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Abstract 
 

The challenge of abstract trademark image retrieval as a test of machine vision 

algorithms has attracted considerable research interest in the past decade. Current 

operational trademark retrieval systems involve manual annotation of the images 

(the current ‘gold standard’). Accordingly, current systems require a substantial 

amount of time and labour to access, and are therefore expensive to operate. This 

thesis focuses on the development of algorithms that mimic aspects of human 

visual perception in order to retrieve similar abstract trademark images 

automatically. A significant category of trademark images are typically highly 

stylised, comprising a collection of distinctive graphical elements that often 

include geometric shapes. Therefore, in order to compare the similarity of such 

images the principal aim of this research has been to develop a method for solving 

the partial matching and shape perception problem. 

There are few useful techniques for partial shape matching in the context of 

trademark retrieval, because those existing techniques tend not to support multi-

component retrieval. When this work was initiated most trademark image 

retrieval systems represented images by means of global features, which are not 

suited to solving the partial matching problem. Instead, the author has 

investigated the use of local image features as a means to finding similarities 

between trademark images that only partially match in terms of their sub-

components. During the course of this work, it has been established that the 

Harris and Chabat detectors could potentially perform sufficiently well to serve as 

the basis for local feature extraction in trademark image retrieval. Early findings 

in this investigation indicated that the well established SIFT (Scale Invariant 

Feature Transform) local features, based on the Harris detector, could potentially 

serve as an adequate underlying local representation for matching trademark 

images. 

There are few researchers who have used mechanisms based on human 

perception for trademark image retrieval, implying that the shape representations 

utilised in the past to solve this problem do not necessarily reflect the shapes 

contained in these image, as characterised by human perception. In response, a 
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practical approach to trademark image retrieval by perceptual grouping has been 

developed based on defining meta-features that are calculated from the spatial 

configurations of SIFT local image features. This new technique measures certain 

visual properties of the appearance of images containing multiple graphical 

elements and supports perceptual grouping by exploiting the non-accidental 

properties of their configuration.  

Our validation experiments indicated that we were indeed able to capture 

and quantify the differences in the global arrangement of sub-components evident 

when comparing stylised images in terms of their visual appearance properties. 

Such visual appearance properties, measured using 17 of the proposed meta-

features, include relative sub-component proximity, similarity, rotation and 

symmetry. Similar work on meta-features, based on the above Gestalt proximity, 

similarity, and simplicity groupings of local features, had not been reported in the 

current computer vision literature at the time of undertaking this work.   

We decided to adopted relevance feedback to allow the visual appearance 

properties of relevant and non-relevant images returned in response to a query to 

be determined by example. Since limited training data is available when 

constructing a relevance classifier by means of user supplied relevance feedback, 

the intrinsically non-parametric machine learning algorithm ID3 (Iterative 

Dichotomiser 3) was selected to construct decision trees by means of dynamic 

rule induction. We believe that the above approach to capturing high-level visual 

concepts, encoded by means of meta-features specified by example through 

relevance feedback and decision tree classification, to support flexible trademark 

image retrieval and to be wholly novel. 

The retrieval performance the above system was compared with two other 

state-of-the-art image trademark retrieval systems: Artisan developed by Eakins 

(Eakins et al., 1998) and a system developed by Jiang (Jiang et al., 2006). Using 

relevance feedback, our system achieves higher average normalised precision 

than either of the systems developed by Eakins’ or Jiang. However, while our 

trademark image query and database set is based on an image dataset used by 

Eakins, we employed different numbers of images. It was not possible to access to 

the same query set and image database used in the evaluation of Jiang’s trademark 
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image retrieval system evaluation. Despite these differences in evaluation 

methodology, our approach would appear to have the potential to improve 

retrieval effectiveness.  
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Chapter 1  

Introduction 

 

An important task of computer vision is to produce machines that perceive 

images. The search for methods that analyse images in an accurate manner has 

led the author to examine issues connected with the recognition of abstract 

trademarks. The approach has been made more specific by embedding the 

recognition problem within a context that requires that images be compared with 

one another to identify which images are similar and which are not. This context 

provides some advantages owing to its specificity. This chapter provides an 

outline of the problem, its context, and the background that led up to our 

approach. The chapter also features a brief explanation of the nature of the 

contributions made, and concludes with a description of how the remainder of the 

thesis is organized. 

1.1 Motivation 

The problem addressed here can be phrased as the question “how can we help 

people identify a putative trademark as being sufficiently original?” To do this, 

there is a need to address how to analyse a proposed trademark, how to identify 

those trademarks that are most similar, and how to organize their presentation to 

the best effect. Examples of abstract trademark images are given in Figure 1.1, 

along with similar trademark images. 

Pattern recognition is a fundamental problem in computer vision, and 

trademark image retrieval is one of the most challenging in the area of Content-

based Image Retrieval (Eakins et al., 2001). The particular problem of trademark 

image retrieval has been investigated for over two decades, and continues to 

attract research interest. There are two main reasons: the commercial potential 

offered by practical recognition systems, and the challenges that trademark 
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images provide as a test of machine vision algorithms. The potential applications 

are appealing, for example, machines could interpret their surroundings via 

cameras, making sensible human-like decisions. At the centre of interest is the 

development of visual perception by computer, where a computer can recognize 

images and select similar images. The list below gives examples of potential 

applications of computer perception technology. 

Patent control: To register a trademark gives an advantage to both traders and 

customers; traders can protect their goods by a distinct mark; customers can 

recognize a genuine product by its trademark. The number of trademarks vary in 

each country from thousands to hundreds of thousands, and is gradually rising. A 

system utilizing this technology could help patent offices distinguish putative 

trademarks.  

Image database retrieval: Many images in offices, web sites, and home 

computers are stored without manual annotation. It is difficult for a human to 

search such images, so a system using this technology could search the required 

images faster. 

Image design: To understand how to perceive similar images by computer could 

also be used to measure how distinct the images are. Such a system could help 

image designers create more distinctive images. 
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(a) 

 

 (b) 

     

(c) 

Figure 1.1 An illustration of the situation in which the work reported in this thesis is 
embedded. Similar trademark images are retrieved based on the analysis of a query image. 

(a) an example query image, (b) a simple dataset of trademark images, and (c) the 
corresponding similar trademark images that might be retrieved.  

1.2 Problem of existing systems 

The challenge of trademark image retrieval has been discussed by many 

researchers (Mehrotra & Gary, 1995; Wu et al., 1996; Eakins et al., 1998; Jain & 

Vailaya, 1998; Alwis & Austin, 1999; Chan & King, 1999; Ravela & Manmatha, 

1999; Safar et al., 1999; Shih & Chen, 2001; Yin & Yeh, 2002; Gori et al., 2003).  

However, there is no completely satisfactory system that is currently in use in a 

patent office. 

Due to the complexity of the task, we investigate the approaches taken in 
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the past and simplify the problem of trademark registration. These include the 

following limitations: 

• Current trademark registration uses a lot of time and labour, because it 

uses a keyword search system to classify the trademark, and employs 

examiners to distinguish trademarks. Most trademarks are stored in 

electronic files (Claus, 2002), but many registries only use manual file 

search, and some use automated name or coding search. A traditional 

trademark retrieval system uses keyword search, for example, Tess, and 

the UK trademark search (The UK  patent office, 2001; United state patent 

and trademark office, 2004). Therefore, a more effective and automatic 

system is needed. 

• An abstract trademark is difficult to classify by keywords because it 

consists of complex visual elements. This kind of trademark is usually a 

geometric figure, known as an abstract type. Such trademarks are well 

distinguished by their elements rather than their meaning, so content-

based image retrieval is required. Significantly, abstract trademarks are 

better suited for image content-based classification rather than manually-

based classification (Eakins et al., 1998). 

• Abstract trademark image retrieval by content-based image retrieval is 

obviously important, because it requires that the database be searched by 

means of an image since the search problem cannot be solved by textual 

queries alone. Visual perception is important for distinguishing shapes in 

abstract trademarks because they contain graphical elements. However, 

there is no current technique for computational vision perception that is 

suitable for abstract trademark retrieval. This is the main problem to be 

investigated in this research. From the Gestalt laws of perceptual 

grouping, shape is very important in human visual judgment. Furthermore, 

Biederman (1987) stated that humans recognize shape only by distinctive 

elements. Hence, shape similarity matching is essential in trademark 

image retrieval. However, few methods have yet been applied to find the 

shape similarity of trademark images by computer. 



Chapter 1                                                                                                                5 

1.3 Objectives 

From the description above of the problems, the principal drawback of current 

systems is their need to describe abstract trademark images by keywords. 

Content-based image retrieval is a possible solution, but the literature shows that 

there are knowledge gaps that need to be addressed. First, few techniques are 

suitable for partial shape matching because they do not support multi-component 

retrieval. Second, many techniques need an exact image segmentation, which 

continues to be an unsolved problem. Third, there are few researchers attempt to 

apply principles derived from human perception for shape retrieval and without 

which their adpoted shape representations may not reflect percpetually 

meaningful configurations of the image’s component. Finally, global features are 

not suitable for retrieving occluded or connected components in an image. 

Image similarity estimation based on interest points  has the potential to 

be used in abstract trademark retrieval since it has also been used successfully in 

image retrieval (Schmid and Mohr,1997; Lowe,1999; Wolf,2000; Sebe,2001). 

Importantly, interest points support partial matching and local features and are 

therefore potentially roboust to partial occlusions within the compared images. 

This addresses the main aim of this research, which is to develop a method for 

solving the partial matching and shape perception problems. We believe that 

using interest points in trademark image retrieval can improve the efficiency of an 

abstract trademark image retrieval system. The main objectives of this research 

are to investigate:  

1. How we can use interest points to distinguish trademark images? 

2. Which interest point techniques are most accurate when applied to 

distorted trademark images (noise, rotation, and scale)? 

3. How we can use perceptual grouping methods to group interest points and 

represent these as a shape descriptor? 

4. What techniques can exploit shape descriptors when retrieving abstract 

trademark images? 

We explain how to fulfil our objectives in Chapter 2. In the next section, 

we summarise the topics involved in building a trademark image retrieval system. 
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1.4 Constructing a trademark image retrieval system 

Our system measures the similarity of abstract trademarks, which raises the 

problems of partial matching and shape perception by computer. The details of 

proposed approaches are explained in Chapter 3, but are summarized here. 

• The Gestalt laws of organization show that shape is very important in 

human visual similarity judgment. Also Biederman (1987) showed that 

humans can recognize shapes by only distinctive elements, which 

indicates that shape similarity judgement could plays a vital role in 

trademark image retrieval. However, there is no evident method for 

finding the shape similarity of trademark images by computer. Human 

visual perceptual concepts suggest how to imitate human image similarity 

by computer, and non-accidental properties have potential benefits, which 

provide the motivation for interest point extraction. 

• Biederman’s concepts motivate the idea of using interest points in shape 

retrieval because they have high information content and are robust in 

relation to partial visibility. Interest points should offer advantages when 

supporting human perception of shape and for specifying local features. 

This view is supported by many researchers who have used interest points 

for successful object recognition. For example, the SIFT detector is both 

robust detector and can generate local features (Lowe, 1999). We 

investigate interest point detectors in Chapters 4 and 5. 

• We want to find techniques that use interest points and local features to 

evaluate similar images, which introduce local features that reflect human 

perception. We propose 27 local features for measuring perceptual 

grouping, and select appropriate features for calculating similarity 

according to relevance feedback. The technique is described in more 

details in Chapters 6 and 7. 

• Trademark retrieval requires user to judgement of similar images. To help 

the user, the system should only require necessary user feedback. We 

investigate processes for applying relevance feedback to forming feature 

vectors that encapsulate the visual perception in Chapters 6, 7, and 8. 

The contributions of the thesis are summarized in the next section. 
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1.5 Contributions of this thesis  

This thesis addresses various specific problems in computer vision - partial 

matching, shape perception, and similarity judgement, offering methods that can 

benefit the computer vision communities. The main contributions of this thesis 

are as followings: 

1.5.1 Analysis and application of point matching to trademark image 

matching and retrieval 

We examine the application of interest points to abstract trademark image 

retrieval. Interest points have been successfully used to recognise objects (Lowe, 

1999; Wolf, 2000; Sebe & Lew, 2003) but there is no research on how to retrieve 

similar abstract trademark images by interest points since most systems 

concentrate on global features rather than local features. Local features can reflect 

both local and global image characteristics, but global features are preferred since 

local features may need more computation time and complicated methods. The 

problems are where to apply local feature extraction, what local features should 

be utilized, and how to use the extracted local features. In the first case, we 

propose to use interest points because they support Biederman’s concept that 

humans recognize images by distinctive elements. We will show in Chapter 4 that 

many detectors can extract the same areas in transformed trademark images, and 

the system can retrieve similar trademark images based on interest points. The 

technique is overviewed in Chapter 2, and evaluated in Chapter 8. 

1.5.2 Point-based grouping of local features for trademark image retrieval 

We will represent shapes in abstract trademark images by using local features. 

Visual perception plays an important role in human similarity judgment 

(Goldmeier, 1972; Eakins, 1997). In addition, shape is important for identifying 

abstract trademark images which contain multiple graphical elements. In Chapter 

6, we propose 27 features based on interest points which utilize the computational 

vision perception of shape. The features are also grouped by Principal Component 

Analysis (PCA) to eliminate redundant ones. The feature types are global rotation, 

global pattern similarity, global pattern overlap, spread of the match points, 

structural configuration of the match points, scale different of matched pattern, 
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self similarity, symmetry, and sub-component similarity.  

1.5.3 Relevance feedback based on point-based grouping of local features 

We propose and evaluate our technique based on the use of relevance feedback 

and rule tree classification, generated by dynamic rule induction, in combination 

with algporithsm for simulating aspects of visual perception used for measuring 

image similarity. In other words, relevance feedback and decision tree 

classification can serve to imitate visual perceptual judgement by machine.  

Minor contributions include: 

1.5.4 Study of interest point detectors  

The evaluation of interest point detectors is reported in Chapter 4. We investigate 

and evaluate interest point detectors that calculate interest points directly from an 

image. We choose four effective detectors for our experiments. They are the 

Harris detector, Chabat detector, SUSAN detector, and Wavelet-based detector. 

We measure the repeatability of these interest point detectors with the 

transformed trademark images. The results show that the Harris detector has the 

best repeatability and Chabat detector also offers good results, with more than 

50% repeatability. The two detectors have the potential to be used in trademark 

image retrieval.  

1.6 Thesis organization 

The remainder of the thesis is organised as follows: 

Chapter 2 reviews methods of trademark image retrieval, and discusses how 

trademark image retrieval can be improved.  

Chapter 3 describes our proposed research for constructing a trademark image 

retrieval system. 

Chapter 4 explains interest point detectors, and measures their suitability for 

trademark image retrieval. 
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Chapter 5 examines the SIFT detector for trademark image retrieval. 

Chapter 6 proposes local features, and outlines the relevance feedback approach 

for perceptual grouping. 

Chapter 7 reports system implementation for measuring perceptual grouping. 

Chapter 8 investigates system efficiency for measuring perceptual grouping. 

Chapter 9 summarises the contributions of this thesis, and discusses future work. 
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Chapter 2 

Related work 

 

This chapter explains the current techniques for trademark image retrieval, and 

investigates potential methods for improving an abstract trademark image 

retrieval system. We are interested in using our understanding of human visual 

perception in order to improve the retrieval of similar images. In this research, we 

concentrate on abstract trademark image retrieval since such images contain rich 

geometric elements that are grouped in significant ways. 

2.1 Introduction 

Worldwide, countries have increased their activities in relation to trademark 

registration (Claus, 2002). Trademarks have been used for a long time, the first 

was organized in London in 1876 (Winterfeldt et al., 2002; The UK patent office, 

2003). Trademark registration protects goods and services e.g. distinguishing their 

owners from, and making it easier for recognize products. In other words, a 

trademark is both a marketing tool and form of intellectual property. The number 

of trademarks in each country varies from thousands to hundreds of thousands, 

and is rising gradually. Currently, all trademark retrieval systems in practical use 

are manual systems, so are both labour-intensive and time-consuming. The 

following sections describe the problems of trademark registration and trademark 

image retrieval. 

Trademark image retrieval finds the similarity between trademark images 

by extracting and matching shape features of each trademark. Shape features are 

used in many trademark retrieval systems, because they are graphical figures to be 

distinguished. Also, local features may be useful because many trademarks 

consist of multiple components. Local features can be used in partial matching 

which supports the occlusion of multiple components. However, the location of 

local features is important for matching, and can affect retrieval efficiency. 
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Finding the most suitable method for extracting those points is vital.  

2.2 Trademark registration 

A trademark is any sign that uniquely distinguishes it from other trademarks – it 

may consist of words, symbols, abstract designs, or a combination of these (The 

UK patent office, 2004). Non-traditional trademarks can be an appearance, a 

shape, sounds, scents, taste, or even touch (INTA, 2003), and many trademarks 

are images (Eakins et al., 1996; Eakins et al., 1996).  

A trademark image can be divided into three categories: words, devices, 

and composition trademarks. The word trademark consists of words only, for 

example as show in Figure 2.1(a). The device trademark is a graphical design 

trademark that does not contain characters, such as Figure 2.1(b). The 

composition trademark contains both words and graphical design components, as 

shown in Figure 2.1(c). 

 

 

 

 

Figure 2.1 Examples of (a) word, (b) device, and (c) composition trademarks 

Registering a trademark benefits both traders and customers: traders 

protect their goods by a distinct mark, while customers can recognize a genuine 

product by its trademark. Registering a trademark can be separated into five main 

steps: pre-applying, applying, examining, publishing, and certification.  

Every trademark must specify its goods or services class. Most patent 

offices use the international goods and services Nice classification (Claus, 2002). 

It consists of 34 goods classes and 11 services made up of about 10,000 goods 

definitions and 1,000 services definitions. This classification is now up to its 

eighth edition since starting in January 2002 (WIPO, 2004). Goods' classes 

examples include chemicals used in industry, paints, machines and machine tools, 

vehicles, and rubber (WIPO, 2004). Services classes examples include 

a b c 
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advertising, insurance, telecommunications, education, and medical services 

(WIPO, 2004). 

The trademark class relates to its product type, and can be registered in 

many classes although that requires additional payment. After specifying a good’s 

class, the mark property must be checked, which must distinguish it from other 

marks in the same class. The mark should not add any deceptive function to 

increase the product’s value, nor reserved symbols, anything offensive or illegal 

(The UK patent office, 2001). There are private agents or advisory services 

associated with some patent offices, such as, the UK patent offices, which support 

the classifying process, but they are costly and limited to a text-based system. 

Automatic image classification is required. 

Applying to a patent office for registration includes paying a fee and 

completing an application form. The registered mark is provided with national 

protection, but can be extended internationally by applying the Madrid protocol 

through WIPO (the World Intellectual Property Organisation)(The UK patent 

office, 2001). After submitting the mark, no changes to it are allowed. The patent 

office may acknowledge the application within two months. 

The examining process is performed by the trademark registry office at the 

patent office, which is responsible for proving that a trademark is different from 

all others. Most patent offices use the Vienna classification to classify the 

figurative elements of a trademark. The classification consists of 29 categories, 

144 divisions, and 1,667 sections, and is currently in its sixth edition since being 

created in January 2008. An example of the Vienna classification is shown in 

Table 2.1. 
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Table 2.1 The Vienna classification of the figurative elements of a trademark 

The Vienna classification 

1. Celestial 
bodies  

2. Human 
beings  

3. Animals  … 26.Geometrical figures 
and solids  

… 

- Circles, ellipses 

- Triangles 

… 

 
 
 
 
 

- One triangle 
- Two triangles, one    
   inside the other 
- Several triangles,  

juxtaposed,  joined 
or intersecting 

- … 

… 

- Stars 
- Sun 
- Moon 
- … 
 

… … … 

- … 
- Other polygons 
- Lines, bands 
- … 
- Geometrical solids 

… 

Each trademark is assigned component names selected by the examiners, 

coded by its shape features and object elements (Eakins et al., 1997). A logical 

combined code identifies a new trademark from all previous trademarks, so the 

processes involve much labour and time. The annotation may be a major problem 

for some types of trademark, such as device marks (It is called the identification 

process problem). 

The patent office publishes approved trademarks in its official Gazette for 

public objection, which may take about three months. 

If the published mark has no objections, the patent office will send a 

registration certificate to confirm the end of the process. The certificate is valid 

for ten years from the registered date, and can be renewed every ten year. 

To sum up, in terms of processes, the goods' classification process is 

dependent on the applicant product. However, the identifying mark is more 

complicated than the classification, so may cause delays. The second process is 

submitting the document to the desire patent office, and has a specified response 

time. The third process is identifies the mark. The fourth process and fifth process 

have obvious time limits corresponded by objections caused by the similarity of 

the mask to others. There have been many comments from unsatisfied EU and 

USA  applicants complaining about the long processing time (Annand, 2000), so  
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the identification process needs to be investigated in more detail.  

Most trademarks are stored electronically (Claus, 2002), but many 

registries only use manual file search, perhaps with automated name or coding 

search. A traditional trademark retrieval system uses keyword searching, such as, 

Tess and UK trademark search (The UK patent office, 2001; United state patent 

and trademark office, 2004). It performs best on text-based marks (word and 

composition mark), and is poorly suited to trademarks that consist of complex 

visual elements and geometrical figures, often known as abstract types. 

Though the Vienna classification contains of many keywords, it has a 

problem explaining abstract trademarks. Many elements are difficult to describe 

by words, indicating that keyword-based classification is inadequate and 

unsuitable. Gundersen (2000) states that an abstract design mark is the most 

difficult to represent by words. For example, Figure 2.2(a) consists of line 

segments and other components that are hard to explain by words. Figure 2.2(b) 

consists of one component that cannot be explained by words in a simple, clear 

meaning. 

 

 

 

 

 

 

Figure 2.2 Examples of abstract trademarks 

 

Device marks are better suited to content-based image retrieval, because 

they can be well distinguished by the primitive features within them, so it is 

important to find a technique for clearly identifying the abstract image in a device 

mark. The abstract class in the Vienna classification (class 26) is shown in Table 

2.1. 

Abstract trademarks are usually registered as two-dimensional black and 

white images, for maximum protection. If it is necessary, the mark may be 

registered in a colour series, and include monochrome colour.  

a b 
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Abstract marks are better suited for image content-based classification 

than for manual-based classification (Eakins et al., 1998). Since the image content 

is easier to identify than describing by keywords. Shape retrieval is important for 

distinguishing abstract trademarks because they contain graphical elements, 

thereby decreasing search time and making the process more automatic. In the 

next section, we will investigate content-based image retrieval for trademarks. 

2.3 An Overview of Trademark image retrieval by image content 

Trademark image retrieval systems continue to use keywords derived from 

trademark components. Most patent offices still use the Vienna classification to 

register trademark images, which consists of classes and sub classes of figurative 

elements for distinguishing trademark images (WIPO, 2004). However, a text-

based system is time-consuming and intensively labour-intensive. Furthermore, 

an annotation-based system is not suitable for abstract trademark image retrieval 

because their content depends on intrinsic forms. Many abstract trademarks 

contain components that require additional keywords to explain. 

Many researchers use image features to identify trademarks without 

requiring a textual description. However, each feature has different discrimination 

power to identify trademark images, which leads to the question of which features 

are most suitable. One answer is to consider how human perception and judgment 

utilizes those features.  

2.3.1 Content-based image retrieval 

Content-based image retrieval (CBIR) searches for desired images by their 

features which are automatically indexed (Eakins, 2001). CBIR eliminates the 

time needed to annotate keywords in text-based image retrieval, and improves 

system efficiency since it is not limited by the number of keywords. 

Image representation and similarity measurement is the main focus of 

CBIR (Stanchev, 2001). A feature set is stored in a database, which represents the 

most important aspects of a set of images. Feature values are extracted from an 

image, and their similarity measured against the database set, as illustrated in 

Figure 2.3. 
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Figure 2.3 General content based image retrieval system 

Trademark image retrieval systems are increasingly using CBIR 

(Mehrotra & Gary, 1995; Wu et al., 1996; Eakins et al., 1998; Jain & Vailaya, 

1998; Alwis & Austin, 1999; Chan & King, 1999; Ravela & Manmatha, 1999; 

Safar et al., 1999; Shih & Chen, 2001; Yin & Yeh, 2002; Gori et al., 2003; Jiang 

et al., 2006). However, relevant trademark images cannot be the same or a 

modified image, which suggests that general CBIR may not be suitable for 

trademark image retrieval. The system requires additional techniques to extract 

the features and measure similar images.  

2.3.2 Reported trademark image retrieval systems 

Existing trademark image retrieval systems apply different approaches to 

extending general CBIR, highlighting the challenge of trademark image retrieval 

in the past decade  (Mehrotra & Gary, 1995; Wu et al., 1996; Eakins et al., 1998; 

Jain & Vailaya, 1998; Alwis & Austin, 1999; Chan & King, 1999; Ravela & 

Manmatha, 1999; Safar et al., 1999; Shih & Chen, 2001; Yin & Yeh, 2002; Gori 

et al., 2003). Most systems use edge detection to perform segmentation and 

extract components from the image. This reflects a major condition for retrieving 

relevant trademarks − an ability to specify the real shape of components in an 

image.  

Feature extraction 

 Features 

Similarity 
measurement between 

query image and 
database 

Similarity result 

Database of 
 images and features 

Input query 
image 

Relevant images 
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2.3.2.1 STAR 

Wu et al (1996) developed the STAR system (System for Trademark Archival 

and Registration) to retrieve similar trademarks for both word and device marks. 

The word mark similarity utilizes text, phonetics, and interpretation, while device 

mark similarity is divided into graphic meaning and graphic similarity. For the 

graphic meaning device mark, it has a specific meaning. They used the shape 

interpretation or the graphic meaning to measure similarity. The system requires 

that the user annotates the mark using Vienna classifications, and gives the 

similarity in terms of a fuzzy factor in a thesaurus relationship. For device mark, 

STAR compares its features to measure component similarity using the spatial 

relationship between components namely the structural description, and visual 

features. The system uses colour segmentation to separate the components in each 

mark, and a first order Markov field and Gaussian distributed clustering to specify 

the spatial relations. The system requires that the user assign the major and group 

components to be the structural description. The visual features are a Fourier 

descriptor, seven invariant moments, and projections. The similarity between 

features is calculated by a weighted distance of the spatial relationship, structural 

description, and the visual features. An experiment using 3000 trademark images 

showed that the system is effective for retrieving similar trademarks and reducing 

searching time, but many processes require user interaction.  

2.3.2.2 Jain and Vailaya 

Jain and Vailaya (1998) developed a system to retrieve similar trademark images 

by shape features, by utilizing fast pruning followed by refined matching. The 

pruning removes non-relevant trademarks by comparing edge direction 

histograms and seven invariant moments. The edge histogram is extracted from 

the boundary image, normalized, and smoothed. Seven invariant moments are 

extracted from the raw image. The query image features are compared with 

database features to calculate dissimilarity values, which are combined and 

normalized in the range 0 to 1. However, these two features were not accurate in 

the case of line drawing image rotation, so some similar images could be 

spuriously eliminated. The second stage is matching to a deformable template by 

edge mapping. The verified images from the first stage are compared with the 
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query image. The deviation and the energy function of the deformed template are 

used to calculate a similarity value. It requires the specific pose and deformation 

template parameters by iteratively searching a gradient descent in Hough 

transform space. The experiment was implemented using 1100 trademark images, 

and showed that the system could not always detect semantically similar images. 

Furthermore, the system has problems segmenting multi-component images, and 

the authors suggest that local features would extend the matching performance. 

2.3.2.3 ARTISAN 

Eakins et al (1997, 1998) developed the ARTISAN system (Automatic Retrieval 

of Trademark Images by Shape Analysis) to retrieve the similarity of abstract 

geometric shapes of device trademarks based on human image perception from 

Gestalt theory. The system extracts the features at three image levels: the 

individual boundary, the perceptual region, and the entire image. An individual 

boundary is a closed region in the image that consists of line and arc segments. A 

perceptual region is grouped by the co-linearism and co-curvilinearism of 

segments in the image. The system uses proximity, parallelism, and concentricity 

scores to group region boundaries into a family boundary, and tracks a family 

contour by utilizing an external family boundary. The system extracts shape 

feature vectors at all three levels, including aspect ratio, circularity, transparency,  

relative area,  right-angleness, sharpness, complexity, directedness, and  

straightness. The experiment was implemented using 10745 abstract trademark 

images, and used normalized precision (Pn), normalized recall (Rn), and last-place 

ranking (Ln) to measure the system effectiveness. The retrieval performance is Pn 

=0.63 ± 0.24, Rn = 0.90 ± 0.12, and Ln =0.56 ± 0.31, which suggests that 

perceptual grouping has the potential to act like human similarity judgment. This 

system can also be extended to handle multiple component retrieval by local 

features. 

2.3.2.4 Soffer and Samet 

Soffer and Samet (1998) proposed negative shape features for classifying logos. 

Negative shapes are calculated by adding a border to the logo and extracting the 

internal holes for each component. Negative shape features consist of four global 

shapes (the first invariant moment, circularity, eccentricity, and rectangularity) 
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and three local shape descriptors (horizontal gaps per total area, vertical gaps per 

total area, and the ratio of hold area to total area). The similarity is measured by 

comparing the Euclidean distance of each component in the query image with 

database images, and the minimum distances of all the components of the query 

image are averaged to make a similarity score. They tested the retrieval 

performance with and without using negative shape features, and using one 

component by user selection and automatic multiple components. The experiment 

was implemented using 130 trademark images, and showed that using both 

positive and negative shape features of the multi-component logo gave the best 

performance in classifying logos involving triangular, long text, and stripes 

classes. However, no evidence was presented showing that the system can retrieve 

similar trademarks. 

2.3.2.5 Alwis and Austin 

Alwis and Austin (1999) proposed a trademark image retrieval system using 

combined multiple features from several image types: a boundary, a Gestalt,  

boundary closed figures, and a Gestalt closed figures image. The Gestalt images 

were obtained by grouping co-linear and co-curvilinear boundary segments. The 

system extracts perceptual features of both Gestalt and boundary images. The 

features are endpoint proximity, parallelism, co-linearism, and co-curvilinearism. 

In addition, the system calculates circularity, directionality, straightness, 

complexity, right-angleness, aspect ratio, sharpness, and the stuffedness of both 

boundary and Gestalt closed figures images. The boundary and Gestalt multiple 

features are compared by graphs, and the close figure features are measured for 

similarity by a distance bin. The experiment was implemented using 1000 

trademark images, and the system effectiveness measured by precision and recall 

distributions over 10 queries from Artisan’s system evaluation. The result shows 

that boundary-based features give a better score than Gestalt-based features. 

However, the combined feature using Dempster-Shafer method gives the best 

score. This system also has the potential to be handle multi-component retrieval 

by local features.  

2.3.2.6 Ravela and Mammatha 

Ravela and Mammatha (1999) proposed a multi-modal system for the retrieval of 
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similar design trademark images. The system begins with user input text and uses 

a text search engine to retrieve matching trademark images. The images are 

matched by visual appearance, or a composition of text and visual appearance. 

The selected images are filtered with multi-scale Gaussian derivatives to describe 

the structure of their intensity surface, and the system extracts local curvature and 

local phase histograms. These local features are used to obtain global similarities 

by comparing their histogram vectors with normalized cross-covariances. The 

experiments used 2048 binary images and ranked 48 similar images; given an 

average precision of 61.1%. The system used whole image features to perform 

global matching, so there is evidence that it can be degraded by occlusion and 

missing parts; and human perceptual factors were not considered.  

2.3.2.7 Chan and King 

Chan and King (1999) proposed the genetic weighting of several features for the 

retrieval of similar trademark images, including Fourier descriptors, seven 

invariant moments, eccentricity, circularity, and Euler number. They use a closing 

operator to group connected components in the image, which may lead to wrong 

grouping, because it does not consider perceptual factors. They calculated the 

integrated dissimilarity value by weighting a combination of Euclidean feature 

distances. A genetic supervised learning algorithm was applied to similar 

trademark images, with iterative optimisation, to calculate the weighting values. 

The experiment used 1360 binary trademark images, and among 20 top rank 

images, the method retrieved all the similar images. However, there was no 

mention of the number of similar images.  

2.3.2.8 Shih and Chen 

Shih and Chen (2001) proposed a system employing semi-automatic trademark 

segmentation, image features, and user weighting feedback. The system selects 

each object region in a binary image by user intervention and the regions are 

extracted by the region-growing algorithm and line-connecting segmentation. The 

system extracts Hu seven invariant moments, the Fourier transforms of edges 

from polar-coordinate transforms, the first derivatives of edges from polar-

coordinate transforms, and a histogram of edge directions. The system measures 

trademark similarity by feature distances, which are weighted by user feedback. 
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The experiment used 3543 device trademark images, and a combination of the 

four features achieves the best result when compared with each independent 

feature. However, the system requires user segmentation to perform human visual 

perception.  

2.3.2.9 Yin and Yeh 

Yin and Yeh (2002) proposed an automatic content-based trademark retrieval 

method, which extracts seven features from a trademark binary image: area, 

isolation, deviation, symmetry, centralization, complexity, and two-level contour 

representation strings. The system removes redundant feature values by 

correlation and entropy thresholds, and classifies all trademarks into several 

classes with a fuzzy c-mean algorithm. The candidate classes are matched to the 

query image by comparing the normalized distance, and each distance weighted 

by user feedback. The experiment used 1000 trademark images, and showed that 

user feedback improves the retrieval efficiency. The system requires user 

judgment, so it has the potential of using human visual perception to improve the 

system efficiency.  

2.3.2.10 Gori et al 

Gori et al (2003) proposed an edge-back propagation method to recognize logos 

under Baird and spot noise conditions, by adapting a back propagation neural 

network. The input of the neural network is a fixed size vector of averaging grey 

levels of pixel regions, which the regions being connected components segmented 

by morphological transforms. It requires a training stage and iteration processes, 

with prepared noisy images. The experiment was implemented on a database of 

88 logos with added noise, with the results showing that the methods can 

recognition images with spot noise that do not have large occlusions. However, 

this method does not provide for similar image retrieval.  

2.3.2.11 Jiang et al 

Jiang et al (2006) proposed the adaptive selection of visual features from five 

types of Gestalt principles: symmetry, continuity, proximity, parallism, and 

closure. They employ Hough transforms  (Ballard, 1987) to detect line, circle, and 

arc segments in a boundary image, from which parallel lines, concentric circles, 
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and arcs are calculated. They claim that Hough transforms automatically utilize 

Gestalt principles such as continuity, proximity, and parallelism, and can detect 

occluded and confused components. The system also detects polygons using end-

to-end distances to group near neighbour line segments, but with the polygon 

limited to triangles, squares, and rectangles. Hough transforms require huge 

computation time, so they limit the input image resolution to 100 x 100 pixels. 

The system generates Zernike moments for integration with previous features by 

thresholding on saliency degree, and relevant images are extracted by 

maximumWBG matching. The system filters irrelevant features before matching 

because all the features, except Zernike moment, are not transform invariant. The 

system was evaluated with trademark images in a MPEG-7 dataset with 50 

queries, with the performance measured by normalized precision (Pn), normalized 

recall (Rn), and last-place ranking (Ln). The retrieval performance is Pn =0.66 ± 

0.18, Rn = 0.87 ± 0.11, and Ln =0.61 ± 0.28, which suggests that perceptual 

grouping has the potential to match a human similarity judgment. This system 

also has the potential to be extended to multiple component retrieval by local 

features. 

