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Abstract

Classifying logo images is a challenging task as they contain elements such as text or

shapes that can represent anything from known objects to abstract shapes. While

the current state of the art for logo classification addresses the problem as a multi-

class task focusing on a single characteristic, logos can have several simultaneous

labels, such as different colours. This work proposes a method that allows visually

similar logos to be classified and searched from a set of data according to their shape,

colour, commercial sector, semantics, general characteristics, or a combination of fea-

tures selected by the user. Unlike previous approaches, the proposal employs a series

of multi-label deep neural networks specialized in specific attributes and combines

the obtained features to perform the similarity search. To delve into the classification

system, different existing logo topologies are compared and some of their problems

are analysed, such as the incomplete labelling that trademark registration databases

usually contain. The proposal is evaluated considering 76,000 logos (seven times

more than previous approaches) from the European Union Trademarks dataset,

which is organized hierarchically using the Vienna ontology. Overall, experimentation

attains reliable quantitative and qualitative results, reducing the normalized average

rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image

Retrieval task. Finally, given that the semantics of logos can often be subjective,

graphic design students and professionals were surveyed. Results show that the pro-

posed methodology provides better labelling than a human expert operator, improv-

ing the label ranking average precision from 0.53 to 0.68.
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1 | INTRODUCTION

The detection and recognition of logos is an important task given that companies need to detect the use of their logos in images (Bianco

et al., 2017), social media (Orti et al., 2019) and sports events (Köstinger et al., 2010), or to discover unauthorized usages and plagiarism. More-

over, to register trademarks, it is necessary to verify that there are no similar logos within the same business sector. This is a relevant issue owing
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to the volume of applications for trademark registration and the size of the databases containing existing trademarks, moreover when considering

how costly it would be for humans to make these comparisons visually (Perez et al., 2018).

Most previous computer vision approaches for logos have focused on the trademark image retrieval (TIR) task, which consists of performing a simi-

larity search to obtain the most similar logos given a query image. Schietse et al. (2007) describe the main challenges that TIR systems confront. Logo

images differ from real pictures since they are artificially created and designed to have a visual impact. In addition, they may contain only text, images,

or a combination of both. The most relevant feature for humans to characterize a logo is probably the shape. However, automatic shape classification is

a challenging task. In addition to the structure of the elements that comprise a logo and its organization, semantic interpretation must also be considered

to determine the objects present in logos. This is a very complex task related to how humans perceive and interpret images.

Colour also plays an essential role in designing and characterizing a logo. Brands within the same business area often use similar colours

owing to their cultural and social connotations. However, this is not always the case since organizations may also use colour to differentiate them-

selves from the competition. For example, the authors of (Capsule, 2007) describe the case of the technology company Gear6, which uses the col-

our green to distinguish itself from its competitors. Colour is, therefore, important when performing TIR, but it is also necessary to consider that

logos sometimes lose their colour and that we can also find versions in greyscale.

This work presents a method with a twofold purpose.1 In addition to retrieving the most similar logos according to criteria provided by a user,

it also allows performing multi-label classification (MLC). Figure 1 shows an overview of the method. First, a multi-label neural network architec-

ture is proposed to classify different features of the logo, such as colour, shape, and figurative elements (semantics). This stage aims to facilitate

the labelling of brands since the output contains a series of label options with an associated probability to assist the operator in this process, as

seen in the bottom white box from the figure. Additionally, a similarity search module is added (top box), allowing the operator to adjust the sea-

rch criteria by modifying the weight assigned to each characteristic. For instance, the user can tune the method to give a higher weight to the

shape or colour when seeking the most similar logos. This is achieved through a module that conducts a weighted fusion of neural features

according to the user-defined criteria, facilitating the identification of similar designs or the detection of plagiarism based on these preferences.

A preliminary study on multi-label logo classification and similarity search was proposed in (Gallego et al., 2019). We extend this method and

its evaluation by making the following contributions:

1. The addition of a preprocessing stage for text detection, which includes an inpainting method to improve the retrieval results.

2. The inclusion of additional neural models and changes to the final stage of the similarity search using an alternative method that improves the

results.

3. The analysis of existing topologies to understand the hierarchical Vienna classification system used for comparing and retrieving logos from a

design perspective.

4. The proposal of multi-label tagging by grouping Vienna classification codes.

5. The use of a much larger corpus (logos from the European Union Intellectual Property Office, EUIPO, from 9 years rather than only 1 year) to

train the networks.

6. A comparison of the proposal with 17 state-of-the-art methods, outperforming their results.

7. The presentation of a qualitative evaluation through surveys of graphic design students and expert designers.

The remainder of the paper is structured as follows: the background related to the topic is introduced in Section 2. Then, the proposed

approach is developed thoroughly in Section 3. Next, Section 4 describes the experimental setup considered, while the results obtained and an

analysis of them are included in Section 5. Finally, the general conclusions are discussed in Section 6.

F IGURE 1 Overview of the proposed method.
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2 | BACKGROUND

The state of the art of methods used for TIR and multi-label retrieval are reviewed in the first part of this section, after which the available

datasets and the topologies used for their classification are detailed.

2.1 | Trademark image retrieval

Most traditional methods have addressed TIR by extracting a series of handcrafted features and using them to feed a k-nearest neighbour (kNN)

(Duda et al., 2001) to obtain a ranking of the most similar logos. Some of the features used for this comparison include methods based on colour

histograms (Ghosh & Parekh, 2015), shape (Qi et al., 2010), local descriptors such as SIFT (Chiam, 2015), or a combination of them (Guru &

Kumar, 2018; Kumar et al., 2016). In some cases, the dimensionality of these features is reduced with Bags of Words (Iandola et al., 2015). In addi-

tion, distance metrics are generally employed for comparing the features processed, although more complex approaches based on template

matching have also been proposed (Pornpanomchai et al., 2015).

Handcrafted features for this task are also found in more recent works, such as (Lourenço et al., 2019), which introduces Hierarchy of Visual

Words. This TIR method decomposes images into simpler geometric shapes and defines a descriptor for binary logo image representation by

encoding the hierarchical arrangement of component shapes. Nonetheless, most current TIR methods use deep learning (LeCun et al., 2015) archi-

tectures. For example, in Chiam (2015), an AlexNet network (Krizhevsky et al., 2012) with a sliding window is used to find logos in real images.

The authors of Iandola et al. (2015) evaluated GoogleNet-based convolutional neural networks (CNNs) architectures for the brand classification

of logos. More recently, Perez et al. (2018) proposed a combination of descriptors extracted from a VGG-19 network to find similarities using the

cosine distance, and (Xia et al., 2019) used Transform-invariant Deep hashing for TIR by learning transformation-invariant features.

Our proposal is also based on deep learning. However, it employs a much more versatile method that combines the descriptors learned by a

set of multi-label networks specialized in the classification of the different characteristics of logos. Most TIR methods reviewed rely on the brand

to perform the similarity search or classification. However, a brand's image may change over time, in addition to the fact that the generic compari-

son of a logo does not allow its classification. For this, it is essential to consider distinctive characteristics of the logo, such as the use of colours,

the semantic meaning of shapes, etc. The proposed approach makes it possible to perform similarity search based on different criteria while simul-

taneously taking advantage of these characteristics to perform multi-label logo retrieval.

2.2 | Multi-label logo image retrieval

As shown in the previous section, many TIR works exist in the literature. However, only a few approaches aim to classify logos using features

other than brands. In this case, samples may have more than one simultaneous label (e.g., several colours, shapes, or figurative elements annotated

for the same logo), making this problem a MLC task.

