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Abstract

The challenge of abstract trademark image retriegah test of machine vision
algorithms has attracted considerable researctestten the past decade. Current
operational trademark retrieval systems involve mahiannotation of the images
(the current ‘gold standard’). Accordingly, curresyistems require a substantial
amount of time and labour to access, and are threrefkpensive to operate. This
thesis focuses on the development of algorithms itienic aspects of human
visual perception in order to retrieve similar abst trademark images
automatically. A significant category of trademankages are typically highly
stylised, comprising a collection of distinctiveaghical elements that often
include geometric shapes. Therefore, in order topaye the similarity of such
images the principal aim of this research has beeievelop a method for solving
the partial matching and shape perception problem.

There are few useful techniques for partial shap&ching in the context of
trademark retrieval, because those existing tectesidqend not to support multi-
component retrieval. When this work was initiatedbsm trademark image
retrieval systems represented images by meansbélgfeatures, which are not
suited to solving the partial matching problem. tdasl, the author has
investigated the use of local image features aseansto finding similarities
between trademark images that only partially matchterms of their sub-
components. During the course of this work, it lheen established that the
Harris and Chabat detectors could potentially perfsufficiently well to serve as
the basis for local feature extraction in trademarkge retrieval. Early findings
in this investigation indicated that the well e$tdied SIFT (Scale Invariant
Feature Transform) local features, based on theidHdetector, could potentially
serve as an adequate underlying local represemtétio matching trademark

images.

There are few researchers who have used mechafiasexl on human
perception for trademark image retrieval, implythgt the shape representations
utilised in the past to solve this problem do netessarily reflect the shapes

contained in these image, as characterised by hyeeseption. In response, a



practical approach to trademark image retrievapésceptual grouping has been
developed based on defining meta-features thatamilated from the spatial
configurations of SIFT local image features. Thesvritechniqgue measures certain
visual properties of the appearance of images otontp multiple graphical
elements and supports perceptual grouping by dkmpdoithe non-accidental

properties of their configuration.

Our validation experiments indicated that we werdeed able to capture
and quantify the differences in the global arrangehof sub-components evident
when comparing stylised images in terms of thesual appearance properties.
Such visual appearance properties, measured usingf the proposed meta-
features, include relative sub-component proximigymilarity, rotation and
symmetry. Similar work on meta-features, basedhenatbove Gestalt proximity,
similarity, and simplicity groupings of local feaéis, had not been reported in the

current computer vision literature at the time onélartaking this work.

We decided to adopted relevance feedback to all@wisual appearance
properties of relevant and non-relevant imagesmetliin response to a query to
be determined by example. Since limited trainingada available when
constructing a relevance classifier by means of sspplied relevance feedback,
the intrinsically non-parametric machine learnintgoathm ID3 (lterative
Dichotomiser 3) was selected to construct decisieas by means of dynamic
rule induction. We believe that the above apprdactapturing high-level visual
concepts, encoded by means of meta-features smbdify example through
relevance feedback and decision tree classificatmsupport flexible trademark

image retrieval and to be wholly novel.

The retrieval performance the above system was aogdpwith two other
state-of-the-art image trademark retrieval systefrdsan developed by Eakins
(Eakins et al., 1998) and a system developed mgJidiang et al., 2006). Using
relevance feedback, our system achieves higherag@enormalised precision
than either of the systems developed by Eakinsliang. However, while our
trademark image query and database set is basedh amage dataset used by
Eakins, we employed different numbers of imagewals not possible to access to
the same query set and image database used imaluaton of Jiang’s trademark



image retrieval system evaluation. Despite thedéerdnces in evaluation
methodology, our approach would appear to have pbiential to improve

retrieval effectiveness.
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Chapter 1

| ntroduction

An important task of computer vision is to produce machines that perceive
images. The search for methods that analyse images in an accurate manner has
led the author to examine issues connected with the recognition of abstract
trademarks. The approach has been made more specific by embedding the
recognition problem within a context that requires that images be compared with
one another to identify which images are similar and which are not. This context
provides some advantages owing to its specificity. This chapter provides an
outline of the problem, its context, and the background that led up to our
approach. The chapter also features a brief explanation of the nature of the
contributions made, and concludes with a description of how the remainder of the

thesisis organized.

1.1 Motivation

The problem addressed here can be phrased as éls@ogu“how can we help
people identify a putative trademark as being eidifitly original?” To do this,

there is a need to address how to analyse a propgestemark, how to identify
those trademarks that are most similar, and hoarganize their presentation to
the best effect. Examples of abstract trademarlg@waare given in Figure 1.1,

along with similar trademark images.

Pattern recognition is a fundamental problem in goter vision, and
trademark image retrieval is one of the most chgiley in the area of Content-
based Image Retrieval (Eakins et al., 2001). Threcodar problem of trademark
image retrieval has been investigated for over tecades, and continues to
attract research interest. There are two main rnsashe commercial potential

offered by practical recognition systems, and timallenges that trademark
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images provide as a test of machine vision algmsthThe potential applications
are appealing, for example, machines could intérgeir surroundings via
cameras, making sensible human-like decisions.hAtdentre of interest is the
development of visual perception by computer, wreeemputer can recognize
images and select similar images. The list belovegiexamples of potential

applications of computer perception technology.

Patent control: To register a trademark gives an advantage tb tvatlers and
customers; traders can protect their goods by #@indismark; customers can
recognize a genuine product by its trademark. Tumaber of trademarks vary in
each country from thousands to hundreds of thowssardl is gradually rising. A
system utilizing this technology could help pateffices distinguish putative

trademarks.

Image database retrieval: Many images in offices, web sites, and home
computers are stored without manual annotatioms Hifficult for a human to
search such images, so a system using this technotwld search the required

images faster.

Image design: To understand how to perceive similar images dmpputer could
also be used to measure how distinct the imagesSaieh a system could help

image designers create more distinctive images.
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(b)

()

Figure 1.1 Anillustration of the situation in which thework reported in thisthesisis
embedded. Similar trademark imagesareretrieved based on the analysis of a query image.
(a) an example query image, (b) a smple dataset of trademar k images, and (c) the
corresponding similar trademar k images that might be retrieved.

1.2 Problem of existing systems

The challenge of trademark image retrieval has bdmsgussed by many
researchers (Mehrotra & Gary, 1995; Wu et al., 18¥kins et al., 1998; Jain &
Vailaya, 1998; Alwis & Austin, 1999; Chan & King929; Ravela & Manmatha,
1999; Safar et al., 1999; Shih & Chen, 2001; YiYé&h, 2002; Gori et al., 2003).
However, there is no completely satisfactory systieat is currently in use in a
patent office.

Due to the complexity of the task, we investigdie approaches taken in
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the past and simplify the problem of trademark segtion. These include the

following limitations:

Current trademark registration uses a lot of timd &bour, because it
uses a keyword search system to classify the tradenand employs
examiners to distinguish trademarks. Most trademaske stored in
electronic files (Claus, 2002), but many registraedy use manual file
search, and some use automated name or codinghséartcaditional
trademark retrieval system uses keyword searchexample, Tess, and
the UK trademark search (ThiK patentoffice, 2001; Unitedstatepatent
andtrademarkoffice, 2004). Therefore, a more effective and matc
system is needed.

An abstract trademark is difficult to classify byykwvords because it
consists of complex visual elements. This kindratlémark is usually a
geometric figure, known as an abstract type. Suatiemarks are well
distinguished by their elements rather than the@amning, so content-
based image retrieval is required. Significantlgsteact trademarks are
better suited for image content-based classificatadher than manually-

based classification (Eakins et al., 1998).

Abstract trademark image retrieval by content-baisedge retrieval is
obviously important, because it requires that tatallase be searched by
means of an image since the search problem camnstlieed by textual
gueries alone. Visual perception is important fstidguishing shapes in
abstract trademarks because they contain grapbiealents. However,
there is no current technique for computationalovigperception that is
suitable for abstract trademark retrieval. Thighis main problem to be
investigated in this research. From the Gestaltslavé perceptual
grouping, shape is very important in human visudgment. Furthermore,
Biederman (1987) stated that humans recognize shayeby distinctive
elements. Hence, shape similarity matching is esdem trademark
image retrieval. However, few methods have yet taggilied to find the

shape similarity of trademark images by computer.
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1.3 Objectives

From the description above of the problems, thegpal drawback of current

systems is their need to describe abstract tradenmaages by keywords.

Content-based image retrieval is a possible salutiat the literature shows that
there are knowledge gaps that need to be addreBsst]. few techniques are
suitable for partial shape matching because theyadsupport multi-component
retrieval. Second, many techniques need an exaafjansegmentation, which
continues to be an unsolved problem. Third, theeef@w researchers attempt to
apply principles derived from human perception sbape retrieval and without
which their adpoted shape representations may mftect percpetually

meaningful configurations of the image’s componé&imally, global features are

not suitable for retrieving occluded or connectechponents in an image.

Image similarity estimation based amerest points has the potential to
be used in abstract trademark retrieval sincestdiso been used successfully in
image retrieval (Schmid and Mohr,1997; Lowe,1999%I#2000; Sebe,2001).
Importantly, interest points support partial manchiand local features and are
therefore potentially roboust to partial occlusiomshin the compared images.
This addresses the main aim of this research, wiki¢dh develop a method for
solving the partial matching and shape perceptimblpms. We believe that
using interest points in trademark image retri@aa improve the efficiency of an
abstract trademark image retrieval system. The rabjactives of this research

are to investigate:

1. How we can use interest points to distinguish tnaakl images?

2. Which interest point techniques are most accur&ievapplied to
distorted trademark images (noise, rotation, aate3e

3. How we can use perceptual grouping methods to grdepest points and
represent these as a shape descriptor?

4. What techniques can exploit shape descriptors wéteieving abstract

trademark images?

We explain how to fulfil our objectives in Chaptrin the next section,

we summarise the topics involved in building a éradrk image retrieval system.
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1.4 Constructing a trademark imageretrieval system

Our system measures the similarity of abstractetraatks, which raises the
problems of partial matching and shape perceptprdmputer. The details of

proposed approaches are explained in Chapter aréwummarized here.

e The Gestalt laws of organization show that shapeery important in
human visual similarity judgment. Also Biedermar®&X) showed that
humans can recognize shapes by only distinctivenais, which
indicates that shape similarity judgement couldypla vital role in
trademark image retrieval. However, there is nodeni method for
finding the shape similarity of trademark images domputer. Human
visual perceptual concepts suggest how to imitatadn image similarity
by computer, and non-accidental properties havential benefits, which
provide the motivation for interest point extractio

e Biederman’s concepts motivate the idea of usingr@st points in shape
retrieval because they have high information canterd are robust in
relation to partial visibility. Interest points shld offer advantages when
supporting human perception of shape and for syagiflocal features.
This view is supported by many researchers who haed interest points
for successful object recognition. For example, $lET detector is both
robust detector and can generate local featureswegl 0l999). We

investigate interest point detectors in Chapteaiad!5.

e We want to find techniques that use interest poamis local features to
evaluate similar images, which introduce local deas that reflect human
perception. We propose 27 local features for meaguperceptual
grouping, and select appropriate features for d¢aticg similarity
according to relevance feedback. The techniqueescribed in more

details in Chapters 6 and 7.

e Trademark retrieval requires user to judgemeniroflar images. To help
the user, the system should only require necesssey feedback. We
investigate processes for applying relevance feddba forming feature
vectors that encapsulate the visual perceptiornapgrs 6, 7, and 8.

The contributions of the thesis are summarizethénnext section.
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1.5 Contributions of thisthesis

This thesis addresses various specific problemsomputer vision - partial
matching, shape perception, and similarity judgetmeffiering methods that can
benefit the computer vision communities. The mantcbutions of this thesis

are as followings:

1.5.1 Analysisand application of point matching to trademark image

matching and retrieval

We examine the application of interest points teti@et trademark image
retrieval. Interest points have been successfldgduo recognise objects (Lowe,
1999; Wolf, 2000; Sebe & Lew, 2003) but there isresearch on how to retrieve
similar abstract trademark images by interest pgoisince most systems
concentrate on global features rather than loedlfes. Local features can reflect
both local and global image characteristics, babal features are preferred since
local features may need more computation time amdpticated methods. The
problems are where to apply local feature extractiwhat local features should
be utilized, and how to use the extracted locatures. In the first case, we
propose to use interest points because they suederman’s concept that
humans recognize images by distinctive elementswiWahow in Chapter 4 that
many detectors can extract the same areas in dramsfl trademark images, and
the system can retrieve similar trademark imageedban interest points. The

technique is overviewed in Chapter 2, and evaluaté&thapter 8.

1.5.2 Point-based grouping of local featuresfor trademark imageretrieval

We will represent shapes in abstract trademark @mdyy using local features.
Visual perception plays an important role in humsammilarity judgment

(Goldmeier, 1972; Eakins, 1997). In addition, shepenportant for identifying

abstract trademark images which contain multipbggical elements. In Chapter
6, we propose 27 features based on interest pomth utilize the computational
vision perception of shape. The features are aisopgd by Principal Component
Analysis (PCA) to eliminate redundant ones. Theuleatypes are global rotation,
global pattern similarity, global pattern overlagpread of the match points,

structural configuration of the match points, scdiéerent of matched pattern,

Chapter 1 7



self similarity, symmetry, and sub-component sinitja

1.5.3 Relevance feedback based on point-based grouping of local features

We propose and evaluate our technique based ousthef relevance feedback
and rule tree classification, generated by dynamie induction, in combination
with algporithsm for simulating aspects of visuargeption used for measuring
image similarity. In other words, relevance feedbaand decision tree

classification can serve to imitate visual percapjudgement by machine.

Minor contributions include:

1.5.4 Study of interest point detectors

The evaluation of interest point detectors is reggbin Chapter 4. We investigate
and evaluate interest point detectors that caleutderest points directly from an
image. We choose four effective detectors for ayveements. They are the
Harris detector, Chabat detector, SUSAN detectod, \Wavelet-based detector.
We measure the repeatability of these interest tpaietectors with the

transformed trademark images. The results showtligaHarris detector has the
best repeatability and Chabat detector also offjexed results, with more than
50% repeatability. The two detectors have the pi@teto be used in trademark

image retrieval.

1.6 Thesis organization

The remainder of the thesis is organised as fotlows

Chapter 2 reviews methods of trademark image xathieand discusses how

trademark image retrieval can be improved.

Chapter 3 describes our proposed research for rootisg a trademark image

retrieval system.

Chapter 4 explains interest point detectors, anadsores their suitability for

trademark image retrieval.
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Chapter 5 examines the SIFT detector for tradenmaakje retrieval.

Chapter 6 proposes local features, and outlineselesance feedback approach

for perceptual grouping.
Chapter 7 reports system implementation for meaguyperceptual grouping.
Chapter 8 investigates system efficiency for maagyserceptual grouping.

Chapter 9 summarises the contributions of thisishasd discusses future work.
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Chapter 2

Related wor k

This chapter explains the current techniques faddmark image retrieval, and
investigates potential methods for improving an tr@gos trademark image
retrieval system. We are interested in using owtewstanding of human visual
perception in order to improve the retrieval of g&@mimages. In this research, we
concentrate on abstract trademark image retriemaé such images contain rich

geometric elements that are grouped in signifieamts.

2.1 Introduction

Worldwide, countries have increased their actisitia relation to trademark
registration (Claus, 2002). Trademarks have beexd @ a long time, the first
was organized in London in 1876 (Winterfeldt ef 2002; The UK patent office,
2003). Trademark registration protects goods andcss e.g. distinguishing their
owners from, and making it easier for recognizedpots. In other words, a
trademark is both a marketing tool and form oflietdual property. The number
of trademarks in each country varies from thousandsundreds of thousands,
and is rising gradually. Currently, all trademaekrieval systems in practical use
are manual systems, so are both labour-intensivk teme-consuming. The
following sections describe the problems of traddmmagistration and trademark

image retrieval.

Trademark image retrieval finds the similarity beém trademark images
by extracting and matching shape features of eactetark. Shape features are
used in many trademark retrieval systems, becdueseare graphical figures to be
distinguished. Also, local features may be usefatdmuse many trademarks
consist of multiple components. Local features banused in partial matching
which supports the occlusion of multiple componehiswever, the location of
local features is important for matching, and cdfeca retrieval efficiency.
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Finding the most suitable method for extractingsthpoints is vital.

2.2 Trademark registration

A trademark is any sign that uniquely distinguishésm other trademarks — it
may consist of words, symbols, abstract designa,ammbination of these (The
UK patent office, 2004). Non-traditional trademadas be an appearance, a

shape, sounds, scents, taste, or even touch (IR0®@3), and many trademarks

are images (Eakins et al., 1996; Eakins et al.6199

A trademark image can be divided into three caiegomwords, devices,
and composition trademarks. The word trademark istn®f words only, for
example as show in Figure 2.1(a). The device traderns a graphical design
trademark that does not contain characters, suchFigare 2.1(b). The
composition trademark contains both words and dcapllesign components, as

shown in Figure 2.1(c).

a b C

B&

Figure 2.1 Examples of (a) word, (b) device, and (c) composition trademarks

Registering a trademark benefits both traders amstomers: traders
protect their goods by a distinct mark, while castos can recognize a genuine
product by its trademark. Registering a trademarklze separated into five main

steps: pre-applying, applying, examining, publighiand certification.

Every trademark must specify its goods or servidess. Most patent
offices use the international goods and service® Miassification (Claus, 2002).
It consists of 34 goods classes and 11 service® mpdf about 10,000 goods
definitions and 1,000 services definitions. Thiasslfication is now up to its
eighth edition since starting in January 2002 (WIFXD04). Goods' classes
examples include chemicals used in industry, pamegchines and machine tools,

vehicles, and rubber (WIPO, 2004). Services classgamples include
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advertising, insurance, telecommunications, edopatiand medical services
(WIPO, 2004).

The trademark class relates to its product typd, Gan be registered in
many classes although that requires additional paym\fter specifying a good’s
class, the mark property must be checked, whicht migsinguish it from other
marks in the same class. The mark should not agddaoneptive function to
increase the product’s value, nor reserved symiaoigthing offensive or illegal
(The UK patent office, 2001). There are private rageor advisory services
associated with some patent offices, such as, Keatient offices, which support
the classifying process, but they are costly andtdéid to a text-based system.

Automatic image classification is required.

Applying to a patent office for registration incksl paying a fee and
completing an application form. The registered miarlprovided with national
protection, but can be extended internationallyapplying the Madrid protocol
through WIPO (the World Intellectual Property Orgation)(The UK patent
office, 2001). After submitting the mark, no chasge it are allowed. The patent

office may acknowledge the application within twomths.

The examining process is performed by the trademegistry office at the
patent office, which is responsible for provingtthatrademark is different from
all others. Most patent offices use the Vienna sifestion to classify the
figurative elements of a trademark. The classiftcatonsists of 29 categories,
144 divisions, and 1,667 sections, and is curreantiys sixth edition since being
created in January 2008. An example of the Vierlaasdication is shown in
Table 2.1.
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Table 2.1 The Vienna classification of the figurative elements of a trademark

TheVienna classification

1. Celestial | 2. Human| 3. Animals | ... | 26.Geometrical figures| ...
bodies beings and solids

- Stars ... | - Circles, ellipses

- Sun .

- Moon - Triangles

- - One triangle

- Two triangles, one
inside the other

- Several triangles,
juxtaposed, joined
or intersecting

- .(.)Ither polygons
- Lines, bands

- Geometrical solids
Each trademark is assigned component names selegtéd examiners,

coded by its shape features and object elementand&at al., 1997). A logical
combined code identifies a new trademark from edvus trademarks, so the
processes involve much labour and time. The anoatatay be a major problem
for some types of trademark, such as device mdrks ¢alled the identification

process problem).

The patent office publishes approved trademarktsiofficial Gazette for
public objection, which may take about three months

If the published mark has no objections, the patdfite will send a
registration certificate to confirm the end of ghecess. The certificate is valid

for ten years from the registered date, and caehewved every ten year.

To sum up, in terms of processes, the goods' @itzgsdn process is
dependent on the applicant product. However, thentifying mark is more
complicated than the classification, so may cawsdayd. The second process is
submitting the document to the desire patent offcel has a specified response
time. The third process is identifies the mark. Tdwth process and fifth process
have obvious time limits corresponded by objecticagsed by the similarity of
the mask to others. There have been many commemnts Unsatisfied EU and

USA applicants complaining about the long processime (Annand, 2000), so
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the identification process needs to be investigatedore detail.

Most trademarks are stored electronically (Claup2?, but many
registries only use manual file search, perhaph waittomated name or coding
search. A traditional trademark retrieval systemsuseyword searching, such as,
Tess and UK trademark search (The UK patent of20®1; United state patent
and trademark office, 2004). It performs best oxt-bmsed marks (word and
composition mark), and is poorly suited to tradekeahat consist of complex

visual elements and geometrical figures, often kmaw abstract types.

Though the Vienna classification contains of mamywords, it has a
problem explaining abstract trademarks. Many eldmare difficult to describe
by words, indicating that keyword-based classifaratis inadequate and
unsuitable. Gundersen (2000) states that an abstemign mark is the most
difficult to represent by words. For example, Fggu.2(a) consists of line
segments and other components that are hard taiexpy words. Figure 2.2(b)
consists of one component that cannot be expldnyedords in a simple, clear

meaning.

a.lmlllln.,h

Figure 2.2 Examples of abstract trademarks

b

Device marks are better suited to content-basedematrieval, because
they can be well distinguished by the primitivetéeas within them, so it is
important to find a technique for clearly identifgi the abstract image in a device
mark. The abstract class in the Vienna classibcafclass 26) is shown in Table
2.1.

Abstract trademarks are usually registered as twwiasional black and
white images, for maximum protection. If it is nssary, the mark may be

registered in a colour series, and include monaukroolour.
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Abstract marks are better suited for image conbassed classification
than for manual-based classification (Eakins etl&198). Since the image content
is easier to identify than describing by keyworSlkape retrieval is important for
distinguishing abstract trademarks because theytarorgraphical elements,
thereby decreasing search time and making the ggoe®mre automatic. In the

next section, we will investigate content-basedgeneetrieval for trademarks.

2.3 An Overview of Trademark imageretrieval by image content

Trademark image retrieval systems continue to usywirds derived from
trademark components. Most patent offices still e Vienna classification to
register trademark images, which consists of ctaase sub classes of figurative
elements for distinguishing trademark images (WIRQ04). However, a text-
based system is time-consuming and intensivelyuabdensive. Furthermore,
an annotation-based system is not suitable foratistrademark image retrieval
because their content depends on intrinsic formanyMabstract trademarks

contain components that require additional keywaoodsxplain.

Many researchers use image features to identifgetrarks without
requiring a textual description. However, eachdeahas different discrimination
power to identify trademark images, which leadthequestion of which features
are most suitable. One answer is to consider hananuperception and judgment

utilizes those features.

2.3.1 Content-based imageretrieval

Content-based image retrieval (CBIR) searches fesirdd images by their
features which are automatically indexed (Eakir¥)13. CBIR eliminates the
time needed to annotate keywords in text-based emratyieval, and improves
system efficiency since it is not limited by themuoer of keywords.

Image representation and similarity measuremerthésmain focus of
CBIR (Stanchev, 2001). A feature set is stored dat@base, which represents the
most important aspects of a set of images. Feaites are extracted from an
image, and their similarity measured against thelsse set, as illustrated in
Figure 2.3.
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Figure 2.3 General content based imageretrieval system
Trademark image retrieval systems are increasingbing CBIR

(Mehrotra & Gary, 1995; Wu et al., 1996; Eakinsakt 1998; Jain & Vailaya,
1998; Alwis & Austin, 1999; Chan & King, 1999; Rdae& Manmatha, 1999;
Safar et al., 1999; Shih & Chen, 2001; Yin & YeB02; Gori et al., 2003; Jiang
et al.,, 2006). However, relevant trademark imagasnot be the same or a
modified image, which suggests that general CBIRy mat be suitable for
trademark image retrieval. The system requirestiatdl techniques to extract

the features and measure similar images.

2.3.2 Reported trademark image retrieval systems

Existing trademark image retrieval systems appljfedint approaches to
extending general CBIR, highlighting the challemmjdrademark image retrieval
in the past decade (Mehrotra & Gary, 1995; Wul.etl896; Eakins et al., 1998;
Jain & Vailaya, 1998; Alwis & Austin, 1999; Chan King, 1999; Ravela &
Manmatha, 1999; Safar et al., 1999; Shih & Che®12¥in & Yeh, 2002; Gori
et al., 2003). Most systems use edge detectionetfonm segmentation and
extract components from the image. This refleatsagor condition for retrieving
relevant trademarks an ability to specify the real shape of componentan

image.
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23.21STAR

Wu et al (1996) developed the STAR system (SystemiTfademark Archival
and Registration) to retrieve similar trademarksldoth word and device marks.
The word mark similarity utilizes text, phoneties\d interpretation, while device
mark similarity is divided into graphic meaning agchphic similarity. For the
graphic meaning device mark, it has a specific nmganrhey used the shape
interpretation or the graphic meaning to measurelaiity. The system requires
that the user annotates the mark using Vienna itad®ns, and gives the
similarity in terms of a fuzzy factor in a thesasimelationship. For device mark,
STAR compares its features to measure componernlasisn using the spatial
relationship between components namely the stralcescription, and visual
features. The system uses colour segmentatiorptoate the components in each
mark, and a first order Markov field and Gaussiatridhuted clustering to specify
the spatial relations. The system requires thatifee assign the major and group
components to be the structural description. Ttemiali features are a Fourier
descriptor, seven invariant moments, and projestiorhe similarity between
features is calculated by a weighted distance efsgatial relationship, structural
description, and the visual features. An experimeng 3000 trademark images
showed that the system is effective for retriewsngilar trademarks and reducing
searching time, but many processes require usaaitton.

2.3.2.2 Jain and Vailaya

Jain and Vailaya (1998) developed a system toenadrsimilar trademark images
by shape features, by utilizing fast pruning folemivby refined matching. The
pruning removes non-relevant trademarks by comgargdge direction

histograms and seven invariant moments. The edgegnam is extracted from
the boundary image, normalized, and smoothed. Sewsriant moments are
extracted from the raw image. The query image featiare compared with
database features to calculate dissimilarity valwelsich are combined and
normalized in the range 0 to 1. However, these fembures were not accurate in
the case of line drawing image rotation, so sommilai images could be
spuriously eliminated. The second stage is matctoreg deformable template by
edge mapping. The verified images from the firsigetare compared with the
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guery image. The deviation and the energy funabiothe deformed template are
used to calculate a similarity value. It requires specific pose and deformation
template parameters by iteratively searching a igmiddescent in Hough
transform space. The experiment was implementedyusiOO trademark images,
and showed that the system could not always detgntaintically similar images.
Furthermore, the system has problems segmenting-ocouhponent images, and

the authors suggest that local features would eixte®m matching performance.

2.3.2.3 ARTISAN

Eakins et al (1997, 1998) developed the ARTISANays(Automatic Retrieval
of Trademark Images by Shape Analysis) to retritinee similarity of abstract
geometric shapes of device trademarks based onrhumeage perception from
Gestalt theory. The system extracts the featureshrate image levels: the
individual boundary, the perceptual region, and ehére image. An individual
boundary is a closed region in the image that etsisif line and arc segments. A
perceptual region is grouped by the co-linearisnd @o-curvilinearism of
segments in the image. The system uses proximargllplism, and concentricity
scores to group region boundaries into a familynolamy, and tracks a family
contour by utilizing an external family boundaryhel system extracts shape
feature vectors at all three levels, including aspatio, circularity, transparency,
relative area, right-angleness, sharpness, comylexlirectedness, and
straightness. The experiment was implemented uki5 abstract trademark
images, and used normalized precisiBy),(normalized recallR,), and last-place
ranking () to measure the system effectiveness. The retrparéormance i,
=0.63+ 0.24, R, = 0.90+ 0.12, andL, =0.56 + 0.31, which suggests that
perceptual grouping has the potential to act likeman similarity judgment. This
system can also be extended to handle multiple oo retrieval by local

features.

2.3.2.4 Soffer and Samet

Soffer and Samet (1998) proposed negative shapearésafor classifying logos.
Negative shapes are calculated by adding a boodéretlogo and extracting the
internal holes for each component. Negative shapiifes consist of four global

shapes (the first invariant moment, circularityceagricity, and rectangularity)
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and three local shape descriptors (horizontal ga&pdotal area, vertical gaps per
total area, and the ratio of hold area to totadjpréhe similarity is measured by
comparing the Euclidean distance of each compometite query image with

database images, and the minimum distances ahaltémponents of the query
image are averaged to make a similarity score. Ttesyed the retrieval

performance with and without using negative shagatures, and using one
component by user selection and automatic mulaphlaponents. The experiment
was implemented using 130 trademark images, andveshdhat using both

positive and negative shape features of the matigonent logo gave the best
performance in classifying logos involving triangyl long text, and stripes
classes. However, no evidence was presented sholanthe system can retrieve

similar trademarks.

2.3.2.5 Alwisand Austin

Alwis and Austin (1999) proposed a trademark imaggieval system using
combined multiple features from several image ty@medoundary, a Gestalt,
boundary closed figures, and a Gestalt closed dgjimage. The Gestalt images
were obtained by grouping co-linear and co-cureginboundary segments. The
system extracts perceptual features of both Geatalt boundary images. The
features are endpoint proximity, parallelism, cwelrism, and co-curvilinearism.
In addition, the system calculates circularity, edtronality, straightness,
complexity, right-angleness, aspect ratio, sharpnasd the stuffedness of both
boundary and Gestalt closed figures images. Thedany and Gestalt multiple
features are compared by graphs, and the closeefigatures are measured for
similarity by a distance bin. The experiment wasplemented using 1000
trademark images, and the system effectivenessumeshby precision and recall
distributions over 10 queries from Artisan’s systemaluation. The result shows
that boundary-based features give a better scap (hestalt-based features.
However, the combined feature using Dempster-Shaiethod gives the best
score. This system also has the potential to bdl@éanulti-component retrieval

by local features.

2.3.2.6 Ravela and Mammatha

Ravela and Mammatha (1999) proposed a multi-mogdém for the retrieval of
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similar design trademark images. The system bagitiisuser input text and uses
a text search engine to retrieve matching tradenradges. The images are
matched by visual appearance, or a compositiorexif and visual appearance.
The selected images are filtered with multi-scaéeissian derivatives to describe
the structure of their intensity surface, and tysem extracts local curvature and
local phase histograms. These local features a@ tasobtain global similarities

by comparing their histogram vectors with normalizeross-covariances. The
experiments used 2048 binary images and rankedmiaisimages; given an

average precision of 61.1%. The system used wmosgeé features to perform
global matching, so there is evidence that it candegraded by occlusion and

missing parts; and human perceptual factors werearsidered.

2.3.2.7 Chan and King

Chan and King (1999) proposed the genetic weightingeveral features for the
retrieval of similar trademark images, including uFer descriptors, seven
invariant moments, eccentricity, circularity, andlé number. They use a closing
operator to group connected components in the imageh may lead to wrong

grouping, because it does not consider percepaabris. They calculated the
integrated dissimilarity value by weighting a condtion of Euclidean feature
distances. A genetic supervised learning algorittvas applied to similar

trademark images, with iterative optimisation, #dcalate the weighting values.
The experiment used 1360 binary trademark imaged, aanong 20 top rank
images, the method retrieved all the similar imagéswever, there was no

mention of the number of similar images.

2.3.2.8 Shih and Chen

Shih and Chen (2001) proposed a system employing-aetomatic trademark
segmentation, image features, and user weightiadbfeck. The system selects
each object region in a binary image by user imtetion and the regions are
extracted by the region-growing algorithm and lomemnecting segmentation. The
system extracts Hu seven invariant moments, theiéotransforms of edges
from polar-coordinate transforms, the first derives of edges from polar-
coordinate transforms, and a histogram of edgectilies. The system measures
trademark similarity by feature distances, whict aeighted by user feedback.
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The experiment used 3543 device trademark images,aacombination of the
four features achieves the best result when cordpaieéh each independent
feature. However, the system requires user segtieamnta perform human visual

perception.

