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ABSTRACT 

Situated in the transitional zone between non-tidal forests upstream and tidal fresh marshes 

downstream, tidal fresh forests occupy a unique and increasingly precarious habitat. The threat 

of intensifying anthropogenic climate change, compounded by the effects of historical logging 

and drainage alterations, could reduce the extent of this valuable ecosystem. The overall goals of 

this project were to identify forest communities present in the Altamaha tidal fresh forest; 

develop satellite imagery-based classifications of tidal fresh forest and tidal marsh vegetation 

along the Altamaha River, Georgia; and to quantify changes in vegetation distribution in the 

aftermath of hurricanes Matthew and Irma. Based on vegetation data gathered during our field 

survey, we identified at least eight distinct forest communities with hierarchical clustering 

methods. Using Sentinel-2 Multispectral Imager (MSI) satellite imagery and a balanced random 

forest classifier, we mapped land cover for six anniversary images from 2016 to 2021 to examine 

changes in vegetation distributions. Overall classification accuracies ranged from 80 to 86%, and 

we were able to accurately discriminate between several classes at the species level. Over our six 

year study period we did not observe any substantial changes in land cover, including the forest-

marsh transition, suggesting resilience to tropical weather impacts. We postulate that this stasis 

may be due to the large volume of freshwater delivered by the Altamaha River and the extensive 

tidal marshes of the Altamaha estuary, which protect freshwater wetlands from the short-term 

effects of saltwater intrusion by reducing salinity and buffering them from acute pulse events 

such as hurricane storm surges. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Tidal Fresh Forests 

Tidal fresh forests are freshwater riparian ecosystems located between the upstream 

extent of tidal flooding and tidal fresh marshes downstream, where the effects of salinity are 

moderated by freshwater river discharge (Doyle et al. 2007). They are flooded at high tide by 

freshwater delivered by tidal forcing, the temporary displacement of fresh river water by the tidal 

pulse (Doyle et al. 2007). The effects of salinity are moderated by freshwater river discharge, and 

under normal conditions salinity remains below 0.5 parts per thousand (ppt) (seawater is ~35 

ppt) (Doyle et al. 2007). Due to their low elevation, tidal influence, and limited tolerance for 

salinity, these species-rich ecosystems are threatened by climate change (Grieger et al. 2020). If 

tidal fresh forests cannot maintain their elevation relative to sea level, rising sea levels can cause 

them to transgress inland or permanently replace tidal fresh forests with herbaceous brackish or 

salt marsh vegetation if accommodation space is not available (Carr et al. 2020).Moreover, even 

intermittent pulses of salinity can have adverse long-term effects on forest health (Anderson et 

al. 2013). Mortality from windthrow (treefall due to wind) and saltwater intrusion will likely 

increase with more frequent and intense tropical storms linked to anthropogenic global warming 

(Sharma et al. 2021).  

The importance of tidal fresh forest ecosystems is widely recognized (Barendregt and 

Swarth 2013; Duberstein and Kitchens 2007; Grieger et al. 2020; Smart et al. 2020), but 

numerous researchers have characterized tidal fresh forests as understudied compared to salt 

marshes or non-tidal riparian ecosystems (Anderson et al. 2013; Craft 2012; Doyle et al. 2007; 
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Duberstein et al. 2014; Grieger et al. 2020; Huylenbroeck et al. 2020). Doyle et al. (2007) 

suggest that tidal fresh forests are understudied because they were altered or destroyed by human 

activities such as logging and drainage prior to scientific study, and because large areas remain 

under active management. The remaining tidal fresh forests are valuable ecosystems. Tidal fresh 

forests are more productive than upland forests, and sequester more than three times the amount 

of carbon per hectare: 22 to 75 g C m-2 yr-1 for tidal fresh forests (Craft 2012) compared to 0.7 to 

13.1 g C m-2 yr-1 for temperate upland forest (Mcleod et al. 2011). In addition, tidal fresh forests 

are highly biodiverse, providing habitat to many protected species (Stevenson and Chandler 

2017). Tidal fresh forests provide many valuable ecosystem services, from nutrient removal 

through water filtration to flood protection to buffering coastal areas against the impact of 

tropical storms. While most research on coastal ecosystems and climate change has focused on 

saline tidal marsh ecosystems (Grieger et al. 2020), tidal fresh forest vegetation patterns are 

equally dependent on species salinity tolerances (Krauss et al. 2007). Prior studies have explored 

the physiological and ecological responses of tidal fresh forests to saltwater intrusion and sea 

level rise at localized study areas (Anderson et al. 2013; Duberstein et al. 2020; Pivovaroff et al. 

2015; Sharitz and Lee 1985). To date, however, relatively few have taken advantage of the 

potential of synoptic remote sensing to map tidal fresh forest extent and vegetation species 

distributions (McCarthy et al. 2021; Riegel et al. 2013; Shaffer et al. 2009; Smart et al. 2020; 

Ury et al. 2021; White Jr and Kaplan 2021). 

The Georgia coast is home to approximately 38,445 hectares of tidal fresh forest (U.S. 

Fish and Wildlife Service 2014). On tidal fresh forests of the lower Altamaha River, Georgia, 

where this study is focused, the effects of climate change are compounded by an extensive 

network of dikes and drainage ditches constructed for logging and rice cultivation, which enable 
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salt water to penetrate further inland (Poulter et al. 2008). Several previous studies have explored 

the community composition of Georgia’s tidal fresh forest (Duberstein et al. 2014) and their 

response to climate change (Craft 2012) at select sampling locations but have yet to undertake 

large-scale vegetation mapping and monitoring of the effects of sea level rise and tropical 

storms. Remote sensing-based studies, such as this project, can have significant advantages over 

conventional field studies for scaling and assessing the impacts of extreme events by allowing 

rapid, comprehensive coverage of large areas. (Ury et al. 2021).  

1.1.1 Tidal Fresh Forest Ecology  

Tidal fresh forests can be found at the terminus of many rivers but are most abundant 

where large rivers flow across relatively flat coastal plains and meet coasts with high tidal ranges 

(Doyle et al. 2007). These conditions can be found throughout the Southeastern United States, 

where there are more than 200,000 hectares of tidal fresh forest (Doyle et al. 2007). Inundation 

and salinity are the two main drivers of community composition within tidal fresh forests (Doyle 

et al. 2007). The mixture of fresh and brackish water creates an ecosystem characterized by a 

mix of plant species typical of both freshwater and estuarine wetlands (Craft 2012). Within this 

transition zone, the distribution of tidal fresh forest species is highly dependent on fresh water 

delivered by the river to buffer against tidal action. In drainages with lower volumes of river 

discharge, estuarine wetlands are more abundant (Mitsch and Gosselink 1993). Tidal fresh 

forests exist on a continuum from relict forests at the margins of tidal marsh to healthy forests 

upstream flooded by fresh water delivered by tidal forcing (Doyle et al. 2007). Coastal 

ecosystem distributions are dependent on elevation and river distance, as these determine the 

frequency and depth of inundation (Flitcroft et al. 2018). The effects of global warming on tidal 

fresh forest (e.g., sea level rise, saltwater intrusion, storm frequency and strength) are expected to 



13 

 

 

be the most severe at the downstream margin at the forest-marsh interface where elevations are 

lowest and tidal influence strongest (Carr et al. 2020). 

