38 research outputs found

    Estimating the Onset and Extent of Dieback Of Phragmites australis Using the Normalized Difference Vegetation Index and Remotely Sensed Land Cover Classifications

    Get PDF
    Phragmites australis is cosmopolitan plant species with an invasive variety present throughout most of North America. In the Balize Delta, Louisiana, USA, P. australis plays an important role in combatting subsidence, maintaining navigation channels, and protecting interior fish and wildlife habitat from waves and storm surge. In 2016 a dieback of P. australis was reported by wetland managers, coinciding with the appearance of an invasive Asian scale insect (Nipponaclerda biwakoensis), though the specific cause is still unknown. Two previous efforts attempted to identify the onset of dieback conditions met with limited success. Using Landsat images from 1985 to 2019 we classified P. australis. That classification was ground-truthed with information from five helicopter surveys made between 1988 and 2013. P. australis was stable from 2010 until 2014 but then decreased in area in 2015 and decreased in NDVI from 2014 to 2016. Area of total marsh vegetation and P. australis varied in similar patterns from the 1980s until the 2000s; since then, they vary in different ways. I concluded that detectable dieback conditions in the area began as early as 2014 and started recovery post 2016. Spatial patterns of decline is consistent with multiple stressors inducing dieback conditions such as eutrophication, salinity, or water level

    Salt marsh monitoring along the mid-Atlantic coast by Google Earth Engine enabled time series

    Get PDF
    Salt marshes provide a bulwark against sea-level rise (SLR), an interface between aquatic and terrestrial habitats, important nursery grounds for many species, a buffer against extreme storm impacts, and vast blue carbon repositories. However, salt marshes are at risk of loss from a variety of stressors such as SLR, nutrient enrichment, sediment deficits, herbivory, and anthropogenic disturbances. Determining the dynamics of salt marsh change with remote sensing requires high temporal resolution due to the spectral variability caused by disturbance, tides, and seasonality. Time series analysis of salt marshes can broaden our understanding of these changing environments. This study analyzed aboveground green biomass (AGB) in seven mid-Atlantic Hydrological Unit Code 8 (HUC-8) watersheds. The study revealed that the Eastern Lower Delmarva watershed had the highest average loss and the largest net reduction in salt marsh AGB from 1999–2018. The study developed a method that used Google Earth Engine (GEE) enabled time series of the Landsat archive for regional analysis of salt marsh change and identified at-risk watersheds and salt marshes providing insight into the resilience and management of these ecosystems. The time series were filtered by cloud cover and the Tidal Marsh Inundation Index (TMII). The combination of GEE enabled Landsat time series, and TMII filtering demonstrated a promising method for historic assessment and continued monitoring of salt marsh dynamics

    Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yang, X., Zhu, Z., Qiu, S., Kroeger, K. D., Zhu, Z., & Covington, S. Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series. Remote Sensing of Environment, 276, (2022): 113047, https://doi.org/10.1016/j.rse.2022.113047.Coastal tidal wetlands are highly altered ecosystems exposed to substantial risk due to widespread and frequent land-use change coupled with sea-level rise, leading to disrupted hydrologic and ecologic functions and ultimately, significant reduction in climate resiliency. Knowing where and when the changes have occurred, and the nature of those changes, is important for coastal communities and natural resource management. Large-scale mapping of coastal tidal wetland changes is extremely difficult due to their inherent dynamic nature. To bridge this gap, we developed an automated algorithm for DEtection and Characterization of cOastal tiDal wEtlands change (DECODE) using dense Landsat time series. DECODE consists of three elements, including spectral break detection, land cover classification and change characterization. DECODE assembles all available Landsat observations and introduces a water level regressor for each pixel to flag the spectral breaks and estimate harmonic time-series models for the divided temporal segments. Each temporal segment is classified (e.g., vegetated wetlands, open water, and others – including unvegetated areas and uplands) based on the phenological characteristics and the synthetic surface reflectance values calculated from the harmonic model coefficients, as well as a generic rule-based classification system. This harmonic model-based approach has the advantage of not needing the acquisition of satellite images at optimal conditions (i.e., low tide status) to avoid underestimating coastal vegetation caused by the tidal fluctuation. At the same time, DECODE can also characterize different kinds of changes including land cover change and condition change (i.e., land cover modification without conversion). We used DECODE to track status of coastal tidal wetlands in the northeastern United States from 1986 to 2020. The overall accuracy of land cover classification and change detection is approximately 95.8% and 99.8%, respectively. The vegetated wetlands and open water were mapped with user's accuracy of 94.6% and 99.0%, and producer's accuracy of 98.1% and 93.5%, respectively. The cover change and condition change were mapped with user's accuracy of 68.0% and 80.0%, and producer's accuracy of 80.5% and 97.1%, respectively. Approximately 3283 km2 of the coastal landscape within our study area in the northeastern United States changed at least once (12% of the study area), and condition changes were the dominant change type (84.3%). Vegetated coastal tidal wetland decreased consistently (~2.6 km2 per year) in the past 35 years, largely due to conversion to open water in the context of sea-level rise.This study was supported by USGS North Atlantic Coast Cooperative Ecosystem Studies Unit (CESU) Program for Detection and Characterization of Coastal Tidal Wetland Change (G19AC00354)