2.3.29Yinand Yeh

Yin and Yeh (2002) proposed an automatic contesetbarademark retrieval
method, which extracts seven features from a traderbinary image: area,
isolation, deviation, symmetry, centralization, goexity, and two-level contour
representation strings. The system removes redtndésature values by
correlation and entropy thresholds, and classifi#strademarks into several
classes with a fuzzy c-mean algorithm. The candidéisses are matched to the
guery image by comparing the normalized distanod, each distance weighted
by user feedback. The experiment used 1000 tradeimages, and showed that
user feedback improves the retrieval efficiency.e Thystem requires user
judgment, so it has the potential of using humauat perception to improve the

system efficiency.

2.3.2.10 Gori et al

Gori et al (2003) proposed an edge-back propagatietnod to recognize logos
under Baird and spot noise conditions, by adapénigack propagation neural
network. The input of the neural network is a fix@ge vector of averaging grey
levels of pixel regions, which the regions beingrmected components segmented
by morphological transforms. It requires a trainstgge and iteration processes,
with prepared noisy images. The experiment wasemphted on a database of
88 logos with added noise, with the results showihgt the methods can
recognition images with spot noise that do not hiavge occlusions. However,

this method does not provide for similar imageiestil.

2.3.2.11 Jiang et al

Jiang et al (2006) proposed the adaptive seleafowisual features from five
types of Gestalt principles: symmetry, continuifyroximity, parallism, and
closure. They employ Hough transforms (BallardB7)%o detect line, circle, and

arc segments in a boundary image, from which p&rhiies, concentric circles,
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and arcs are calculated. They claim that Houghstoems automatically utilize
Gestalt principles such as continuity, proximitpdaparallelism, and can detect
occluded and confused components. The system atectd polygons using end-
to-end distances to group near neighbour line saggmnéut with the polygon
limited to triangles, squares, and rectangles. Hotrgnsforms require huge
computation time, so they limit the input imageotaton to 100 x 100 pixels.
The system generates Zernike moments for integratith previous features by
thresholding on saliency degree, and relevant isagee extracted by
maximumWBG matching. The system filters irrelevéedtures before matching
because all the features, except Zernike momeatairtransform invariant. The
system was evaluated with trademark images in a GiPEdataset with 50
gueries, with the performance measured by norndhjirecision P,), normalized
recall R,), and last-place rankind.{). The retrieval performance B, =0.66+
0.18, R, = 0.87+ 0.11, andL, =0.61+ 0.28, which suggests that perceptual
grouping has the potential to match a human sinylgnudgment. This system
also has the potential to be extended to multipleponent retrieval by local

features.

2.3.2.12 Conclusion of reported trademark retrieval systems

A comparison of the discussed trademark imageeketti systems appears in
Table 2.2.

Chapter 2 22



Table 2.2 Properties of the trademark imageretrieval systems

System Required Provide Provide Used User Performance

Segmentation Perceptual | Shape Local feedback

grouping Similarity features

STAR Yes No Yes Partial| Yes Good
Jain and Yes No Yes No No Bad
Vailaya
ARTISAN Yes Yes Yes Partial No Good
Soffer and Yes No N/A Partial No N/A
Samet
Alwis and Yes Yes Yes Partial| No Good
Austin
Ravela and | No No Yes Partial | Yes Good
Mammatha
Chan and Yes No Yes No No N/A
King
Shih and Yes No Yes No Yes Fair
Chen
Yinand Yeh | Yes No Yes No Yes Good
Gori et al Yes No No No No N/A
Jiang et al No Yes Yes Partia No Good

Most of the systems require image segmentation pg¢x&avela and
Mammatha’s work. Only ARTISAN, Alwis and Austin, &ddiang et al. provide
perceptual grouping. There are two systems by Bé&ff&amet and Gori et al.
that do not provide shape similarity. All the systeuse global features, and some
employ local features. The systems that provide @eedback perform well

because the feedback reflects user judgement.

Many proposals capture different aspects of an @isagppearance, such
as texture, colour, structure, and shape (Rui.e1897; Bhattacharjee & Ebrhimi,
1999; Eakins, 2001; Eakins et al., 2001). An img@aitaspect of image
appearance is shape (Scassellati et al., 1994;d#tah: Gary, 1995; Safar et al.,
1999; Eakins, 2001). In the real world, many amlans rely on shape, for
instance medical diagnosis, law enforcement, aratlemark registration.
Moreover, colour and texture do not have enougtridnnating power to retrieve
some types of abstract or grey scale images (Jafiai&aya, 1996; Geradts et al.,
2001). For this reason, using shape features demnark image retrieval should
be investigated in more detail.
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2.4 Shape representation

An abstract trademark is a multi-component image ¢ontains graphical designs
that relate to shape retrieval. Generally, a shaplee representation of an object
from the external form or appearance of a patt8hapes can be simple such as
rectangles, circles, ellipses, triangles, or pohgjoor more complex such as

closed curves, or contours.

Human beings perceive shape by utilizing visuahyatys from the eye to
the brain (Levine, 1985). The pathways begin whenretina receives a pattern
of light and its information is sent to the braiyn the optic nerve (Bruce, 1996),
where the perception process is initiated. To expk shape by computer, we
analyse its contents and convert this to digitatdees. In CBIR, a shape can
comprise a configuration of binarised objects (degul as either black or white)

and be represented by 2D binary shape features.

Shape features are the descriptors that portragghearance of an object
in an image, and form the numerical data in thdyarsaprocess. Shape features
should have good discrimination power, be reliaddependent, and compact
(Ming, 1999).

Shape features can be extracted by coding or tmanstechniques
(Marshall, 1989), and have many possible represen including chain codes,
edge direction histograms, scale space histogreinwsd distributions, moments,
scalar quantities values, line-sums/projectionsies| stochastic values, contour

distributions, and transform values (Marshall, 1989

Shape features can be categorized in a numberys. \B@me features can
be used to restore an original shape, and are fthherealled information
preserving. Examples include contours and Fourescdptors. Other features
have insufficient information to restore the or@irand so are not information

preserving, such as perimeters, areas, and aspiest. r

We can also categories shape extraction technidguies two types:
boundary-based and region-based (Safar et al.,)1B88ndary-based techniques
need an edge detector to transform the image isteape boundary, and use only
the contour or boundary of a shape to calculatestepe feature. However,
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contour images require connected boundaries olutdipe segmentation process.
On the contrary, region-based shape features #&elai@d from an entire image

region.

Shape features can also be categorised into goizhllocal features. A
global feature is calculated using a whole imagel a local feature from some
part of it. Many researchers have used global feafubecause of their high
discrimination power. However, they cannot be usedthe presence of
occlusions, or for joined objects (Mehrotra & Gafy@95). Local features are
computed from local shape regions, and can potbntigal with occlusions.
However, local features are sensitive to noise ratation and by definition can
comprise many thousands of instances in a singlagém Therefore, pre-
processing is required to handle noise reductiantpdetection, and edge
detection and the sheer numbers of local featueg¢scted. Thus, local features
are more computationally expensive than globalfest

An important requirement for shape similarity inage retrieval is
invariance. Shape similarity should be invariant ttanslation, scaling, and
rotation (Loncaric, 1998; Geradts, 2002).

2.5 Global features

Many researchers use colour, texture, and shapetteve images (Jain and
Vailaya, 1995; Rui and Huang, 1999; Huang and Cha897; Datta et al, 2008).

2.5.1 Colour features

Colour features are used widely, and include MPEGelour descriptors
(Manjunath et al, 2001), CIELAB colour descriptqi®thman and Martinez,
2008), and colour histograms (Jain and Vailaya6)98olour features may also
be useful at the semantic level in colour imageeeal (Stanchev, 2003).

However, colour features are not relevant to ourkwaecause trademark
images are predominantly reproduced as gray toagem

2.5.2 Texturefeatures

Textures are measured by many features, includiRgeGH7 texture descriptors
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(Manjunath et al, 2001), Gabor-based features (8amet al, 2002), moment-
based features (Robert et al, 1979), contrast (Raddeal, 1979), correlation
(Robert et al, 1979), and entropy-based featureb€R et al, 1979).

2.5.3 Shapefeatures
We divide this approach into global shape featmlacal shape features.

Global shape features are calculated from theeesimiage object. Some

global shape features are listed below.
Aspect ratio

Ymax/ Xmax (Equation 2.1)

where yhax and Xnax are the maximum length of the shape along thedy an
x coordinates.

Fourier descriptors
O(t)=p, + Y A coslt —a,) (Equation 2.2)

where A and @ are the kth harmonic amplitudes and phase angles

respectively.
Zernike moments

_n+1

A= (Rpn(Ne™) *I(r,0)|r <1 (Equation 2.3)
T =5

where n is the order of Zernike moment with m ritjoet for I(r, 6).

R.m(r) is the set of radial polynomials defined by Zkeni

Roundness or compactness

vy = (perimeterf / 4n (area) (Equation 2.4)
Invariant moments

The two-dimensional moments of ordpr @) of image () are defined by:
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Hog =2, 2 (x=X)"(y=9)1(xy) (Equation 2.5)

The normalized central moments are defined as:

Hpq

Mg = ( )w :0,0=0,1,2,... (Equation 2.6)
00

where

w:%(p+q)+1 ; pto=2,3,... (Equation 2.7)

Seven invariant moments can be derived from therskand third order

moments (Mehtre et al., 1997):

M = 1750+ o2 (Equation 2.8)
M, = (70 + 170,) + 4051 (Equation 2.9)

My = (1730 + 162)” + (3701 + 1765)° (Equation 2.10)
M, = (750 +7712)" + (3751 + 7765)° (Equation 2.11)

m = (’730 - 3’712)(’730 + ’712)[(’730 + ’712)2 - :{7721 + 7703)2 J+ (37721 - ’703)(7721"‘ 7703)[3’730 + ’712)2 - (’721 + 7703)21
(Equation 2.12)

m, = (7720 —Tlo2 )l(773o + 1, )2 - (7721 + 103 )2 J+ 47711(7730 + 1, )(7721 + 7703)
(Equation 2.13)

m, = (3’721 - ’703)(’730 + 7712)[(7730 + ’712)2 - 3(7721 - 7730)2J+ (3’712 - ’730)(7721 + ’703)[3(7730 + ’712)2 - (7721 + ’703)2J
(Equation 2.14)
Local shape features can be calculated from laggibns, such as corner

points, boundary segments, curvature, and turnmggdea (Wang, 1999; Stanchev,
2001).

Global features are generally calculated from thele image without
utilizing multi-component contours, and therefdeenot represent the underlying

shape (Wang, 1999). Furthermore, global featuresaiademain consistent when
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the image content is affected by occlusion or dostaonnected components that
should also be compared in isolation (Mikolajcz2K02).Thus, global features
cannot support image sub-part retrieval and carobéounded by occlusions. For
example, the image in Figure 2.4 contains a triarggid a rectangle, but the
global feature is a single polygon. In addition, nypaabstract trademarks are
multi-component images, as in Figure 2.5. If anynponent is modified or

removed, the global feature description will chahgad so is not robust.

Figure 2.4 Occluded shapes

 ~d
7 B ” 43

Figure 2.5 M ultiple componentsin abstract trademarks

Experiments by Eakins show that component-basedmmat can be more

- |/

effective for retrieving similar trademarks thanaldryimage matching (Eakins et
al., 2001). Eakins (2003) states that using shajmments offers more

discrimination power than a whole shape boundary.

2.6 Local features

Local features can be used to find part of an imeggk so are more suitable for
multi-component image retrieval than global feasurgince they have the
advantage being able to match whole images or ismpg#s, and thereby support

multi-component image matching.

There are three aspects of retrieval by local fesatufeature location,

desirable local shape feature properties, and titehing method.
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We tend to focus on the salient local featuresnimaage, so using all the
pixels in an image to compute a feature is unnacgs®roposed methods for
manipulating the location include corner detectdesy point detectors, salient
point detectors, and interest point detectors. Godetectors label corner features
while the other types of detector label salientatmns in the image, such as
curvature inflections, curvature maxima, and poimesulting from image
transforms (Schmid & Mohr, 1997; Loupias & SebeQ9p

Good local feature properties that reflect imageilsrity are required. For
instance, local features representing shape shbeldnvariant to translation,

rotation, and scaling (Rui et al., 1997).

Local features can be used in part-image matchm@ ovhole image
matching. Matching results require a similarity kismy of database images

compared to the query image.

We would like to use structural and appearanceaufeatfor each interest
point. The structural features represent the stsipecture by quantifying the
spatial configuration of interest points that ahaomprises. For example, two-
largest-angle features of a Delaunay triangulatérinterest points has been
proposed for shape representation (Tao & Grosk@8}t9since it is highly
efficient at distinguishing objects by means oftdea point relationships. A
Delaunay triangulation of interest points is créatand each point’s angle is
measured, so the two largest angles in the saarggte can be selected. Also, the
local direction of SIFT (Scale Invariant Featureadsform), (Lowe, 2004)

features can be used to contribute to the spetditaf the structure of a shape.

The local appearance of features is used to représel properties of the
interest points. Lowe (1999eveloped SIFT features for object recognition,
which are robust under partial occlusion in clgteimages and he reported more
details of the SIFT approach in his later papeswg, 2004). He claims these
features are invariant to image scaling, tranghatiand rotation, when using
invariant key points. The local direction of theF3%lfeatures are the image
gradient magnitude §f1(x,y)||) and orientation {x,y)) of Gaussian smoothing

image:
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VI IO 9) =1 (x+1y))* +(1(x,Y) - | (x y+1)*  (Equation 2.15)

a2 1(Xy) - 1(x+1y) (Equation 2.16)

)= Y+ D -1(x y)

The magnitude and orientation are computed at &aghpoint. SIFT
features also provide an appearance descriptor tueisists of sixteen
concatenated 8 element edge orientation histogrggash element corresponding
to one of 8 orientation directions) extracted framx4 array of grids centred on

the key point.

Schmid and Mohr (2003) have evaluated the perfoomanrf a variety of
local descriptors. SIFT descriptors were the bfdlowed by steerable filters.
However, steerable filters have the advantage wf danensionality. They are
calculated with Gaussian derivatives, and applySSi@am kernels witls=7 in an
image patch of size 45. Each image patch perforntorevolution with five
different fourth Gaussian derivatives (Freeman 8&kdn, 1991; Mikolajczyk &
Schmid, 2003).

G,a=1.246(075-3x> + x*)e ) (Equation 2.17)
G,b =1246-15x+x)(y)e ¥+ (Equation 2.18)
G,c=1.246x% - 05)(y? — 05)e ¥+ (Equation 2.19)
G,d =1.246-15y + y*)(x)e <) (Equation 2.20)
G,e=1246(075-3y? + y*)e ) (Equation 2.21)

Due to their desirable performance characterisidST descriptors, and
other related local features, will be investigateddentify suitable features for
distinguishing shapes. Shape similarity judgmentars important aspect in
abstract trademark image retrieval and is explainetxt section.
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2.7 Shape similarity judgment

Patent office examiners consider trademark imagesdht, and so human image
perception and similarity judgement play an impottaole in trademark
identification. However, few researchers find imafgatures by utilizing

principles based on human visual perception.

Humans compare images using rules to evaluate #mmilarity, as in
Gestalt theory (Wertheimer, 1923). Psychologistsppsed the Gestalt laws for
grouping perceptual organization in images basedpooximity, similarity,
continuity, co-linearity, co-curvilinearity, closeir parallelism, symmetry, and

familiarity.

Murray et al (2002) states that the structure ef phimary visual cortex
(V1) reflect greatly an underlying use of local geafeatures, and higher visual
areas, including the lateral occipital complex (DO&ppear to group local image
features into coherent objects. This implies tlmahe local aspects of an image

could potentially have a large impact on human steamilarity judgments.

A number of researchers have reported that Infefiemporal (IT)
neurons are involved in shape recognition (Schwetrtal, 1983; Logothetis and
Sheinberg, 1996; Tanaka, 1996). Vogels et al (20@pprt that IT neurons
respond to non-accidental properties during shap#easity testing.

Biederman claims that humans perceive the non-aotadl properties of
an image, using them to fill and identify an objectmemory (Biederman, 1987).
The properties are smooth continuation, co-ternonat parallelism, and
symmetry, which support Gestalt laws. Figure 2. éwshexamples of recoverable
images derived from the non-accidental propertiiederman (1995) reported
that a class of objects comprising distinct viselaments could be represented by
"shape primitives", as opposed to amorphous objpbish are not amenable to
such decomposition. Trademarks are an exemplatgros of objects that can be
decomposed into primitives, hence Biederman's m&tog by components
theory is highly appropriate here.
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Figure 2.6 Recoverable images derived from the non-accidental propertiesin al-cl and the
original imagesin a2-c2

2.8 Grouping and non-accidental properties by computer

Gestalt laws group a number of (typically small)age structures into
perceptually significant larger components, which @an use to measure image

similarity.

Gosselin and Schyns (2001) developed Bubbles, #@nigee for
measuring human categorization performance for iBpedsual information.
Bubbles are generated from holes punctured in @erebd image by Gaussian
windows. Gibson et al (2007) have shown that themdmuvisual system is biased
to recognizing objects from non-accidental progsrtby using Bubbles. This
result is also supported by Biederman (2007), whseoved that non-accidental

image feature properties are vital for recognizbgects.

We believe that by applying perceptual grouping amah-accidental
properties of local features, we can model humiem-perception for retrieving

images by computer.

The Gestalt laws show that shape is very importanhuman visual
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similarity judgment. Biederman (1987) has shownt thamans can recognize
shape by distinctive elements. The success of hwmsaal perception encourages
imitation for image similarity by computer. Non-&bental properties are

potentially of use in human shape similarity judgem and this idea provides the

motivation for interest point extraction.

2.9 Interest point detectors

Interest point features supports the machine imeteation of visual perception
concepts derived from human vision, including npidticomponent matching,
and interest points also have high information eofjtand are robust to partial
visibility (Han & Guo, 2002). In mammalian visiogystems, the broadly
equivalent functionality is manifest within end4sped cells which are believed
to represent shape, and also maximally respondrteecs or vertices (Biederman,
1995).

Interest points are required to specify the posgiof local features, and
so have been used by many researchers for objesgnigion for many years
(Schmid & Mohr, 1997; Loupias & Sebe, 1999; Low899; Jugessur & Dudek,
2000; Sebe, 2001). Interest point detectors afentques to find the location of
the most important image points that are also @stepoints (Schmid & Mohr,
1997; Sebe, 2001), which allows these to be usetbiopare the similarity of
images (Schmid et al., 2000). Interest points cancbrners, junctions, signal
changing points, maxima curvature points, and goiesulting from transforms
(Schmid & Mohr, 1997; Smith & Brady, 1997; Loupi&sSebe, 1999; Schmid et
al., 2000; Sebe, 2001; Sebe & Lew, 2003).

We divide interest point detectors into two catégoin terms of their
input. Intensity-based methods use an image dyrecitl calculate interest points
using every pixel an image. Boundary-based methm#s shape boundaries of
input images and calculate interest points usifg arfraction of the pixels in an
image, such as its silhouette. Intensity-based oustlilo not have the problems of
segmentation or edge detection, and can extradtaad or connected objects.
On the other hand, boundary-based methods haveotieatial to reflect the real

shape of an object more accurately than intengised methods. In this research,
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we focus on intensity-based methods because theptdeequire object boundary
contours to be segmented and can be calculated &oaw image. Therefore,
only interest point detectors based on intensityedamethods are investigated in

more details.

Todman and Claridge (2000) state that low-leveltuiess, such as
junctions, are important for perceptual groupingnc® perceptual grouping is
required in trademark image retrieval, perceptwaliging is investigated in next

section.

2.10 Per ceptual grouping

The Gestalt laws of organization attempt to codpgrceptual grouping
mechanisms in human vision Many researchers hapéedpGestalt laws to
computer vision (Lowe, 1985; Mohan & Nevatia, 198&ng & Walker, 1994;

Sarkar & Boyer, 1994; Havaldar et al., 1996; Bo§e®arkar, 2000; Rome, 2001,
Kruger & Worgotter, 2002).

Eight perceptual grouping laws are widely usedyelew:

e Similarity: groups image parts that have similaralofeatures. We

may use two features to measure this property (& &900).

e Proximity: groups image parts that have similaraloteatures,
which are close to each other. We may use two patmimeasure
this property (Jacobs, 2000).

e Continuity: groups image parts that construct goodtinuations.

We may use curve fitting to measure this propelacobs, 2000).

e Co-linearity: groups image parts that approximatkdy on the
same line. We may use angle and perpendicularndistbetween
two lines, or local intensity gradients, to measthis property
(Walker & Kang, 1994).

e Co-curvilinearity: groups image parts to produceger curves.
We may use curve fitting to measure this propekiyn{a et al.,
2000).
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e Closure: groups image parts that produce closedesuWe may
use curve fitting to measure this property (Kimiale, 2000).

e Symmetry: groups image parts to produce parallel soper
segments. We may use curve matching to measuretbperty
(Kimia et al., 2000).

e Parallelism: groups two parallel line segments. Way use the

angle between two lines to measure this property.

The fundamental laws that determine perceptual @nguare proximity,
similarity, closure, and simplicity (Wertheimer, 2Z3. Simplicity tends to
organize components into simple components acogridirsymmetry, regularity,
and smoothness (Wertheimer, 1923).

Ben Av and Sagi (1995) show that similarity andxamaty properties can
be measured based on intensity autocorrelationsleshent features. For that
reason, SIFT features and related local featureddcbe used to measure
similarity and proximity properties. Structural feees, such as moments, can also
be used to measure the simplicity property. We @septo use local features to
achieve perceptual grouping according to similargyoximity, and simplicity

laws.

Because local feature groupings can potentiallycate either the local or
global characteristics of images (Lowe, 2001),rdsilts of grouping will be used

to measure image similarity.

Using the similarity law, we can see that compongmpe similarity
results in the percept of horizontal rows in Figdré and Figure 2.7 (a) is more
similar to Figrue 2.7 (b) than Figure 2.7 (c), mstcase based on the degree of
local shape similarity since the global spatial confadion of the feature

locations in (a), (b) & (c) below is identical.
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Figure 2.7 Similarity groupings suggest horizontal rows

Using the proximity law, closer components can becgived as groups
forming vertical columns in Figure 2.8. Figure Z& is more similar to Figure
2.8 (b) than Figure 2.8 (c), based on the structdirhe global configuration of

the identical local elements in each example.
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Figure 2.8 Proximity groupings suggest vertical columns

Using the simplicity law, the area which is encbhd®y a symmetrical
shape is perceived to be consistent in form. Figudga) is perceived to be more
similar to Figure 2.9 (b) than to Figure 2.9 (c¥&d on the degree of symmetry of

each element.

¥V - \

(a) (b) (c)

Figure 2.9 Symmetry grouping suggest (a) and (b) are more similar than (a) and (c)

Chapter 2 36



However, it must also be noted that the shape aiityillaw could also be
invoked here, as Figure 2.9 (b) could be considerdx a less distorted version
of Figure 2.9 (a) than Figure 2.9 (c) without taksymmetry into consideration.
Therefore, the perceptual influence of the difféignouping laws cannot always

be untangled, and may potentially operate simutiasky.

2.11 Discussion and conclusions

The literature shows that there are gaps in therteg trademark image retrieval
research. There are few useful techniques for glasihape matching in the
context of trademark retrieval, because those iegistechniques tend not to
support multi-component retrieval. Many techniquesd image segmentation,
which is an unsolved problem. Also, there are fesearchers who use human
perception for trademark image retrieval, which nseathat the shape
representation does not reflect the shape as dbasstl by human perception.
Finally, global features are not suitable for eathng occluded or connected

component images.

Human shape perception offers many advantagesrddermark image
retrieval. However, there are the problems of abetu and connected
components, segmentation, and multi-component nmgichlrademark image
retrieval must support partial shape matching amétirnomponent retrieval, and
can employ non-accidental properties of local fesguto avoid tackling

segmentation issues.

We believe that using interest points in trademiankge retrieval can
improve the performance of systems for abstraafletreark image retrieval.
Interest points have been reported in the liteeatarhave been used successfully
in image retrieval (Schmid and Mohr,1997; Lowe,1,9980lf,2000; Sebe,2001).
Also, interest points are well suited to supportipgrtial matching and local
feature extraction because they can be toleratiteceffects of local occlusions.
Therefore, we propose to group the locations oéaetl local features loosely
based on a subset of the Gestalt laws and potgrnhah manner that exploits the
non-accidental properties of these features. Famgike, by applying a transform

space, or a robust affine estimation process, letwiee local features extracted
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from compared images, we can characterise the @ssdof fit of matching
features. We can then evaluate the similarity ekéhfeatures in higher semantic
terms by evaluating the spatial configurations @tching feature constellations
using standard techniques such as statistical msm&herefore, we propose to
compare images both in terms of the similarity xdf&cted local features and also
in terms of different measures of the similaritytbé spatial configurations of
these local features. In the next chapter, we me@mn approach for retrieving
trademark images based on these ideas.
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Chapter 3

A Principled Approach to

Trademark Image Retrieval

This chapter provides an overview of a new approach to trademark image
retrieval that tackles the complicated problem of dealing with similar images. The
main goals of this research are examined, providing motivation for our system
framework. We give an overview of the approach and of the system framework.

3.1 Summary of our Goals

Trademark retrieval systems typically utilize téetsed retrieval, with keywords
obtained from components of the trademark beingstigated. The trademark’s
figurative elements are annotated using the Viedaasification to describe
trademark images. However, text-based systemsiraecbonsuming and (very
labour) intensive. Furthermore, the use of annmiatiis unsuitable for abstract

trademark image retrieval.

One of our aims is to develop new techniques fotchiag trademark
image elements, which require new methods for sghpartial matching and
shape perception problems. The research literdigidights several issues with

current types of matching processes and shapevalri

1. There are few techniques aimed at partial shapechimat, which is

necessary for supporting multi-component retrieval.

2. Many approaches require exact image segmentatitighwis still an
unsolved problem in the general case. Consequéhége techniques may

not extract appropriate component shapes from agem

3. There is little work that reports employing humasual perception and

shape similarity judgment for shape retrieval, Whieeans that the chosen
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shape representation may not reflect the real sbie trademark.

4, Global features are not suitable for retrieving leded or connected

component images.

The second and fourth issues can be addresskxdddyfeatures, while the

first and third issues can be dealt withibigerest points.
In summary, our goals are:

. We will utilize certain principles employed in humaisual perception in
our system. The Gestalt laws of organization shbat shape is very
important in human visual similarity judgment, amalve been applied to
trademark image retrieval (Eakins, Boardman et1898; Alwis and
Austin 1999). However, additional segmentation aludtering processes
are required to group image elements, so Gestaltpgng principles can
be applied to obtain meaningful components. In tamdi retrieval failure
is a problem due to segmentation and clusterindegaacies. Biederman
has shown that humans recognize shapes using dtilgtinelements
(Biederman, 1987). Since trademark images contaittipte graphical
shapes, shape similarity judgement has a vital tmlplay in trademark
image retrieval. Non-accidental properties greafsist human shape
similarity judgement, and this observation provitles motivation for the

inclusion of interest point extraction and locadti@&es in our system.

. Our system will support multi-component image eatal. This will allow
local features to be used to find image elememid,jadge a shape more
effectively. Local features are more suitable faulticcomponent image
retrieval than global features, since they canrbpleyed in both part and

whole image matching, and support multi-componerage matching.

We describe our proposed approach in more det#ila next section.

3.2 Overview of Our Approach

Our approach deals with the similarity problem hesgw trademark images. Our
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framework utilizes interest point extraction, loézdture calculations, and
decision making strategies. These capabilitiesim@issed briefly below, and we

provide a roadmap to their detailed treatment lmssgquent chapters.

Trademark registration is time consuming and lakotensive, so more
effective, and automatic, trademark image retriewaluld be beneficial. An
important drawback of current systems is that absttrademark images are
difficult to describe by keywords, making contemisbd image retrieval an

attractive solution.

Abstract trademark images are usually multi-componmages, which
present many problems for shape retrieval. Prevgiudies show that interest
points provide useful information for image retaéySchmid et al., 2000; Harris,
1988; Chabat et al., 1999; Smith and Brady, 19%®heSand Lew 2003). They
support partial matching and local features, thereloiding the occlusion

problem. They may also reduce the amount of matdaéal

Our system will utilize the following elements tapport the efficient

retrieval of trademark images:

. Interest points, to provide useful information,ttiban be used to specify
the positions and provide the spatial configuratminextracted local

featuers, in a form suitable for abstract tradennage retrieval.

o Shape descriptors, based on interest points aral features, to offer
capabilities similar to a subset of those which gredominant in human
visual perception. Shape descriptors also provsiful information for

measuring shape similarity.
The main questions that need to be addressed are:

. Which interest point techniques can most effecyivi#dal with distorted
trademark images (e.g. with noise, rotation, tratnsh, and scaling)?
Interest point detectors can be divided into twamtgpes. Intensity-based
methods obtain interest points by pixels calcufegion the entire image.
Boundary-based methods obtain interest points bl ptalculated on
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certain parts of an image, such as on silhouettesontours. Intensity-
based methods do not have segmentation problenmedge detection
iIssues, and can extract occluded or connected tebjé¢e investigate
these questions in chapter 4.

. How can interest point techniques be applied todbmain of abstract
trademark image retrieval? Interest points canttyead the creation of
local features because they provide information texn suitable for
measuring image similarity (Schmid, Mohr et al0@0Han and Guo
2002). We look at applying interest points and Ideatures to abstract

trademark image retrieval in chapters 4, 5, and 6.

o How can perceptual grouping be carried out autaray? We believe a
solution lies with shape descriptors that consiktlazal appearance
features and the spatial locations of local feastubased on Gestalt
principles to reflect certain aspects of human aliquerception. Gestalt
principles have been previously applied to extrarglobal features based
on contours (Eakins, Boardman et al. 1998; Alwisl austin 1999).
Contour features require segmentation, and the rmdpawback is
incorrect clustering (Eakins, Boardman et al. 1988nce, we propose to
represent the relationship of image componentsnyyl@ying transformed
shape descriptors (i.e. appearance and struceaalres) globally based

on Gestalt principles. Further details can be fomnchapter 6.

. How can shape descriptors be generated which gissh between the
component shapes in an abstract trademark imageal lfeatures are
more suitable than global features for multi-congm@nimage retrieval
because of their robustness if any image comporsatiost. We utilize a
vector of appearance and structural features ag@esdescriptor (Datta et
al., 2003). A vector can be used for training arelednining shape
similarity that can potentially reflect aspectshafman visual perception.
We evaluate this approach in chapters 6, 7, and 8.
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3.3 System framewor k

We are motivated by the idea of grouping thosespaifrtan image which contain
non-accidental properties in order to recognisepebaRecent research results
show that non-accidental properties can potentiadyused in object recognition
(Biederman, 1987; Lowe, 1985; Draper et al., 2008)n-accidental properties

are also potentially implicated used in human slsapéarity judgement.

Interest points are suitable for extracting impotrtareas in image that
result from the non-accidental properties of tipairts. In addition, interest points
can provide high information content and are inh#ye robust to partial
occlusions (Schmid and Mohr, 1997). We apply apregt point detector to an

image in order to extract interest points.

Local features have the potential to allow the eysto achieve partial
matching and they support multiple components nagcfiLowe, 1999). We use
interest points to specify the positions of loedtlres. SIFT features are selected
to be the primary features adopted by the systecause they are robust and
exhibit high discrimination power (Lowe, 1999; Sddnand Mohr, 2003). The
best candidate match to each interest point isifigedoy locating smallest
Euclidean distance between each feature extramed the input image and each
feature to which this is compared in the datab&seterest points. (Lowe, 2004).