Tidal fresh forest tree species are poorly adapted to salinity. Chronic exposure to 3-4 

practical salinity units (psu) is enough to cause mortality in mature trees, and seedlings are even 

more sensitive (Duberstein et al. 2020; Shaffer et al. 2009). Salinity-induced osmotic stress 

reduces leaf area (Duberstein et al. 2020) and inhibits germination (Tully et al. 2019). Anderson 

et al. (2013) found that tidal forests had a higher density of small trees and increased mortality 

due to saltwater intrusion compared to non-tidal forests. Reduced leaf area and competition from 

tree seedlings create opportunities for salt-tolerant understory vegetation to become established, 

initiating the process of forest-marsh transition (Smart et al. 2020). Climate change will also 

cause changes in precipitation patterns (Arias et al. 2021), affecting the overland delivery of 

freshwater (Grieger et al. 2020). Given that many tidal fresh forest tree species depend on 

consistent seasonal flooding for seed dispersal and dry periods for germination, altered 

precipitation patterns could have a significant impact on sapling recruitment and regeneration 

(Sharitz and Lee 1985).  

1.1.2 Threats to Tidal Fresh Forests 

Tidal fresh forests are hydrologically complex, affected by the dynamics of river 

flooding, tidal pulses, precipitation, and groundwater. Because of their low tolerance for salinity, 

low elevation, and proximity to the ocean, exposure to salt water is the main threat to tidal fresh 

forest health (Anderson et al. 2013). Under ideal conditions, porewater salinity in tidal fresh 

forests remains below 5 psu, but most tidal forests are regularly exposed to pulses of higher 

salinity (Anderson and Lockaby 2007). Several interacting drivers contribute to the salinization 
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of tidal fresh forests, including sea level rise, wind-driven overwash, drought, and hydrologic 

connectivity (Anderson and Lockaby 2007; Duberstein et al. 2020; Tully et al. 2019).  

Globally, eustatic sea levels are rising due to melting ice sheets and thermal expansion of 

ocean waters, but local rates of sea level rise vary due to differences in vertical land motion, 

ocean circulation, and gravitational deformation (Arias et al. 2021; Sweet et al. 2022). The 3.25 

mm yr-1 historical local rate of sea level rise in Georgia is slower than the current global rate of 

3.7 mm yr-1 (Arias et al. 2021; Langston et al. 2021). While this rate is slower than the local rate 

of sea level rise at other tidal freshwater forests in the Southeastern U.S. (Doyle et al. 2010; 

Doyle et al. 2007), the outlook for tidal fresh forests in Georgia is not optimistic. One model of 

sea level rise on the Altamaha River projected that 24% of Georgia’s tidal fresh forest could be 

converted to tidal freshwater and brackish marsh by 2100 (Craft et al. 2009). Even modest 

increases in sea level can have substantial effects on coastal wetlands by intensifying the effects 

of storm surges, tides, and erosion (Sweet et al. 2022).  

The Georgia coast is regularly impacted by tropical weather systems (Bossak et al. 2014), 

and their strong winds, high precipitation, and storm surges can cause substantial ecological 

disruption (Svejkovsky et al. 2020). While increased precipitation can be beneficial, particularly 

in times of drought (Sharma et al. 2021), windthrow and saltwater overwash due to storm surges 

can be substantial sources of mortality in the short to medium term (Middleton and Souter 2016). 

Healthy bald cypress (Taxodium distichum [L] Rich.) -water tupelo (Nyssa aquatica L.) swamps 

are highly resistant to mortality from windthrow and flooding (Shaffer et al. 2009). However, 

mortality is much higher at salt-stressed sites (greater than 5.0 psu) where weakened root 

systems and a more open canopy increase the risk of windthrow (Doyle et al. 2007; Shaffer et al. 

2009). Since 1851 when records began, 197 hurricanes have passed within 200 km of our study 
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site, 14 of which made landfall in Georgia (Bossak et al. 2014; Landsea et al. 2015). Even storms 

which do not make landfall can still cause damage, as wind-driven tides and waves can extend 

more than 100 km from the storms center (Jackson 2010). At our study site, hurricane storm 

surges have caused short-term (days) spikes in salinity as high as 22 psu, far in excess of tidal 

fresh forest tolerance (Di Iorio 2018). The combination of high winds and astronomical tides can 

cause flooding events comparable to hurricane storm surges (Manda et al. 2014). Freshwater 

flushing from river flow or rainfall can ameliorate the effects of these pulses (Shaffer et al. 

2009). However, repeated storm impacts can lead to chronically elevated soil salinity, ultimately 

causing tree mortality and forest-marsh transition (Doyle et al. 2007). 

Droughts compound the stresses induced by all of these mechanisms. Georgia 

experienced six periods of drought between 1930 and 2000 (Jackson 2010), and climate 

modeling suggests that droughts are likely to increase in frequency and duration in the future 

(Ardón et al. 2013). In the estuaries of large rivers with high discharge, such as the Altamaha, 

river water is often stratified, with fresh water at the surface and a saltwater wedge beneath (Day 

et al. 2007). In periods of low river flow, this salt wedge penetrates further upstream, exposing 

freshwater ecosystems to increased salinity (Duberstein and Kitchens 2007). In areas that have 

already been exposed to some salinity, lower precipitation and river discharge reduce freshwater 

flushing, causing salts to concentrate in the soil (Langston et al. 2017). This process has been 

linked to tidal forest dieback and forest-marsh transition (Desantis et al. 2007). 

The combination of punctuated extreme events (storm surges and wind tides) and chronic 

stress (droughts and sea level rise) can accelerate rates of forest retreat in the ‘ecological ratchet’ 

model (Carr et al. 2020). Kearney et al. (2019) found that saltwater intrusion due to sea level rise 

creates chronically stressful conditions, reducing the health of mature trees and preventing 
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seedling recruitment. This creates “zones of persistence” in which mature trees can survive, but 

the forest is unable to regenerate (Kearney et al. 2019). Subsequent extreme events can cause 

mortality of both mature trees and saplings within this zone via windthrow and flooding 

(Kearney et al. 2019). Thus, tree mortality from extreme events can lead to forest retreat in 

advance of substantial increases in sea level (Kearney et al. 2019). It is essential, therefore, to 

develop an understanding of the impacts of tropical storms on tidal fresh forest in addition to the 

role of sea level rise. As hurricane storm surges and wind tides can cause increased inundation 

and salinity, shifts in vegetation may occur within transition zones following a storm event 

(Raabe and Stumpf 2015). Few studies have explored whether remote sensing using moderate 

resolution sensors such as Sentinel-2’s Multispectral Instrument (MSI) and Landsat Operational 

Land Imager (OLI) or Enhanced Thematic Mapper + (ETM+) can detect whether these pulses of 

salinity lead to a permanent shift from tidal fresh forest to tidal marsh habitat (Ury et al. 2021).  