In traditional multi-class classification, each sample is assigned a single label from a set of mutually exclusive labels. In contrast, MLC allows

each sample to be associated with multiple labels independently. Thus, a sample can have from no label to all possible labels. Formally, in MLC,

the samples are associated with a subset of labels Y ⊆ L, where L represents the set of possible labels.

Several studies, as highlighted by Liu et al. (2021), have proposed exploiting label correlations in MLC problems. However, their applicability

depends on the data type. In datasets originating from natural sources, it is feasible to rely on the identified relationships to improve results. How-

ever, for datasets from artificial sources, like logos, relying on such dependencies is less advisable, as the characteristics of a logo are limited only

by the designer's creativity. A notable example is the case described previously about the technology company Gear6, which intentionally chose

an atypical colour for its sector to stand out from competitors.

MLC has received significant attention in recent machine learning literature owing to its interesting applications. During the past decade,

great strides have been made in this emerging paradigm. A review on this area emphasizing state-of-the-art multi-label learning algorithms can be

found in Liu et al. (2021), Zhang and Zhou (2014). MLC approaches can roughly be categorized into problem transformation methods and algo-

rithm adaptation methods. The first approach tackles the multi-label learning problem by transforming it into other well-established learning sce-

narios. This includes transforming the MLC problem into a binary classification task (Boutell et al., 2004a), into label ranking (LR) (Fürnkranz

et al., 2008), or into multi-class classification (Tsoumakas & Vlahavas, 2007). The second category of MLC methods is based on algorithm adapta-

tion, modifying standard learning techniques such as kNN (Zhang & Zhou, 2007), decision trees (Clare & King, 2001), or SVM (Elisseeff &

Weston, 2001) to deal with multi-label data directly. In the case of neural networks, they can be adapted for multi-label problems by changing the

output activation function and using appropriate loss functions, such as binary cross-entropy loss computed on all label predictions.

Multi-label methods are used in applications as diverse as text categorization (Dong et al., 2020), music categorization (Trohidis et al., 2011),

or semantic scene classification (Boutell et al., 2004b). However, to the best of our knowledge, the literature contains no examples of MLC-related
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works applied to logos, except for Gallego et al. (2019). As argued in the introduction section, features such as colour, shape, or semantic meaning

play a key role in logo classification. Given the particular characteristics of this task, it is of particular interest to developing multi-label systems

that make it possible to classify and search for logos based on different criteria that the user can configure.

This paper proposes an MLC approach applied to logos that, in addition to extending the methodology proposed in Gallego et al. (2019) and

obtaining better results, also broadens the set of labels considered and considerably expands both the experiments and the analysis of the results

obtained.

2.3 | Datasets and topologies

Reliable image datasets are crucial for tackling this task, although the corpora used in former works are not generally publicly available for copy-

right reasons (Ghosh & Parekh, 2015; Kalantidis et al., 2011). As a result, it has not been until recently that some free logo datasets appeared.

Some examples are the large logo dataset (LLD) (Sage et al., 2018), which consists of more than 600,000 logos obtained from the Internet, METU

(Tursun et al., 2017; Tursun & Kalkan, 2015), which contains 923,343 trademark images, and Logos in the Wild (Tüzkö et al., 2018), in which

11,054 images are labelled within 871 brands.

All the datasets mentioned above, and most of those used by the state-of-the-art methods, are labelled only by brand, as it is assumed that

logos from the same brand tend to be similar. However, brands may evolve different versions of their logos (e.g., Disney has changed its logo more

than 30 times; Iandola et al., 2015). These differences may include changes in the background, colour, texture, or shape, thus making the different

versions of a logo very different in appearance and signifying that relying on visual similarity is not always a suitable means to classify logos from

the same brand.

It is, therefore, complicated to establish a categorization method for logos. One of the topologies accepted as a standard by the different

agencies for trademark registration worldwide is the Vienna classification, which was developed by the World Intellectual Property Organization

(WIPO) (World Intellectual Property Organization, 2002). It is used by the European Union Intellectual Property Office (EUIPO) and the

United States Patent and Trademark Office (UPSTO), among others, to classify their datasets.

Vienna classification (which will be described in detail in Section 2.3.1) is an international system used to label different characteristics of

trademarks by employing a hierarchical topology ordered from the most general to the most specific concepts. It allows images to be labelled with

metadata indicating their figurative meaning (semantics), colour, shape, and whether or not they contain text. Several patent and trademark agen-

cies have recently released datasets along with their metadata, thus making possible works such as Rusiñol et al. (2011) or Gallego et al. (2019),

which use this information for the classification or comparison of logos.

In addition to this labelling, there are classifications that professionals frequently use, such as the topologies proposed by Wheeler (2013) and

Chaves and Belluccia (2003), which are based on other kinds of criteria.

Wheeler classifies logos into three general categories: Wordmarks (a freestanding acronym, company name, or product name), emblems

(logos in which the company name is inextricably connected to a pictorial element), and only symbols (which are subdivided into letterforms, pic-

torial marks, and abstract/symbolic marks). However, the boundaries among these categories are pliant, and many logos may combine elements

from more than one category.

The alternative categorization proposed by Chaves and Belluccia (2003) is similar but is more detailed and based on formal aspects. In this

case, there are four main categories: logotypes (which is equivalent to Wheeler's ‘Wordmarks’ category, but with three subtypes: pure logotype,

logotype with background, and logotype with accessory), logo-symbol (equivalent to emblems), logotypes with symbols, and only symbols, which,

as occurs in Wheeler's version, is divided into three subtypes.

Given the relevance of the labelling method for the proposed methodology, the following section describes the Vienna classification and its

relationship with the Wheeler and Chaves topologies that are oriented to designers.

2.3.1 | Vienna classification

The Vienna classification (World Intellectual Property Organization, 2002) proposes a hierarchical topology of logos, in which each image can be

labelled with a series of codes indicating its semantics, shape, colour, and so on. It defines a set of 29 main categories, which are in turn divided

into 2nd and 3rd level categories, creating a classification with hundreds of possible labels. The complete list of top-level categories can be seen

at Appendix. Each code is indicated using the XX.YY.ZZ pattern. For example, the 5.9.1 code would assign the tag ‘carrots’ to a logo. The hierar-

chy of this code indicates that it belongs to the category of 2nd level 5.9 ‘vegetables’ and the main category 5 ‘plants’.
This hierarchical organization makes it possible to group logos by different levels of labels and use higher hierarchical levels when the 3rd or

2nd levels have too much detail, are not very representative, contain few samples, or are ambiguous.

4 of 25 BERNABEU ET AL.
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It is also necessary to consider that the labelling from trademark agencies is usually not exhaustive since only the most distinctive characteris-

tics of brands are typically annotated. This means that incomplete or contradictory labelling can sometimes be found (e.g., a logo that has three

colours and only one of them is labelled).

In this work, we propose solving some problems by grouping these codes according to their characteristics and semantics. The intention is

not to replace Vienna but to carry out a selection of labels to keep those most useful for their application in machine learning tasks. The following

four categories are, therefore, defined, in which the Vienna codes that uniquely describe these characteristics are selected or grouped:

• Figurative. This includes the Vienna codes from 1 to 25, which indicate categories related to the figurative or semantic meaning of the logo.

For this category, we differentiate between the 1st and 2nd levels of the Vienna hierarchy, which we respectively denominate as the main cat-

egory (which contains the 25 codes from the 1st level) and the sub-category (with 123 possible classes).

• Colours. Vienna category 29 refers to colours, although many codes indicate their number (e.g., 29.01.12 means that there are two predomi-

nant colours). It is, therefore, proposed that they should not be considered since they do not provide relevant information. After performing

this filtering, the set of selected colour codes is reduced to 13 (included in Appendix).