This process can eliminate insignificant pointswieo 2004).

We can measure perceptual grouping from local featwsupporting
Gestalt laws and reflecting shapes (Liu et al., 7200Appearance-based
approaches have been used in object recognitiomnfédger et al., 2000). The
appearance features can solve many problems suabwaating the need to
segment image parts and can also facilitate geamnetodeling of complex

objects (Hornegger et al., 2000).

The system uses meta-feature vectors (also cdibgokesdescriptors, which
contain structural features and appearance feattoesraining and determining
similar trademarks. The meta-feature vector supparhan-like perception of

shape, using appearance similarities and structinailarities (based on the
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spatial configuration of local feature locationspgoints matched using specific
properties such as orientation and proximity. Th&ba characteristics of an
image such as global size and global orientatiendatermined using statistical
measurements that describe the spatial distribsitdrthe interest point locations
(details in chapter 6). These global image charaties are computed using local
features to group similar parts of an image fomepla Figure 3.1 shows different
global orientations of six hearts to which the samegree of rotation as been

applied.

veOeY >
Al S

veowv T

(@) (b)

Figure 3.1 images of six hearts (a) in global 0 degree and (b) in global 20 degrees

The Hough transform (HT) can also be applied tofgper perceptual
grouping. The Hough Transform is employed to sup@@stalt principles such as
continuity, proximity, and parallelism (Jiang et,&006). Draper et al. (2003)
suggests that the Hough transform is suitable éprasenting appearance-based
recognition. The Hough transform can also retrieféerent shapes (Ballard,
1981). In addition it can be applied to measure-acridental properties such as

parallelism, and symmetry (Draper et al., 2003).

The interest points groups from Generalized Hougan3form (GHT)
(Ballard, 1987) are successfully used in objecbgedion, panorama stitching,
and 3D matching (Brown and Lowe, 2002). In thisechswe applies the GHT to
SIFT keypoints that match between compared imagegder to determine the

relative scale, rotation and offset between thesges.

The GHT is in essence a voting space that rectrprobability density
of the occurrence of matching local features betwesmpared images. Where

matching features have similar properties, clusippear in Hough space.
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Accordingly, by detecting these clusters we hawaechanism for binding the
features associated with each cluster into a gtbap exhibits some common
property, such as dominant orientation, spatialescln turn this mechanism
provides a means of associating similar groups éetwcompared images, and

hence a means of comparing image similarity basddaal property grouping.

Our proposed system uses the GHT to cluster maticlhekst points: for
example, the percentage of matched point and itttiddest points could be used
to measure overlap proximity (details in chapterFegure 3.2 (b) shows overlap
of three hearts from Figure 3.2 (a). Further preesdased on the GHT can also
be applied to measure other perceptual groupingsumsystem, such as the
standard deviation of the difference between palinmatch points after an affine
pose estimation process (details in chapter 6).
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Figure 3.2 images of six hearts (a) with no overlap and (b) with 3 overlapped hearts
The system determines the similarity of images bypleying meta-

feature vectors and support three visual percepiroperties that are similar to
Gestalt grouping based on proximity, similaritydasimplicity. These structural
grouping features allow global comparisons to bedenbased on diagnostic
summaries of local feature groupings captured tverwhole image. The above
is much less general than human vision, which efiopm the same grouping
tasks in a local and hierarchical basis, and alakentomparisons based on these
sub-groupings. However, we can decrease the gdbpiosemantic issue using
high-level semantic-based retrieval technique$olk®ws:

High-level semantic-based retrieval techniquesdiveled to five major
approaches: (1) using object-ontologies such aswéels or qualitative

definitions; (2) using machine learning methodshsas decision trees (Mitchel,
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1997) or support vector machines (Burges, 1999)uéing relevance feedback
(Zhou and Huang, 2003); (4) using semantic templateh as sample images or
keywords; (5) using textual information and vistedture extracted from images
(Liu et al., 2007). The high-level features have potential to achieve higher

performance than low-level features (Liu et alQ20

Only machine learning and relevance feedback appesado not require
a textual description. We aim to build the systentheut any keyword
requirement. Hence, we employ machine learning bgma of decision trees ID3
(Iterative Dichotomiser 3) and relevance feedbaok iritroduce high-level
semantics into our system. Decision trees are @mslded to reflect human
judgement. In our system, they train the similantgctors using relevance
feedback (details in chapter 6). Using relevaneaglback, a user might imply
which of the global grouping properties are relévay consistantly selecting as
relevant image examples that exhibit the desiredatiproperty. For example, if
similar images are returned and those exhibitingagticular arrangement of
components, say set in diagonal lines, are selededlevant, then a decision tree
will be formed that accepts this bias based on adimg decision thresholds
using the information contained in the meta-featweetor, (in this case most
likely summed local feature orientation and/or glofeature cluster orientation).
Alternatively, a user might consistantly select gms containing sub-components
that are widely spaced apart, and in this casespiatial feature proximity (or
cluster spatial variance) will indicate images eaming similarly widely spaced

out components.

We can summarise the system framework in FigureTh8 system is
implemented in chapters 6 and 7, and evaluatetiapter 8. Our system is
divided into five processes, linked together sodbgput from one process acts as

input to the next.
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Input query
image

Interest point extraction by interest
point detector

llnterest points

Calculate local features and matched
points

lMatched points Structural and

appearance meta-
features to describe
an image

Calculate shape descriptors (queny
and database meta-feature vectors)

l Shape descriph

Compute similarity between
guery meta-feature vector
and database meta-feature

vectors

Database of
trademark images and
meta-feature vectors

Similarity scores

Relevance feedback and relevanlce Relevance feedback and
classification to select similar decision tree (ID3)

trademark images relevance classification of
database images

Similar images

Display result

Figure 3.3 System flowchart for similar trademark image retrieval.

A query image triggers the first process, whichraots interest points
from the image. The second process computes leadlifes situated at interest

point locations and matches candidate points. Tivel fprocess is to generate

Chapter 3 47



descriptors from the interest points and localuesd, which are stored as meta-
feature vectors (containing structural and appe&ranformation). The query
meta-feature vector is calculated from the quergge; and the database of meta-
feature vectors is computed from both the querydatdbase images. The fourth
process matches the query image’'s meta-featurervegainst a database of
existing meta-feature vectors. The user then sepplklevance feedback about
similar trademarks, and the system judges the irsage@sing decision trees, and
outputs a set of similar trademarks.

3.4 Summary

Our main goal is to develop a new machine percepji@uping technique that
provides an efficient way to retrieve abstract éradrk images. Critical to this
technique is support for human-like shape percept@ther requirements are

interest point techniques and shape descriptoesdbas local features.

The system framework is divided into four main @eges:
The extraction of interest points.
The calculation of local features and matched goint

The generation of meta-feature descriptors froralléEatures.

e

The matching of a meta-feature vector represerttiegquery against a

database of existing meta-feature-vectors.

5. The selection of similar trademark images.

In the next chapter, we investigate techniquesxtmaet interest points to

be used in trademark image retrieval system.
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Chapter 4

Performance Sudy of Interest Point Detectors

In this Chapter, we investigate and evaluate intgAzased interest point

detectors. We have investigated many detectors @mbsen four effective
detectors with which to experiment. We study ampiaexeach detector in section
4.1 and test the ability of four interest point etgbrs to detect features within
basic shapes and also within 20 samples of tradknmages in section 4.2. An
evaluation of the chosen interest point detecterparformed to compare their

relative performances in section 4.3. We draw auratusion in section 4.4.

4.1 Interest point detectors

According to Biederman’s suggestion that humans wrognize structured

shapes by their distinctive parts, we are motivdigdhe idea of using interest
points in trademark image retrieval (Details in iea2), because interest points
represent visually salient information and are stlio partial occlusion In other

words, using interest points would appear to haeepbtential to support human-
like perception of shape. As a consequence, rdse@rtiave used interest points
for successful object recognition.

We can divide the interest point detectors into ma&in categories: those
which are based on intensity-based methods ane thbch based on boundary-
based methods. Intensity-based methods use ewveglipian image directly to
detect and then calculate interest points. Gregtlautensities can directly
provide object characteristics (Horn, 1975; Allezand Jurie, 2000). Boundary-
based methods extract shape boundaries withinret image and calculate
interest points from image contours. If contoura ba extracted accurately, the
boundary-based method has the potential to reftextreal shape of an object
more accurately than any intensity-based methodkfitésian and Suomela,
1998; Mokhtarian and Mackworth, 1992). However,uaate image segmentation
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requires human guidance (Zhang, 2006). On the dthed, the intensity-based
method does not require segmentation or conto@ctieh, and can even extract a
partially occluded object or connected objects (@dhand Mohr, 1997, Allezard
and Jurie, 2000).

In this research, we aim to reduce human interganttith the system to
retrieve similar trademarks. For that reason, gstesn will use raw images as

input.

The intensity-based detectors use an input imagettl, i.e. they use the
image intensity field to calculate interest poiritkis kind of detector includes the
Harris corner detector, Chabat detector, SUSAN (EstaUnivalue Segment
Assimilating Nucleus) corner detector, and the Wketvieased detector. The
Harris detector uses a local autocorrelation amalygthod (Harris and Stephens,
1988) and is reported to be robust to noise, waratnd lighting (Schmid et al.,
2000). The Chabat detector uses an orientationysisainethod (Chabat et al.,
1999) and is invariant to noise and lighting vaoia$ (Zhou et al., 2002). The
Susan detector uses a nonlinear filter analysihode{Smith and Brady, 1997)
and is robust to noise and viewpoint changes (Ghal.e2003). The Wavelet-
based detector uses the wavelet transform anaheisod (Sebe and Lew, 2001)
and is claimed to be invariant to image rotatiod anage scale changes (Sebe
and Lew, 2003).

We implemented Harris and Chabat detectors, and tise original
software in (Smith and Brady, 1997; Sebe and L&012 All of the detectors we
evaluate have been implemented in the C/C++ compatgguage. We give

details of each detector in the sections that fallo

4.1.1 Harrisor Plessey detector

The Harris detector is based on the local autoetation function (Harris, 1988).
The fundamental idea is to measure the changerielabon of a window (with
respect to its starting position) as it shifts glan image in order to find the
shape of the local autocorrelation function; caatidnterest points are extracted
by measuring autocorrelation changes produced bystiifting window. The

change produced by the shifting window is givenBgy,y) E is approximately
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the autocorrelation function.
E(x, y) = AX+ 2Cxy + By (Equation 4.1)
= (x, y) M(x, yJ (Equation 4.2)
M is the 2 by 2 symmetric matrix below.

M A C (Equation 4.3)
|Cc B

We can calculate AB, andC using the following Equations.

A =X ®w (Equation 4.4)
B=Y®w (Equation 4.5)
C=XY)®w (Equation 4.6)
W= Wy y= exp —(F+v?)/26° (Equation 4.7)

wherew is a smooth circular window produced by the Garssinction,
uandv are window positions along tlxeandy axes respectively

In this implementation, the method calculates thage first derivatives

along thex andy axes K andY).
X=1xy)®(-1,0, 1) =4/ & (Equation 4.8)
Y=Ixy)®(-1,0, 1= Al & (Equation 4.9)
whereXis the image first derivative along thexis,
Y is the image first derivative along thexis,
I(x,y) is the pixel image,
®@is the convolution operator.

Because the shifting window auto-correlation fumetof a corner point
has a minimum value when centred on the cornemcameuseMV to detect corner

points. If « and g are the eigenvalues M, corner points will have higk and g
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values. We use the corner respori®et@ detect corner points.

Tr(M) = a+p =A+B (Equation 4.10)
Det(M) =« =AB-C (Equation 4.11)
R = Det(M) -k Tr(Mj (Equation 4.12)

Then the strength of corneR)(is calculated by
R = (AB — @) — (k (A+BY) (Equation 4.13)

In this research, we ude= 0.04 as suggested in Harris’s article (Harris,
1988). Corner points are then selected using ashbtd (the determined

minimum ofR).

4.1.2 Chabat detector

A Chabat detector is based on a single derivatyeeme (Chabat et al., 1999). It
can detect corner points and the orientation o @acner. The detector computes
the corner location and the direction of edges jihiatthe corner. This method is

made less sensitive to noise by using a local &gy method.

We detect possible corners using an analogy t@tiveer spectrum of a
line in the Fourier domain; a line gives an exatemsity direction. Thus, we
assume that a strong intensity direction is refléas a cluster within the power

spectrum and thereby indicates the presence oéa li

The orientationd(x,y) and the strengtlg(x,y) of the anisotropy of an

intensity pattern in one direction can be approxedas follows:

1 [J21.1, axdy (Equation 4.14)
-1 Q 72'
O(x,y)=—tan 2
2 [Jaz-12)dxdy 2

Q

whered(x,y) isthe direction of anisotropy

(”(If—Iyz)dxdy)2+(”2lxlydxdy)2

Q Equation 4.15
(”(Ix2+ |§)dxdy)2 (Equation )

g(x,y)=
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whereg(x,y) is a measure of anisotropy along one direction.

We calculate the orientation of a corner by integgathe image first
derivatives along the x-axis and the y-axis in otdereduce noise sensitivity. A
value of g(x,y) close to 1 there is a strong gmaddirection in one orientation; if

the value is equal to O there is no dominant gradieection in that area.

Chabat (1999) claims that corners have two pragrtcorners and
junctions exhibit strong intensity gradients; cambave more than one dominant
gradient direction. Then, the cornerness is basethese properties; the corners
are computed by an anisotropic method along sed#r@ttions of the intensity

derivative (cornerness). The cornernegg,f) is calculated by

c(x.y) = gx.y) ) //VIxy) // (Equation 4.16)
where
p(t) = (1) (Equation 4.17)

, m =% as suggested by Chabat.

//IV1(x,y) //is a gradient magnitude that calculated by

/IVI(x.y) /= aal—: +8J—ay2 (Equation 4.18)

wherel(x,y) is a pixel in the image.

A cluster of high value cornerness is considereidéatify the presence of
one corner and the point with highest cornernes$iseis an exact corner location.
Corner points are then selected using a threshbidhadetermines a minimum
value for cornerness. However, some edge pointdgetected as corner points, if
corner area is wide or the image is very noisy.séhgoints are eliminated in the

final process.

The corner’s orientation is calculated from theeptation of the edges to
which it connects. The function that specifies thembership of edges that

contribute to the cornef) is computed by
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sq(%Y) = g(y)/VI(x,y) //cos' a (Equation 4.19)

Equation 4.19 consists of two partgx,y)//V I(x,y) // measures the edge
strength exhibited by the cornerps'(a) measures the orientation difference
between an edge pixel and the corner arm. Follov@hgbat’'s original article
(Chabat et al., 1999), we use 3 to calculategg(X,y).

The value ofs;(x,y) is small if an edge pixéM;) is not aligned with the
direction of the corner poin€) - shown in Figure 4.1.

G

Figure 4.1 Direction of corner arm (51. I\/I_I ) and edge pixel (M;)
The anglezis the angle of the orientation difference betwaeredge

pixel (Mi) and corner arm@ ;M ; ).

a=(u, V)

= H(X)—tan‘l(%) (Equation 4.20)

Then, we calculate the corner confidence by tha aneler the)(X,y)
histogram or the maximum of tisg;(x,y) histogram.

The histogramH) is summed for all corner neighbourhood windows

(") with a given direction.

VB pel027):H(B)= ZSC(]-)(X, V)@, (X Y) (Equation 4.21)

xel|6(x)=p

;) (% Y) =L ) ~(CO) - M (X)) +(C(y) + M(y))* (EQuation 4.22)

D¢ (x,y) is a weighting function to decrease the vadfigixels the further they

are from the corner point centre. It is a posifivection with a weight maximum
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at C; and zero when outside the windaj\ﬁ)) We usel to be 10 pixels as in the
original article (Chabat et al., 1999).

The number of peaks in the histogram shows the ofgeoint. If it has
two peaks, it is a corner. If it has three or marés a junction. To increase the
robustness of the method with noise corrupted imagecorner with low corner
confidence is eliminated. Finally, the number ofr@y points can be specified or
a threshold set to select cornerness above a gp@afnitude value.

4.1.3 SUSAN detector

SUSAN uses a non-linear filter to measure pixephrness from a group of
similar pixels in a local region (Smith and Brady@97). This non-linear filter
uses a circular mask with a centre pixel as a msgcldhe mask area is also
defined as the area of USAN (Univalue Segment Agaiimg Nucleus). We can

use USAN area to calculate the structure of thegena

Every pixel in an image is given its USAN valueusing a small circular
mask with that pixel as the nucleus. USAN has aimam value when the
nucleus is on a flat, non-varying area within thrage. The USAN decreases to
half of the maximum value when it is near a straggige and it has its minimum
value when it is on a corner. Therefore, the ire@tJSAN value can enhance
edges and corners in images; this leads to arpnetation of SUSAN. SUSAN
can suppress noise by a USAN function, if the n@semaller then the USAN
function.

The circular mask should be 37 pixels from the axshempirical study
(Smith and Brady, 1997). The mask is placed over ggixel in the image to
evaluate the pixel brightness. A USAN value is glted by the equation below.

(F)-I (r'o)j6

o(F,F,) = e_( t (Equation 4.23)

where T is the pixel inside window area (circular mask),
I, is the nucleus pixel (the centre point),
I() is the brightness of a pixel,

t is a brightness difference threshold to suppressen
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cis the USAN value.

The total value of USAN area is calculated by

n(f,) =Y c(F,F) (Equation 4.24)

where n is the number of pixels in the USAN area.

The USAN arean) is compared to a geometric thresholg); (the
threshold is fixed t@ma/2 wherenmaxis the maximum value of all USAN values;
this threshold is used to suppress noise. USANsdfred have a USAN value less
than half of the USAN maximunmg,,) are labelled as corners.

The geometric thresholdg) can be used to reveal the corner shape; a
smaller value represents a sharper corner. Hehedhteshold can be fixed. The
brightness difference thresholt) {s not sensitive to the structure of the corner,
although it does control the number of detectechexs; a smaller value gives
more points. Smith claims that 25 is a suitablei@dbr general real images and 7
for low contrast images (Smith and Brady, 1997)adidition, this threshold can

be varied to specify a desired number of corners.

An initial edge responseR] is calculated to produce a corner strength

image. The initial edge response equation is below.

g-n(p) if n(f)<g

, (Equation 4.25)
0 otherwise

R(To) = {
We can differentiate and thereby eliminate falssitp@ corners from
edges and noise by checking USAN’'s centroid andtigoity. The USAN
centroid is computed as the distance from the mscle the centre of gravity. A
short distance from the centre of gravity to theleus is defined as a false
positive and eliminated. If a USAN area is smaliean the circular mask
diameter, the centre of gravity | is calculated. The centre of gravity equation is

as follows.

(Equation 4.26)
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The contiguity of USAN is defined; a condition isatithe lines running

directly from the nucleus to the centre of gravigwe to be a part of USAN.

Finally, non-maximum suppression is applied; thmeos are selected by
local maxima greater than zero from a window ofySlpixel regions (Smith and
Brady, 1997).

4.1.4 Wavelet-based detector

Nicu Sebe and Micael Lew presented the Wavelet-bsakeht point detector in
their article (Sebe and lew, 2001). This detectpregents a trend to detecting
evidence points at multiple resolutions by meansWidvelet transforms; a
Wavelet transform is used to represent a numbelisurete image scales. The
aim is to investigate the change of information daced by the Wavelet
representation at several scales. A Wavelet-basexhspoint detector can detect
a point as a high variation of the Wavelet coedints represented over several

scales of the Wavelet transform.

At coarse resolution, a high absolute Wavelet edefit implies that the
wavelet support region contains a high global degfevariation, i.e. high image
energy. Then, we can find a relatively salient padnta point identifying a region
of variation, by tracking the currently detecteddbon at finer resolution within

the next higher freqeuency Wavelet scale.

A Wavelet transform uses a scaling and translaftimetion to calculate
the frequency domain properties of the transfornWAvelet coefficient\(V, f )
is calculated by convolution of an image with a \&lav function at multiple
scales 1/2, 1/4, 1/8, ..::2 e zandj <-1.

W; =W, f where-J, <j<-1 (Equation 4.27)

max = 02N (Equation 4.28)

where N is a size of image.

0

W, f(n) = z (g(k—Zn) ih(l -2KA,.f (I)j (Equation 4.29)

k=—0
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where 0<n<2'N,

g is the wavelet discrete filter,

h is the scaling discrete filter,
f(n) is an image,

As is the approximation result at each of the scales

We use an orthogonal Wavelet with compact supmoltet the “Mother”
Wauvelet function, following Sebe (Sebe, 2001); dldwantage of this function is
that it provides a non-redundant representatiod,caefficients that can be traced

over scale.
The set of coefficients, or child Wavelets, is gii®nthe equation below.
(CONZ F(xy) = W, f (k1) 2x<k <2x+2p-1 2y <I|<2y+2p-1}
(Equation 4.30)
where p controls the shape of the Wavelet function,
0 <x <2\,

0<y<2N,

N by M is the size of image,

1<d<s,

p=1 for Haar function,

fis an image,

d is the section number of the Wavelet coefficient.

The Wavelet coefficient at the scalé\®/, f ) is based on2image points;

it shows information change at the scaleF2irthermore, the maximum absolute

value of the child coefficient setC(W,; f)) reveals the most salient point; it

corresponds to the maximum Wavelet coefficienhatscale 2.

We can extract a salient point by calculating aesaly value at all

transform scales. The tracking process begins gltest scale and repeats to
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extract the maximum coefficients recursively at éovgcales until reaching scale
1/2. There are 2p final points. We then select fgothat have gradient values
above a threshold. The saliency value of each thetquoint is calculated by the
tracking process and comprises the sum of the afesealues of the coefficients.
If the detected point has many salient values sgmried by the different child
Wavelets found during scale tracking, the highedtue detected serves as the

saliency value for that point.

The saliency value is obtained by the equationveelo

max—J

—j )
saliency= Z\cszi f(n)‘ ,0<n<2'N,-J__ <j<-1 (Equation 4.31)
k=1

Finally, we specify the threshold of the salienaglue. Setting a high
saliency value implies variation at the global lesad a small saliency value
implies variation at a local level. Therefore, thigher the threshold of the

saliency value the fewer the number of salient {gdimat results.

4.2 Development of interest point detectors

The interest point detectors extract potentiallijesa locations in an image that
can be used in shape retrieval. Generally, alhefdetectors specify the number
of interest points, but some detectors require tewdl parameters. The Harris
detector requires one parameter: the width of tleisSian curve. A Chabat
detector requires one parameter: the thresholdctnerness. The SUSAN

detector and the Wavelet-based detector do notrezgdditional parameters.

For testing, each detector is applied to the inmeage and outputs the
interest points. The test applied for basic shaedtion uses a rectangular figure
to provide four corner points. The results are sihawFigure 4.2.
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(@) (b) (©) (d)

Figure 4.2 Theresultsof (a) Harrisdetector, (b) Chabat detector, (c) SUSAN detector, and
(d) Wavelet-based detector on rectangular figure.

The results show that every detector can detececicorners in a basic
shape such as a rectangle. However, the shaped fouweal trademark images
are more complex than this. Each detector testeddcdetect interest points

within trademark images.

Consequently, the next testing phase employed satrgllemark images.
In this test, 50 interest points were extractede Tocation of each detected

interest point is depicted as a point in the testge, Figure 4.3.

()

()
Figure 4.3 Theresultsof (a) Harrisdetector, (b) Chabat detector, (c) SUSAN detector, and
(d) Wavelet-based detector applied to areal trademark image.

However, the above experimental result also shdwas €ach detector

extracts different points, because of noise andr tt#ferencing underlying
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computational approaches; therefore, these detebtore the potential to retrieve
the different shapes that trademark components tndgmprise. However, we
need to measure localization accuracy of the dateca highly accurate detector
is suitable for use in shape retrieval (Schmid [et2800). The next section

describes the experiment to measure the accuratw afetectors.

We measured localization accuracy of the deteatsisg a series of 20
guery images supplied by the UK Patent office atadiduring the evaluation
experiments of the ARTISAN system (Eakins et 898). In the next section, the
experiments designed to measure the accuracy ahtéeest point detectors are
explained.

4.3 Experiments of interest point detector accuracy

The experiment aims to measure the accuracy otteseto be used in trademark
image retrieval. Repeatability is used to evalubg accuracy of interest points
(Schmid et al., 2000; Sebe and Lew, 2003). The moajective is to find the

repeatability of each detector with different imagmales and transformations
(noise and rotation) (Schmid et al., 2000). A higlepeatability rate corresponds
to a higher accuracy rate (Schmid et al., 2000).adilition, high accuracy

detectors have the potential to be used in trademaage retrieval, because they

are transformation invariant detectors.

The following sections describe the methodologyb® used in the
experiments, the measurement of detector repei@yadnid experimental results.

4.3.1 Methodology

The implementation of interest point detectors isgpammed in C/C++ and
executed on a personal computer. In each experjnieatnumber of interest
points and the image test set are held constanh &athe detectors is configured
with the parameters specified in section 4.1.

The validation images are based on 20 trademargemabtained from
the UK Patent office for user evaluation of ARTISANhe images consist of
multi-component and different abstract geometriapgs; the average number of

components is seven.
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Miller (1956) claimed that humans use seven, plusimus two, chunks
of short term memory to distinguish information whe chunk is any meaningful
unit. The number seven then became the fundamentaber for the limited
capacity of short-term memory in all subsequenoties of memory. This leads
to a number of seven points for each component.ugéean average of seven
components for each image (Eakins et al., 1996¢. fiumber of interest points is
50 (7x7 to the nearest 10).

In order to validate shape similarity measuremest,add scaled, rotated,
and noise corrupted versions in our image testT¢et.image test set is based on
20 images that are transformed to provide two wesswith differing degrees of
noise added and three rotated versions; each setlied to three different sizes.
The total number of images tested is 360. The ldetme explained in the next

sections.

4.3.1.1 Imagetest set

There are three kinds of transformation used tcegga images for the test set
comprising size variation, noise addition, and imagtation. We found that at a
small size (64x64 pixels), the image contains legsrmation and it has many

close points. Therefore, a suitable image size ewassidered to be more than
64x64 pixels. Generally, the size of the imagesingplified to be a power of 2

(Petrou and Bosdogianni, 1999). The image sizes asee128x128, 256x256, and
512x512 pixels. The image scaling transform appli®described in section

4.3.1.2.

Gaussian noise of either sigma = 10, or sigma #s 350 applied to each
image; these values are cited by Bovik as being#&ypn a real setting and to be
difficult to remove by filtering (Bovik, 2000).

The test images are rotated by 15, 50 and 90 degieee researchers
reported that these values affect the changesroeped orientation of an image
(Goldstein, 1999; Elferink and Van Hof, 1988).

4.3.1.2 Image Scaling

The original trademark images are transformed latiglscaling to produce test
images of 128x128, 256x256, and 512x512 pixel dsiars. The scaled images
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preserve the aspect ratio of the original imadas;dan be performed by filling to

a square image. The filling process is shown iufagt.4.

=) =)

Original image

> [T
—*{ AT

Square image

Filling areas

Figure 4.4 The processto fill an image to a squareimage.

Then the square original image is transformed byirsg as follows.

X'=XxxS§, (Equation 4.32)
y'=yxS, (Equation 4.33)

wherex andy are the input pixel indices on tlxeaxis andy axis

respectively.

ScandS; are the scaling factors in tkendy dimensions and are given by
Sc= () /() (Equation 4.34)
S= /() (Equation 4.35)

where ny is the width of input image,

Ny is the width of scaled image,
ny is the height of input image,
ny-is the height of scaled image.

Examples of scaled images are shown in Figure 4.5.
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Figure4.5 Anoriginal imagein (a), scaled image size 128x128 in (b), scaled image size
256x256 in (c), scaled image size 512x512 in (d). All dimensionscited in pixels.

4.3.1.3 Image noise

Noise usually occurs during the image acquisitiod gansmission processes. It
cannot be predicted accurately. However, it cach@@acterized by a probability
distribution with a specific mean and standard aen (Parker, 1997). Any

transmitted imageB) is then modelled as the perfect imaggglus noisely).
B=A +N (Equation 4.36)

A andN are not related to each other. The noise N isrmalodistribution

with a zero mean and some standard deviation (Rar887).

So each pixel iB is the sum of the image pixel valueArand a random,

a Gaussian distribution noise vali&,((x)) with standard deviation as sigma.(

1 ez’ (Equation 4.37)

oN2rx

G, (X) =

Examples of noise corrupted images are shown iar€ig.6.
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a b

Figure 4.6 Gaussian noise corrupted images with sigma 10in (a) and sigma 30in (b)

4.3.1.4 Imagerotation

Image rotation rolls images around a centre pdihe transformed coordinates

are given by
X'=Xxcosd + ysing (Equation 4.38)
y' =—xsind + ycosd (Equation 4.39)
wherex andy are the input pixels of axis andy axis respectively,
@is the rotation angle between 0 and 360 degrees.

Examples of rotated images are shown in Figure 4.7.
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(@) (b)

(€)
Figure 4.7 Rotated images with angle 15 degreesin (a) 50 degreesin (b) and 90 degreesin
(©).

4.3.2 Repeatability

Repeatability measures the degree to which aniglgodetects the same features
from variants of an original image (Schmid et 2000). Repeatability is one way
to evaluate the accuracy of a detector; higher atgbdity indicates a more
reliable detector. This method can be used wherthiteg a copy of an original
image to a version of the same image that has gadera known transformation.
Therefore, a repeat point is reverse transformek lba its original location in
order to compare its residual position error. Adaagly, this approach serves as

an important method for measuring the localizatioouracy of detectors.

Repeated points are not required to be at ideniticaltions, as long as a
point is in the neighbourhood of the original, st iegarded as repeated. This
method uses a distance threshold to determine plitaative repeat point is
suffciently close to its original version to be epted. Figure 4.8 shows the

possible repeat poirtfrom imagel; on imagd..
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Figure 4.8 The possiblerepeat point x from image I, on imagel,

The neighbourhood size ispixels. Repeatability using neighbourhood
matching is called pseudo repeatability. The pseepeatability rater(l;, 1;) of
imagesl; andl; is calculated by:

min(n;,n;)

r(h,1,)=" D R(X,I;,1;)/min(n,n)*100 (Equation 4.40)
n=0

Loif(lx (1), x (1)1 &)

0 otherelse (Equation 4.41)

-]

wherey; is a point in the image,
|| X, % || is the distance between pointsindx;.

In this research, the pseudo repeatability is énrémge of O to 100.

4.3.3 Experimental procedure

In this section, we present the experimental procedsed evaluate the accuracy

of interest point detectors applied to abstracte¢naark images.

The test set of images was based on 20 images axarples of test
images are shown in Table 4.1. The structure eédesnages is shown in Figure
4.9. The total number of test images was 360. kample, one of the test-image

set of size128x128 pixels is shown in Figure 4.10.
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Table 4.1 Examples of testing images

Test image
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Original Images

(20 images)

A 4

\ 4

A 4

Scaled 128x128
(20 images)

Scaled 256x256
(20 images)

Scaled 512x512
(20 images)

Rotated 15 degree
(20 images)

Rotated 15 degree
(20 images)

Rotated 15 degree
(20 images)

Rotated 50 degree
(20 images)

Rotated 50 degree
(20 images)

Rotated 50 degree
(20 images)

Rotated 90 degree
(20 images)

Rotated 90 degree
(20 images)

Rotated 90 degree
(20 images)

Noise Sigma 10
(20 images)

Noise Sigma 10
(20 images)

Noise Sigma 10
(20 images)

Noise Sigma 30
(20 images)

Noise Sigma 30
(20 images)

Noise Sigma 30
(20 images)

Figure 4.9 Summary of transformationsto gener ate test images.
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Figure 4.10 Imagetest set of image 1005896 with resolution 128x128pixels
when (a) original, (b) rotated 15 degrees, (¢) noise with sigma 10,
(d) rotated 50 degrees, (€) noise with sigma 30, (f) rotated 90 degrees.