The threat to the Altamaha’s tidal fresh forest from climate change is compounded by 

centuries of environmental alteration. In Georgia and the Carolinas, rice cultivation in the 18th 

and 19th centuries involved the construction of complex systems of dikes and ditches to control 

water flow (Wharton et al. 1982). Decades or centuries after being abandoned, these 

anthropogenic features continue to have effects. In coastal areas with little topographic relief, 

water flow is dominated by wind and tidal forces (Poulter et al. 2008). Because of their linear 

form, canals and ditches have greater fetch (the maximum continuous distance of water surface 

over which wind can blow) than more sinuous natural tidal channels, which amplifies the effect 

of wind tides (Doyle et al. 2007; Manda et al. 2014). Ditches and canals also increase flow 

during regular tidal pulses and extreme weather events (Kirwan and Gedan 2019).  Finally, 

beginning in the earliest stages of European colonization, large areas of Eastern North America’s 
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tidal forests were logged for their valuable timber, especially bald cypress (Wharton et al. 1982). 

Of the estimated 21 million hectares of both tidal and non-tidal riparian forests extant before 

European colonization, only 4.9 million hectares survived by 1991 (Mitsch and Gosselink 1993). 

In Georgia, less than 40,000 hectares remain, including salt-stressed areas transitioning to marsh 

(U.S. Fish and Wildlife Service 2014). 

Forest to marsh transition is often irreversible. As trees die and their roots decompose, 

erosion and subsidence increase, exposing previously forested sites to flooding and salinity 

regimes that prevent tree seed germination and sapling recruitment (Baldwin 2007; Desantis et 

al. 2007; Krauss et al. 2007). Damage to this ecosystem is especially concerning given tidal fresh 

forest’s disproportionately high carbon sequestration capacity (Smart et al. 2020). Loss of 

carbon-sequestering coastal ecosystems (blue carbon) is of global concern, because as tidal fresh 

forests decline, they can become net producers of greenhouse gasses, including carbon, methane, 

and nitrous oxide (Martinez and Ardon 2021; Mcleod et al. 2011). Considering the ecological 

effects of the loss of tidal forests, it is essential to effectively monitor these habitats at multiple 

spatial and temporal scales. 

1.1.3 Remote Sensing Approaches 

Remote sensing-based classification of forests is commonplace, and methodologies are 

diverse and well-developed (Boyd and Danson 2005). The details of plant classification 

techniques vary but typically rely on exploiting differences in spectral reflectance. Physical 

properties such as pigmentation, cell structure, and canopy structure create distinct spectral 

absorption and reflectance features for each species (Asner 1998). Additionally, spectral band 

ratios (vegetation indices) using specific wavelengths can be used as proxy measures of plant 

health and biomass, with the Normalized Difference Vegetation Index (NDVI) being one of the 
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most common metrics (Svejkovsky et al. 2020). Numerous other vegetation indices have been 

developed that highlight different characteristics of vegetation or compensate for certain 

atmospheric and environmental conditions (Lillesand et al. 2015). Historically, high-spatial and 

low-spectral resolution aerial orthophotography has been used for land cover mapping on an 

annual or biennial (or less frequent) basis, but the deployment of satellite sensors with moderate 

to high-spatial-resolution multispectral sensors offers a potent tool for large-spatial scale studies 

(Boyd and Danson 2005). The use of drone (unmanned aerial vehicle (UAV)) technology is 

increasingly widespread in forestry and ecological research, offering centimeter-scale spatial 

resolution and, depending on the sensor used, between 3 and 8 spectral bands (Nezami et al. 

2020). However, area coverage is low compared to satellites, and temporal resolution is 

dependent on revisit frequency to the study site (Takahashi Miyoshi et al. 2020).Light detection 

and ranging (LiDAR) elevation data are widely used in combination with data from optical 

sensors (Huylenbroeck et al. 2020). Because wetland plant community distributions are so 

closely correlated with elevation (Flitcroft et al. 2018), digital elevation models (DEM) can be 

used as input for vegetation classification (Alexander and Hladik 2015; Hladik et al. 2013). In 

addition, canopy height and structure derived from topographic LiDAR point clouds can be used 

to discriminate between vegetation types (Smart et al. 2020) and, in some cases, species 

(Brandtberg et al. 2003). Among the vegetation remote sensing literature reviewed, Random 

Forest (Breiman 2001) was one of the most common classification techniques used to map 

vegetation communities (Immitzer et al. 2012; Immitzer et al. 2016; Persson et al. 2018; Smart et 

al. 2020; Sunde et al. 2020; Takahashi Miyoshi et al. 2020; Ury et al. 2021). Random Forest is a 

machine learning classifier that is relatively easy to set up, produces high accuracy 

classifications, and performs well with small training data sample sizes (Immitzer et al. 2016).   



19 

 

 

Thirty-meter spatial resolution Landsat satellite data (Landsat 7, 8, and 9 are currently 

operational) provided at no cost by the U.S. Geologic Survey has been the standard for small-

scale vegetation mapping for decades (Reese et al. 2002), but the launch in recent years of 

satellites with higher spatial and spectral resolution sensors such as the European Space 

Agency’s (ESA) Sentinel-2 Multispectral Imager (MSI) and Maxar’s Worldview-2 WV110 

camera have enabled researchers to map forests with greater detail and accuracy (Immitzer et al. 

2012; Immitzer et al. 2016; Persson et al. 2018). When Reese et al. (2002) mapped Wisconsin 

statewide vegetation cover using Landsat 4/5 Thematic Mapper (TM) data, they were only able 

to discriminate between broad vegetation classes containing multiple species (e.g., “coniferous 

forested/deciduous shrub wetland” or “upland coniferous forest”) (Reese et al. 2002). The 10 m 

spatial resolution of Sentinel-2 MSI imagery allows species-level classification by reducing 

variation within each pixel (Persson et al. 2018). An additional advantage of Sentinel-2 MSI over 

Landsat 8/9 Operational Land Imager (OLI) is its improved spectral resolution. The MSI 

includes three additional bands in the red edge and near-infrared (NIR) spectral regions (720-790 

nm), which have been shown to be important in vegetation mapping (Immitzer et al. 2016; 

Persson et al. 2018). Spectral reflectance for healthy vegetation typically peaks in the red 

edge/NIR due to leaf cellular structure and canopy density; thus, anatomical differences between 

species maximize spectral separability in this region of the electromagnetic spectrum (Lillesand 

et al. 2015). Because of its wider swath and two-satellite configuration (Sentinel-2A and 2B), 

Sentinel-2 has a five-day revisit time compared to 16 days for Landsat 8 (now eight days with 

the recent launch of Landsat 9 in 2021). This increases the number of cloud-free images 

available at a given location and facilitates time-change analyses (Svejkovsky et al. 2020). In 
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combination, higher spatial and spectral resolution and a shorter revisit time make Sentinel-2 

MSI ideal for moderate to large-scale vegetation mapping, and well-suited to this project.  