    Evaluation of Tidal Fresh Forest Distributions and Tropical Storm Impacts Using Sentinel-2 MSI Imagery

    Get PDF
    Situated in the transitional zone between non-tidal forests upstream and tidal fresh marshes downstream, tidal fresh forests occupy a unique and increasingly precarious habitat. The threat of intensifying anthropogenic climate change, compounded by the effects of historical logging and drainage alterations, could reduce the extent of this valuable ecosystem. The overall goals of this project were to identify forest communities present in the Altamaha tidal fresh forest; develop satellite imagery-based classifications of tidal fresh forest and tidal marsh vegetation along the Altamaha River, Georgia; and to quantify changes in vegetation distribution in the aftermath of hurricanes Matthew and Irma. Based on vegetation data gathered during our field survey, we identified at least eight distinct forest communities with hierarchical clustering methods. Using Sentinel-2 Multispectral Imager (MSI) satellite imagery and a balanced random forest classifier, we mapped land cover for six anniversary images from 2016 to 2021 to examine changes in vegetation distributions. Overall classification accuracies ranged from 80 to 86%, and we were able to accurately discriminate between several classes at the species level. Over our six year study period we did not observe any substantial changes in land cover, including the forest-marsh transition, suggesting resilience to tropical weather impacts. We postulate that this stasis may be due to the large volume of freshwater delivered by the Altamaha River and the extensive tidal marshes of the Altamaha estuary, which protect freshwater wetlands from the short-term effects of saltwater intrusion by reducing salinity and buffering them from acute pulse events such as hurricane storm surges

    A review of carbon monitoring in wet carbon systems using remote sensing

    Get PDF
    Carbon monitoring is critical for the reporting and verification of carbon stocks and change. Remote sensing is a tool increasingly used to estimate the spatial heterogeneity, extent and change of carbon stocks within and across various systems. We designate the use of the term wet carbon system to the interconnected wetlands, ocean, river and streams, lakes and ponds, and permafrost, which are carbon-dense and vital conduits for carbon throughout the terrestrial and aquatic sections of the carbon cycle. We reviewed wet carbon monitoring studies that utilize earth observation to improve our knowledge of data gaps, methods, and future research recommendations. To achieve this, we conducted a systematic review collecting 1622 references and screening them with a combination of text matching and a panel of three experts. The search found 496 references, with an additional 78 references added by experts. Our study found considerable variability of the utilization of remote sensing and global wet carbon monitoring progress across the nine systems analyzed. The review highlighted that remote sensing is routinely used to globally map carbon in mangroves and oceans, whereas seagrass, terrestrial wetlands, tidal marshes, rivers, and permafrost would benefit from more accurate and comprehensive global maps of extent. We identified three critical gaps and twelve recommendations to continue progressing wet carbon systems and increase cross system scientific inquiry