In section 4.1, we introduced interest point detext Harris, Chabat,
SUSAN, and Wavelet-based detectors. Each detext@oged interest points and
the repeatability score of these points was estich&br each test image. Many
researchers use the repeatability score to comibereaccuracy of detectors
(Schmid et al, 2000; Sebe and Lew, 2003; Heidemaff4). To measure the
repeatability, we had to consider particular imalggortions comprising image
rotation and image scaling. We then computed tipea&bility score for each
image from its interest points and averaged theatgbility scores over all tested

images for each detector.

A summary of the experimental processes is showfigare 4.11. The
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processes start by extracting interest points ftbentested images. We divided
the results into two categories from their inpeference and transformed points;
the reference points were extracted from a referemage and the transformed
points were extracted from a transformed imagenThige repeatability of each
image from each detector was calculated by comgutie L2 norm difference

between the positions of the reference and tram&fdrpoints, as described in
section 4.3.2. Finally, we summed and averagedepkatability scores for each
image and for each detector to determine the aeerggeatability score of each

detector.

Input images (Normal and transformed)

+ Extract interest points

Perform Interest point detection

v v

Collect interest points from Collect interest points
each reference image from each transformed image

vy
Calculate the repeatability
of each image (transformed image)
from each detector

\ 4
Sum and average the repeatability for each detector

Figure4.11 A summary of processes of experiments.

We summarise the experimental results in the rexttan.

4.3.4 Experimental results

A summary of results of all transformed image sia€428x128, 256x256 and

512x512 pixels are shown in Table 4.2; each tupliné Table gives the average
and standard deviation of the repeatability scémesach detector performed at
the specified image size. The overall average d&chealetector is shown in Figure

4.12. The Harris, and Chabat detectors exhibitegframe repeatability scores
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exceeding 50 %. Furthermore, these detectors e&bibbetter average

repeatability than the SUSAN and Wavelet-basedctimte we believe because
they provide gradient direction of corners; the ri¢adetector computes image
first derivatives before smoothing by a Gaussiandew; Chabat computes the
anisotropy of the local intensity pattern and th&emsity derivative. Hence, the
Harris and Chabat detectors could reflect objectndary shapes in images and

report better results than the others two detectors

In addition, Harris and Chabat detectors were Bitgtbased detectors;
they were degraded when the image artefacts presené increased by
increasing the image size; they exhibited bestlreswan image size of 128x128

pixels because these reduced images containechlgastand artefacts.

Table 4.2 The overall repeatability of each detector.

Repeatability (%)

Image size

Detector 128x128 256x256 512x512 Average
Name Mean SD. Mean SD. Mean SD. Mean SD.
Harris 84.62 13.72 74.62 16.19 63.04 14.60 74.09 17.29
Chabat 66.28 13.18 60.80 13.71 39.14 11.79 55.41 19.62
SUSAN 33.36 18.81 35.88 22.17 33.38 23.43 34.31 21.82
Wavelet

-based 51.84 20.00 32.18 22.86 15.72 15.33 33.25 20.79

Average Repeatability of Detectors

80+

> 70

o = 60
g3 50
o S 40
< 2 30
x 20-
10-

0

S v &
2) 2
‘2"& O‘Q{b %\) &:Q(b
N4
&e
{
Detector

Figure 4.12 The overall average repeatability of each detector.
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We investigated the result of experiments usinfpkht image sizes.

The results of each transformation from image sae$28x128, 256x256 and
512x512 pixels are shown in Figures 4.13, 4.14%4h8 respectively.

Average Repeatability of image size 128x128
100
90
> 80
3 70
% 60 —e— Harris
o —=— Chabat
K 50
SUSAN
g 40
g — Wavelet-based
o 30
>
< 20
10
0
Distortion
Figure 4.13 The average repeatability of image size 128x128 pixels.
Average Repeatability of image size 256x256
100
90
> 80
% 70
§ 60 —e— Harris
Q —=— Chabat
g 50
SUSAN
S 40
g — Wavelet-based
& 30
>
< 20
10
0
Distortion

Figure 4.14 The aver age repeatability of image size 256x256 pixels.
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Average Repeatability of image size 512x512

80
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2 60 T~ /
% \\/
s 50 <, —e— Harris
(]
o —=— Chabat
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Figure 4.15 The average r epeatability of image size 512x512 pixels.
From Figures 4.13, 4.14 and 4.19, the best re$ull oransformations in

image size 128x128 pixels can be obtained, if weethe results from the Harris
and Chabat detectors; the best result of all toansdtion in image size 256x256
pixels is from the Harris detector; the best resifilall transformation in image

size 512x512 pixels is also from the Harris detecto

4.3.5 Conclusion based on experimental work

The Harris detector demonstrated the best repdialm addition, the Chabat
detector also produced good results with more &@86 repeatability. Schmid
(1997) claimed that a detector can be used forgraton of objects when it
performs with a repeatability score of more tha®5d herefore, the Harris and
Chabat detectors have the potential to be usedantemark image retrieval

applications.

4.4 Conclusion

Using interest points in trademark image retriggah new method. The results

are sufficiently encouraging to justify finding thexal features located at interest
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points as described in the next chapter. In thégtdr, we studied two tasks.

The first task was developing and testing intepestt detectors. This task
was to develop new software to implement the Hamid Chabat detectors and to
evaluate the SUSAN and Wavelet-based detectorsupead by the original
authors. The validation methodology devised alstetethe detectors with images
containing basic shapes and also with real tradenmaages. The results show
that every detector can detect corners correcthy ieactangular shape and extract

a variety of different points in real trademark gea.

The second task was to measure the repeatabilitheofinterest point
detectors. The Harris detector has the best repéptaand the Chabat detector
also achieved good results with more than 50 Yatajpdity.

To sum up, we found that the Harris and Chabatestepoint detectors
have the potential to distinguish trademark imadmessause they have a high
stability when retrieving interest points from tséormed versions of the same
image. According to our framework, we are interéste developing shape
perception based on local features and interesttgaolhe next stage of research
explores how to use interest points in combinatiatih local features (details in
chapter 3). Therefore the next chapter will examioeal feature extraction
guided by the Harris corner detector as embedd#dnithe SIFT algorithm.
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Chapter 5

Performance Sudy of SIFT approach

In this chapter, we investigated and evaluated Sp{roach in order to measure
the performance of local feature based on intgyesits. We briefly describe the
SIFT approach in section 5.1. Then, we explainithglementation method in

section 5.2, experimental procedure in section &perimental result in section

5.4, and conclude in section 5.5.

5.1 Introduction

In the previous chapter, we studied the performarfaeterest point detectors and
found that interest points extractedtlyp gradient-based detectors were suitable
for retrieving transformed trademark images. Thessults were sufficiently
encouraging to justify continuing to next stage, to extract local features at
interest point locations. From a literature revietwe SIFT (Scale Invariant
Feature Transform) descriptor appears to be thehmeark standard reliable
feature representation to use in object recogni{idikolajczyk, 2003; Lowe,
2004), and is applied in many image matching appbas, e.g. in hand written
word recognition (Rodriguez and Perronnin, 2008). dddition, the SIFT
approach provides a robust feature detector tretliges interest points, called
SIFT keypoints in scale and orientation to sample the SIFT featcalled a
keypoint descriptorBecause, at this stage, we are interested ipatfermance of
local features based on interest points, we salettte SIFT framework and
keypoint descriptor for the experiments in thisptlea The Harris point detector
is also employed by the SIFT algorithm, and thiseck®r performed best on
average of the point detectors evaluated in Chapt&IFT therefore uses this
same Harris point response function to select kieypo (detail in the next
section) and extracts keypoint descriptor basedthen gradient orientation
histogram local to each interest point (Rodrigaezl Perronnin, 2008),). The

SIFT algorithm is explained in the following sectio
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5.2SIFT

The SIFT algorithm was proposed by David Lowe (Lopi@99). This algorithm

can extract interest points, keypoints, and geaadteypoint descriptor which is
robustly invariant to general image transformsdtion, translation and scale),
and is also partially invariant to affine distortjallumination change and noise
(Lowe, 2004). The SIFT algorithm consists of fouajan stages comprising:
scale-space extrema selection, keypoint localimatiwientation assignment, and
computation of keypoint descriptors.

In the first stage, potential interest points axéraeted by finding local
extrema of Difference-of-Gaussian filters at difiet scalesThe Difference of
Gaussians[¥(x, y, o)) function can be computed by subtracting two ichaht
images each which have first been convolved witlbaussian kernels with
differing blur (o) parameters. In a scale-space context, the keraeldifference
corresponds to the difference of two adjacent apacales separated by a

constant multiplicative factor k:

D(x, y,0) =L(X, Yy, ko) -L(X, y,0) (Equation 5.1)
where
L(X,y,0) =G(X,y,0) * I(X, y) (Equation 5.2)
1 —(x*+y?) /20 ;
G(x,y,0)=—¢€ (Equation 5.3)
2o

I(x, y) is the input image.

An example of computing the Difference-of-Gaussianvolution within
a multi-resolution scale-space is shown in Figufie 5
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Figure 5.1 The computation of the Difference-of-Gaussian image pyramid.

The local extrema (minima and maxima)@(x, vy, o) in their own scale
and one scale above and below are extracted asdesmdoints. The local

extrema detection is shown in Figure 5.2.
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Figure5.2 Local extrema detection: the pixel marked x iscompared against its 26
neighboursin 3 by 3 regionsat the current and adjacent scales (marked with circles).

In the second stage, each candidate point is &mxhlito sub-pixel
precision by interpolation. The candidate pointatthomprise low contrast or
edge responses are eliminated to yield compactesitepoints that can be
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localised uniquely in two dimensions.

For each candidate keypoint, the turning poinheflbcal density function
over a 3x3 system in, y and scale is solved to define its sub-pixel/suddesc
position. Lowe’s approach employs the quadraticld@agxpansion of the scale-
space functio®(Xx, y0), given by:

T

2
D(x):D+aD X+ r 0°D
OX

OXx?

%x (Equation 5.4)

where D and its derivatives are computed at the candigaiet and
(x = (X, y0)) is the sub-pixel/sub-scale offset from this poin

The location of the extremunX, is calculated by taking the derivative of

Equation 5.4 with respect toand setting it to zero.

0D oD
Ox>  OX

X = (Equation 5.5)
If the offset X is larger than 0.5 in any dimension, this mears the

extremum lies closer to another candidate pointhis case, the candidate point

is changed and the interpolation is performed attw point. The final offsex

is the interpolated estimate for the location o #xtremum of the candidate

point.

To discard candidate points with low contrast, vhiie at the extremum

D(X) is computed at the offskt

.
D(X)=D +£8D X (Equation 5.6)
2 0O

If this absolute value is less than 0.03, the adatei point is rejected.

To discard candidate points which correspond tparses along edges,
the ratio of principle curvature®) is calculated by means of the same approach

used in the Harris detector (detailed in sectidnlj.

_Tr(H)?
" Det(H)

(Equation 5.7)
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whereH is a 2 by 2 symmetric Hessian matrix describeskiction 4.1.1.

R for each candidate point is compared with thesthol €).

_(r+)?
o

E (Equation 5.8)

where r =10 (Lowe, 2004).
Candidate points witR greater thaik are discarded.

In the third stage, each interest point is assigaedorientation. The
orientation is calculated from an orientation higgton of local gradients from the
Gaussian smoothed imag€x, y) at the scale of each interest point. For each
image samplé(x, y) at this scale, the gradient magnitudg, y) and orientation

Ax, y) are computed using pixel differences:

m(X, y) = (L(x+1 y) — L(x=1y))? + (L(X, y +1) — L(x, y—1))? (Equation 5.9)

O(xy) = tan* ((L(x+1y) = L(x=1y))* + (L(x, y+D - L(x,y-1)?)
(Equation ®).1

The orientation histogram contains 36 bins, eaghnesentngl0 degrees
sampling precision over 360 degrees of orientafitath point within a Gaussian-
weighted circular window, of radius 1.5 times tlalse of the keypoint, is added
to the histogram and weighted by the gradient madai (X, y)). The highest
peak in the histogram is selected and a keypomeigged for this orientation, and
additional keypoints are created for any other llgugaks whose size is within
80% of the highest peak.

For the fourth stage, SIFT keypoint descriptorssammpled by extracting
a set of gradient magnitude weighted orientati®tograms from a 16x16 pixel
sampling patch centred on the keypoint locatiore §hadient magnitudes within
the sampling patch are weighted by a centred Gauganction having a sigma
factor 1.5 times the scale of the interest poirtisTcentre weighted sampling
patch is then subdivided into a set of sixteen gixél patches from which sixteen

orientation histograms are computed from this 4xdlpgrid. Each histogram has
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8 orientation bins over its corresponding 4x4 pisapport window and the
resulting feature vectors are 128 elements in keng$ depicted in Figure 5.3.
These vectors are normalized to unit length toease invariance to illumination

changes.
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Image gradients Keypoint descriptor

Figure 5.3 SIFT features comprise gradient magnitude weighted orientation histograms
computed from a grid of sixteen 4x4pixel patches centered on each keypoint. Theregion is
weighted by a circular Gaussian window indicated by the overlaid circle. Each orientation

histogram is calculated from a 4x4 pixel support window and samples 8 orientation bins.

We use the SIFT algorithm as implemented by Lowextract interest
points and local features, i.e. keypoints and keypdescriptors. Then, we
calculate the similarity between a query image andges in a database by
matching the SIFT key point descriptors in the guenage to those extracted
from each image in the database images. The impl&ti@en methods are

described in the next section.

5.3 Implementation M ethods

The SIFT algorithm generates interest points or pkéys and keypoint
descriptors from images that can be used in obgettgnition. Lowe also uses the
Generalized Hough transform (GHT) to cluster madgbeints (Lowe, 2004). The
GHT groups keypoint descriptors into clusters th@tch similar keypoints
descriptors between two images and provides a IpgHormance template
matching scheme that supports matching betweerdscedtated, and partially
occluded images (Lowe, 2004). Therefore, it app#zasthe SIFT algorithm in

combination with the GHT could be used to retrisaelemark images in order to
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extract local features and perform partial matchifige following experiment
aims to retrieve transformed trademark images (abrnotated and scaled

images) using SIFT and GHT.

In this experiment, we propose to determine thechaiccuracy of the
SIFT approach using scaled and rotated imageseQbrr matching images are
identical to the query image but have been transfodrto a different scale or
rotation. We then investigate the performance dFTSWwhen attempting to

retrieve modified trademark images.

5.3.1 Experimental procedure

In this section, we explain the procedure to seexgperiments to evaluate SIFT
for retrieving transformed images that contain edaand rotated images. We
show the database images in section 5.3.1.1, asdride the experimental
processes in section 5.3.1.2.

5.3.1.1 Database images

In the experiment, the number of query images we@ and the number of
database images that were transformed from queagesh was 700 (400 by

rotation and 300 by scaling).

The scaling adopted reduced the transformed imagdsalf size and
doubled size of the original images. The rotatianameters were 15 degrees, 50
degrees, and 90 degrees. Therefore, there weres08d database images and
the 400 rotated database images. The query imageshawn in Figure 5.4 and

the database images generated from the first qoerge are shown in Figure 5.5.
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Figure 5.4 Query trademark images used during the experiments.
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(b) (c)

(d) (e) ) (9)

Figure 5.5 Examples of database images generated by transfor ming thefirst query imagein
Figure5.4
in (a) - (c) arescaled images, and in (d) - (g) arerotated images.

We describe the experiment procedure in the netiose

5.3.1.2 Experimental processes

The overall process for the experiments is showrigare 5.6.
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Query image

Query 1. SIFT approach
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/ Query and
Database | f,apase images| Database points and descriptors
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2. SIFT feature
Matching

Matched points

3. Point clustering

Descriptors
Clustered points

4. Calculate
Similarity score

Similarity score result from
each match

5. Sort similarity scores
and find correct matches

Result of correct matches

Figure 5.6 The overall process of experiments

First, interest points and descriptors were ex¢ihétom each image using
SIFT. The software provided by David Lowe for ektrag SIFT keypoints and
keypoint descriptors is available at http://wwwute..ca/"lowe/keypoints/.

Second, each query image was matched with eaclhadstamage. For
robustness, we removed unmatched points that hdistaace ratio greater than a
preset rejection threshold. The distance ratio atep the ratio of the nearest
neighbour match score (the lowest distance) tostheond nearest neighbour
match score for each key point. The rejection thokk was set to 0.8 for all
experiments following Lowe’s suggestion that thas threshold can cull ~90 %

of false matches (Lowe, 2004). The nearest neighlfDuwes) is defined in
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Equation 5.11Ad.(L;) is a set of distances between each descriptoaagtt
from the query image and the closest match witHidescriptors from a specific
database image being matched. In order to com@uate @éstance (match score),
the Euclidean distanc®() of two descriptorsl.; andL;, is calculated in Equation
5.12.

Diowest= Min(Ad. (L)) (Equation 5.11)
AdL(Li) = {DL(Li 1 Lo)’ DL (Li 1 Ll)""’DL(Li 1 Ln)}

n is the number of all descriptors in the datalasge being matched.

Dui, L) = L -L (L -L) (Equation 5.12)

Third, the remaining key points were grouped by @eneralized Hough
Transform (GHT) which gives clusters of matchingnp® (Lowe, 2004). Suppose

we have several points on arbitrary shape bourakmy Figure 5.7.

B>q, 1))

Figure5.7 Geometry for GHT

Then, we define a point to calculate direction&imation and call i,
the centre point. For each interest p@non the boundary, the gradient direction
(@) is the orientation of the interest point given ®YT (details in section 5.2),
and the position of a reference pains calculated by moving a distanBerom
the interest point in a directiasawhich is the angle of the line from each interest
point to the reference point (see Figure 5.7). Tlran vary and can be used in
GHT for finding an arbitrary shape. A table to mg®nt information to store
shape data is called the R-table (Ballard, 1981).
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The R-table is easily constructed by examiningltbendary points of the
shape. Table 5.1 shows the form of the R-table. rEfierence pointx(, Yc) is

selected as centre of all points.

We calculate the R-table using the algorithm iruFég5.8.

Table 5.1 R-table format

Orientation of point Set of radii and orientations whdre (r, @)
1 l11, l12, 13, +..y hint
¢2 |21| |21) |23) sy |2n2
¢m Iml; Im2, Im3, ey Imnm

R-table construction

For all interest pointsx(, y) in the image

Assign the orientation of the interest poi} ¢iven by SIFT

Computer(x;, y) anda
a is the angle of the line from each keypoint torference point.
X = (Xc—%) / cosa (Equation 5.21)
y=(Uc-VY)/sina (Equation 5.22)

Add an entry ofr, o) to the row indexed by

Figure 5.8 Overview of R-table construction

The GHT algorithm is derived from Ballard’s origirdescription of the
GHT based on edge matching (Ballard, 1981) andnssarized in Figure 5.9.
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GHT matching

Step 0: Create an R-table for each database indme ¢compared as described
in Figure 5.8.

Step 1: Initialise the Accumulator arrafd@ of possible reference points to zero.
The scal§ and rotation 2) parameters are required to render the GHT
invariant to scale and orientationtHis research, we use a range of scales
of 0.5, 1 and 2, and rotations in tiege from 0 to 360 degrees 30 degree
increments, due to the large error lisuhat are stated in Lowe’s article
(Lowe, 2004).

ACC(¥in: Xmax, Ymin:Ymax Smin:Smax Cmin: Qmax)

Step 2: For each keypoint in the query image:

Perform voting for location, orientatjaand scale as follows:

Step 2.1: calculate possible refergraigt (x, Yc) for each pair of; andg;

in R-table
KX -h*S *cos(y - 2) (Equation 5.15)
MEX -h*S *sin(g - 2) (Equation 5.16)

Step 2.2: Increment the accumulataayascore in the four closest
positions of each pokesiieference point by 0.25 times of the
maximum model dimensfopandny) to avoid the size
assignment problem agyssted by Lowe (Lowe, 2004). All
possible reference mEIE Xe1, Yer), (X1, Ye2), (X, Ye2), and

X2, Ye2)-

X=Xc— X% mod (0.25 * p) (Equation 5.17)
%= Xcrt (0.25* ny) (Equation 5.18)
Y= Yc— Y mod (0.25 * ) (Equation 5.19)
¥= Yart (0.25 * n) (Equation 5.20)

Then the accumulatoeath possible reference point is

increased.

ACCEX Yei, S, Q) =AcC(Xci, Yeir S, Q)+ 1

Figure 5.9 Overview of GHT algorithm
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A match is discarded if the number of points acclated in the Hough
Transform bin containing the greatest number ofcimag keypoints is less than
three. At least three points are required to cateuthe affine parameters relating
the query image and the matched database images(12004).

Fourth, a similarity score for the points was chlted by taking the
average of the lowest distancBies) from Equation 5.11 over all matching
keypoints.

Finally, the match results for the query and dadebhanages were sorted
by similarity scores and checked for correct magchia the experiment, we only
count a correct match if the retrieval images aedame as the query image in
first three images in case of scaling and in ficstr images in case of rotation.
The correct matches were then summarised for dvevalect match numbers.

We summarise the results of the above experimaritgei next section.

5.4 Experimental results

The correct match results average for the expetimseshown in Table 5.2.

Table 5.2 The correct match resultsfor the scaling and rotated database imagesin sub
experiment 1 and 2

Image condition Mean Standard deviation
Scaling 98 7.92
Rotation 79.75 24.42

The mean number of correct matches under scalirsgalvaut 98 percent
with a standard deviation of 7.@2rcent. The mean number of correct matches
under rotation was approximately 80 percent witstamdard deviation of 24.42
percent. The table shows that SIFT performed bettematching scaled than

rotated images.

This result would appear to indicate that SIFTndeled promising as a
method for retrieving both identical and alteredsi@ns of query images from an

image database.
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5.5 Conclusion

The SIFT algorithm combined with the GHT gave adyoesult on scaled and
rotated images, we believe because SIFT keypoistritors possess high
discriminability and are able to classify local ggsanf images. The GHT serves as
a global comparison mechanism based on comparea parts. In other words,
it can achieve a partial match between the sub-ooemts of compared
trademark images. However, it does not take intmaet human decisions and
preferences when creating and matching local featumlherefore, a further
mechanism is required to consider the similaritypofnts that group into sub-

components that also captures human perceptuasfuelgf.

Appearance-based features are used to recognset®liornegger et al.,
2000). A further investigation will consider whichppearance features are
appropriate to provide perceptual grouping andaegss to input user judgment
when retrieving similar trademark images. We expthie details of these further

investigations in the next chapter.
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Chapter 6

Point-Based Grouping of Local Features

In the previous chapter, we found that the SIFTragph has the ability to

identify local parts of images but only providessigle global similarity

interpretation of detected local features that rhato features extracted from
similar database images. Furthermore, this matckpngcess is invariant only to
2D affine transformations between such comparedgesaln this chapter, we
investigate the formulation of meta-features whattaracterise how matching
keypoint descriptor locations are distributed irder to give the system the ability
to measure a number of “appearance properties”hef tompared images. In the
following sections, we explain how a perceptualugiag process can be applied
to local features to implement meta-features (sacts.1l), the experimental
framework for meta-feature selection is presentedection 6.2, experimental
results in section 6.3, appearance properties dfanAfigatures in section 6.4, and

conclusions are drawn in section 6.5.

6.1 Per ceptual grouping by means of local features

We are motivated by the Gestalt laws of organizafidetails in chapter 2) to
develop a perceptual grouping mechanism to charaetehe global spatial
arrangement of matching local features extractech fcompared images. In order
to achieve such visual grouping competenciesthe.ability to characterize the
meta-structure of an image, we are guided by thetdBegrouping laws to imitate
aspects of perceptual grouping exhibited by humaimgs. As shown in the
previous chapter, SIFT features are capable oty transformed trademark
images. However, an additional mechanism is redquice provide perceptual
grouping that describes local features appropsiatel terms of their gross
structural configuration and thereby enables imagmparisons in terms of
higher semantics. A meta-feature is an intermedetel of representation that is
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calculated from the relations among the image corapts (Moreno et al., 2002).
In this research, we are interested in three Gegtalperties (proximity,

similarity, and simplicity) that can be directly asired by appearance meta-
features. The above three Gestalt properties, aswt af proposed meta-features

used to measure the Gestalt properties, are deddoglow.

6.1.1. Global Similarity meta-Features

Similarity is used to group similar parts of an image; sintyecan be measured
in terms of the size, orientation, pattern appesganr shape of an image part.
These extended similarity meta-features requirepasison between descriptors

of image parts to measure this property (Jacol3))20

We propose to calculate feature scale and oriemtatsing SIFT in order
to measure global size and global orientation sintyl between sets of SIFT
keypoint descriptors. We calculate the summatiantalt, mean, median, and
RMS (Root-Mean-Square) of the differences in seal@ orientation between sets
of matched keypoints, extracted from query and amegb database images
respectively. Hence, we can measure the total blsie and orientation
difference between compared image features basecbmputing: summation,
average and dominant global size and orientatiiardnces using the mean and
median statistics respectively; and also using mh&gnitude of scale and
orientation variation differences by taking the RMS$ the matching feature
differences (Manikandan and Rajamani, 2008). Annmg®a of a global
orientation difference between compared imageshmvsin Figure 6.1. The
arrows annotating the images in Figure 6 indicheeldcation (arrow start point)
and scale of extracted keypoint descriptors, whhlke direction of the arrows
indicate the canonical orientation directions faygoint descriptors (details in
section 5.2 of chapter 5). The global orientatiofffecence meta-features
calculated using sum, mean, median, and RMS of himgclocal feature
differences of Figure 6.1 are summarised in Talle 6
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(@)

Figure 6.1 images of six of heartswith keypointsand their orientations (a) with 10 degrees
rotation and (b) 20 degrees global rotation

Table 6.1 the global orientation difference meta-features of Figure 6.1

Image Sum Mean Media RMS
(@) and (a) 0.00000 0.00000 0.00000 0.00000
(@) and (b) 0.06715 0.05903 0.06064 0.05933

In addition, we investigate measures to implemesitralarity score from

SIFT matching, based on: the number of matchingtppthe average of multi-

peak GHT (Generalized Hough Transform) scores, selflarity, and statistical

moments of keypoint (X, y) positions.

An image similarity score is obtained by meanshef §IFT algorithm as

explained in section 5.3.1.2 of Chapter 5. The nema correctly matched points

is determined by the GHT accumulator bin with th@eximum number of points
(details in section 5.3.1.2), since the matchedp&#ys in this bin exhibit the

dominant common transformation between the comparegjes. Accordingly,

the GHT is capable of identifying shapes by detgcpeaks in its accumulator

that correspond to feature groups with common foameations between features

extracted from a query image and a set of databasmplars (Ballard, 1981).

Therefore, the presence of multiple peaks in theT Gidcumulator indicates

matching feature sub-groups, each with differingiooon transformations.

Following human perceptual grouping principles,awe required to select

only the significant parts of the image for simitarcomparison (details in
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sections 2.8 and 2.9 of chapter 2). Many reseaschigggest that only the two or
three dominant sub-parts which characterise ancblaje required to recognize
that object (Biederman, 1987; Kirkpatrick, 2001ende, we only consider three
maxima of the GHT accumulator to account for thenoh@nt (in terms of
numbers of matching keypoints) three matching swalygs. The average of the
multi-peak GHT scores (MGHT) is calculated by takithe mean score of the
first three maxima of the GHT accumulator as fokow

npeak

D" Scordi)

wherenpeak= 3.

ni

Z Dlowest( J )

Scordi) =1 — (Equation 6.2)
ni

whereni is the number of matched points in theéw of the accumulator.

Diowest IS calculated by Equation 5.11 (see section 23dk details).

We are able to measure sgiilarity within the image by computing the
self similarity of the top 10 keypoints (rankedmaatching score). We select 10 as
the significant maximum number of self similar keygs in accordance with the
number of items that can be held in short-termalissemory by humans (Miller,
1956). Each of the 10 most highly ranked keypaitsmatch to similar
keypoints in the remainder of the keypoints exeddtom a particular image and
counts their relative frequency in a self simikafiistogram. Ouself similarity
measure is computed by taking the mean of all pamthe self similarity

histogram and is summarised in Figure 6.2.
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Self similarity algorithm

Step 1. Compute the nearest neighb@Drwes) Of each interest point and

add it to an array of distances forhepaint.
TheDowestis described in section 5.3 of Chapter 5.

Step 2: Sort the array of distance®o ascending order and
select the top 10 points.

Step 3: For each selected point.

Step 3.1: Calculate the distance between each selected gaih
non-selected poimg (

Di= (L —L)* (L -L;) (Equation 6.3)

whetg andL; are SIFT descriptors.
Step 3.2: If the distance is less than 0.2, accordind-tare, 2004), then
increase the self samily number of this point by one.

Step 3.3: Save the self similarity number of this pointle

self similarity hist@gn and repeat from Step 3.1 until perform
all selected points éidween considered.

Step 4: calculate average of all self similarity histagraumbers

Figure 6.2 The self similarity algorithm

Image moments can be used describe the 2D spatifijaration of raw
grey levels or the positions of extracted imagetuies and have been
successfully used to measure similarity in objedentification and pattern
recognition (Mukundan & Ramakrishnan, 1998; Hu 1)96@oments of order
zero up to three correspond to gross level imagergions (including the
ellipse characterising the measured spatial pattistnbution) while higher order
moments hold more detailed data (such as asymmeini@ skew in the observed
spatial configuration) and are more sensitive toiseo(Mukundan &
Ramakrishnan, 1998). Image moments have the pateéatrepresent shapes and

geometric parts of images (Mukundan & Ramakrisha888).
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As mentioned, moments could be calculated fromedhfit types of
information extracted from an image, for examplesed contours or a set of
points (Tahri and Chaumette, 2005). Point-basedgénamoments have been
reported to yield high discrimination and good rsimess when used to identify

the same set of points in compared images (TakriCiraumette, 2005).

We would like to measure the similarity of two temdark images by
computing the moments of the keypoint locationsrasted from each of the
compared trademarks. These moments are not shdtiamt and in the case of
trademark images, it means that the shape compassamnchored with respect to

the image frame. The moments are calculated by:
N
My, => %"y (Equation 6.4)
i=1

where andy are the location of each matched keypoint in thage,
N is the number of the matched keypoints,
p andq are the orders of the computed moment.

In this research, we computed up to third order e in order to
analyse orthogonal transformations (Mukundan & Ramshnan, 1998). Paquet
et al. (2000) state that the low-order momentsatogpresent the most prominent
aspects of the spatial configuration of keypoirdtfiees characterising an object.
In addition, the moments can provide similarityoirmhation.mO0O represents the
total mass of image points (Prokop et al., 199210 and mO1 are used to
compute the centre of mass of image points (Pratap., 1992)m02 m11, and
m20 are used to calculate the moments of inertia @poét al., 1992, i.e. the
distribution ellipse major and minor axes. The g meta-features comprise
mO0Q m01, m0Z2 m03 m1Q m11 m2Q m22 m30,andm33

6.1.2 Global Proximity meta-features

Proximity is used to group the connected area or nearegthbumirs of
components in an image; proximity can be inverstadce, touch, overlap or
some combination of these. The proximity similamieta-features also require
comparison between descriptors of image parts t@sare this property (Jacobs,
2000)
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We propose to use SD (standard deviation) to coenfhé distance-error
between sets of matched keypoints. Standard deniaiwidely used measure of
statistical dispersion (Manikandan, 2008). This arfeature measures the
residual spatial mismatch (error) between query datdbase images once these
datasets have been aligned via an affine transteomaln other words, this
measure computes the non-linear spatial differefedween sets of matching
image features following translation, rotation, lscaand sheer alignment. The
algorithm for calculating the SD of distance-ertmgtween pairs of matched

points is shown in Figure 6.3.