While the literature for the remote sensing of non-tidal forests is extensive, tidal fresh 

forests are generally understudied; thus, remote sensing-based studies of these ecosystems are 

few. Most research to date has focused on the forest-marsh transition zone where the impacts of 

salinization are most apparent rather than looking at the entire extent of tidal forests (McCarthy 

et al. 2021; Riegel et al. 2013; Shaffer et al. 2009; Smart et al. 2020; Ury et al. 2021; White Jr 

and Kaplan 2021) Additionally, most studies focus either on biomass derived from LiDAR data 

or vegetation indices without classifying vegetation, or separate vegetation into broad classes 

composed of many species. Riegel et al. (2013)combined LiDAR data with four spectral band 

(visible to NIR) National Agricultural Imagery Program (NAIP) aerial photography to measure 

coastal forest biomass, but did not classify forest species. Smart et al. (2020) mapped dead 

(ghost) forests in North Carolina using LiDAR to quantify above-ground carbon storage. They 

classified ghost forests using Landsat 7 Enhanced Thematic Mapper + (ETM+) and Landsat 8 

(OLI) data, but mapped only three general vegetation classes: forest, transition-ghost forest, and 

marsh. Shaffer et al. (2009) took a similar approach using a single Landsat 7 ETM+ scene to 

map broad ecological categories (e.g., “natural marsh” or “bottomland forest”). Through 

subsequent fieldwork, they determined the species compositions of each of these classes, but 

their data does not describe or map the distribution of each species within the forest.  

Other studies have quantified biomass based on NDVI values. White and Kaplan (2021) 

used NDVI derived from low spatial resolution (250 m) MODIS data to study the effects of 

saltwater intrusion in coastal forests. Similarly, McCarthy et al. (2021) used NDVI in 

conjunction with a DEM and Landsat 5 (TM) and 8 (OLI) imagery to track forest dieback, but 
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did not discriminate between vegetation communities beyond broad marsh and forest classes. 

The general ecological trends established by these studies are significant and noteworthy, but 

they do not fully exploit the potential of synoptic remote sensing. A moderate to high spatial 

resolution, species-level classification of tidal forests would help to bridge the gap between high 

spatial resolution studies of plant physiology and the existing low spatial resolution remote-

sensing-based studies. Such a classification would give more detailed insights into forest-marsh 

successional dynamics, the potential impacts of tropical storms, and improve our ability to 

forecast ecological change. Different tree species have varying tolerance for inundation and 

salinity, meaning certain forest types may be more vulnerable to salinization (Field et al. 2016). 

Therefore, accurately mapping the full extent of tidal fresh forests at the species- or community-

level is important to predicting future transgression and loss. 

1.2 Study Site 

Our study site is located on the central Georgia coast, near the mouth of the Altamaha 

River (81°28'49"W 31°21'39"N). The South Atlantic coast of the U.S. is composed of barrier 

islands of Holocene and Pleistocene origin, backed by estuaries with extensive tidal marshes 

(Anderson and Lockaby 2007; Jackson Jr 2010). In the estuaries of larger rivers, tidal fresh 

marshes and tidal fresh forests can be found upriver of brackish marshes (Anderson and Lockaby 

2007). The Altamaha River is the longest undammed river in the eastern U.S., and the largest in 

the state of Georgia (Jackson Jr 2010; Stevenson and Chandler 2017). In total, the Altamaha 

watershed drains 3.6 million hectares, 23% of the state of Georgia (Stevenson and Chandler 

2017). The main tributaries of the Altamaha, the Oconee and Ocmulgee rivers, originate in the 

foothills of the Appalachian mountains (Higinbotham et al. 2004). From the confluence of these 

two rivers, the main stem of the Altamaha runs 220 km through the coastal plain to its mouth on 
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the Georgia Bight (Higinbotham et al. 2004). The Altamaha estuary has a semi-diurnal tide cycle 

with an amplitude of approximately 2 m (Higinbotham et al. 2004). Head of tide is 54 km from 

the river mouth, but the large volume of freshwater discharge (393 m3 s-1) typically prevents 

salinity from reaching further than 20 km upstream (Doyle et al. 2007; Higinbotham et al. 2004; 

White and Alber 2009). 

The soils of tidal fresh forests vary with elevation, hydrology, and vegetation cover, but 

are less well characterized than upland soils (Anderson and Lockaby 2007)., The most common 

soil type in our study area is described only as “Swamp”, a type of fluvaquent, which covers 

34.8% of the study area (NRCS 2021). In general, tidal fresh forest soils are anaerobic and high 

in organic matter (up to 15.5% carbon) (Anderson and Lockaby 2007; Craft 2012). Inorganic soil 

components are mainly sand and silt (Craft 2012). Fulton Ridge, a feature formed by remnants of 

Pleistocene-era aeolian dunes, extends into the northern part of our study area (Wharton et al. 

1982). Its soils are infrequently flooded sands, sandy loams, and clay loams (NRCS 2021). 

Our study site encompasses a variety of ecosystems, ranging from scrub oak sandhill 

communities to tidally flooded mesohaline marsh (Figure 1.1). Brackish and tidal fresh marsh 

vegetation are primarily giant cutgrass (Zizaniopsis miliacea Michx.), black needlerush (Juncus 

roemerianus Scheele), and big cordgrass (Spartina cynosuroides [L.] Roth) (Higinbotham et al. 

2004). This project focuses on the tidal fresh forest ecosystem. Tidal fresh forest vegetation in 

Georgia are dominated by water tupelo, swamp tupelo (N. biflora Walt.), and bald cypress, 

interspersed with sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.) and water 

oak (Quercus nigra L.) (Craft 2012; Duberstein and Kitchens 2007; Duberstein et al. 2014).  

Flood-tolerant tree species are largely excluded from upland areas due to competition 

from more vigorous upland vegetation (Beane 2020). Within the floodplain forest, changes from 
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one plant community to another are driven by small local changes in elevation (Wharton et al. 

1982), which strongly impacts flooding frequency and duration. All these species have some 

degree of flood tolerance, but bald cypress is the best adapted to inundation, with established 

trees capable of growing in permanently flooded conditions (Beane 2020). Bald cypress, together 

with water tupelo and swamp tupelo, are generally restricted to near-permanently inundated 

floodplain habitats (Sharitz and Lee 1985). Water oak and sweetgum can tolerate intermittent 

flooding and are found at the margins of the floodplain or suitably high-elevation microsites 

within it (Sharitz and Lee 1985).  