    An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards

    Get PDF
    To bring to fruition the capability of nature-based solutions (NBS) in mitigating hydro-meteorological risks (HMRs) and facilitate their widespread uptake require a consolidated knowledge-base related to their monitoring methods, efficiency, functioning and the ecosystem services they provide. We attempt to fill this knowledge gap by reviewing and compiling the existing scientific literature on methods, including ground-based measurements (e.g. gauging stations, wireless sensor network) and remote sensing observations (e.g. from topographic LiDAR, multispectral and radar sensors) that have been used and/or can be relevant to monitor the performance of NBS against five HMRs: floods, droughts, heatwaves, landslides, and storm surges and coastal erosion. These can allow the mapping of the risks and impacts of the specific hydro-meteorological events. We found that the selection and application of monitoring methods mostly rely on the particular NBS being monitored, resource availability (e.g. time, budget, space) and type of HMRs. No standalone method currently exists that can allow monitoring the performance of NBS in its broadest view. However, equipments, tools and technologies developed for other purposes, such as for ground-based measurements and atmospheric observations, can be applied to accurately monitor the performance of NBS to mitigate HMRs. We also focused on the capabilities of passive and active remote sensing, pointing out their associated opportunities and difficulties for NBS monitoring application. We conclude that the advancement in airborne and satellite-based remote sensing technology has signified a leap in the systematic monitoring of NBS performance, as well as provided a robust way for the spatial and temporal comparison of NBS intervention versus its absence. This improved performance measurement can support the evaluation of existing uncertainty and scepticism in selecting NBS over the artificially built concrete structures or grey approaches by addressing the questions of performance precariousness. Remote sensing technical developments, however, take time to shift toward a state of operational readiness for monitoring the progress of NBS in place (e.g. green NBS growth rate, their changes and effectiveness through time). More research is required to develop a holistic approach, which could routinely and continually monitor the performance of NBS over a large scale of intervention. This performance evaluation could increase the ecological and socio-economic benefits of NBS, and also create high levels of their acceptance and confidence by overcoming potential scepticism of NBS implementations

    Kliimamuutuse mõju hindamine rannaniidu taimekooslusele mesokosmi katse ja mehitamata õhusõidukiga kogutud andmete põhjal