• Shapes. In category 26, different types of shapes are labelled, including circles, triangles, quadrilaterals, and so on. In this case, the 3rd level of

labelling is very specific and sometimes ambiguous (e.g., curved lines versus wavy lines, or dotted lines versus broken lines). We, therefore, pro-

pose using only up to the 2nd level. Moreover, codes 26.07 and 26.13 are grouped in category 26.5 (Other polygons) since a defined shape is

not visually identified. After this grouping, a list of seven possible shape categories was eventually obtained (see Appendix).

• Text. Category 27 defines the text and its characteristics. This category is also too detailed (e.g., there are 20 different codes to indicate the

appearance or shape of the text and as many to indicate the style of the font). Since the specific text in the logo is often made up of acronyms,

monograms, or brand names that do not contribute much to the calculation of the similarity between logos, we, therefore, propose to label

only the presence or absence of text in the image.

Table 1 shows a summary of the equivalence among the topologies proposed by Wheeler and Chaves and their relation to the proposed

Vienna code groups. These equivalences allow us to determine the most relevant characteristics of logos when preparing or analysing their design.

For example, colour and shape are features that appear in all types of designs and can, therefore, help the most to distinguish them. This is not

the case with the presence of text or figurative elements, although they are very useful in determining some of the logo features. In summary,

there is a relationship among the different topologies, signifying that the Vienna codes can describe the remaining classifications.

In this work, the modified Vienna classification is used to perform MLC and similarity search. We will specifically use the dataset provided by

EUIPO (described in Section 4.1), which, in addition to Vienna, uses the alternative Nice classification2 to label goods and services. This categori-

zation organizes the sector into 45 subcategories. The labels used for goods include chemicals, medicines, metals, materials, machines, tools, vehi-

cles, instruments, and so on, while the labels used for services include advertising, insurance, telecommunications, transport, and education.

3 | METHOD

Figure 2 shows the scheme of the proposed approach, which is divided into three main steps: a preprocessing of the input images, a MLC, and a similar-

ity search step based on the features learned in the previous stage. Detailed explanations of each of these steps are provided in the following sections.

TABLE 1 Relationship between the Vienna classification and the topologies proposed by Wheeler and Chaves.

Wheeler Chaves

Vienna

Figurative Colour Shape Text

Nominal Identifier Wordmark Logotype

• Logotype with background – ✓ ✓ ✓

• Pure logotype – ✓ – ✓

• Logotype with accessory ✓ ✓ ✓ ✓

Symbolic identifier Emblem Logo-symbol ✓ ✓ ✓ ✓

– Logotype with symbol ✓ ✓ ✓ ✓

Only symbol Only symbol

• Pictorial mark • Iconic symbol ✓ ✓ – –

• Abstract/symbolic mark • Abstract symbol – ✓ ✓ –

• Letterform • Alphabetic symbol – ✓ ✓ –

BERNABEU ET AL. 5 of 25
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3.1 | Data preprocessing

Data preprocessing is performed to prepare the image for the next steps. The logo is first cropped to eliminate the borders containing a uniform

background. Logo images used for trademark registration or similarity search (i.e., as long as it is not for the task of searching logos in the wild3)

generally tend to have a uniform background. Therefore, the images are cropped by eliminating colour-uniform borders so that the logo will

occupy all the available space in the image. This makes it possible to homogenize their size and facilitate the comparison process.

The second preprocessing step consists of detecting whether the input logo contains text and, if so, generating a new version of it without

text. Many image brands include text. However, this information may be irrelevant or even confuse the detection of some logo characteristics.

During experimentation, it was observed that shape classification improved notably when the text was eliminated. This was not the case with the

other characteristics, such as colour or figurative elements. This process, therefore, was carried out only for the shapes network, using the full logo

for the rest of the characteristics, as shown in Figure 2.

To remove the text, the image is first processed using the CRAFT text detector (Baek et al., 2019), which efficiently identifies the text area of

an image by exploring each region and the affinity between text characters. As a result, if any text is found, a mask is obtained. Together with the

original image, this mask is processed by an inpainting network (Wang et al., 2018) to fill the detected gaps with a background colour. For optimi-

zation, when the detected mask is surrounded by white pixels—which is quite common in these kinds of images—the gap is filled directly to white.

Figure 3 shows some examples of the steps followed in this process.

3.2 | Multi-label classification

In the second step of the proposed method, a set of neural networks is used for the classification of different characteristics of the input image.

Specifically, each of these networks specializes in the MLC of one of the proposed label groups (see Section 2.3.1), such as shape, colour, text, cat-

egory, subcategory, and sector.

Figure 2 shows a diagram of the integration of these networks into the proposed methodology. The input used is the preprocessed result of

the previous stage (in the case of the network specialized in shape, the version of the image without text is employed). The fact that they are inde-

pendent allows the networks to be run in parallel, signifying that the algorithm's performance is not affected.

As discussed in the introduction, the current methods that obtain the best results as regards processing logos, or images in general, are those

based on CNN (LeCun et al., 2010, 2015), and it is for this reason that we also use this type of architecture, but adapting it to an MLC configura-

tion. The specific definition of the networks used is shown in Figure 4 (upper diagram). The proposed architecture consists of five layers alter-

nately arranged into convolutions, batch normalization (Ioffe & Szegedy, 2015), max-pooling and dropout (Srivastava et al., 2014), plus two final

fully-connected layers, also with dropout. Batch normalization and dropout (Srivastava et al., 2014) were included to reduce overfitting, help per-

form faster training, and improve accuracy.

F IGURE 2 Scheme of the proposed method.

6 of 25 BERNABEU ET AL.
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ReLU (Glorot et al., 2011) was used as the activation function for all layers except the output, which has a sigmoid activation function. The

sigmoid function models the probability of each class as a Bernoulli distribution, in which each class is independent of the others, unlike that

which occurs with Softmax. Therefore, the output is a MLC for each of the L labels considered, which depends on the number of classes of each

particular network. This way, the MLC methodology proposed is based on algorithm adaptation, changing the Softmax by a sigmoid to deal with

the multi-label scenario while learning the implicit correlations between labels.

In the case of the network specialized in text detection, only one output is necessary since it detects only the presence of text in the image.

Unlike CRAFT, which searches for individual characters, this network seeks global features that allow this binary classification to be carried out.

As we will see in the experimentation section, this difference has the advantage of allowing a generic comparison of the presence of text in the

image (and not of the specific text that appears in it).

F IGURE 3 Examples of how selected text is removed from the image using CRAFT and how an inpainting neural network fills gaps.

F IGURE 4 Schemes of the specialized convolutional neural networks (CNNs) (top, used in the multi-label classification stage) and the Auto-
Encoder (bottom, used for the similarity search). In this figure, the layer type is labelled with colours according to the side legend. Each layer
configuration is shown in the scheme, including the activation function, the number of filters (f) and kernel size (k) for convolutions and
transposed convolutions, the pool size (p) for max-pooling, the ratio d used for dropout, the stride st applied to each layer of the auto-encoder,
and the number of neurons n used for the fully-connected layers. Note that the output size of the top CNN depends on the L labels considered.

BERNABEU ET AL. 7 of 25
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3.3 | Similarity search

The last step of the method takes advantage of the intermediate representation learned by the networks described in the previous section to per-

form the logo-similarity search. In this respect, it is possible to use the CNN as a feature extractor to obtain a suitable mid-level vector representa-

tion (also called a Neural Code or NC; Babenko et al., 2014) that is later used as the input for a search algorithm such as kNN (Gallego

et al., 2020). This is done by feeding the trained networks with the raw data and extracting the NC from one of the last layers of the network

(Huang & LeCun, 2006; Razavian et al., 2014), in our case, from the penultimate layer.