2.3.2.12 Conclusion of reported trademark retrieval systems 

A comparison of the discussed trademark image retrieval systems appears in 

Table 2.2.  
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Table 2.2 Properties of the trademark image retrieval systems 

System Required 
Segmentation 

Provide 
Perceptual 
grouping 

Provide 
Shape 
Similarity 

Used 
Local 
features 

User 
feedback 

Performance 

STAR Yes No Yes Partial Yes Good 
Jain and 
Vailaya 

Yes No Yes No No Bad 

ARTISAN Yes Yes Yes Partial No Good 
Soffer and 
Samet 

Yes No N/A Partial No N/A 

Alwis and 
Austin 

Yes Yes Yes Partial No Good 

Ravela and 
Mammatha 

No No Yes Partial Yes Good 

Chan and 
King 

Yes No Yes No No N/A 

Shih and 
Chen 

Yes No Yes No Yes Fair 

Yin and Yeh Yes No Yes No Yes Good 
Gori et al Yes No No No No N/A 
Jiang et al No Yes Yes Partial No Good 

 
 

Most of the systems require image segmentation except Ravela and 

Mammatha’s work. Only ARTISAN, Alwis and Austin, and Jiang et al. provide 

perceptual grouping. There are two systems by Soffer & Samet and Gori et al. 

that do not provide shape similarity. All the systems use global features, and some 

employ local features. The systems that provide user feedback perform well 

because the feedback reflects user judgement. 

Many proposals capture different aspects of an image’s appearance, such 

as texture, colour, structure, and shape (Rui et al., 1997; Bhattacharjee & Ebrhimi, 

1999; Eakins, 2001; Eakins et al., 2001). An important aspect of image 

appearance is shape (Scassellati et al., 1994; Mehrotra & Gary, 1995; Safar et al., 

1999; Eakins, 2001). In the real world, many applications rely on shape, for 

instance medical diagnosis, law enforcement, and trademark registration. 

Moreover, colour and texture do not have enough discriminating power to retrieve 

some types of abstract or grey scale images (Jain & Vailaya, 1996; Geradts et al., 

2001). For this reason, using shape features in trademark image retrieval should 

be investigated in more detail.  
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2.4 Shape representation  

An abstract trademark is a multi-component image that contains graphical designs 

that relate to shape retrieval. Generally, a shape is the representation of an object 

from the external form or appearance of a pattern. Shapes can be simple such as 

rectangles, circles, ellipses, triangles, or polygons, or more complex such as 

closed curves, or contours.  

Human beings perceive shape by utilizing visual pathways from the eye to 

the brain (Levine, 1985). The pathways begin when the retina receives a pattern 

of light and its information is sent to the brain by the optic nerve (Bruce, 1996), 

where the perception process is initiated. To explore a shape by computer, we 

analyse its contents and convert this to digital features. In CBIR, a shape can 

comprise a configuration of binarised objects (depicted as either black or white) 

and be represented by 2D binary shape features. 

Shape features are the descriptors that portray the appearance of an object 

in an image, and form the numerical data in the analysis process. Shape features 

should have good discrimination power, be reliable, independent, and compact 

(Ming, 1999).  

Shape features can be extracted by coding or transform techniques 

(Marshall, 1989), and have many possible representations, including chain codes, 

edge direction histograms, scale space histograms, chord distributions, moments, 

scalar quantities values, line-sums/projections values, stochastic values, contour 

distributions, and transform values (Marshall, 1989).  

Shape features can be categorized in a number of ways. Some features can 

be used to restore an original shape, and are therefore called information 

preserving. Examples include contours and Fourier descriptors. Other features 

have insufficient information to restore the original and so are not information 

preserving, such as perimeters, areas, and aspect ratios. 

We can also categories shape extraction techniques into two types: 

boundary-based and region-based (Safar et al., 1999). Boundary-based techniques 

need an edge detector to transform the image into a shape boundary, and use only 

the contour or boundary of a shape to calculate the shape feature. However, 
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contour images require connected boundaries obtained by a segmentation process. 

On the contrary, region-based shape features are calculated from an entire image 

region. 

Shape features can also be categorised into global and local features. A 

global feature is calculated using a whole image, and a local feature from some 

part of it. Many researchers have used global features, because of their high 

discrimination power. However, they cannot be used in the presence of 

occlusions, or for joined objects (Mehrotra & Gary, 1995). Local features are 

computed from local shape regions, and can potentially deal with occlusions. 

However, local features are sensitive to noise and rotation and by definition can 

comprise many thousands of instances in a single image. Therefore, pre-

processing is required to handle noise reduction, point detection, and edge 

detection and the sheer numbers of local features detected. Thus, local features 

are more computationally expensive than global features. 

An important requirement for shape similarity in image retrieval is 

invariance. Shape similarity should be invariant to translation, scaling, and 

rotation (Loncaric, 1998; Geradts, 2002).  

2.5 Global features 

Many researchers use colour, texture, and shape to retrieve images (Jain and 

Vailaya, 1995; Rui and Huang, 1999; Huang and Chang, 1997; Datta et al, 2008).  

2.5.1 Colour features 

Colour features are used widely, and include MPEG-7 colour descriptors 

(Manjunath et al, 2001), CIELAB colour descriptors (Othman and Martinez, 

2008), and colour histograms (Jain and Vailaya, 1996). Colour features may also 

be useful at the semantic level in colour image retrieval (Stanchev, 2003).  

However, colour features are not relevant to our work because trademark 

images are predominantly reproduced as gray tone images.  

2.5.2 Texture features 

Textures are measured by many features, including MPEG-7 texture descriptors 
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(Manjunath et al, 2001), Gabor-based features (Simona et al, 2002), moment-

based features (Robert et al, 1979), contrast (Robert et al, 1979), correlation 

(Robert et al, 1979), and entropy-based features (Robert et al, 1979). 

2.5.3 Shape features 

We divide this approach into global shape feature and local shape features. 

Global shape features are calculated from the entire image object. Some 

global shape features are listed below. 

Aspect ratio 

ymax / xmax                 (Equation 2.1)

  

where ymax and xmax are the maximum length of the shape along the y and  

x coordinates. 

Fourier descriptors 

∑ −+= )cos()( 0 kk aktAt µθ                (Equation 2.2) 

where Ak and ak are the kth harmonic amplitudes and phase angles 

respectively. 

Zernike moments 
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where n is the order of Zernike moment with m repetition for I(r, θ). 

Rnm(r) is the set of radial polynomials defined by Zernike. 

Roundness or compactness 

γ = (perimeter) 2 / 4π (area)                (Equation 2.4) 

Invariant moments 

The two-dimensional moments of order (p, q) of image (I) are defined by: 
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The normalized central moments are defined as: 
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Seven invariant moments can be derived from the second and third order  

moments (Mehtre et al., 1997): 
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Local shape features can be calculated from local regions, such as corner 

points, boundary segments, curvature, and turning angles (Wang, 1999; Stanchev, 

2001).    

Global features are generally calculated from the whole image without 

utilizing  multi-component contours, and therefore do not represent the underlying 

shape (Wang, 1999). Furthermore, global features do not remain consistent when 
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the image content is affected by occlusion or contains connected components that 

should also be compared in isolation (Mikolajczyk, 2002).Thus, global features 

cannot support image sub-part retrieval and can be confounded by occlusions. For 

example, the image in Figure 2.4 contains a triangle and a rectangle, but the 

global feature is a single polygon. In addition, many abstract trademarks are 

multi-component images, as in Figure 2.5. If any component is modified or 

removed, the global feature description will changed and so is not robust.  

 

 

 

Figure 2.4 Occluded shapes  

 

 

 

 

 

Figure 2.5 Multiple components in abstract trademarks  

Experiments by Eakins show that component-based matching can be more 

effective for retrieving similar trademarks than whole-image matching (Eakins et 

al., 2001). Eakins (2003) states that using shape elements offers more 

discrimination power than a whole shape boundary. 

2.6 Local features 

Local features can be used to find part of an image and so are more suitable for 

multi-component image retrieval than global features since they have the 

advantage being able to match whole images or images parts, and thereby support 

multi-component image matching.  

There are three aspects of retrieval by local features: feature location, 

desirable local shape feature properties, and the matching method.  
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We tend to focus on the salient local features in an image, so using all the 

pixels in an image to compute a feature is unnecessary. Proposed methods for 

manipulating the location include corner detectors, key point detectors, salient 

point detectors, and interest point detectors. Corner detectors label corner features 

while the other types of detector label salient locations in the image, such as 

curvature inflections, curvature maxima, and points resulting from image 

transforms (Schmid & Mohr, 1997; Loupias & Sebe, 1999).  

Good local feature properties that reflect image similarity are required. For 

instance, local features representing shape should be invariant to translation, 

rotation, and scaling (Rui et al., 1997).  

Local features can be used in part-image matching or in whole image 

matching. Matching results require a similarity ranking of database images 

compared to the query image. 

We would like to use structural and appearance features for each interest 

point. The structural features represent the shape structure by quantifying the 

spatial configuration of interest points that a shape comprises. For example, two-

largest-angle features of a Delaunay triangulation of interest points has been 

proposed for shape representation (Tao & Grosky, 1998); since it is highly 

efficient at distinguishing objects by means of feature point relationships. A 

Delaunay triangulation of interest points is created, and each point’s angle is 

measured, so the two largest angles in the same triangle can be selected. Also, the 

local direction of SIFT (Scale Invariant Feature Transform), (Lowe, 2004) 

features can be used to contribute to the specification of the structure of a shape. 

The local appearance of features is used to represent local properties of the 

interest points. Lowe (1999) developed SIFT features for object recognition, 

which are robust under partial occlusion in cluttered images and he reported more 

details of  the SIFT approach in his later paper (Lowe, 2004). He claims these 

features are invariant to image scaling, translation, and rotation, when using 

invariant key points. The local direction of the SIFT features are the image 

gradient magnitude (||∇I(x,y)||) and orientation (θ(x,y)) of Gaussian smoothing 

image: 
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                (Equation 2.16) 

 

The magnitude and orientation are computed at each key point. SIFT 

features also provide an appearance descriptor that consists of sixteen 

concatenated 8 element edge orientation histograms, (each element corresponding 

to one of  8 orientation directions) extracted from a 4x4 array of grids centred on 

the key point. 

Schmid and Mohr (2003) have evaluated the performance of a variety of 

local descriptors. SIFT descriptors were the best, followed by steerable filters. 

However, steerable filters have the advantage of low dimensionality. They are 

calculated with Gaussian derivatives, and apply Gaussian kernels with σ=7 in an 

image patch of size 45. Each image patch performs a convolution with five 

different fourth Gaussian derivatives (Freeman & Adelson, 1991; Mikolajczyk & 

Schmid, 2003).  
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              (Equation 2.21) 

 

Due to their desirable performance characteristics SIFT descriptors, and 

other related local features, will be investigated to identify suitable features for 

distinguishing shapes. Shape similarity judgment is an important aspect in 

abstract trademark image retrieval and is explained in next section.  
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2.7 Shape similarity judgment  

Patent office examiners consider trademark images by sight, and so human image 

perception and similarity judgement play an important role in trademark 

identification. However, few researchers find image features by utilizing 

principles based on human visual perception.  

Humans compare images using rules to evaluate their similarity, as in 

Gestalt theory (Wertheimer, 1923). Psychologists proposed the Gestalt laws for 

grouping perceptual organization in images based on proximity, similarity, 

continuity, co-linearity, co-curvilinearity, closure, parallelism, symmetry, and 

familiarity. 

Murray et al (2002) states that the structure of the primary visual cortex 

(V1) reflect greatly an underlying use of local image features, and higher visual 

areas, including the lateral occipital complex (LOC), appear to group local image 

features into coherent objects. This implies that some local aspects of an image 

could potentially have a large impact on human shape similarity judgments.  

A number of researchers have reported that Inferior Temporal (IT) 

neurons are involved in shape recognition (Schwartz et al, 1983; Logothetis and 

Sheinberg, 1996; Tanaka, 1996). Vogels et al (2001) report that IT neurons 

respond to non-accidental properties during shape similarity testing. 

Biederman claims that humans perceive the non-accidental properties of 

an image, using them to fill and identify an object in memory (Biederman, 1987). 

The properties are smooth continuation, co-termination, parallelism, and 

symmetry, which support Gestalt laws. Figure 2.6 shows examples of recoverable 

images derived from the non-accidental properties. Biederman (1995) reported 

that a class of objects comprising distinct visual elements could be represented by 

"shape primitives", as opposed to amorphous objects which are not amenable to 

such decomposition. Trademarks are an exemplary instance of objects that can be 

decomposed into primitives, hence Biederman's recognition by components 

theory is highly appropriate here. 
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Figure 2.6 Recoverable images derived from the non-accidental properties in a1-c1 and the 
original images in a2-c2  

2.8 Grouping and non-accidental properties by computer 

Gestalt laws group a number of (typically small) image structures into 

perceptually significant larger components, which we can use to measure image 

similarity.  

Gosselin and Schyns (2001) developed Bubbles, a technique for 

measuring human categorization performance for specific visual information. 

Bubbles are generated from holes punctured in an observed image by Gaussian 

windows. Gibson et al (2007) have shown that the human visual system is biased 

to recognizing objects from non-accidental properties by using Bubbles. This 

result is also supported by Biederman (2007), who observed that non-accidental 

image feature properties are vital for recognizing objects. 

We believe that by applying perceptual grouping and non-accidental 

properties of local features, we can model human-like perception for retrieving 

images by computer. 

The Gestalt laws show that shape is very important in human visual 

(a1) 

(a2) 

(b1) (c1) 

(b2) (c2) 
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similarity judgment. Biederman (1987) has shown that humans can recognize 

shape by distinctive elements. The success of human visual perception encourages 

imitation for image similarity by computer. Non-accidental properties are 

potentially of use in human shape similarity judgement, and this idea provides the 

motivation for interest point extraction. 

2.9 Interest point detectors 

Interest point features supports the machine implementation of visual perception 

concepts derived from human vision, including multiple-component matching, 

and interest points also have high information content, and are robust to partial 

visibility (Han & Guo, 2002).  In mammalian vision systems, the broadly 

equivalent functionality is manifest within end-stopped cells which are believed 

to represent shape, and also maximally respond to corners or vertices (Biederman, 

1995).  

Interest points are required to specify the positions of local features, and 

so have been used by many researchers for object recognition for many years 

(Schmid & Mohr, 1997; Loupias & Sebe, 1999; Lowe, 1999; Jugessur & Dudek, 

2000; Sebe, 2001). Interest point detectors are techniques to find the location of 

the most important image points that are also interest points (Schmid & Mohr, 

1997; Sebe, 2001), which allows these to be used to compare the similarity of 

images (Schmid et al., 2000). Interest points can be corners, junctions, signal 

changing points, maxima curvature points, and points resulting from transforms 

(Schmid & Mohr, 1997; Smith & Brady, 1997; Loupias & Sebe, 1999; Schmid et 

al., 2000; Sebe, 2001; Sebe & Lew, 2003). 

We divide interest point detectors into two categories in terms of their 

input. Intensity-based methods use an image directly and calculate interest points 

using every pixel an image. Boundary-based methods use shape boundaries of 

input images and calculate interest points using only a fraction of the pixels in an 

image, such as its silhouette. Intensity-based methods do not have the problems of 

segmentation or edge detection, and can extract occluded or connected objects. 

On the other hand, boundary-based methods have the potential to reflect the real 

shape of an object more accurately than intensity-based methods. In this research, 
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we focus on intensity-based methods because they do not require object boundary 

contours to be segmented and can be calculated from a raw image. Therefore, 

only interest point detectors based on intensity-based methods are investigated in 

more details.   

Todman and Claridge (2000) state that low-level features, such as 

junctions, are important for perceptual grouping. Since perceptual grouping is 

required in trademark image retrieval, perceptual grouping is investigated in next 

section.  

2.10 Perceptual grouping 

The Gestalt laws of organization attempt to codify perceptual grouping 

mechanisms in human vision Many researchers have applied Gestalt laws to 

computer vision (Lowe, 1985; Mohan & Nevatia, 1992; Kang & Walker, 1994; 

Sarkar & Boyer, 1994; Havaldar et al., 1996; Boyer & Sarkar, 2000; Rome, 2001; 

Kruger & Worgotter, 2002). 

Eight perceptual grouping laws are widely used, as below: 

• Similarity: groups image parts that have similar local features. We 

may use two features to measure this property (Jacobs, 2000). 

• Proximity: groups image parts that have similar local features, 

which are close to each other. We may use two points to measure 

this property (Jacobs, 2000). 

• Continuity: groups image parts that construct good continuations. 

We may use curve fitting to measure this property (Jacobs, 2000). 

• Co-linearity: groups image parts that approximately lie on the 

same line. We may use angle and perpendicular distance between 

two lines, or local intensity gradients, to measure this property  

(Walker & Kang, 1994). 

• Co-curvilinearity: groups image parts to produce longer curves. 

We may use curve fitting to measure this property (Kimia et al., 

2000). 
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• Closure: groups image parts that produce closed curves. We may 

use curve fitting to measure this property (Kimia et al., 2000). 

• Symmetry: groups image parts to produce parallel or super 

segments. We may use curve matching to measure this property 

(Kimia et al., 2000). 

• Parallelism: groups two parallel line segments. We may use the 

angle between two lines to measure this property. 

The fundamental laws that determine perceptual grouping are proximity, 

similarity, closure, and simplicity (Wertheimer, 1923). Simplicity tends to 

organize components into simple components according to symmetry, regularity, 

and smoothness (Wertheimer, 1923).  

Ben Av and Sagi (1995) show that similarity and proximity properties can 

be measured based on intensity autocorrelations of element features. For that 

reason, SIFT features and related local features could be used to measure 

similarity and proximity properties. Structural features, such as moments, can also 

be used to measure the simplicity property. We propose to use local features to 

achieve perceptual grouping according to similarity, proximity, and simplicity 

laws.  

Because local feature groupings can potentially indicate either the local or 

global characteristics of images (Lowe, 2001), the results of grouping will be used 

to measure image similarity.  

Using the similarity law, we can see that component shape similarity 

results in the percept of horizontal rows in Figure 2.7 and Figure 2.7 (a) is more 

similar to Figrue 2.7 (b) than Figure 2.7 (c), in this case based on the degree of 

local shape similarity since the global spatial configuration of the feature 

locations in (a), (b) & (c) below is identical. 
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                 (a)                             (b)                            (c)    

Figure 2.7 Similarity groupings suggest horizontal rows  

 

Using the proximity law, closer components can be perceived as groups 

forming vertical columns in Figure 2.8. Figure 2,8 (a) is more similar to Figure 

2.8 (b) than Figure 2.8 (c), based on the structure of the global configuration of 

the identical local elements in each example. 

 

 

 

 

     (a)                                          (b)                                          (c)    

Figure 2.8 Proximity groupings suggest vertical columns  

 

Using the simplicity law, the area which is enclosed by a symmetrical 

shape is perceived to be consistent in form. Figure 2.9 (a) is perceived to be more 

similar to Figure 2.9 (b) than to Figure 2.9 (c) based on the degree of symmetry of 

each element. 

 

 

 

(a)                                          (b)                                      (c) 

Figure 2.9 Symmetry grouping suggest (a) and (b) are more similar than (a) and (c)  
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However, it must also be noted that the shape similarity law could also be 

invoked here, as Figure 2.9 (b) could be considered to be a less distorted version 

of Figure 2.9 (a) than Figure 2.9 (c) without taking symmetry into consideration. 

Therefore, the perceptual influence of the different grouping laws cannot always 

be untangled, and may potentially operate simultaneously. 

2.11 Discussion and conclusions 

The literature shows that there are gaps in the reported trademark image retrieval 

research. There are few useful techniques for partial shape matching in the 

context of trademark retrieval, because those existing techniques tend not to   

support multi-component retrieval. Many techniques need image segmentation, 

which is an unsolved problem. Also, there are few researchers who use human 

perception for trademark image retrieval, which means that the shape 

representation does not reflect the shape as characterised by human perception. 

Finally, global features are not suitable for retrieving occluded or connected 

component images. 

Human shape perception offers many advantages for trademark image 

retrieval. However, there are the problems of occluded and connected 

components, segmentation, and multi-component matching. Trademark image 

retrieval must support partial shape matching and multi-component retrieval, and 

can employ non-accidental properties of local features to avoid tackling 

segmentation issues. 

We believe that using interest points in trademark image retrieval can 

improve the performance of systems for abstract trademark image retrieval. 

Interest points have been reported in the literature to have been used successfully 

in image retrieval (Schmid and Mohr,1997; Lowe,1999; Wolf,2000; Sebe,2001). 

Also, interest points are well suited to supporting partial matching and local 

feature extraction because they can be tolerant to the effects of local occlusions. 

Therefore, we propose to group the locations of detected local features loosely 

based on a subset of the Gestalt laws and potentially in a manner that exploits the 

non-accidental properties of these features. For example, by applying a transform 

space, or a robust affine estimation process, between the local features extracted 
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from compared images, we can characterise the goodness of fit of matching 

features. We can then evaluate the similarity of these features in higher semantic 

terms by evaluating the spatial configurations of matching feature constellations 

using standard techniques such as statistical moments. Therefore, we propose to 

compare images both in terms of the similarity of extracted local features and also 

in terms of different measures of the similarity of the spatial configurations of 

these local features. In the next chapter, we propose an approach for retrieving 

trademark images based on these ideas. 
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Chapter 3  

A Principled Approach to  

Trademark Image Retrieval 

This chapter provides an overview of a new approach to trademark image 

retrieval that tackles the complicated problem of dealing with similar images. The 

main goals of this research are examined, providing motivation for our system 

framework. We give an overview of the approach and of the system framework.   

3.1 Summary of our Goals 

Trademark retrieval systems typically utilize text-based retrieval, with keywords 

obtained from components of the trademark being investigated. The trademark’s 

figurative elements are annotated using the Vienna classification to describe 

trademark images. However, text-based systems are time-consuming and (very 

labour) intensive. Furthermore, the use of annotations is unsuitable for abstract 

trademark image retrieval.  

One of our aims is to develop new techniques for matching trademark 

image elements, which require new methods for solving partial matching and 

shape perception problems. The research literature highlights several issues with 

current types of matching processes and shape retrieval.  

1. There are few techniques aimed at partial shape matching, which is 

necessary for supporting multi-component retrieval.  

2. Many approaches require exact image segmentation, which is still an 

unsolved problem in the general case. Consequently, these techniques may 

not extract appropriate component shapes from an image.  

3. There is little work that reports employing human visual perception and 

shape similarity judgment for shape retrieval, which means that the chosen 
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shape representation may not reflect the real shape of the trademark.  

4. Global features are not suitable for retrieving occluded or connected 

component images.  

The second and fourth issues can be addressed by local features, while the 

first and third issues can be dealt with by interest points.  

In summary, our goals are: 

• We will utilize certain principles employed in human visual perception in 

our system. The Gestalt laws of organization show that shape is very 

important in human visual similarity judgment, and have been applied to 

trademark image retrieval (Eakins, Boardman et al. 1998; Alwis and 

Austin 1999). However, additional segmentation and clustering processes 

are required to group image elements, so Gestalt grouping principles can 

be applied to obtain meaningful components. In addition, retrieval failure 

is a problem due to segmentation and clustering inadequacies. Biederman 

has shown that humans recognize shapes using distinctive elements 

(Biederman, 1987). Since trademark images contain multiple graphical 

shapes, shape similarity judgement has a vital role to play in trademark 

image retrieval. Non-accidental properties greatly assist human shape 

similarity judgement, and this observation provides the motivation for the 

inclusion of interest point extraction and local features in our system.  

• Our system will support multi-component image retrieval. This will allow 

local features to be used to find image elements, and judge a shape more 

effectively. Local features are more suitable for multi-component image 

retrieval than global features, since they can be employed in both part and 

whole image matching, and support multi-component image matching.  

 We describe our proposed approach in more detail in the next section. 

3.2 Overview of Our Approach 

Our approach deals with the similarity problem between trademark images. Our 
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framework utilizes interest point extraction, local feature calculations, and 

decision making strategies. These capabilities are discussed briefly below, and we 

provide a roadmap to their detailed treatment in subsequent chapters. 

Trademark registration is time consuming and labour intensive, so more 

effective, and automatic, trademark image retrieval would be beneficial. An 

important drawback of current systems is that abstract trademark images are 

difficult to describe by keywords, making content-based image retrieval an 

attractive solution.  

Abstract trademark images are usually multi-component images, which 

present many problems for shape retrieval. Previous studies show that interest 

points provide useful information for image retrieval (Schmid et al., 2000; Harris, 

1988; Chabat et al., 1999; Smith and Brady, 1997; Sebe and Lew 2003). They 

support partial matching and local features, thereby avoiding the occlusion 

problem. They may also reduce the amount of matched data. 

Our system will utilize the following elements to support the efficient 

retrieval of trademark images: 

• Interest points, to provide useful information, that can be used to specify 

the positions and provide the spatial configuration of extracted local 

featuers, in a form suitable for abstract trademark image retrieval.  

• Shape descriptors, based on interest points and local features, to offer 

capabilities similar to a subset of those which are predominant in human 

visual perception. Shape descriptors also provide useful information for 

measuring shape similarity.  

The main questions that need to be addressed are: 

• Which interest point techniques can most effectively deal with distorted 

trademark images (e.g. with noise, rotation, translation, and scaling)? 

Interest point detectors can be divided into two main types. Intensity-based 

methods obtain interest points by pixels calculations on the entire image. 

Boundary-based methods obtain interest points by pixel calculated on 
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certain parts of an image, such as on silhouettes or contours. Intensity-

based methods do not have segmentation problems or edge detection 

issues, and can extract occluded or connected objects. We investigate 

these questions in chapter 4. 

• How can interest point techniques be applied to the domain of abstract 

trademark image retrieval? Interest points can greatly aid the creation of 

local features because they provide information content suitable for 

measuring image similarity  (Schmid, Mohr et al. 2000; Han and Guo 

2002). We look at applying interest points and local features to abstract 

trademark image retrieval in chapters 4, 5, and 6. 

• How can perceptual grouping be carried out automatically? We believe a 

solution lies with shape descriptors that consist of local appearance 

features and the spatial locations of local features based on Gestalt 

principles to reflect certain aspects of human visual perception. Gestalt 

principles have been previously applied to extracting global features based 

on contours (Eakins, Boardman et al. 1998; Alwis and Austin 1999). 

Contour features require segmentation, and the major drawback is 

incorrect clustering (Eakins, Boardman et al. 1998). Hence, we propose to 

represent the relationship of image components by employing transformed 

shape descriptors (i.e. appearance and structural features) globally based 

on Gestalt principles. Further details can be found in chapter 6. 

• How can shape descriptors be generated which distinguish between the 

component shapes in an abstract trademark image? Local features are 

more suitable than global features for multi-component image retrieval 

because of their robustness if any image components are lost. We utilize a 

vector of appearance and structural features as a shape descriptor (Datta et 

al., 2003). A vector can be used for training and determining shape 

similarity that can potentially reflect aspects of human visual perception. 

We evaluate this approach in chapters 6, 7, and 8. 
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3.3 System framework 

We are motivated by the idea of grouping those parts of an image which contain 

non-accidental properties in order to recognise shapes. Recent research results 

show that non-accidental properties can potentially be used in object recognition 

(Biederman, 1987; Lowe, 1985; Draper et al., 2003). Non-accidental properties 

are also potentially implicated used in human shape similarity judgement.   

Interest points are suitable for extracting important areas in image that 

result from the non-accidental properties of their parts. In addition, interest points 

can provide high information content and are inherently robust to partial 

occlusions (Schmid and Mohr, 1997). We apply an interest point detector to an 

image in order to extract interest points. 

Local features have the potential to allow the system to achieve partial 

matching and they support multiple components matching (Lowe, 1999). We use 

interest points to specify the positions of local features. SIFT features are selected 

to be the primary features adopted by the system because they are robust and 

exhibit high discrimination power (Lowe, 1999; Schmid and Mohr, 2003). The 

best candidate match to each interest point is specified by locating smallest 

Euclidean distance between each feature extracted from the input image and each 

feature to which this is compared in the database of interest points. (Lowe, 2004). 

This process can eliminate insignificant points (Lowe, 2004). 

We can measure perceptual grouping from local features supporting 

Gestalt laws and reflecting shapes (Liu et al., 2007). Appearance-based 

approaches have been used in object recognition (Hornegger et al., 2000). The 

appearance features can solve many problems such as obviating the need to 

segment image parts and can also facilitate geometric modeling of complex 

objects (Hornegger et al., 2000).  

The system uses meta-feature vectors (also called shape descriptors, which 

contain structural features and appearance features) for training and determining 

similar trademarks. The meta-feature vector support human-like perception of 

shape, using appearance similarities and structural similarities (based on the 
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spatial configuration of local feature locations) and points matched using specific 

properties such as orientation and proximity. The global characteristics of an 

image such as global size and global orientation are determined using statistical 

measurements that describe the spatial distributions of the interest point locations 

(details in chapter 6). These global image characteristics are computed using local 

features to group similar parts of an image for example Figure 3.1 shows different 

global orientations of six hearts to which the same degree of rotation as been 

applied. 

 

 

 

                   (a)                                                  (b) 

Figure 3.1 images of six hearts (a) in global 0 degree and (b) in global 20 degrees  

 

The Hough transform (HT) can also be applied to perform perceptual 

grouping. The Hough Transform is employed to support Gestalt principles such as 

continuity, proximity, and parallelism (Jiang et al., 2006). Draper et al. (2003) 

suggests that the Hough transform is suitable for representing appearance-based 

recognition. The Hough transform can also retrieve different shapes (Ballard, 

1981). In addition it can be applied to measure non-accidental properties such as 

parallelism, and symmetry (Draper et al., 2003).  

The interest points groups from Generalized Hough Transform (GHT) 

(Ballard, 1987) are successfully used in object recognition, panorama stitching, 

and 3D matching (Brown and Lowe, 2002). In this case Lowe applies the GHT to 

SIFT keypoints that match between compared images in order to determine the 

relative scale, rotation and offset between these images.  

The GHT is in essence a voting space that records the probability density 

of the occurrence of matching local features between compared images. Where 

matching features have similar properties, clusters appear in Hough space. 
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Accordingly, by detecting these clusters we have a mechanism for binding the 

features associated with each cluster into a group that exhibits some common 

property, such as dominant orientation, spatial scale. In turn this mechanism 

provides a means of associating similar groups between compared images, and 

hence a means of comparing image similarity based on local property grouping. 

Our proposed system uses the GHT to cluster matched interest points: for 

example, the percentage of matched point and total interest points could be used 

to measure overlap proximity (details in chapter 6). Figure 3.2 (b) shows overlap 

of three hearts from Figure 3.2 (a). Further processes based on the GHT can also 

be applied to measure other perceptual groupings in our system, such as the 

standard deviation of the difference between pairs of match points after an affine 

pose estimation process (details in chapter 6).     

 

 

 

                   (a)                                                  (b) 

Figure 3.2 images of six hearts (a) with no overlap and (b) with 3 overlapped hearts  

The system determines the similarity of images by employing meta-

feature vectors and support three visual perception properties that are similar to 

Gestalt grouping based on proximity, similarity, and simplicity. These structural 

grouping features allow global comparisons to be made based on diagnostic 

summaries of local feature groupings captured over the whole image. The above 

is much less general than human vision, which can perform the same grouping 

tasks in a local and hierarchical basis, and also make comparisons based on these 

sub-groupings. However, we can decrease the gap of this semantic issue using 

high-level semantic-based retrieval techniques, as follows: 

High-level semantic-based retrieval techniques are divided to five major 

approaches: (1) using object-ontologies such as keywords or qualitative 

definitions; (2) using machine learning methods such as decision trees  (Mitchel, 
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1997) or support vector machines (Burges, 1998); (3) using relevance feedback 

(Zhou and Huang, 2003); (4) using semantic templates such as sample images or 

keywords; (5) using textual information and visual feature extracted from images 

(Liu et al., 2007). The high-level features have the potential to achieve higher 

performance than low-level features (Liu et al., 2007).  

Only machine learning and relevance feedback approaches do not require 

a textual description. We aim to build the system without any keyword 

requirement. Hence, we employ machine learning by means of decision trees ID3 

(Iterative Dichotomiser 3) and relevance feedback to introduce high-level 

semantics into our system. Decision trees are also included to reflect human 

judgement. In our system, they train the similarity vectors using relevance 

feedback (details in chapter 6). Using relevance feedback, a user might imply 

which of the global grouping properties are relevant by consistantly selecting as 

relevant image examples that exhibit the desired visual property. For example, if 

similar images are returned and those exhibiting a particular arrangement of 

components, say set in diagonal lines, are selected as relevant, then a decision tree 

will be formed that accepts this bias based on computing decision thresholds 

using the information contained in the meta-feature vector, (in this case most 

likely summed local feature orientation and/or global feature cluster orientation). 

Alternatively, a user might consistantly select images containing sub-components 

that are widely spaced apart, and in this case the spatial feature proximity (or 

cluster spatial variance) will indicate images containing similarly widely spaced 

out components.  

We can summarise the system framework in Figure 3.3. The system is 

implemented in chapters 6 and 7, and evaluated in chapter 8. Our system is 

divided into five processes, linked together so the output from one process acts as 

input to the next.  
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Figure 3.3 System flowchart for similar trademark image retrieval. 
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descriptors from the interest points and local features, which are stored as meta-

feature vectors (containing structural and appearance information). The query 

meta-feature vector is calculated from the query image, and the database of meta-

feature vectors is computed from both the query and database images. The fourth 

process matches the query image’s meta-feature vector against a database of 

existing meta-feature vectors. The user then supplies relevance feedback about 

similar trademarks, and the system judges the image set using decision trees, and 

outputs a set of similar trademarks.   

3.4 Summary 

Our main goal is to develop a new machine perception grouping technique that 

provides an efficient way to retrieve abstract trademark images. Critical to this 

technique is support for human-like shape perception. Other requirements are 

interest point techniques and shape descriptors based on local features.  

The system framework is divided into four main processes: 

1. The extraction of interest points.  

2. The calculation of local features and matched points 

3. The generation of meta-feature descriptors from local features.  

4. The matching of a meta-feature vector representing the query against a 

database of existing meta-feature-vectors.  

5. The selection of similar trademark images.  

In the next chapter, we investigate techniques to extract interest points to 

be used in trademark image retrieval system. 
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Chapter 4  

Performance Study of Interest Point Detectors 

 

In this Chapter, we investigate and evaluate intensity-based interest point 

detectors. We have investigated many detectors and chosen four effective 

detectors with which to experiment. We study and explain each detector in section 

4.1 and test the ability of four interest point detectors to detect features within 

basic shapes and also within 20 samples of trademark images in section 4.2. An 

evaluation of the chosen interest point detectors is performed to compare their 

relative performances in section 4.3. We draw our conclusion in section 4.4. 

4.1 Interest point detectors 

According to Biederman’s suggestion that humans can recognize structured 

shapes by their distinctive parts, we are motivated by the idea of using interest 

points in trademark image retrieval (Details in chapter2), because interest points 

represent visually salient information and are robust to partial occlusion In other 

words, using interest points would appear to have the potential to support human-

like perception of shape. As a consequence, researchers have used interest points 

for successful object recognition. 

We can divide the interest point detectors into two main categories: those 

which are based on intensity-based methods and those which based on boundary-

based methods. Intensity-based methods use every pixel in an image directly to 

detect and then calculate interest points. Grey-level intensities can directly 

provide object characteristics (Horn, 1975; Allezard and Jurie, 2000). Boundary-

based methods extract shape boundaries within the input image and calculate 

interest points from image contours. If contours can be extracted accurately, the 

boundary-based method has the potential to reflect the real shape of an object 

more accurately than any intensity-based method (Mokhtarian and Suomela, 

1998; Mokhtarian and Mackworth, 1992). However, accurate image segmentation 
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requires human guidance (Zhang, 2006). On the other hand, the intensity-based 

method does not require segmentation or contour detection, and can even extract a 

partially occluded object or connected objects (Schmid and Mohr, 1997, Allezard 

and Jurie, 2000). 

In this research, we aim to reduce human intervention with the system to 

retrieve similar trademarks. For that reason, our system will use raw images as 

input.  

