452 research outputs found

    Trademark image retrieval by local features

    Get PDF
    The challenge of abstract trademark image retrieval as a test of machine vision algorithms has attracted considerable research interest in the past decade. Current operational trademark retrieval systems involve manual annotation of the images (the current ‘gold standard’). Accordingly, current systems require a substantial amount of time and labour to access, and are therefore expensive to operate. This thesis focuses on the development of algorithms that mimic aspects of human visual perception in order to retrieve similar abstract trademark images automatically. A significant category of trademark images are typically highly stylised, comprising a collection of distinctive graphical elements that often include geometric shapes. Therefore, in order to compare the similarity of such images the principal aim of this research has been to develop a method for solving the partial matching and shape perception problem. There are few useful techniques for partial shape matching in the context of trademark retrieval, because those existing techniques tend not to support multicomponent retrieval. When this work was initiated most trademark image retrieval systems represented images by means of global features, which are not suited to solving the partial matching problem. Instead, the author has investigated the use of local image features as a means to finding similarities between trademark images that only partially match in terms of their subcomponents. During the course of this work, it has been established that the Harris and Chabat detectors could potentially perform sufficiently well to serve as the basis for local feature extraction in trademark image retrieval. Early findings in this investigation indicated that the well established SIFT (Scale Invariant Feature Transform) local features, based on the Harris detector, could potentially serve as an adequate underlying local representation for matching trademark images. There are few researchers who have used mechanisms based on human perception for trademark image retrieval, implying that the shape representations utilised in the past to solve this problem do not necessarily reflect the shapes contained in these image, as characterised by human perception. In response, a ii practical approach to trademark image retrieval by perceptual grouping has been developed based on defining meta-features that are calculated from the spatial configurations of SIFT local image features. This new technique measures certain visual properties of the appearance of images containing multiple graphical elements and supports perceptual grouping by exploiting the non-accidental properties of their configuration. Our validation experiments indicated that we were indeed able to capture and quantify the differences in the global arrangement of sub-components evident when comparing stylised images in terms of their visual appearance properties. Such visual appearance properties, measured using 17 of the proposed metafeatures, include relative sub-component proximity, similarity, rotation and symmetry. Similar work on meta-features, based on the above Gestalt proximity, similarity, and simplicity groupings of local features, had not been reported in the current computer vision literature at the time of undertaking this work. We decided to adopted relevance feedback to allow the visual appearance properties of relevant and non-relevant images returned in response to a query to be determined by example. Since limited training data is available when constructing a relevance classifier by means of user supplied relevance feedback, the intrinsically non-parametric machine learning algorithm ID3 (Iterative Dichotomiser 3) was selected to construct decision trees by means of dynamic rule induction. We believe that the above approach to capturing high-level visual concepts, encoded by means of meta-features specified by example through relevance feedback and decision tree classification, to support flexible trademark image retrieval and to be wholly novel. The retrieval performance the above system was compared with two other state-of-the-art image trademark retrieval systems: Artisan developed by Eakins (Eakins et al., 1998) and a system developed by Jiang (Jiang et al., 2006). Using relevance feedback, our system achieves higher average normalised precision than either of the systems developed by Eakins’ or Jiang. However, while our trademark image query and database set is based on an image dataset used by Eakins, we employed different numbers of images. It was not possible to access to the same query set and image database used in the evaluation of Jiang’s trademark iii image retrieval system evaluation. Despite these differences in evaluation methodology, our approach would appear to have the potential to improve retrieval effectiveness

    Component-based Attention for Large-scale Trademark Retrieval

    Full text link
    The demand for large-scale trademark retrieval (TR) systems has significantly increased to combat the rise in international trademark infringement. Unfortunately, the ranking accuracy of current approaches using either hand-crafted or pre-trained deep convolution neural network (DCNN) features is inadequate for large-scale deployments. We show in this paper that the ranking accuracy of TR systems can be significantly improved by incorporating hard and soft attention mechanisms, which direct attention to critical information such as figurative elements and reduce attention given to distracting and uninformative elements such as text and background. Our proposed approach achieves state-of-the-art results on a challenging large-scale trademark dataset.Comment: Fix typos related to authors' informatio

    Retrieval System for Patent Images

    Get PDF
    AbstractPatent information and images play important roles to describe the novelty of an invention. However, current patent collections do not support image retrieval and patent images are become almost unsearchable. This paper presents a short review of the existing research work and challenges in patent image retrieval domain. From the review, the image feature extraction step is found to be an important step to match the query and database images successfully. In order to improve the current feature extraction step in image patent retrieval, we propose a patent image retrieval approach based on Affine-SIFT technique. Comparison discussions between the existing feature extraction techniques are presented to assess the potential of this proposed approach

