development are highlighted

    SDN-based VANET routing: A comprehensive survey on architectures, protocols, analysis, and future challenges

    Get PDF
    As the automotive and telecommunication industries advance, more vehicles are becoming connected, leading to the realization of intelligent transportation systems (ITS). Vehicular ad-hoc network (VANET) supports various ITS services, including safety, convenience, and infotainment services for drivers and passengers. Generally, such services are realized through data sharing among vehicles and nearby infrastructures or vehicles over multi-hop data routing mechanisms. Vehicular data routing faces many challenges caused by vehicle dynamicity, intermittent connectivity, and diverse application requirements. Consequently, the software-defined networking (SDN) paradigm offers unique features such as programmability and flexibility to enhance vehicular network performance and management and meet the quality of services (QoS) requirements of various VANET services. Recently, VANET routing protocols have been improved using the multilevel knowledge and an up-to-date global view of traffic conditions offered by SDN technology. The primary objective of this study is to furnish comprehensive information regarding the current SDN-based VANET routing protocols, encompassing intricate details of their underlying mechanisms, forwarding algorithms, and architectural considerations. Each protocol will be thoroughly examined individually, elucidating its strengths, weaknesses, and proposed enhancements. Also, the software-defined vehicular network (SDVN) architectures are presented according to their operation modes and controlling degree. Then, the potential of SDN-based VANET is explored from the aspect of routing and the design requirements of routing protocols in SDVNs. SDVN routing algorithms are uniquely classified according to various criteria. In addition, a complete comparative analysis will be achieved to analyze the protocols regarding performance, optimization, and simulation results. Finally, the challenges and upcoming research directions for developing such protocols are widely stated here. By presenting such insights, this paper provides a comprehensive overview and inspires researchers to enhance existing protocols and explore novel solutions, thereby paving the way for innovation in this field

    Collaborative Sensing in Automotive Scenarios : Enhancement of the Vehicular Electronic Horizon through Collaboratively Sensed Knowledge

    Get PDF
    Modern vehicles are equipped with a variety of advanced driver assistance systems that increase driving comfort, economy and safety. Respective information sources for these systems are local sensors, like cameras, radar or lidar. However, the next generation of assistant systems will require information above the local sensing range. An extension of the local perception can be provided by the use of appro- priate communication mechanisms. Hence, other vehicles can serve as an informa- tion source by providing their local perception data, but also any other information source, such as cloud services. Required communication can take place directly be- tween vehicles via mobile ad-hoc communication or via a backend by the use of cellu- lar communication. The appropriate technology depends on the respective use case, that determines information content, granularity and tolerated latency. Based on liter- ature, we derived a categorization of use case dependent information demands, with respect to communication. The resulting three zones, namely safety zone, awareness zone and information zone, refer to the tolerated latency between the occurrence of an information and the point in time the information has to be processed at the receiver side. While communication mechanisms for the safety zone, i. e., the ego-vehicle’s di- rect surroundings with a remaining driving time of less than 2 − 5 seconds, have been focus in research and standardization in the past, respective mechanisms for larger distances have not been sufficiently considered. In this thesis, we examine in- formation distribution mechanisms in context of the previously mentioned use case categories. As the first key contribution, we consider the gathering of vehicular sensed data with regard to the information zone, i. e., more than 30 seconds remaining driving time to the point of the information origin. We developed a probabilistic data collection model that is able to reduce data traffic up to 85 % compared to opportunistic trans- mission and still sticks to certain quality metrics, e. g., a maximum detection latency. A central adaption of transmission probabilities to the density of transmitting vehi- cles is applicable for cellular use and copes with sparse traffic situations. Moreover, we have extended this approach by hybrid communication, i. e., the parallel use of cellular and mobile ad-hoc communication. This allows to further reduce cellular based data traffic, in particular in case of dense traffic. As the second key contribution, we examine the efficient distribution of the pre- viously gathered information. Information is structured and prioritized according to the most probable driving path, as so-called electronic horizon. The transmission towards the vehicles is performed in small data packets, according to the given pri- orities. The aim is to transmit only information relevant for road segments that will be used. Concerning this, we developed a mechanism for most probable travel path estimation and a data structure for efficient mapping of the electronic horizon. As the third key contribution, we examine the information exchange in the aware- ness zone, an area between the safety zone and the information zone with about 5 to 30 seconds remaining driving time to the point of the information origin. Derived from the respective use cases, this data is not directly safety relevant, but it is still about dynamic position information of neighboring vehicles. Due to the relatively long distance, direct vehicle to vehicle communication is not possible. Respective data has to be forwarded by intermediate vehicles. However, position beacons with- out data forwarding can already cause channel congestion in dense traffic situations. The use of cellular networks would require absolute total network coverage with permanent free channel resources. To enable forwarding of dynamic vehicle infor- mation anyhow, we developed at first a mechanism to reduce the channel load for position beacons. Next, we use the freed-up bandwidth to forward dynamic informa- tion about neighboring vehicle positions. With this mechanism, we are able to more than double the range of vehicular perception, with respect to moving objects. In extension to standardized communication mechanisms for the safety relevant direct proximity, our three mentioned contributions provide the means to complete the long range vehicular perception for future advanced driver assistance systems
    corecore