SD of error-distance between a pair of madckeypoint sets

Step 1. Extract matched points from the maximum of GH€waulator.

Step 2: Calculate Affine parameters of matched points.

The solution is suggested by Lowe (Lo2@&04).

(18 2T

whereuyyV) is a keypoint extracted from a database image,
(X, y) is a keypoint from aegy image,
m1, m2, m3andm4are affine parameters,

tx andty are the translation parameters.

Then, we require at least 3 pointsaicuate the affine parameters:

mL| - -
ul
-l m2
Xy, 0 010 3 Vv,
0 0 x vy,01 =|u, (Equation 6.6)
m %
| tx .
ity ] - -

Step 3: calculate affine transformation to map query laggs to the database

image space by Equation 6.5.

Figure 6.3 The algorithm to calculate SD of the spatial distance error between a pair of
matched and registered keypoint sets
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SD of error-distance between a pair of matched d&ieysets (continued)

Step 4: find the distance error between each pair of hedaatabase

keypoints and affine transforms quegypoint using Equation 6.3 from
Figure 6.2.
Step 5: calculate mean and standard deviation of allrefistances in Step 4.

Step 6: find the inliner keypoint error distance.
The error distances are selected ifiteance is not greater than mean
plus 2 times the SD from Step 5 (Jumd lBacroix, 2001).

Step 7: calculate the standard deviation of all distanoeStep 6.

Figure 6.3 The algorithm to calculate SD of the spatial distance error between a pair of
matched and registered keypoint sets (continue)

In addition, we propose to utilise the ratio of ofegd keypoints to total
keypoints in the query image, and the ratio of imadicpoints to total keypoints in
the database image serves to measure overlap prgxim. to quantify by how
much (in terms of keypoints) do the compared imagesrlap. The ratio of
matched keypoints to total keypoints for query imagcalculated by the number
of points in the maximum GHT accumulator dividedthg number of keypoints
in the query image. The ratio of matched pointstdtal keypoints in each
database image is calculated by the number of ketgpoo the maximum GHT
accumulator divided by the number of interest pointthe database image. The

ratio of matched keypoints and total keypoints (ANéTcalculated by:
PMT = (Equation 6.7)
nqg
wheren is the number of matched points in the maximunuacdator,
nes the total keypoints of the query image

The examples of the ratio of matched keypointstal tkeypoints for the

guery image is shown in Figure 6.4 and summarisé&dble 6.2.
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@ O

Figure 6.4 images of 6 heartswith keypoints and their repetition (a) 6 hearts (b) 3 hearts,
and (c) matching result

Table6.2 PMT meta-featurefor the query imagein Figure 6.4

Total keypoints Number of matched points PMT metaidre

47 15 3.13

6.1.3 Global Simplicity meta-features

Simplicityis used to group the relative parts into simplagonents; simplicity of
form can be represented by symmetry, regularitysmoothness. Once more, to
compute simplicity, the spatial configuration ofetlocations of keypoints

matched between compared images are used to melaisuypeoperty.

We propose to extract the vertical and horizony@hreetries exhibited
within sets of matched keypoints. The vertical dmgizontal symmetries are
computed using the median distance from the cenitedl matched keypoints in
the major and minor (orthogonal) reflection axeshaf matched keypoint spatial
distribution axes respectively. Hence, we computesisence an asymmetry score,
as our measure will return a score of zero for afepdy symmetrically

configured keypoints and the score will increasevalue as asymmetry is
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introduced into this configuration. The algorithim ¢alculate the vertical and

horizontal symmetries of sets of matching keypoisitshown in Figure 6.5.

Vertical and horizontal symmetries of matching kaipp sets

Step 1. Calculate axis of rotation by:
Shift_axis= 0.5 * tari*( (2*m11) / ( m20 - mO®) (Equation 6.8)
wherem1l m2Q andm0O2are moments from Equation 6.4

Step 2: Rotate matching points byshift_axis.
ry= x* sin(- Shift_axis) + y*cos(- Shifaxis) (Equation 6.9
rx= x*cos(- Shift_axis) - y*sin(- Shifaxis) (Equation 6.10)
where X, y) is the matched point.

Step 3: Calculate the centre of rotated points &ndcy)

as the mean of all rotated points.

CX= (Equation 6.11
n
2"
cy= 'Zln (Equation 6.12

wheren is the number of matching points

Figure 6.5 The algorithm to calculate vertical and horizontal symmetries of matching sets of
keypoints
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Vertical and horizontal symmetries of matched séteeypoints (continued)

Step 4: Calculate the error distance for each pair of kays De) in each axis.

Step 4.1: separate rotated points into two sets
Ifi > ci
Add this point tets pset)
Else
Add this point tet2 psetl
End

Whenme is a location of a rotated keypoint in each axnsl a
ci is a location of centre of a set of rotated kegfmin
each axis
Step 4.2: calculate the error distand@g;) of each point in the two sets
D, (i) =min(D, (pseil(i), Vpsel(i ))) (Equation 6.13)

where

Do (P, (%, V) Ps (%, ¥5)) = (X = %)% + (Y1 — V)
(Equation 6.14)

Step 5: Calculate the median of error distances of each(B%r). The horizontal
symmetry is the median of the y axid the vertical symmetry is the

median of the x axis.

Figure 6.5 The algorithm to calculate vertical and horizontal symmetries of matching sets of
keypoints (continued)

An example of the vertical symmetry score computadthe keypoints
matched between an unmodified heart shape andymnnasric heart shape is

shown in Figure 6.6 and summarised in Table 6.3.
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(@) (b)

Figure 6.6 images of a heart shape with interest pointsand their orientations overlaid for (a)
0 degrees of asymmetry and (b) 50 degr ees of asymmetry

Table 6.3 the vertical symmetry of matched points Figure 6.6

Image Vertical symmetry of matched keypoint sets
(@) and (a) 0.06560
(a) and (b) 0.24932

In this chapter, we plan to find appropriate metatfires to the system
with a perceptual grouping mechanism. In orderaiwycthis out, we design a set
of validation experiments to test the proposed Aedtures and we explain the

experimental framework in the next section.

6.2 Experimental Framework

An important criterion by which to validate the posed meta-features is which
meta-features retain most of the variation presernihe underlying feature data.
Using appropriate meta-features could help to iflershapes (Aguirre et al.,
2007). The appropriate meta-features are determbyedemoving redundant
meta-features. In addition, employing only effigie(hon-redundant) meta-
features could increase the overall system perfocamarlherefore, we investigate
the proposed meta-features in order to get remesendant meta-features or to
reduce dimensionality of the meta-features (Bashial., 2004). We present the

implementation methods below.

In the experiment, we calculated eigenvalues amgneiectors of the
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proposed meta-features using Principal Componeraly&is (PCA) (Smith,

2002). We select the meta-features with high eigkms as the number of
principal components of major significance andHartanalyse this set of meta-
features using factor analysis (Field, 2000; Aguet al., 2007). Next, we group
all meta-features into significant meta-features st determined by their factor
loadings. Then, we can assign meta-feature setgrising candidate major

meta-features.

In the next section, we describe the experimentguore.

6.3 Experimental procedure

In this section, we explain the experimental praredo extract and evaluate the
meta-features of major significance. We presentdéiabase images in section
6.3.1, summarise our proposed meta-features inoge6t3.2., and describe the

experimental processes in section 6.3.3.

6.3.1. Image data

Trademark images provide an important basis fopshatrieval testing (Eakins,
1998; Jain and Vailaya, 1996) (details in chaptgr Rurthermore, Gestalt
principles are overtly used in trademark designn{gaon, 2006). For these
reasons, we predict that trademark images will s&sy an appropriate dataset
when testing the Gestalt properties of the metaifea. The system used 33
guery images and 100 database images to evaluatprtiposed meta-features,
including part of the database used in the evaloaif the Artisan system (Eakins
et al, 1998). All the trademarks are binarised iesagf 256x256 pixels. The 33

gueries are shown in Figure 6.7 and the databasgesnare shown in Figure 6.8.

Chapter 6 103



Figure 6.7 Query images used in the experiments
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Figure 6.8 Trademark database images used in the experiments

6.3.2 Proposed meta-features

We formulated a set of 27 meta-features, summairsedction 6.1 and shown in
Table 6.4, from which we wish to find a subset afhdidate meta-features in the

first experiment.

Chapter 6 105



Table 6.4 M eta-featur es evaluated in the experiment.

Proposed Meta-Features

Number Name
1 Summation of scale differences between pairs of matched keypoints
2 Summation of orientation differences between of pairs of matched keypoints
3 Moment (m00) from matched keypoints
4 Moment (m01) from matched keypoints
5 Moment (m02) from matched keypoints
6 Moment (m03) from matched keypoints
7 Moment (m10) from matched keypoints
8 Moment (m11) from matched keypoints
9 Moment (m20) from matched keypoints
10 Moment (m22) from matched keypoints
11 Moment (m30) from matched keypoints
12 Moment (m33) from matched keypoints
13 SD of residual spatial mismatch (error) between query and test images post
alignment via an affine transformation
14 Similarity score of matched keypoints
15 The total number of matched keypoints
16 Mean of scale differences between pairs of matched keypoint sets
17 Median of scale differences between pairs of matched keypoints
18 RMS of scale differences between of pairs of matched keypoints
19 Mean of orientation differences between pairs of matched keypoints
20 Median of orientation differences between pairs of matched keypoints
21 RMS of orientation differences between pairs of matched keypoints
22 Percentage of matched keypoints/ total keypoints of query image
23 Percentage of matched keypoints/ total keypoints of database image
24 Self similarity
25 Horizontal symmetry
26 Vertical symmetry
27 The average of multi-peak GHT scores

The above meta-features are described in furth&ilda Appendix A.

We explain the experimental processes in the restia.

6.3.3 Experimental processes

In this experiment, the system generated sets oh&a-features from 3300 data

sets (33 query images with 100 database imagesjedfier, the eigenvectors and

eigenvalues of the meta-features were computedds®y ®achado and Marinho,

2003). We sort the eigenvectors by their eigenwaaral calculate the cumulative

eigenvalues. Then, we select those candidate raatarés that have a significant

cumulative eigenvalue.
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Next, we select each meta-feature subset by tlaeitorf loadings. We

summarise the processes of the experiment in FigQre

The experimental protocol

Step 1. Compute27 meta-features from each query imagetendatabase
images (details in section 6.1).

Step 2: Compute the eigenvectors and eigenvalues of #ta-fieatures by PCA

Step 3: Calculate the cumulative percentage of the eigleres.

Step 4: Select the number of major meta-features fronctimaulative
percentage of the eigenvalues.

Step 5: Group the meta-features to major meta-featursetstby

their factor loadings.

Step 6: Select the candidate major meta-feature set.

Figure 6.9 The experimental protocol

The experimental results are summarized in the seotion.
6.4 Experimental results

In the experiment, we would like to find the numbémeta-features to use in the
system. We use PCA to assist our decision. Thenealees can be used to
measure the number of meta-features to retain. AMeilate eigenvalues and their
cumulative representation by PCA as shown in Tét3ean order to determine the

number of viable meta-features.
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Table 6.5 Eigenvalues of proposed meta-featuresand their cumulative per centage

Meta-feature nof Eigenvalue§ Cumulative percentage
1 1.23E+01 45.40681
2 5.17E+00 64.54631
3 2.54E+00 73.94227
4| 1.74E+00 80.38586
5 1.48E+00 85.85359
6 1.08E+00 89.84219
7 9.67E-01 93.42416
8 7.56E-01 96.22479
9 4.58E-01 97.92181

10 2.62E-01 98.89199
11 1.19E-01 99.33422
12 8.66E-02 99.6548
13 5.13E-02 99.84479
14 1.09E-02 99.88498
15 8.98E-03 99.91823
16 8.34E-03 99.94913
17 5.99E-03 99.97132
18 2.05E-03 99.97891
19 1.89E-03 99.98591
20 1.60E-03 99.99183
21 8.63E-04 99.99503
22 7.18E-04 99.99769
23 5.74E-04 99.99981
24 4.31E-05 99.99997
25 4.85E-06 99.99999
26 1.40E-06 100
27 6.97E-07 100

From the cumulative percentages, we select the aurab significant
meta-features to be 17, because the cumulativep@ge achieved at this meta-
feature’s eigenvalue ranking is almost 100 peremotthe cumulative percentage

Chapter 6 108



of the next eigenvalue contributes less than 0.0IB&refore, we use 17 meta-

feature subsets for further factor analysis. Wé& iach meta-feature subset by its

factor loading and show an example of the top tliaeeor loadings for the 17

meta-feature subsets in Table 6.6.

Table 6.6 Top three highest eigenvectors of 17 meta-feature subsets

Meta-feature 1 2 3
order Meta- Factor | Meta- Factor | Meta- Factor
subset feature |loading | feature |loading | feature | loading
no. no. no.

1 8| 0.2851 7 0.285 4| 0.2849
2 21| 0.3896 19 0.387 20| 0.3856
3 17| 0.5092 16| 0.5087 18| 0.5063
4 23| 0.5722 22| 0.5052 25| 0.3941
5 26| 0.5769 25| 0.5611 22| 0.3691
6 13| 0.8475 24| 0.4223 2| 0.2524
7 24| 0.8673 13| 0.4034 25| 0.1694
8 27| 0.6017 14 0.535 23| 0.2582
9 25| 0.7042 26| 0.6994 24| 0.0917
10 2| 0.8458 13| 0.3137 20| 0.2561
11 23| 0.6974 22 0.697 26| 0.1036
12 14| 0.7251 27| 0.6714 23| 0.0793
13 12| 0.5399 15| 0.4364 1| 0.4358
14 6| 0.5641 11| 0.5054 5| 0.4056
15 17| 0.5745 18| 0.5123 20| 0.4704
16 21| 0.5533 20| 0.5354 17 0.449
17 15| 0.4705 12| 0.4382 7| 0.3984

We found that some meta-feature subsets had siwalaes, for example,

meta-feature subset 1 had nearly the same valdbeofirst and second factor

loadings corresponding to 0.2851 and 0.285 respgti Since this result does

not reveal candidate major meta-features unambijyuouwe rotated the

eigenvectors by the Varimax method (Field, 200 & 17 meta-feature subset.

Chapter 6

109



The Varimax rotation moves the eigenvectors to mae the variance within

each eigenvector. This procedure has the effectedficing the number of

eigenvectors with small eignevalues and increatiiegnumber of eigenvectors

with large eigenvalues (Field, 2000). An exampletld results produced by

rotating eigenvectors is shown in Table 6.7.

Table 6.7 Top three results by rotating eigenvector s of 17 meta-featur e subsets

Meta-feature 1 2
order
Component Meta- Factor Meta- Factor Meta- Factor
feature no.| loading feature no.| loading feature no.| loading

1 7| 0.5063 3 0.4616 9 0.3939
2 21| 0.8727 19 0.4875 16 0.0183
3 18 0.872 16 0.4843 15 0.0451
4 23| 0.9998 15 0.0114 1 0.0112
5 26 1 11 0.0045 6 0.0025
6 13 1 19 0.0035 21 0.0026
7 24 1 8 0.001 6 0.001
8 27 1 15 0.0037 1 0.0035
9 25 1 8 0.0015 3 0.0013
10 2| 0.9997 19 0.0161 21 0.0118
11 22| 0.9997 11 0.0127 6 0.0094
12 14) 0.9999 15 0.0102 1 0.0101
13 12| 0.7245 10| 0.4246 11 0.4164
14 6| 0.6002 5 0.4684 11 0.4615
15 17) 0.9301 16 0.3195 18 0.1736
16 20| 0.9271 19 0.33 21 0.1742
17 15| 0.7291 1 0.6729 4 0.0738

By rotating eigenvectors, we can group 27 metaifeatto 17 meta-

feature subsets by selecting high factor loadingsach meta-feature group. The

resulting 17 meta-feature subsets is shown in Tagle
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Table 6.8 the candidate major meta-featuresfor a 17 meta-feature groups

Meta-feature subset Candidate major meta-feature(s)
1 3,4,7,8and 9
2 19 and 21
3 16 and 18
4 23
5 26
6 13
7 24
8 27
9 25
10 2
11 22
12 14
13 10 and 12
14 5 6and 11
15 17
16 20
17 1 and 15

Meta-feature subsets 1, 13, and 14 all comprise entén The meta-
feature subset 1 comprises meta-features 3, 4,ahd9 and correspondsrt®q
mO01 m11, andm20respectively. Because high order moments tend tmbtable
and are sensitive to noise (Kotoulas and Andread)5; Sluzek, 2005),
Chaumette (2004) suggest using the lowest order entsmpossible. For that
reason, the meta-feature B0 is selected to represent the spatial moments
meta-features. The same decision criteria are tsedlect representative meta-
features in subsets 13 and 14 because they alistmismage moments. Meta-
feature subset 13 consists of meta-features 101anahich comprisen22 m33
respectively. Therefore, meta-feature &9 is chosen to represent meta-feature
subset 13. Meta-feature subset 14 consists of featares 5, 6, and 11 which
comprise m02m03 andm30respectively. Therefore, the meta-featurer®? is

selected to represent meta-feature subset 14.
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Meta-feature set 2 consists of meta-features 192dnahhich code mean
orientation differences and RMS orientation differes between sets of matched
keypoints respectively. Because we are interestethe dominant orientation
difference between matched keypoints, meta-featres selected to represent

this meta-feature subset.

Meta-feature set 3 consists of meta-features 16 ldh@omprising the
mean scale differences and the RMS scale diffeeerfoetween matched
keypoints. Because we are interested in the dorhishagree of scale difference,

meta-feature 16 is selected to represent this featare subset.

Meta-feature set 17 consists of meta-features 1la&nthat represent the
total sum of scale differences and the total nundbenatch points respectively.
Because there are already meta-features repregestae, meta-feature 1 is

taken to be representative for this meta-featubsesu

The remaining meta-feature set consist of only rajlsi meta-feature,
meta-feature set 4, meta-feature 23 (the ratioaithed points to total keypoints)

and this meta-feature is used to represent its-featare subset accordingly.

As a result of the above anaylsis we were ableetect a subset of 17
meta-features that we believed would best suppmrtputation of the following
three Gestalt properties: similarity, proximity,dasimplicity. In addition, the
system also computes meta-features such as symnsslfy similarity, and
moments to group similar image characteristics Hmirtappearance properties.
We investigate the ability of these meta-featurescharacterise appearance

properties in next section.

6.5 Appear ance properties of meta-features

A number of experiments were devised that generapgzbarance differences
between compared images. We then applied our dét ofeta-features to each of
the sets of matched keypoints extracted from thepewed images for each
appearance property investigated. Details of eaebadfeature subset used to

guantify each appearance property are describeavbel

Global rotation: meta-features 1, 10, and 11 measure this app&aranc

property because they capture the difference ientation of features extracted
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from two compared images.

Global pattern similarity: meta-features 2, 6, and 7 measure this
appearance property because meta-feature 2 calsudata difference, meta-
feature 6 calculates similarity between matchegkey sets, and meta-feature 7
calculates the number of keypoints that match betweompared images.
Generally, the above meta-features measure patieilarity between compared
images.

Global pattern overlap: meta-features 12 and 13 measure this
appearance property because these meta-featureslatal the ratio of the

matched points to total points for compared images.

Spread of matched keypoints. meta-features 3 and 4 measure this
appearance property because they measure thel sjisttidoution of the matched

points.

Structural configuration between matched keypoint sets, we used
meta-feature 5 to measure this appearance propedguse it measures the
distortion of two images from their standard dewmtof matched points error

residuals.

Scale difference between matched keypoint sets. meta-features 8 and 9
measure this appearance property because they me#ise global scale

difference of keypoints matched between compared)és.

Sdf similarity: meta-feature 14 measures this appearance property

because it measures self similarity directly inreeempared images.

Symmetry: meta-features 15 and 16 measure this appearaaperpyr in

the form of horizontal and vertical symmetries.

Component similarity, meta-feature 17 measures this appearance
property by finding the average of multi-peak GHdores, corresponding to

major sub-component matches within the comparegasa

The above feature grouping structures the 17 negtsfes into 9
appearance properties comprising: global rotatigiobal pattern similarity,
global pattern overlap, spread of matched keyppsttsictural configuration of
matched keypoints, scale difference between matkkggoints, self similarity,

symmetry, and sub-component similarity. A summaiyeach meta-feature and
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its appearance property is shown in Table 6.9.

Table 6.9 The meta-featuresto measure appear ance propertiesin the system

Meta-feature Appearance property

1. Summation of orientation differences of a pdir @&lobal rotation
matched keypoint sets

2. Moment (m00) from matched keypoints Global &anity

3. Moment (m02) from matched keypoints Spreadhefrhatch points
4. Moment (m22) from matched keypoints Spreadhefrhatch points
5. SD of error-distance for a pair of matched Structural configuration of
keypoints the match points

6. Similarity score for matched keypoints Globahiarity

7. Total number of matched keypoints Global sintya

8. Mean of scale differences between a pair of | Scale difference of matched

matched keypoint sets keypoint sets

9. Median of scale differences between a pair of| Scale different of matched

matched keypoint sets keypoint sets

10. Mean of orientation differences for a pair of | Global rotation
matched keypoint sets

11. Median of orientation difference for a pair of | Global rotation

matched point sets

12. Percentage of matched points/ total keypomisGlobal pattern overlap

query

13. Percentage of matched points/ total keypointsGlobal pattern overlap

in the model

14. Self similarity Self similarity

15. Horizontal symmetry Symmetry

16. Vertical symmetry Symmetry

17. The average of multi-peak GHT scores Sub-compiosimilarity

In addition, the 9 appearance properties are ckladethe following 3
Gestalt properties: similarity, proximity, and gheity. Similarity groups image
parts that have similar configurations togetheoxinity groups image parts that
are close to each other together. Simplicity gralpgssame image sub-structures
together. The relationship between Gestalt progednd appearance properties is
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explained in the following and shown in Table 6.10.
First, we applied similarity to group similar partsan image. Similarity
can be size, orientation, pattern, shape, or valseneasured by the following

appearance properties:

e Global rotation

e Global pattern similarity

e Scaledifference between matched keypoint sets

o Sdf similarity

e Sub-component similarity
From the above appearance properties, we can neeasuttiple types of
similarity.

Second, we employed proximity to group the conrtkeatea or closeness

components in each image. Proximity can be nearnessh, overlap, or

combine, as measured by the following appeararmeepties:
e Global pattern overlap
e Spread of matched keypoints
e Structural configuration between matched keypoint sets
From the above appearance properties, we can neeasurponent density and
proximity.
Third, we exploited simplicity to group multiple Isyarts into

components defined by simplicity of form. Simplcitan be represented by

symmetry, regularity, or smoothness, as measurethéyollowing appearance
property:

e Symmetry
Therefore, we measure symmetry simplicity.

We summarise the mapping between appearance pegparid Gestalt
properties in Table 6.10.

We explain the experimental framework for validgtimperceptual

grouping in the system according to appearanceepties and Gestalt properties

in Appendix B.
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Table 6.10 Therelationship between Gestalt properties and appearance properties

Gestalt Gestalt Gestalt property Meta-
number property feature(s)
1 similarity Global rotation 1,10 and 11
1 similarity Global pattern similarity 2,6and7
1 similarity Scale difference between matchedland 9

keypoint sets

1 similarity Self similarity 14

1 similarity Sub-component similarity 17

2 simplicity Symmetry 15 and 16
3 proximity Global pattern overlap 12 and 13
3 proximity Spread of matched keypoints 3and4
3 proximity Structural configuration between 5

matched keypoint sets

6.6 Discussion and Conclusion

We have proposed meta-features based on interpréinspatial configuration of
matching keypoints to provide a perceptual groupmegchanism within our
trademark retrieval system. In this chapter, weaet the number of dominant
meta-features by means of PCA. The result sugdleatsonly 17 meta-features
are significant out of the 27 meta-features we aaenb originally, because we
implemented measures for several very similar Visppearance characteristics
which results in their outputs being correlated wiegposed to the same visual
stimuli (details in section 6.1). Then, we groudmeta-features into 17 meta-
feature subsets, using FA to prune the redundatd-features, and selected these

for our subsequent investigations.

The 17 major meta-features are then grouped ugirrglation analysis to
characterise 9 appearance properties comprisimipaglrotation, global pattern
similarity, global pattern overlap, spatial spreafl the matched keypoints,
structural configuration of matched keypoints, scalifference of matched

keypoints, self similarity, symmetry, and sub-comeiat similarity.
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Our meta-features are broadly related to threehef Gestalt properties
comprising similarity, proximity, and simplicity. herefore, the above meta-
features provide the representation to endow oustesy with the ability to
determine different aspects of similarity betweempared images, such as how
the components are rotated or spread out alongiaroaindeed if the compared

images contain conspicuous symmetry in the conditjom of their components.

Our meta-features have been designed to providefisant information
from low-level features to assist retrieval perfamoe (Eklund and Goebel,
2006). Obvious limitations of our meta-features #mat they are much less
sophisticated than those found in human vision asd that our meta-features
only perform global grouping, or interpretation,lotal keypoints. While human
vision appears to be capable of hierarchical graym scale over the visual field,
we can to a degree justify our simple global gragpapproach based on the
following observation: trademark images are an g®arof an image class where
attention over the whole image is important singerg pattern group present in
the trademark is likely to be significant. Therefoa simple global interpretation
of the appearance properties of the trademark neysuificient to achieve
improved database search performance over keypwmmlarity alone as offered
by the standard SIFT algorithm. Human judgmerdyglan important role in the
specification of semantic content in creative ingfenser et al., 2003) and this

judgement is related to the expression of highileaacepts (Liu et al., 2007).

Live trademark retrieval systems in patent offiees used by humans to
judge similar trademark images. However, few redeans have used user
feedback to retrieve similar trademark images amdaaconsequence many
systems are unable to reflect user consideratibarefore, we propose a system
that applies relevance feedback to retrieve tradeimaages based on classifying
relevant images by means of our dominant meta{fest’he key concept is that
the system can learn which, if any, of the metadies is diagnostic of the
desried trademark images, through learning the tfpenages which are being
labelled as relevant by the user. When a new dsgasarch is initiated following
relevance feedback, those images meeting the kkdeselback criteria will be
ranked highly for presenttaion to the user, asri@sd in the next chapter
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Chapter 7

Quantifying High-level Concepts from
Point-based Grouping of Local Features

In Chapter 6, we proposed a set of meta-features\agy to imitate perceptual
grouping and selected 17 meta-features to useeirsyhtem. In this chapter, we
investigate the meta-features according to higkleencepts. Our approach to
deriving high-level concepts from meta-featureexplained. In the following
sections, we motivate our adoption of high-levetlapts, propose the high-level
concepts approach, investigate validation of thpgreach, and finally draw

conclusions.

7.1 Introduction

Gestalt grouping principles have been exploitedniany applications, such as
map reading, graph drawing, and homepage desigay(RaKjeldskov, 2007;
Hsiao & Chou, 2006). Perceptual grouping offerdable basis for recognizing
shapes, symbols, and domain objects (Saund and dgh@004) Trademark

image retrieval systems that use perceptual grgupave been reported in the
literature to having achieved good retrieval perfance (details in chapter 2).
Regarding the Gestalt laws of perceptual groupgh@pe is very important in
human visual judgement. Hence, perceptual groupiags an important role in
trademark image retrieval. Non-accidental propemgige discrimination power to
human shape similarity judgement (Gibson et alQ72@iederman, 2007). Both
of these principles have motivated us to propostaifeatures that capture the
global configuration, i.e. grouping, of local feeds (details in chapters 4, 5, and
6).

Human judgment uses high-level concepts to measoage similarity
(Liu et al., 2007, Zhou and Huang, 2000). Howetee, features utilised within
CBIR systems are mainly low-level features (Liuadt, 2007). Therefore, a

technique to derive high-level concepts from lowelefeatures is required (Liu et
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al., 2007, Zhou and Huang, 2000). Since we aredsted in obtaining high-level
concepts without keywords, we propose to base yates on machine learning

and relevance feedback to derive high-level corscégstails in chapter 3).

In the next section, we explain our approach toivadey high-level

concepts in our system.

7.2 Utilisation of High-level concepts by groupindocal keypoint

features

Relevance feedback is a special technique emplayedn-line information
retrieval systems. Relevance feedback utilizes fesstback that scores whether
prior retrieval results are relevant, or irreleyantorder to inform (i.e. optimize) a
new database search cycle. There are three typeediback: explicit feedback,
implicit feedback, and blind feedback (Hopfgartreexd Jose, 2007; Jordan,
2005).

When the user directly indicates relevance judgmenot a database
retrieval system this is termaxkplicit feedback The user may indicate by two
values (binary relevance) or multiple values (gchdelevance) (Kekalainen,
2005). Binary relevance feedback indicates eithedevant or irrelevant retrieval
result. Graded relevance feedback is typically ¢jsad on a scale such as not

relevant, a little relevant, relevant, or very velet.

Implicit feedback comprises indirect feedback frdme user that can be
inferred from user conduct, for example, eye movanier viewing, or viewing
time, page browsing, or scrolling actions (Hopfgartand Jose, 2007; Buscher et
al., 2008).

Blind, or pseudo relevant, feedback does not requser feedback. It
simply assumes that the first k documents (toprk)airanked result set are

relevant.

Normalized discounted cumulative gain is a perfaroeametric which
became popular ~2005 to measure the usefulnesmbking algorithms based on
explicit relevance feedback. Other measures includeision at thekth item

returned from a query and also the mean averagasme (Agichtein et al.,
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2008). Normalized precision and recall are usednwasure performance of
trademark image retrieval systems (Eakins et &991 Jiang et al., 2006) and
therefore this measurement appears to be wellcstot@ur context the research
reported here.

In our system, we focus on explicit feedback: eatdge in a list of toge
images, returned in response to an input query émiaglabelled by the user as
relevant or irrelevant. At any point during a queession, the user can select to
continue or stop the cycle of marking relevant iesgnd retrieving results.

In this research, we approach relevance feedbacka asvo-class
(relevant/irrelevant) classification problem, astfgsggested by van Rijsbergen
(van Rijsbergen, 1979). When a query is initiatede query image is
automatically compared to all of the images indatbase and the tépmages
are then classified (i.e. manually labelled) by tiser as relevant or irrelevant.
We then apply the learning processes to this trigidata and the system returns a

set of retrieved images to the user for the necltecgf database search.

Generally, for each cycle, the user selects a ssealbf images to train the
system and the system then uses meta-featuresedefiom these selected
relevant images for learning. Normally, the numbketraining examples is small,
comprising less than 20 images per cycle of intemacdue to the user’s limited
patience and willingness to cooperate (Zhou andngud003). For such small
sample sizes, some standard learning algorithmd) s13 the support vector
machine (SVM), are not stable enough to give viahdessification performance

and require more training samples from the useo@znd Huang, 2003).

We employ a non-parametric classifier, ID3 (IteratiDichotomiser 3)
developed by Ross Quinlan in 1983, to endow ourieratl system with a
machine learning and decision making mechanism. bDiBds a decision tree
from training data. In this research, we prepafeature vector (comprising meta-
features described in Chapter 6 and Appendix Bhfrelevance feedback to train
ID3. Decision trees are then used for the purpokedexision making by

information gain when ranking subsequent databasehas.

ID3 is appropriate in the context of this work snt is both robust and
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also available in source code form. Since ID3 gatesrhuman-readable decision
trees, the classifiers it generates are often coatipaly easy to understand and
therefore easy to analyse and debug. Similarly,ctmaplexity of the classifiers
generated can be readily estimated from the nurobetecisions required to
achieve a classification, indicating the likelylityi of the classification meta-

features employed.