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Environmental Protection.Väitekiri filosoofiadoktori kraadi taotlemiseks keskkonnakaitse erialal.Semi-natural grasslands are an essential part of the cultural landscape of Europe. Semi-natural grasslands are commonly characterised by a very high biodiversity, including rare species. Beyond the high biodiversity value, semi-natural grasslands worldwide provide many ecosystem services, including: carbon sequestration and storage, nutrient cycling, regulation of soil quality, habitats for migrating birds, erosion control, and flood regulation. Within the realm of semi-natural grasslands, coastal meadows are particularly important. However, coastal grasslands are threatened by a range of factors such as coastal squeeze, transformation into monoculture ponds, pollution, and climate change. Coastal areas are threatened at a range of spatial scales as a result of sea-level rise, and can include higher flooding frequency in coastal areas, salt water intrusion in aquifers, and potential declines in the extent of coastal wetlands. A warmer climate also implies a modification in precipitation patterns affecting runoff into the sea. In coastal areas, both water levels and salinity have a strong impact on species distribution and therefore on the structure and composition of aquatic and coastal floral and faunal communities. Consequently, plant communities in coastal meadows are expected to undergo changes in their composition and structure. The current thesis explores different methodologies to assess plant community distribution, above-ground biomass, and the effects of management type, duration, and intensity on sward structure using UAV-derived multispectral data and aerial photogrammetry. In addition, the keystone of this thesis is a mesocosm experiment that was used to assess shifts in species richness and abundance in plant community types in Estonian coastal meadows related to future change scenarios of water level and salinity for the Baltic Sea. a. Unmanned Aerial Vehicle (UAV) The use of UAV demonstrated to be able to identify plant community extent and distribution in high biodiversity value coastal meadows in West Estonia. Species diversity and biomass significantly influence the quality of data and this should be accounted for when planning the sample collection to achieve better results. This study has shown that UAVs are useful tools of mapping grasslands at a plant community level. Also, UAV showed to be possible to reveal the structure of the grassland and how it is affected by the management history. For example, the grassland turns more homogeneous under long-term monospecific grazing, b. Mesoscosm Experiment The mesocosm experiment in the present study revealed different temporal changes of wetland communities to altered salinity and water conditions, highlighting the response of plant species to environmental variables. These changes were not significant according to alteration of water level and salinity in the Open Pioneer community, but they were over time. On the other hand, Lower Shore and Upper Shore had significant changes according to time and treatments. These could be explained by dynamic differences in the communities, since Open Pioneer was more variable. c. Conclusions Both methodologies, remote sensing and the mesocosm experiment, are evidently important to evaluate the structure and function of Estonian coastal meadows. The mapping of the extent and structure of coastal plant communities allows an evaluation of the current state of the ecosystem. The mesocosm experiment helps to understand changes in plant community composition under altered conditions of water level and salinity in Estonian coastal meadows and consequently, understand how species richness, abundance, and biomass will respond to those changes. This information is important when considering the protection and potential management of these areas taking into account the species diversity of fauna and flora as well as that of livestock.Uuring viidi läbi kahel tasandil: uuringukohtades Lääne-Eestis ja katsekeskkonnas. Esimesel juhul valiti Silma looduskaitsealal, Matsalu rahvuspargis ja Vormsi saarel ranniku taimekoosluste ja maapealse biomassi kaardistamiseks kokku üheksa rannaniiduala (I, II). Teine osa hõlmab mesokosmi