Species salinity tolerance is variable as well. Mature bald cypress trees can tolerate 

chronic salinity of 3-4 psu but may experience mortality in times of drought when salinity 

increases (Duberstein et al. 2020). Tupelo are more sensitive. Duberstein et al. (2020) found that 

water tupelo were completely absent at sites exceeding 2.2 psu. Red maple and oak species have 

even lower salinity tolerance (Middleton and Souter 2016). Saplings of all species are less robust 

than mature trees, and even infrequent pulse-type salinization events, such as a storm surge, can 

cause sapling mortality (Tully et al. 2019). Upland areas are predominantly managed forests of 

pine (Pinus spp.) and oak (Quercus spp.). The entire Altamaha River study area was logged at 

one time in its history, and active forest management continues in upland areas (Wharton et al. 

1982). Selective logging of bald cypress for its rot-resistant wood has changed the makeup of the 

tidal forests, increasing the abundance of water tupelo, as it occupies a similar elevation range 

(Wharton et al. 1982). Large areas on the lower Altamaha River were developed for rice 

cultivation between the late 17th and mid-19th centuries (Odum et al. 1984). Some of these fields 

are still under cultivation, while others have been abandoned, reverting to a mixture of marsh and 

forest vegetation. However, the drainage ditches constructed to enable logging and rice 
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cultivation remain and increase hydrologic connectivity, thus increasing the rate and extent of 

saltwater intrusion and nutrient leaching (Tully et al. 2019). At the same time, dikes around 

disused rice fields reduce drainage, which can concentrate and increase salinity (Herbert et al. 

2015). 

1.3 Hurricanes 

Hurricane Matthew passed just off the Georgia coast on October 7, 2016, as a Category 2 

hurricane, with sustained winds of 65 knots (kt) and gusts to 83 kt (Stewart 2017) (Figure 1.2). 

Matthew delivered 43 cm of rain and record-setting flooding of 1.5 m above mean high high 

water (MHHW) level at the Fort Pulaski, Georgia, National Ocean Service (NOS) gauge (Station 

ID: 8670870) (Stewart 2017). The Fernandina Beach, Florida NOS gauge (Station ID: 8720030) 

recorded inundation 1.3 m above MHHW (Stewart 2017). One year later, Hurricane Irma, by 

then downgraded to a tropical storm, passed through southwest Georgia on October 17, 2017, 

bringing sustained winds of 41 kt, gusts to 61 kt, 12-25 cm of rain, and flooding of 1.4 m above 

MHHW at the Fort Pulaski NOS gauge (Cangialosi et al. 2018), and 1.2 m to the Fernandina 

Beach gauge (Cangialosi et al. 2018)(Figure 1.3). Although Hurricane Irma’s wind speeds were 

lower Hurricane Matthew’s, higher tides and onshore winds during the storm resulted in the 

highest storm surge recorded for the central Georgia coast (Alber et al. 2019). A Georgia Coastal 

Ecosystems Long Term Ecological Research (GCE LTER) water monitoring station on the 

Altamaha River recorded high water levels for two days, and salt water penetrated over 30 km 

upstream into the tidal fresh forest (Figure 1.3) (Di Iorio 2018). 
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1.4 Overview of Thesis 

The overall goal of this project is to map the species distribution of tidal fresh forest on 

the Altamaha River, GA, and examine the effects of hurricanes Matthew (10/2016) and Irma 

(10/2017) on vegetation by conducting a time change analysis focused on the forest-marsh 

transition zone. Classification of multiple image dates before and after these hurricanes will 

enable us to assess the nature and extent of changes in tidal fresh forest health and distribution. 

These goals are summarized by the following objectives: 

 Chapter 2 focuses on the characterization of tidal fresh forest plant communities and 

species associations using hierarchical clustering of ground reference data to categorize training 

data for image classification. 

 Chapter 3 describes the classification of current tidal fresh forest distributions using 

recent Sentinel-2 MSI satellite imagery and the Random Forest classifier and assesses the 

importance of variables (spectral reflectance, elevation, vegetation indices) in mapping plant 

community distributions. 

 Chapter 4 uses classified time-series imagery and applies temporal change analysis to 

quantify the effects of hurricanes Matthew and Irma on habitat distributions. 

Under the imminent threat of sea level rise, large-scale monitoring of coastal ecosystems 

is of paramount importance. Remote sensing-based approaches offer the ability to survey large 

study areas at low cost. This project will fill significant gaps in the literature and understanding 

of how tidal forests respond to sea level rise and extreme weather events. The development of an 

accurate remote-sensing classification methodology for tidal fresh forests that could be applied to 

the entire Georgia coast would greatly improve our ability to monitor this sensitive ecosystem. 

Additionally, this classification could be used to estimate biophysical parameters (e.g., biomass) 
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and model the impacts of sea level rise, thus permitting large geographic-scale studies of forest 

productivity and carbon storage, factors which are both expected to be negatively impacted by 

climate change (Smart et al. 2020). 
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1.6 Tables and Figures 

 

Figure 1.1 Study area (black outline) and field sampling plot locations (stars) on the Altamaha 

River, Georgia. National Wetlands Inventory (NWI) habitat classes are shown, which represent 

the best existing map of vegetation distributions for our study area. Also shown is the location of 

the Georgia Coastal Ecosystems (GCE) Long Term Ecological Research (LTER)Site 11 

(diamond), where the water depth and salinity instruments referenced in Figure 1.3 are located, 

and it is the site of some prior research on tidal fresh forests. 
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Figure 1.2 Hurricane track positions obtained from the National Hurricane Center of Hurricane 

Matthew (2016) and Hurricane Irma (2017) relative to our study site on the Altamaha River, GA 

(star).  
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Figure 1.3 Water depth (blue line), volume of river discharge (green line), and salinity (orange 

line) at GCE Site 11 in the Altamaha tidal fresh forest before and after Hurricane Matthew 

(2016, A) and Hurricane Irma (2017, B). Salinity and water depth data are from a GCE sonde 

located at GCE Site 11 (Figure 1.1) (Di Iorio 2018). River discharge data is from the USGS 

gauge at Everett City, GA (Station ID 02226160), approximately ten river miles upstream of 

GCE Site 11 (U.S. Geological Survey 2022). The vertical dashed lines indicate the storm’s 

nearest point of approach to our study site (see Fig. 1.2). Hurricane Matthew came within 93.5 

km, and Hurricane Irma within 195 km.
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CHAPTER 2 

FIELD DATA AND PLANT COMMUNITY ANALYSIS 

2.1 Introduction 

Tidal fresh forests are widely recognized as important but understudied ecosystems 

(Anderson et al. 2013; Doyle et al. 2007; Duberstein et al. 2014). Because most tidal fresh forests 

have already been extensively altered and degraded (Conner et al. 2007), the relatively intact 

nature of the Altamaha tidal fresh forest makes it an ideal site. Although the lower Altamaha 

River has been subjected to the anthropogenic modifications typical for these areas (logging, 

drainage, diking, and rice farming) (Barendregt and Swarth 2013; Wharton et al. 1982), today, 

the Altamaha River tidal fresh forests are located within numerous United States Fish and 

Wildlife Service Wildlife Management Areas (WMA) and the domain of the Georgia Coastal 

Ecosystems Long Term Ecological Research (GCE LTER) site.  