There is an issue in decision tree learning whamitrg data contains
noise or when the number of training data is toalkto represent at sample of
the desired result. In both cases, ID3 can gendre¢s that overfit the training
data and thereby decrease the system performancsolie overfitting, Mitchel
reported that rule post-pruning is a practical apph to solve the overfiting
problem (Mitchel, 1997). This technique checks sieci tree growth to give best
performance. When the performance begins to dexrdhe tree needs to be
pruned. By comparing tree classification perforneawé the previous training
iteration and the current training iteration, wa caeasure when tree performance
is converging. The tree growth is terminated if preeformance of ID3 decreases.
The tree is converted to an equivalent set of nwiéis one rule for each path from
the root to a leaf node. In pruning, some rules ammoved to increase

performance.

We have used our retrieval system in conjunctigh velevance feedback
and ID3 to evaluate the efficiency of our set otarieatures. The overall process
to retrieve similar images according to high-legehcepts by grouping keypoint
locations into meta-features is shown in Figure @&t can be described as
follows: We extract key points and descriptors freath image by means of the
SIFT algorithm as described in section 5.3.1.2 lofyi@er 5 and then calculate the
matching scores of each image as described inosebtB.1.2 of Chapter 5. We
next extract local image features, i.e. keypoiosng the SIFT and consistent
keypoints locations by means of the GHT accumulasodescribed in section 6.1
and then calculate meta-feature matching scoresobyputing the dot product
between candidate significant meta-features exadafrom the query image and

each database image as explained in Figure 7.2.
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Relevance
Query Feedback
image . By
1. Detect SIFT keypoints User
2. Calculate SIFT matching
3. Calculate meta-features
4. Calculate meta-feature
matching
5. Calculate relevance
Database feedback matching using
Images ID3 and Relevance Feedback

A 4

Retrieval results and ID3
meta-feature(s)

Figure 7.1 The overall process of the experiment

We can now compute the similarity score by ID3 atsb the meta-
feature vector. We start by sorting the resultsnfrmeta-feature matching. After
that, we input relevance feedback for each imageaoh display page (the top-k
is 9) until the first similar image is found, thaegy itself is indicated to relevant
image. Relevance feedback is achieved by indicatragies similar to the query,
and all other images as non-relevant (Giacinto Rotl, 2005). An example of
user feedback is shown in Figure 7.3. The traimmeda-feature set is created by
extracting meta-feature vectors from relevant amoh-relevant images. An
example of a training meta-feature set resultiognfluser feedback in Figure 7.3
is shown in Table 7.1. The relevance feedbackvgléd into 2 classes, where 0

codes for dissimilar and 1 codes for similar imagepectively.
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Meta-feature matching

Step 1: Normalize the meta-feature vector extrattead each of the database
images and the query meta-feature veéotenorm.
Fnorm= F/|F| (Equation 6.15)

|F| = \/Flz +FZ+..+F?
Step 2: Matching query meta-feature vecty With the normalized meta-featur
vectorKnorm) by taking the dot product betwe@nand Fyorm ,
i.e. cosine distanBrqs(Q, Fnorm)-
Steature vectors= Deos(Q, Frorm) = Q7. Fnorm (Equation 6.16)
= (QuX Fromy) + (X Frormd) + ... + (QiX Frorm n)

Figure 7.2 Overview of meta-feature matching algothm

=i Trademark image retrieval system

Setting Display previous result  Exit System

. Query image

Cycle: 0

_tem |_Ead |
_Poveur | mw_ |

Page 1 T

(9) (h) (i) 0)

Figure 7.3 Input of relevance feedback from a usewhere (a) is the query image, (b) is the
relevant image, and (c) — (j) are non-relevant imagg.
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Table 7.1 Example of training meta-feature set fronthe relevant and irrelevant images in
Figure 7.3

Image a b j
Feature
1 0.00000 0.25750 0.04299
2 0.69231 0.07692 0.15385
17 0.94585 0.26568 0.00000
Relevance feedback 1 1 0

The system then generates an ID3 tree by splittodes which have high
information gain in terms of class examples. Thgoathm for ID3 tree building
is shown in Figure 7.4. From the ID3 tree, we @atdcision rules in the form of
if-then-else clauses. An example of decision rigeshown in Figure 7.5. Next,
we classify the relevance of each database im&hasy Class is 0 if ID3
classifies the database image as being non-relethetwise,Class is 1 if the
database image is classified as being relevamtgxXample Class in Figure 7.5 is
0 if the leaf node of the decision path is No, othse Class is 1 if the leaf node
is Yes. In order to be able to rank images thatcéassified as being relevant,
similarity scores (f53) are computed (Equation 6.17) for each cycle @rguag

with relevance feedback.

Sp3 = (Shodert Shodez + Shode)/N (Equation 7.1)

wheren is the number of nodes in decision path in ID3 thaluates the
relevant class (Yes), for instanceis 2 in Figure 6.14, an8,. iS the node score
that is calculated from the meta-features extratimoh the database images for

each node.

Snodei = \/((Fnodei _FS )/FS )2 (Eq Uation 72)

where Froge IS @ meta-feature threshold value of the datalrasge in

each node.

Fs is the threshold value of each node from the rfesdifire value 0§, in

Equation 7.3 while in the process of splitting nede

Chapter 7 124



ID3 tree building

Input training meta-feature se&) (with relevance feedback from user selection
displayed images.
Step 1: If all meta-feature values are the sarae th
Return a leaf node with the resudhf relevance feedback
Else
Find meta-featur€) with highest information gain
Gain(S A) the information gain of meta-feature Sain

each meta-featdrés defined as
) N
Gain(s, A) = Entropy(S) - >_ ((S,|/|9) * Entropy(S,))
v=1

Where giation 7.3)
N is the number of all possible values of attribAite

S/ is the subset d& for which attributeA has valuey,

|S/| is the number of elements ),

|§ is the number of elements &

L

Entropy(S) = - p(class ) log, p(class)

i=1

(Equation 7.4)

L

> = (Suass /19 10, (

i=1

Sclassi ‘ /H)

where

p(class) is the proportion of belonging to clasg

| S

wass | 1S the number of elements $belonging to clask
|§ is the number of elements $

L is the number of class categoriesin
End

of

Figure 7.4 Overview of the ID3 tree building algorihm
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ID3 tree building (continued)

Step 2: Assign the best meta-featutif step 1 as a decision node
Step 3: For each value Bfcreate a branch by partitioning the training set
Sinto subset$§l, 22, ..., Sy according to the values bf
Step 4: Follow each branch whereby the value obthech is present
If the meta-feature perfectly classifipe training sets then
The process stops and outputceidn tree.
Else
Perform step 1 recursively toleatthe set§& from step 3.
End

Figure 7.4 Overview of the ID3 tree building algorihm (continued)

IF meta-feature 6 =1 THEN similarity\No

IF meta-feature 6 = 2 and meta-feature 17
|:> THEN similarity = No

IF meta-feature 6 = 2 and meta-feature 17 =|2
THEN similarity = Yes

(a) (b)

Figure 7.5 Example of decision rules in (b) that a generated from the ID3 tree in (a)

We now investigate high-level concepts of appeagmoperties in the
system, and the benefit of using relevance feedbazikfeedback from the user to
indicate relevant and non-relevant images) in otdenake real decisions based

on the high-level notion in the next section.

7.3 Investigation of the high-level concepts

We are interested in to what degree by using relevdeedback and 1D3 our
system is able to extract feedback meta-featuréorsethat encapsulate Gestalt
properties in order to retrieve similar trademartages. In other words, we now

investigate how the retrieval results are influehbg classifying the relevance of
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database image meta-features using ID3 traineelbyance feedback. We utilize

the implementation described below.

Three experiments were devised in order to invasgithe implementation
of three Gestalt properties comprising: similarigroximity, and simplicity
validated by a specific test image set. Each sedleisigned to invoke only
individual Gestalt properties in isolation, althbughis in fact is not always
possible as mentioned in Chapter 6 and will be @rpt in more detail below.
We select meta-features to represent each appeapaoperty based on using
PCA and Factor Analysis, and further analysis ofheappearance property
(Details in sections 6.2 to 6.5 of Chapter 6). TBestalt properties and
corresponding appearance properties investigateddh experiment are listed in
the Table 7.2, and the meta-features are listdcinle 6.10.

Table 7.2 Gestalt properties investigated and promed meta-features

Experiment Gestalt Appearance property Proposed
number property meta-features
1 Similarity Global rotation 1,10, and 11
5 Proximity Structural configuration of the 5
matched points
8 Simplicity Symmetry 15

We investigated the effect of relevance feedbackneasuring retrieval
performance and examining the feedback meta-featecéors generated when
the system incorporates ID3 trained by relevanesgildack. In this experiment
“model” (ideal) feedback was provided to the systand ID3 then made a binary
decision regarding the relevance of each imagéentdst set. We then observed
the retrieval result, i.e. which images of the wett were deemed to be relevant,
and which meta-feature was selected to classifyafipearance property present
in the image training set. The effect of relevafeedback was determined by
comparing the results of the system using ID3 plediby relevance feedback

with the system results using meta-feature matcitigout relevance feedback.

We describe the above experimental procedure ialdatthe following

section.
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7.4 Experimental procedure

In this section, we explain the experimental pracedfor investigating the

potential for high-level concepts to benefit theteyn retrieval performance. The
objective of this set of three experiments is, gie set of meta-features that
describe visual appearance properties, to determimeh meta-features will be

selected by relevance feedback based learningstwimiinate the degree of each
appearance property when presented to the systeenshdw the set of test
images employed in section 7.4.1, describe expat@mhgrocesses in section

7.4.2, and explain the result in section 7.4.3.

7.4.1 Test images

Each experiment used a different set of test imageshich each test image set
changes the degree of each appearance propertynaldnelevance feedback” is
provided that labels a subset of images in thedests being relevant and the
remaining disjoint subset of images as being ntewvemt. In all of these
experiments, the first three images (includingdbery image) have been deemed
by the above relevance feedback process to beasjnir example, the images
(a) to (c) in Figure 7.6 have been defined to balar images, and the remaining
images defined to be dissimilar when compared thiéhquery image in (a). The
appearance threshold used to define similarityissimhilarity for each subset of
images in each test set is essentiatlyitrary, since the objective is to determine
if the system is able to group similar and dissamproperties as defined by a

user, i.e. arbitrarily.

Many researchers suggest that a small number dfsimages should be
used to support user convenience and cooperatioou(£t al., 2006; Manning et
al, 2008). Accordingly, the total number of imagesach set is 9 to fit in one
display area. The test sets are shown in Figufe®77.8 for each experiment.

Experiment 1. We evaluate similarity appearance discriminaticasea on

applying global rotation to the test image set.

The test set in this experiment is arranged bydggree of global rotation
of the test images. The degrees of global rotatren0, 10, 20, 30, 40, 50, 60, 70,
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and 80 degree respectively. The test set in exeatithis shown in Figure 7.6.
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Figure 7.6 Test images in experiment 1 (Global rotan).
The relevant images are defined to be (a) — (c),@mon-relevant images are defined to be (d)
— (i), and the query image is (a).

Experiment 2: We aim to evaluate appearance discrimination bgying

proximity similarity and quantifying the structuraonfiguration of matched

keypoints.

The test set in experiment 2 is arranged by pregrely varying the
distance between two components in test imagess&paration distances of the
two components are 86.5, 76.5, 66.5, 56.5, 46.5, 2.5, 16.5, and 6.5 percent
respectively. The testing set in experiment 2 @aghin Figure 7.7.
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Figure 7.7 Test images in experiment 5 (Structuratonfiguration of the matched points). The
relevant images are defined to be (a) — (c), the noelevant images are defined to be d) - (i),

and the query image is (a).

Experiment 3: We aim to evaluate the simplicity property for epmnce

discrimination using the symmetry of matched kegppositions.

The test set in experiment 3 varies the degreelaifay asymmetry for
each of the test images, ordered by 0, 10, 2043050, 60, 70, and 80 percent.

The test set in experiment 3 is shown in Figur8s 7.
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Figure 7.8 Test images in experiment 8 (Horizontadymmetry).
The relevant images are defined to be (a) — (c),@mon-relevant images are defined to be (d)
— (i), and the query image is (a).

In the next section, the experimental proceduresaliathree experiments

will be described.

7.4.2 Experimental procedures

In each experiment, we use a different image setint@stigate a single
appearance property. We evaluate each appearanpertyr with the system
using the meta-feature matching with and witholévwance feedback and ID3.

When relevance feedback is not used, the systepshssquery decisions using
meta-feature matching alone. A query and the tesirsages are input to the
system, which extracts SIFT features from each eandgpe system matches and
groups keypoints extracted from the query image eaxch test image using the
GHT, which is explained in section 6.1 of chaptefbe system calculates the 17
meta-features (details in chapter 6) to construetreta-feature vector and then
compute meta-feature matches. The overall prosessown in Figure 7.9.
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Test images

/

Query
Images

System
1. SIFT key point detection
2. Calculate SIFT matching & GHT
3. Calculate meta-features

4. Meta-feature matching

\4

Retrieval result

Figure 7.9 Processes in the system using meta-fegunatching alone
When incorporating RF, the system extracts SIFT pewt descriptors
from each image, and then matches the query imadyeach test image using the
GHT, as described in section 5.3.1.2. The 17 lovatta-features are then
calculated and an initial retrieval result by matghthe meta-feature vector of the
guery to the meta-feature vectors of the test imagken the system calculates a
similarity score using relevance feedback and IB8&tdils in section 7.2). An

overview of the second sub-experiment is showrigare 7.1.

The processes can be summarised as:

1. Extract the keypoints and descriptors from eaclgenasing SIFT.
2. Calculate the SIFT matching score, as describeédtion 5.3.1.2.

3. Calculate the meta-feature vector of the keypofotseach image, as

explained in section 6.1.
4. Calculate the meta-feature matching scores, asiegal in section 7.2.

5. Compute the similarity score using ID3 and the nrietdure vectors, as

described in section 7.2.

The system returns the retrieval result and feddimageta-feature vector
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for each experiment. Thereafter, the retrieval Itesbtained by meta-feature
matching only and ID3 with relevance feedback ammgared to determine the

utility of relevance feedback classification.

In addition, we evaluate the utility of the releeanclassifiers generated
by user feedback from the complexity of the tregkiced bylD3, in terms of tree
depth and number of branches. Trees with fewer sioatbcate a simpler decision
space and hence are more desirable than treesgvatiter numbers of nodes
(Mitchell, 1997), indicating a complex decision spawhich is likely due to
overfitting to the training data. Therefore, follong the principle of Occam’s
Razor, the lower the complexity of the trees geteerdy ID3, the simpler the
decision space potentially resulting in better genfance of the relevance

classifier.

7.5 Experimental results

In each of the experiments, the same class of Igsiror dissimilar) images is
retrieved through user feedback. Each experimenéergées only one node for
each ID3 tree, for example, the tree produced I8/ftid experiment 1 is shown in

Figure 7.10.
Feedback meta-
Feature 11 / feature vector
/ Decision value
2
/ Decision result

Figure 7.10 ID3 tree generated in Experiment 1. Theoot node represents the selected meta-
feature, the branches are the decision values froiD3, and the leaves illustrate the decision
result for each path.

Yes No

A single ID3 node is generated in every experimsateach appearance
property decision is based on a single feedbachieetture.

We summarize the feedback meta-feature vectorstedleoy ID3 and
compare the feedback meta-feature vector with meganeta-features for each

Gestalt property in Table 7.3.
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Table 7.3 Proposed meta-feature(s), and meta-featiselected by ID3 and Relevance
Feedback in each experiment

Experiment number Gestalt property

Proposed
meta-feature(s
(Feature no)

RF meta-feature
(Feature no)

1 Similarity 1,10, 11 11
2 Proximity 5 5
3 Simplicity 15 15

According to Table 7.3, the set of feedback mesdtie vectors are
contained in the set of proposed meta-featurestefdre, suitable meta-features
in each experiment have been selected by ID3 tpatipecisions based on high-
level visual appearance properties. This resulgssitg that if there are several
meta-relations (keypoint configurations) operatangultaneously in an image, a
decision tree could be generated by ID3 from séveoaresponding meta-
features, or any single dominant meta-feature, a/laesingle visual appearance
property dominates. We investigate the stability noéta-feature selection by
varying the number of similar images, and the tasidummarized in Table 7.4.

Table 7.4 The feedback meta-feature in each experant with different numbers of similar
images

The number of similar images Feedback meta-feature
Experiment 1] Experiment 2 Experiment 3
2 10 8 15
3 11 5 15

In experiment 3, the feedback meta-feature is thmes for different
numbers of similar images. The feedback meta-featetected from experiment

1 and 2 varies when the number of similar imagesgbs.

The feedback meta-feature results in experimentodle cthe same
appearance property: similarity. This result sugggdsat the meta-features coding
appearance property concepts can provide the sysignthe means to select the
more dominant meta-feature in the same appearanpepy group.

The feedback meta-feature selected in experimecwd2 two different
appearance properties: similarity and proximitye Ttest images were generated
to vary proximity (structural configuration of thmatched keypoints), and
comprised similar components. Therefore, it isiclit to decouple the similarity

and proximity properties.
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Table 7.5 Example result s using Relevance Feedbadk3, and meta-feature matching

Image relevance| ID3 Meta-feature matching
feedback | Result | Similarity value| Result Similarity valu
Similar Correct| 1 Correct 3.443
v
wvwvw
oy Similar Correct] 0.790 Incorrect| 1.433
“‘
.. Similar Correct| 0.586 Incorrect| 1.705
-
“‘
- Dissimilar | Correct| 0.394 Incorrect| 1.810
™
'
;‘ Dissimilar | Correct| 0.156 Correct 0.990
- [
‘h
n.. Dissimilar | Correct| O Correct 0.995
(Y
n L
h
A Dissimilar | Correct| -0.226 Incorrect| 2.263
[
4 M
&
. & Dissimilar | Correct| -0.413 Correct | 1.128
A4
&
4 &
X 4 Dissimilar | Correct| -0.678 Correct 0.955
q 4
4 4

The retrieval results from the system using releeafeedback and ID3

were consistent with user feedback in every expamimbut the results using

meta-feature matching were inconsistent in mangergents. This is because RF

imposes user intentions that simple meta-featurechimy (vector dot product

comparisons between meta-features) has no meatedating. ID3 is also able

to select appropriate meta-features rather thamgusil the meta-features when

matching, and therefore the system using relevd@edback and ID3 has the

potential to achieve better results. An examplaetfieval results obtained in

experiment 1 is shown in Table 7.5. The systemgusalevance feedback and
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ID3 returns correct results for all images, but wimeta-feature matching alone

we observe certain images being incorrectly regdeas similar.

7.6 Conclusion

In response to the gaps in the research literateetified in Chapter 3, this
research proposes the use of meta-features inradign with relevance feedback
as a way to imitate aspects of human perceptualpgng. There is little reported
work on utilizing perceptual grouping to retrievengar images, and none
reporting the calculation of meta-features from TSIkeypoints to measure

Gestalt-based properties.

We evaluated the ability of the system to makeemaark image similarity
judgements using a single visual property in eagieement we conducted. Our
results show that it was indeed possible to quartidisic visual appearance
properties and select suitable meta-feature forsoreey visual appearance
properties based on user supplied relevance fekdbac

However, due to the difficulty of decoupling viswglpearance properties
in the test images, more investigation is requiedletermine if our proposed
approach is viable when more than one visual ajppear property is active

within compared images.

In conclusion, from the initial results reported tims chapter, it would
appear that by endowing the system with relevaaediiack training it becomes
possible to construct a classifier that can basevaace decisions on suitable
appearance properties by automatic selection ofrogppte meta-features.
Thereby we are able to retrieve similar images dtggorising the meta-feature
vector extracted from database images using aidedi®e learned from training
examples given by relevance feedback. This appraditinds flexibility in the
ability of the system to retrieve database imabas a@re similar to a query image
based in part on a user defined notion of simjarit

In the next chapter, we evaluate the system widh tredemark images
containing several visual appearance propertiesrder to measure the system'’s

retrieval performance when operating on real data.
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Chapter 8

System Evaluation Experiments

In the previous chapter, high-level concepts captured by employing Gestalt-Based
Perceptual Grouping (GBPG) of visual appearance properties were investigated
within our trademark image retrieval system. The results showed that by
incorporating high-level concepts wihtin our system it becomes possible to
guantify each Gestalt property in order to retrieve similar images. In this chapter,
we evaluate the system with a database of real trademark images, where each
individual image may contain several Gestalt properties. The resultsillustrate the
performance of the system when retrieving ssmilar images that contain several
Gestalt properties. We compare 3 methods for retrieving similar trademark
images. In the first, we use SFT matching which returns similar images by
matching SIFT keypoint features. In the second method, we utilize several meta-
features (meta-feature matching) to take into account the GBPG properties of
images compared and retrieved by the system but without utilising relevance
feedback to support the user definition of high-level concepts. In the third method,
we extend the second system to employ relevance feedback (RF) in conjunction
with machine learning to provide relevance feedback-based decisions by which
similar images are selected (and ranked) from the database. We describe the
experimental framework in section 8.1, implementation methods in section 8.2,
experimental procedures in section 8.3, discuss the results in section 8.4, and

summarise our findingsin section 8.5.

8.1 Experimental Framework

We would like to evaluate the retrieval performaméeour system supporting
high-level concepts using relevance feedback amiside tree-based relevance
classification (Relevance Feedback matching) armbiopare the performance of
this system configuration with system configurasiothat do not incorporate
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relevance feedback (meta feature matching alorteS#AT matching alone). This
section presents the hypotheses, objectives, aséaneh questions for this
evaluationOur hypotheses are:

It is possible to build an effective retrieval srstfor searching databases
of trademark images by adopting image matchingdaserepresenting multiple
GBPG properties. Relevance feedback based deaisatimg can select
appropriate features based on GBPG properties,candthereby increase the
retrieval effectiveness of the system.

In our experiments, we compare the retrieval effeaess of the system

when using SIFT matching, feature matching, andrREching.

8.2 Implementation M ethods

In the first method, the system employs SIFT maighand the system generates
SIFT features. In the second method, the systeimagtimeta-feature matching as
the basis for extracting GBPG properties (detailshiapter 6 and appendix B). In
the third method, the system uses with RF matchimg) is supplied with user
labelled relevant images (relevance feedback) duesch database query cycle,
and then selects GBPG properties (meta-featurested| by ID3). This method
attempts to represent high-level concepts in oroeapture perceptual grouping
by relevance feedback based on meta-features eglegtiD3 decision trees.

The details of each of the above methods are engaain section 8.3.3.
The system results using RF matching are compairtdtiae other two methods
by employing precision and recall measures. Theltesre shown in section
8.4.1. The advantages of using RF matching in iradke image retrieval is

analysed in terms of the system retrieval effeci@ss in section 8.4.3.

8.3 Experimental procedure

The experiments will measure system performancenwiedrieving similar
images that contain multiple GBPG properties. Wawnskthe database images in
section 8.3.1, list the meta-features in sectioB.28. describe experimental
processes in section 8.3.3, and explain the maasmtemethod in section 8.3.4.
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8.3.1 Image data

We evaluated our system using a database compasidgbstract images taken
from the UK Trademarks Registry, and a set ofgli2ry images with known

“correct” search results for this database. All ttaelemarks are binary images of
256x256 pixels. The image set comes from the sanesed in the evaluation of
the Artisan system (Eakins et al, 1997). The seelgivant images for each query
was selected by UK trademark examiners and theydtssif is contained in the

relevant images (Giacinto and Roli, 2008). The L2ry images are shown in

Figure 8.1, and the 200 database images in Fig@re 8
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Figure 8.1 Query images used during the experiments

Chapter 8 139



@)

FIEie o

[021]

-
-

{oE)

'003'

[041]

(061)

AA//

[051)

D

{o71)

1091]

(022

@

(3]

[0B2]

—
[672]

2]

044)

053] (054]
-
4

[0B4)
.. @
{073y [074)

[083) {054)
[093) 034)

leo]| (o=

1005

(025)

(0]

(10

jz0]

(26

(0271

[D28]

1030)

Q@ =« @ <

(i35

Ol -

1045)

&y

[055]

N~ o [0

[0B5)

[{i38]

(048]
4.9,

*.0.0
0.0

3]

[0BE]

037)

[047]

AN
AN
AN

[057]

[067]

[038)

(048]

58]

[06:]

039)

Ve

104g)

A%

[053)

O
JAAN

(0B5)

@[ HQA

{175

[078]

{077)

[078)

{073)

[040]

[050)

(070)

[E0]

S PN OO

1035

035]

[DSB

[087]

1085]

1089)

A4 A

(098]

[057]

098]

[033)

{35

(0]

Figure 8.2 (a) Trademark image database used during the experiments
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Figure 8.2 (b) Trademark image database used during the experiments (continued)

Chapter 8 141



8.3.2 Meta-features

17 meta-features are utilized, which were describbedhapter 6 and are listed
here in Table 8.1. They are used in the meta-feanatching and RF matching
methods for trademark image retrieval.

Table 8.1 17 meta-features extracted from each image

NO Description of meta-feature
1 Summation of orientation differences of a paimatched keypoint sets
this feature measures orientation similarity.
2 Moment (m00) from matched keypoints;
this feature measures pattern similarity.
3 Moment (m02) from matched keypoints;
this feature measures nearness proximity.
4 Moment (m22) from matched keypoints;
this feature measures nearness proximity.
5 SD of error-distance for a pair of matched kegpmi
this feature measures nearness proximity.
6 Similarity score for matched keypoints;
this feature measures pattern similarity.
7 Total number of match keypoints;
this feature measures pattern similarity.
8 Mean of scale differences between a pair of neatdeypoint sets;
this feature measures size similarity.
9 Median of scale differences between a pair otheat keypoint sets;
this feature measures size similarity.
10 Mean of orientation differences for a pair oftoh@d keypoint sets;
this feature measures orientation similarity.
11 Median of orientation difference for a pair chtched point sets;
this feature measures orientation similarity.
12 Percentage of matched points/ total keypointpigry;
this feature measures overlap proximity.
13 Percentage of matched points/ total keypointthe model;
this feature measures overlap proximity.
14 Self similarity;
this feature measures value similarity.
15 Horizontal symmetry;
this feature measures symmetry simplicity.
16 Vertical symmetry;
this feature measures symmetry simplicity.
17 The average of multi-peak GHT scores;
this feature measures multiple values similarity.

8.3.3 Experimental Processes

We measure the effectiveness of the system wherg URBF matching, meta-
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feature matching, and SIFT matching. The systemamentation details of these
methods are explained in the following sections.

8.3.3.1 SIFT matching

Matching using SIFT keypoint descriptors is showirigure 8.3.

Query Databfase
Image \ Image:

1. SIFT keypoint detection
2. Calculate SIFT

matching score

\ 4
Retrieval result

Figure 8.3 SIFT matching
We extract keypoints and descriptors from each anlag means of the

SIFT detector, and then calculate the SIFT matchoaye as described in section
5.3.1.2.

8.3.3.2 Meta-feature matching

Database

Query + | Images
image 1. SIFT keypoint detection g

2. SIFT matching score

3. Meta-feature calculation

4. Meta-feature matching

Retrieval result
Figure 8.4 M eta-feature matching
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Matching using a meta-feature vector is shown igufé 8.4 We first extract
keypoints and keypoint descriptors from each imagemeans of the SIFT
detector, then calculate the SIFT matching scordessribed in section 5.3.1.2.
The vector of meta-feature scores representinghitie-level image appearance
properties for each compared database image istrootesi as explained in
section 6.1, and finally the meta-feature matchsapres are obtained as
explained in section 7.2. In all experiments contedauring this validation, we
in effect use nearest neighbours matching to m&atéfi keypoint descriptors by
setting Lowe’s log-likelihood cut-off ratio critem for matching to 1.0 (the ratio
between the match score of the best matching gscrand the next best
matching descriptor). This modification has theeeff of considering all
descriptors when constructing matching pairs, apospd to only matches
between highly distinctive descriptors. We justifiys approach on the grounds
that it greatly improves the number of SIFT keypailescriptor matches we
obtain and it also appears to improve the overatfggmance of the system,
compared to using the standard log-likelihood rafi®.8. We believe that use of
nearest neighbour matching is appropriate hereldsgh-confidence keypoint
descriptor matches are likely to be significanttimademark images since such
images contain geometric figures which are likeybe self similar that would
otherwise be rejected by log-likelihood matchinefiefore, due to an economy
of form usually present within trademark images$,galod keypoint matches are

potentially important and should be recorded.

8.3.3.3 Relevance Feedback (RF) matching

Matching using RF matching is shown in Figure 8\¥e extract keypoints and
keypoint descriptors from each image by means &I detector, and then
calculate the SIFT matching score as describedeation 5.3.1.2. The meta-
feature vector is constructed as explained in@edil, and used to obtain meta-
feature matching scores, as described in sectidnFinally, the RF matching
score is computed using ID3 decision trees, asribestcin section 7.2. To
generate relevance feedback automatically for eaehny image, a set of relevant
images is provided by program code implementingideal observer” (Xu et al.,
2009; Farag and Wahab, 2003). This ideal obseruppl®es the appropriate

“ground truth” set for each query image as illustdain section 8.3.1 where a
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Patent office examiner has identified images deetmée relevant.

Relevance
Query Feedback
image 1. SIFT keypoint detection from
2. SIFT matching USer
3. Meta-feature calculation
4. Meta-feature matching
Database / 5. RF matching using ID3
Images and Relevance Feedback /<

Retrieval result

Figure 8.5 Relevance Feedback matching

8.3.4 M easurement method

The system effectiveness is measured by precismhracall, following Van
Rijsbergen’s definition that effectiveness striatfyasures the system’s ability to
retrieve relevant documents that satisfy the UBegcision and recall can be used
to measure information retrieval performance irs thontext (van Rijsbergen,
1979; Makhoul et al, 1999).

8.3.4.1 Precision and Recall

Precision P) and recall R) can be defined as (van Rijsbergen, 1979):

o
E

(Equation 8.1)

_|Am B
A

where | . | is the counting measure,

(Equation 8.2)

A is the number of relevant images,
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B is the number of images that the system can vetrie
The contingency table for calculating precision aechll fromA andB is

shown in Table 8.2.

Table 8.2 The contingency table for calculating precision and recall

Relevant Non-relevant

Retrieved ANB ANB B
Not retrieved ANB ANEB B
A A

8.3.4.2 Precision and Recall of top-k

Relevance feedback from the user is applied tosgatem in the RF matching
method to facilitate system learning. The numberimofges per round of
interaction (i.e. the set of relevance feedbackrgta images) should be small
(Zhou and Huang, 2003), and is called top-k. Wegas$op-k to be 9 in
accordance with the user’'s comfort and availablamaer display area.

The average top-k precision and recall are utiltmecheasure the system
performance (Li et al., 2008; Chakrabarti et alQ0&), by employing Equations
8.1 and 8.2, with the number of images limitedojo-k.

Higher precision and recall implies a more effegtivnage retrieval
system, therefore we measure system improvememoinparing the precision
and recall of our three proposed methods.

8.4 Discussion of results

Experimental results for system effectiveness imseof precision and recall are
examined in section 8.4.1, case studies for redltiake given in section 8.4.2, and

section 8.4.3 summarizes the findings.

8.4.1 Experimental results

The average precision (over 12 different query iesador each top-k (from 1 to
200) of each query performed by the system is shiowfigure 8.6. The results
indicate that RF matching gives the best averageigion score, the feature
matching is second, and SIFT matching is the pbofdse cumulative precision
for RF matching is higher than the scores for featnatching and SIFT keypoint
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descriptor matching by about 23 and 46 respectiWlyile, the average precision
score for RF matching is higher than scores fotufeamatching and SIFT

matching by about 1 % and 2 % respectively.

Average Precision of Top-k

O RF matching

| Feature matching

O SIFT matching

Top-k Precision (%)

O T T T "~T1 "1 "1 “~"T “"T "1 “"T "~T T T T T
D DN O DDA DD DDA D D DAY S D DO
\,ﬁ,fbuo)@/\%qq\p\y@@&@\,@(/\@@@q’o

T T T T T T

Number of images returned (k)

Figure 8.6 System precision for RF matching, M eta-feature matching, and SIFT matching
The cumulative and average precision of the vaddiatlystems are shown
in Table 8.3.