In addition to the six specialized networks used in the previous step, an auto-encoder architecture is added to capture generic characteristics

that define logos. These networks were proposed decades ago by Hinton and Zemel (1994) and have since been actively researched (Baldi, 2012).

They consist of feed-forward neural networks trained to reconstruct their input. They are usually divided into two stages: the first part (den-

ominated as the encoder) receives the input and creates a meaningful intermediate or latent representation of it, and the second part (the decoder)

takes this intermediate representation and attempts to reconstruct the input.

Figure 4 (bottom) depicts the topology of the auto-encoder used. The encoder consists of four convolutional layers combined with batch nor-

malization and dropout. Down-sampling is performed by convolutions using strides rather than resorting to pooling layers. Four mirror layers are

then followed to reconstruct the image to the same input size. Up-sampling is achieved through transposed convolution layers, which perform the

inverse operation to a convolution to increase rather than decrease the resolution of the output. Residual connections were also added from each

encoding layer to its analogous decoding layer, thus facilitating convergence and improving the results.

The size of the neural codes (NC) obtained from these networks is 128 for the CNNs and 256 for the auto-encoder. In preliminary experi-

ments, it was observed that the accuracy decreased with smaller sizes and that larger sizes did not lead to any improvement. As shown in

Figure 2, these NC are combined into a single feature vector, which is then used to perform the similarity search. An ℓ2 normalization (Zheng

et al., 2016) is applied for the regularization of this vector since this technique usually improves the results (Gallego et al., 2018).

During the training stage, the NCs from the training set are extracted and stored following the process described above. Then, in the infer-

ence phase, the NC representation of the query is obtained and compared with the stored NCs. In this process, in addition to using kNN (Duda

et al., 2001), the result obtained was also compared with the following two multi-label similarity search methods:

• Binary Relevance kNN (BRkNN) (Eleftherios Spyromitros, 2008): This is a multi-label classifier based on the kNN method and the binary rele-

vance (BR) problem transformation. It learns one binary classifier for each different label by checking whether samples are labelled with the

label under consideration, thus following a one-against-all strategy.

• LabelPowerset (Boutell et al., 2004b): This also follows a problem transformation approach in which the multi-label set is transformed into a

multi-class set. Then, a classifier (Random Forest, in this case) is trained on all the unique label combinations found in the training data.

Moreover, we use a weighted distance to search for the nearest neighbours. The advantage of this distance is that it allows the user to adjust

the search criteria by modifying the weight assigned to each characteristic (e.g., the user can tune the method to give a higher weight to the shape

or colour when seeking the most similar logos). The following weighted dissimilarity metric dw was used to calculate the distance between two

vectors A and B:

dw A,Bð Þ¼

P
c � C

wcd Ac,Bcð Þ
P
c � C

wc
ð1Þ

where C is the set of all possible characteristics (i.e., colour, shape, etc.), Ac and Bc represent the subset of features corresponding to the charac-

teristic c, wc is the weight assigned to that characteristic, 8c�C :wc � 0,1½ �, Pc � Cw
c ¼1, and d :X �X !ℝþ

0 is the dissimilarity metric used to

compare the two vectors. We have employed the Euclidean distance since, as described above, the NC vectors obtained are numerical feature

representations.

3.4 | Training process

The training of the networks was made using standard back-propagation, Stochastic Gradient Descent (Bottou, 2010), and considering the adap-

tive learning rate method proposed in Zeiler (2012). The binary crossentropy loss function was used to calculate the error between the CNN out-

put and the expected result. The training lasted a maximum of 100 epochs with a mini-batch size of 32 samples and early stopping when the loss

did not decrease during 15 epochs.
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A model pretrained during 25,000 iterations with more than 10,000 images was used for the CRAFT (Baek et al., 2019) network. The

inpainting network (Wang et al., 2018) was initialized with a model pretrained with ImageNet and fine-tuned with our dataset during 30,000

iterations.

4 | EXPERIMENTAL SETUP

4.1 | Dataset

The experimentation was carried out using the European Union Trademark (EUTM) dataset provided by EUIPO4. This dataset is labelled using the

Vienna classification as depicted in Section 2.3. However, since the available labelling is not exhaustive, a filtering process was performed to select

only those logos whose semantics, colour, and shape were labelled. We, therefore, eventually chose a subset of 76,000 logos corresponding to

the 2010–2018 period.

It is important to state that even if this filtering is performed, the collected labelling is still not complete. This is owing to the subjectivity of

some labels and the fact that operators usually indicate only the most representative characteristics of logos, that is, those that are distinctive

of that brand. For example, in the first image in Figure 5, it will be noted that only the colour red was labelled, although it also contains black and

blue. The same happens with the third, fourth, and fifth logos, in which only one colour is labelled although they contain more. In the case of the

shape labelling, only circles were annotated in the first and fifth images, lines for the second logo, and triangles for the third, although they also

contain other shapes.

In the case of text labelling, only 30% of the images had this information. Again, in this dataset, the presence of text is labelled only when it is

a distinctive element. For example, Figure 5 shows that the text is only labelled in the first three images when all the logos contain text. For this

reason, all the images were processed and reviewed using the CRAFT text detector to complete this labelling, thus obtaining much more complete

ground truth (GT) for this feature.

The input images were scaled to a spatial resolution of 256 � 256 pixels, and their values were normalized into the range [0, 1] to feed the

networks. Of the 76,000 logo images, 80% were selected for training, and the remaining samples were employed for testing. These partitions

were maintained for all experiments, keeping the same train and test sets to ensure a fair comparison.

4.2 | Metrics

In multi-label learning, each sample may have more than one ground-truth label. To assess this problem quantitatively, better ranks are assigned

as the method correctly predicts more GT labels. In this work, we considered the following two multi-label metrics (Tsoumakas et al., 2010).

4.2.1 | Label ranking average precision

This is a LR metric that is linked to the average precision score but based on the notion of LR rather than precision and recall. Label ranking aver-

age precision (LRAP) averages over the samples the answer to the following question: for each GT label, what fraction of higher-ranked labels

were true labels? This performance measure will be higher if the method can give a better rank to the labels associated with each sample. The

score is always strictly greater than 0, with 1 being the best score.

F IGURE 5 Some examples of trademarks in the EUTM dataset. Note that some of them have only partial labelling of some characteristics,
such as colour and shape, and that the text is not labelled although it is present, as it is not considered to be a characteristic element of the
design.
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Formally, given a binary indicator matrix of the GT labels, y� 0,1f gN�L, where N and L are the amount of samples and labels, respectively, and

the score associated with each labelbf �ℝN�L, the LRAP is defined as:

LRAP y,bf� �
¼ 1
N

XN�1

i¼0

1
k yik0

X
j:yij¼1

jℒij j
rankij

ð2Þ

where ℒij ¼ k : yik ¼1,bfik ≥bfij
n o

, rankij ¼ k :bfik ≥bfij
n o��� ���, j � j calculates the cardinality (number of elements) of the set, and k �k0 is the ℓ0-norm that

computes the number of nonzero elements in a vector. If there is exactly one relevant label per sample, LRAP is equivalent to the mean

reciprocal rank.

4.2.2 | Label ranking loss

This LR metric computes the ranking, which averages the number of label pairs that are incorrectly ordered in the samples (true labels with a lower

score than false labels), weighted by the inverse of the number of ordered pairs of false and true labels. The best performance is achieved with a

label ranking loss (LRL) of zero. This metric is formally defined as:

LRL y,bf� �
¼ 1
N

XN�1

i¼0

1
k yik0 L�k yik0ð Þ k, lð Þ :bfik ≤bfil,yik ¼1,yil ¼0

n o��� ��� ð3Þ

5 | EVALUATION

The proposed methodology is evaluated at different levels, starting with the MLC phase and continuing with the similarity search, also comparing

it with other state-of-the-art approaches. In addition to quantitative results, a qualitative evaluation is carried out by analysing the response of

each stage of the method and comparing the results with the classification made by experts and graphic design students.