The intensity-based detectors use an input image directly, i.e. they use the 

image intensity field to calculate interest points. This kind of detector includes the 

Harris corner detector, Chabat detector, SUSAN (Smallest Univalue Segment 

Assimilating Nucleus) corner detector, and the Wavelet-based detector. The 

Harris detector uses a local autocorrelation analysis method (Harris and Stephens, 

1988) and is reported to be robust to noise, rotation, and lighting (Schmid et al., 

2000). The Chabat detector uses an orientation analysis method (Chabat et al., 

1999) and is invariant to noise and lighting variations (Zhou et al., 2002). The 

Susan detector uses a nonlinear filter analysis method (Smith and Brady, 1997) 

and is robust to noise and viewpoint changes (Cho et al., 2003). The Wavelet-

based detector uses the wavelet transform analysis method (Sebe and Lew, 2001) 

and is claimed to be invariant to image rotation and image scale changes (Sebe 

and Lew, 2003). 

We implemented Harris and Chabat detectors, and used the original 

software in (Smith and Brady, 1997; Sebe and Lew, 2001). All of the detectors we 

evaluate have been implemented in the C/C++ computer language. We give 

details of each detector in the sections that follow. 

4.1.1 Harris or Plessey detector 

The Harris detector is based on the local auto-correlation function (Harris, 1988). 

The fundamental idea is to measure the change in correlation of a window (with 

respect to its starting position) as it shifts along an image in order to find the 

shape of the local autocorrelation function; candidate interest points are extracted 

by measuring autocorrelation changes produced by the shifting window. The 

change produced by the shifting window is given by E(x,y); E is approximately 
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the autocorrelation function. 

  E(x, y) = Ax2 + 2Cxy + By2     (Equation 4.1) 

   = (x, y) M(x, y)T    (Equation 4.2) 

M is the 2 by 2 symmetric matrix below. 

         (Equation 4.3) 

 

We can calculate A, B, and C using the following Equations.     

A = X2 ⊗ w      (Equation 4.4) 

B = Y2 ⊗ w      (Equation 4.5) 

C = (XY) ⊗ w      (Equation 4.6) 

w = wu,v = exp –(u2+v2)/2σ2     (Equation 4.7)

  

where w is a smooth circular window produced by the Gaussian function,  

           u and v are window positions along the x and y axes respectively. 

In this implementation, the method calculates the image first derivatives 

along the x and y axes (X and Y).  

X = I(x,y) ⊗ (-1, 0, 1) = ∂I/ ∂x   (Equation 4.8) 

Y = I(x,y) ⊗ (-1, 0, 1)T = ∂I/ ∂y   (Equation 4.9) 

where X is the image first derivative along the x axis, 

  Y is the image first derivative along the y axis,  

I(x,y) is the pixel image, 

⊗ is the convolution operator. 

Because the shifting window auto-correlation function of a corner point 

has a minimum value when centred on the corner, we can use M to detect corner 

points. If α and β are the eigenvalues of M, corner points will have high α and β 
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values. We use the corner response (R) to detect corner points. 

  Tr(M) =  α + β = A + B    (Equation 4.10) 

  Det(M) = α  β  = AB – C2    (Equation 4.11) 

R  =  Det(M) – k Tr(M)2      (Equation 4.12) 

Then the strength of corner (R) is calculated by  

R = (AB – C2) – (k (A+B)2)      (Equation 4.13) 

In this research, we use k = 0.04  as suggested in Harris’s article (Harris, 

1988). Corner points are then selected using a threshold (the determined 

minimum of R).  

4.1.2 Chabat detector 

 A Chabat detector is based on a single derivative scheme (Chabat et al., 1999). It 

can detect corner points and the orientation of each corner. The detector computes 

the corner location and the direction of edges that join the corner. This method is 

made less sensitive to noise by using a local anisotropy method. 

We detect possible corners using an analogy to the power spectrum of a 

line in the Fourier domain; a line gives an exact intensity direction. Thus, we 

assume that a strong intensity direction is reflected as a cluster within the power 

spectrum and thereby indicates the presence of a line. 

The orientation θ(x,y) and the strength g(x,y) of the anisotropy of an 

intensity pattern in one direction can be approximated as follows: 

              (Equation 4.14) 

        

where θ(x,y) is the direction of anisotropy. 

       

              (Equation 4.15) 
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  where g(x,y) is a measure of anisotropy along one direction. 

We calculate the orientation of a corner by integrating the image first 

derivatives along the x-axis and the y-axis in order to reduce noise sensitivity. A 

value of g(x,y) close to 1 there is a strong gradient direction in one orientation; if 

the value is equal to 0 there is no dominant gradient direction in that area. 

Chabat (1999) claims that corners have two properties; corners and 

junctions exhibit strong intensity gradients; corners have more than one dominant 

gradient direction. Then, the cornerness is based on these properties; the corners 

are computed by an anisotropic method along several directions of the intensity 

derivative (cornerness). The cornerness (c(x,y)) is calculated by 

c(x,y) = ψ( g(x,y) ) ∇ I(x,y)               (Equation 4.16) 

where 

ψ(t) = (1-t)m                (Equation 4.17) 

, m = ½ as suggested by Chabat. 

  ∇ I(x,y) is a gradient magnitude that calculated by 

∇ I(x,y) = 
y

I

x

I

∂
∂

+
∂
∂ 22

             (Equation 4.18) 

where I(x,y) is a pixel in the image. 

A cluster of high value cornerness is considered to identify the presence of 

one corner and the point with highest cornerness is then an exact corner location. 

Corner points are then selected using a threshold which determines a minimum 

value for cornerness. However, some edge points are detected as corner points, if 

corner area is wide or the image is very noisy. These points are eliminated in the 

final process. 

The corner’s orientation is calculated from the orientation of the edges to 

which it connects. The function that specifies the membership of edges that 

contribute to the corner (Cj) is computed by  
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sc(j)(x,y) = g(x,y)∇ I(x,y) cosn α          (Equation 4.19) 

Equation 4.19 consists of two parts: g(x,y)∇ I(x,y)  measures the edge 

strength exhibited by the corner, cosn(α)  measures the orientation difference 

between an edge pixel and the corner arm. Following Chabat’s original article 

(Chabat et al., 1999), we use n = 3 to calculate sc(j)(x,y). 

The value of sc(j)(x,y) is small if an edge pixel (Mi) is not aligned with the 

direction of the corner point (Cj) - shown in Figure 4.1. 

 

 

 

 

Figure 4.1 Direction of corner arm ( ij MC ) and edge pixel (Mi) 

 The angleα is the angle of the orientation difference between an edge 

pixel (Mi) and corner arm ( ij MC ).  

α = (u, v) 
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Then, we calculate the corner confidence by the area under the sc(j)(x,y) 

histogram or the maximum of the sc(j)(x,y) histogram. 

The histogram (H) is summed for all corner neighbourhood windows 

(Γ) with a given direction. 
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                 (Equation 4.22) 

Φc(j)(x,y) is a weighting function to decrease the value of pixels the further they 

are from the corner point centre. It is a positive function with a weight maximum 
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) We use Γ to be 10 pixels as in the 

original article (Chabat et al., 1999).  

The number of peaks in the histogram shows the type of point. If it has 

two peaks, it is a corner. If it has three or more, it is a junction. To increase the 

robustness of the method with noise corrupted images, a corner with low corner 

confidence is eliminated. Finally, the number of corner points can be specified or 

a threshold set to select cornerness above a specific magnitude value.  

4.1.3 SUSAN detector 

SUSAN uses a non-linear filter to measure pixel brightness from a group of 

similar pixels in a local region (Smith and Brady, 1997). This non-linear filter 

uses a circular mask with a centre pixel as a nucleus. The mask area is also 

defined as the area of USAN (Univalue Segment Assimilating Nucleus). We can 

use USAN area to calculate the structure of the image.  

Every pixel in an image is given its USAN value by using a small circular 

mask with that pixel as the nucleus. USAN has a maximum value when the 

nucleus is on a flat, non-varying area within the image. The USAN decreases to 

half of the maximum value when it is near a straight edge and it has its minimum 

value when it is on a corner. Therefore, the inverted USAN value can enhance 

edges and corners in images; this leads to an interpretation of SUSAN. SUSAN 

can suppress noise by a USAN function, if the noise is smaller then the USAN 

function. 

The circular mask should be 37 pixels from the author’s empirical study 

(Smith and Brady, 1997). The mask is placed over the pixel in the image to 

evaluate the pixel brightness. A USAN value is calculated by the equation below. 

                (Equation 4.23) 

where  r
r

 is the pixel inside window area (circular mask),  

0r
r

 is the nucleus pixel (the centre point), 

  I( ) is the brightness of a pixel, 

  t is a brightness difference threshold to suppress noise, 
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  c is the USAN value. 

The total value of USAN area is calculated by 

∑=
r

rrcrn
r
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),()( 00           (Equation 4.24) 

where n is the number of pixels in the USAN area. 

The USAN area (n) is compared to a geometric threshold (g); the 

threshold is fixed to nmax/2 where nmax is the maximum value of all USAN values; 

this threshold is used to suppress noise. USAN areas that have a USAN value less 

than half of the USAN maximum (nmax) are labelled as corners.  

The geometric threshold (g) can be used to reveal the corner shape; a 

smaller value represents a sharper corner. Hence, the threshold can be fixed. The 

brightness difference threshold (t) is not sensitive to the structure of the corner, 

although it does control the number of detected corners; a smaller value gives 

more points. Smith claims that 25 is a suitable value for general real images and 7 

for low contrast images (Smith and Brady, 1997). In addition, this threshold can 

be varied to specify a desired number of corners. 

An initial edge response (R) is calculated to produce a corner strength 

image. The initial edge response equation is below. 
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          (Equation 4.25) 

We can differentiate and thereby eliminate false positive corners from 

edges and noise by checking USAN’s centroid and contiguity. The USAN 

centroid is computed as the distance from the nucleus to the centre of gravity. A 

short distance from the centre of gravity to the nucleus is defined as a false 

positive and eliminated. If a USAN area is smaller than the circular mask 

diameter, the centre of gravity (r
r

) is calculated. The centre of gravity equation is 

as follows. 
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The contiguity of USAN is defined; a condition is that the lines running 

directly from the nucleus to the centre of gravity have to be a part of USAN.  

Finally, non-maximum suppression is applied; the corners are selected by 

local maxima greater than zero from a window of 5 by 5 pixel regions (Smith and 

Brady, 1997).   

4.1.4 Wavelet-based detector 

Nicu Sebe and Micael Lew presented the Wavelet-based salient point detector in 

their article (Sebe and lew, 2001). This detector represents a trend to detecting 

evidence points at multiple resolutions by means of Wavelet transforms; a 

Wavelet transform is used to represent a number of discrete image scales. The 

aim is to investigate the change of information produced by the Wavelet 

representation at several scales. A Wavelet-based salient point detector can detect 

a point as a high variation of the Wavelet coefficients represented over several 

scales of the Wavelet transform. 

At coarse resolution, a high absolute Wavelet coefficient implies that the 

wavelet support region contains a high global degree of variation, i.e. high image 

energy. Then, we can find a relatively salient point, or a point identifying a region 

of variation, by tracking the currently detected location at finer resolution within 

the next higher freqeuency Wavelet scale. 

A Wavelet transform uses a scaling and translation function to calculate 

the frequency domain properties of the transform. A Wavelet coefficient ( fW i2
) 

is calculated by convolution of an image with a Wavelet function at multiple 

scales 1/2, 1/4, 1/8, …, 2j; j ∈ z and j ≤ -1.  

fWW jf 2
=   where 1max −≤<− jJ .           (Equation 4.27) 

Jmax = log2N              (Equation 4.28) 

where N is a size of image. 
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where  Nn j20 <≤ , 

g is the wavelet discrete filter, 

 h is the scaling discrete filter, 

   f(n) is an image, 

   As is the approximation result at each of the scales s. 

We use an orthogonal Wavelet with compact support to be the “Mother” 

Wavelet function, following Sebe (Sebe, 2001); the advantage of this function is 

that it provides a non-redundant representation, and coefficients that can be traced 

over scale.  

The set of coefficients, or child Wavelets, is given by the equation below. 

( { }1222,1222,),(),(( 122
−+≤≤−+≤≤= + pylypxkxlkfWyxfWC jj

d  

         (Equation 4.30) 

where p controls the shape of the Wavelet function, 

0 ≤ x ≤ 2jN, 

0 ≤ y ≤ 2jN, 

   N by M is the size of image, 

1 ≤ d ≤ 3, 

p=1 for Haar function, 

f is an image, 

d is the section number of the Wavelet coefficient. 

The Wavelet coefficient at the scale 2j ( fW i2
) is based on 2-j image points; 

it shows information change at the scale 2j. Furthermore, the maximum absolute 

value of the child coefficient set ( )(
2

fWC j ) reveals the most salient point; it 

corresponds to the maximum Wavelet coefficient at the scale 2j+1. 

We can extract a salient point by calculating a saliency value at all 

transform scales. The tracking process begins at highest scale and repeats to 
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extract the maximum coefficients recursively at lower scales until reaching scale 

1/2. There are 2p final points. We then select points that have gradient values 

above a threshold. The saliency value of each detected point is calculated by the 

tracking process and comprises the sum of the absolute values of the coefficients. 

If the detected point has many salient values represented by the different child 

Wavelets found during scale tracking, the highest value detected serves as the 

saliency value for that point.  

The saliency value is obtained by the equation below: 

      1,20,)( max
1

2
−≤≤−<≤= ∑

−

=

jJNnnfWcsaliency j
j

k

k
j      (Equation 4.31) 

Finally, we specify the threshold of the saliency value. Setting a high 

saliency value implies variation at the global level and a small saliency value 

implies variation at a local level. Therefore, the higher the threshold of the 

saliency value the fewer the number of salient points that results. 

4.2 Development of interest point detectors 

The interest point detectors extract potentially salient locations in an image that 

can be used in shape retrieval. Generally, all of the detectors specify the number 

of interest points, but some detectors require additional parameters. The Harris 

detector requires one parameter: the width of the Gaussian curve. A Chabat 

detector requires one parameter: the threshold for cornerness. The SUSAN 

detector and the Wavelet-based detector do not require additional parameters.  

For testing, each detector is applied to the input image and outputs the 

interest points. The test applied for basic shape detection uses a rectangular figure 

to provide four corner points. The results are shown in Figure 4.2. 
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        (a)   (b)          (c)          (d) 

Figure 4.2 The results of (a) Harris detector, (b) Chabat detector, (c) SUSAN detector, and 
(d) Wavelet-based detector on rectangular figure. 

The results show that every detector can detect correct corners in a basic 

shape such as a rectangle. However, the shapes found in real trademark images 

are more complex than this. Each detector tested could detect interest points 

within trademark images.  

Consequently, the next testing phase employed sample trademark images. 

In this test, 50 interest points were extracted. The location of each detected 

interest point is depicted as a point in the test image, Figure 4.3.  

 

 

 

 

 

 

 

 

 

Figure 4.3 The results of (a) Harris detector, (b) Chabat detector, (c) SUSAN detector, and 
(d) Wavelet-based detector applied to a real trademark image. 

However, the above experimental result also shows that each detector 

extracts different points, because of noise and their differencing underlying 
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computational approaches; therefore, these detectors have the potential to retrieve 

the different shapes that trademark components might comprise. However, we 

need to measure localization accuracy of the detectors; a highly accurate detector 

is suitable for use in shape retrieval (Schmid et al, 2000). The next section 

describes the experiment to measure the accuracy of the detectors. 

We measured localization accuracy of the detectors using a series of 20 

query images supplied by the UK Patent office obtained during the evaluation 

experiments of the ARTISAN system (Eakins et al., 1998). In the next section, the 

experiments designed to measure the accuracy of the interest point detectors are 

explained.  

4.3 Experiments of interest point detector accuracy  

The experiment aims to measure the accuracy of detectors to be used in trademark 

image retrieval. Repeatability is used to evaluate the accuracy of interest points 

(Schmid et al., 2000; Sebe and Lew, 2003). The main objective is to find the 

repeatability of each detector with different image scales and transformations 

(noise and rotation) (Schmid et al., 2000). A higher repeatability rate corresponds 

to a higher accuracy rate (Schmid et al., 2000). In addition, high accuracy 

detectors have the potential to be used in trademark image retrieval, because they 

are transformation invariant detectors.  

The following sections describe the methodology to be used in the 

experiments, the measurement of detector repeatability and experimental results. 

4.3.1 Methodology 

The implementation of interest point detectors is programmed in C/C++ and 

executed on a personal computer. In each experiment, the number of interest 

points and the image test set are held constant. Each of the detectors is configured 

with the parameters specified in section 4.1. 

The validation images are based on 20 trademark images obtained from 

the UK Patent office for user evaluation of ARTISAN. The images consist of 

multi-component and different abstract geometric shapes; the average number of 

components is seven.  
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Miller (1956) claimed that humans use seven, plus or minus two, chunks 

of short term memory to distinguish information where a chunk is any meaningful 

unit. The number seven then became the fundamental number for the limited 

capacity of short-term memory in all subsequent theories of memory. This leads 

to a number of seven points for each component. We use an average of seven 

components for each image (Eakins et al., 1996). The number of interest points is 

50 (7x7 to the nearest 10).  

In order to validate shape similarity measurement, we add scaled, rotated, 

and noise corrupted versions in our image test set. The image test set is based on 

20 images that are transformed to provide two versions with differing degrees of 

noise added and three rotated versions; each set is scaled to three different sizes. 

The total number of images tested is 360. The details are explained in the next 

sections. 

4.3.1.1 Image test set 

There are three kinds of transformation used to generate images for the test set 

comprising size variation, noise addition, and image rotation. We found that at a 

small size (64x64 pixels), the image contains less information and it has many 

close points. Therefore, a suitable image size was considered to be more than 

64x64 pixels. Generally, the size of the images is simplified to be a power of 2 

(Petrou and Bosdogianni, 1999). The image sizes used are 128x128, 256x256, and 

512x512 pixels. The image scaling transform applied is described in section 

4.3.1.2. 

Gaussian noise of either  sigma = 10, or sigma = 30 is also applied to each 

image; these values are cited by Bovik as being typical in a real setting and to be 

difficult to remove by filtering (Bovik, 2000).  

The test images are rotated by 15, 50 and 90 degrees since researchers 

reported that these values affect the changes in perceived orientation of an image 

(Goldstein, 1999; Elferink and Van Hof, 1988).  

4.3.1.2 Image Scaling  

The original trademark images are transformed by spatial scaling to produce test 

images of 128x128, 256x256, and 512x512 pixel dimensions. The scaled images 
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preserve the aspect ratio of the original images; this can be performed by filling to 

a square image. The filling process is shown in Figure 4.4.  

 
 
 
 
 

 
           
 

 

Figure 4.4 The process to fill an image to a square image. 

 

Then the square original image is transformed by scaling as follows. 

   xSxx ×=′         (Equation 4.32) 

ySyy ×=′         (Equation 4.33) 

where x and y are the input pixel indices on the x axis and y axis 

respectively.  

Sx and Sy are the scaling factors in the x and y dimensions and are given by 

Sx =  (nx′) / (nx)          (Equation 4.34) 

Sy =  (ny′) / (ny)          (Equation 4.35) 

 where  nx is the width of input image, 

nx′ is the width of scaled image, 

ny is the height of input image,  

ny′ is the height of scaled image. 

Examples of scaled images are shown in Figure 4.5. 

 

Filling areas 

Original image 
Square image 
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(a) 

(b) (c) (d) 

 

 

 

 

 

 

 

 

 

 

Figure 4.5  An original image in (a), scaled image size 128x128 in (b), scaled image size 
256x256 in (c), scaled image size 512x512 in (d). All dimensions cited in pixels. 

 

4.3.1.3 Image noise 

Noise usually occurs during the image acquisition and transmission processes. It 

cannot be predicted accurately. However, it can be characterized by a probability 

distribution with a specific mean and standard deviation (Parker, 1997). Any 

transmitted image (B) is then modelled as the perfect image (A) plus noise (N). 

B = A  + N              (Equation 4.36) 

A and N are not related to each other. The noise N is a normal distribution 

with a zero mean and some standard deviation (Parker, 1997). 

So each pixel in B is the sum of the image pixel value in A and a random, 

a Gaussian distribution noise value (Gσ (x)) with standard deviation as sigma (σ). 

2
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2

1
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σ
πσ

x

exG
−

=             (Equation 4.37) 

Examples of noise corrupted images are shown in Figure 4.6.  
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Figure 4.6 Gaussian noise corrupted images with sigma 10 in (a) and sigma 30 in (b) 

 

4.3.1.4 Image rotation 

Image rotation rolls images around a centre point. The transformed coordinates 

are given by 

θθ sincos yxx +=′         (Equation 4.38) 

θθ cossin yxy +−=′         (Equation 4.39) 

where x and y are the input pixels of x axis and y axis respectively, 

           θ is the rotation angle between 0 and 360 degrees. 

Examples of rotated images are shown in Figure 4.7. 
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      (a)        (b)   

  

 

 

 

                           
 (c) 

Figure 4.7 Rotated images with angle 15 degrees in (a) 50 degrees in (b) and 90 degrees in 
(c). 

4.3.2 Repeatability 

Repeatability measures the degree to which an algorithm detects the same features 

from variants of an original image (Schmid et al., 2000). Repeatability is one way 

to evaluate the accuracy of a detector; higher repeatability indicates a more 

reliable detector. This method can be used when matching a copy of an original 

image to a version of the same image that has undergone a known transformation. 

Therefore, a repeat point is reverse transformed back to its original location in 

order to compare its residual position error. Accordingly, this approach serves as 

an important method for measuring the localization accuracy of detectors. 

Repeated points are not required to be at identical locations, as long as a 

point is in the neighbourhood of the original, it is regarded as repeated. This 

method uses a distance threshold to determine if a putuative repeat point is 

suffciently close to its original version to be accepted. Figure 4.8 shows the 

possible repeat point x from image I1 on image I2. 
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Figure 4.8 The possible repeat point x from image I1 on image I2 

 

The neighbourhood size is ε pixels. Repeatability using neighbourhood 

matching is called pseudo repeatability. The pseudo repeatability rate (r(I i, Ij) of 

images I i and I j is calculated by: 
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  where xi is a point in the image, 

|| xi, xj || is the distance between points xi and xj. 

In this research, the pseudo repeatability is in the range of 0 to 100. 

4.3.3 Experimental procedure 

In this section, we present the experimental procedure used evaluate the accuracy 

of interest point detectors applied to abstract trademark images. 

The test set of images was based on 20 images and 9 examples of test 

images are shown in Table 4.1. The structure of tested images is shown in Figure 

4.9. The total number of test images was 360. For example, one of the test-image 

set of size128x128 pixels is shown in Figure 4.10.  

 

 

I1 I2 
ε 

x(I1) x(I2) 
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Table 4.1 Examples of testing images 

Test image 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                                                 69 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Summary of transformations to generate test images. 

Original Images 
(20 images) 

Scaled 128x128 
(20 images) 

Scaled 256x256 
(20 images) 

Scaled 512x512 
(20 images) 

Rotated 15 degree  
(20 images) 

Rotated 50 degree  
(20 images) 

Rotated 90 degree  
(20 images) 

Noise Sigma 30  
(20 images) 

Noise Sigma 10  
(20 images) 

Rotated 15 degree  
(20 images) 

Rotated 50 degree  
(20 images) 

Rotated 90 degree  
(20 images) 

Noise Sigma 30  
(20 images) 

Noise Sigma 10  
(20 images) 

Rotated 15 degree  
(20 images) 

Rotated 50 degree  
(20 images) 

Rotated 90 degree  
(20 images) 

Noise Sigma 30  
(20 images) 

Noise Sigma 10  
(20 images) 
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(a)     (b) 
 
 
 
 
 
 
 
  (c)     (d) 
 
 
 
 
 
 
 
 
 

(e) (f) 

 

Figure 4.10 Image test set of image 1005896 with resolution 128x128pixels 

when (a) original, (b) rotated 15 degrees, (c) noise with sigma 10, 

(d) rotated 50 degrees, (e) noise with sigma 30, (f) rotated 90 degrees. 

 

In section 4.1, we introduced interest point detectors: Harris, Chabat, 

SUSAN, and Wavelet-based detectors. Each detector extracted interest points and 

the repeatability score of these points was estimated for each test image. Many 

researchers use the repeatability score to compare the accuracy of detectors 

(Schmid et al, 2000; Sebe and Lew, 2003; Heidemann, 2004). To measure the 

repeatability, we had to consider particular image distortions comprising image 

rotation and image scaling. We then computed the repeatability score for each 

image from its interest points and averaged the repeatability scores over all tested 

images for each detector.  

A summary of the experimental processes is shown in Figure 4.11. The 
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processes start by extracting interest points from the tested images. We divided 

the results into two categories from their input: reference and transformed points; 

the reference points were extracted from a reference image and the transformed 

points were extracted from a transformed image. Then, the repeatability of each 

image from each detector was calculated by computing the L2 norm difference 

between the positions of the reference and transformed points, as described in 

section 4.3.2. Finally, we summed and averaged all repeatability scores for each 

image and for each detector to determine the average repeatability score of each 

detector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 4.11 A summary of processes of experiments. 

We summarise the experimental results in the next section. 

4.3.4 Experimental results 

A summary of results of all transformed image sizes of 128x128, 256x256 and 

512x512 pixels are shown in Table 4.2; each tuple in the Table gives the average 

and standard deviation of the repeatability scores for each detector performed at 

the specified image size. The overall average for each detector is shown in Figure 

4.12. The Harris, and Chabat detectors exhibited average repeatability scores 

Perform Interest point detection 

Collect interest points from 
each reference image 

 

Collect interest points 
from each transformed image 

 

Calculate the repeatability  
of each image (transformed image) 

from each detector 

Sum and average the repeatability for each detector 

Extract interest points 

Input images (Normal and transformed) 
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exceeding 50 %. Furthermore, these detectors exhibited better average 

repeatability than the SUSAN and Wavelet-based detectors, we believe because 

they provide gradient direction of corners; the Harris detector computes image 

first derivatives before smoothing by a Gaussian window; Chabat computes the 

anisotropy of the local intensity pattern and the intensity derivative. Hence, the 

Harris and Chabat detectors could reflect object boundary shapes in images and 

report better results than the others two detectors. 

In addition, Harris and Chabat detectors were intensity-based detectors; 

they were degraded when the image artefacts present were increased by 

increasing the image size; they exhibited best result at an image size of 128x128 

pixels because these reduced images contained least noise and artefacts.  

Table 4.2 The overall repeatability of each detector. 

Repeatability (%) 

Image size 
128x128 256x256 512x512 

 
Average  Detector 

Name Mean SD. Mean SD. Mean SD. Mean SD. 

Harris  84.62 13.72 74.62 16.19 63.04 14.60 74.09 17.29 

Chabat  66.28 13.18 60.80 13.71 39.14 11.79 55.41 19.62 

SUSAN  33.36 18.81 35.88 22.17 33.38 23.43 34.31 21.82 
Wavelet
-based  51.84 20.00 32.18 22.86 15.72 15.33 33.25 20.79 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 4.12 The overall average repeatability of each detector. 
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We investigated the result of experiments using different image sizes. 

The results of each transformation from image sizes of 128x128, 256x256 and 

512x512 pixels are shown in Figures 4.13, 4.14 and 4.15 respectively.  

Average Repeatability of image size 128x128
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Figure 4.13 The average repeatability of image size 128x128 pixels.  

Average Repeatability of image size 256x256
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Figure 4.14 The average repeatability of image size 256x256 pixels. 
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Average Repeatability of image size 512x512
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Figure 4.15 The average repeatability of image size 512x512 pixels. 

From Figures 4.13, 4.14 and 4.19, the best result of all transformations in 

image size 128x128 pixels can be obtained, if we use the results from the Harris 

and Chabat detectors; the best result of all transformation in image size 256x256 

pixels is from the Harris detector; the best result of all transformation in image 

size 512x512 pixels is also from the Harris detector.  

4.3.5 Conclusion based on experimental work 

The Harris detector demonstrated the best repeatability. In addition, the Chabat 

detector also produced good results with more than 50 % repeatability. Schmid 

(1997) claimed that a detector can be used for recognition of objects when it 

performs with a repeatability score of more than 50%. Therefore, the Harris and 

Chabat detectors have the potential to be used in trademark image retrieval 

applications. 

4.4 Conclusion 

Using interest points in trademark image retrieval is a new method. The results 

are sufficiently encouraging to justify finding the local features located at interest 
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points as described in the next chapter. In this chapter, we studied two tasks. 

The first task was developing and testing interest point detectors. This task 

was to develop new software to implement the Harris and Chabat detectors and to 

evaluate the SUSAN and Wavelet-based detectors produced by the original 

authors. The validation methodology devised also tested the detectors with images 

containing basic shapes and also with real trademark images. The results show 

that every detector can detect corners correctly in a rectangular shape and extract 

a variety of different points in real trademark images.  

The second task was to measure the repeatability of the interest point 

detectors. The Harris detector has the best repeatability and the Chabat detector 

also achieved good results with more than 50 % repeatability.  

To sum up, we found that the Harris and Chabat interest point detectors 

have the potential to distinguish trademark images, because they have a high 

stability when retrieving interest points from transformed versions of the same 

image. According to our framework, we are interested in developing shape 

perception based on local features and interest points. The next stage of research 

explores how to use interest points in combination with local features (details in 

chapter 3). Therefore the next chapter will examine local feature extraction 

guided by the Harris corner detector as embedded within the SIFT algorithm. 
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Chapter 5  

Performance Study of SIFT approach 

In this chapter, we investigated and evaluated SIFT approach in order to measure 

the performance of local feature based on interest points. We briefly describe the 

SIFT approach in section 5.1. Then, we explain the implementation method in 

section 5.2, experimental procedure in section 5.3, experimental result in section 

5.4, and conclude in section 5.5. 

5.1 Introduction 

In the previous chapter, we studied the performance of interest point detectors and 

found that interest points extracted by two gradient-based detectors were suitable 

for retrieving transformed trademark images. These results were sufficiently 

encouraging to justify continuing to next stage, i.e. to extract local features at 

interest point locations. From a literature review, the SIFT (Scale Invariant 

Feature Transform) descriptor appears to be the benchmark standard reliable 

feature representation to use in object recognition (Mikolajczyk, 2003; Lowe, 

2004), and is applied in many image matching applications, e.g. in hand written 

word recognition (Rodriguez and Perronnin, 2008). In addition, the SIFT 

approach provides a robust feature detector that localises interest points, called 

SIFT keypoints, in scale and orientation to sample the SIFT feature, called a 

keypoint descriptor. Because, at this stage, we are interested in the performance of 

local features based on interest points, we selected the SIFT framework and 

keypoint descriptor for the experiments in this chapter. The Harris point detector 

is also employed by the SIFT algorithm, and this detector performed best on 

average of the point detectors evaluated in Chapter 4. SIFT therefore uses this 

same Harris point response function to select keypoints  (detail in the next 

section) and extracts keypoint descriptor based on the gradient orientation 

histogram local to each  interest point (Rodriguez and Perronnin, 2008),). The 

SIFT algorithm is explained in the following section. 
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5.2 SIFT  

The SIFT algorithm was proposed by David Lowe (Lowe, 1999).  This algorithm 

can extract interest points, keypoints, and generate a keypoint descriptor which is 

robustly invariant to general image transforms (rotation, translation and scale), 

and is also partially invariant to affine distortion, illumination change and noise 

(Lowe, 2004). The SIFT algorithm consists of four major stages comprising: 

scale-space extrema selection, keypoint localization, orientation assignment, and 

computation of keypoint descriptors. 

In the first stage, potential interest points are extracted by finding local 

extrema of Difference-of-Gaussian filters at different scales. The Difference of 

Gaussians (D(x, y, σ)) function can be computed by subtracting two identical 

images each which have first been convolved with a Gaussian kernels with 

differing blur (σ) parameters. In a scale-space context, the kernel blur difference 

corresponds to the difference of two adjacent spatial scales separated by a 

constant multiplicative factor k: 

D(x, y, σ) = L(x, y, kσ) - L(x, y, σ)                          (Equation 5.1) 

where 

L(x, y, σ) = G(x, y, σ ) *  I(x, y)             (Equation 5.2) 

σ
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),,( yxeyxG +−=                         (Equation 5.3) 

I(x, y) is the input image. 

An example of computing the Difference-of-Gaussian convolution within 

a multi-resolution scale-space is shown in Figure 5.1. 
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Figure 5.1 The computation of the Difference-of-Gaussian image pyramid.  
 

The local extrema (minima and maxima) of D(x, y, σ) in their own scale 

and one scale above and below are extracted as candidate points. The local 

extrema detection is shown in Figure 5.2.  

 

 

 

 

 

 

  

Figure 5.2 Local extrema detection: the pixel marked ×××× is compared against its 26 
neighbours in 3 by 3 regions at the current and adjacent scales (marked with circles).  

 

In the second stage, each candidate point is localised to sub-pixel 

precision by interpolation. The candidate points that comprise low contrast or 

edge responses are eliminated to yield compact interest points that can be 

Gausian Difference of Gaussian  

Scale (first Octave)  

Scale (next Octave)  
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localised uniquely in two dimensions.  

For each candidate keypoint, the turning point of the local density function 

over a 3x3 system in x, y and scale is solved to define its sub-pixel/sub-scale 

position. Lowe’s approach employs the quadratic Taylor expansion of the scale-

space function D(x, y,σ), given by: 
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+=               (Equation 5.4) 

where D and its derivatives are computed at the candidate point and 

(x = (x, y,σ)) is the sub-pixel/sub-scale offset from this point.  

The location of the extremum, x̂ , is calculated by taking the derivative of 

Equation 5.4 with respect to x and setting it to zero. 
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If the offset x̂  is larger than 0.5 in any dimension, this means that the 

extremum lies closer to another candidate point. In this case, the candidate point 

is changed and the interpolation is performed at the new point. The final offset x̂  

is the interpolated estimate for the location of the extremum of the candidate 

point. 

To discard candidate points with low contrast, the value at the extremum 

D( x̂ ) is computed at the offsetx̂ . 
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+=                 (Equation 5.6) 

If this absolute value is less than 0.03, the candidate point is rejected.  

To discard candidate points which correspond to responses along edges, 

the ratio of principle curvatures (R) is calculated by means of the same approach 

used in the Harris detector (detailed in section 4.1.1).  

)(

)( 2

HDet

HTr
R =                  (Equation 5.7) 
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where H is a 2 by 2 symmetric Hessian matrix described in section 4.1.1. 

R for each candidate point is compared with the threshold (E). 

r

r
E

2)1( +
=                  (Equation 5.8) 

where r =10 (Lowe, 2004). 

Candidate points with R greater than E are discarded. 

In the third stage, each interest point is assigned an orientation. The 

orientation is calculated from an orientation histogram of local gradients from the 

Gaussian smoothed image L(x, y) at the scale of each interest point. For each 

image sample L(x, y) at this scale, the gradient magnitude m(x, y) and orientation 

θ(x, y) are computed using pixel differences: 

   

22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLyxLyxLyxm (Equation 5.9) 

)))1,()1,(()),1(),1(((tan),( 221 −−++−−+= − yxLyxLyxLyxLyxθ  

                                      (Equation 5.10) 

The orientation histogram contains 36 bins, each representng10 degrees 

sampling precision over 360 degrees of orientation. Each point within a Gaussian-

weighted circular window, of radius 1.5 times the scale of the keypoint, is added 

to the histogram and weighted by the gradient magnitude (m(x, y)). The highest 

peak in the histogram is selected and a keypoint generated for this orientation, and 

additional keypoints are created for any other local peaks whose size is within 

80% of the highest peak. 