Table 8.3 Cumulative and aver age system precision

Feature SIFT
Method RF matching matching matching
Cumulative 368.5 346 323
Average 16.02174 15.04348) 14.04347826
Standard Deviation 2.673431 2.742399 3.048520668

Relevance feedback and ID3 are intended to pravigle-level concepts
to bridge the semantic gap when comparing simitaages (Liu et al., 2007).
Indeed from the results presented in Figure 8.6) Meta-Feature matching and
RF matching are performing better than standardrl Sttatching for all page
gueries. RF matching starts to increase in perfoomanotably after 18 images

have been returned (just 10 percent of the databpsssibly indicating that for
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RF to be effective a certain minimum number of pesitraining examples must
be provided when relying on ID3 for feedback clfasation.

The average (over 12 different query images) topdall for each query
cycle performed by the system is shown in Figure 8.

Average Recall of Top-k

100
90 |
80 -

0 [ il

60 L I Ll

50 —lit

@ RF matching
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O SIFT matching

Top-k Recall (%)

07\\\\\\\ T T 71T "T “~"T "~"T "~"T "~"T "“~T ""“"T "7 "“T 7T
DDA OB DAL D D @A DD DDA D D DO
»m%v@b«%qq@QQ@&@@é@@@§

Number of images returned (k)

Figure 8.7 System averagerecall for RF matching, meta-feature matching, and SIFT

The results show that RF matching gives a bettsllracore for all top-k
values. The cumulative and average recall of tséegys is shown in Table 8.4.

Table 8.4 Cumulative and average system recall

Feature SIFT]
Method RF matching matching matching
Cumulative 2047.21 1922.2 1794.43
Average 89.00913043 83.57391] 78.01869565
Standard Deviation 14.85255959 15.23519) 16.93610299

RF matching produces the best cumulative and ageragall scores,
feature matching is second, and SIFT keypoint detecrmatching is the poorest.
The cumulative precision score for the system uslRgmatching is higher than

the scores for feature matching and SIFT matchiggabout 125 and 253
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respectively. The average recall score for RF miagcks higher than scores for
feature matching and SIFT matching by about 5.4n% Bl % respectively. RF
matching starts to increase in performance aftgret@ent of the database images
have been returned, once more indicating that irgtdeedback classification
might be a route to improved performance. In thasecthe RF performance
improvement is more pronounced, RF matching ratrgevall similar images
having returned 126 database images, while SIFT netisrn 189 images before
finding all query images. Therefore RF matching ldaappear to be significantly
better than SIFT at finding the most difficult t@toh residue of similar images.

Normalized precisionRj,) and normalized recalRY) are used to measure
system performance in other trademark retrievatesys (Eakins et al., 1998;
Jiang et al., 2006). They are calculated as follows

2R -2
anl—ﬁ, (Equation 8.3)

n

> (IogR )~ > log(i)
Pn:].— i=1 N!|:1 ,
IOg((N - n)!n!)

(Equation 8.4)

R is the rank at which the relevant image actually retrieved,

nis the total number of similar images, and
N is the total number of test images.

These values rank retrieval performance from 0 ¢§tvoase) to 1 (perfect
retrieval).

The normalized precision and recall for our systesing RF matching
wereP, = 0.89+ 0.11 andR, = 0.83% 0.10, while Artisan’s performance (Eakins
et al., 1997) wa®, = 0.65+ 0.18 andR, = 0.93+ 0.05. A more recent system
that applies Gestalt principles proposed by Jiaian@ et al., 2006) repork, =
0.66+ 0.18 andR, = 0.87+ 0.11.

We employ same query set and trademark image dagasain Artisan’s
system, but Jiang et al. used a different quergséttrademark image database.

We can see that all three of our approaches achigheperformance: our
system achieving a higher precision figure while Bakins and Jian’s perfoming

better than ours in recall. Normalized precisiorasuges the ability of a system to
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filter information according to some given criteri¢Zhang and Mostafa, 2002).
These above results are therefore consistant witmporved ability to determine
the relevance of images returned in response teey@nd therefore indicate that
our approach is very promising, compared to otkeeorted trademark retrieval

systems that represent the state-of-the-art.

8.4.2 Retrieval Case Studiesunder Relevance Feedback

To investigate the operation of the system whenmerghg trademark images, we
now examine the retrieval data in detail. The estrl results of the five closest
matches for twelve query images are given in T&dbe The last top-k for each
guery corresponds to the final round of top-k inggeurned using RF matching.
The relevant images for each query are markeddsses (X).

The best retrieval result is always the smallegtk@nd the worst is the
last top-k in the results.

In Table 8.5, the ninth query used 9 images of laptk to retrieve 4
similar images, this particular query image andevaht images are shown in
Figure 8.8. A query image begins each row, the fmagtched images are then
shown, and the last top-k appears at the end @ivaSimilar images are specified

by crosses.
= — -
(b1) (b2) (b3) (b4)
(a) Query image (b) relevant images

Figure 8.8 The best perfor ming query image and relevant images

Three of the images in Figure 8.8 (b1, b2, and ¢@htain a circle,
rectangle, and triangle. Image b3 contains a ciacld triangle and the capital
letter Delta,A. Furthermore, bl and b2 contain occluded eleméfte. best
property to retrieve these similar images wouldesppto be global similarity
because all of these images are similar as a winoége rather than being
considered as a collection of components. This shbat the system can retrieve
multiple, overlapping component images, and in tase the system selected

meta-feature 6, which measures global similaritye Tree generated by ID3 for
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this query is shown in Figure 8.9.

Table 8.5 Retrieval resultsfor thefive closest matchesfor twelve example query images.

Query image Retrieval result in Top 5 Last Top-k
1 43
e O - X &b <
2 oo 35
@ - [4
|||Im"
3 75
4 100
v
5 117
6 9
7 9
8 9
9 9
10 65
11 9
12 9
X X
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Figure 8.9 A decision tree generated by ID3 for thequery in Figure 8.8

The worst-case query result is the fifth query able 8.5 which used 117
images to retrieve 4 relevant images. The queryérend relevant images are
shown in Figure 8.9.

W W75 T G

(b1) (b2) (b3) (b4)
(a) Query image (b) relevant images

Figure 8.10 Poorest performing query image and relevant images

The system selected features 1, 2, 4, 5, 6, 141&ndhich are orientation
similarity, pattern similarity, nearness proximitgearness proximity, pattern
similarity, self similarity, and symmetry simpligi The tree generated by ID3 for
this query is shown in Figure 8.11. and the retatbomplexity of this tree is
evident when compared to the tree produced by #st performing query, in
Figure 8.9. This complexity suggest that ID3 isigyling to partition the meta-
feature space to specify relevant images basetetrdining examples supplied
by relevance feedback and as a consequence thegéresrated is possibly

overfitting to the supplied training data.

Chapter 8 152



Figure 8.11 decision tree generated by D3 of query in Figure 8.10

The query image consists of multiple linear commisein several
orientations, while the global relative positiontbé sub-components between the
guery and relevant images can vary. Thereforeethesta-features do not appear
to be sufficiently diagnostic to capture the glolb@nded pattern that clearly
appears to constitute similarity. In this case ihausion of a simple global
spatial frequency feature might have been suffticierdetect this type of image
similarity. However, had the self-similarity met@ature been selected by ID3
early in the search, then it may also have pickedhe relevant images more
quickly. Possibly the main explanation is that flret pass over the database
relies only on meta-feature matching, where allasfeatures have equal weight.
Only when the first similar image has been found ossible to define what is
meant by similarity, up until that point only disslarity can be defined. In other
words, until the first similar image is found threage cues which are diagnostic
of similarity cannot be readily induced. Therefosn interesting possibility

would be for the user to supply not only a querydlso an example of a similar
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image to this query. The retrieval results are tase the selected features and
relevance feedback. Then, we show two exampleshefeffect of relevance
feedback by changing the relevant images in Talfle 8 query image begins a
row, the five matched images are shown in next,taadast top-k appears at the
end of a row. Similar images are specified by a@ess

Table 8.6 Theretrieval results of the five closest matches when modifying relevance
feedback for the two example query imagesin Table 8.5.

Query image Retrieval result in Top 5 Last Top-k

1 PN N "7% 21
(‘Q) & L)

2 e ‘ I 33
W | W K " 4N

In the first example, we have selected query im@gef Table 8.5 to
interrogate the trademark database. The secondarglemage selected is
different to that selected Table 8.5 and consi$tseveral components within
overall octagonal configuration. Both images amailsir in their similarity and
proximity appearance properties. The system selefgatures 8 and 4, which
measure the scale ratio between matched keypdmtase the spatial spread of
the matched points. Both the tree generated by ftid3this query, shown in
Figure 8.12, and a subset of the retrieval imagasrmed are different to those
generated in the first study, as a consequendeedlifferent appearance propeties
being captured via feature seleection directedutinaelevance feedback.

<]

o] es

Figure 8.12 Decision tree generated by ID3 for query 1in Table 8.6

Chapter 8 154



In the second example, we have selected query irfhagfeTable 8.5 to
interrogate the trademark database. The secondarglemage selected is
different to that selected in Table 8.5 and coss$tmultiple components within
an overall double helix configuration. Both images similar in their similarity
appearance property. The system selected featire3, And 1, which represent
sub-component similarity, scale ratio between nmedckeypoint sets, and global
rotation. The tree generated by ID3 for this querghown in Figure 8.13. Once
more, we demonstrate differences in the tree getkrand similar images

returned when the relevance feedback supplied difrad.

17

Figure 8.13 Decision tree generated by ID3 for query 2 in Table 8.6

8.4.3 Experimental Summary

Use of SIFT appears to give a significant improveter Eakin’s system since
local features are being matched and the simidtetmark images appear to be
similar in a global sense. Accordingly, standar#TSImeasuring numbers of
matching features or GHT similarity, would appeabé appropriate for matching
under these conditions. Matching using the metaifea alone is also more
successsful than using SIFT, suggesting that theflie of grouping are indeed
being realised, as discussed below.

In the initial experiments we observed that thesethe potential for

grouping to yield an improvement, and our groupapgroach as implemented is
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achieving a significant improvement in discrimioati However, the degree of
benefit endowed by our system is expected to bérgmnt upon the degree of
grouped structure present within the images conmgrithe specific trademark
image collection being searched. Given that metresd for comparing the meta-
features is comparatively unsophisticated, it may gmossible to realise even
greater performance improvements by using individiessifiers based on each
measure, appropriately weighted as in Adaboosttihez-Contreras et al., 2009),
and always include all features, suitably weighted.

The experiments show that using RF matching givgsifecantly better
performance than either SIFT matching or meta-featnatching alone. These
results are consistent with the evidence presehedsupports the hypothesis that
RF matching can be used to select appropriate features for GBPG properties.
Therefore, relevance feedback indeed appears taderanore information to
enable the system to select appropriate featureméasuring image similarity,
given that ID3 can learn relevance classifications.

We have also demonstrated that the system willore$go changes in
relevance feedback, generating decision trees baseagheta-feature selections
that attempt to capture the visual appearance piepeepresented in the relevant
images. Therefore, RF matching appears to suppextbfe decision-making
based on such relevant image selections.

RF matching manages to improve the effectivenesth@fsystem to a
significant degree. In Figures 8.6 and 8.7, théesgausing RF matching achieves
better results over the entire search session becawe believe, sufficient
feedback information has been gathered to allowttD@enerate appropriate rules
to classify similar images by learning to seleqirapriate meta-features based on

GBPG properties.

8.5 Conclusion

We have demonstrated that our system that supperiseptual grouping by
GBPG properties and high-level concepts. The GBRPaties are calculated by
grouping the spatial configuration of keypoint lboas into meta-features, and
high-level concepts are captured by measn of ratedeedback and decision

tree classification as described in chapters 67and
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Our system based on meta-features that encodeldugh-concepts can
improve effectiveness by retrieving multiple GBPGoperties in similar
trademarks, when compared to our system using StEpoint descriptor
matching alone or meta-feature matching alone.héamore, our RF based
system would appear to hold the potetnial to improrademark image retrieval
performance.

In the next chapter, we summarise the contributointhe research and

discuss for the future work.
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Chapter 9

Conclusion and Futurework

This thesis has investigated a practical technique for trademark image retrieval
by perceptual grouping. The technique is based on defining meta-features which
are calculated from the spatial configurations of local image features in order to
imitate perceptual grouping. User relevance feedback has been integrated within
our approach to allow human judgment to influence the definition of image
similarity when retrieving trademark images. We summarise the contributions

and discusses ideas for future work in this chapter.

9.1 Objectives Revisited

A stated in Chapter 1, the problem addressed mttiesis can be posed by the
guestion “how can we help people identify a puttivademark as being
sufficiently original?” To answer this question wet out to investigate how to
analyse a trademark image, how to identify thoselamarks that are most
similar, and how to organize their presentatioth® best effect. Since trademark
images are composed of potentially complex eleméanhtaas realised that a
means for representing these image sub-structurakiie important. In addition
it was realised that being able to capture humaoepéual judgement in terms of
what constitutes image similarity would also be amgant, since human beings

ultimately arbitrate in disputes of whether a tradek is deemed novel or not.

When this work was initiated few techniques werailable for partial
shape matching that supported multi-componentesedti Furthermore, many of
the techniques for image database retrieval tlthexist required an exact image
segmentation, which is difficult to achieve witletlevel of reliability required for
a real trademark retrieval application. In additieew researchers had attempted

to apply principles derived from human perceptionghape retrieval that would
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allow perceptually meaningful configurations ofdemark image components to
be represented and classified. Finally, since dlmbage features are not suitable
for retrieving occluded or connected componentannmage, it was realised that
interest points, i.e. local features, as adoptedhbgy vision researchers (Schmid
and Mohr,1997; Lowe,1999; Wolf,2000; Sebe,2001)deneral image database
retrieval would have to be extracted and matchearder to compare trademark
images reliably. Therefore, the main aim of thisesach has been to develop a
method for solving the partial matching and shameception problem by

investigating the following questions:

1. How can interest points be used to distinguisheinaark images?

2. Which interest point techniques are most accuratenwapplied to
distorted trademark images (noise, rotation, aate¥e

3. How can perceptual grouping methods serve to gmotgeest points and
represent these within a shape descriptor (i.ecta+fieature vector)?

4. Which techniques can be used to exploit shape igéss (meta-feature

vectors) when retrieving abstract trademark images?

9.2 Summary of Contributions

The main contributions of this thesis address theva questions and are

summarized as follows:

e Analysis and application of point matching to tradek image matching
and retrieval

e Grouping local features into meta-features foreéradrk image retrieval

e Relevance feedback based on classifying meta-fesatur

e An implementation and evaluation of a computer-tagestract trademark
image retrieval system

9.2.1 Analysisand application of point matching to trademark image

matching and retrieval

We investigated the application of interest poittsabstract trademark image
retrieval. Interest points have been successfidgduo recognise objects (Lowe,
1999; Wolf, 2000; Sebe & Lew, 2003) but there haxbrb no prior reported
research on how to retrieve similar abstract traatknmages by interest points,

since most retrieval systems concentrated on gltdstlres rather than local
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features when this work was initiated. Local feasucan reflect both local and
global image characteristics, but approaches basedlobal features had been
more widely reported since approaches based ohfleatares tended to be more
computationally expensive and complex. The issod®taddressed were:

e Where to apply local feature extraction?
e What local features should be utilized?
e How to use extracted local image features?

From the outset, we proposed to use interest pbetause they support
Biederman’s concept that humans recognize imagedgidiinctive elements. In
Chapter 4, we demonstrated that many detectorsekfiact the same areas in
transformed trademark images, and that it is ptessibretrieve similar trademark
images based on interest points. From our studytefest point detectors, section
9.2.5 below, it became apparent that the Harris @hdbat detectors could
potentially perform sufficiently well to serve abket basis for local feature
extraction in trademark image retrieval. We alsglised that interest points alone
are likely to be an insufficient representation teir own and that further
discrimination power would be required in termsuoiquely characterising the
local appearance of the interest point. Accordinglg identified the SIFT local
feature extraction algorithm, also based on therisladetector, as a good
candidate for characterising the appearance ofl ltestures in a scale and
rotation independent manner. We then conducted rmbau of experiments
described in Chapter 5 to establish the suitabdity5IFT for trademark image

retrieval.

By integrating the SIFT feature detector with thesn@ral Hough
Transform, David Lowe (Lowe, 2004) was able to perf basic scale and
rotation invariant grouping of SIFT keypoint deptors (local features).
Matching keypoint descriptors which have been ex& from compared query
and database image can be clustered in Hough smat@ peak in this space
reveals a common scale, rotation, and translatedwden similar configurations
of keypoints. Such similar configurations are saide “non accidental” and the

utility, i.e. matching performance, of this appreaghen comparing trademark
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images was investigated and verified in ChapteWs. believe that the above
work represents the first systematic study intoubke of the SIFT algorithm for
trademark retrieval. The above work addressesitbetivo objectives posed in
this thesis, namely, how interest points can beliegppto trademark image

retrieval and which type of interest points shduddused in this context.

While retrieval based on SIFT produced promisingults, we believed
that it was possible to obtain improved resultsfligtly, attempting to develop an
algorithm that quantifies aspects of human viswateption of shape; secondly,
by then guiding the selection of retrieved imagepresented quantitatively in
terms of measures based on human perception, uslleyance feedback

classification.

9.2.2 Grouping local featuresinto meta-featuresfor trademark image
retrieval

Higher-order visual perception plays an importasie in human judgement of
image similarity (Goldmeier, 1972; Eakins, 1997)alddition, shape is important
for identifying abstract trademark images which teom multiple graphical

elements. In chapter 6, we proposed a new techifiajuaeasuring certain visual
properties of the appearance of such multiple gecaprelements by defining
meta-features based on interpreting the spatidigioation of matching interest
points. We initially proposed 27 meta-features tpport perceptual grouping
using non-accidental properties derived from irderpoints to serve as the

foundation for our computational basis for visuase perception.

In order to verify that the above meta-featureseneapable of measuring
appropriate visual appearance properties, we cdedwsn experiment whereby
sets of test images were generated such that edclegresented a different
appearance property and each image of each seesexpped the chosen
appearance property to a different degree. By lainng the responses from each
of our meta-features to the degree of each appeaamperty presented in each
test image (details in chapter 6 and appendix Bl possible to verify that the
meta-features did indeed respond to specific visygdearance properties and

determine which meta-feature responded to whictiqoderr appearance property,
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or properties.

In order to eliminate redundant meta-features, djsgia Component
Analysis (PCA) was applied to the above correlatiesults to allow a factor
analysis of the meta-features to be conducted. fes@t, only 17 meta-features
were found to be worth retaining for the purposénafating perceptual grouping
in the following three Gestalt properties: proximisimilarity, and simplicity.
The meta-features implemented compute: global iootat global pattern
similarity, global pattern overlap, spread of theatoh points, structural
configuration of the match points, scale differesft matched pattern, self

similarity, symmetry, and sub-component similarity.

From the basic experiments conducted, it appedradwe were indeed
able to capture and quantify Gestalt proximity, iEanty, and aspects of
simplicity within stylised image examples. It wdsaclear from the correlation
experiments that many of the meta-features we dpedl were substantially
correlated, which could in turn result in a sigraint degree of “cross-talk”
between different modes of visual appearance. Iinciple, we could have
defined a new set of meta-features based on usiagcorrelation response
eigenvectors to decouple their response to theerdiit modes of visual
appearance input. Unfortunately, this approach deoehder the new feature set
dependent upon the training data used to gendrateigenvectors, there being no
guarantee that such decoupled meta-features waeridrpn adequately when
applied to a substantially different dataset. Tfogee we decided simply to retain
only the best performing meta-features, i.e. thameelating most highly with a
specific mode of visual appearance with the expectdhat these meta-features
would be more likely to retain a reasonable degreendependence from the
image subject matter itself. Since the entire gaofiut7 meta-features would be
available for making similarity comparison judgernsent was hypothesised that
it would still be possible to disambiguate differdppes of visual appearance

property.

A compounding factor in the use of the developedanfeatures is that
several visual appearance properties are likelycdeexist within any one
trademark image, and as such would signal simultasig present appearance
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properties that would be difficult to disambiguétem cross-talk artifacts. Two
further limitations of the proposed scheme are @uthe limited representation
power afforded by the chosen meta-features themsednd due to the global
nature of their application to represent the sétkegpoints extracted from and
matched between pairs of compared trademark imajesnative meta-feature
representations might couple to improved underlyeajure representations, e.g.,
contour, or line fragment, extraction mechanismghtibe processed produce
classical Gestalt continuation groupings. As intidan the future work section,
hierarchical clustering techniques may be able eétea sub-groupings when

clustering local features.

Despite the above limitations of the developed riedtures, they did
appear to show promise as a means of introducsighplified model of human
visual perception to tackling the trademark sinitiygproblem. Therefore, in order
to mitigate the limitations of the simple experirte@nconditions applied to
validate the operation of the meta-features we Hadeloped, a subsequent
validation test using a database of real tradenmaages was then undertaken, as
detailed in Chapter 8 and discussed here in seétidd. Similar work on meta-
features based on Gestalt grouping of local featbhesl not been reported in the
current computer vision literature at the time nflertaking this work. The above
work addresses the third objective set out in thesis, namely, how to group
local features such that similarities between tnaaklk images, based on visual

appearance properties, can be computed and reprdgarmerically.

9.2.3 Relevance feedback based on classifying meta-features

Human judgment ultimately determines which tradémarages are deemed to
be similar. In order to incorporate this judgmeinthin the developed trademark
retrieval system, we decided to adopted relevaredidack to allow the visual
appearance properties of relevant and non-relewaages to be determined by
example. Given the limited training data availalsleen constructing a relevance
classifier, the intrinsically non-parametric maahilearning algorithm ID3 was
selected to construct decision trees by meansl®imduction.

The learned relevance classifier concept was eggloinitially by
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designing an experiment to determine if visual Enty could be defined by an
arbitrary perception threshold according to theredegof presence of a visual
appearance property using the image test set dedan section 9.2.2. By setting
an arbitrary similarity threshold on a single visappearance property, it was
possible to demonstrate that ID3 could construatisien trees that would
successfully identify visual appearance similathyesholds based on selecting
and comparing the values generated by appropsipés tof meta-feature. In other
words, we were able to show that if a particulaual appearance property, such
as symmetry was deemed to be similar at a certarbitary) perception
threshold, by supplying meta-features extractechffeedback images depicting
this desired similarity threshold (i.e. relevantdamon-relevant examples,
respectively above and below the desired appearpraggerty threshold), then
ID3 could induce a decision tree that would colyedassify input images
depicting varying degrees of this appearance ptpperrectly. Furthermore, the
meta-features selected by ID3, by means of whiclritstructed decision trees to
classify appearance properties, were usually ior@ence with those anticipated
by their design function and also in accordancen witose verified using the

correlation procedure described in 9.2.2.

A limitation of the above experiment is of cour$mittthe test set was
deliberately simplified in order to be able to detme whether it is indeed
possible to specify visual similarity by means @ewance feedback in the context
of visual appearance properties. Therefore, mat/dity the above promising
results a further validation experiment was coneldicas described in Chapter 8
and further comments in section 9.2.4, to deternfimelevance feedback could

indeed improve trademark image retrieval perforneanc

We believe that our approach to capturing highilexisual concepts
encoded by means of meta-features and specifieekéyple through relevance
feedback and decision tree classification to supflexible trademark image
retrieval to be wholly novel. This work addresdes fourth objective specified in
this thesis, namely, “Which techniques can be useexploit shape descriptors

(meta-feature vectors) when retrieving abstractemaark images?”
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9.2.4 An implementation and evaluation of a computer-based abstract

trademark imageretrieval system

The main contribution of this thesis is the framewdo build an effective
computer-based abstract trademark image retriexstes and thereby address
the principal question posed in this thesis: “hcam ave help people identify a

putative trademark as being sufficiently original?”

In our prototype trademark retrieval system, reteeafeedback has been
implemented such that a human operator can seldevant images when
presented with a set of nine trademark imageseketd in response to submitting
a query trademark image. Image similarity is coragutluring this initial query
image by computing the meta-feature vector fromgiery image and comparing
these with the meta-feature vector extracted franhelatabase image. The vector
dot product is computed between compared metarkeatectors and the dot
product score is used to rank the returned imagssquence of similarity. Meta-
features extracted from this retrieved trademarkgenset, having been labelled as
relevant or not relevant are then used to consaudcision tree classifier using
the ID3 algorithm. In subsequent query cycles aftent and prior relevant and

non-relevant images are used to build a new classif

We evaluated the system with real trademark imaggiscontain several
Gestalt properties in order to measure the systerfopnance, as detailed in
Chapter 8. Three operating modes were investigatezhe retrieval by matching
basic SIFT image features, image retrieval by magcimeta-features and finally
image retrieval by meta-feature matching and relegafeedback classification
using meta-features. To maxim use the number amditgwf SIFT matches
obtained, SIFT keypoint descriptor comparisons l@iding those used to
construct meta-features) were made using nearggtbwair matching as opposed
to log-likelihood matching. This validation expeent used the same query set
and the trademark image database as in ArtisanauBtron (Eakins, 1997)
comprising 12 trademark query images were useceéoch a database of 200
trademark images. Meta-feature matching produceddaabase search
performance improvement over searching using thedsird SIFT algorithm.

However, the relevance feedback mode exhibitedfgigntly better performance
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than both the basic SIFT or meta-feature matchimgraaches. Better results
using relevance feedback were observed to occunwdievant feedback images
had been accrued by searching just over 10 perokrthe database. This
observation tends to suggest that the relevanab&e mode is able improve

retrieval effectiveness after a training data hesnbsupplied.

It was possible to verify that relevance feedbackswindeed able to
influence the images returned in response to afspenage query by observing
the decision trees generated and the image seheeltdor at least two query runs
where different images were selected during eanhasubeing relevant while the
same query image was used in reach run. For eaghdiffierent images were
returned as a consequence of different images lsgtegrted as being relevant.
Similarly, different decision trees were selectedaading to the dominant visual
appearance property being active in the imagesneduas similar to the query,
Chapter 8.

It must also be noted that the system producedhhighble normalised
precision and recall figures; for the relevancedbsek mode the highest
normalised precision recorded being 0.89 and tlghdst normalized recall

recorded being 0.83.

We compared the retrieval performance our systeth tmio other state-
of-the-art image trademark retrieval systems andnemntioned above the
validation experiment used the same trademark ingagey and database set as
in Artisan’s evaluation. Unfortunately, we did nave access to the same query
set and image database as used in Jiang et aksrsgsaluation. Using relevance
feedback, our system achieves higher average nisedaprecision than both
Eakins’ Artisan (Eakins et al., 1998) system armdae recent system developed
by Jiang et al. (Jiang et al., 2006). Although we asing different numbers of
image data with Artisan system and a different g@et and image data set with
Jiang et al's system, our approach would appe&ate@ the potential to improve

retrieval effectiveness.

We believe that the system we describe above cemgriSIFT local

image features in combination with visual appeagameta-features and support
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for relevance feedback based image similarity igms an entirely new

development in trademark image retrieval.

Minor contributions include:

9.2.5 A study of interest point detectors

The evaluation of interest point detectors is reggbin Chapter 4. We investigate
and evaluate interest point detectors that caleukderest points directly from an
image. We choose four effective detectors for oyreements comprising the
Harris detector, Chabat detector, SUSAN detectod, Wavelet-based detector.
We measured the repeatability of these interesttpietectors when applied to
trademark images to which known spatial have bephex. Our results revealed
that the Harris detector has the best repeatalaihty Chabat detector also offers
good results, with more than 50% repeatability. gxdingly, the Harris and
Chabat detectors appeared to have the potentia¢ tosed in trademark image
retrieval. The above results contribute to addngsshe first objective in this
thesis, namely the analysis of point matchingagémark images.

9.3 Futurework

This section identifies potential directions fotute work for research initiated by

this thesis.

e In the current system, SIFT keypoint descriptord ameta-features are
generated offline, leading to a large number otuieavectors and the
increase in the required runtime computation may beesufficiently low
to allow feature vectors to be extracted "on tly& fThere is considerable
potential for improving feature vector comparisois the current
implementation. For example, a comprehensive imgdgxnechanism by
means of hashing functions could be implementeckdoice search time
when comparing query feature vectors with thosethd database.
Likewise, Hierarchical K-means clustering as usedCBIR could be
adopted here to feature accelerate comparisonsuiFek al, 2004;
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Murtagh, 1983).

e We adopted local features, i.e. kypoints, to suptihwee Gestalt properties
which can be directly measured by appearance meatares. Hence,
better image features or perhaps specialized fesatbased on the SIFT
feature extraction framework might have the potdnto increase the
system’s perceptual grouping abilities. For examsplieatures derived
from curve fitting could be used to measure corntynand features based
on local gradients computed at two locations siemdbusly could be used
to measure co-linearity. These extended featuregdcbe integrated
within the system to generate structure vector$ sugport additional

Gestalt properties.

e It would be interesting to investigate use of imagmtours and their
descriptors in the future because they could giv@endiscrimination
power to measure foreground shapes. For instarae, eigenvalues
computed from contours (Tsai, D.-M. et al., 1998y docal curvature
estimates computed around contours (Fishler andf,W®i94) which
could be used to distinguish particular componentnidary shapes. This
method might also be used to address the segnmmtptoblem by
applying statistical learning models to contouredtes et al., 1995) and

then characterising the contour shape in PCA space.

e We used the Hough space accumulator to cluster aoemts represented
by keypoints. More sophisticated grouping mechasismould perform
recursive parsing of image components into sub-corepts in order to
represent more subtle visual shape or pattern cleaistics. For example,
the multiple histograms of similar sub-component®utd be further
examined (Ankerst et al., 1999; Wolf et al., 200@xreover, hierarchical
K-means clustering potentially represents a betégproach for
representing visual sub-patterns, and is used iRRA8 search for target
objects (Fukui et al, 2004; Murtagh, 1983).

e Explicit encoding of image sub-components couldasé¢he calculation of
self-similarity or allow image sub-components to beatched. For
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instance, a KD-tree could be used to facilitatetimhensional search for
each component. This encoding could support mettasfe vectors in a
high-dimensional space and provide a new strudturefficient similarity
search.

e Alternative classifiers and classification scherslesuld be investigated in
order to better categorise groups of feature vectbor example, the
support vector machine (SVM) classifier is popdtarefficient clustering
and has the potential to optimise the discrimimatbsimilar images. We
could investigate the impact of perceptual groupiigen using different

methods of relevance classification.

e The trademark image system we present in this ghesly supports
explicit relevance feedback. However, there is #&ebeapproach to
relevance feedback that potentially might incresteeval effectiveness
in our system. Hopfgartner and Jose (2007) dematesthat the inclusion
of both explicit and implicit relevance feedbackncanprove retrieval
effectiveness in the textual domain. They apply isnplicit feedback
categories: highlighting, keyframe selection, slgli bar annotation,
metadata viewing, video browsing, video play damat{Hopfgartner and
Jose, 2007). It is possible to apply some categafiemplicit feedback to
improve our system, e.g. detecting selection aed tihe-selection of any
given image as being relevant, and also the dectsite taken by the user
to make selections. The combination of both typedeedback might
assist the system to better capture the user'spgon of image similarity
to thereby allow the system to extract the mostatife meta-features for

each query.

e Given that the cost of missing a similar trademiankge is potentially
very significant, additional explicit cues might &epplied by the user. For
example, in addition to supplying a query image eaample (or several
examples) of similar trademarks were also providad, system should
then be better able to construct a classifier taat represent trademark
similarity (as opposed to dissimilarity). This apach has the potential to

improve retrieval performance during the early skarycles when not
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many (or indeed any) similar images might have bggn discovered if
only the query example were available. Also, if tiser had the option of
annotating the query image to select particularbgostic components,
the keypoints associated with such regions coulmht¢reased in weight to

bias the similarity score when assessing imagdasityi
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Appendix A

The proposed local features

We proposed 27 metafeatures to measure perceptual grouping in trademark

images. The meta-features are described in the following sections.