    Temu Kembali Berbasis Citra untuk Menemukan Kemiripan Merek Menggunakan Algoritma SIFT dan SURF

    Get PDF
    Abstract. Image-Based Retrieval to Find Trademark Similarities Using SIFT and SURF Algorithms. In the world of trade in products and services, brands are essential. Every company wants to register a unique trademark for its products and services. Registration and evaluation to find the uniqueness of a trademark is challenging. Trademark image registration is one of the critical application areas of Content-BasedRetrieval (CBIR), which compares new brands with existing ones to ensure no dispute in the community. This study used SIFT and SURF algorithms to build a content-based brand image retrieval system. The research data used trademark data dispute cases that were decided in court. The features extracted from the SIFT and SURF algorithms are used to find similarities between the query image and the image in the database. Furthermore, the k-Nearest Neighbors algorithm with Euclidean distance measurements was used to sort the database images that were most similar to the query image. Experiments were conducted to find the algorithm and sequencing with the highest precision and recall values.Keywords: Trademark, SIFT, SURF, K-Nearest Neighbors, Euclidean. Abstrak. Dalam dunia perdagangan produk dan jasa, merek menjadi sangat penting. Setiap perusahaan ingin mendaftarkan merek dagang yang unik untuk produk dan jasanya. Pendaftaran dan evaluasi untuk menemukan kekhasan suatu merek dagang menjadi suatu pekerjaan yang sangat sulit. Pendaftaran citra merek dagang adalah salah satu area aplikasi penting Content Based Information Retrieval (CBIR) yang membandingkan merek baru dengan merek yang ada untuk memastikan tidak ada sengketa di masyarakat. Penelitian ini menggunakan algoritma SIFT dan SURF untuk membangun sistem temu kembali citra merek berbasis konten . Data penelitian menggunakan kasus sengketa data merek yang diputuskan di pengadilan. Fitur hasil ekstraksi algoritma SIFT dan SURF digunakan untuk mencari kemiripan citra query dan citra dalam basis data. Selanjutnya algoritma k-Nearest Neighbors dengan pengukuran jarak Euclidean digunakan untuk mengurutkan citra basis data yang paling mirip dengan citra query. Eksperimen dilakukan untuk mengetahui algoritma dan pengurutan dengan nilai presisi dan recall tertinggi. Kata Kunci: Merek, SIFT, SURF, K-Nearest Neighbors, Euclidean

    Well-Known brands recognition by automated classifiers using local and global features

    Get PDF
    From color and type to patterns and illustrations, brands sense to be recognizable and convey their values and personality. Here patterns and color are key elements, as they can play a vital role in brand recognition. The images used for brand classification were handpicked and collectively named as HKDataset. We have explored various feature extractors used for classification and used automated classifiers named Linear SVM to achieve higher accuracy while tuning the model parameters to achieve optimal performance. It has been observed that Support Vector Machines performs better when using GIST descriptors combined with Bag of SIFT features. We hope to apply deep learning and other sophisticated classifiers to much-expanded categories of brands in the future

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Multi-label logo recognition and retrieval based on weighted fusion of neural features

    Get PDF
    Classifying logo images is a challenging task as they contain elements such as text or shapes that can represent anything from known objects to abstract shapes. While the current state of the art for logo classification addresses the problem as a multi-class task focusing on a single characteristic, logos can have several simultaneous labels, such as different colours. This work proposes a method that allows visually similar logos to be classified and searched from a set of data according to their shape, colour, commercial sector, semantics, general characteristics, or a combination of features selected by the user. Unlike previous approaches, the proposal employs a series of multi-label deep neural networks specialized in specific attributes and combines the obtained features to perform the similarity search. To delve into the classification system, different existing logo topologies are compared and some of their problems are analysed, such as the incomplete labelling that trademark registration databases usually contain. The proposal is evaluated considering 76,000 logos (seven times more than previous approaches) from the European Union Trademarks dataset, which is organized hierarchically using the Vienna ontology. Overall, experimentation attains reliable quantitative and qualitative results, reducing the normalized average rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image Retrieval task. Finally, given that the semantics of logos can often be subjective, graphic design students and professionals were surveyed. Results show that the proposed methodology provides better labelling than a human expert operator, improving the label ranking average precision from 0.53 to 0.68.This work was supported by the Pattern Recognition and Artificial Intelligence Group (PRAIG) from the University of Alicante and the University Institute for Computing Research (IUII). The Conselleria d'Innovació, Universitats, Ciència I Societat Digital from Generalitat Valenciana and FEDER provided some of the computing resources used in this project through IDIFEDER/2020/003. This research was partially supported by the Conselleria de Educación, Universidades y Empleo, for the project "clasifIA" of the Escola Superior d'Art i Disseny d'Alacant
    corecore