katset (III), mille käigus kasutati katse seadmiseks ja eksperimenteerimiseks Silma looduskaitsealalt kogutud proove. Vaatamata oma suhteliselt väikesele pindalale (45 228 km2) iseloomustab Eestit mitmekesine geoloogia, pinnamood ja kliima. Läänemere rannaniidud on tekkinud ja need säilivad maa isostaatilise tõusu, setete kogunemise ja alade vähese intensiivsusega majandamise – karjatamise või niitmise – tõttu. Eesti rannikumärgaladel on ebatavaline hüdroloogiline režiim. Kuna loodete ulatus on väga väike (~0,02 m), põhjustab rannaniitude üleujutusi valdavalt tsüklonaalne aktiivsus Põhja-Atlandil ja Fennoskandias. Üleujutuste sagedus ja ulatus on ebaregulaarne ning varieerub kogu rannikumaastikul, sõltudes tuule kiirusest ja suunast. Hiljutised hinnangud suhtelise meretaseme tõusu kohta kolmelt mõõnamõõturilt piki Eesti rannikut on järgmised: Tallinnas 1,5–1,7 mm a-1, Narva-Jõesuus 1,7–2,1 mm a-1 ja Pärnus 2,3–2,7 mm a-1 (Ward et al., 2014). Taimekoosluse klassifitseerimiseks ja biomassi prognoosimiseks analüüsiti üheksat rannikumärgala kolmes kohas Silma looduskaitsealal, kahes kohas Matsalu rahvuspargis ja neljas kohas Vormsi saarel. Neis kohtades esinevad kõik väitekirjas käsitletud taimekooslused. Uurimiskohtade taimekooslused liigitati vastavalt Burnside´i jt fütosotsioloogilisele klassifikatsioonile (2007): pilliroostik, võsasoo, madal rannik, kõrgrannik, pioneerliikidega paljakud, kõrgrohustu, võsa ja metsamaa. Võsasoo ning võsa ja metsamaa jäeti nende marginaalse esinemise tõttu uurimusest välja. Uurimistöö käigus tehti kaks erinevat analüüsi, kasutades UAV-ga kogutud multispektraal- ja rgb-fotosid. UAV multispektraalseid pilte kasutati taimekoosluste kaardistamiseks Silma looduskaitsealal Põhja-Tahu, Lõuna-Tahu ja Kudani rannaniidul (I). Järgnevalt kasutati multispektraalseid ja rgb-pilte kõrge ruumilise eraldusvõimega kaartide koostamiseks maapealse biomassi tuvastamiseks kõigis üheksas uuringukohas (II). Taimekoosluste kaardistamiseks (I) ja maapealse biomassi prognoosimiseks (II) kasutati otsustusmetsa klassifikatsiooni. Seejärel analüüsiti maapealse biomassi kaartide abil majandamisviisi ja intensiivsuse mõju rannaniitude heinamaade struktuurile (II). Teavet rannaniitude kasutusviisi kohta saadi maaomanikega isiklikult suheldes. Uurimistöö teises osas valiti mesokosmi katse jaoks kolm taimekooslust: pioneerliikidega paljakud, madal rannik ja kõrgrannik. Need kooslused valiti sealsete võtmeliikide spetsiifilise autökoloogilise kasvukohaeelistuse tõttu (nt soolsus ja mulla veesisaldus). Katsest välja jäetud pilliroostikus ja võsasoos domineerivad üleujutust taluvad liigid; kõrgrohustu kujutab endast maismaa ja märgalade ökosüsteemi vahelist kooslust, ning võsa on täielikult maismaa. Silma looduskaitsealal varuti Põhja-Tahu alalt 2018. aasta juunis kolmest valitud taimekooslusest 15 mätast (suurus 50 x 70 cm, paksus 30 cm). Mesokosmi katse varustus koosnes mahutitest (90L, mõõtmed 56 x 79 x 32 cm), mis olid täidetud 2:1:1 mullaseguga, mis koosneb pestud sõmera struktuuriga liivast, savist ja kompostist, mis on väga sarnane märgala põhjasubstraadiga. Mahutid numereeriti ja varustati vastava tähisega. Mahutid asusid kogu katse jooksul samal kohal. Katse käiku hinnati alalise gradueeritud 50 cm2 kvadraadi abil, mis jaotati 25 kvadraadiks (10 x 10 cm), ja määrati kindlaks muutused esinevate taimeliikide arvukuses pinnakatte pindala järgi (katteprotsent). Katse kestis kolme aastat veetaseme ja soolsuse tingimustes, mis tuletati kliimamuutuste prognoosidest 2100. aastaks. Liikide arvukus ja liigirikkus arvutati 2018., 2019. ja 2020. aastaks iga taimekoosluse kohta eraldi. Liigirikkuse erinevusi aastati ja kasvutingimuste suhtes hinnati Kruskal Wallise testiga, mis põhineb Bonferroni kohandustega Dunni testil, et tuvastada liigirikkuse erinevusi igal aastal. Liigilise arvukuse esitamiseks kasutati arvukuse kõveraid. Taimekoosluse koostise erinevuste uurimiseks kasutati permutatsioonilist mitmemõõtmelist analüüsi Bray-Curtise erinevusega. Aasta ristmõju analüüsis käsitleti töötlemisviisi fikseeritud mõju ja valimeid juhusliku mõjuna. Tulemused ja järeldused Rannaniitudel hinnati taimekoosluste levikut, maismaa biomassi ja taimestiku vertikaalset struktuuri. Fleissi kapa kordaja 0,89 põhjal kaardistati põhjalikult taimekooslused (I). Otsustusmetsa klassijärgsed