For the fourth stage, SIFT keypoint descriptors are sampled by extracting 

a set of gradient magnitude weighted orientation histograms from a 16x16 pixel 

sampling patch centred on the keypoint location. The gradient magnitudes within 

the sampling patch are weighted by a centred Gaussian function having a sigma 

factor 1.5 times the scale of the interest point. This centre weighted sampling 

patch is then subdivided into a set of sixteen 4x4 pixel patches from which sixteen 

orientation histograms are computed from this 4x4pixel grid. Each histogram has 
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8 orientation bins over its corresponding 4x4 pixel support window and the 

resulting feature vectors are 128 elements in length, as depicted in Figure 5.3. 

These vectors are normalized to unit length to increase invariance to illumination 

changes. 

 

 

 

 

 

 

 

Figure 5.3 SIFT features comprise gradient magnitude weighted orientation histograms 
computed from a grid of sixteen 4x4pixel patches centered on each keypoint. The region is 
weighted by a circular Gaussian window indicated by the overlaid circle. Each orientation 
histogram is calculated from a 4x4 pixel support window and samples 8 orientation bins.  

 

We use the SIFT algorithm as implemented by Lowe to extract interest 

points and local features, i.e. keypoints and keypoint descriptors. Then, we 

calculate the similarity between a query image and images in a database by 

matching the SIFT key point descriptors in the query image to those extracted 

from each image in the database images. The implementation methods are 

described in the next section. 

5.3 Implementation Methods 

The SIFT algorithm generates interest points or keypoints and keypoint 

descriptors from images that can be used in object recognition. Lowe also uses the 

Generalized Hough transform (GHT) to cluster matched points (Lowe, 2004). The 

GHT groups keypoint descriptors into clusters that match similar keypoints 

descriptors between two images and provides a high performance template 

matching scheme that supports matching between scaled, rotated, and partially 

occluded images (Lowe, 2004). Therefore, it appears that the SIFT algorithm in 

combination with the GHT could be used to retrieve trademark images in order to 

Image gradients Keypoint descriptor 
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extract local features and perform partial matching. The following experiment 

aims to retrieve transformed trademark images (normal, rotated and scaled 

images) using SIFT and GHT.  

In this experiment, we propose to determine the match accuracy of the 

SIFT approach using scaled and rotated images. Correctly, matching images are 

identical to the query image but have been transformed to a different scale or 

rotation. We then investigate the performance of SIFT when attempting to 

retrieve modified trademark images. 

5.3.1 Experimental procedure 

In this section, we explain the procedure to set up experiments to evaluate SIFT 

for retrieving transformed images that contain scaled and rotated images. We 

show the database images in section 5.3.1.1, and describe the experimental 

processes in section 5.3.1.2. 

5.3.1.1 Database images  

In the experiment, the number of query images was 100 and the number of 

database images that were transformed from query images was 700 (400 by 

rotation and 300 by scaling). 

The scaling adopted reduced the transformed images to half size and 

doubled size of the original images. The rotation parameters were 15 degrees, 50 

degrees, and 90 degrees. Therefore, there were 300 scaled database images and 

the 400 rotated database images. The query images are shown in Figure 5.4 and 

the database images generated from the first query image are shown in Figure 5.5. 
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Figure 5.4 Query trademark images used during the experiments. 
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               (a)                        (b)                                            (c) 
 
 
 
 
 

 

                (d)                         (e)                             (f)                           (g) 
 

Figure 5.5 Examples of database images generated by transforming the first query image in 
Figure 5.4  

 in (a) - (c) are scaled images, and in (d) - (g) are rotated images. 

 

We describe the experiment procedure in the next section. 

5.3.1.2 Experimental processes 

The overall process for the experiments is shown in Figure 5.6. 
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Figure 5.6 The overall process of experiments 

 

First, interest points and descriptors were extracted from each image using 

SIFT. The software provided by David Lowe for extracting SIFT keypoints and 

keypoint descriptors is available at http://www.cs.ubc.ca/˜lowe/keypoints/.  

Second, each query image was matched with each database image. For 

robustness, we removed unmatched points that have a distance ratio greater than a 

preset rejection threshold. The distance ratio comprises the ratio of the nearest 

neighbour match score (the lowest distance) to the second nearest neighbour 

match score for each key point. The rejection threshold was set to 0.8 for all 

experiments following Lowe’s suggestion that that this threshold can cull ~90 % 

of false matches (Lowe, 2004). The nearest neighbour (Dlowest) is defined in 
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Equation 5.11. AdL(Li) is a set of distances between each descriptor extracted 

from the query image and the closest match within all descriptors from a specific 

database image being matched. In order to compute each distance (match score), 

the Euclidean distance (DL) of two descriptors, Li and Lj, is calculated in Equation 

5.12. 

Dlowest = Min(AdL(Li))                         (Equation 5.11) 

{ }),(),...,,(),,()( 10 niLiLiLiL LLDLLDLLDLAd =  

n is the number of all descriptors in the database image being matched. 

DL(Li, Lj) =  ( ) ( )jiji LLLL −− *            (Equation 5.12) 

Third, the remaining key points were grouped by the Generalized Hough 

Transform (GHT) which gives clusters of matching points (Lowe, 2004). Suppose 

we have several points on arbitrary shape boundary as in Figure 5.7. 

 

 

 

 

 

 

Figure 5.7 Geometry for GHT 

Then, we define a point to calculate directional information and call it A, 

the centre point. For each interest point B on the boundary, the gradient direction 

(φ) is the orientation of the interest point given by SIFT (details in section 5.2), 

and the position of a reference point r is calculated by moving a distance R from 

the interest point in a direction α which is the angle of the line from each interest 

point to the reference point (see Figure 5.7). The r can vary and can be used in 

GHT for finding an arbitrary shape. A table to represent information to store 

shape data is called the R-table (Ballard, 1981). 

B (xi, yi) 

α 

 

A (xc, yc) 

R 
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The R-table is easily constructed by examining the boundary points of the 

shape. Table 5.1 shows the form of the R-table. The reference point (xc, yc) is 

selected as centre of all points.  

We calculate the R-table using the algorithm in Figure 5.8. 

Table 5.1 R-table format 

Orientation of point Set of radii and orientations where l = (r, α) 

φ1 l11, l12, l13, …, l1n1 

φ2 l21, l21, l23, …, l2n2 

… … 

φm lm1, lm2, lm3, …, lmnm 

 

R-table construction 

For all interest points (xi, yi) in the image 

Assign the orientation of the interest point (φ) given by SIFT 

Compute r(xr, yr) and α  

 α is the angle of the line from each keypoint to the reference point. 

 xr  = (xc –xi) / cos α                                                     (Equation 5.21) 

            yr  = (yc –yi) / sin α                                                      (Equation 5.22) 

Add an entry of (r, α) to the row indexed by φ 

Figure 5.8 Overview of R-table construction 

The GHT algorithm is derived from Ballard’s original description of the 

GHT based on edge matching (Ballard, 1981) and is summarized in Figure 5.9. 
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GHT matching 

Step 0: Create an R-table for each database image to be compared as described  

            in Figure 5.8. 

Step 1: Initialise the Accumulator array (Acc) of possible reference points to zero.  

            The scale(S) and rotation (Ω) parameters are required to render the GHT  

            invariant to scale and orientation. In this research, we use a range of scales  

            of 0.5, 1 and 2, and rotations in the range from 0 to 360 degrees 30 degree  

            increments, due to the large error bounds that are stated in Lowe’s article  

            (Lowe, 2004). 

            Acc(xmin: xmax , ymin:ymax, smin:smax, Ωmin: Ωmax)  

Step 2: For each keypoint in the query image: 

            Perform voting for location, orientation, and scale  as follows: 

            Step 2.1: calculate possible reference point (xc, yc) for each pair of r i and αi   

                           in R-table 

                           xc = xi  - ri * Si * cos(αi - Ωi)                     (Equation 5.15) 

                           yc = xi  - ri * Si * sin(αi - Ωi)                      (Equation 5.16) 

            Step 2.2: Increment the accumulator array score in the four closest   

                           positions of each possible reference point by 0.25 times of the  

                           maximum model dimension (nx and ny) to avoid the size   

                           assignment problem as suggested by Lowe (Lowe, 2004). All  

                           possible reference points are (xc1, yc1), (xc1, yc2), (xc1, yc2), and  

                           (xc2, yc2).  

                           xc1 = xc – xc mod (0.25 * nx)                       (Equation 5.17) 

                           xc2 = xc1+ (0.25 * nx)                                  (Equation 5.18) 

                           yc1 = yc – yc mod (0.25 * ny)                       (Equation 5.19) 

                           yc2 = yc1+ (0.25 * ny)                                  (Equation 5.20) 

                           Then the accumulator of each possible reference point is  

                           increased. 

                           Acc(xci, yci, s,  Ω) = Acc(xci, yci, s,  Ω ) + 1 

Figure 5.9 Overview of GHT algorithm 
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A match is discarded if the number of points accumulated in the Hough 

Transform bin containing the greatest number of matching keypoints is less than 

three. At least three points are required to calculate the affine parameters relating 

the query image and the matched database image (Lowe, 2004). 

Fourth, a similarity score for the points was calculated by taking the 

average of the lowest distance (Dlowest) from Equation 5.11 over all matching 

keypoints. 

Finally, the match results for the query and database images were sorted 

by similarity scores and checked for correct matches.  In the experiment, we only 

count a correct match if the retrieval images are the same as the query image in 

first three images in case of scaling and in first four images in case of rotation. 

The correct matches were then summarised for overall correct match numbers. 

We summarise the results of the above experiments in the next section. 

5.4 Experimental results 

The correct match results average for the experiment is shown in Table 5.2.  

Table 5.2 The correct match results for the scaling and rotated database images in sub 
experiment 1 and 2 

Image condition Mean Standard deviation 

Scaling 98 7.92 

Rotation 79.75 24.42 

The mean number of correct matches under scaling was about 98 percent 

with a standard deviation of 7.92 percent. The mean number of correct matches 

under rotation was approximately 80 percent with a standard deviation of 24.42 

percent. The table shows that SIFT performed better at matching scaled than 

rotated images.  

This result would appear to indicate that SIFT is indeed promising as a 

method for retrieving both identical and altered versions of query images from an 

image database.  
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5.5 Conclusion 

The SIFT algorithm combined with the GHT gave a good result on scaled and 

rotated images, we believe because SIFT keypoint descriptors possess high 

discriminability and are able to classify local parts of images. The GHT serves as 

a global comparison mechanism based on comparing local parts. In other words, 

it can achieve a partial match between the sub-components of compared 

trademark images. However, it does not take into account human decisions and 

preferences when creating and matching local features. Therefore, a further 

mechanism is required to consider the similarity of points that group into sub-

components that also captures human perceptual judgement. 

Appearance-based features are used to recognise objects (Hornegger et al., 

2000). A further investigation will consider which appearance features are 

appropriate to provide perceptual grouping and a process to input user judgment 

when retrieving similar trademark images. We explain the details of these further 

investigations in the next chapter. 
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Chapter 6  

Point-Based Grouping of Local Features 

 

In the previous chapter, we found that the SIFT approach has the ability to 

identify local parts of images but only provides a single global similarity 

interpretation of detected local features that match to features extracted from 

similar database images. Furthermore, this matching process is invariant only to 

2D affine transformations between such compared images. In this chapter, we 

investigate the formulation of meta-features which characterise how matching 

keypoint descriptor locations are distributed in order to give the system the ability 

to measure a number of “appearance properties” of the compared images. In the 

following sections, we explain how a perceptual grouping process can be applied 

to local features to implement meta-features (section 6.1), the experimental 

framework for meta-feature selection is presented in section 6.2, experimental 

results in section 6.3, appearance properties of meta-features in section 6.4, and 

conclusions are drawn in section 6.5. 

6.1 Perceptual grouping by means of local features  

We are motivated by the Gestalt laws of organization (details in chapter 2) to 

develop a perceptual grouping mechanism to characterize the global spatial 

arrangement of matching local features extracted from compared images. In order 

to achieve such visual grouping competencies, i.e. the ability to characterize the 

meta-structure of an image, we are guided by the Gestalt grouping laws to imitate 

aspects of perceptual grouping exhibited by human beings. As shown in the 

previous chapter, SIFT features are capable of retrieving transformed trademark 

images. However, an additional mechanism is required to provide perceptual 

grouping that describes local features appropriately in terms of their gross 

structural configuration and thereby enables image comparisons in terms of 

higher semantics. A meta-feature is an intermediate level of representation that is 
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calculated from the relations among the image components (Moreno et al., 2002). 

In this research, we are interested in three Gestalt properties (proximity, 

similarity, and simplicity) that can be directly measured by appearance meta-

features. The above three Gestalt properties, and a set of proposed meta-features 

used to measure the Gestalt properties, are described below. 

6.1.1. Global Similarity meta-Features 

Similarity is used to group similar parts of an image; similarity can be measured 

in terms of the size, orientation, pattern appearance, or shape of an image part. 

These extended similarity meta-features require comparison between descriptors 

of image parts to measure this property (Jacobs, 2000). 

We propose to calculate feature scale and orientation using SIFT in order 

to measure global size and global orientation similarity between sets of SIFT 

keypoint descriptors. We calculate the summation (total), mean, median, and 

RMS (Root-Mean-Square) of the differences in scale and orientation between sets 

of matched keypoints, extracted from query and compared database images 

respectively. Hence, we can measure the total global size and orientation 

difference between compared image features based on computing: summation, 

average and dominant global size and orientation differences using the mean and 

median statistics respectively; and also using the magnitude of scale and 

orientation variation differences by taking the RMS of the matching feature 

differences (Manikandan and Rajamani, 2008). An example of a global 

orientation difference between compared images is show in Figure 6.1. The 

arrows annotating the images in Figure 6 indicate the location (arrow start point) 

and scale of extracted keypoint descriptors, while the direction of the arrows 

indicate the canonical orientation directions for keypoint descriptors (details in 

section 5.2 of chapter 5). The global orientation difference meta-features 

calculated using sum, mean, median, and RMS of matching local feature 

differences of Figure 6.1 are summarised in Table 6.1. 
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                             (a)                                           (b) 

Figure 6.1 images of six of hearts with keypoints and their orientations (a) with l0 degrees 
rotation and (b) 20 degrees global rotation 

Table 6.1 the global orientation difference meta-features of Figure 6.1 

Image Sum Mean Median RMS 

(a) and (a) 0.00000 0.00000 0.00000 0.00000 

(a) and (b)  0.06715 0.05903 0.06064 0.05933 

 

In addition, we investigate measures to implement a similarity score from 

SIFT matching, based on: the number of matching points, the average of multi-

peak GHT (Generalized Hough Transform) scores, self similarity, and statistical 

moments of keypoint (x, y) positions.  

An image similarity score is obtained by means of the SIFT algorithm as 

explained in section 5.3.1.2 of Chapter 5. The number of correctly matched points 

is determined by the GHT accumulator bin with the maximum number of points 

(details in section 5.3.1.2), since the matched keypoints in this bin exhibit the 

dominant common transformation between the compared images. Accordingly, 

the GHT is capable of identifying shapes by detecting peaks in its accumulator 

that correspond to feature groups with common transformations between features 

extracted from a query image and a set of database exemplars (Ballard, 1981). 

Therefore, the presence of multiple peaks in the GHT accumulator indicates 

matching feature sub-groups, each with differing common transformations. 

Following human perceptual grouping principles, we are required to select 

only the significant parts of the image for similarity comparison (details in 
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sections 2.8 and 2.9 of chapter 2). Many researchers suggest that only the two or 

three dominant sub-parts which characterise an object are required to recognize 

that object (Biederman, 1987; Kirkpatrick, 2001). Hence, we only consider three 

maxima of the GHT accumulator to account for the dominant (in terms of 

numbers of matching keypoints) three matching sub-groups. The average of the 

multi-peak GHT scores (MGHT) is calculated by taking the mean score of the 

first three maxima of the GHT accumulator as follows:  
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 where ni is the number of matched points in the ith row of the accumulator. 

           Dlowest  is calculated by Equation 5.11 (see section 5.3.1.2 for details). 

 

We are able to measure self similarity within the image by computing the 

self similarity of the top 10 keypoints (ranked by matching score). We select 10 as 

the significant maximum number of self similar keypoints in accordance with the 

number of items that can be held in short-term visual memory by humans (Miller, 

1956). Each of the 10 most highly ranked keypoints will match to similar 

keypoints in the remainder of the keypoints extracted from a particular image and 

counts their relative frequency in a self similarity histogram. Our self similarity 

measure is computed by taking the mean of all points in the self similarity 

histogram and is summarised in Figure 6.2.
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Self similarity algorithm 

Step 1: Compute the nearest neighbour (Dlowest) of each interest point and  

            add it to an array of distances for each point. 

           The Dlowest is described in section 5.3 of Chapter 5. 

Step 2: Sort the array of distances into ascending order and  

             select the top 10 points. 

Step 3: For each selected point. 

             Step 3.1: Calculate the distance between each selected point and  

                             non-selected  points (Di)  

                             Di = )(*)( jiji LLLL −−                             (Equation 6.3) 

                             where Li and Lj are SIFT descriptors. 

             Step 3.2: If the distance is less than 0.2,  according to (Lowe, 2004), then 

                            increase the self similarity number of this point by one. 

             Step 3.3: Save the self similarity number of this point in the  

                            self similarity histogram and repeat from Step 3.1 until perform  

                            all selected points have been considered. 

Step 4: calculate average of all self similarity histogram numbers 

Figure 6.2 The self similarity algorithm 

Image moments can be used describe the 2D spatial configuration of raw 

grey levels or the positions of extracted image features and have been 

successfully used to measure similarity in object identification and pattern 

recognition (Mukundan & Ramakrishnan, 1998; Hu 1962). Moments of order 

zero up to three correspond to gross level image descriptions (including the 

ellipse characterising the measured spatial pattern distribution) while higher order 

moments hold more detailed data (such as asymmetries and skew in the observed 

spatial configuration) and are more sensitive to noise (Mukundan & 

Ramakrishnan, 1998). Image moments have the potential to represent shapes and 

geometric parts of images (Mukundan & Ramakrishnan, 1998).  
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As mentioned, moments could be calculated from different types of 

information extracted from an image, for example closed contours or a set of 

points (Tahri and Chaumette, 2005). Point-based image moments have been 

reported to yield high discrimination and good robustness when used to identify 

the same set of points in compared images (Tahri and Chaumette, 2005).  

We would like to measure the similarity of two trademark images by 

computing the moments of the keypoint locations extracted from each of the 

compared trademarks. These moments are not shift invariant and in the case of 

trademark images, it means that the shape comparison is anchored with respect to 

the image frame. The moments are calculated by: 

  q
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    (Equation 6.4) 

            where x and y are the location of each matched keypoint in the image, 

N is the number of the matched keypoints, 

p and q are the orders of the computed moment. 

In this research, we computed up to third order moments in order to 

analyse orthogonal transformations (Mukundan & Ramakrishnan, 1998). Paquet 

et al. (2000) state that the low-order moments could represent the most prominent 

aspects of the spatial configuration of keypoint features characterising an object. 

In addition, the moments can provide similarity information. m00 represents the 

total mass of image points (Prokop et al., 1992). m10 and m01 are used to 

compute the centre of mass of image points (Prokop et al., 1992). m02, m11, and 

m20 are used to calculate the moments of inertia (Prokop et al., 1992, i.e. the 

distribution ellipse major and minor axes. The proposed meta-features comprise 

m00, m01, m02, m03, m10, m11, m20, m22, m30, and m33. 

6.1.2 Global Proximity meta-features 

Proximity is used to group the connected area or nearest neighbours of 

components in an image; proximity can be inverse distance, touch, overlap or 

some combination of these. The proximity similarity meta-features also require 

comparison between descriptors of image parts to measure this property (Jacobs, 

2000) 
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We propose to use SD (standard deviation) to compute the distance-error 

between sets of matched keypoints. Standard deviation is widely used measure of 

statistical dispersion (Manikandan, 2008). This meta-feature measures the 

residual spatial mismatch (error) between query and database images once these 

datasets have been aligned via an affine transformation. In other words, this 

measure computes the non-linear spatial differences between sets of matching 

image features following translation, rotation, scale, and sheer alignment. The 

algorithm for calculating the SD of distance-error between pairs of matched 

points is shown in Figure 6.3. 

 

       SD of error-distance between a pair of matched keypoint sets 

Step 1: Extract matched points from the maximum of GHT accumulator. 

Step 2: Calculate Affine parameters of matched points. 

            The solution is suggested by Lowe (Lowe, 2004).  
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            where (u,v) is a keypoint extracted from a database image,  

                      (x, y) is a keypoint from a query image, 

                      m1, m2, m3, and m4 are affine parameters, 

                      tx and ty are the translation parameters. 

            Then, we require at least 3 points to calculate the affine parameters:   
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                               (Equation 6.6) 

Step 3: calculate affine transformation to map query keypoints to the database  

            image space by Equation 6.5.  

Figure 6.3 The algorithm to calculate SD of the spatial distance error between a pair of 
matched and registered keypoint sets 

 
 



Chapter 6                                                                                                                98 

SD of error-distance between a pair of matched keypoint sets (continued) 

Step 4: find the distance error between each pair of matched database 

            keypoints and affine transforms query keypoint using Equation 6.3 from   

             Figure 6.2. 

Step 5: calculate mean and standard deviation of all error distances in Step 4. 

Step 6: find the inliner keypoint error distance. 

            The error distances are selected if the distance is not greater than mean  

            plus 2 times the SD from Step 5 (Jung and Lacroix, 2001). 

Step 7: calculate the standard deviation of all distances in Step 6.  

Figure 6.3 The algorithm to calculate SD of the spatial distance error between a pair of 
matched and registered keypoint sets (continue) 

 

In addition, we propose to utilise the ratio of matched keypoints to total 

keypoints in the query image, and the ratio of matched points to total keypoints in 

the database image serves to measure overlap proximity, i.e. to quantify by how 

much (in terms of keypoints) do the compared images overlap. The ratio of 

matched keypoints to total keypoints for query image is calculated by the number 

of points in the maximum GHT accumulator divided by the number of keypoints 

in the query image. The ratio of matched points to total keypoints in each 

database image is calculated by the number of keypoints in the maximum GHT 

accumulator divided by the number of interest points in the database image. The 

ratio of matched keypoints and total keypoints (PMT) is calculated by: 

nq

n
PMT =                                     (Equation 6.7) 

where n is the number of matched points in the maximum accumulator, 

                       nq is the total keypoints of the query image 

The examples of the ratio of matched keypoints to total keypoints for the 

query image is shown in Figure 6.4 and summarised in Table 6.2. 
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          (a)     (b) 

 

 

 

    

(c) 

Figure 6.4 images of 6 hearts with keypoints and their repetition (a) 6 hearts (b) 3 hearts, 
and (c) matching result  

 

Table 6.2 PMT meta-feature for the query image in Figure 6.4 

Total keypoints Number of matched points PMT meta-feature 

47 15 3.13 

6.1.3 Global Simplicity meta-features 

Simplicity is used to group the relative parts into simple components; simplicity of 

form can be represented by symmetry, regularity, or smoothness. Once more, to 

compute simplicity, the spatial configuration of the locations of keypoints 

matched between compared images are used to measure this property. 

We propose to extract the vertical and horizontal symmetries exhibited 

within sets of matched keypoints. The vertical and horizontal symmetries are 

computed using the median distance from the centre of all matched keypoints in 

the major and minor (orthogonal) reflection axes of the matched keypoint spatial 

distribution axes respectively. Hence, we compute in essence an asymmetry score, 

as our measure will return a score of zero for a perfectly symmetrically 

configured keypoints and the score will increase in value as asymmetry is 
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introduced into this configuration. The algorithm to calculate the vertical and 

horizontal symmetries of sets of matching keypoints is shown in Figure 6.5.  

 

Vertical and horizontal symmetries of matching keypoint sets 

Step 1: Calculate axis of rotation by: 

 Shift_axis = 0.5 * tan-1( (2*m11) / ( m20 - m02) )               (Equation 6.8) 

 where m11, m20, and m02 are moments from Equation 6.4 

Step 2: Rotate matching points by - Shift_axis. 

            ry= x* sin(- Shift_axis) + y*cos(- Shift_axis)                      (Equation 6.9) 

            rx= x*cos(- Shift_axis)  - y*sin(- Shift_axis)                      (Equation 6.10) 

           where  (x, y) is the matched point. 

Step 3: Calculate the centre of rotated points (cx and cy)  

             as the mean of all rotated points. 

            
n

rx
cx

n

i
∑
== 1                                                                            (Equation 6.11) 

            
n

ry
cy

n

i
∑
== 1                                                                            (Equation 6.12) 

where n is the number of matching points 

 

 

Figure 6.5 The algorithm to calculate vertical and horizontal symmetries of matching sets of 
keypoints  
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Vertical and horizontal symmetries of matched sets of keypoints (continued) 

Step 4: Calculate the error distance for each pair of keypoints (Derr) in each axis.  

            Step 4.1: separate rotated points into two sets 

                          If ri  > ci 

                                Add this point to set1 (pset1) 

                          Else 

                                Add this point to set2 (pset2) 

                          End 

                          Where ri is a location of a rotated keypoint in each axis  and 

                                     ci is a location of centre of a set of rotated keypoints in   

                                         each axis 

               Step 4.2: calculate the error distance (Derr) of each point in the two sets 

                     )))(2),(1(min()( ipsetipsetDiD Lerr ∀=                        (Equation 6.13) 

                    where 

                    2
21

2
21222111 )()()),(),,(( yyxxyxpyxpDL −+−=  

                                                                                                         (Equation 6.14) 

Step 5: Calculate the median of error distances of each axis (Derr). The horizontal   

             symmetry is the median of the y axis and the vertical symmetry is the  

             median of the x axis.  

Figure 6.5 The algorithm to calculate vertical and horizontal symmetries of matching sets of 
keypoints (continued) 

An example of the vertical symmetry score computed on the keypoints 

matched between an unmodified heart shape and an asymmetric heart shape is 

shown in Figure 6.6 and summarised in Table 6.3. 
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                       (a)                                                  (b) 

Figure 6.6 images of a heart shape with interest points and their orientations overlaid for (a) 
0 degrees of asymmetry and (b) 50 degrees of asymmetry 

Table 6.3 the vertical symmetry of matched points Figure 6.6 

Image Vertical symmetry of matched keypoint sets 

(a) and (a) 0.06560 

(a) and (b)  0.24932 

 

In this chapter, we plan to find appropriate meta-features to the system 

with a perceptual grouping mechanism. In order to carry this out, we design a set 

of validation experiments to test the proposed meta-features and we explain the 

experimental framework in the next section. 

6.2 Experimental Framework 

An important criterion by which to validate the proposed meta-features is which 

meta-features retain most of the variation present in the underlying feature data. 

Using appropriate meta-features could help to identify shapes (Aguirre et al., 

2007). The appropriate meta-features are determined by removing redundant 

meta-features. In addition, employing only efficient (non-redundant) meta-

features could increase the overall system performance. Therefore, we investigate 

the proposed meta-features in order to get remove redundant meta-features or to 

reduce dimensionality of the meta-features (Bashir et al., 2004). We present the 

implementation methods below. 

In the experiment, we calculated eigenvalues and eigenvectors of the 
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proposed meta-features using Principal Component Analysis (PCA) (Smith, 

2002). We select the meta-features with high eigenvalues as the number of  

principal components of major significance and further analyse this set of meta-

features using factor analysis (Field, 2000; Aguirre et al., 2007). Next, we group 

all meta-features into significant meta-feature sets as determined by their factor 

loadings. Then, we can assign meta-feature sets comprising candidate major 

meta-features. 

In the next section, we describe the experiment procedure. 

6.3 Experimental procedure 

In this section, we explain the experimental procedure to extract and evaluate the 

meta-features of major significance. We present the database images in section 

6.3.1, summarise our proposed meta-features in section 6.3.2., and describe the 

experimental processes in section 6.3.3. 

6.3.1. Image data 

Trademark images provide an important basis for shape retrieval testing (Eakins, 

1998; Jain and Vailaya, 1996) (details in chapter 2). Furthermore, Gestalt 

principles are overtly used in trademark design (Arntson, 2006). For these 

reasons, we predict that trademark images will serve as an appropriate dataset 

when testing the Gestalt properties of the meta-features. The system used 33 

query images and 100 database images to evaluate the proposed meta-features, 

including part of the database used in the evaluation of the Artisan system (Eakins 

et al, 1998). All the trademarks are binarised images of 256x256 pixels. The 33 

queries are shown in Figure 6.7 and the database images are shown in Figure 6.8. 
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Figure 6.7 Query images used in the experiments 



Chapter 6                                                                                                                105 

 
Figure 6.8 Trademark database images used in the experiments 

 

6.3.2 Proposed meta-features 

We formulated a set of 27 meta-features, summarised in section 6.1 and shown in 

Table 6.4, from which we wish to find a subset of candidate meta-features in the 

first experiment. 
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Table 6.4 Meta-features evaluated in the experiment. 

Proposed Meta-Features 

Number Name 
1  Summation of scale differences between pairs of matched keypoints  
2  Summation of orientation differences between of pairs of matched keypoints  
3  Moment (m00) from matched keypoints 
4  Moment (m01) from matched keypoints 
5  Moment (m02) from matched keypoints 
6  Moment (m03) from matched keypoints 
7  Moment (m10) from matched keypoints 
8  Moment (m11) from matched keypoints 
9  Moment (m20) from matched keypoints 
10 Moment (m22) from matched keypoints 
11 Moment (m30) from matched keypoints 
12 Moment (m33) from matched keypoints 
13 SD of residual spatial mismatch (error) between query and test images post 

alignment via an affine transformation  
14 Similarity score of matched keypoints  
15 The total number of matched keypoints  
16 Mean of scale differences between pairs of matched keypoint sets 
17 Median of scale differences between pairs of matched keypoints  
18 RMS of scale differences between  of pairs of matched keypoints  
19 Mean of orientation differences between pairs of matched keypoints 
20 Median of orientation differences between  pairs of matched keypoints 
21 RMS of orientation differences between pairs of matched keypoints 
22 Percentage of matched keypoints/ total keypoints of query image 
23 Percentage of matched keypoints/ total keypoints of database image 
24 Self similarity  
25 Horizontal symmetry 
26 Vertical symmetry 
27 The average of multi-peak GHT scores 
 

The above meta-features are described in further detail in Appendix A. 

We explain the experimental processes in the next section.  

6.3.3 Experimental processes 

In this experiment, the system generated sets of 27 meta-features from 3300 data 

sets (33 query images with 100 database images). Thereafter, the eigenvectors and 

eigenvalues of the meta-features were computed by PCA (Machado and Marinho, 

2003). We sort the eigenvectors by their eigenvalues and calculate the cumulative 

eigenvalues. Then, we select those candidate meta-features that have a significant 

cumulative eigenvalue.  
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Next, we select each meta-feature subset by their factor loadings. We 

summarise the processes of the experiment in Figure 6.9. 

The experimental protocol 

Step 1: Compute27 meta-features from each query image and the database  

             images (details in section 6.1). 

Step 2: Compute the eigenvectors and eigenvalues of the meta-features by PCA  

Step 3: Calculate the cumulative percentage of the eigenvalues. 

Step 4: Select the number of major meta-features from the cumulative  

            percentage of the eigenvalues.  

Step 5: Group the meta-features to major meta-feature subsets by  

                        their factor loadings.  

Step 6: Select the candidate major meta-feature set. 

 

Figure 6.9 The experimental protocol 

The experimental results are summarized in the next section. 

6.4 Experimental results 

In the experiment, we would like to find the number of meta-features to use in the 

system. We use PCA to assist our decision. The eigenvalues can be used to 

measure the number of meta-features to retain. We calculate eigenvalues and their 

cumulative representation by PCA as shown in Table 6.5 in order to determine the 

number of viable meta-features.  
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Table 6.5 Eigenvalues of proposed meta-features and their cumulative percentage  

Meta-feature no. Eigenvalues Cumulative percentage 

1 1.23E+01 45.40681 

2 5.17E+00 64.54631 

3 2.54E+00 73.94227 

4 1.74E+00 80.38586 

5 1.48E+00 85.85359 

6 1.08E+00 89.84219 

7 9.67E-01 93.42416 

8 7.56E-01 96.22479 

9 4.58E-01 97.92181 

10 2.62E-01 98.89199 

11 1.19E-01 99.33422 

12 8.66E-02 99.6548 

13 5.13E-02 99.84479 

14 1.09E-02 99.88498 

15 8.98E-03 99.91823 

16 8.34E-03 99.94913 

17 5.99E-03 99.97132 

18 2.05E-03 99.97891 

19 1.89E-03 99.98591 

20 1.60E-03 99.99183 

21 8.63E-04 99.99503 

22 7.18E-04 99.99769 

23 5.74E-04 99.99981 

24 4.31E-05 99.99997 

25 4.85E-06 99.99999 

26 1.40E-06 100 

27 6.97E-07 100 

 

From the cumulative percentages, we select the number of significant 

meta-features to be 17, because the cumulative percentage achieved at this meta-

feature’s eigenvalue ranking is almost 100 percent and the cumulative percentage 
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of the next eigenvalue contributes less than 0.01%. Therefore, we use 17 meta-

feature subsets for further factor analysis. We rank each meta-feature subset by its 

factor loading and show an example of the top three factor loadings for the 17 

meta-feature subsets in Table 6.6. 

Table 6.6 Top three highest eigenvectors of 17 meta-feature subsets 

 
1 2 3 Meta-feature                                                      

order 

subset 

Meta-

feature 

no. 

Factor 

loading 

Meta-

feature 

no. 

Factor 

loading 

Meta-

feature 

no. 

Factor 

loading 

1 8 0.2851 7 0.285 4 0.2849 

2 21 0.3896 19 0.387 20 0.3856 

3 17 0.5092 16 0.5087 18 0.5063 

4 23 0.5722 22 0.5052 25 0.3941 

5 26 0.5769 25 0.5611 22 0.3691 

6 13 0.8475 24 0.4223 2 0.2524 

7 24 0.8673 13 0.4034 25 0.1694 

8 27 0.6017 14 0.535 23 0.2582 

9 25 0.7042 26 0.6994 24 0.0917 

10 2 0.8458 13 0.3137 20 0.2561 

11 23 0.6974 22 0.697 26 0.1036 

12 14 0.7251 27 0.6714 23 0.0793 

13 12 0.5399 15 0.4364 1 0.4358 

14 6 0.5641 11 0.5054 5 0.4056 

15 17 0.5745 18 0.5123 20 0.4704 

16 21 0.5533 20 0.5354 17 0.449 

17 15 0.4705 12 0.4382 7 0.3984 

 

We found that some meta-feature subsets had similar values, for example, 

meta-feature subset 1 had nearly the same value of the first and second factor 

loadings corresponding to 0.2851 and 0.285 respectively. Since this result does 

not reveal candidate major meta-features unambiguously, we rotated the 

eigenvectors by the Varimax method  (Field, 2000) with a 17 meta-feature subset. 
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The Varimax rotation moves the eigenvectors to maximize the variance within 

each eigenvector. This procedure has the effect of reducing the number of 

eigenvectors with small eignevalues and increasing the number of eigenvectors 

with large eigenvalues (Field, 2000). An example of the results produced by 

rotating eigenvectors is shown in Table 6.7. 

Table 6.7 Top three results by rotating eigenvectors of 17 meta-feature subsets 

Meta-feature 

order 

1 2 3 

Component Meta-

feature no. 

Factor 

loading 

Meta-

feature no. 

Factor 

loading 

Meta-

feature no. 