While the tidal marsh vegetation of the Altamaha is well studied (Higinbotham et al. 

2004; White and Alber 2009), its tidal fresh forests are less well documented. Prior studies have 

examined Altamaha tidal fresh forest community composition (Duberstein et al. 2014; Stahl et 

al. 2018), soil properties (Craft 2012), and aboveground productivity (Stahl et al. 2018). 

However, these studies were limited in spatial extent, confined to areas at or upstream of GCE 

LTER Site 11 (31.378508 N, -81.496112 W), the only tidal fresh forest site examined by the 

GCE LTER (Figure 1.1). No prior studies have attempted to map the full extent of tidal fresh 

forest on the Altamaha River across the full range of tidal influence, brackish to fresh. The 

objective of this chapter is to document the composition of the Altamaha tidal fresh forest and to 

identify forest communities that can be applied to subsequent remote sensing analyses. Tidal 
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fresh forest plant communities and species associations were identified through hierarchical 

clustering and additional multivariate statistical analyses of ground reference data. 

 

2.2 Field data collection 

Ground reference data were collected at thirty-eight 500 m2 circular vegetation plots 

between 15 May and 12 June 2021 (Figure 2.2). Plots were distributed using a stratified random 

technique based on a preliminary classification of Sentinel-2 Multispectral Imagery (MSI) 

satellite imagery with five major forest classes: tupelo, pine, bald cypress, bald cypress/tupelo, 

and salt-stressed transitional forest (described in Section 2.3.1). Fifty potential plot locations 

were generated using ArcGIS Pro 2.9.2 (www.esri.com), of which only 38 were sampled due to 

time and logistical constraints. We navigated to each plot using a Garmin eTrex 30 GPS 

(www.garmin.com), which was used to record plot location accurately to within +/- four meters. 

At each plot center, we recorded a general site description, took photographs, and measured 

percent canopy coverage using a canopy densiometer (Forest Densiometers, Marianna, FL). 

Following the methodology of Anderson et al. (2013), for all trees greater than 2.5 cm in 

diameter at breast height (DBH), we measured height using a laser hypsometer (Nikon Inc., 

Melville, NY) and DBH with a diameter tape, identified them to species where possible, and 

assessed their height and whether their crown reached the canopy. Additionally, general 

vegetation health was noted (e.g., healthy, stressed, dead). 
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2.3 Forest Community Analysis 

2.3.1 Plot-level Vegetation Composition 

Plot-level species diversity and abundance were initially described by computing species 

importance values (IV) following the method used by Duberstein et al. (2014). IV ranges from 0 

to 1 and was calculated as[(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 +  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒)/2], where relative 

density is the sum of species density (trees/ha) divided by the sum of total density, and relative 

dominance is the sum of species basal area (m2/ha) divided by the sum of total basal area. IV 

provides a good summary of the relative influence of each species on the overall composition of 

a plot (Curtis and McIntosh 1951).   

Prior to hierarchical clustering, raw plot data were summarized by calculating the total 

basal area for each species per plot. Due to difficulty distinguishing between species in the field, 

all ash trees (Fraxinus) were combined at the genus level (Duberstein et al. 2014). Likewise, 

laurel oak (Quercus laurifolia Michx.) and water oak (Quercus nigra L.) were grouped into a 

single class, as they are commonly found together and are capable of hybridizing (Tobe 1998). 

Subsequent analyses can be sensitive to outliers, so tree species which occurred in fewer than 5% 

of plots were excluded (McCune and Grace 2002). Based on this criteria, 11 species were 

eliminated: water hickory (Carya pallida Ashe), swamp dogwood (Cornus foemina Mill.), 

American holly (Ilex opaca Aiton var. opaca), Yaupon holly (Ilex vomitoria Aiton), Southern 

magnolia (Magnolia grandiflora L.), white mulberry (Morus alba L.), Southern wax myrtle 

(Morella cerifera [L.] Small), Ogeechee tupelo (Nyssa ogeche W. Bartram ex Marshall), swamp 

chestnut oak (Quercus michauxii Nutt.), winged elm (Ulmus alata Michx.), and farkleberry 

(Vaccinium arboreum Marshall). Species abundance data (based on basal area) for the remaining 

trees were standardized using a Hellinger transformation, which consists of taking the square 
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root of the row-standardized abundances. This transformation performs two important functions: 

it reduces the influence of rare species and is not susceptible to the double-zero problem, in 

which a species’ absence from two sites erroneously increases their similarity (Legendre and 

Gallagher 2001). 

In addition to tree species abundance data, an additional binomial variable was 

introduced to distinguish sites suffering from salinization, as assessed in the field based on tree 

morphology and herbaceous vegetation cover. Trees growing in soils with elevated salinity 

typically have reduced leaf and crown area due to osmotic stress, and this open canopy permits 

marsh vegetation to colonize the area(Duberstein et al. 2020). As this variable is based on a 

subjective assessment (we did not measure porewater salinity at our plots), we conducted all 

subsequent statistical analyses in parallel, one including the “stressed” variable and one based on 

relative abundance data alone. 

 

2.3.2 Community Analysis 

Distinct tidal fresh forest communities were identified and described using a variety of 

multivariate statistical analyses implemented in R version 4.1.0(R Core Team 2021). Initial 

grouping was performed via hierarchical clustering based on relative species abundance. 

Following clustering, specific plant communities were identified and described based on 

indicator species analysis following the method of Duberstein et al. (2014). Multi-response 

permutation procedures (MRPP) were used to test the significance of differences between these 

communities as an external validation of our clustering methodology. Finally, sample plot 

groupings were visualized in relation to environmental variables (elevation and longitude) using 
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nonmetric multidimensional scaling ordination (NMDS). Each of these analyses is described in 

more detail below. 

Hierarchical clustering is an agglomerative clustering technique. Each observation (in 

this case, each plot) starts as an individual cluster. It is then joined with the most similar plot 

with the goal of minimizing variation within groups and maximizing the differences between 

groups. Hierarchical clustering groups inputs based on similarity but permits the user to select 

the number of clusters after classification, a step called pruning. The overall strength of 

clustering produced by different distance metrics and linkage methods was evaluated using the 

agnes function from the R package cluster (Maechler et al. 2021). Agnes calculates the 

agglomerative coefficient (AC), the mean of the normalized distances at which each observation 

joins its cluster (Maechler et al. 2021). Higher values indicate stronger, more compact clustering. 

Distance measures and linkage methods were chosen which were most appropriate for the data, 

maximized AC, and gave the most reasonable ecological interpretation. 