5.1 | Multi-label classification

At this stage, the method returns a MLC for each characteristic considered, that is, colour, shape, main category, subcategory, and sector. Table 2

shows the results obtained for each of these characteristics in terms of LRAP and LRL. There is a consensus regarding the best and worst results

for both metrics except for the sector. Overall, colour, main category, and sub-category are the best-detected characteristics. The worst-ranked

feature using LRL is the sector, probably because no specific pattern, characteristic, or type of design is detected with which to determine it since

the type of design applied to each sector is subjective. However, the sector is the best-ranked feature according to LRAP, but probably because

usually there is a single sector label per image.

Intermediate precision was attained for shape classification, mainly owing to the labelling noise and the ambiguity of the possible classes. In

these results, there is also an improvement produced by the proposed preprocessing to eliminate the text from the image (‘Shape+’ row) com-

pared to using the original version of the logo that includes the text (‘Shape’ row).

TABLE 2 Results obtained with the proposed method for the multi-label classification stage. Two cases are shown for the Shape network:
‘Shape+’, which includes the preprocessing to remove the text, and ‘Shape’, which does not. Lower LRL values and higher LRAP values indicate

better performance.

Model LRL # LRAP "
Colour 0.0561 0.8642

Sub-category 0.0561 0.7376

Main category 0.0635 0.7979

Shape+ 0.1169 0.7699

Shape 0.1534 0.6899

Sector 0.2220 0.8890

10 of 25 BERNABEU ET AL.
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The results for the text classification network are not included in this table since this is not a multi-label classifier (it discriminates only

whether or not the image contains text). For this reason, the accuracy metric was chosen, obtaining 96.06% for this task.

Table 3 depicts some examples of the results obtained for MLC, including only the predictions made with a confidence greater than 2%.

When the prediction is compared with the GT, the method succeeds in all cases, with a fairly high confidence percentage. The only error was in

the main category of the second logo since the class ‘plants’ was selected as the first option. However, this error is understandable when the

examples labelled with this class are analysed since they usually are green and define shapes with curves. For the shape labelling, it can be seen

that in some examples, such as the first, third and fourth, other classes that were not labelled are proposed but that, nevertheless, describe char-

acteristics present in the logos.

5.2 | Similarity search

In this section, we evaluate the similarity search results using the NCs learned by the neural networks in the MLC stage together with the NCs of

the auto-encoder. In this case, the results are reported by considering only the LRAP metric since, as stated in the previous section, the tendency

of both metrics is similar.

To establish the value of k used by the kNN and BRkNN while simultaneously analysing the labelling noise, we shall now evaluate the result

obtained when performing the similarity search for the single-label case. For this, when processing each class, only the samples with a single label

for that characteristic were considered. Table 4 depicts the results of this experiment (in terms of LRAP) when considering the kNN method and

values of k in the range [1, 11]. As will be noted, the best results are obtained with high k values, between 7 and 11. The intermediate value of

k¼9 was eventually chosen for the remaining experiments since this reports a higher average result. These results demonstrate that the labels

provided contain noise since the method improves by considering more neighbours in the inference stage.

Since LabelPowerset is based on Random Forests, we also carried out a similar experiment by evaluating the number of trees considered in

the range t� 100,500½ �, eventually obtaining the best result with t¼100. These parameter settings were used to compare the three multi-label

similarity search algorithms: kNN and BRkNN with k¼9, and LabelPowerset with t¼100. Table 5 shows the results of this experiment using the

LRAP metric. As can be seen, a better result is obtained for almost all the characteristics when using LabelPowerset. The only exception is the sec-

tor, which, as previously argued, is a very subjective characteristic and may contain a higher level of noisy labels.

In the case of the auto-encoder, it is necessary to consider that it is trained in an unsupervised manner for the reconstruction of the input.

The labelling of characteristics is, therefore, not used during training. For this reason, to assess its performance, its result for the characteristics

TABLE 3 Examples of multi-label classification of the EUTM dataset, including the ground truth (GT) and the prediction made by the main
category, shape, colour, and text networks when the confidence percentage of the prediction exceeds 2%. Two examples include text, and two
do not.

GT Main-category Ornamental motifs Human beings Plants Ornamental motifs games, toys

Shape Quadrilaterals lines, bands Circles, ellipses Lines, bands Quadrilaterals

Colour Black; Orange Green Blue Black; White

Text Yes Yes No No

Prediction Main-category 100% Ornamental motifs 47.10% plants

17.70% human beings

4% arms, ammunition

46.47% plants

31% heraldry, coins

9.66% celestial bodies

100% Ornamental motifs

Shape 94.85% Quadrilaterals

6.07% lines, bands

4.08% other polygons

99.81% circles, ellipses 63.62% circles, ellipses

61.87% lines, bands

10.44% quadrilaterals

99.96% Quadrilaterals

10.06% circles, ellipses

Colour 48.44% black

94.41% orange

58.45% white

99.22% green 100% blue 87.54% black 78.36% white

Text Yes Yes No No

BERNABEU ET AL. 11 of 25
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considered is compared with that obtained by the specialized networks. Figure 6 shows this analysis. Good results are yielded for almost all char-

acteristics except for colour. This indicates that the auto-encoder learns a generic representation of combined features, which primarily considers

shape versus colour.

It is also evident that the auto-encoder works even better than the shape network when the text is not eliminated, but this is not the case

when the proposed preprocessing (Shape+) is applied. The auto-encoder is not the best for any particular feature (except for shape without

preprocessing). This method is, therefore, beneficial for searching for similarity generically, considering appearance without looking at any specific

characteristic.

TABLE 4 Similarity search results (in terms of LRAP) obtained with the kNN classifier for the single-label search task and different k values.

Model

CNN + kNN

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11

Colour 0.8322 0.8366 0.8369 0.8394 0.8378 0.8331

Main Category 0.7673 0.7842 0.7875 0.7885 0.7886 0.7880

Subcategory 0.7409 0.7611 0.7660 0.7682 0.7695 0.7716

Sector 0.8020 0.8027 0.8054 0.8060 0.8065 0.8067

Shape 0.5489 0.5513 0.5503 0.5542 0.5544 0.5552

Shape+ 0.6583 0.6717 0.6707 0.6689 0.6712 0.6728

Average* 0.7601 0.7713 0.7733 0.7742 0.7747 0.7744

Note: The best results are highlighted in bold type.

*The average is calculated excluding the result from the ‘Shape’ network (without preprocessing), due to the superior performance of the ‘Shape+’
network, which will be employed in further analyses.

TABLE 5 Results obtained for the different characteristics with the three multi-label classifiers using the LRAP metric.

Network kNN BRkNN LabelPowerset

Colour 0.7042 0.7042 0.7070

Main category 0.7015 0.7015 0.7396

Subcategory 0.6589 0.6589 0.6850

Sector 0.8434 0.8434 0.8001

Shape 0.5333 0.5333 0.5594

Shape+ 0.6242 0.6242 0.6579

Average* 0.7064 0.7064 0.7179

Note: The best results are shown in bold type.

*The average is calculated excluding the result from the ‘Shape’ network (without preprocessing), due to the superior performance of the ‘Shape+’
network, which will be employed in further analyses.

F IGURE 6 Similarity search results obtained for each of the characteristics considered when using the neural codes learned by the auto-
encoder. The results obtained by the specialized networks for these characteristics are included as a reference.
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5.2.1 | Qualitative results

In this section, we qualitatively analyse the results obtained after the similarity search. Figure 7 includes a series of examples of the logos found

when using each specialized network separately, assigning 100% of the search weight to a single characteristic. In this figure, the first logo in the

row is the query, and the others are the 8-nearest neighbours retrieved.