Factor 

loading 

1 7 0.5063 3 0.4616 9 0.3939 

2 21 0.8727 19 0.4875 16 0.0183 

3 18 0.872 16 0.4843 15 0.0451 

4 23 0.9998 15 0.0114 1 0.0112 

5 26 1 11 0.0045 6 0.0025 

6 13 1 19 0.0035 21 0.0026 

7 24 1 8 0.001 6 0.001 

8 27 1 15 0.0037 1 0.0035 

9 25 1 8 0.0015 3 0.0013 

10 2 0.9997 19 0.0161 21 0.0118 

11 22 0.9997 11 0.0127 6 0.0094 

12 14 0.9999 15 0.0102 1 0.0101 

13 12 0.7245 10 0.4246 11 0.4164 

14 6 0.6002 5 0.4684 11 0.4615 

15 17 0.9301 16 0.3195 18 0.1736 

16 20 0.9271 19 0.33 21 0.1742 

17 15 0.7291 1 0.6729 4 0.0738 

 

By rotating eigenvectors, we can group 27 meta-features to 17 meta-

feature subsets by selecting high factor loadings in each meta-feature group. The 

resulting 17 meta-feature subsets is shown in Table 6.8. 
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Table 6.8 the candidate major meta-features for a 17 meta-feature groups 

Meta-feature subset Candidate major meta-feature(s) 

1  3, 4, 7, 8 and 9 

2  19 and 21 

3  16 and 18 

4 23 

5 26 

6 13 

7 24 

8 27 

9 25 

10 2 

11 22 

12 14 

13  10 and 12 

14  5, 6 and 11 

15 17 

16 20 

17  1 and 15 

Meta-feature subsets 1, 13, and 14 all comprise moments. The meta-

feature subset 1 comprises meta-features 3, 4, 7, 8, and 9 and corresponds to m00, 

m01, m11, and m20 respectively. Because high order moments tend to be unstable 

and are sensitive to noise (Kotoulas and Andreadis, 2005; Sluzek, 2005), 

Chaumette (2004) suggest using the lowest order moments possible. For that 

reason, the meta-feature 3 (m00) is selected to represent the spatial moments 

meta-features. The same decision criteria are used to select representative meta-

features in subsets 13 and 14 because they all consist of image moments. Meta-

feature subset 13 consists of meta-features 10 and 12 which comprise m22 m33 

respectively. Therefore, meta-feature 10 (m22) is chosen to represent meta-feature 

subset 13. Meta-feature subset 14 consists of meta-features 5, 6, and 11 which 

comprise m02, m03, and m30 respectively. Therefore, the meta-feature 5 (m02) is 

selected to represent meta-feature subset 14. 
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Meta-feature set 2 consists of meta-features 19 and 21 which code mean 

orientation differences and RMS orientation differences between sets of matched 

keypoints respectively. Because we are interested in the dominant orientation 

difference between matched keypoints, meta-feature 19 is selected to represent 

this meta-feature subset.  

Meta-feature set 3 consists of meta-features 16 and 18 comprising the 

mean scale differences and the RMS scale differences between matched 

keypoints. Because we are interested in the dominant degree of scale difference, 

meta-feature 16 is selected to represent this meta-feature subset. 

Meta-feature set 17 consists of meta-features 1 and 15 that represent the 

total sum of scale differences and the total number of match points respectively. 

Because there are already meta-features representing scale, meta-feature 1 is 

taken to be representative for this meta-feature subset. 

The remaining meta-feature set consist of only a single meta-feature, 

meta-feature set 4, meta-feature 23 (the ratio of matched points to total keypoints) 

and this meta-feature is used to represent its meta-feature subset accordingly.  

As a result of the above anaylsis we were able to select a subset of 17 

meta-features that we believed would best support computation of the following 

three Gestalt properties: similarity, proximity, and simplicity. In addition, the 

system also computes meta-features such as symmetry, self similarity, and 

moments to group similar image characteristics by their appearance properties. 

We investigate the ability of these meta-features to characterise appearance 

properties in next section. 

6.5 Appearance properties of meta-features 

A number of experiments were devised that generated appearance differences 

between compared images. We then applied our set of 17 meta-features to each of 

the sets of matched keypoints extracted from the compared images for each 

appearance property investigated. Details of each meta-feature subset used to 

quantify each appearance property are described below. 

Global rotation: meta-features 1, 10, and 11 measure this appearance 

property because they capture the difference in orientation of features extracted 



Chapter 6                                                                                                                113 

from two compared images. 

 Global pattern similarity: meta-features 2, 6, and 7 measure this 

appearance property because meta-feature 2 calculates area difference, meta-

feature 6 calculates similarity between matched keypoint sets, and meta-feature 7 

calculates the number of keypoints that match between compared images. 

Generally, the above meta-features measure pattern similarity between compared 

images. 

Global pattern overlap: meta-features 12 and 13 measure this 

appearance property because these meta-features calculate the ratio of the 

matched points to total points for compared images. 

Spread of matched keypoints: meta-features 3 and 4 measure this 

appearance property because they measure the spatial distribution of the matched 

points. 

Structural configuration between matched keypoint sets, we used 

meta-feature 5 to measure this appearance property because it measures the 

distortion of two images from their standard deviation of matched points error 

residuals. 

Scale difference between matched keypoint sets: meta-features 8 and 9 

measure this appearance property because they measure the global scale 

difference of keypoints matched between compared images. 

Self similarity: meta-feature 14 measures this appearance property 

because it measures self similarity directly in each compared images. 

Symmetry: meta-features 15 and 16 measure this appearance property in 

the form of horizontal and vertical symmetries. 

Component similarity, meta-feature 17 measures this appearance 

property by finding the average of multi-peak GHT scores, corresponding to 

major sub-component matches within the compared images.  

The above feature grouping structures the 17 meta-features into 9 

appearance properties comprising: global rotation, global pattern similarity, 

global pattern overlap, spread of matched keypoints, structural configuration of 

matched keypoints, scale difference between matched keypoints, self similarity, 

symmetry, and sub-component similarity. A summary of each meta-feature and 
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its appearance property is shown in Table 6.9. 

Table 6.9 The meta-features to measure appearance properties in the system 

Meta-feature Appearance property 

1. Summation of orientation differences of a pair of 

matched keypoint sets  

Global rotation 

2.  Moment (m00) from matched keypoints Global similarity 

3.  Moment (m02) from matched keypoints Spread of the match points 

4.  Moment (m22) from matched keypoints Spread of the match points 

5. SD of error-distance for a pair of matched 

keypoints 

Structural configuration of 

the match points 

6. Similarity score for matched keypoints Global similarity 

7. Total number of matched keypoints  Global similarity 

8. Mean of scale differences between a pair of 

matched keypoint sets 

Scale difference of matched 

keypoint sets 

9. Median of scale differences between a pair of 

matched keypoint sets 

Scale different of matched 

keypoint sets 

10. Mean of orientation differences for a pair of 

matched keypoint sets 

Global rotation 

11. Median of orientation difference for a pair of 

matched point sets 

Global rotation 

12. Percentage of matched points/ total keypoints in 

query 

Global pattern overlap 

13. Percentage of matched points/ total keypoints  

in the  model 

Global pattern overlap 

14. Self similarity  Self similarity 

15. Horizontal symmetry Symmetry 

16. Vertical symmetry Symmetry 

17. The average of multi-peak GHT scores Sub-component similarity 

In addition, the 9 appearance properties are related to the following 3 

Gestalt properties:  similarity, proximity, and simplicity. Similarity groups image 

parts that have similar configurations together. Proximity groups image parts that 

are close to each other together. Simplicity groups the same image sub-structures 

together. The relationship between Gestalt properties and appearance properties is 
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explained in the following and shown in Table 6.10. 

First, we applied similarity to group similar parts in an image. Similarity 

can be size, orientation, pattern, shape, or value, as measured by the following 

appearance properties: 

• Global rotation 

• Global pattern similarity 

• Scale difference between matched keypoint sets 

• Self similarity 

• Sub-component similarity 

From the above appearance properties, we can measure multiple types of 

similarity. 

Second, we employed proximity to group the connected area or closeness 

components in each image. Proximity can be nearness, touch, overlap, or 

combine, as measured by the following appearance properties: 

• Global pattern overlap 

• Spread of matched keypoints 

• Structural configuration between matched keypoint sets 

From the above appearance properties, we can measure component density and 

proximity.  

Third, we exploited simplicity to group multiple sub-parts into 

components defined by simplicity of form. Simplicity can be represented by 

symmetry, regularity, or smoothness, as measured by the following appearance 

property:  

• Symmetry 

Therefore, we measure symmetry simplicity. 

We summarise the mapping between appearance properties and Gestalt 

properties in Table 6.10. 

We explain the experimental framework for validating perceptual 

grouping in the system according to appearance properties and Gestalt properties 

in Appendix B.  
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Table 6.10 The relationship between Gestalt properties and appearance properties 

Gestalt 

number 

Gestalt 

property 

Gestalt property Meta- 

feature(s) 

1 similarity Global rotation  1, 10 and 11 

1 similarity Global pattern similarity   2, 6 and 7 

1 similarity Scale difference between matched 

keypoint sets 

8 and 9 

1 similarity Self similarity  14 

1 similarity Sub-component similarity  17 

2 simplicity Symmetry 15 and 16 

3 proximity Global pattern overlap  12 and 13 

3 proximity Spread of matched keypoints  3 and 4 

3 proximity Structural configuration between 

matched keypoint sets  

5 

6.6 Discussion and Conclusion 

We have proposed meta-features based on interpreting the spatial configuration of 

matching keypoints to provide a perceptual grouping mechanism within our 

trademark retrieval system. In this chapter, we selected the number of dominant 

meta-features by means of PCA. The result suggests that only 17 meta-features 

are significant out of the 27 meta-features we computed originally, because we 

implemented measures for several very similar visual appearance characteristics 

which results in their outputs being correlated when exposed to the same visual 

stimuli (details in section 6.1). Then, we grouped 27 meta-features into 17 meta-

feature subsets, using FA to prune the redundant meta-features, and selected these 

for our subsequent investigations.  

The 17 major meta-features are then grouped using correlation analysis to 

characterise 9 appearance properties comprising: global rotation, global pattern 

similarity, global pattern overlap, spatial spread of the matched keypoints, 

structural configuration of matched keypoints, scale difference of matched 

keypoints, self similarity, symmetry, and sub-component similarity.  
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Our meta-features are broadly related to three of the Gestalt properties 

comprising similarity, proximity, and simplicity. Therefore, the above meta-

features provide the representation to endow our system with the ability to 

determine different aspects of similarity between compared images, such as how 

the components are rotated or spread out along an axis or indeed if the compared 

images contain conspicuous symmetry in the configuration of their components.  

Our meta-features have been designed to provide significant information 

from low-level features to assist retrieval performance (Eklund and Goebel, 

2006). Obvious limitations of our meta-features are that they are much less 

sophisticated than those found in human vision and also that our meta-features 

only perform global grouping, or interpretation, of local keypoints. While human 

vision appears to be capable of hierarchical grouping in scale over the visual field, 

we can to a degree justify our simple global grouping approach based on the 

following observation: trademark images are an example of an image class where 

attention over the whole image is important since every pattern group present in 

the trademark is likely to be significant. Therefore, a simple global interpretation 

of the appearance properties of the trademark may be sufficient to achieve 

improved database search performance over keypoint similarity alone as offered 

by the standard SIFT algorithm. Human  judgment  plays an important role in the 

specification of semantic content in creative images (Enser et al., 2003)  and this 

judgement is related to the expression of high-level concepts (Liu et al., 2007). 

Live trademark retrieval systems in patent offices are used by humans to 

judge similar trademark images. However, few researchers have used user 

feedback to retrieve similar trademark images and as a consequence many 

systems are unable to reflect user consideration. Therefore, we propose a system 

that applies relevance feedback to retrieve trademark images based on classifying 

relevant images by means of our dominant meta-features. The key concept is that 

the system can learn which, if any, of the meta-features is diagnostic of the 

desried trademark images, through learning the type of images which are being 

labelled as relevant by the user. When a new database search is initiated following 

relevance feedback, those images meeting the learned feedback criteria will be 

ranked highly for presenttaion to the user, as described in the next chapter. 
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Chapter 7  

Quantifying High-level Concepts from  
Point-based Grouping of Local Features 
 
In Chapter 6, we proposed a set of meta-features as a way to imitate perceptual 

grouping and selected 17 meta-features to use in the system. In this chapter, we 

investigate the meta-features according to high-level concepts. Our approach to 

deriving high-level concepts from meta-features is explained. In the following 

sections, we motivate our adoption of high-level concepts, propose the high-level 

concepts approach, investigate validation of this approach, and finally draw 

conclusions.  

7.1 Introduction 

Gestalt grouping principles have been exploited in many applications, such as 

map reading, graph drawing, and homepage design (Paay & Kjeldskov, 2007; 

Hsiao & Chou, 2006). Perceptual grouping offers a stable basis for recognizing 

shapes, symbols, and domain objects (Saund and Mahoney, 2004). Trademark 

image retrieval systems that use perceptual grouping have been reported in the 

literature to having achieved good retrieval performance (details in chapter 2). 

Regarding the Gestalt laws of perceptual grouping, shape is very important in 

human visual judgement. Hence, perceptual grouping plays an important role in 

trademark image retrieval. Non-accidental properties give discrimination power to 

human shape similarity judgement (Gibson et al., 2007; Biederman, 2007). Both 

of these principles have motivated us to propose meta-features that capture the 

global configuration, i.e. grouping, of local features (details in chapters 4, 5, and 

6).  

Human judgment uses high-level concepts to measure image similarity 

(Liu et al., 2007, Zhou and Huang, 2000). However, the features utilised within 

CBIR systems are mainly low-level features (Liu et al., 2007). Therefore, a 

technique to derive high-level concepts from low-level features is required (Liu et 
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al., 2007, Zhou and Huang, 2000). Since we are interested in obtaining high-level 

concepts without keywords, we propose to base our system on machine learning 

and relevance feedback to derive high-level concepts (details in chapter 3).  

In the next section, we explain our approach to deriving high-level 

concepts in our system. 

7.2 Utilisation of High-level concepts by grouping local keypoint 

features 

Relevance feedback is a special technique employed in on-line information 

retrieval systems. Relevance feedback utilizes user feedback that scores whether 

prior retrieval results are relevant, or irrelevant, in order to inform (i.e. optimize) a 

new database search cycle. There are three types of feedback: explicit feedback, 

implicit feedback, and blind feedback (Hopfgartner and Jose, 2007; Jordan, 

2005). 

When the user directly indicates relevance judgments to a database 

retrieval system this is termed explicit feedback. The user may indicate by two 

values (binary relevance) or multiple values (graded relevance) (Kekalainen, 

2005). Binary relevance feedback indicates either a relevant or irrelevant retrieval 

result. Graded relevance feedback is typically quantised on a scale such as not 

relevant, a little relevant, relevant, or very relevant.  

Implicit feedback comprises indirect feedback from the user that can be 

inferred from user conduct, for example, eye movement for viewing, or viewing 

time, page browsing, or scrolling actions (Hopfgartner and Jose, 2007; Buscher et 

al., 2008). 

Blind, or pseudo relevant, feedback does not require user feedback. It 

simply assumes that the first k documents (top-k) in a ranked result set are 

relevant.  

Normalized discounted cumulative gain is a performance metric which 

became popular ~2005 to measure the usefulness of ranking algorithms based on 

explicit relevance feedback. Other measures include precision at the kth item 

returned from a query and also the mean average precision (Agichtein et al., 
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2008). Normalized precision and recall are used to measure performance of 

trademark image retrieval systems (Eakins et al., 1999; Jiang et al., 2006) and 

therefore this measurement appears to be well suited to our context the research 

reported here. 

In our system, we focus on explicit feedback: each image in a list of top-k 

images, returned in response to an input query image, is labelled by the user as 

relevant or irrelevant. At any point during a query session, the user can select to 

continue or stop the cycle of marking relevant images and retrieving results.  

In this research, we approach relevance feedback as a two-class 

(relevant/irrelevant) classification problem, as first suggested by van Rijsbergen 

(van Rijsbergen, 1979). When a query is initiated, the query image is 

automatically compared to all of the images in the database and the top-k images 

are then classified (i.e. manually labelled) by the user as relevant or irrelevant. 

We then apply the learning processes to this training data and the system returns a 

set of retrieved images to the user for the next cycle of database search.  

Generally, for each cycle, the user selects a small set of images to train the 

system and the system then uses meta-features derived from these selected 

relevant images for learning. Normally, the number of training examples is small, 

comprising less than 20 images per cycle of interaction, due to the user’s limited 

patience and willingness to cooperate (Zhou and Huang, 2003). For such small 

sample sizes, some standard learning algorithms, such as the support vector 

machine (SVM), are not stable enough to give viable classification performance 

and require more training samples from the user (Zhou and Huang, 2003).  

We employ a non-parametric classifier, ID3 (Iterative Dichotomiser 3) 

developed by Ross Quinlan in 1983, to endow our retrieval system with a 

machine learning and decision making mechanism. ID3 builds a decision tree 

from training data. In this research, we prepare a feature vector (comprising meta-

features described in Chapter 6 and Appendix B) from relevance feedback to train 

ID3. Decision trees are then used for the purpose of decision making by 

information gain when ranking subsequent database matches.  

ID3 is appropriate in the context of this work since it is both robust and 
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also available in source code form. Since ID3 generates human-readable decision 

trees, the classifiers it generates are often comparatively easy to understand and 

therefore easy to analyse and debug. Similarly, the complexity of the classifiers 

generated can be readily estimated from the number of decisions required to 

achieve a classification, indicating the likely utility of the classification meta-

features employed. 

There is an issue in decision tree learning when training data contains 

noise or when the number of training data is too small to represent at sample of 

the desired result. In both cases, ID3 can generate trees that overfit the training 

data and thereby decrease the system performance. To solve overfitting, Mitchel 

reported that rule post-pruning is a practical approach to solve the overfiting 

problem (Mitchel, 1997). This technique checks decision tree growth to give best 

performance. When the performance begins to decrease, the tree needs to be 

pruned. By comparing tree classification performance of the previous training 

iteration and the current training iteration, we can measure when tree performance 

is converging. The tree growth is terminated if the performance of ID3 decreases. 

The tree is converted to an equivalent set of rules with one rule for each path from 

the root to a leaf node. In pruning, some rules are removed to increase 

performance. 

 We have used our retrieval system in conjunction with relevance feedback 

and ID3 to evaluate the efficiency of our set of meta-features. The overall process 

to retrieve similar images according to high-level concepts by grouping keypoint 

locations into meta-features is shown in Figure 7.1 and can be described as 

follows: We extract key points and descriptors from each image by means of the 

SIFT algorithm as described in section 5.3.1.2 of Chapter 5 and then calculate the 

matching scores of each image as described in section 5.3.1.2 of Chapter 5. We 

next extract local image features, i.e. keypoints, using the SIFT and consistent 

keypoints locations by means of the  GHT accumulator as described in section 6.1 

and then calculate meta-feature matching scores by computing the dot product 

between candidate significant meta-features extracted from the query image and 

each database image as explained in Figure 7.2. 
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Figure 7.1 The overall process of the experiment 

We can now compute the similarity score by ID3 and also the meta-

feature vector. We start by sorting the results from meta-feature matching. After 

that, we input relevance feedback for each image in each display page (the top-k 

is 9) until the first similar image is found, the query itself is indicated to relevant 

image. Relevance feedback is achieved by indicating images similar to the query, 

and all other images as non-relevant (Giacinto and Roli, 2005). An example of 

user feedback is shown in Figure 7.3. The training meta-feature set is created by 

extracting meta-feature vectors from relevant and non-relevant images. An 

example of a training meta-feature set resulting from user feedback in Figure 7.3 

is shown in Table 7.1. The relevance feedback is divided into 2 classes, where 0 

codes for dissimilar and 1 codes for similar images respectively.  

 

 

Query 
image 

Retrieval results and ID3 
meta-feature(s) 

Database 
Images 

 
 

1. Detect SIFT keypoints  
2. Calculate SIFT matching  
3. Calculate meta-features 
4. Calculate meta-feature  
    matching  
5. Calculate relevance  
    feedback matching using  
    ID3 and Relevance Feedback 

Relevance 
Feedback 

By  
User 
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Figure 7.2 Overview of meta-feature matching algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Input of relevance feedback from a user where (a) is the query image, (b) is the 
relevant image, and (c) – (j) are non-relevant images. 

Meta-feature matching 

Step 1: Normalize the meta-feature vector extracted from each of the database  

            images and the query meta-feature vector to FNorm. 

           FNorm = F / |F|                                                                      (Equation 6.15) 

           |F| = 22
2

2
1 ... nFFF +++  

Step 2: Matching query meta-feature vector (Q) with the normalized meta-feature  

            vector (FNorm) by taking the dot product between Q and  FNorm ,  

            i.e. cosine distance Dcos(Q, FNorm). 

            Sfeature_vectors= Dcos(Q, FNorm) = Q′ . FNorm                                           (Equation 6.16) 

                                             =  (Q1 x Fnorm1) +  (Q2 x Fnorm2) + … +  (Qn x Fnorm n) 

(a) 

(b) (c) (d) (e) (f) 

(g) (h) (i) (j) 
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Table 7.1 Example of training meta-feature set from the relevant and irrelevant images in 
Figure 7.3 

 

 

a b … j 

1 0.00000 0.25750 … 0.04299 

2 0.69231 0.07692 … 0.15385 

… … … … … 

17 0.94585 0.26568 … 0.00000 

Relevance feedback 1 1 … 0 

 

The system then generates an ID3 tree by splitting nodes which have high 

information gain in terms of class examples. The algorithm for ID3 tree building 

is shown in Figure 7.4. From the ID3 tree, we create decision rules in the form of 

if-then-else clauses. An example of decision rules is shown in Figure 7.5. Next, 

we classify the relevance of each database image (Class, Class is 0 if ID3 

classifies the database image as being non-relevant otherwise, Class is 1 if the 

database image is classified as being relevant), for example, Class in Figure 7.5 is 

0 if the leaf node of the decision path is No, otherwise Class is 1 if the leaf node 

is Yes. In order to be able to rank images that are classified as being relevant, 

similarity scores (SID3) are computed (Equation 6.17) for each cycle of querying 

with relevance feedback. 

SID3 = (Snode1+ Snode2 + Snodek)/n             (Equation 7.1) 
            

where n is the number of nodes in decision path in ID3 that evaluates the 

relevant class (Yes), for instance, n is 2 in Figure 6.14, and Snodei is the node score 

that is calculated from the meta-features extracted from the database images for 

each node. 

2
iinodeinodei ))/FsFs -((F S =                                            (Equation 7.2) 

where Fnodei is a meta-feature threshold value of the database image in 

each node. 

Fsi is the threshold value of each node from the meta-feature value of Sv in 

Equation 7.3 while in the process of splitting nodes. 

Image 

Feature 
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ID3 tree building 

Input training meta-feature set (S) with relevance feedback from user selection of  

             displayed images.   

Step 1:  If all meta-feature values are the same then  

                       Return a leaf node with the result from relevance feedback 

             Else 

                     Find meta-feature (F) with highest information gain  

                     Gain(S, A) the information gain of meta-feature set S on  

                     each meta-feature A is defined as 

                             ∑
=

−=
N

v
vv SEntropySSSEntropyASGain

1

))(*)/(()(),(  

                    Where                                                                           (Equation 7.3) 

N is the number of all possible values of attribute A, 

Sv is the subset of S for which attribute A has value v, 

|Sv| is the number of elements in Sv, 

|S|  is the number of elements in S. 

)/(log)/(
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1
2

1
2
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=

=
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−=

          (Equation 7.4) 

where 

 p(classi) is the proportion of S belonging to class i, 

|
iclassS |  is the number of elements in S belonging to class i, 

|S|  is the number of elements in S, 

L is the number of class categories in S. 

             End 

Figure 7.4 Overview of the ID3 tree building algorithm 
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ID3 tree building (continued) 

Step 2: Assign the best meta-feature (F) in step 1 as a decision node  

Step 3: For each value of F create a branch by partitioning the training set 

            S into subsets S1, S2, ..., SN according to the values of F.  

Step 4: Follow each branch whereby the value of the branch is present  

            If the meta-feature perfectly classifies the training sets then  

                  The process stops and outputs a decision tree. 

            Else 

                  Perform step 1 recursively to each of the sets Si from step 3. 

            End 

Figure 7.4 Overview of the ID3 tree building algorithm (continued) 

 
 
 
 
 
          IF meta-feature   6 = 1 THEN similarity = No 
 
          IF meta-feature 6 = 2 and meta-feature 17 = 1  
                                                                                                        THEN similarity = No 
       

    IF meta-feature 6 = 2 and  meta-feature 17 = 2  
        THEN similarity = Yes 

 
 
 
 
 

 

Figure 7.5 Example of decision rules in (b) that are generated from the ID3 tree in (a) 

 

We now investigate high-level concepts of appearance properties in the 

system, and the benefit of using relevance feedback (i.e. feedback from the user to 

indicate relevant and non-relevant images) in order to make real decisions based 

on the high-level notion in the next section. 

7.3 Investigation of the high-level concepts 

We are interested in to what degree by using relevance feedback and ID3 our 

system is able to extract feedback meta-feature vectors that encapsulate Gestalt 

properties in order to retrieve similar trademark images. In other words, we now 

investigate how the retrieval results are influenced by classifying the relevance of 

(b) (a) 

6 

17 

No Yes 

No 

1 

1 2 

2 
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database image meta-features using ID3 trained by relevance feedback. We utilize 

the implementation described below. 

Three experiments were devised in order to investigate the implementation 

of three Gestalt properties comprising: similarity, proximity, and simplicity 

validated by a specific test image set. Each set is designed to invoke only 

individual Gestalt properties in isolation, although this in fact is not always 

possible as mentioned in Chapter 6 and will be explained in more detail below. 

We select meta-features to represent each appearance property based on using 

PCA and Factor Analysis, and further analysis of each appearance property 

(Details in sections 6.2 to 6.5 of Chapter 6). The Gestalt properties and 

corresponding appearance properties investigated in each experiment are listed in 

the Table 7.2, and the meta-features are listed in Table 6.10. 

Table 7.2 Gestalt properties investigated and proposed meta-features  

Experiment 

number 

Gestalt 

property 

Appearance property Proposed  

meta-features 

1 Similarity Global rotation 1, 10, and 11 
5 Proximity Structural configuration of the 

matched points  
5 

8 Simplicity Symmetry 15  
 

We investigated the effect of relevance feedback by measuring retrieval 

performance and examining the feedback meta-feature vectors generated when 

the system incorporates ID3 trained by relevance feedback. In this experiment 

“model” (ideal) feedback was provided to the system, and ID3 then made a binary 

decision regarding the relevance of each image in the test set. We then observed 

the retrieval result, i.e. which images of the test set were deemed to be relevant, 

and which meta-feature was selected to classify the appearance property present 

in the image training set. The effect of relevance feedback was determined by 

comparing the results of the system using ID3 provided by relevance feedback 

with the system results using meta-feature matching without relevance feedback.  

We describe the above experimental procedure in detail in the following 

section. 
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7.4 Experimental procedure 

In this section, we explain the experimental procedure for investigating the 

potential for high-level concepts to benefit the system retrieval performance. The 

objective of this set of three experiments is, given a set of meta-features that 

describe visual appearance properties, to determine which meta-features will be 

selected by relevance feedback based learning to discriminate the degree of each 

appearance property when presented to the system. We show the set of test 

images employed in section 7.4.1, describe experimental processes in section 

7.4.2, and explain the result in section 7.4.3. 

7.4.1 Test images 

Each experiment used a different set of test images, in which each test image set 

changes the degree of each appearance property. Nominal “relevance feedback” is 

provided that labels a subset of images in the test set as being relevant and the 

remaining disjoint subset of images as being non-relevant. In all of these 

experiments, the first three images (including the query image) have been deemed 

by the above relevance feedback process to be similar, for example, the images 

(a) to (c) in Figure 7.6 have been defined to be similar images, and the remaining 

images defined to be dissimilar when compared with the query image in (a). The 

appearance threshold used to define similarity or dissimilarity for each subset of 

images in each test set is essentially arbitrary, since the objective is to determine 

if the system is able to group similar and dissimilar properties as defined by a 

user, i.e. arbitrarily.  

Many researchers suggest that a small number of similar images should be 

used to support user convenience and cooperation (Zhou et al., 2006; Manning et 

al, 2008). Accordingly, the total number of images in each set is 9 to fit in one 

display area. The test sets are shown in Figures 7.6 to 7.8 for each experiment.  

Experiment 1: We evaluate similarity appearance discrimination based on 

applying global rotation to the test image set.  

The test set in this experiment is arranged by the degree of global rotation 

of the test images. The degrees of global rotation are 0, 10, 20, 30, 40, 50, 60, 70, 
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         (a)                     (b)                     (c)       

         (d)                     (e)                     (f)       

         (g)                      (h)                   (i)       

and 80 degree respectively. The test set in experiment 1 is shown in Figure 7.6. 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Test images in experiment 1 (Global rotation).  
The relevant images are defined to be (a) – (c), the non-relevant images are defined to be (d) 

– (i), and the query image is (a). 

 

Experiment 2: We aim to evaluate appearance discrimination by varying 

proximity similarity and quantifying the structural configuration of matched 

keypoints.  

The test set in experiment 2 is arranged by progressively varying the 

distance between two components in test images. The separation distances of the 

two components are 86.5, 76.5, 66.5, 56.5, 46.5, 36.5, 26.5, 16.5, and 6.5 percent 

respectively. The testing set in experiment 2 is shown in Figure 7.7. 
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Figure 7.7 Test images in experiment 5 (Structural configuration of the matched points). The 
relevant images are defined to be (a) – (c), the non-relevant images are defined to be d) - (i), 

and the query image is (a). 

 

Experiment 3: We aim to evaluate the simplicity property for appearance 

discrimination using the symmetry of matched keypoint positions.  

The test set in experiment 3 varies the degree of global asymmetry for 

each of the test images, ordered by 0, 10, 20, 30, 40, 50, 60, 70, and 80 percent. 

The test set in experiment 3 is shown in Figures 7.8. 

 

 

 

 

 

 

 

         (a)                (b)                    (c)       

         (d)                (e)                    (f)       

         (g)                (h)                    (i)       
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         (a)                (b)                  (c)       

         (d)                (e)                  (f)       

         (g)                (h)                  (i)       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.8 Test images in experiment 8 (Horizontal symmetry).  
The relevant images are defined to be (a) – (c), the non-relevant images are defined to be (d) 

– (i), and the query image is (a). 

In the next section, the experimental procedures for all three experiments 

will be described. 

7.4.2 Experimental procedures 

In each experiment, we use a different image set to investigate a single 

appearance property. We evaluate each appearance property with the system 

using the meta-feature matching with and without relevance feedback and ID3. 

When relevance feedback is not used, the system bases its query decisions using 

meta-feature matching alone. A query and the test set images are input to the 

system, which extracts SIFT features from each image. The system matches and 

groups keypoints extracted from the query image and each test image using the 

GHT, which is explained in section 6.1 of chapter 6. The system calculates the 17 

meta-features (details in chapter 6) to construct the meta-feature vector and then 

compute meta-feature matches. The overall process is shown in Figure 7.9. 
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Figure 7.9 Processes in the system using meta-feature matching alone 

When incorporating RF, the system extracts SIFT key point descriptors 

from each image, and then matches the query image and each test image using the 

GHT, as described in section 5.3.1.2. The 17 local meta-features are then 

calculated and an initial retrieval result by matching the meta-feature vector of the 

query to the meta-feature vectors of the test images. Then the system calculates a 

similarity score using relevance feedback and ID3 (details in section 7.2). An 

overview of the second sub-experiment is shown in Figure 7.1. 

      The processes can be summarised as: 

1. Extract the keypoints and descriptors from each image using SIFT.  

2. Calculate the SIFT matching score, as described in section 5.3.1.2. 

3. Calculate the meta-feature vector of the keypoints for each image, as 

explained in section 6.1. 

4. Calculate the meta-feature matching scores, as explained in section 7.2. 

5. Compute the similarity score using ID3 and the meta-feature vectors, as 

described in section 7.2. 

The system returns the retrieval result and feedback meta-feature vector 

 
Query 
Images 

Retrieval result 

 
                 System 
1. SIFT key point detection  
2. Calculate SIFT matching & GHT 
3. Calculate meta-features 
4. Meta-feature matching 

Test images 
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for each experiment. Thereafter, the retrieval result obtained by meta-feature 

matching only and ID3 with relevance feedback are compared to determine the 

utility of relevance feedback classification.  

In addition, we evaluate the utility of the relevance classifiers generated 

by user feedback from the complexity of the trees induced byID3, in terms of tree 

depth and number of branches. Trees with fewer nodes indicate a simpler decision 

space and hence are more desirable than trees with greater numbers of nodes 

(Mitchell, 1997), indicating a complex decision space which is likely due to 

overfitting to the training data. Therefore, following the principle of Occam’s 

Razor, the lower the complexity of the trees generated by ID3, the simpler the 

decision space potentially resulting in better performance of the relevance 

classifier. 

7.5 Experimental results 

In each of the experiments, the same class of (similar or dissimilar) images is 

retrieved through user feedback. Each experiment generates only one node for 

each ID3 tree, for example, the tree produced by ID3 for experiment 1 is shown in 

Figure 7.10. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.10 ID3 tree generated in Experiment 1. The root node represents the selected meta-
feature, the branches are the decision values from ID3, and the leaves illustrate the decision 

result for each path. 

A single ID3 node is generated in every experiment, so each appearance 

property decision is based on a single feedback meta-feature. 

We summarize the feedback meta-feature vectors selected by ID3 and 

compare the feedback meta-feature vector with proposed meta-features for each 

Gestalt property in Table 7.3.  

Yes No 

1 2 

Feature 11 

Decision value 

Decision result 

Feedback meta-
feature vector 
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Table 7.3 Proposed meta-feature(s), and meta-feature selected by ID3 and Relevance 
Feedback in each experiment 

Experiment number 
 

Gestalt property Proposed  
meta-feature(s) 
(Feature no) 

RF meta-feature  
(Feature no) 

1 Similarity 1, 10, 11 11 
2 Proximity 5 5 
3 Simplicity 15 15 

According to Table 7.3, the set of feedback meta-feature vectors are 

contained in the set of proposed meta-features. Therefore, suitable meta-features 

in each experiment have been selected by ID3 to support decisions based on high-

level visual appearance properties. This result suggests that if there are several 

meta-relations (keypoint configurations) operating simultaneously in an image, a 

decision tree could be generated by ID3 from several corresponding meta-

features, or any single dominant meta-feature, where a single visual appearance 

property dominates. We investigate the stability of meta-feature selection by 

varying the number of similar images, and the result is summarized in Table 7.4. 

Table 7.4 The feedback meta-feature in each experiment with different numbers of similar 
images 

Feedback meta-feature The number of similar images 
Experiment 1 Experiment 2 Experiment 3  

2 10 8 15 
3 11 5 15 

In experiment 3, the feedback meta-feature is the same for different 

numbers of similar images. The feedback meta-feature selected from experiment 

1 and 2 varies when the number of similar images changes.  

The feedback meta-feature results in experiment 1 code the same 

appearance property: similarity. This result suggests that the meta-features coding 

appearance property concepts can provide the system with the means to select the 

more dominant meta-feature in the same appearance property group. 

The feedback meta-feature selected in experiment 2 code two different 

appearance properties: similarity and proximity. The test images were generated 

to vary proximity (structural configuration of the matched keypoints), and 

comprised similar components. Therefore, it is difficult to decouple the similarity 

and proximity properties.  
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Table 7.5 Example result s using Relevance Feedback, ID3, and meta-feature matching 

ID3  Meta-feature matching Image relevance 
feedback Result  Similarity value Result  Similarity value 

 

Similar Correct 1 Correct 3.443 

 

Similar Correct 0.790 Incorrect 1.433 

 

Similar Correct 0.586 Incorrect 1.705 

 

Dissimilar Correct 0.394 Incorrect 1.810 

 

Dissimilar Correct 0.156 Correct 0.990 

 

Dissimilar Correct 0 Correct 0.995 

 

Dissimilar Correct -0.226 Incorrect 2.263 

 

Dissimilar Correct -0.413 Correct 1.128 

 

Dissimilar Correct -0.678 Correct 0.955 

The retrieval results from the system using relevance feedback and ID3 

were consistent with user feedback in every experiment, but the results using 

meta-feature matching were inconsistent in many experiments. This is because RF 

imposes user intentions that simple meta-feature matching (vector dot product 

comparisons between meta-features) has no means of deducing. ID3 is also able 

to select appropriate meta-features rather than using all the meta-features when 

matching, and therefore the system using relevance feedback and ID3 has the 

potential to achieve better results. An example of retrieval results obtained in 

experiment 1 is shown in Table 7.5. The system using relevance feedback and 
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ID3 returns correct results for all images, but when meta-feature matching alone 

we observe certain images being incorrectly retrieved as similar. 