vead näitavad, et homogeensema struktuuriga piirkondi on kergem klassifitseerida kui keerulise struktuuriga koosluseid. Otsustusmetsa algoritmi jõudlusanalüüs näitas, et biomassi hindamisel saadi parim tulemus, kui multispektraalne info kombineeriti fotogramm-meetriliselt loodud digitaalse maastikumudeliga (DTM, ingl digital terrain model) (II). Tulemused viitavad sellele, et mitme anduri kombinatsiooni saab kasutada ökosüsteemi omaduste mõõtmiseks, mida ainult spektraalinformatsiooni analüüsides ei pruugi tuvastada. Siinse uuringu maapealse biomassi prognooside suur täpsus näitab, et rannaniitude jälgimisel on kaugseire UAV-ga sobiv meetod. Struktuurianalüüsi tulemused näitasid, mil määral mõjutab biomassi jaotust karjatamise kestus ja heterogeensus. Pidevalt majandatavatele rohumaadele on iseloomulikud suuremad ja homogeensemad alad (II). Üldine lineaarne mudelianalüüs ja Mann-Whitney u-testid näitasid, kuidas taimtoidulised liigid mõjutavad rohumaa struktuuri. Rohumaad, millel karjatatakse erinevaid taimtoidulisi, on mitmekesisema struktuuriga kui veiste karjamaa (II). Mesokosmi katse tulemused näitasid, et kõigis kolmes Läänemere ranniku märgalade koosluses ilmnesid aja jooksul vee- ja soolsusrežiimis märkimisväärsed muutused, mis tõi esile taimeliikide reaktsiooni keskkonnamuutuste suhtes (III). Pioneerliikidega paljakutel suurenes liigirikkus ja taimkate kõigi keskkonnamuutuste korral, sellega võrreldes esines madalal rannikul ja kõrgrannikul nii veetaseme kui ka soolsusega seotud muutusi vähemal määral. Pioneerliikidega paljakuid mõjutab enamasti soolsus, seda isegi peamiselt sõmerast, keskmise fraktsiooniga ja peenest liivast koosnevas pinnases, mis säilitab vähem toitaineid kui peenema fraktsiooniga muld. Spergularia marina ja Glaux maritima aitasid kaasa liigirikkuse suurenemisele mulla suurenenud ja vähenenud soolsuse tingimustes. Üldiselt ei ilmnenud madala ranniku ja kõrgranniku taimekooslustes soolsuse muutumise korral olulisi muutusi võrreldes kontrollkatsega. Nendes kooslustes on liike, mis kasvavad nii soolases kui ka mittesoolases keskkonnas. Veetaseme muutus mõjutas pioneerliikidega paljakute taimekooslust sarnaselt soolsuse muutmisega. Selle koosluse liigirikkus suurenes kõrgema veetaseme korral, võrreldes kontrollkatsega. Kõrgema veetasemega kohanenud liike nagu Eleocharis palustris esines kõrgenenud veetaseme korral kolmandal aastal rohkem; alanenud vees leidus katse lõpus rohkem väiksema veevajadusega liike, nagu Glaux maritima ja Centaurium littorale. Madalal rannikul registreeriti madalama veetaseme korral liigirikkuse muutus, võrreldes kontrollkatsega. Aja jooksul toimuv liikide varieeruvus ilmnes vähese pinnakatvusega liikide puhul, nt ahenesid Carex flacca ja Triglochin palustris´e kasvukohad. Madal rannik asub veetasemelt pioneerliikidega paljaku ja kõrgranniku vahel ning see võib seletada, miks sealsed liigid taluvad mulla mitmesuguseid niiskustingimusi. Kõrgranniku koosluses vähenes kõrgenenud veetaseme korral liikide arv ja sellest tulenevalt ka liigirikkus; sealjuures laienesid vähese pinnakatvuse ja madala veetasemega kohastunud liikide Stellaria graminea ja Viola canina kasvukohad. See uurimus näitas, et ökoloogilistes uuringutes võib erinevate metoodikate kombinatsioon osutuda tõhusaks. Vaid vähestes uuringutes kombineeritakse ökosüsteemiprotsesside mõistmiseks erinevaid lähenemisviise, nt kaugseiret ja katseplatvorme, antud töös mesokosmi katset. Uued tehnoloogilised edusammud kaugseire vallas võivad lahendada küsimusi, millele vastuse leidmine traditsiooniliste ökoloogiliste meetodite abil oleks keeruline või ebapraktiline. Samas on traditsioonilise lähenemisviisiga, nt mesokosmi katsega saadud teadmised uue tehnoloogilise potentsiaali rakendamiseks väga vajalikud. Uurimus näitas, et UAV on sobiv vahend rannikurohumaade struktuuri ja taimekoosluste leviku täpse eraldusvõimega kaartide koostamiseks. Teisest küljest aitab mesokosmi katse mõista taimekoosluse koostise muutusi eri veetaseme ja soolsuse tingimustes.Publication of this thesis is supported by the Estonian University of Life Sciences and by the Doctoral School of Earth Sciences and Ecology created under the auspices of the European Social Fund

    Remote Sensing in Mangroves

    Get PDF
    The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the worl
    corecore