In the case of colour (first row of the figure), it will be noted that the results retrieved are correctly matched, even when there are multiple

colours, independently of other characteristics such as the shape. The second row depicts an example of shape, which is also perfectly detected

without, in this case, taking into account colour.

The main category and sub-category (3rd and 4th rows) of figurative designs are more difficult to analyse visually since elements can

often be represented creatively or abstractly. It is for this reason that ‘Plants’ has been selected for the main category and ‘Leaves,
needles, branches with leaves or needles’ for the sub-category, as they contain easily recognizable designs. In both cases, it will be noted

that similar logos, in which leaves or plants appear, have been retrieved. For the main category, the design appears to be a little more

generic, including other elements such as people, while for the sub-category, the designs are more specific, and only logos that include

leaves are shown.

The case of the sector (5th row) is even more difficult to analyse visually since the classification into goods and services is quite subjective

and does not always depend on visual information. Nevertheless, this example shows a correct search result for a logo used for goods. In the case

of the text (penultimate row), in addition to retrieving logos containing text, the model also considers the logo's composition since a similar design

F IGURE 7 Example of the 8-nearest neighbours obtained by using each of the specialized networks separately, that is, assigning 100% of the
search weight to a single feature. The first logo is the query.

BERNABEU ET AL. 13 of 25
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appears in all of them (with the text at the bottom). Finally, the auto-encoder (last row) focuses principally on the spatial distribution or the layout

of the logo and, in some cases, also considers the colours.

We shall now analyse the effect of combining several characteristics using the proposed weighted distance (see Equation 1) and the capacity

it gives users to refine the search. Figure 8 shows some examples of the results obtained by applying different weights to combine colour, shape,

and figurative elements.

In the first row, the logo used previously in Figure 7 for the shape characteristic is evaluated, but shape and colour are combined in this exam-

ple. As can be seen, when adding the colour, circular logos are again retrieved, but in this case, they have similar colours. When reducing the

weight of the colour to 30%, other colours such as blue begin to appear, but red and black are always maintained. These results contrast those

previously obtained in Figure 7, in which the colours changed completely.

In the second example, the same logo from Figure 7 (3rd row) is evaluated, but in this case, the figurative elements from the main cat-

egory are combined with the shape. As will be noted, by giving some weight to shape, the recovered figurative elements keep the same

shape, unlike the previous result in which this characteristic was not considered. By assigning 30% of the weight to the shape, only two

logos that do not have a circular shape are obtained, and by giving more weight to the shape (70%), all the results obtained are ‘circles,
ellipses’.

To analyse the representations learned by the models, a visualization of the grouping formed by the NCs is included for the colour and shape

characteristics using the t-Distributed Stochastic Neighbor Embedding technique (t-SNE; van der Maaten, 2008). Figure 9 shows that, despite

being a multi-label task, the learned NCs tend to group similar characteristics. For example, in the case of the colour (top image), grey or silver are

grouped in the upper right, blues on the right, yellows, browns, oranges on the left, and greens in the upper left part. Similar shapes are also

grouped (see images below, in which two areas of the representation generated are shown zoomed in). In the left-hand image, there are circular

shapes, and in the right-hand one, there are quadrilaterals. It should be noted that logos that include text next to these shapes are also grouped

separately.

These results show how the networks transform the input images into a new dimensional space (the NCs extracted) in which the logos with

similar characteristics are close. This makes it possible to perform a similarity search based on the distance between the representation of the

logos in this dimensional space and thus analyse the neighbourhood space of a given query to retrieve similar images.

5.2.2 | Class activation maps

Figure 10 shows five examples of class activation maps (CAM) that highlight the areas of the logo that were most relevant for its classification.

These maps were obtained using Grad-CAM (Gradient-weighted class activation mapping; Selvaraju et al., 2017), a technique to visually explain

the decisions of a CNN by highlighting the regions of the input image that are more important for the prediction of a specific class. This method

backpropagates the gradients obtained at the final convolutional layer of the CNN in order to produce a coarse localization map highlighting

important regions for the prediction.

In Figure 10, it can be seen that the model focuses on the areas of the image where the most relevant characteristics are best visually

appreciated. In the first, second, and last images, the model focuses on the areas where the colour, shape, and text are identified,

F IGURE 8 Results obtained using the weighted distance with two different characteristics. The first column shows the query and the weights
applied. The second column includes the 8-nearest neighbours retrieved.
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respectively. In the figurative case, the CNN focuses on the centre of the image that contains the main identifiable element, in this case, a

drop. In the image without text, the network does not identify any specific area, since the CNN is looking for text and the logo does not

have any.

F IGURE 9 Clusters formed by the neural codes from the networks of colour (top) and shape (bottom) using the t-Distributed Stochastic
Neighbor Embedding method. In the case of the shape, two images are included by zooming in on areas in which the circular (left) and
quadrilateral (right) shapes are located.

F IGURE 10 Grad-CAM activation maps for logo search using colour, shape, figurative elements, and text classifiers. These maps were
obtained from the dropout-4 layer of the network specialized for each characteristic.
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5.2.3 | Runtime analysis

We now include an additional benchmark that analyses the search cost taking into account the runtime. It is important to keep in mind that the

execution time depends on factors that are not related to the method itself but to the programming language, the libraries used for the implemen-

tation, or the hardware settings, among others. In this regard, we clarify that all these experiments were carried out using the Python program-

ming language (v. 3.7) with the TensorFlow (v. 2.1), Keras (v. 2.3), and the cuDNN libraries. The machine used consists of an Intel(R) Core(TM)

i7-7700HQ CPU @ 2.80 GHz with 16 GB RAM and an NVIDIA GeForce GTX 1060 with 6 GB graphics processing unit (GPU). Note also that to

obtain the execution times, 50 predictions were made and the average of the inference time and the deviation of the obtained times were

calculated.

The pipeline of the proposed approach is divided into three main steps (see Figure 2): preprocessing, MLC, and similarity search. The first two

stages take only 5:26�0:9ms and 2:19�0:37ms, respectively. It must be taken into account that in these stages the prediction consists of the

use of trained networks, which basically implies matrix multiplication. The third stage takes a little longer since it performs the similarity search of

the query and the entire training set. However, this process can be optimized by using a KD search tree, taking only 12:76�1:2ms.

5.3 | Comparison with state of the art

This section compares the proposed method with other state-of-the-art methods for TIR. Since, and as previously mentioned, there are, to the

best of our knowledge, no other MLC approaches for logos that use the Vienna classification, we perform this comparison using METU v2.5 This

dataset is the largest public dataset for TIR and contains 922,926 trademark images belonging to approximately 410,000 companies. Its evaluation

set is composed of 417 queries divided into 35 groups of about 10–15 trademarks, in which the logos within the same group are similar (Tursun

et al., 2017; Tursun & Kalkan, 2015).

The evaluation was carried out using the normalized average rank (NAR) metric since it is the measure most commonly employed in reference

state-of-the-art works. This metric is calculated by injecting the query set into the main dataset and, for each query logo, the rank obtained for

the logos in the same group is calculated as follows:

NAR¼ 1
N�Nrel

XNrel

i¼1

Ri�Nrel Nrelþ1ð Þ
2

ð4Þ

where Nrel is the number of relevant images for a particular query image (the number of injected images), N is the size of the image set, and Ri is

the rank of the ith injected image. The value 0 corresponds to the best performance and 0.5 to a random order.