7.6 Conclusion 

In response to the gaps in the research literature identified in Chapter 3, this 

research proposes the use of meta-features in conjunction with relevance feedback 

as a way to imitate aspects of human perceptual grouping. There is little reported 

work on utilizing perceptual grouping to retrieve similar images, and none 

reporting the calculation of meta-features from SIFT keypoints to measure 

Gestalt-based properties.  

We evaluated the ability of the system to make trademark image similarity 

judgements using a single visual property in each experiment we conducted. Our 

results show that it was indeed possible to quantify basic visual appearance 

properties and select suitable meta-feature for measuring visual appearance 

properties based on user supplied relevance feedback.  

However, due to the difficulty of decoupling visual appearance properties 

in the test images, more investigation is required to determine if our proposed 

approach is viable when more than one visual appearance property is active 

within compared images.  

In conclusion, from the initial results reported in this chapter, it would 

appear that by endowing the system with relevance feedback training it becomes 

possible to construct a classifier that can base relevance decisions on suitable 

appearance properties by automatic selection of appropriate meta-features. 

Thereby we are able to retrieve similar images by categorising the meta-feature 

vector extracted from database images using a decision tree learned from training 

examples given by relevance feedback. This approach affords flexibility in the 

ability of the system to retrieve database images that are similar to a query image 

based in part on a user defined notion of similarity. 

In the next chapter, we evaluate the system with real trademark images 

containing several visual appearance properties, in order to measure the system’s 

retrieval performance when operating on real data.  
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Chapter 8  

System Evaluation Experiments 

 
In the previous chapter, high-level concepts captured by employing Gestalt-Based 

Perceptual Grouping (GBPG) of visual appearance properties were investigated 

within our trademark image retrieval system. The results showed that by 

incorporating high-level concepts wihtin our system it becomes possible to 

quantify each Gestalt property in order to retrieve similar images. In this chapter, 

we evaluate the system with a database of real trademark images, where each 

individual image may contain several Gestalt properties. The results illustrate the 

performance of the system when retrieving similar images that contain several 

Gestalt properties. We compare 3 methods for retrieving similar trademark 

images: In the first, we use SIFT matching which returns similar images by 

matching SIFT keypoint features. In the second method, we utilize several meta-

features (meta-feature matching) to take into account the GBPG properties of 

images compared and retrieved by the system but without utilising relevance 

feedback to support the user definition of high-level concepts. In the third method, 

we extend the second system to employ relevance feedback (RF) in conjunction 

with machine learning to provide relevance feedback-based decisions by which 

similar images are selected (and ranked) from the database. We describe the 

experimental framework in section 8.1, implementation methods in section 8.2, 

experimental procedures in section 8.3, discuss the results in section 8.4, and 

summarise our findings in section 8.5. 

8.1 Experimental Framework 

We would like to evaluate the retrieval performance of our system supporting 

high-level concepts using relevance feedback and decision tree-based relevance 

classification (Relevance Feedback matching) and to compare the performance of 

this system configuration with system configurations that do not incorporate 
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relevance feedback (meta feature matching alone, and SIFT matching alone). This 

section presents the hypotheses, objectives, and research questions for this 

evaluation. Our hypotheses are: 

It is possible to build an effective retrieval system for searching databases 

of trademark images by adopting image matching based on representing multiple 

GBPG properties. Relevance feedback based decision-making can select 

appropriate features based on GBPG properties, and can thereby increase the 

retrieval effectiveness of the system. 

In our experiments, we compare the retrieval effectiveness of the system 

when using SIFT matching, feature matching, and RF matching.  

8.2 Implementation Methods 

In the first method, the system employs SIFT matching, and the system generates 

SIFT features. In the second method, the system utilizes meta-feature matching as 

the basis for extracting GBPG properties (details in chapter 6 and appendix B). In 

the third method, the system uses with RF matching and is supplied with user 

labelled relevant images (relevance feedback) during each database query cycle, 

and then selects GBPG properties (meta-features selected by ID3). This method 

attempts to represent high-level concepts in order to capture perceptual grouping 

by relevance feedback based on meta-features selected by ID3 decision trees.  

The details of each of the above methods are explained in section 8.3.3. 

The system results using RF matching are compared with the other two methods 

by employing precision and recall measures. The results are shown in section 

8.4.1. The advantages of using RF matching in trademark image retrieval is 

analysed in terms of the system retrieval effectiveness in section 8.4.3. 

8.3 Experimental procedure 

The experiments will measure system performance when retrieving similar 

images that contain multiple GBPG properties. We show the database images in 

section 8.3.1, list the meta-features in section 8.3.2, describe experimental 

processes in section 8.3.3, and explain the measurement method in section 8.3.4. 
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                       (1)                         (2)                            (3) 

                       (4)                         (5)                            (6) 

                       (7)                         (8)                            (9) 

                       (10)                        (11)                           (12) 

8.3.1 Image data  

We evaluated our system using a database comprising 200 abstract images taken 

from the UK Trademarks Registry, and a set of 12 query images with known 

“correct” search results for this database. All the trademarks are binary images of 

256x256 pixels. The image set comes from the same set used in the evaluation of 

the Artisan system (Eakins et al, 1997). The set of relevant images for each query 

was selected by UK trademark examiners and the query itself is contained in the 

relevant images (Giacinto and Roli, 2008). The 12 query images are shown in 

Figure 8.1, and the 200 database images in Figure 8.2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Query images used during the experiments 
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Figure 8.2 (a) Trademark image database used during the experiments 
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Figure 8.2 (b) Trademark image database used during the experiments (continued) 
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8.3.2 Meta-features 

17 meta-features are utilized, which were described in chapter 6 and are listed 

here in Table 8.1. They are used in the meta-feature matching and RF matching 

methods for trademark image retrieval.  

Table 8.1 17 meta-features extracted from each image 

NO Description of meta-feature 
1 Summation of orientation differences of a pair of matched keypoint sets;  

this feature measures orientation similarity. 
2 Moment (m00) from matched keypoints; 

this feature measures pattern similarity. 
3 Moment (m02) from matched keypoints; 

this feature measures nearness proximity. 
4 Moment (m22) from matched keypoints; 

this feature measures nearness proximity. 
5 SD of error-distance for a pair of matched keypoints; 

this feature measures nearness proximity. 
6 Similarity score for matched keypoints; 

this feature measures pattern similarity. 
7 Total number of match keypoints; 

this feature measures pattern similarity. 
8 Mean of scale differences between a pair of matched keypoint sets; 

this feature measures size similarity. 
9 Median of scale differences between a pair of matched keypoint sets; 

this feature measures size similarity. 
10 Mean of orientation differences for a pair of matched keypoint sets; 

this feature measures orientation similarity. 
11 Median of orientation difference for a pair of matched point sets; 

this feature measures orientation similarity. 
12 Percentage of matched points/ total keypoints in query; 

this feature measures overlap proximity. 
13 Percentage of matched points/ total keypoints  in the  model; 

this feature measures overlap proximity. 
14 Self similarity; 

this feature measures value similarity. 
15 Horizontal symmetry; 

this feature measures symmetry simplicity. 
16 Vertical symmetry; 

this feature measures symmetry simplicity. 
17 The average of multi-peak GHT scores; 

this feature measures multiple values similarity. 

8.3.3 Experimental Processes 

We measure the effectiveness of the system when using RF matching, meta-
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feature matching, and SIFT matching. The system implementation details of these 

methods are explained in the following sections. 

8.3.3.1 SIFT matching 

Matching using SIFT keypoint descriptors is shown in Figure 8.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3 SIFT matching 

We extract keypoints and descriptors from each image by means of the 

SIFT detector, and then calculate the SIFT matching score as described in section 

5.3.1.2.  

8.3.3.2 Meta-feature matching 

 

 

 

 

 

 

Figure 8.4 Meta-feature matching 
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Matching using a meta-feature vector is shown in Figure 8.4 We first extract 

keypoints and keypoint descriptors from each image by means of the SIFT 

detector, then calculate the SIFT matching score as described in section 5.3.1.2. 

The vector of meta-feature scores representing the high-level image appearance 

properties for each compared database image is constructed as explained in 

section 6.1, and finally the meta-feature matching scores are obtained as 

explained in section 7.2. In all experiments conducted during this validation, we 

in effect use nearest neighbours matching to match SIFT keypoint descriptors by 

setting Lowe’s log-likelihood cut-off ratio criterion for matching to 1.0 (the ratio 

between the match score of the best matching descriptor and the next best 

matching descriptor). This modification has the effect of considering all 

descriptors when constructing matching pairs, as opposed to only matches 

between highly distinctive descriptors. We justify this approach on the grounds 

that it greatly improves the number of SIFT keypoint descriptor matches we 

obtain and it also appears to improve the overall performance of the system, 

compared to using the standard log-likelihood ratio of 0.8. We believe that use of 

nearest neighbour matching is appropriate here as all high-confidence keypoint 

descriptor matches are likely to be significant in trademark images since such 

images contain geometric figures which are likely to be self similar that would 

otherwise be rejected by log-likelihood matching. Therefore, due to an economy 

of form usually present within trademark images, all good keypoint matches are 

potentially important and should be recorded. 

8.3.3.3 Relevance Feedback (RF) matching 

Matching using RF matching is shown in Figure 8.5. We extract keypoints and 

keypoint descriptors from each image by means of a SIFT detector, and then 

calculate the SIFT matching score as described in section 5.3.1.2. The meta-

feature vector is constructed as explained in section 6.1, and used to obtain meta-

feature matching scores, as described in section 7.2. Finally, the RF matching 

score is computed using ID3 decision trees, as described in section 7.2. To 

generate relevance feedback automatically for each query image, a set of relevant 

images is provided by program code implementing an “ideal observer” (Xu et al., 

2009; Farag and Wahab, 2003). This ideal observer supplies the appropriate 

“ground truth” set for each query image as illustrated in section 8.3.1 where a 
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Patent office examiner has identified images deemed to be relevant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5 Relevance Feedback matching 

8.3.4 Measurement method 

The system effectiveness is measured by precision and recall, following Van 

Rijsbergen’s definition that effectiveness strictly measures the system’s ability to 

retrieve relevant documents that satisfy the user. Precision and recall can be used 

to measure information retrieval performance in this context (van Rijsbergen, 

1979; Makhoul et al, 1999).  

8.3.4.1 Precision and Recall  

Precision (P) and recall (R) can be defined as (van Rijsbergen, 1979): 
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=       (Equation 8.2) 
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B is the number of images that the system can retrieve. 

The contingency table for calculating precision and recall from A and B is 

shown in Table 8.2. 

Table 8.2 The contingency table for calculating precision and recall 

 Relevant  Non-relevant  

Retrieved     B 

Not retrieved    

    

8.3.4.2 Precision and Recall of top-k  

Relevance feedback from the user is applied to our system in the RF matching 

method to facilitate system learning. The number of images per round of 

interaction (i.e. the set of relevance feedback example images) should be small 

(Zhou and Huang, 2003), and is called top-k. We assign top-k to be 9 in 

accordance with the user’s comfort and available computer display area. 

The average top-k precision and recall are utilized to measure the system 

performance (Li et al., 2008; Chakrabarti et al., 2006), by employing Equations 

8.1 and 8.2, with the number of images limited to top-k. 

Higher precision and recall implies a more effective image retrieval 

system, therefore we measure system improvement by comparing the precision 

and recall of our three proposed methods.  

8.4 Discussion of results 

Experimental results for system effectiveness in terms of precision and recall are 

examined in section 8.4.1, case studies for retrieval are given in section 8.4.2, and 

section 8.4.3 summarizes the findings.  

8.4.1 Experimental results 

The average precision (over 12 different query images) for each top-k (from 1 to 

200) of each query performed by the system is shown in Figure 8.6. The results 

indicate that RF matching gives the best average precision score, the feature 

matching is second, and SIFT matching is the poorest. The cumulative precision 

for RF matching is higher than the scores for feature matching and SIFT keypoint 

A 

A ∩ B A ∩ B 

A ∩ B A ∩ B 

A 

B 
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descriptor matching by about 23 and 46 respectively. While, the average precision 

score for RF matching is higher than scores for feature matching and SIFT 

matching by about 1 % and 2 % respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 8.6 System precision for RF matching, Meta-feature matching, and SIFT matching 

The cumulative and average precision of the validated systems are shown 

in Table 8.3. 

Table 8.3 Cumulative and average system precision 

Method RF matching 
Feature 

matching 
SIFT 

matching
Cumulative 368.5 346 323
Average 16.02174 15.04348 14.04347826
Standard Deviation 2.673431 2.742399 3.048520668

 

Relevance feedback and ID3 are intended to provide high-level concepts 

to bridge the semantic gap when comparing similar images (Liu et al., 2007). 

Indeed from the results presented in Figure 8.6, both Meta-Feature matching and 

RF matching are performing better than standard SIFT matching for all page 

queries. RF matching starts to increase in performance notably after 18 images 

have been returned (just 10 percent of the database), possibly indicating that for 
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RF to be effective a certain minimum number of positive training examples must 

be provided when relying on ID3 for feedback classification. 

The average (over 12 different query images) top-k recall for each query 

cycle performed by the system is shown in Figure 8.7.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.7 System average recall for RF matching, meta-feature matching, and SIFT  

The results show that RF matching gives a better recall score for all top-k 

values. The cumulative and average recall of the systems is shown in Table 8.4. 

Table 8.4 Cumulative and average system recall 

Method RF matching 
Feature 

matching 
SIFT 

matching
Cumulative 2047.21 1922.2 1794.43
Average 89.00913043 83.57391 78.01869565
Standard Deviation 14.85255959 15.23519 16.93610299

 

RF matching produces the best cumulative and average recall scores, 

feature matching is second, and SIFT keypoint descriptor matching is the poorest. 

The cumulative precision score for the system using RF matching is higher than 

the scores for feature matching and SIFT matching by about 125 and 253 
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respectively. The average recall score for RF matching is higher than scores for 

feature matching and SIFT matching by about 5.4 % and 11 % respectively. RF 

matching starts to increase in performance after 10 percent of the database images 

have been returned, once more indicating that improved feedback classification 

might be a route to improved performance. In this case the RF performance 

improvement is more pronounced, RF matching retrieving all similar images 

having returned 126 database images, while SIFT must return 189 images before 

finding all query images. Therefore RF matching would appear to be significantly 

better than SIFT at finding the most difficult to match residue of similar images. 

Normalized precision (Pn) and normalized recall (Rn) are used to measure 

system performance in other trademark retrieval systems (Eakins et al., 1998; 

Jiang et al., 2006). They are calculated as follows: 
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Ri is the rank at which the relevant image i is actually retrieved, 

             n is the total number of similar images, and  

            N is the total number of test images.  

These values rank retrieval performance from 0 (worst case) to 1 (perfect 

retrieval). 

The normalized precision and recall for our system using RF matching 

were Pn = 0.89 ± 0.11 and  Rn = 0.83 ± 0.10, while Artisan’s performance (Eakins 

et al., 1997)  was Pn = 0.65 ± 0.18 and Rn = 0.93 ± 0.05. A more recent system 

that applies Gestalt principles proposed by Jiang (Jiang et al., 2006) reports Pn = 

0.66 ± 0.18 and Rn = 0.87 ± 0.11.   

We employ same query set and trademark image database as in Artisan’s 

system, but Jiang et al. used a different query set and trademark image database.  

We can see that all three of our approaches achieve high performance: our 

system achieving a higher precision figure while the Eakins and Jian’s perfoming 

better than ours in recall. Normalized precision measures the ability of a system to 
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filter information according to some given criterion (Zhang and Mostafa, 2002). 

These above results are therefore consistant with an imporved ability to determine 

the relevance of images returned in response to a query and therefore indicate that 

our approach is very promising, compared to other reported trademark retrieval 

systems that represent the state-of-the-art.  

8.4.2 Retrieval Case Studies under Relevance Feedback 

To investigate the operation of the system when retrieving trademark images, we 

now examine the retrieval data in detail. The retrieval results of the five closest 

matches for twelve query images are given in Table 8.5. The last top-k for each 

query corresponds to the final round of top-k images returned using RF matching. 

The relevant images for each query are marked by crosses (x). 

The best retrieval result is always the smallest top-k and the worst is the 

last top-k in the results. 

In Table 8.5, the ninth query used 9 images of last top-k to retrieve 4 

similar images, this particular query image and relevant images are shown in 

Figure 8.8. A query image begins each row, the five matched images are then 

shown, and the last top-k appears at the end of a row. Similar images are specified 

by crosses. 

 

 

 

 

  (b1)   (b2)   (b3)   (b4) 

    (a) Query image        (b) relevant images 

Figure 8.8 The best performing query image and relevant images  

Three of the images in Figure 8.8 (b1, b2, and b4) contain a circle, 

rectangle, and triangle. Image b3 contains a circle and triangle and the capital 

letter Delta, ∆. Furthermore, b1 and b2 contain occluded elements. The best 

property to retrieve these similar images would appear to be global similarity 

because all of these images are similar as a whole image rather than being 

considered as a collection of components. This shows that the system can retrieve 

multiple, overlapping component images, and in this case the system selected 

meta-feature 6, which measures global similarity. The tree generated by ID3 for 
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this query is shown in Figure 8.9. 

Table 8.5 Retrieval results for the five closest matches for twelve example query images.  

Query image Retrieval result in Top 5 Last Top-k 
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Figure 8.9 A decision tree generated by ID3 for the query in Figure 8.8  

 

The worst-case query result is the fifth query in Table 8.5 which used 117 

images to retrieve 4 relevant images. The query image and relevant images are 

shown in Figure 8.9. 

 

 

 

 

                 

               (b1)   (b2)   (b3)   (b4) 

(a) Query image   (b) relevant images 

Figure 8.10 Poorest performing query image and relevant images 

 

The system selected features 1, 2, 4, 5, 6, 14, and 15, which are orientation 

similarity, pattern similarity, nearness proximity, nearness proximity, pattern 

similarity,  self similarity, and symmetry simplicity. The tree generated by ID3 for 

this query is shown in Figure 8.11. and the relative complexity of this tree is 

evident when compared to the tree produced by the best performing query, in 

Figure 8.9. This complexity suggest that ID3 is struggling to partition the meta-

feature space to specify relevant images based on the training examples supplied 

by relevance feedback and as a consequence the tree generated is possibly 

overfitting to the supplied training data. 
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Figure 8.11 decision tree generated by ID3 of query in Figure 8.10  

 

The query image consists of multiple linear components in several 

orientations, while the global relative position of the sub-components between the 

query and relevant images can vary. Therefore, these meta-features do not appear 

to be sufficiently diagnostic to capture the global banded pattern that clearly 

appears to constitute similarity. In this case the inclusion of a simple global 

spatial frequency feature might have been sufficient to detect this type of image 

similarity. However, had the self-similarity meta-feature been selected by ID3 

early in the search, then it may also have picked up the relevant images more 

quickly. Possibly the main explanation is that the first pass over the database 

relies only on meta-feature matching, where all meta-features have equal weight. 

Only when the first similar image has been found is it possible to define what is 

meant by similarity, up until that point only dissimilarity can be defined. In other 

words, until the first similar image is found the image cues which are diagnostic 

of similarity cannot be readily induced. Therefore, an interesting possibility 

would be for the user to supply not only a query but also an example of a similar 
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image to this query. The retrieval results are based on the selected features and 

relevance feedback. Then, we show two examples of the effect of relevance 

feedback by changing the relevant images in Table 8.6. A query image begins a 

row, the five matched images are shown in next, and the last top-k appears at the 

end of a row. Similar images are specified by crosses. 

Table 8.6 The retrieval results of the five closest matches when modifying relevance 
feedback for the two example query images in Table 8.5.  

Query image Retrieval result in Top 5 Last Top-k 

1   
 
 
  
             x                   x         

21 

2   
 
 
  
             x                   x         

33 

In the first example, we have selected query image 9 of Table 8.5 to 

interrogate the trademark database. The second relevant image selected is 

different to that selected Table 8.5 and consists of several components within 

overall octagonal configuration. Both images are similar in their similarity and 

proximity appearance properties. The system selected features 8 and 4, which 

measure the scale ratio between matched keypoint sets and the spatial spread of 

the matched points. Both the tree generated by ID3 for this query, shown in 

Figure 8.12, and a subset of the retrieval images returned are different to those 

generated in the first study, as a consequence of the different appearance propeties 

being captured via feature seleection directed through relevance feedback. 

 

 

 

 

 

 

 

 

 
 

Figure 8.12 Decision tree generated by ID3 for query 1 in Table 8.6  
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In the second example, we have selected query image 5 of Table 8.5 to 

interrogate the trademark database. The second relevant image selected is 

different to that selected in Table 8.5 and consists of multiple components within 

an overall double helix configuration. Both images are similar in their similarity 

appearance property. The system selected features 17, 9, and 1, which represent 

sub-component similarity, scale ratio between matched keypoint sets, and global 

rotation. The tree generated by ID3 for this query is shown in Figure 8.13. Once 

more, we demonstrate differences in the tree generated and similar images 

returned when the relevance feedback supplied is modified. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.13 Decision tree generated by ID3 for query 2 in Table 8.6  

8.4.3 Experimental Summary  

Use of SIFT appears to give a significant improvement over Eakin’s system since 

local features are being matched and the similar trademark images appear to be 

similar in a global sense. Accordingly, standard SIFT, measuring numbers of 

matching features or GHT similarity, would appear to be appropriate for matching 

under these conditions. Matching using the meta-features alone is also more 

successsful than using SIFT, suggesting that the benefits of grouping are indeed 

being realised, as discussed below. 

In the initial experiments we observed that there is the potential for 

grouping to yield an improvement, and our grouping approach as implemented is 
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achieving a significant improvement in discrimination. However, the degree of 

benefit endowed by our system is expected to be contingent upon the degree of 

grouped structure present within the images comprising the specific trademark 

image collection being searched. Given that method used for comparing the meta-

features is comparatively unsophisticated, it may be possible to realise even 

greater performance improvements by using individual classifiers based on each 

measure, appropriately weighted as in Adaboost (Martínez-Contreras et al., 2009), 

and always include all features, suitably weighted.  

The experiments show that using RF matching gives significantly better 

performance than either SIFT matching or meta-feature matching alone. These 

results are consistent with the evidence presented that supports the hypothesis that 

RF matching can be used to select appropriate local features for GBPG properties. 

Therefore, relevance feedback indeed appears to provide more information to 

enable the system to select appropriate features for measuring image similarity, 

given that ID3 can learn relevance classifications.  

We have also demonstrated that the system will respond to changes in 

relevance feedback, generating decision trees based on meta-feature selections 

that attempt to capture the visual appearance properties represented in the relevant 

images. Therefore, RF matching appears to support flexible decision-making 

based on such relevant image selections.  

RF matching manages to improve the effectiveness of the system to a 

significant degree. In Figures 8.6 and 8.7, the system using RF matching achieves 

better results over the entire search session because, we believe, sufficient 

feedback information has been gathered to allow ID3 to generate appropriate rules 

to classify similar images by learning to select appropriate meta-features based on 

GBPG properties.  

8.5 Conclusion 

We have demonstrated that our system that supports perceptual grouping by 

GBPG properties and high-level concepts. The GBPG properties are calculated by 

grouping the spatial configuration of keypoint locations into meta-features, and 

high-level concepts are captured by measn of relevance feedback and decision 

tree classification as described in chapters 6 and 7.  
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Our system based on meta-features that encode high-level concepts can 

improve effectiveness by retrieving multiple GBPG properties in similar 

trademarks, when compared to our system using SIFT kepoint descriptor 

matching alone or meta-feature matching alone. Furthermore, our RF based 

system would appear to hold the potetnial to improve trademark image retrieval 

performance.  

In the next chapter, we summarise the contributions of the research and 

discuss for the future work. 
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Chapter 9  

Conclusion and Future work 

 

This thesis has investigated a practical technique for trademark image retrieval 

by perceptual grouping. The technique is based on defining meta-features which 

are calculated from the spatial configurations of local image features in order to 

imitate perceptual grouping. User relevance feedback has been integrated within 

our approach to allow human judgment to influence the definition of image 

similarity when retrieving trademark images. We summarise the contributions 

and discusses ideas for future work in this chapter.  

9.1 Objectives Revisited 

A stated in Chapter 1, the problem addressed in this thesis can be posed by the 

question “how can we help people identify a putative trademark as being 

sufficiently original?” To answer this question we set out to investigate how to 

analyse a trademark image, how to identify those trademarks that are most 

similar, and how to organize their presentation to the best effect. Since trademark 

images are composed of potentially complex elements, it was realised that a 

means for representing these image sub-structures would be important. In addition 

it was realised that being able to capture human perceptual judgement in terms of 

what constitutes image similarity would also be important, since human beings 

ultimately arbitrate in disputes of whether a trademark is deemed novel or not.   

When this work was initiated few techniques were available for partial 

shape matching that supported multi-component retrieval. Furthermore, many of 

the techniques for image database retrieval that did exist required an exact image 

segmentation, which is difficult to achieve with the level of reliability required for 

a real trademark retrieval application. In addition, few researchers had attempted 

to apply principles derived from human perception for shape retrieval that would 
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allow perceptually meaningful configurations of trademark image components to 

be represented and classified. Finally, since global image features are not suitable 

for retrieving occluded or connected components in an image, it was realised that 

interest points, i.e. local features, as adopted by many vision researchers (Schmid 

and Mohr,1997; Lowe,1999; Wolf,2000; Sebe,2001) for general image database 

retrieval would have to be extracted and matched in order to compare trademark 

images reliably. Therefore, the main aim of this research has been to develop a 

method for solving the partial matching and shape perception problem by 

investigating the following questions:  

1. How can interest points be used to distinguish trademark images? 

2. Which interest point techniques are most accurate when applied to 

distorted trademark images (noise, rotation, and scale)? 

3. How can perceptual grouping methods serve to group interest points and 

represent these within a shape descriptor (i.e. a meta-feature vector)? 

4. Which techniques can be used to exploit shape descriptors (meta-feature 

vectors) when retrieving abstract trademark images? 

9.2 Summary of Contributions 

The main contributions of this thesis address the above questions and are 

summarized as follows: 

• Analysis and application of point matching to trademark image matching 
and retrieval 

• Grouping local features into meta-features for trademark image retrieval 
• Relevance feedback based on classifying meta-features 
• An implementation and evaluation of a computer-based abstract trademark 

image retrieval system 

9.2.1 Analysis and application of point matching to trademark image 

matching and retrieval 

We investigated the application of interest points to abstract trademark image 

retrieval. Interest points have been successfully used to recognise objects (Lowe, 

1999; Wolf, 2000; Sebe & Lew, 2003) but there had been no prior reported 

research on how to retrieve similar abstract trademark images by interest points, 

since most retrieval systems concentrated on global features rather than local 
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features when this work was initiated. Local features can reflect both local and 

global image characteristics, but approaches based on global features had been 

more widely reported since approaches based on local features tended to be more 

computationally expensive and complex. The issues to be addressed were:  

• Where to apply local feature extraction? 

• What local features should be utilized? 

• How to use extracted local image features? 

From the outset, we proposed to use interest points because they support 

Biederman’s concept that humans recognize images by distinctive elements. In 

Chapter 4, we demonstrated that many detectors can extract the same areas in 

transformed trademark images, and that it is possible to retrieve similar trademark 

images based on interest points. From our study of interest point detectors, section 

9.2.5 below, it became apparent that the Harris and Chabat detectors could 

potentially perform sufficiently well to serve as the basis for local feature 

extraction in trademark image retrieval. We also realised that interest points alone 

are likely to be an insufficient representation on their own and that further 

discrimination power would be required in terms of uniquely characterising the 

local appearance of the interest point. Accordingly, we identified the SIFT local 

feature extraction algorithm, also based on the Harris detector, as a good 

candidate for characterising the appearance of local features in a scale and 

rotation independent manner. We then conducted a number of experiments 

described in Chapter 5 to establish the suitability of SIFT for trademark image 

retrieval.  

By integrating the SIFT feature detector with the General Hough 

Transform, David Lowe (Lowe, 2004) was able to perform basic scale and 

rotation invariant grouping of SIFT keypoint descriptors (local features). 

Matching keypoint descriptors which have been extracted from compared query 

and database image can be clustered in Hough space and a peak in this space 

reveals a common scale, rotation, and translation between similar configurations 

of keypoints. Such similar configurations are said to be “non accidental” and the 

utility, i.e. matching performance, of this approach when comparing trademark 
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images was investigated and verified in Chapter 5. We believe that the above 

work represents the first systematic study into the use of the SIFT algorithm for 

trademark retrieval. The above work addresses the first two objectives posed in 

this thesis, namely, how interest points can be applied to trademark image 

retrieval and which type of interest points should be used in this context. 

While retrieval based on SIFT produced promising results, we believed 

that it was possible to obtain improved results by: firstly, attempting to develop an 

algorithm that quantifies aspects of human visual perception of shape; secondly, 

by then guiding the selection of retrieved images, represented quantitatively in 

terms of measures based on human perception, using relevance feedback 

classification. 

9.2.2 Grouping local features into meta-features for trademark image 

retrieval 

Higher-order visual perception plays an important role in human judgement of 

image similarity (Goldmeier, 1972; Eakins, 1997). In addition, shape is important 

for identifying abstract trademark images which contain multiple graphical 

elements. In chapter 6, we proposed a new technique for measuring certain visual 

properties of the appearance of such multiple graphical elements by defining 

meta-features based on interpreting the spatial configuration of matching interest 

points. We initially proposed 27 meta-features to support perceptual grouping 

using non-accidental properties derived from interest points to serve as the 

foundation for our computational basis for visual shape perception.  

In order to verify that the above meta-features were capable of measuring 

appropriate visual appearance properties, we conducted an experiment whereby 

sets of test images were generated such that each set represented a different 

appearance property and each image of each set represented the chosen 

appearance property to a different degree. By correlating the responses from each 

of our meta-features to the degree of each appearance property presented in each 

test image (details in chapter 6 and appendix B) it was possible to verify that the 

meta-features did indeed respond to specific visual appearance properties and 

determine which meta-feature responded to which particular appearance property, 
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or properties.  

In order to eliminate redundant meta-features, Principle Component 

Analysis (PCA) was applied to the above correlation results to allow a factor 

analysis of the meta-features to be conducted. As a result, only 17 meta-features 

were found to be worth retaining for the purpose of imitating perceptual grouping 

in the following three Gestalt properties: proximity, similarity, and simplicity. 

The meta-features implemented compute: global rotation, global pattern 

similarity, global pattern overlap, spread of the match points, structural 

configuration of the match points, scale different of matched pattern, self 

similarity, symmetry, and sub-component similarity.  

From the basic experiments conducted, it appeared that we were indeed 

able to capture and quantify Gestalt proximity, similarity, and aspects of 

simplicity within stylised image examples. It was also clear from the correlation 

experiments that many of the meta-features we developed were substantially 

correlated, which could in turn result in a significant degree of “cross-talk” 

between different modes of visual appearance. In principle, we could have 

defined a new set of meta-features based on using the correlation response 

eigenvectors to decouple their response to the different modes of visual 

appearance input. Unfortunately, this approach would render the new feature set 

dependent upon the training data used to generate the eigenvectors, there being no 

guarantee that such decoupled meta-features would perform adequately when 

applied to a substantially different dataset. Therefore, we decided simply to retain 

only the best performing meta-features, i.e. those correlating most highly with a 

specific mode of visual appearance with the expectation that these meta-features 

would be more likely to retain a reasonable degree of independence from the 

image subject matter itself. Since the entire gamut of 17 meta-features would be 

available for making similarity comparison judgements, it was hypothesised that 

it would still be possible to disambiguate different types of visual appearance 

property. 

A compounding factor in the use of the developed meta-features is that 

several visual appearance properties are likely to co-exist within any one 

trademark image, and as such would signal simultaneously present appearance 
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properties that would be difficult to disambiguate from cross-talk artifacts. Two 

further limitations of the proposed scheme are due to the limited representation 

power afforded by the chosen meta-features themselves and due to the global 

nature of their application to represent the sets of keypoints extracted from and 

matched between pairs of compared trademark images. Alternative meta-feature 

representations might couple to improved underlying feature representations, e.g., 

contour, or line fragment, extraction mechanisms might be processed produce 

classical Gestalt continuation groupings. As indicated in the future work section, 

hierarchical clustering techniques may be able to detect sub-groupings when 

clustering local features. 

Despite the above limitations of the developed meta-features, they did 

appear to show promise as a means of introducing a simplified model of human 

visual perception to tackling the trademark similarity problem. Therefore, in order 

to mitigate the limitations of the simple experimental conditions applied to 

validate the operation of the meta-features we had developed, a subsequent 

validation test using a database of real trademark images was then undertaken, as 

detailed in Chapter 8 and discussed here in section 9.2.4. Similar work on meta-

features based on Gestalt grouping of local features had not been reported in the 

current computer vision literature at the time of undertaking this work. The above 

work addresses the third objective set out in this thesis, namely, how to group 

local features such that similarities between trademark images, based on visual 

appearance properties, can be computed and represented numerically.  

9.2.3 Relevance feedback based on classifying meta-features 

Human judgment ultimately determines which trademark images are deemed to 

be similar. In order to incorporate this judgment within the developed trademark 

retrieval system, we decided to adopted relevance feedback to allow the visual 

appearance properties of relevant and non-relevant images to be determined by 

example. Given the limited training data available when constructing a relevance 

classifier, the intrinsically non-parametric machine learning algorithm ID3 was 

selected to construct decision trees by means of rule induction. 

The learned relevance classifier concept was explored initially by 
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designing an experiment to determine if visual similarity could be defined by an 

arbitrary perception threshold according to the degree of presence of a visual 

appearance property using the image test set described in section 9.2.2. By setting 

an arbitrary similarity threshold on a single visual appearance property, it was 

possible to demonstrate that ID3 could construct decision trees that would 

successfully identify visual appearance similarity thresholds based on selecting 

and comparing the values generated by appropriate types of meta-feature. In other 

words, we were able to show that if a particular visual appearance property, such 

as symmetry was deemed to be similar at a certain (arbitrary) perception 

threshold, by supplying meta-features extracted from feedback images depicting 

this desired similarity threshold (i.e. relevant and non-relevant examples, 

respectively above and below the desired appearance property threshold), then 

ID3 could induce a decision tree that would correctly classify input images 

depicting varying degrees of this appearance property correctly. Furthermore, the 

meta-features selected by ID3, by means of which it constructed decision trees to 

classify appearance properties, were usually in accordance with those anticipated 

by their design function and also in accordance with those verified using the 

correlation procedure described in 9.2.2. 

A limitation of the above experiment is of course that the test set was 

deliberately simplified in order to be able to determine whether it is indeed 

possible to specify visual similarity by means of relevance feedback in the context 

of visual appearance properties. Therefore, motivated by the above promising 

results a further validation experiment was conducted, as described in Chapter 8 

and further comments in section 9.2.4, to determine if relevance feedback could 

indeed improve trademark image retrieval performance. 