A.1 Summation of scale differ ences between sets of matched
keypoints

We propose to calculate overal scale differences in order to measure size
similarity between matching sets of matching SIFT keypoint descriptors. We
calculate summation of the scale difference between pairs of matched keypoints
(F1) by the following.

F :Zn:(SQi /SM)) (Equation A.1)

where:

n isthe number of matched keypoints in the maximum accumulator (see
section 5.3.2 for details)

X isthe scale of the matched keypoint in the query image.

SM isthe scale of the matched keypoint in the database image.

A.2 Summation of orientation differ ences between sets of matched

keypoints

We propose to calculate overall orientation differences in order to measure
orientation similarity between sets of SIFT keypoint descriptors. We calculate
summation of the orientation difference of pairs of matched keypoints (F2) by the

following.

F, =) abs(OQ —OM,) (Equation A.2)
i=1
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where:
n is the number of matched keypoints in the maximum accumulator.
OQ isthe orientation of the matched keypoint in the query image.

OM isthe orientation of the matched keypoint in the database image.

A.3 Moments from matched keypoints
We propose to compute Moments from the locations of matched keypoints to
quantify their spatial configuration. The moments are calculated by:

N
my, = > %"y’ (Equation A.3)
i=1

where x and y are the location of each matched keypoint in the image.
N is the number of the matched keypoints.
p and q are the orders of the computed moments.

In this research, we computed the moments up to third order in order to
anayse orthogona transformations (Mukundan & Ramakrishnan, 1998).

Therefore, the extend features comprise 10 moments defined by:

Fz=m00 (Equation A.4)
Fs = mO1 (Equation A.5)
Fs= m02 (Equation A.6)
Fe= mO3 (Equation A.7)
Fz= mil0 (Equation A.8)
Fg= mll (Equation A.9)
Fo= m20 (Equation A.10)
Fio= m22 (Equation A.11)
Fi11= m30 (Equation A.12)
Fi2= m33 (Equation A.13)
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A.4 Standard Deviation (SD) of theresidual spatial mismatch
(error) between query and database keypoint locations following

alignment via an affine transfor mation

We propose to use SD (standard deviation) to compute the distance-error between
sets of matched keypoints. This feature measures the residua error between query
and database keypoint locations registered by an affine transformation. The
algorithm for calculating the SD of distance-error between sets of pairs of

matched keypointsis shown in Figure A.1.

SD of error-distance of sets of matched keypoints algorithm

Step 1. Extract matched keypoints from the maximum GHT accumul ator.
Step 2: Calculate Affine parameters of matched keypoints.

The solution is suggested by Lowe (Lowe, 2004).

H:[ml mz}m{tx} (Equation A.14)
v [me o m ]t

where (u,v) isthe keypoint from the database image.
(%, y) isthe keypoint from the query image.
ml, m2, m3, and n¥ are affine parameters.
ty and ty are the translation parameters.

Then, we can use at least 3 points to calculate the affine parameters by

L
2| |™
- m
Xx v 0 010 g A
0 0 x vy;00 =(u, (Equation A.15)
m v
4 tx .
ity | - -

Figure A.1 Thealgorithm to calculate SD of residual spatial mismatch (error) between query
and database images following alignment via an affine transfor mation
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SD of error-distance between sets of matched keypoints

Step 3: calculate affine transformation of query keypoints by Equation A.14.
Step 4. find the distance error (D;) between each pair of matched database
keypoint and affine registered query keypoint using Equation A.16.
Di=Li el (Equation A.16)
where Li and L; are SIFT descriptors.

Step 5: calculate mean (Avgp;) and stand deviation (Stdp;)
of al error distances (D;) in Step 4.

>D

Avg,, =1 — (Equation A.17)
n
Z(Di - Avgp, )
d,, == (Equation A.18)
n

where n is the number of matched keypoints.
Step 6: find theinliner point error distance (D;) according to
(Jung and Lacroix, 2001).

if Di>= (Avgpi +(2* Sdpi)
Dj = Di

end

Figure A.1 Thealgorithm to calculate SD of residual spatial mismatch (error) between query
and database keypoint locations following alignment via an affine transfor mation (continue)
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SD of error-distance between a pair of matched keypoints

Step 7: calculate the feature (F13) by the standard deviation of all distances
in Step 6.

Z(Dj - AVng)

Fo=1 ” (Equation A.19)

where

Avgp; isthe mean of the inlier distances that are calculated by
Equation A.17.

mis the number of inlier distances.

Figure A.1 The algorithm to calculate the SD of residual spatial mismatch (error) between
guery and database keypointsfollowing alignment via an affine transfor mation (continue)

A.5 Similarity score of matched keypoints

We investigate the similarity score from SIFT matching. The similarity score is
obtained using the SIFT algorithm and is explained in section 5.3.2 of Chapter 5.

n

z Dlowest (I)

Fu= % (Equation A.20)

where n is the number of matched keypoints.

Diowes IS the similarity score that calculated from Equation 5.11 in section
5.3.2 of Chapter 5.

A.6 Thetotal number of matched keypoints

The total number of matched keypoints is defined to be the number of keypoints
found in the GHT accumulator bin with the maximum value (see section 5.3.2 for
details).

Fis=n (Equation A.21)

where n is the number of matched keypoints.
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A.7 Mean of scale differences between sets of matched keypoints

We propose to calculate mean of the scale difference (Fi6) between matched
keypoints in order to measure size similarity between sets of matching SIFT
keypoint descriptors. The feature is calculated by the following.

> (SQ /M)

F = - (Equation A.22)

where:
n isthe number of matched keypoints in the maximum accumulator.
X isthe scale of the matched keypoint in the query image.

SM isthe scale of the matched keypoint in the database image.

A.8 Median of scale differences between sets of matched keypoints

We propose to calculate the median scale differences (F17) in order to measure
size similarity between sets of matching SIFT keypoint descriptors. If nisan even
number then the feature is calculated by:

E o (SQ(n/z) /SM(n/z))Jr (SQ(n+1)/2/SM(n+1)/2)
17 =
2

(Equation A.23)

If nisan odd number then the feature is calculated by:
Fir = (g2 / M n19y/2) (Equation A.24)
where:

n is the number of matched keypoints in the maximum GHT accumul ator

entry.
N isthe scale of the matched keypoint in the query image.

SM isthe scale of the matched keypoint in the database image.
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A.9 RM S of scale differences between sets of matched keypoints

We propose to calculate the RMS (Root-Mean-Square) scale differences (Fig) in
order to measure size similarity between sets of matching SIFT keypoint

descriptors. This feature is computed by:

Ji(sq/smi)z
7n

Fie= (Equation A.25)

where:
n is the number of matched keypointsin the maximum GHT accumulator.
X isthe scale of the matched keypoint in the query image.

SM isthe scale of the matched keypoint in the database image.

A.10 M ean of orientation differ ences between sets of matched

keypoints

We propose to caculate the mean orientation differences (Fi9) in order to
measure orientation similarity between sets of matching SIFT keypoint
descriptors. Thisfeature is calculated by the following.

Zn: abs(OQ —OM;)

Fo == - (Equation A.26)

where:

n is the number of matched keypoints in the maximum GHT accumulator

entry.
OQ isthe orientation of the matched keypoint in the query image.

OM isthe orientation of the matched keypoint in the database image.
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A.11 Median of orientation difference between sets of matched
keypoints
We propose to calculate the median orientation difference (Fo) in order to

measure orientation similarity between sets of matching SIFT keypoint
descriptors. If nisan even number then this feature is calculated by:

o abs(0Q,/5 —OM /5 ) +@bS(0Q .5y, = OM ,.5),2)
20 =
2

(Equation A.27)

If nisan odd number then this feature is calculated by:
Fao = abs(0Q .1y, = OM (.)2) (Equation A.28)

where;

n is the number of matched keypoints in the maximum GHT accumul ator

entry.
OQ isthe orientation of the matched keypoint in the query image.
OM isthe orientation of the matched keypoint in the database image.

A.12 RM S of orientation differ ence between sets of matched
keypoints

We propose to calculate the RMS (Root-Mean-Square) orientation difference
(F21) in order to measure orientation similarity between sets of matched SIFT

keypoint descriptors. The feature is computed by:

J 3 (@hs(0Q, ~OM,))’
I

Fp =

(Equation A.29)

where;

n is the number of matched keypoints in the maximum GHT accumul ator

entry.
OQ isthe orientation of the matched keypoint in the query image.
OM isthe orientation of the matched keypoint in the database image.
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A.13 Ratio of matched keypoints/total keypointsin query image

We propose to measure overlap proximity by calculating the ratio of matched

keypoints to total keypoints in the query image. This feature (F»,) is calculated as

folllows:
F, = (Equation A.30)
nqg
where:

n is the number of matched keypoints in the maximum GHT accumulator

entry.

nq is the total number of keypointsin the query image

A.14 Ratio of matched keypoints/ total keypointsin database

image

We propose to use the ratio of matched keypoints to total keypoints within the
database image to measure overlap proximity. This feature (F23) is caculated as

follows:
Fpo=— (Equation A.31)

where;

n is the number of matched keypoints in the maximum GHT accumulator

entry.

nm s the total number of keypoints of database image

A.15 Self similarity

The sdf similarity of keypoints extracted from an image is computed by
averaging the relative frequency of similar keypoints in a self similarity
histogram. We select 10 as the maximum number of significant self-similar
keypoints, in accordance with the number of items that can be held in short-term
visua memory by humans (Miller, 1956). Each of the 10 most highly ranked
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keypoints will match to similar keypoints in the remainder of the set of keypoints
extracted from a particular image and we count this matching frequency for the 10
most self-similar keypoints in a self similarity histogram. Our self similarity
measure is computed by taking the mean of al points in the self similarity

histogram and is summarised in Figure A.2.

Self similarity algorithm

Step 1. Compute the nearest neighbour (Dowest) Of €ach interest point and add it to
the array of distances of each keypoint (Ad.(L;)).
The Dowes 1S described in section 5.3.2 of Chapter 5.

Step 2: Sort Ad, (L) by ascending order and select top 10 keypoints.
Step 3: For each selected keypoint.
Step 3.1: Calculate the distance of selected keypoint and the remaining
keypoints (D;) from Equation A.6.
Step 3.2: If the distance less than 0.2 (the self similarity threshold) then
Increment the self similarity count for this keypoint by one.
End

Step 3.3: save the self similarity count for this keypoint to
asimilarity histogram(Sm) and continue to Step 3.1 until all

selected keypoints have been processed

Step 4: calculate average of all similarity histograms

nSm
2. Sm
_ =

(Equation A.32)
nSm

I:24

wherenSm= 10

Figure A.2 The self similarity algorithm
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A.16 Vertical Symmetry

We proposed an algorithm for computing the vertical symmetry of matching
keypoints. Vertical symmetry is defined here to be the median distance from the
centre distance of all matched keypoints to the x axis. The algorithm to calculate
the vertical symmetry of matching keypointsis presented in Figure A.3.

Vertica symmetry of matching keypoints

Step 1: Calculate axis of in-plane rotation (Mukundan & Ramakrishnan, 1998).
The axis rotation (Shift_axis) is calculated by:

Shift_axis= 0.5 * tan™*( (2*m11) / ( m20 - m02) ) (Equation A.33)
where m11, m20, and m02 are moments from Equation A.3.
Step 2: Rotate matching keypoints by - Shift_axis.
ry=x* sin(- Shift_axis) + y*cos(- Shift_axis) (Equation A.34)
rx= x*cos(- Shift_axis) -y*sin(- Shift_axis) (Equation A.35)
where (X, y) is the matched keypoint.

Step 3: Calculate the centre of rotated keypoints by mean of all rotated

keypoints.
D rx
cx =2 (Equation A.36)
n
P
cy =" (Equation A.37)
n

where n is the number of matching keypoints

Figure A.3 The algorithm used to calculate vertical symmetry of matching keypoints
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Vertica symmetry of matching keypoints

Step 4: Calculate the error distance of each pair of keypointsin each axis.
Step 4.1: separate rotated keypoints to two sets
If rx>cx
Add this keypoint to setl (psetl)
Else
Add this keypoint to set2 (pset2)
End
Step 4.2: calculate the error distance (D) Of each keypointsin two sets
D, (i) =min(D, (psetl(i), Vpset2)) (Equation A.38)

where

Do (P, (%, V) Pr (%, ¥5)) = (X = %)% + (Y1 — V)
(Equation A.39)

Step 5: Calculate the median of all error distancesin Step 4. The vertical
symmetry (Fs) isthe median of the error distances to the x axis.

F,s = Med(Dy, ) (Equation A.40)
where Med() is the median function and is calculated by Equation A.27

and A.28.

Figure A.3 The algorithm to calculate vertical symmetry of matching keypoints (continued)

A.17 Horizontal Symmetry

We proposed an algorithm for computing the horizontal symmetry of matching
keypoints. Horizontal symmetry is defined here to be the median distance from
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the centre distance of al matched keypoints to the y axis. The algorithm to
calculate the horizontall symmetry of matching keypoints is presented in Figure
Figure A .4.

Horizontal symmetry of matching keypoints

Step 1. Calculate axis of in-plane rotation by Equation A.33
Step 2: Rotate matching keypoints by Equations A.34 and A.35

Step 3: Calculate the centre of rotated keypoints by mean of al rotated keypoints
by Equations A.36 and A.37.

Step 4: Calculate the error distance of each pair of keypointsin each axis.
Step 4.1: separate rotated keypoints to two sets
If ry>cy
Add this keypoint to setl (psetl)
Else
Add this keypoint to set2 (pset2)
End

Step 4.2: calculate the error distance (D) Of each keypointsin two sets
by Equation A.38.

Step 5: Calculate the median of al error distances in Step 4. The horizontal

symmetry (F) isthe median of the error distances to they axis.
F,s =Med(D,,) (Equation A.41)
where Med() is the median function and is calculated by Equation A.27

and A.28.

Figure A.4 The algorithm to calculate horizontal symmetry of matching points
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A.18 The average of multi-peak GHT scores

Trademark images can typically containing multiple components that may
themselves be self-similar and also transformed independently in terms of their
relative positions, orientations and scales when attempting to match the local
features of such types of image, multiple GHT peaks are generated when their
matching keypoints are projected into Hough space. This phenomenonis
produced by the matching keypoints from each corresponding component
generating its own peak (matched keypoint cluster) in Hough space. Many
researchers suggest that only the two or three dominant components which
characterise an object are required to recognize that object (Biederman, 1987,
Kirkpatrick, 2001). Hence, we only consider three maxima of the GHT
accumulator, corresponding to three components which may now have been
independently (2D affine) trasnformed, to account for the dominant (in terms of
numbers of matching keypoints) three matching sub-groups. By computing the
average of the multi-peak GHT scores we are able to generate a summary score
based on the best three matching image components. We calculated by the

average score of the first three maxima of GHT accumulator as follows:

npeak
> Score(i)
F_o=- Equation A.42
27 B— (Eq )
where npeak = 3.
> Dioues (i)
Score(i) = ’17 (Equation A.43)
[

where ni is the number of matched keypoints in the i row of the
GHT accumulator.

Diowest 1S calculated by Equation 5.11 (see section 5.3.2 for details).
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Appendix B

Validation of proposed meta-features

We explain the experimental framework for validgtperceptual grouping in the

system according to appearance properties and IGastperties.

We now investigate the ability of the meta-featuregplemented to
measure visual appearance properties in the sysldns. section presents

hypotheses, objectives, and research questions.
We have to consider several questions, including:

1. Of the 17 meta-features designed to measurealviappearance
properties that have been implemented, how manyaligppearance

properties can the system represent?

2. What is the most appropriate meta-feature taucapeach appearance
property?

To answer these questions, we utilize the impleatamt described in the

following sections.

B.1 Implementation methods

The experiments were separated into nine expersraggigned to validate each
of the nine appearance properties expressed iatisolby each test image set.
There are 9 properties to be investigated: glattation, global pattern similarity,

global pattern overlap, spread of the matched ppsttuctural configuration of

the matched points, scale difference between matglagterns, self similarity,

symmetry, and sub-component similarity. We seleetanfeatures to represent
each appearance property tested in each experandisted in Table B.1.
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Table B.1 Appearance propertiesinvestigated and proposed meta-features

Experiment Appearance property Proposed meta-

number features
1 Global rotation 1,10 and 11
2 Global pattern similarity 2,6and 7
3 Global pattern overlap 12 and 13
4 Spread of the matched points 3and4
5 Structural configuration of the matched points
6 Scale difference between matched patterns ®and
7 Self similarity 14
8 Symmetry 15 and 16
9 Sub-component similarity 17

In the experiment, we tested the utility of the egmance properties
implemented in the system.The experiment verifidulctv appearance properties
in the system are capable of being representedwéainch meta-feature is most

appropriate for measuring each appearance property.

The test image sets were each defined to vary leetvaegrees of a
specific visual property such as rotation or siniya In each experiment, we
found the dominant meta-feature which best comslatith the varying degrees
of the appearance property expressed by each eéshénages within a set, and
the associated meta-feature values extracted frach ef the test images. We
then compared the result of proposed (i.e. as hgstted) best meta-features and
those meta-features observed to correlate best. fdsilts reveal the
correspondence between the percentage of propostdfeatures proposed and
the best correlating meta-features for each appearproperty. We have taken
the number of appearance properties that the systemble to express to
correspond to properties supported by meta-feattivas both yield the best
correlation performance that also corresponds & dappearance property for
which it was designed. As the result, we can sunmmaathe utility of the
appearance properties in the system. We descréexperimental procedure in

the following section.

B.2 Experimental procedure

In this section, we explain the experimental procedfor setting up the
experiments for evaluating the system propertiggpodarance properties and
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Gestalt properties). We show the test images intiosecB.2.1, describe
experimental processes in section B.2.2, and expted measurement method in

section B.2.3.

B.2.1 Test images

The following experiment used nine different sefstest images, each set
designed to express a different appearance properdgr investigation. Each
individual test set comprises five images, whem diegree of each appearance
property within each sequence of test images igrpesively reduced. The test
sets are shown in Figures B.10-B.20, each set tiepia different appearance
property for each experiment. In each test imag¢heefirst image (a) is used as
a reference image from which a set of meta-featareextracted by comparison
with each of the remaining images in the testldatler ideal conditions, the first
image (a) would correlate perfectly with itself atiebn correlate progressively
(linearly) less strongly with each subsequent im&be(e), in the remainder of
the test set (Ahmad and Ibrahim, 2006).

Experiment 1. We evaluate the ability of the system to estinthe relative
global rotation differences between reference ammhaining test images by
calculating the correlation between the meta-feattalues and the degrees of
global rotation of the test images. The set of globotations comprise: 0

(reference), 10, 20, 30, and 40 degrees respegtiviglure B.1.

vew Yoo by "h‘_ "L‘

- [
vor Ve, s, - -
(a) (b) (c) (d) |

Figure B.1 Test imagesin experiment 1 (Global rotation).

Experiment 2: We aim to determine the ability of the system taleate global
pattern similarity by correlating the meta-featw@&ues with a progressively
decreasing degree of global pattern similarity.

Global pattern similarity is defined in terms oéthumber of similar sub-

components shared by compared images. Theref@aégshset in experiment 2 is
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arranged according to the number of modified corepts in each of the test
images, and comprises 0, 1, 2, 3, and 4 componedifigcations sequentially,
Figure B.2.

VOV OV G0V 060690 00

VOV VOV VYV VYV v
(a) (b) (c) (d) (

Figure B.2 Test imagesin experiment 2 (Global pattern similarity).

Experiment 3: We aim to evaluate the ability of the system taleate the global
pattern overlap between compared images by finttiagcorrelation between the
meta-feature values and the degrees of patternlapveaf the test images.
Accordingly, the test set is arranged in order bé& thumber of common

components, in this case 0, 1, 2, 3, and 4 compsmamsecutively, Figure B.3.

VY VU A U A + A + A +

VYV VV VVV O% OB -
(a) (b) (c) (d) (e

Figure B.3 Test imagesin experiment 3 (Global pattern overlap).

Experiment 4: The relative proximities, or spread, of componantsompared
images is evaluated by correlating the meta-featahees to the degree of spread
expressed in the test image set. Accordingly, éseitmage set in experiment 4 is
arranged according to the distance between a pagomponents in the test
images. The distances of the two components depate: 25, 50, 75, 100, and
125 percent of image width. The test set in expenitd is shown in Figure B.4.

vV v e v e v v v v

(a) (b) (c) (d) [

Figure B.4 Test imagesin experiment 4 (Spread of the matched points).
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Experiment 5: The configuration similarity of sub-componentshint compared
images is evaluated by correlating the meta-featialeies to the degree of
relative deformation of sub-component configuragiexpressed in the test image
set. This test image set is arranged accordinghéo distance apart of two
components depicted in this set and these distacm@prise 86.5, 66.5, 46.5,
26.5, and 6.5% (image X, Y dimensions) in sequeRiggire B.5.

O 46 46 40 o0

VY VY VY VY 9ve
(a) (b) (c) (d) 1

Figure B.5 Test imagesin experiment 5 (Structural configuration of matched points).
Experiment 6: The relative difference in scale of the sub-congms within
compared images is evaluated by correlating tha+fegttures with the degree of
scale difference expressed in the test image $&t.tdst image set is arranged
according to the scale of the global patterns esga@ in each image of this test
set and these scales comprise factors of full 6i8g,0.6, 0.4, an@d.2, Figure B.6.

vABR vaAR _—

(a) (b) (0 (d) (@

Figure B.6 Test imagesin experiment 6 (Scale difference of matched pattern).

Experiment 7: The relative self similarity between compared iemg evaluated
by correlating the meta-features with the degresetifsimilarity expressed in the
test image set. This test image set is arrangedrdiog to the number of
duplicated components depicted in each image of tdst set. The numbers of

duplicated components comprise 6, 5, 4, 3, andg2ir& B.7.
vyeVYy v v v v

VY VVV VvV VvV VvV VeV @

(a) (b) (c) (d) 1
Figure B.7 Test imagesin experiment 7 (Self similarity).
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Experiment 8: The relative symmetry between compared imagesakiated by
correlating the meta-features with the degree ofirsgtry expressed in the test
image set. This test image set is arranged acaptdirthe degree of asymmetry
depicted in each image of this test set. The degréasymmetry comprise 0, 20,
40, 60, and 80 percent, as in Figure B.8 depictiagical symmetry variations

and Figure B.9 depicting horizontal symmetry vaoias.

¥ v vy 2\

(a) (b) (c) (d) (

Figure B.8 Test imagesin experiment 8 (Vertical symmetry).

4 ¢ ¢ 7 v

(a) (b) (c) (d) (
Figure B.9 Test imagesin experiment 8 (Horizontal symmetry).

Experiment 9: The relative sub-component similarity between caregd images

is evaluated by correlating the meta-features with degree of sub-component
similarity expressed in the test image set. Thist tenage set is arranged
according to the percentage of unchanged compodepisted in each image of
this test set. Since each image comprises four ocosmds, the percentages of

unchanged components comprise 100, 75, 50, 29) dridure B.10.

VY vV Bv B A B A B

Vv VYV 9@ 0 9V e Vv x
(a) (b) (c) (d) (

Figure B.10 Test imagesin experiment 9 (Sub-component similarity).

In the next section, the experimental process fotha experiments is

described.
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B.2.2 Experimental process

In each experiment, we use a different image setegi each individual
appearance property. The appropriate test, degiciinspecific appearance
property under investigation, is input to the syst@hich extracts SIFT features
from each image in this set. The system then matthe SIFT descriptors
extracted from the first image (a) of this testt, t® the SIFT descriptors extracted
from the remaining images (b)-(e) of this set uding GHT, as overviewed in
Figure B.11 and detailed in section 5.3.2. Theesydthen calculates the 17 meta-
features described in section 6.1, and correlaiel emeta-feature value for each

match to the appearance property degree in thesgmnding test image.

The first image
Test (a)
Images

(b)-(e)

System
1. SIFT key point detection,
2. Calculate SIFT matching score
3. Calculate Meta-features

Meta-feature vectors and their
correlation with each visual
appearance property

Figure B.11 The experimental process

For each experiment, dominant meta-features aeetsel which exhibit a
high degree of correlation between the degree péaance property expressed
in the test image set and the meta-feature veEtmr.example, in experiment 1
meta-feature 11 was found to correlate best wighdibgree of rotation induced in
image test sequence 1, and was therefore chos@present the global relative
rotation appearance property. We compare the dornimeta-features with the
proposed (hypothesised) meta-features (detail®bielB.1) in order to select the
most appropriate proposed meta-feature for eacleaappce property. The

number of appearance properties in the systemusted by the number of the
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same proposed and the appropriate proposed métadea

B.3 Experimental results

The correlation between meta-features and the degfesimilarity of the test

images is shown in Table B.2.

Table B.2 Thetop five highest correlation values between meta-feature valuesand the

degree of appearance property expressed in thetest imagesin experiments1to 9.

Meta-
Gestalt feature
property order 1 2 3 4 5
Meta- 11 10 15 6 8
feature no.
1. Rotation value 0.9981 | 0.9971| 0.9277 -0.9051 -0.8770
Meta- 7 12 6 13 2
feature no.
2. Similarity value -0.9782| -0.9782| -0.9759 -0.9654 -0.9475
Meta- 7 12 17 2 13
feature no.
3.0verlap value -0.9880 | -0.9014| -0.8944 -0.834 -0.76198
Meta- 9 6 8 3 14
feature no.
4. Spread value -0.9880 | -0.9855| -0.916] -0.8880 0.8660
Meta- 5 7 2 12 13
feature no.
5. Structural value -0.9799 0.9449 0.9449 0.944 0.9196
Meta- 8 9 1 15 16
feature no.
6. Scale value -0.942 -0.910 -0.8395 0.831( 0.8160
Meta- 14 2 7 12 3
feature no.
7 Self value 0.9856 | 0.8933| 0.8932 0.8932 0.8825
Meta- 16 11 10 15 14
feature no.
8.1. V. Sym. value 0.9801 0.9731 0.952Q 0.920 0.9192
Meta- 11 1 15 10 14
feature no.
8.2. H. Sym value 0.9981 | 0.9936/ 0.9679  0.9663 0.9312
Meta- 2 3 7 12 17
9 Sub feature no.
component value 0.9622 0.9497 0.9449 0.944 0.8674
The details of the proposed meta-features versislibst correlating
meta-features are shown in Table B.3.
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Table B.3 The proposed and best correlating meta-featuresfor each experiment.

Experiment number| Proposed meta-feature(s)  Bestlating meta-feature
1 1,10, 11 11
2 2,6,7 7
3 12, 13 12
4 3,4 3
5 5 5
6 8,9 8
7 14 14
8.1 16 16
8.2 15 15
9 17 17

A proposed meta-feature and best correlating negthife are in
congruence in experiments: 1, 2, 5, 6, 7, andé&fresponding to meta-features:
11,7,5, 8, 14 and 16 respectively.

For experiments 3, 4, 8.2, and 9, the best metaties based on the
proposed meta-features are 12, 3, 15, and 17 riesggc

The best meta-features have similar correlatiorueslto the highest
correlation meta-features, and take each appeanaroperty into account as

described in section 6.5 and further analysis atice B.4.

B.4 Experimental Analysis

The best meta-features for experiments 1, 2, B, 4, 7, 8.1, 8.2, and 9 were
found from the proposed meta-features that are -featares 11, 7, 12, 3, 5, 8,
14, 16, 15 and 17 respectively. In experiments 16,57 and 8.1, each best
correlating meta-feature had the highest correfat@mlue. In experiment 2, meta-
features 7 and 12 have the same correlation velo@ever, meta-feature 7 best
reflects the global similarity because it takesikirty of the total number of

matched keypoints into account. Therefore, metaifea7 is the better meta-
feature for experiment 2. In experiment 3, metdthess 7 and 12 have similar
correlation values. However, meta-feature 12 befleats the global pattern
overlap because it takes proximity property of peecentage of matched points/
total keypoints in query into account. Thereforegtarfeature 12 is the better
meta-feature for experiment 3. Interactions betwpeoximity and similarity

properties are reported (Han, 2004). In experirdembheta-features 3, 6, 8, and 9
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have high correlation values. However, meta-feaBubest reflects the spread of
the matched points because it takes proximity ptgpmd moment from matched
keypoints in query into account while meta-featuées8, and 9 are based on
similarity measurement. Therefore, meta-featurs the better meta-feature for
experiment 4. In experiment 8.2, meta-features 1,, dnd 15 have similar
correlation values. However, meta-feature 15 befiéats the symmetry because
it takes horizontal symmetry into account while aatgatures 1 and 11 are based
on rotation measurement. Therefore, meta-featuiis fife better meta-feature for
experiment 8.2. In experiment 9, meta-features, 27,312, and 17 have high
correlation values. However, meta-feature 17 befieats the sub-component
similarity because it takes the average of mulako&HT scores into account
while meta-features 1 and 11 are based on anothelasty and proximity
measurement. Therefore, meta-feature 17 is therbatta-feature for experiment
9.

The results show that the proposed meta-featunesdoh appearance
property are consistent according to their desigmction. We summarize the

appearance property of each best meta-featurehle Ba4.

Table B.4 Summary of appearance propertiesin each best correlation meta-feature.

Experiment Meta- Measurement function Appearance property
no. feature no
1 11 Median of orientation global rotation

difference for a pair of
matched point sets

2 7 Total number of matched global pattern similarity
keypoints

3 12 Percentage of matched pointsglobal pattern overlap
total keypoints in query

4 3 Moment (m02) from matched spread of the matched
keypoints points

5 5 SD of error-distance for a pairstructural configuration
of matched keypoints of the matched points

6 8 Mean of scale differences | scale different of

between a pair of matched | matched pattern
keypoint sets

7 14 Self similarity self similarity
8.1 16 Vertical symmetry Symmetry
8.2 15 Horizontal symmetry Symmetry

9 17 The average of multi-peak | sub-component

GHT scores similarity
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In addition, the best nine meta-features are grdup& three Gestalt

properties in the following list:

e Similarity is used to group similar parts of an geaand can be

expressed as size, orientation, pattern, shapa|oe.

e Proximity is used to group connected areas or cbageponents in an
image and can be expressed by nearness, touchlamveor

combinations.

e Simplicity is used to group multiple parts intoingle component and

can be expressed by symmetry, regularity, or snmasth

We summarise the system’s appearance and Gestakries according

to their best correlation meta-features in nextisec

B.5 System properties

The system can measure nine appearance propdraesdn be considered to
implement three forms of Gestalt grouping by usihg best correlating meta-
features. The experimental findings and analysiaildeare given in sections B.3
and B.4, and a summary of the system Gestalt piiepeand the appearance

properties according to the best correlating meédtire is given in Table B.5.

We summarise the validation experiment in nextigect

Table B.5 Summary of appearance and Gestalt properties according to the best correlating
meta-feature.

Best correlation meta- Appearance property Gestalt property
feature
11 global rotation similarity
7 global pattern similarity similarity
12 global pattern overlap proximity
3 spread of the matched points proximity
5 structural configuration of the matched proximity
points
8 scale different of matched pattern similarity
14 self similarity similarity
16 Symmetry simplicity
15 Symmetry simplicity
17 sub-component similarity similarity
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B.6 Validation experiment summary

The validation experiments show that the system ingglemented all the
predicted appearance properties. In experimerigs 8, 6, 7, and 8.1, the highest
and best correlation meta-features were the same.t® coupling between the
appearance properties in the images, the test irsatge could simultaneously
exhibit variation in more than one appearance ptgp&n experiments 3, 4, 8.2,
and 9, the best meta-features had a similar valneany of the other meta-feature
correlation scores. Nine appearance propertiesegresented in the system, and
the correlation results indicate that these mea#tifes may be able to measure

appearance properties.
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