Table 6 shows the result of the comparison carried out. As can be seen, different types of approximations were considered, which were based

on both hand-crafted features and neural networks. In the case of those based on hand-crafted features, the use of colour histograms (Lei

et al., 1999), LBP (Ojala et al., 2002), SIFT (Lowe, 2004), SURF (Bay et al., 2008), TRI-SIFT and OR-SIFT (Kalantidis et al., 2011) was compared. We

also considered two more elaborated proposals: the use of SIFT while excluding the features of the text areas (Perez et al., 2018), and an

enhanced version of SIFT (Feng et al., 2018) in which reversal invariant features are extracted from edges of segmented blocks which are then

aggregated to perform the similarity search.

The use of pre-trained neural network models was also compared. In particular, we evaluated GoogLeNet (Szegedy et al., 2015), AlexNet

(Krizhevsky et al., 2012), and VGG16 (Simonyan & Zisserman, 2015), extracting the NCs from one of its layers (77S1, FC7, and Pool5, respec-

tively). Specific proposals for this dataset were also considered, such as the work of Tursun et al. (2017), in which six hand-crafted features are

combined with NCs extracted from three different CNN architectures. We also evaluated the proposal of Perez et al. (2018), which compares

three solutions: the results of the VGG19 architecture trained in two ways (one to distinguish visual similarities and the other for conceptual simi-

larities), and the result of merging the features of both. Finally, we included a work based on attention mechanisms (Tursun et al., 2020), which

pays direct attention to critical information, such as figurative elements, and reduces the attention paid to non-informative elements, such as text

and background. This process, denominated as ATRHA (automated text removal hard attention), is combined with two proposals for the elabora-

tion of the features compared, one based on the regional maximum activations of convolutions (R-MAC) and the other based on the saliency of

convolutional activations maps (CAM) that were detected through the use of soft attention mechanisms (CAMSA) and the aggregation of maxi-

mum activations of convolutions (MAC).

As noted in the results shown in Table 6, generally, the methods based on neural networks are significantly better than those based on hand-

crafted features. There are, however, some exceptions: since the pre-trained networks have not been specifically prepared for this type of data,

they do not achieve good results and are even surpassed by a method based on hand-crafted features (‘Enhanced SIFT’; Feng et al., 2018). It is

interesting to see how the combination of hand-crafted features with features extracted from a CNN (proposed in Tursun et al., 2017) achieves a
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notable improvement. Of the methods based solely on neural networks, the proposal that uses attention mechanisms (Tursun et al., 2020)

stands out.

Concerning the results obtained by our proposal, it can be seen that the auto-encoder obtains low results for this task. These are similar

to those attained by the approximations based on hand-crafted features, possibly because it is trained unsupervised and learns overly

generic features. Using the features learned by the networks specialized in colour and shape separately, the results improve, with the best

being the result obtained for the shape. In particular, the shape classifier is better than all the state-of-the-art works except (Tursun

et al., 2020). Finally, the results are further improved when our proposal combines the features in a weighted manner, surpassing the other

state-of-the-art methods. When assigning more weight to shape (70%) than to colour (30%), our method outperforms previous works by a

notable margin.

Figure 11 shows an example of the results obtained for the METU dataset when using our proposal combining the characteristics of

shape (70%) and colour (30%). In this figure, the first logo is the query, and the rest are the ten most similar logos—an asterisk (*) marks

the correct results. For the query in the first row, the GT contains thirteen similar logos. Our method found eight among the first ten

results; the others are in positions 11, 16, 17, 20, and 23. For the query in the second row, the GT had nine similar logos. In this case, the

method returned seven of them among the first ten results, and the other two were in positions 57 and 65 (out of a total of 923,340 pos-

sible logos).

5.4 | Surveys

Since the classification of brands can often be subjective, to assess the effectiveness of our proposal, we also evaluated (using the same metrics)

the results that experts in this task would obtain.

This was achieved by surveying 107 graphic design students and professionals. In this survey, 3 logos with colour labels, 3 with shapes, and

6 with figurative elements were randomly selected for each participant, asking 12 questions per participant. A reduced set of possible answers to

each question was provided, and the participants were asked to mark only the labels they considered to be present in the logo.

TABLE 6 Comparison with the previous state-of-the-art results for METU dataset. NAR is the normalized average rank metric. Smaller NAR
values indicate better results.

Approach Method NAR

Hand-crafted features Colour histograms (Lei et al., 1999) 0.400

SIFT (Lowe, 2004) 0.348

TRI-SIFT (Kalantidis et al., 2011) 0.324

LBP (Ojala et al., 2002) 0.276

SURF (Bay et al., 2008) 0.207

OR-SIFT (Kalantidis et al., 2011) 0.190

SIFT without text (Perez et al., 2018) 0.154

Enhanced SIFT (Feng et al., 2018) 0.083

Neural networks-based GoogLeNet (Szegedy et al., 2015) 0.118

AlexNet (Krizhevsky et al., 2012) 0.112

VGG16 (Simonyan & Zisserman, 2015) 0.086

Visual network (Perez et al., 2018) 0.066

Conceptual network (Perez et al., 2018) 0.063

ATRHA R-MAC (Tursun et al., 2020) 0.063

Fusion of hand-crafted & CNN features (Tursun et al., 2017) 0.062

Fusion of visual and conceptual networks (Perez et al., 2018) 0.047

ATRHA CAMSA MAC (Tursun et al., 2020) 0.040

Our approach Autoencoder 0.118

Colour 0.090

Shape 0.044

Weighted features (70% colour, 30% shape) 0.034

Weighted features (30% colour, 70% shape) 0.018

BERNABEU ET AL. 17 of 25

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13627 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [28/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In the colour questions, the participants were shown the following statement: ‘Indicate whether you can see the following colors in this logo

(the white background is not considered to be a color)’. The following 13 possible colours were then provided, and the respondent had to choose

one or more: Red, Yellow, Green, Blue, Violet, White, Brown, Black, Grey, Silver, Gold, Orange, and Pink.

In the case of shape, the respondents were instructed to select the distinctive shapes when provided with 8 possible options: (1) Circles or

ellipses; (2) segments or sectors of circles or ellipses; (3) triangles, lines forming an angle; (4) quadrilaterals; (5) other polygons or geometrical fig-

ures; (6) different geometrical figures, juxtaposed, or joined; (7) lines, bands; and (8) geometrical solids (3D objects: spheres, cubes, cylinders, pyra-

mids, etc.).

In the case of figurative elements, since there are 123 possible labels, only the correct answers, along with another 4 or 5 incorrect answers,

were given to the respondents rather than all the options.

Table 7 depicts the results obtained from the surveys using the same LRAP metric considered previously. These results are compared with

those obtained using the CNN networks specialized in classifying these same characteristics (previously shown in Table 5). As can be seen, the

proposed methodology improves the precision of the labelling carried out by the professionals and design students surveyed, especially in

the case of the labelling of figurative elements. These results confirm the difficulty of this task owing to subjectivity when interpreting the mean-

ing of the elements that appear in a logo or the characteristics that could be considered representative of the brand.

5.4.1 | Analysis of the survey responses

Figure 12 shows some examples of the questions asked in the survey, including the correct responses (based on the database labelling) and statis-

tical data on the number of correct answers provided by the participants. For example, if there are two possible options, the number of partici-

pants who got both or only one correct is indicated. The cases in which, in addition to having one or two correct answers, they also answered

other incorrect options are also detailed.

Figure 12a,b shows two examples of the colour questions. In the case of the first, no respondent attained the correct answers. Most appreci-

ated blue and red in the image, although the image was not labelled blue but black, and the colour red was not labelled in the dataset. In

Figure 12b, most respondents selected the correct answer (some included other options), and seven confused Yellow with Gold or Brown. As can

be seen in these examples, people can appreciate colour differently, either by the nature of the individual, the tone assigned to the colour, or

defects in the image related to the means of production. Another error source is subjectivity in the labelling process since sometimes only the col-

our considered representative of the brand is labelled.