We believe that our approach to capturing high-level visual concepts 

encoded by means of meta-features and specified by example through relevance 

feedback and decision tree classification to support flexible trademark image 

retrieval to be wholly novel. This work addresses the fourth objective specified in 

this thesis, namely, “Which techniques can be used to exploit shape descriptors 

(meta-feature vectors) when retrieving abstract trademark images?” 

 



Chapter 9                                                                                                                 165 

9.2.4 An implementation and evaluation of a computer-based abstract 

trademark image retrieval system 

The main contribution of this thesis is the framework to build an effective 

computer-based abstract trademark image retrieval system and thereby address 

the principal question posed in this thesis: “how can we help people identify a 

putative trademark as being sufficiently original?” 

In our prototype trademark retrieval system, relevance feedback has been 

implemented such that a human operator can select relevant images when 

presented with a set of nine trademark images retrieved in response to submitting 

a query trademark image. Image similarity is computed during this initial query 

image by computing the meta-feature vector from the query image and comparing 

these with the meta-feature vector extracted from each database image. The vector 

dot product is computed between compared meta-feature vectors and the dot 

product score is used to rank the returned images in sequence of similarity. Meta-

features extracted from this retrieved trademark image set, having been labelled as 

relevant or not relevant are then used to construct a decision tree classifier using 

the ID3 algorithm. In subsequent query cycles all current and prior relevant and 

non-relevant images are used to build a new classifier. 

We evaluated the system with real trademark images that contain several 

Gestalt properties in order to measure the system performance, as detailed in 

Chapter 8. Three operating modes were investigated: image retrieval by matching 

basic SIFT image features, image retrieval by matching meta-features and finally 

image retrieval by meta-feature matching and relevance feedback classification 

using meta-features. To maxim use the number and quality of SIFT matches 

obtained, SIFT keypoint descriptor comparisons (including those used to 

construct meta-features) were made using nearest neighbour matching as opposed 

to log-likelihood matching. This validation experiment used the same query set 

and the trademark image database as in Artisan’s Evaluation (Eakins, 1997) 

comprising 12 trademark query images were used to search a database of 200 

trademark images. Meta-feature matching produced a database search 

performance improvement over searching using the standard SIFT algorithm. 

However, the relevance feedback mode exhibited significantly better performance 
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than both the basic SIFT or meta-feature matching approaches. Better results 

using relevance feedback were observed to occur when relevant feedback images 

had been accrued by searching just over 10 percent of the database. This 

observation tends to suggest that the relevance feedback mode is able improve 

retrieval effectiveness after a training data has been supplied.  

It was possible to verify that relevance feedback was indeed able to 

influence the images returned in response to a specific image query by observing 

the decision trees generated and the image set returned for at least two query runs 

where different images were selected during each run as being relevant while the 

same query image was used in reach run. For each run, different images were 

returned as a consequence of different images being selected as being relevant. 

Similarly, different decision trees were selected according to the dominant visual 

appearance property being active in the images returned as similar to the query, 

Chapter 8. 

It must also be noted that the system produced highly viable normalised 

precision and recall figures; for the relevance feedback mode the highest 

normalised precision recorded being 0.89 and the highest normalized recall 

recorded being 0.83.  

We compared the retrieval performance our system with two other state-

of-the-art image trademark retrieval systems and as mentioned above the 

validation experiment used the same trademark image query and database set as 

in Artisan’s evaluation. Unfortunately, we did not have access to the same query 

set and image database as used in Jiang et al’s system evaluation. Using relevance 

feedback, our system achieves higher average normalised precision than both 

Eakins’ Artisan (Eakins et al., 1998) system and a more recent system developed 

by Jiang et al. (Jiang et al., 2006). Although we are using different numbers of 

image data with Artisan system and a different query set and image data set with 

Jiang et al’s system, our approach would appear to have the potential to improve 

retrieval effectiveness. 

We believe that the system we describe above comprising SIFT local 

image features in combination with visual appearance meta-features and support 
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for relevance feedback based image similarity represents an entirely new 

development in trademark image retrieval. 

Minor contributions include: 

9.2.5 A study of interest point detectors  

The evaluation of interest point detectors is reported in Chapter 4. We investigate 

and evaluate interest point detectors that calculate interest points directly from an 

image. We choose four effective detectors for our experiments comprising the 

Harris detector, Chabat detector, SUSAN detector, and Wavelet-based detector. 

We measured the repeatability of these interest point detectors when applied to 

trademark images to which known spatial have been applied. Our results revealed 

that the Harris detector has the best repeatability and Chabat detector also offers 

good results, with more than 50% repeatability. Accordingly, the Harris and 

Chabat detectors appeared to have the potential to be used in trademark image 

retrieval. The above results contribute to addressing the first objective in this 

thesis, namely the analysis of point matching in trademark images. 

9.3 Future work 

This section identifies potential directions for future work for research initiated by 

this thesis. 

• In the current system, SIFT keypoint descriptors and meta-features are 

generated offline, leading to a large number of feature vectors and the 

increase in the required runtime computation may well be sufficiently low 

to allow feature vectors to be extracted ”on the fly”. There is considerable 

potential for improving feature vector comparisons in the current 

implementation. For example, a comprehensive indexing mechanism by 

means of hashing functions could be implemented to reduce search time 

when comparing query feature vectors with those of the database. 

Likewise, Hierarchical K-means clustering as used in CBIR could be 

adopted here to feature accelerate comparisons (Fukui et al, 2004; 
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Murtagh, 1983). 

• We adopted local features, i.e. kypoints, to support three Gestalt properties 

which can be directly measured by appearance meta-features. Hence, 

better image features or perhaps specialized features based on the SIFT 

feature extraction framework might have the potential to increase the 

system’s perceptual grouping abilities. For examples, features derived 

from curve fitting could be used to measure continuity, and features based 

on local gradients computed at two locations simultaneously could be used 

to measure co-linearity. These extended features could be integrated 

within the system to generate structure vectors that support additional 

Gestalt properties. 

• It would be interesting to investigate use of image contours and their 

descriptors in the future because they could give more discrimination 

power to measure foreground shapes. For instance, the eigenvalues 

computed from contours (Tsai, D.-M. et al., 1999) and local curvature 

estimates computed around contours (Fishler and Wolf, 1994) which 

could be used to distinguish particular component boundary shapes. This 

method might also be used to address the segmentation problem by 

applying statistical learning models to contours (Cootes et al., 1995) and 

then characterising the contour shape in PCA space. 

• We used the Hough space accumulator to cluster components represented 

by keypoints. More sophisticated grouping mechanisms should perform 

recursive parsing of image components into sub-components in order to 

represent more subtle visual shape or pattern characteristics. For example, 

the multiple histograms of similar sub-components should be further 

examined (Ankerst et al., 1999; Wolf et al., 2000). Moreover, hierarchical 

K-means clustering potentially represents a better approach for 

representing visual sub-patterns, and is used in CBIR to search for target 

objects (Fukui et al, 2004; Murtagh, 1983). 

• Explicit encoding of image sub-components could serve the calculation of 

self-similarity or allow image sub-components to be matched. For 
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instance, a KD-tree could be used to facilitate multidimensional search for 

each component. This encoding could support meta-feature vectors in a 

high-dimensional space and provide a new structure for efficient similarity 

search. 

• Alternative classifiers and classification schemes should be investigated in 

order to better categorise groups of feature vectors. For example, the 

support vector machine (SVM) classifier is popular for efficient clustering 

and has the potential to optimise the discrimination of similar images. We 

could investigate the impact of perceptual grouping when using different 

methods of relevance classification.  

• The trademark image system we present in this thesis only supports 

explicit relevance feedback. However, there is a better approach to 

relevance feedback that potentially might increase retrieval effectiveness 

in our system. Hopfgartner and Jose (2007) demonstrate that the inclusion 

of both explicit and implicit relevance feedback can improve retrieval 

effectiveness in the textual domain. They apply six implicit feedback 

categories: highlighting, keyframe selection, sliding bar annotation, 

metadata viewing, video browsing, video play duration (Hopfgartner and 

Jose, 2007). It is possible to apply some categories of implicit feedback to 

improve our system, e.g. detecting selection and then de-selection of any 

given image as being relevant, and also the decision time taken by the user 

to make selections. The combination of both types of feedback might 

assist the system to better capture the user’s perception of image similarity 

to thereby allow the system to extract the most effective meta-features for 

each query. 

• Given that the cost of missing a similar trademark image is potentially 

very significant, additional explicit cues might be supplied by the user. For 

example, in addition to supplying a query image, an example (or several 

examples) of similar trademarks were also provided, the system should 

then be better able to construct a classifier that can represent trademark 

similarity (as opposed to dissimilarity). This approach has the potential to 

improve retrieval performance during the early search cycles when not 
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many (or indeed any) similar images might have yet been discovered if 

only the query example were available. Also, if the user had the option of 

annotating the query image to select particularly diagnostic components, 

the keypoints associated with such regions could be increased in weight to 

bias the similarity score when assessing image similarity. 
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Appendix A 

The proposed local features 

We proposed 27 meta-features to measure perceptual grouping in trademark 

images. The meta-features are described in the following sections.  

A.1 Summation of scale differences between sets of matched 

keypoints  

We propose to calculate overall scale differences in order to measure size 

similarity between matching sets of matching SIFT keypoint descriptors. We 

calculate summation of the scale difference between pairs of matched keypoints 

(F1) by the following.  

∑
=

=
n

i
ii SMSQF

1
1 )/(      (Equation A.1) 

where: 

n is the number of matched keypoints in the maximum accumulator (see    

       section  5.3.2 for details) 

SQ is the scale of the matched keypoint in the query image. 

SM is the scale of the matched keypoint in the database image. 

A.2 Summation of orientation differences between sets of matched 

keypoints 

We propose to calculate overall orientation differences in order to measure 

orientation similarity between sets of SIFT keypoint descriptors. We calculate 

summation of the orientation difference of pairs of matched keypoints (F2) by the 

following.  
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where: 

n is the number of matched keypoints in the maximum accumulator. 

OQ is the orientation of the matched keypoint in the query image. 

OM is the orientation of the matched keypoint in the database image. 

A.3 Moments from matched keypoints  

We propose to compute Moments from the locations of matched keypoints to 

quantify their spatial configuration. The moments are calculated by: 

q
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i
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ipq yxm ∑
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=
1

              (Equation A.3) 

where x and y are the location of each matched keypoint in the image. 

N is the number of the matched keypoints. 

p and q are the orders of the computed moments. 

In this research, we computed the moments up to third order in order to 

analyse orthogonal transformations (Mukundan & Ramakrishnan, 1998). 

Therefore, the extend features comprise 10 moments defined by: 

  F3 = m00      (Equation A.4) 

F4  =  m01      (Equation A.5) 

F5 =  m02      (Equation A.6) 

F6 =  m03      (Equation A.7) 

F7 =  m10      (Equation A.8) 

F8 =  m11      (Equation A.9) 

F9 =  m20      (Equation A.10) 

F10 =  m22      (Equation A.11) 

F11 =  m30      (Equation A.12) 

F12 =  m33      (Equation A.13) 
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A.4 Standard Deviation (SD) of the residual spatial mismatch 

(error) between query and database keypoint locations following 

alignment via an affine transformation 

We propose to use SD (standard deviation) to compute the distance-error between 

sets of matched keypoints. This feature measures the residual error between query 

and database keypoint locations registered by an affine transformation. The 

algorithm for calculating the SD of distance-error between sets of pairs of 

matched keypoints is shown in Figure A.1. 

SD of error-distance of sets of matched keypoints algorithm 

Step 1: Extract matched keypoints from the maximum GHT accumulator. 

Step 2: Calculate Affine parameters of matched keypoints. 

            The solution is suggested by Lowe (Lowe, 2004).  
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             where (u,v) is the keypoint from the database image.  

                      (x, y) is the keypoint from the query image. 

                      m1, m2, m3, and m4 are affine parameters. 

                      tx and ty are the translation parameters. 

             Then, we can use at least 3 points to calculate the affine parameters by 
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Figure A.1 The algorithm to calculate SD of residual spatial mismatch (error) between query 
and database images following alignment via an affine transformation  
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SD of error-distance between sets of matched keypoints 

Step 3: calculate affine transformation of query keypoints by Equation A.14. 

Step 4: find the distance error (Di) between each pair of matched database  

             keypoint and affine registered query keypoint using Equation A.16. 

                     Di =  Li  • Lj                                                           (Equation A.16) 

                     where Li and Lj are SIFT descriptors.                     

Step 5: calculate mean (AvgDi) and stand deviation (StdDi)  

            of all error distances (Di) in Step 4. 
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             where n is the number of matched keypoints. 

Step 6: find the inliner point error distance (Dj) according to  

             (Jung and Lacroix, 2001). 

             if  Di >=  (AvgDi  + ( 2 * StdDi )  

                     Dj = Di 

            end 

Figure A.1 The algorithm to calculate SD of residual spatial mismatch (error) between query 
and database keypoint locations following alignment via an affine transformation (continue) 
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SD of error-distance between a pair of matched keypoints 

Step 7: calculate the feature (F13) by the standard deviation of all distances  

            in Step 6. 
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             where 

              AvgDj  is the mean of the inlier distances that are calculated by  

                        Equation A.17. 

              m is the number of inlier distances. 

Figure A.1 The algorithm to calculate the SD of residual spatial mismatch (error) between 
query and database keypoints following alignment via an affine transformation (continue) 

A.5 Similarity score of matched keypoints  

We investigate the similarity score from SIFT matching. The similarity score is 

obtained using the SIFT algorithm and is explained in section 5.3.2 of Chapter 5. 
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 where n is the number of matched keypoints. 

 Dlowest is the similarity score that calculated from Equation  5.11 in section 

5.3.2 of Chapter 5. 

A.6 The total number of matched keypoints  

The total number of matched keypoints is defined to be the number of keypoints 

found in the GHT accumulator bin with the maximum value (see section 5.3.2 for 

details). 

 F15 = n       (Equation A.21) 

 where n is the number of matched keypoints. 
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A.7 Mean of scale differences between sets of matched keypoints 

We propose to calculate mean of the scale difference (F16) between matched 

keypoints in order to measure size similarity between sets of matching SIFT 

keypoint descriptors. The feature is calculated by the following.  
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     (Equation A.22) 

where: 

n is the number of matched keypoints in the maximum accumulator. 

SQ is the scale of the matched keypoint in the query image. 

SM is the scale of the matched keypoint in the database image. 

A.8 Median of scale differences between sets of matched keypoints  

We propose to calculate the median scale differences (F17) in order to measure 

size similarity between sets of matching SIFT keypoint descriptors. If n is an even 

number then the feature is calculated by: 

2

)/()/( 2/)1(2/)1()2/()2/(
17

+++
=

nnnn SMSQSMSQ
F  (Equation A.23) 

If n is an odd number then the feature is calculated by: 

)/( 2/)1(2/)1(17 ++= nn SMSQF     (Equation A.24) 

where: 

n is the number of matched keypoints in the maximum GHT accumulator 

               entry. 

SQ is the scale of the matched keypoint in the query image. 

SM is the scale of the matched keypoint in the database image. 
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A.9 RMS of scale differences between sets of matched keypoints 

We propose to calculate the RMS (Root-Mean-Square) scale differences (F18) in 

order to measure size similarity between sets of matching SIFT keypoint 

descriptors. This feature is computed by: 
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where: 

n is the number of matched keypoints in the maximum GHT accumulator. 

SQ is the scale of the matched keypoint in the query image. 

SM is the scale of the matched keypoint in the database image. 

A.10 Mean of orientation differences between sets of matched 

keypoints  

We propose to calculate the mean orientation differences (F19) in order to 

measure orientation similarity between sets of matching SIFT keypoint 

descriptors. This feature is calculated by the following.  
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where: 

n is the number of matched keypoints in the maximum GHT accumulator  

               entry. 

OQ is the orientation of the matched keypoint in the query image. 

OM is the orientation of the matched keypoint in the database image. 
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A.11 Median of orientation difference between sets of matched 

keypoints 

We propose to calculate the median orientation difference (F20) in order to 

measure orientation similarity between sets of matching SIFT keypoint 

descriptors. If n is an even number then this feature is calculated by: 

 
2

)()( 2/)1(2/)1()2/()2/(
20

++ −+−
=

nnnn OMOQabsOMOQabs
F  (Equation A.27) 

If n is an odd number then this feature is calculated by: 

   )( 2/)1(2/)1(20 ++ −= nn OMOQabsF    (Equation A.28) 

where: 

n is the number of matched keypoints in the maximum GHT accumulator  

               entry. 

OQ is the orientation of the matched keypoint in the query image. 

OM is the orientation of the matched keypoint in the database image. 

A.12 RMS of orientation difference between sets of matched 

keypoints 

We propose to calculate the RMS (Root-Mean-Square) orientation difference 

(F21) in order to measure orientation similarity between sets of matched SIFT 

keypoint descriptors. The feature is computed by: 

n

OMOQabs

F

n

i
ii

2

1
21

))((∑
=

−

=    (Equation A.29) 

where: 

n is the number of matched keypoints in the maximum GHT accumulator  

               entry. 

OQ is the orientation of the matched keypoint in the query image. 

OM is the orientation of the matched keypoint in the database image. 
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A.13 Ratio of matched keypoints /total keypoints in query image  

We propose to measure overlap proximity by calculating the ratio of matched 

keypoints to total keypoints in the query image. This feature (F22) is calculated as 

folllows: 

nq

n
F =22       (Equation A.30) 

where: 

n is the number of matched keypoints in the maximum GHT accumulator  

               entry. 

nq is the total number of keypoints in the query image 

A.14 Ratio of matched keypoints / total keypoints in database 

image 

We propose to use the ratio of matched keypoints to total keypoints within the 

database image to measure overlap proximity. This feature (F23) is calculated as 

follows: 

nm

n
F =23       (Equation A.31) 

where: 

n is the number of matched keypoints in the maximum GHT accumulator  

               entry. 

nm is the total number of keypoints of database image 

A.15 Self similarity 

The self similarity of keypoints extracted from an image is computed by 

averaging the relative frequency of similar keypoints in a self similarity 

histogram. We select 10 as the maximum number of significant self-similar 

keypoints, in accordance with the number of items that can be held in short-term 

visual memory by humans (Miller, 1956). Each of the 10 most highly ranked 
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keypoints will match to similar keypoints in the remainder of the set of keypoints 

extracted from a particular image and we count this matching frequency for the 10 

most self-similar keypoints in a self similarity histogram. Our self similarity 

measure is computed by taking the mean of all points in the self similarity 

histogram and is summarised in Figure A.2.  

Self similarity algorithm 

Step 1: Compute the nearest neighbour (Dlowest) of each interest point and add it to  

           the array of distances of each keypoint (AdL(Li)).  

           The Dlowest is described in section 5.3.2 of Chapter 5. 

Step 2: Sort AdL(Li) by ascending order and select top l0 keypoints. 

Step 3: For each selected keypoint. 

            Step 3.1: Calculate the distance of selected keypoint and the remaining  

                            keypoints (Di) from Equation A.6. 

             Step 3.2: If the distance less than 0.2 (the self similarity threshold) then 

                                 Increment the self similarity count for this keypoint by one. 

                            End 

            Step 3.3: save the self similarity count for this keypoint to  

                            a similarity histogram(Sim) and continue to Step 3.1 until all  

                            selected keypoints have been processed 

Step 4: calculate average of all similarity histograms 

                 
nSim

Sim
F

nSim

i
i∑

== 1
24                                                          (Equation A.32) 

                  where nSim = 10 

Figure A.2 The self similarity algorithm 
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A.16 Vertical Symmetry 

We proposed an algorithm for computing the vertical symmetry of matching 

keypoints. Vertical symmetry is defined here to be the median distance from the 

centre distance of all matched keypoints to the x axis. The algorithm to calculate 

the vertical symmetry of matching keypoints is presented in Figure A.3. 

Vertical symmetry of matching keypoints 

Step 1: Calculate axis of in-plane rotation (Mukundan & Ramakrishnan, 1998).  

              The axis rotation (Shift_axis) is calculated by: 

              Shift_axis = 0.5 * tan-1( (2*m11) / ( m20 - m02) )             (Equation A.33) 

              where m11, m20, and m02 are moments from Equation A.3. 

Step 2: Rotate matching keypoints by - Shift_axis. 

             ry= x* sin(- Shift_axis) + y*cos(- Shift_axis)                    (Equation A.34) 

             rx= x*cos(- Shift_axis)  -y*sin(- Shift_axis)                      (Equation A.35) 

             where (x, y) is the matched keypoint. 

 Step 3: Calculate the centre of rotated keypoints by mean of all rotated  

              keypoints. 

              
n

rx
cx

n

i
∑
== 1                                                                          (Equation A.36) 

              
n

ry
cy

n

i
∑
== 1                                                                         (Equation A.37) 

              where n is the number of matching keypoints 

Figure A.3 The algorithm used to calculate vertical symmetry of matching keypoints 
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Vertical symmetry of matching keypoints 

Step 4: Calculate the error distance of each pair of keypoints in each axis.  

            Step 4.1: separate rotated keypoints to two sets 

                          If rx > cx 

                                Add this keypoint to set1 (pset1) 

                          Else 

                                Add this keypoint to set2 (pset2) 

                          End 

               Step 4.2: calculate the error distance (Derr) of each keypoints in two sets 

                     ))2),(1(min()( psetipsetDiD Lerr ∀=                          (Equation A.38) 

                    where 

                    2
21

2
21222111 )()()),(),,(( yyxxyxpyxpDL −+−=  

                                                                                                        (Equation A.39) 

Step 5: Calculate the median of all error distances in Step 4. The vertical  

            symmetry (F25) is the median of the error distances to the x axis.        

            )(25 errDMedF =                                                          (Equation A.40) 

             where Med() is the median function and is calculated by Equation A.27  

                                  and A.28.           

Figure A.3 The algorithm to calculate vertical symmetry of matching keypoints (continued) 

A.17 Horizontal Symmetry 

We proposed an algorithm for computing the horizontal symmetry of matching 

keypoints. Horizontal symmetry is defined here to be the median distance from 
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the centre distance of all matched keypoints to the y axis. The algorithm to 

calculate the horizontall symmetry of matching keypoints is presented in Figure 

Figure A.4. 

Horizontal symmetry of matching keypoints 

Step 1: Calculate axis of in-plane rotation by Equation A.33          

Step 2: Rotate matching keypoints by Equations A.34 and A.35 

Step 3: Calculate the centre of rotated keypoints by mean of all rotated keypoints  

             by Equations A.36 and A.37. 

Step 4: Calculate the error distance of each pair of keypoints in each axis.  

            Step 4.1: separate rotated keypoints to two sets 

                          If ry > cy 

                                Add this keypoint to set1 (pset1) 

                          Else 

                                Add this keypoint to set2 (pset2) 

                          End 

               Step 4.2: calculate the error distance (Derr) of each keypoints in two sets  

                              by Equation A.38. 

Step 5: Calculate the median of all error distances in Step 4. The horizontal  

            symmetry (F26) is the median of the error distances to the y axis.        

            )(26 errDMedF =                                                         (Equation A.41) 

             where Med() is the median function and is calculated by Equation A.27  

                                  and A.28.        

Figure A.4 The algorithm to calculate horizontal symmetry of matching points 
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A.18 The average of multi-peak GHT scores 

Trademark images can typically containing multiple components that may 

themselves be self-similar and also transformed independently in terms of their 

relative positions, orientations and scales when attempting to match the local 

features of such types of image, multiple GHT peaks are generated when their 

matching keypoints are projected into Hough space. This phenomenon is 

produced by the matching keypoints from each corresponding component 

generating its own peak (matched keypoint cluster) in Hough space. Many 

researchers suggest that only the two or three dominant components which 

characterise an object are required to recognize that object (Biederman, 1987; 

Kirkpatrick, 2001). Hence, we only consider three maxima of the GHT 

accumulator, corresponding to three components which may now have been 

independently (2D affine) trasnformed, to account for the dominant (in terms of 

numbers of matching keypoints) three matching sub-groups. By computing the 

average of the multi-peak GHT scores we are able to generate a summary score 

based on the best three matching image components. We calculated by the 

average score of the first three maxima of GHT accumulator as follows: 

npeak

iScore
F

npeak

i

)(
1

27

∑
==      (Equation A.42) 

where npeak = 3. 

ni

jD

iScore

ni

j
lowest∑

=
=

1

)(

)(     (Equation A.43) 

 where ni is the number of matched keypoints in the ith row of the  

                          GHT accumulator. 

           Dlowest  is calculated by Equation 5.11 (see section 5.3.2 for details). 
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Appendix B 

Validation of proposed meta-features 

We explain the experimental framework for validating perceptual grouping in the 

system according to appearance properties and Gestalt properties. 

We now investigate the ability of the meta-features implemented to 

measure visual appearance properties in the system. This section presents 

hypotheses, objectives, and research questions. 

We have to consider several questions, including: 

1. Of the 17 meta-features designed to measure visual appearance 

properties that have been implemented, how many visual appearance 

properties can the system represent? 

2. What is the most appropriate meta-feature to capture each appearance 

property? 

To answer these questions, we utilize the implementation described in the 

following sections. 

B.1 Implementation methods 

The experiments were separated into nine experiments designed to validate each 

of the nine appearance properties expressed in isolation by each test image set. 

There are 9 properties to be investigated: global rotation, global pattern similarity, 

global pattern overlap, spread of the matched points, structural configuration of 

the matched points, scale difference between matched patterns, self similarity, 

symmetry, and sub-component similarity. We select meta-features to represent 

each appearance property tested in each experiment as listed in Table B.1. 
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Table B.1 Appearance properties investigated and proposed meta-features  

Experiment 

number 

Appearance property Proposed meta-

features 

1 Global rotation  1, 10 and 11 
2 Global pattern similarity   2, 6 and 7 
3 Global pattern overlap  12 and 13 
4 Spread of the matched points  3 and 4 
5 Structural configuration of the matched points  5 
6 Scale difference between matched patterns  8 and 9 
7 Self similarity  14 
8 Symmetry 15 and 16 
9 Sub-component similarity  17 

 

In the experiment, we tested the utility of the appearance properties 

implemented in the system.The experiment verified which appearance properties 

in the system are capable of being represented, and which meta-feature is most 

appropriate for measuring each appearance property.  

The test image sets were each defined to vary between degrees of a 

specific visual property such as rotation or similarity. In each experiment, we 

found the dominant meta-feature which best correlates with the varying degrees 

of the appearance property expressed by each of the test images within a set, and 

the associated meta-feature values extracted from each of the test images. We 

then compared the result of proposed (i.e. as hypothesised) best meta-features and 

those meta-features observed to correlate best. The results reveal the 

correspondence between the percentage of proposed meta-features proposed and 

the best correlating meta-features for each appearance property. We have taken 

the number of appearance properties that the system is able to express to 

correspond to properties supported by meta-features that both yield the best 

correlation performance that also corresponds to the appearance property for 

which it was designed. As the result, we can summarize the utility of the 

appearance properties in the system. We describe the experimental procedure in 

the following section. 

B.2 Experimental procedure 

In this section, we explain the experimental procedure for setting up the 

experiments for evaluating the system properties (appearance properties and 
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Gestalt properties). We show the test images in section B.2.1, describe 

experimental processes in section B.2.2, and explain the measurement method in 

section B.2.3. 

B.2.1 Test images 

The following experiment used nine different sets of test images, each set 

designed to express a different appearance property under investigation. Each 

individual test set comprises five images, where the degree of each appearance 

property within each sequence of test images is progressively reduced. The test 

sets are shown in Figures B.10-B.20, each set depicting a different appearance 

property for each experiment. In each test image set the first image (a)  is used as 

a reference image from which a set of meta-features are extracted by comparison 

with each of the remaining images in the test set. Under ideal conditions, the first 

image (a) would correlate perfectly with itself and then correlate progressively 

(linearly) less strongly with each subsequent image, (b)-(e), in the remainder of 

the test set (Ahmad and Ibrahim, 2006). 

Experiment 1: We evaluate the ability of the system to estimate the relative 

global rotation differences between reference and remaining test images by 

calculating the correlation between the meta-feature values and the degrees of 

global rotation of the test images. The set of global rotations comprise: 0 

(reference), 10, 20, 30, and 40 degrees respectively, Figure B.1. 

 
 
 
 
 
 
 

Figure B.1 Test images in experiment 1 (Global rotation).  
 

Experiment 2: We aim to determine the ability of the system to evaluate global 

pattern similarity by correlating the meta-feature values with a progressively 

decreasing degree of global pattern similarity.   

Global pattern similarity is defined in terms of the number of similar sub-

components shared by compared images. Therefore, the test set in experiment 2 is 

     (a)                     (b)                  (c)                  (d)                 (e) 
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arranged according to the number of modified components in each of the test 

images, and comprises 0, 1, 2, 3, and 4 component modifications sequentially, 

Figure B.2.  

  
 
 
 
 
 
 

Figure B.2 Test images in experiment 2 (Global pattern similarity).  
 

Experiment 3: We aim to evaluate the ability of the system to evaluate the global 

pattern overlap between compared images by finding the correlation between the 

meta-feature values and the degrees of pattern overlap of the test images. 

Accordingly, the test set is arranged in order of the number of common 

components, in this case 0, 1, 2, 3, and 4 components consecutively, Figure B.3. 

 
 
 
 
 
 
 

Figure B.3 Test images in experiment 3 (Global pattern overlap).  
 

Experiment 4: The relative proximities, or spread, of components in compared 

images is evaluated by correlating the meta-feature values to the degree of spread 

expressed in the test image set. Accordingly, the test image set in experiment 4 is 

arranged according to the distance between a pair of components in the test 

images. The distances of the two components depicted are: 25, 50, 75, 100, and 

125 percent of image width. The test set in experiment 4 is shown in Figure B.4. 

 

 

 

Figure B.4 Test images in experiment 4 (Spread of the matched points).  
 

     (a)                     (b)                  (c)                  (d)                 (e) 

     (a)                     (b)                  (c)                  (d)                 (e) 

     (a)                     (b)                  (c)                  (d)                 (e) 
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Experiment 5: The configuration similarity of sub-components within compared 

images is evaluated by correlating the meta-feature values to the degree of 

relative deformation of sub-component configurations expressed in the test image 

set. This test image set is arranged according to the distance apart of two 

components depicted in this set and these distances comprise 86.5, 66.5, 46.5, 

26.5, and 6.5% (image X, Y dimensions) in sequence, Figure B.5. 

 

 

 

Figure B.5 Test images in experiment 5 (Structural configuration of matched points).  

Experiment 6: The relative difference in scale of the sub-components within 

compared images is evaluated by correlating the meta-features with the degree of 

scale difference expressed in the test image set. The test image set is arranged 

according to the scale of the global patterns expressed in each image of this test 

set and these scales comprise factors of full size, 0.8, 0.6, 0.4, and 0.2, Figure B.6.  

 
 
 
 
 
 

Figure B.6 Test images in experiment 6 (Scale difference of matched pattern).  
 

Experiment 7: The relative self similarity between compared images is evaluated 

by correlating the meta-features with the degree of self similarity expressed in the 

test image set. This test image set is arranged according to the number of 

duplicated components depicted in each image of this test set. The numbers of 

duplicated components comprise 6, 5, 4, 3, and 2, Figure B.7. 

 

 

 

Figure B.7 Test images in experiment 7 (Self similarity). 

     (a)                     (b)                  (c)                  (d)                 (e) 

     (a)                     (b)                  (c)                  (d)                 (e) 

     (a)                     (b)                  (c)                  (d)                 (e) 
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Experiment 8: The relative symmetry between compared images is evaluated by 

correlating the meta-features with the degree of symmetry expressed in the test 

image set. This test image set is arranged according to the degree of asymmetry 

depicted in each image of this test set. The degrees of asymmetry comprise 0, 20, 

40, 60, and 80 percent, as in Figure B.8 depicting vertical symmetry variations 

and Figure B.9 depicting horizontal symmetry variations. 

 

 

 

Figure B.8 Test images in experiment 8 (Vertical symmetry). 
 

 
 
 
 
 
 

Figure B.9 Test images in experiment 8 (Horizontal symmetry).  
 

Experiment 9: The relative sub-component similarity between compared images 

is evaluated by correlating the meta-features with the degree of sub-component 

similarity expressed in the test image set. This test image set is arranged 

according to the percentage of unchanged components depicted in each image of 

this test set. Since each image comprises four components, the percentages of 

unchanged components comprise 100, 75, 50, 25, and 0, Figure B.10. 

 

 

 

 

 

Figure B.10 Test images in experiment 9 (Sub-component similarity).  
 

In the next section, the experimental process for all the experiments is 

described. 

     (a)                     (b)                  (c)                  (d)                 (e) 

     (a)                     (b)                  (c)                  (d)                 (e) 

     (a)                     (b)                  (c)                  (d)                 (e) 
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B.2.2 Experimental process 

In each experiment, we use a different image set to test each individual 

appearance property. The appropriate test, depicting a specific appearance 

property under investigation, is input to the system which extracts SIFT features 

from each image in this set. The system then matches the SIFT descriptors 

extracted from the first image (a) of this test , set to the SIFT descriptors extracted 

from the remaining images (b)-(e) of this set using the GHT, as overviewed in 

Figure B.11 and detailed in section 5.3.2. The system then calculates the 17 meta-

features described in section 6.1, and correlates each meta-feature value for each 

match to the appearance property degree in the corresponding test image.  

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Figure B.11 The experimental process 

For each experiment, dominant meta-features are selected which exhibit a 

high degree of correlation between the degree of appearance property expressed 

in the test image set and the meta-feature vector. For example, in experiment 1 

meta-feature 11 was found to correlate best with the degree of rotation induced in 

image test sequence 1, and was therefore chosen to represent the global relative 

rotation appearance property. We compare the dominant meta-features with the 

proposed (hypothesised) meta-features (details in Table B.1) in order to select the 

most appropriate proposed meta-feature for each appearance property. The 

number of appearance properties in the system is counted by the number of the 

The first image 
(a) 

 
Test 

Images 
(b)-(e) 

Meta-feature vectors and their 
correlation with each visual 

appearance property 

 
                 System 
1. SIFT key point detection,  
2. Calculate SIFT matching score  
3. Calculate Meta-features 



Appendix B  192 

same proposed and the appropriate proposed meta-features.  

B.3 Experimental results 

The correlation between meta-features and the degree of similarity of the test 

images is shown in Table B.2. 

Table B.2 The top five highest correlation values between meta-feature values and the 
degree of appearance property expressed in the test images in experiments 1 to 9. 

Gestalt 
property 

Meta-
feature 
order 1 2 3 4 5 
Meta-

feature no. 
11 10 15 6 8 

1. Rotation value 0.9981 0.9971 0.9277 -0.9051 -0.8770 
Meta-

feature no. 
7 12 6 13 2 

2. Similarity value -0.9782 -0.9782 -0.9759 -0.9654 -0.9475 
Meta-

feature no. 
7 12 17 2 13 

3.Overlap value -0.9880 -0.9014 -0.8944 -0.8341 -0.7698 
Meta-

feature no. 
9 6 8 3 14 

4. Spread value -0.9880 -0.9855 -0.916 -0.8880 0.8660 
Meta-

feature no. 
5 7 2 12 13 

5. Structural value -0.9799 0.9449 0.9449 0.9449 0.9196 
Meta-

feature no. 
8 9 1 15 16 

6. Scale value -0.942 -0.910 -0.8395 0.8310 0.8160 
Meta-

feature no. 
14 2 7 12 3 

7. Self value 0.9856 0.8933 0.8932 0.8932 0.8825 
Meta-

feature no. 
16 11 10 15 14 

8.1. V. Sym. value 0.9801 0.9731 0.9520 0.9201 0.9192 
Meta-

feature no. 
11 1 15 10 14 

8.2. H. Sym value 0.9981 0.9936 0.9679   0.9663 0.9312 
Meta-

feature no. 
2 3 7 12 17 

9. Sub 
component value 0.9622 0.9497 0.9449 0.9449 0.8674 

 
The details of the proposed meta-features versus their best correlating 

meta-features are shown in Table B.3. 
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Table B.3 The proposed and best correlating meta-features for each experiment. 