First, a Hellinger distance matrix was calculated for the transformed plot data using the 

vegdist function in the R vegan package (Oksanen et al. 2020). Using these distances, 

hierarchical clustering was performed using the eclust function in the package factoextra 

(Kassambara and Mundt 2020). Ward’s minimum variance linkage was used, which groups 

clusters based on minimizing their Analysis of Variance (ANOVA) sum of squares (Milligan and 

Cooper 1985). In addition to clustering results, eclust computes several other informative 

statistics. The gap statistic estimates the optimal number of clusters by comparing the total intra-

cluster variation for different numbers of clusters, k, with the expected values from a null 

reference distribution of the data (Tibshirani et al. 2001). The optimal number of clusters is 

generally that which maximizes the difference between the observed and expected variances. 
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The silhouette statistic assesses the overall quality of the clustering by measuring how well each 

observation fits into its assigned cluster. Values range from -1 to 1, with positive values 

indicating a good fit and negative values suggesting that the observation has been incorrectly 

classified. Finally, like agnes, eclust calculates the agglomerative coefficient (AC). 

Following clustering, the resulting dendrogram was pruned at a range of pruning levels 

from 2-10. Following Duberstein et al. (2014), these cluster identities were used as categorical 

variables, and indicator species analysis was implemented independently for each clustering 

level with the multipatt function from the package indicspecies (De Câceres and Legendre 2009). 

This function calculates the indicator value index (IVI) for each species, which measures the 

strength of association between a species and each cluster or combination of clusters (Dufrêne 

and Legendre 1997). The IVI ranges from zero to one and is the product of two components: 

Component A (specificity) and Component B (fidelity) (Dufrêne and Legendre 1997). A species’ 

specificity value is the probability that a particular plot belongs to a cluster, given that the 

species is found there (Dufrêne and Legendre 1997). Component A will equal one if a species is 

found only in sites belonging to a particular group. Fidelity is the probability of finding a species 

at plots belonging to that cluster (Dufrêne and Legendre 1997). Component B will equal one if a 

species is found at all plots belonging to a particular group. Together, these two statistics 

determine how diagnostic a species is of each group. The maximum IVI for each species in any 

group was taken as its value for all groups (Dufrêne and Legendre 1997). Significance was 

assessed by comparing actual values to randomized data produced by a Monte Carlo simulation 

with 1,000 iterations. Total p values for all species and the number of significant indicator 

species (p<0.05) were recorded for all clustering levels. 
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MRPP testing functions as a nonparametric alternative to ANOVA and tests for 

significant differences between plot groupings (McCune and Grace 2002). The test was 

implemented using the function mrpp from the vegan package (Oksanen et al. 2020). MRPP uses 

as input the transformed species abundance data and the cluster identities for each plot produced 

by hierarchical clustering. MRPP first calculates the mean within-group distance (δ) for each 

cluster, weighted by the number of plots in each cluster. As with hierarchical clustering, 

Hellinger distance was used. δ is then calculated for every possible partition of plots into clusters 

of the same size. The proportion of partitions for which the expected δ is less than the observed δ 

is calculated; this gives the p-value for the test. In addition to the overall probability, MRPP 

calculates within-group agreement (A), a measure of group homogeneity equal to1 − 𝛿/𝐸(𝛿), 

where E(δ) is the expected mean within-group distance if species were grouped randomly. A will 

equal zero if there is no difference from a random distribution and one if all plots in a cluster 

have an identical species composition. 

NMDS was performed with the metaMDS function from the vegan package (Oksanen et 

al. 2020) to determine the strength of the relationship between plot species composition and 

environmental variables. Each species is an axis in n-dimensional species space. metaMDS 

automatically finds the optimal number of dimensions by making multiple runs from randomized 

starts and selecting the result with the lowest stress. The function envfit (vegan package) was 

used to test the correlation between NMDS axes and two external environmental variables: 

longitude and elevation. Both elevation and longitude as a measure of river distance are 

environmental gradients that can influence plant species distribution (Anderson et al. 2013). 

Mean elevation for each plot relative to the NAVD88 vertical datum was calculated from a 

LiDAR-derived digital elevation model (DEM) of the study area with a horizontal spatial 
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resolution of 2 m. The DEM was not corrected for vegetation bias. Longitude was based on the 

plot center coordinates recorded in the field with GPS and serves as a proxy for river distance. 

Ordination results were plotted in two dimensions, and environmental variables were visualized 

as surfaces using the function ordisurf (vegan package). 

 

2.4 Results 

2.4.1 Plot-Level Species Composition 

Plot-level species composition varied considerably across our 38 plots. No single species 

occurred at every plot (Figure 2.3). Ash was the most widely distributed, occurring at 32 plots, 

followed by bald cypress (30 plots) and swamp tupelo (29 plots) (Figure 2.3). Pine was the least 

widely distributed of the eight most dominant species shown, occurring at just four plots. In two 

of those plots, however, it represented the majority of that plot’s IV (Figure 2.3). Dominant 

species (the species with the highest IV in each plot) were also variable (Figure 2.3). Bald 

cypress was the most common dominant species (9 plots), followed by water tupelo, swamp 

tupelo, and Laurel Oak/Water Oak (6 plots each) (Figure 2.3).  

 

2.4.2 Salt-Stressed Variable Parallel Analyses 

Hierarchical clustering and indicator species analysis, both with and without the salt-

stressed variable, produced similar results. Only results without the salt-stressed variable are 

included in this chapter. Salt-stressed results can be found in Appendix A. The community 

identities of 26 out of the 38 plots were unchanged in the salt-stressed analyses. Four 

communities (Oak/Hornbeam, Pine, Alder/Magnolia, and Live Oak) retained all the same plots 

(Table 2.1, Figure 2.4, and Table A1, Figure A1). The main difference with the inclusion of salt-
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stress was the loss of the Bald Cypress/Tupelo class and the emergence of distinct Stressed 

Cypress and Stressed Tupelo communities. Plots in these communities had previously been 

assigned to the Water Tupelo, Bald Cypress/Tupelo, Bald Cypress, and Swamp Tupelo 

communities. Reassignment of the salt-stressed plots, which were lower in diversity and overall 

abundance, generally increased mean basal area and density and decreased mean importance 

values for the communities they left. For instance, the mean IV of bald cypress decreased from 

0.54 in the relative abundance only analysis to 0.45 in the salt-stressed analysis, while the mean 

basal area increased from 37.3 m2·ha-1 to 66.2 m2·ha-1. These differences lend credence to the 

salt-stressed analysis. Further changes are detailed in the community descriptions below. 