Concerning semantic labels, in Figure 12c nine of the respondents answered correctly to both questions, selecting an additional label in two

cases. When analysed individually, 95% of the respondents recognized one of the two labels. On the other hand, in Figure 12d, which is labelled

with a single class, only 36% marked the correct answer, with the majority selecting other options such as ‘Furniture’, ‘Electrical Equipment’ or

F IGURE 11 Two examples of the 10-nearest neighbours obtained in the METU dataset by assigning 30% of weight to colour and 70% to
shape. The first logo is the query. The correct results found are marked with an asterisk (*).

TABLE 7 Results obtained in the survey of design students and professionals using the LRAP metric, compared with the result obtained by
our proposal. Higher LRAP values indicate better results.

Criteria Students and professionals of design Our proposal

Colour 0.6735 0.7070

Shape 0.5467 0.6579

Sub-category 0.3673 0.6850

Average 0.5292 0.6833
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‘Heating, Cooking Or Refrigerating Equipment, Washing Machines, Drying Equipment’. As will be noted, recognizing semantic elements in a logo

is not a trivial task. In many cases, figures are oversimplified and may be confused with other representations. In addition, the interpretation often

depends on the individuals who perceive it and their cultural, personal, or professional background.

Figure 12e is labelled with three shape classes. Of these, 12 of the respondents (out of a total of 39) got only one correct. The case of

Figure 12f is similar since the answers are multiple and there are very different combinations. In this case, the image contains ‘Geometrical solids

F IGURE 12 Examples of the questions and answers in the surveys. The correct responses and a summary of the answers provided for each
option are included for each question.

BERNABEU ET AL. 19 of 25
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(3D objects)’, and only 5 of the 28 people who evaluated this logo marked this answer. These examples illustrate the complexity of detecting all

the shapes in an image. It is usually somewhat subjective if a shape is representative of a logo design. Moreover, a predominant shape can some-

times influence the observer to ignore other shapes in the image.

6 | CONCLUSIONS

This paper presents a methodology for the MLC of logos, considering main characteristics such as colour, shape, semantic elements, and text. Fur-

thermore, the proposed method also allows obtaining a ranking of the most similar logos, in which users can select the characteristics to consider

in the search process. To the best of our knowledge, no other methods in the literature address these two objectives. Therefore, a proposal of this

kind is of great interest, both methodologically and practically, as regards assisting in multiple tasks, such as labelling logos, detecting plagiarism,

or similarities between brands.

The proposed architecture combines, in a weighted fashion, the representation learned by a series of MLC networks that specialize in

detecting the most distinctive characteristics of logos. Moreover, the method performs a preprocessing stage to remove uniform backgrounds

and text from input images. The experiments showed that removing the text from the logo helps classify the shape, but not other types of charac-

teristics. This may be because the text often includes representative characteristics of the logo, such as colour or figurative elements, and remov-

ing them worsens the result.

The experimental results show that the proposed approach is reliable for both classification and similarity search. Furthermore, the comparison made

with 17 state-of-the-art TIR methods shows that our proposal is notably better than previous approaches, especially considering colour and shape.

This paper also studies the logo labelling issues in trademark registration databases since only the most distinctive characteristics of the brand

are generally labelled by registration agencies, resulting in incomplete and often inconsistent labelling. Moreover, the semantics of trademarks can

be subjective, which results in difficulties for operators. These problems are produced either by the labelling process itself or are motivated by the

Vienna coding since it is a closed categorization and some characteristics are challenging to define. We also conclude that the provided labels con-

tain noise since the method improves by considering more neighbours in the inference stage. For future work, an estimation of the noise rate

should be performed to deal with this issue (Song et al., 2023), selecting the most suitable method for noise mitigation and making changes in the

architecture, regularization, loss function, or sample selection.

One of the proposed methodology's advantages is aiding in this task, since it suggests an initial classification that follows homogeneous

criteria, which, in addition to facilitating the work, is complete and exhaustive. Furthermore, given that many people label ground-truth data, an

automatic classification method reduces the inconsistency of human subjectivity caused by the different perceptions of the same visual represen-

tation and the difficulty of expressing graphic qualities in words.

We also performed a qualitative evaluation, which was carried out with expert designers to assess labelling consistency. These experiments

showed that the proposed methodology provides better labelling than a human operator would assign, even in the case of experts in this task.

The labelling suggested by the system could be used as an initial proposal to be reviewed by the operator. In addition, students and design profes-

sionals could use the system as aid since they could check the labelling proposal for a new design, search for references, ideas, and styles, or

detect similar marks and possible plagiarism.
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2 https://euipo.europa.eu/ohimportal/en/nice-classification.
3 This term refers to the task of finding the position of a logo from a generic image that may contain many other elements.
4 https://euipo.europa.eu/ohimportal/en/open-data.
5 https://github.com/neouyghur/METU-TRADEMARK-DATASET.
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APPENDIX: VIENNA CLASSIFICATION

Next, we include the list of labels used in Vienna classification (World Intellectual Property Organization, 2002). In the scope of this work, figura-

tive elements are those with codes from 1 to 25. Codes from 26 onwards are related to shape, text and colour, and were not used for figurative

classification.

1 Celestial bodies, natural phenomena, geographical maps.

2 Human beings.

3 Animals.

4 Supernatural, fabulous, fantastic or unidentifiable beings.

5 Plants.

6 Landscapes.

7 Constructions, structures for advertisements, gates, or barriers.

8 Foodstuffs.

9 Textiles, clothing, sewing accessories, headwear, footwear.

10 Tobacco, smokers' requisites, matches, travel goods, fans, toilet articles.

11 Household utensils.

12 Furniture, sanitary installations.

13 Lighting, wireless valves, heating, cooking or refrigerating equipment, washing machines, drying equipment.

14 Ironmongery, tools, ladders.

15 Machinery, motors, engines

16 Telecommunications, sound recording or reproduction, computers, photography, cinematography, optics.

17 Horological instruments, jewellery, weights and measures.

18 Transport, equipment for animals.

19 Containers and packing, representations of miscellaneous products.

20 Writing, drawing or painting materials, office requisites, stationery, and booksellers' goods.

21 Games, toys, sporting articles, roundabouts.

22 Musical instruments and their accessories, music accessories, bells, pictures, sculptures.

23 Arms, ammunition, armour.

24 Heraldry, coins, emblems, symbols.

25 Ornamental motifs, surfaces or backgrounds with ornaments.

26 Geometrical figures and solids.

27 Forms of writing, numerals.

28 Inscriptions in various characters.

29 Colours.
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Vienna codes used in this work for colours (code 29 of the main Vienna classification).

Vienna codes used in this work for shapes (code 26 of the main Vienna classification).

29.01.01 Red.

29.01.02 Yellow.

29.01.03 Green.

29.01.04 Blue.

29.01.05 Violet.

29.01.06 White.

29.01.07 Brown.

29.01.08 Black.

29.01.95 Silver.

29.01.96 Gray.

29.01.97 Gold.

29.01.98 Orange.

29.01.99 Pink.

26.1 Circles, ellipses.

26.2 Segments or sectors of circles or ellipses.

26.3 Triangles, lines forming an angle.

26.4 Quadrilaterals.

26.5 Other polygons. This category also groups 26.13 (Other geometrical figures, indefinable designs) and 26.7 (Different geometrical

figures, juxtaposed, joined, or intersecting).

26.11 Lines, bands.

26.15 Geometrical solids.
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