Experiment number Proposed meta-feature(s) Best correlating meta-feature 

1 1, 10, 11 11 
2 2, 6, 7 7 
3 12, 13 12 
4 3, 4 3 
5 5 5 
6 8, 9 8 
7 14 14 
8.1 16 16 
8.2 15 15 
9 17 17 

A proposed meta-feature and best correlating meta-feature are in 

congruence in experiments: 1, 2, 5, 6, 7, and 8.1, corresponding to meta-features: 

11, 7, 5, 8, 14 and 16 respectively.   

For experiments 3, 4, 8.2, and 9, the best meta-features based on the 

proposed meta-features are 12, 3, 15, and 17 respectively.  

The best meta-features have similar correlation values to the highest 

correlation meta-features, and take each appearance property into account as 

described in section 6.5 and further analysis in section B.4.  

B.4 Experimental Analysis 

The best meta-features for experiments 1, 2, 3, 4, 5, 6, 7, 8.1, 8.2, and 9 were 

found from the proposed meta-features that are meta-features 11, 7, 12, 3, 5, 8, 

14, 16, 15 and 17 respectively. In experiments 1, 5, 6, 7 and 8.1, each best 

correlating meta-feature had the highest correlation value. In experiment 2, meta-

features 7 and 12 have the same correlation value. However, meta-feature 7 best 

reflects the global similarity because it takes similarity of the total number of 

matched keypoints into account. Therefore, meta-feature 7 is the better meta-

feature for experiment 2. In experiment 3, meta-features 7 and 12 have similar 

correlation values. However, meta-feature 12 best reflects the global pattern 

overlap because it takes proximity property of the percentage of matched points/ 

total keypoints in query into account. Therefore, meta-feature 12 is the better 

meta-feature for experiment 3. Interactions between proximity and similarity 

properties are reported (Han, 2004). In experiment 4, meta-features 3, 6, 8, and 9 
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have high correlation values. However, meta-feature 3 best reflects the spread of 

the matched points because it takes proximity property of moment from matched 

keypoints in query into account while meta-features 6, 8, and 9 are based on 

similarity measurement. Therefore, meta-feature 3 is the better meta-feature for 

experiment 4. In experiment 8.2, meta-features 1, 11, and 15 have similar 

correlation values. However, meta-feature 15 best reflects the symmetry because 

it takes horizontal symmetry into account while meta-features 1 and 11 are based 

on rotation measurement. Therefore, meta-feature 15 is the better meta-feature for 

experiment 8.2. In experiment 9, meta-features 2, 3, 7, 12, and 17 have high 

correlation values. However, meta-feature 17 best reflects the sub-component 

similarity because it takes the average of multi-peak GHT scores into account 

while meta-features 1 and 11 are based on another similarity and proximity 

measurement. Therefore, meta-feature 17 is the better meta-feature for experiment 

9. 

The results show that the proposed meta-features for each appearance 

property are consistent according to their design function. We summarize the 

appearance property of each best meta-feature in Table B.4. 

Table B.4 Summary of appearance properties in each best correlation meta-feature. 

Experiment 

no. 

Meta-

feature no 

Measurement function Appearance property 

1 11 Median of orientation 
difference for a pair of 
matched point sets 

global rotation 

2 7 Total number of matched 
keypoints 

global pattern similarity 

3 12 Percentage of matched points/ 
total keypoints in query 

global pattern overlap 

4 3 Moment (m02) from matched 
keypoints 

spread of the matched 
points 

5 5 SD of error-distance for a pair 
of matched keypoints 

structural configuration 
of the matched points 

6 8 Mean of scale differences 
between a pair of matched 
keypoint sets 

scale different of 
matched pattern 

7 14 Self similarity self similarity 
8.1 16 Vertical symmetry Symmetry 
8.2 15 Horizontal symmetry Symmetry 
9 17 The average of multi-peak 

GHT scores 
sub-component 
similarity 
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In addition, the best nine meta-features are grouped into three Gestalt 

properties in the following list:  

• Similarity is used to group similar parts of an image and can be 

expressed as size, orientation, pattern, shape, or value.  

• Proximity is used to group connected areas or close components in an 

image and can be expressed by nearness, touch, overlap, or 

combinations.  

• Simplicity is used to group multiple parts into a simple component and 

can be expressed by symmetry, regularity, or smoothness.  

We summarise the system’s appearance and Gestalt properties according 

to their best correlation meta-features in next section.  

B.5 System properties 

The system can measure nine appearance properties that can be considered to 

implement three forms of Gestalt grouping by using the best correlating meta-

features. The experimental findings and analysis details are given in sections B.3 

and B.4, and a summary of the system Gestalt properties and the appearance 

properties according to the best correlating meta-feature is given in Table B.5. 

We summarise the validation experiment in next section. 

Table B.5 Summary of appearance and Gestalt properties according to the best correlating 
meta-feature. 

Best correlation meta-

feature 

Appearance property Gestalt property 

11 global rotation similarity 
7 global pattern similarity similarity 
12 global pattern overlap proximity 
3 spread of the matched points proximity 
5 structural configuration of the matched 

points 
proximity 

8 scale different of matched pattern similarity 
14 self similarity similarity 
16 Symmetry simplicity 
15 Symmetry simplicity 
17 sub-component similarity similarity 
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B.6 Validation experiment summary 

The validation experiments show that the system has implemented all the 

predicted appearance properties. In experiments 1, 2, 5, 6, 7, and 8.1, the highest 

and best correlation meta-features were the same. Due to coupling between the 

appearance properties in the images, the test image sets could simultaneously 

exhibit variation in more than one appearance property. In experiments 3, 4, 8.2, 

and 9, the best meta-features had a similar value to many of the other meta-feature 

correlation scores. Nine appearance properties are represented in the system, and 

the correlation results indicate that these meta-features may be able to measure 

appearance properties.  

 

 

 

 



 References                                                                                                       197 

References 
  
   
Abbasi, S., F. Mokhtarian, et al. (1999) Curvature scale space image in shape 

similarity retrieval. Multimedia systems 7, 467-476.  
Agichtein, E., et al. (2006) Improving web search ranking by incorporating user 

behavior information. Proceedings of the 29th annual international ACM 
SIGIR conference on Research and development in information retrieval,  
19 – 26. 

Aguirre, R., M. G. Linguraru, M.A. Gonzalez Ballester (2007) Statistical Bone 
Shape Analysis for Image Free Surgery LV ,121-129. 

Aguirre, W. E. (2007) The pattern and process of adaptive radiation: lessons 
from a three spine stickleback adaptive radiation. Doctoral Dissertation, 
Stony Brook University. 

Ahmad, I., and M.T. Ibrahim (2006) Image Classification and Retrieval using 
Correlation. Computer and Robot Vision, 2006. The 3rd Canadian 
Conference on, 60 – 70. 

Allezard N., Dhome M., and Jurie F. (2000) Recognition of 3D Textured Objects 
by Mixing View-Based and Model-Based Representations. , International 
Conference on Pattern Recognition 1, 960 - 963. 

Alwis, S. and J. Austin (1999) Trademark image retrieval using multiple features. 
The challenge of Image Retrieval research workshop.  

Ankerst, M., Kastenmüller, G., Kriegel, H.-P., & Seidl, T. (1999) 3D Shape 
Histograms for Similarity Search and Classification in Spatial databases. 
Proceeding of the 6th International Symposium on Spatial Database, 207 - 
226.  

Annand, R. (2000) Report on the community trade mark system user satisfaction 
survey. International Trademark Association.  

Arntson, A. E. (2006) Graphic Design Basics. 5th ed. Wadsworth Publishing. 
Baker, S. (1998) Design and evaluation of feature detectors. 

Doctoral Dissertation, School of Arts and Sciences, Columbia University.  
Ballard, D. H. (1981) Generalizing the Hough transform to detect arbitrary 

shapes. Pattern Recognition 13(2), 111-122.  
Bandyopadhyay, S., C. A. Murthy, et al. (1995) Pattern classification with genetic 

algorithms. Pattern Recognition Letters 16, 801-808.  
Bashir F., Khanvilkar S., Schonfeld D., KhokharA. (2004) Multimedia systems: 

content-based indexing and retrieval, Electrical and retrieval. 
Bebis, G. N. and G. M. Papadourakis (1992) Object recognition using invariant 

object boundary representations and neural network models. Pattern 
Recognition 25(1), 2-44.  

Ben-Av, Mercedes Barchilon, and Dov Sagi. (1995)  Perceptual grouping by 
similarity and proximity: Experimental results can be predicted by 
intensity autocorrelations. Vision Research 35(6), 853-866. 

Bentley, Jon Louis. (1975) Multidimensional binary search trees used for 
associative searching. Communication ACM 18(9), 509-517.   

Bhattacharjee, S. (1999) End-Stopped Wavelets for Detecting Low-Level 
features. Proceedings of SPIE 3813, 732-741.  

Bhattacharjee, S. K. and T. Ebrhimi (1999) Image Retrieval Based on Structural 
Content. Technical Report, Infoscience, EPFL.  



 References                                                                                                       198 

Biederman, I. (1987) Recognition-by-Components: A theory of human image 
understanding. Psychological Review 94(2), 115-147.  

Biederman, I. (1995) Visual object recognition. An Invitation to Cognitive 
Science. S. F. Kosslyn and D. N. Osherson, MIT Press. 2, 121-165.  

Biederman, I. (2007) Recent psychophysical and neural research in shape 
recognition.  N. Osaka, I. Rentschler, & I. Biederman (Eds.) Object 
Recognition, Attention, and Action. Ch. 5, 71-88. 

Bovik, A. L., Ed. (2000) Handbook of image and video processing, Academic 
Press.  

Boyer, K. L. and S. Sarkar, Eds. (2000) Perceptual organization for artificial 
vision systems, Kluwer Academic Publishers.  

Bruce, V., P. R. Green, et al. (1996) Visual perception physiology, psychology, 
and ecology. Bath, UK, Psychology Press.  

Bryant, J. H. (1987) USPTO's automated trademark search system. World Patent 
Information 9(1), 5-9.  

Burges, Christopher J. C. (1998) A Tutorial on Support Vector Machines for 
Pattern Recognition. Data Mining Knowledge Discovery 2, no. 2 (1998), 
121-167. 

Buscher, G., et al. (2008) Eye movements as implicit relevance feedback. 
Conference on Human Factors in Computing Systems, 2991-2996. 

Chabat, F., G. Z. Yang, et al. (1999) A corner orientation detector. Image and 
Vision Computing 17, 761-769.  

Chakrabarti, K., et al. (2006) Ranking Objects by Exploiting Relationships: 
Computing Top-K over Aggregation. Proceedings of SIGMOD, 371-382. 

Chan, D. Y.-M. and I. King (1999) Genetic algorithm for weights assignment in 
dissimilarity function for trademark retrieval. Lecture Notes in Computer 
Science. The Netherlands, Springer, 557-565.  

Chaumette, F. (2004) Image moments: a general and useful set of features for 
visual servoing. Robotics, IEEE Transactions on 20, no. 4 ,713-723. 

CIPO (2002) Table of Vienna classification codes, Canadian Intellectual Property 
Office.  

Claus, P. (2002) Survey of the annual technical reports on the trademark 
information activities of industrial property offices in the year 2000. 
World Patent Information 24, 211-220.  

Cootes, T. F., Taylor, C. J., Cooper, D., & Graham, J. (1995) Active shape models 
their training and application. Computer Vision and Image Understanding, 
61(1), 38-59.  

Datta, R., Joshi, D., et al. (2008) Image Retrieval: Ideas, Influences, and Trends 
of the New Age. ACM Computing Surveys, vol. 40, no. 2. 

Eakin, J. P., K. J. Riley, et al. (2003) Shape feature matching for trademark image 
retrieval. International Conference on Image and Video Retrieval.  

Eakins, J.P., K. Shields and J.M. Boardman (1996) Artisan—A Shape Retrieval 
System based on Boundary Family Indexing, Storage and Retrieval for 
Image and Video Databases IV (Proceedings of SPIE 2670), I.K. Sethi 
and R.C. Jain, eds., SPIE Press, Bellingham, Wash., 17-28. 

Eakins, J. P. (1997) Trademark image retrieval. SIRA conference from Images to 
Knowledge, London.  

Eakins, J. P. (2001) Retrieval of still images by content. Lectures on information 
retrieval, Springer-Verlag NewYork, Inc., 111-138.  

Eakins, J. P. (2003) Human image perception and shape matching. To be publish.  



 References                                                                                                       199 

Eakins, J. P., J. M. Boardman, et al. (1998) Similarity retrieval of trademark 
images. IEEE multimedia 5(2), 53-63.  

Eakins, J. P., J. M. Boardman, et al. (1996) Retrieval of trademark images by 
shape feature-the ARTISAN project. IEE Colloquium on Intelligent Image 
Databases, London.  

Eakins, J. P., J. D. Edwards, et al. (2001) A comparison of the effectiveness of 
alternative feature sets in shape retrieval of multi-component images. 
Storage and Retrieval for Media Databases, 196-207.  

Eakins, J. P., M. E. Graham, et al. (1997) Evaluation of a trademark image 
retrieval system. Proceedings of the 19th annual BCS-IRSG colloquium on 
IR research.  

Eakins, J. P., K. Shields, et al. (1996) ARTISAN - a shape retrieval system based 
on boundary family indexing. Proceedings of SPIE 2670, 17-28.  

Eklund, N.H.W., and K.F. Goebel. (2006) Using Meta-Features to Boost the 
Performance of Classifier Fusion Schemes for Time Series Data. 
International Joint Conference on Neural Networks, 3223-3230. 

Enser, Peter, and Christine Sandom. (2003) Towards a Comprehensive Survey of 
the Semantic Gap in Visual Image Retrieval. Image and Video Retrieval 
2728,163-168.  

Farag, W.E.; Abdel-Wahab, H. (2003) A human-based technique for measuring 
video data similarity. Proceedings of the 8th IEEE International 
Symposium on Computers and Communication 2, 769 - 774.  

Farin, G. (1997) Curves and surfaces for computer aided geometric design a 
practical guide. San Diego, USA., Academic press.  

Field, A. (2000) Discovering Statistics using SPSS for Windows, SAGE 
Publications.  

Fishler, M. A. and H. C. Wolf (1994) Locating perceptually salient points on 
planar curves. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 16(2), 113-129.  

Fortuna, L., G. Rizzotto, et al. (2001) Soft Computing, Springer-Verlag.  
Freeman, W. T. and E. H. Adelson (1991) The design and use of steerable filters. 

IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 
891- 906.  

Fukui, M., et al. (2004) Size-Independent Image Segmentation by Hierarchical 
Clustering and Its Application for Face Detection. Lecture Notes in 
Computer Science 3316, 686-693. 

Geradts, Z. (2002) Content-Based Image Retrieval from Forensic Image 
Databases. Journal of Forensic Science 47(2), 285-292.  

Geradts, Z., H. Hardy, et al. (2001) Evaluation of contents based image retrieval 
methods for a database of logos on drug tablets. Proceedings of SPIE 
4232, 553-562.  

Giacinto, G., and F. Roli (2005) Instance-Based Relevance Feedback for Image  
retrieval, Proceedings of Advances in  Neural  Information Processing 
Systems 17,  489-496. 

Gibson, B. M., et al. (2007) Nonaccidental Properties Underlie Shape recognition 
in Mammalian and Nonmammalian Vision. Current Biology 17, 336–340. 

Goldmeier, E. (1972) Similarity in visually perceived forms. Psychological Issues 
8(1), 1-35.  

Goldstein, E. B. (1999) Sensation and perception, ITP.  
Gori, M., M. Maggini, et al. (2003) Edge-backpropagation for noisy logo  



 References                                                                                                       200 

recognition. Pattern Recognition 36(1), 103-110.  
Gosselin, F. and Schyns, P. G. (2001) Bubbles: a technique to reveal the use of 

information in recognition tasks. Vision Research 41,  2261–2271. 
Grigorescu, S.E., Petkov, N. (2002) Comparison of texture features based on 

Gabor filters. IEEE Transaction on Image Processing 11(10), 1160-1167. 
Grossberg, S., E. Mingolla, et al. (1997) Visual brain and visual perception: how 

does the cortex do perceptual grouping? Trends Neurosci 20(3), 106-111.  
Gundersen, G. A. (2000) Trademark Searching. International Trademark 

Association. 
Han, Shihui (2004) Interactions between proximity and similarity grouping: an 

event-related brain potential study in humans. Neuroscience Letters 
367(1), 40-43.   

Han, J. W. and L. Guo (2002) New image retrieval approach based on interest 
points. Proceedings of SPIE 4862, 187-197.  

Haralick, R. M. (1979) Statistical and structural approaches to texture, 
Proceedings of the IEEE 67(5), 786-804. 

Harris, C. and M. Stephens (1988) A combined corner and edge detector. 
Proceedings of  4th Alvey Vision Conference, 147-151.  

Havaldar, P., G. Medioni, et al. (1996) Perceptual grouping for generic 
recognition. International Journal of Computer Vision 20(1/2), 59-80.  

Heidemann, G. (2004) Combining spatial and colour information for content 
based image retrieval. Computer vision and Image Understanding 94(1-3), 
234-270.  

Horn, B.  K. P. (1975) Image intensity understanding, AIM  
Hornegger, J., Niemann, H., et al. (2000) Appearance-based object recognition 

using optimal feature transforms. Pattern Recognition 33, 209-224. 
Hopfgartner,F. Jose,J.M. (2007)  Evaluating the Implicit Feedback Models for 

Adaptive Video Retrieval. Proceedings of the 9th ACM SIGMM 
International Workshop on Multimedia Information Retrieval, 323-331. 

Hsiao, S., Chou, J. (2006) A Gestalt-like perceptual measure for home page 
design using a fuzzy entropy approach. International Journal Human-
computer studies 64, 137-156. 

Hsu, C. and M. Shih (2002) Content-based image retrieval by interest points 
matching and geometric hashing. Proceedings of SPIE 4923, 80-90.  

Hu, M. (1962) Visual pattern recognition by moment invariants. IRE Transactions 
on Information Theory 8(2), 179-187. 

INTA (2003) Nontraditional Trademarks. International Trademark Association. 
2004.  

Jaana Kekalainen. (2005) Binary and graded relevance in IR evaluations-
Comparison of the effects on ranking of IR systems, Information 
Processing and Management 41(5), 1019-1033. 

Jacobs, D. (2000) What makes viewpoint invariant properties perceptually 
salient? a computation perspective. In: Boyer, K. L. (ed), Perceptual 
Organization for Artificial Vision Systems, Kluwer Academic Publishers, 
121-138.  

Jain, A. K. and A. Vailaya (1996) Image retrieval using color and shape. Pattern 
Recognition 29, 1233-1244.  

Jain, A. K. and A. Vailaya (1998) Shape-Based Retrieval: A Case Study with 
Trademark Image Databases. Pattern Recognition 31(9), 1369-1390. 



 References                                                                                                       201 

Jiang, H., C. Ngo, et al. (2006) Gestalt-based feature similarity measure in 
ttrademark database. Pattern Recognition 39, 988-1001.  

Jordan, C. (2005) Comparison of Blind Relevance Feedback Algorithms Using 
controlled queries. Master Thesis, Dalhousie University. 

Jugessur, D. and G. Dudek (2000) Local appearance for robust object recognition. 
Proceedings IEEE Conference on Computer Vision and Pattern 
Recognition management 41(5), 1019-1033. 

Kang, H.-B. and E. L. Walker (1994) Characterizing and controlling 
approximation in hierarchical perceptual grouping. Fuzzy sets and systems 
65, 187-223.  

Kekalainen, Jaana. (2005) Binary and graded relevance in IR evaluations--
Comparison of the effects on ranking of IR systems. Information 
Processing and Management 41(5), 1019-1033.   

Keskustalo, H., Järvelin, K., & Pirkola, A. (2006) The effects of relevance 
feedback quality and quantity in interactive relevance feedback: A 
simulation based on user modeling. Lecture Notes in Computer Science, 
3936, 191-204. Berlin, Heidelberg: Springer. 

Kimia, B. B., I. Frankel, et al., Eds. (2000) Euler spiral for shape completion. 
Perceptual organization for artificial vision systems, Kluwer Academic  
Publishers.  

Kirkpatrick, K. (2001) Object recognition. In: Cook, R. G. (ed.), Avian visual 
cognition [On-line]. Available: www.pigeon.psy.tufts.edu/avc/kirkpatrick. 

Kotoulas, L.,  I. Andreadis (2005) Image analysis using moments. Proceedings of 
ICTA’05, 360–364. 

Kruger, N. and F. Worgotter (2002) Multi-modal Estimation of Collinearity and 
Parallelism in Natural image sequence. Computation in Neural Systems 
13(4), 553-576.  

Lee, D. H. and S. K. Jung (2001) Delaunay Triangles for Image-Based Motion 
Retargeting. Deformable Avatars, Kluwer Academic Publishers, 158-168.  

Levine, M. D. (1985) Vision in man and machine, McGraw-Hill.  
Li, Guoliang, Jianhua Feng, Feng Lin, and Lizhu Zhou. (2008) Progressive 

Ranking for Efficient Keyword Search over Relational Databases. Sharing 
Data, Information and Knowledge 5071,193-197.  

Liu, Y., Zhang, D., et al. (2007) A survey of content-based image retrieval with 
high-level semantics. Pattern Recognition 40, 262-282. 

Logothetis, N.K., and Sheinberg, D.L. (1996) Visual object recognition. Annual 
Review of Neuroscience 19, 577-621. 

Loncaric, S. (1998) A survey of shape analysis techniques. Pattern Recognition 
31, 983-1001.  

Long, F., H. Zhang, et al. (2003) Fundamentals of content-based image retrieval. 
Multimedia Information Retrieval and Management. 

Loupias, E. and N. Sebe (1999) Wavelet-based salient points for image retrieval. 
Research Report, Laboratoire Reconnaissance de Formes et Vision, INSA 
Lyon.  

Lowe, D. G. (1985) Perceptual organization and visual recognition, Kluwer 
Academic Publishers.  

Lowe, D. G. (1999) Object recognition from local scale-invariant features. 
Proceedings of the international conference on computer vision, 1150-
1157.  



 References                                                                                                       202 

Lowe, D. G. (2004) Distinctive Image Features from Scale-Invariant Keypoints. 
International Journal of Computer Vision 60(2), 91-110.  

Machado, A. M. C., Marinho, C. N. J. (2003) An image retrieval method based on 
factor analysis. SIBGRAPI, 191-196. 

Makhoul, J., et al. (1999) Performance Measures for Information Extraction. 
Proceedings of DARPA Broadcast News Workshop, 249-252. 

Manikandan, S., Rajamani, V. (2008) A Mathematical Approach for Feature 
Selection & Image Retrieval of Ultra Sound Kidney Image Databases. 
European Journal of Scientific Research 24(2), 163-171. 

Manjunath, B. S.,  Ohm, J. (2001) Color and Texture Descriptors. IEEE 
Transactions on Circuits and Systems for Video Technology. 

Manning C., Raghavan P. and Schütze H. (2008), Introduction to Information 
Retrieval, Cambridge University Press. 

Marshall, S. (1989) Review of Shape coding techniques. Image and Vision 
Computing 7(4), 281-294.  

Martínez-Contreras, Francisco, Carlos Orrite-Uruñuela, and Jesús Martínez-del-
Rincón. (2009) AdaBoost Multiple Feature Selection and Combination for 
Face Recognition. Pattern Recognition and Image Analysis 5524, 338-
345. 

Murtagh, F. (1983) A survey of recent advances in hierarchical clustering 
algorithms. The Computer Journal 26, 354-359. 

Mehrotra, R. and J. E. Gary (1995) Similar-shape retrieval in shape data 
Management. IEEE computer 28(9), 57-62.  

Mehtre, B. M., M. S. Kankanhalli, et al. (1997) Shape measures for content based 
image retrieval: a comparison. Information processing and management 
33(3), 319-337.  

Mikolajczyk, K. (2002) Detection of local features invariant to affine 
transformations. Ph.D. thesis, Institut National Polytechnique de 
Grenoble, France.    

Mikolajczyk, K. and C. Schmid (2003) A performance evaluation of local 
descriptors. IEEE Conference on Computer Vision and Pattern 
Recognition, 257-264.  

Mikolajczyk, K. and C. Schmid (2005) A Performance Evaluation of Local 
Descriptors. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 27(10), 1615-1630.  

Miller, G. A. (1956) The Magical Number Seven, Plus or Minus Two: Some 
Limits on Our Capacity for Processing Information. Psychological Review 
63, 81-97.  

Ming, C. Y. (1999) Shape-based image retrieval in iconic image database. 
Master’s thesis, Chinese University of Hong Kong 

Mitchell, T. (1997) Machine Learning, McGraw-Hill.  
Mohan, R. and R. Nevatia (1992) Perceptual organization for scene segmentation 

and description. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 14(6), 616-634.  

Mokhtarian, F. and F. Mohanna (2001) Enhancing the Curvature Scale Space 
corner detector. Proceedings of Scandinavian conference on Image 
analysis, 145-152.  

Mokhtarian, F. and R. Suomela (1998) Robust Image Corner Detection trough 
Curvature Scale Space. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 20(12), 1376-1381.  



 References                                                                                                       203 

Mukundan, R. and K. R. Ramakrishnan (1998) Moment Functions in Image 
Analysis: theory and applications, World sciencetific Publishing.  

Murray, S. O., D. Kersten, et al. (2002) Shape perception reduces activity in 
human primary visual cortex. Proceedings of Neuroscience 99(23), 
15164-15169.  

Othman, A. and Martinez, K. (2008) Colour appearance descriptors for image 
browsing and retrieval. SPIE Electronic Imaging: Multimedia Content 
Access: Algorithms and Systems. 

Parker, J. R. (1997) Algorithms for image processing and computer vision, John 
Wiley & Sons, Inc.  

Paay, J. and Kjeldskov, J. (2007) A Gestalt Theoretic Perspective on the User 
Experience of Location-Based Services.  Proceedings of the 19th 
Australasian conference on Computer-Human Interaction: Entertaining 
User Interfaces, 283 – 290. 

Paquet, Eric, Marc Rioux, Anil Murching, Thumpudi Naveen, and Ali Tabatabai. 
(2000) Description of shape information for 2-D and 3-D objects. Signal 
Processing: Image Communication 16(1-2), 103-122. 

Petrou, M. and P. Bosdogianni (1999) Image Processing: the fundamentals, John 
Wiley & Sons, Ltd.  

Prokop,  R.J.  and  A.P.  Reeves (1992)  A  survey  of moment based  techniques 
for unoccluded  object representation. Graphical  Models  and Image 
Processing  54 (5),  438-460. 

Ravela, S. and R. Manmatha (1999) Multi-Modal Retrieval of Trademark Images 
Using Global Similarity. Technical Report, University of Massachusetts, 
Amherst.  

Rodriguez, J., and F. Perronnin (2008) Local Gradient Histogram Features For     
Word Spotting Unconstrained Handwritten Documents, ICFHR, Montreal, 
Canada, 7-12. 

Rome, E. (2001) Simulating Perceptual clustering by Gestalt principles. 25th 
Workshop of the Austrian Association for Pattern Recognition. 191-198.  

Rui, Y., T. S. Huang, et al. (1997) Image retrieval: past, present, and future. 
Proceedings of international Symposium on Multimedia Information 
processing.  

Safar, M., C. Shahabi, et al. (1999) Image retrieval by shape: a comparative study. 
IEEE International Conference on Multimedia and Expo.  

Sarkar, S. and K. L. Boyer (1994) Computing perceptual organization in 
computer vision, World scientific publishing.  

Saund, E. and Mahoney, J. (2004) Perceptual Support of Diagram Creation and 
Editing, Lecture Notes in Computer Science 2980, 424-427. 

Scassellati, B., S. Alexopoulos, et al. (1994) Retrieving images by 2D shape: a 
comparison of computation methods with human perceptual judgments. 
Proceedings of SPIE and Retrieval for image and vision database II, 2-14.  

Schmid, C. and R. Mohr (1997) Local gray value invriants for image retrieval. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 
30-535.  

Schmid, C., R. Mohr, et al. (2000) Evaluation of Interest Point Detectors. 
Internaional Journal of Computer Vision 37(2), 151-172.  

Schmid, C. e. a. (2001) Evaluation of interest point detectors, NEC Research 
Index Report.  

Schwartz, E L, R Desimone, T D Albright, and C G Gross. (1983) Shape 



 References                                                                                                       204 

recognition and inferior temporal neurons. Proceedings of the National 
Academy of Sciences of the United States of America 80(18), 5776 -5778. 

Sebe, N. and M. S. Lew (2003) Comparing salient point detectors. Pattern 
Recognition Letters 24, 89-96.  

Sebe, N. a. L., M. (2001) Salient points for content-based retrieval. Proceedings 
of 12th British Machine Vision Conference, 401-410.  

Shafer, G. (1976) A mathematical theory of evidence, Princeton University Press.  
Shih, J. L. and L. H. Chen (2001) A new system for trademark segmentation and 

retrieval. Image and vision computing 19, 1011-1018.  
Sluzek, A. (2005) On moment-based local operators for detecting image patterns. 

Image and Vision Computing 23(3), 287-298. 
Smith, L. I. (2002) A Tutorial on Principal Components Analysis. Available from 

<http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_compone
nts.pdf> [Accessed 10th December 2007] 

Smith, S. M. and J. M. Brady (1997) SUSAN - A new approach to low level 
image processing. International Journal of Computer Vision 23(1), 45-78.  

Srikanth, R., R. George, et al. (1995) A variable-length genetic algorithm for 
clustering and classification. Pattern Recognition Letters 16, 789-800.  

Stanchev, P. L. (2001) Content-based image retrieval systems. Bulgarian 
computer science conference, Sofia, Bulgaria.  

Tahri, O. and Chaumette, F. (2005) Point-based and Region-based Image 
Moments for Visual Servoing of planar objects. IEEE transactions On 
Robotics, vol. 21(6), 1116-1127. 

Tanaka, Keiji. (1996) Inferotemporal Cortex and Object Vision. Annual Review of 
Neuroscience 19, no. 1 (1996), 109-139. 

Tao, Y. and W. I. Grosky (1998) Delaunay triangulation for image object 
indexing: A novel method for shape representation. Proceedings of SPIE 
3656, 631-642.  

The UK Patent office (2001) Applying to register a trade mark. The UK Patent 
office.  

The UK Patent office (2001) The UK Patent office online trade mark search. The 
UK Patent office.  

The UK Patent office (2003) A brief history of trade marks. The UK Patent office. 
The UK Patent office (2004) Applying for an International Trade Mark. The UK 

Patent office. 
Todman, A. G., and  E. Claridge (2000) Low-level grouping mechanisms for 

contour completion. Information Sciences 125, 19-35. 
Trajkovic, M. and M. Hedley (1998) Fast corner detection. Image and Vision 

Computing 16, 75-87.  
Tsai, D.-M., H.-T. Hou, et al. (1999) Boundary-based corner detection using 

eigenvalues of covariance matrices. Pattern Recognition Letters 20, 31-40.  
United state patent and trademark office (2004) Trademark Electronic search 

System (Tess). United state patent and trademark office. 
van Rijsbergen, C. J. (1979) Information retrieval, London: Butterworths. 
Vasseur, P., C. Pegard, et al. (1999) Perceptual organization approach based on 

Dempster-Shafer theory. Pattern Recognition 32, 1449-1462.  
Viola, P. and  Jones, M. (2001) Rapid object detection using a boosted cascade of 

simple features. Proceedings of the 2001 IEEE Computer Society 
Conference on, I-511- I-518. 

Vogels, Rufin, Irving Biederman, Moshe Bar, and Andras Lorincz. (2001) 



 References                                                                                                       205 

Inferior Temporal Neurons Show Greater Sensitivity to Nonaccidental 
than to Metric Shape Differences. Journal of Cognitive Neuroscience 
13(4), 444-453. 

Walker, E. L. and H.-B. Kang (1994) Fuzzy measures of uncertainty in perceptual 
grouping. Proceedings of FUZZ-IEEE.  

Wang, J., and Chang, W. (1999) A two-stage matching scheme for effective and 
efficient similar shape retrieval. IEEE Transactions on Circuits and 
Systems for Video technology.  

Ware, Colin, and Roland Arsenault. (2004) Frames of reference in virtual object 
rotation. Proceedings of the 1st Symposium on Applied perception in 
graphics and visualization, 135-141. 

Wertheimer, M. (1923) A Sourcebook of Gestalt Psychology. New  York, 
Humanities Press.  

Winterfeldt, B. J., D. Lohnes, et al. (2002) Historical trademarks:  in use since 
4,000 B.C. INTA Bulletin Archive.  

WIPO (2004) About the Nice classification. World Intellectual Property 
Organization.   

WIPO (2004) International Classification of the Figurative Elements of Marks 
(Vienna Classification). World Intellectual Property Organization.   

WIPO (2004) Nice classification. World Intellectual Property Organization.  
WIPO (2004) Vienna Classification of the Figurative Elements of Marks Fourth 

Edition. World Intellectual Property Organization. 
Wolf, C. (2000) Content based image retrieval using interest points and texture 

features. Technical Report, Institute of Computer Aided Automation, 
Vienna University of Technology.  

Wolf, C., Jolion, J.-M., & Bischof, H. (2000) Histograms for Texture based Image 
Retrieval. Proceedings of the OEAGM, 169-176. 

Wu, J. K., C. P. Lam, et al. (1996) Content-based retrieval for trademark 
registration. Multimedia tools and applications 3, 245-267.  

Xu, X. et al. (2009)  Using relevance feedback with short-term memory for 
content-based spine X-ray image retrieval. Neurocomputing 72, 2259-
2269. 

Yin, P.-Y. and C.-C. Yeh (2002) Content-based retrieval from trademark 
databases. Pattern Recognition Letters 23(13), 113-126.  

Zhang, Junliang & Javed Mostafa. (2002) Comparing Two Approaches of 
Generating Interest Profiles for Information Filtering: Interest Inferred 
from Typical User Actions Versus Rating of Content. CAIS Proceedings, 
192 - 203. 

Zheng, X., et al. (2008) Interest point based medical image retrieval. Lecture 
Notes in Computer Science 4987, 118-124. 

Zhu, P. and P. M. Chirlian (1995) On critical point detection of digital shapes. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 
737-748.  

Zhou, X. S., T.S. Huang (2000) CBIR:  from low-level features to high-level   
semantics. Proceedings   of   the   SPIE,   Image   and   Video 
Communication and Processing 3974, 426–431. 

Zhou, X. S. and Huang, T. S. (2003) Relevance feedback in image retrieval: a 
comprehensive review. Multimedia systems 8, 536-544. 

Zhou, Zhi-Hua, Ke-Jia Chen, and Hong-Bin Dai. (2006) Enhancing relevance 
feedback in image retrieval using unlabeled data. ACM Transaction 



 References                                                                                                       206 

Information Systems 24, no. 2, 219-244. 
Zitova, B., J. Kautsky, et al. (1999) Robust detection of significant points in 

multiframe images. Pattern Recognition Letters 20, 199-206. 


	1_All_section1_2June11
	2_1_Table of Contents_2June11
	2_2_acknowledgements_2June11
	3_Pajit_Chapter 1 Introduction
	4_Pajit_Chapter 2 Related work
	5_Pajit_Chapter 3 A principled Approach
	6_Paijit_Chapter 4 Interest point detectors_9Jan11.v12.2
	7_Paijit_Chapter 5 SIFT detector_2June11
	8_Chapter 6 RF matching system
	9_Chapter 7 Validation_9Jan11.v12.2
	A_Chapter 8_Evaluation_9Jan11.v12
	B_Chapter 9 Conclusion_9Jan11.v11
	C_Appendix_A_1June11
	D_Appendix_B_2June11
	E_References_2June11