2.4.3 Relative Abundance Only 

Hierarchical clustering based on relative abundance alone, excluding the salt stress 

variable, produced a dendrogram with an AC of 0.83 (scale of 0 - 1), indicating relatively strong 

clustering (Figure 2.4). The average silhouette width was 0.24 (Figure 3). Following Duberstein 

et al. (2014), based on indicator species analysis, we plotted the number of significant indicator 

species and the total p-value for all species at each clustering level (Figure 2.5). Clustering levels 

with low total p-values and a high number of indicator species represent optimal pruning levels 

(McCune and Grace 2002). Based on these criteria, either six or eight clusters are possible. We 

chose to prune at eight clusters, as this gave the most reasonable ecological interpretation and 

agreed with the gap statistic (Figure 2.6). Subsequent MRPP and NMDS analyses provided 

additional support for this decision (Figure 2.7). Cophenetic distance measures how closely the 

dendrogram preserves pairwise distances compared to the original distance matrix. Our value is 

0.68 (on a scale of 0 - 1), which indicates moderately high fidelity to the original distances. 
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Inspection of the dendrogram reveals clear ecological stratification based on species 

composition (Figure 2.4). The two highest-level clusters separate continuously or frequently 

flooded plots from seasonally flooded or upland plots. The former are occupied primarily by 

flood-tolerant species such as tupelo and bald cypress, while the latter have varying compositions 

of oak (Quercus spp.) and pine (Pinus spp.). Within these two broad categories, many species are 

widely distributed (Table 2.1), so subsequent groupings are dependent on relative abundance 

rather than presence-absence. 

MRPP results indicated that these eight communities have significantly different species 

compositions, A=0.428, p=0.001, meaning that more than 40% of the variation in species 

composition could be explained by cluster identity. Mean within-group distance was 0.349, and 

mean between-group distance was 0.666. 

NMDS ordination showed clear separation between groups of plots and strong 

environmental gradients (Figure 2.7). A two-dimensional solution was chosen as it provided an 

acceptably low stress score of 0.15 and optimal ecological interpretation (Clarke 1993). Both 

longitude and elevation were strongly correlated with both axes (Table 2.2). 

Community descriptions of the eight groups determined based on hierarchical clustering 

and field descriptions of the study sites are described below. 

1. Oak/Hornbeam 

Plots in this community were concentrated at the upstream extent of our study 

area (Figure 2.2). When we visited them in May 2021, some showed signs of 

having been recently flooded: the soil was muddy but drying, and pools of 

standing water remained in low areas. Various compositions of oaks (Q. nigra, Q. 

lyrata Walter, Q. laurifolia Michx.) are the dominant canopy tree, accounting for 
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34% of IV (Table 2.1). Canopy coverage was 96%, among the highest of all our 

communities. Hornbeam (Carpinus caroliniana Walter) is abundant in the 

understory, along with sweetgum, which occasionally emerges as a canopy tree. 

Plots in this community had the third highest average elevation, at 1.82 m above 

NAVD88, based on a DEM (Table 2.1). The abundance of large oak trees in this 

community gives it the greatest basal area of any community: 68 m2·ha-1 (Table 

2.1). 

2. Water Tupelo  

This community was prevalent in the backswamp further from the river banks 

(Figure 2.2). When we visited in May of 2021, they were flooded to depths of 2 - 

10 cm. The canopy is almost exclusively water tupelo (36% of IV), with some 

bald cypress (13% of IV) (Table 2.1). Individuals of both species are generally 

mature and large in stature, with a maximum height of 35 m. Canopy coverage is 

complete (97%). The understory is sparse but mainly ash and sweetgum. 

Herbaceous ground cover is variable. In less deeply flooded areas, lizard’s tail 

(Saururus cernuus L.) proliferates.  

3. Bald Cypress/Tupelo 

This community was a mixture of bald cypress (25% of IV), water tupelo (16% of 

IV), and swamp tupelo (16% of IV), and was intermediate between the two tupelo 

and Bald Cypress communities in many respects (Table 2.1). These plots were 

located further upstream than those in the Bald Cypress Community (Figure 2.2).  

The greater abundance of tupelo resulted in a less open canopy (93% vs. 86% 

canopy cover) and greater stem density than the Bald Cypress community (1268 
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stems·ha-1 vs. 680 stems·ha-1)(Table 2.1). Understory and herbaceous vegetation 

were most similar to the Swamp Tupelo community. Ash (12% of IV) and 

sweetgum (7% of IV) were the most common understory trees, and lizard's tail 

was abundant in all plots (Table 2.1).  Site flooding conditions were similar to 

those in the Swamp Tupelo and Bald Cypress communities, as all three of these 

communities were found within 1.0 to 1.1 m above NAVD88 (Table 2.1).   

4. Pine 

This community contains stands of pine trees in managed forests or, in one case, 

on a hill of earth left over from highway construction (Figure X). With 84% of 

IV, pine trees dominate almost to the exclusion of all other species, although 

sweetgum occurs as an understory tree or rarely in the canopy (Table 2.1). The 

pine trees are homogeneous in height and girth. Canopy coverage is complete 

(99%), and the underbrush is sparse, with occasional yaupon holly being the most 

common shrubs. Herbaceous ground cover is minimal. This community had the 

second-highest average elevation, at 2.17 m above NAVD88 (Table 2.1). 

5. Swamp Tupelo 

This was the most abundant community in our study area, typically occupying 

areas adjacent to the main channel of the river (Figure 2.2). The canopy is 

dominated by swamp tupelo (38% of IV), with sweetgum (10% of IV) and ash 

(23% of IV) occasionally emerging from the understory (Table 2.1). The 

abundance of these trees in the understory contributes to this community having 

the highest average density, at 1500 stems·ha-1. A dense network of surface roots 

creates low hummocks where less flood-tolerant vegetation, such as dwarf 
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palmetto or oaks, can establish. Ground cover is abundant, typically a mixture of 

lizard’s tail and pickerelweed. 

6. Bald Cypress 

These plots represent almost homogeneous stands of bald cypress (45% of IV). 

This community had one of the widest distributions along the tidal gradient and 

therefore included plots subjected to a wide range of salinity regimes. The 

presence of some salt-stressed plots in this community depresses values for basal 

area, density, and canopy coverage (see 2.4.2 and Appendix A). At most sites, 

swamp tupelo is sparsely present in the understory or canopy (17% of IV) (Table 

2.1). Where trees are not subject to salt stress, the uniformly tall canopy and 

complete canopy closure largely exclude understory and underbrush species, but 

sweetgum and red maple are sometimes present. Ground cover is mainly lizard’s 

tail, dwarf palmetto (Sabal minor [Jacq.] Pers.), and pickerelweed (Pontederia 

cordata L.). 

7. Alder/Magnolia 

This community was represented by only one plot (Plot 331) (Figure 2.2), but we 

encountered several similar sites en route to other plots. The plot was on the 

margin of an abandoned rice field, now colonized by giant cutgrass and bisected 

by a tidal creek (Figure 2.2).  Hazel alder (Alnus serrulata [Aiton] Willd.) and ash 

are the most common species, but sweetbay (Magnolia virginiana L.) was more 

abundant here than in any other community (16% of IV) (Table 2.1). The growth 

form of all species is small, branching, and shrub-like. Where trees grow, the 

canopy is dense, but the community is fragmented by stands of Z. miliacea, 
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resulting in a mean canopy coverage of just 59%. This community had the lowest 

elevation at just 0.46 m above NAVD88 (Table 2.1). 

8. Live Oak 

This community is present on several islands on the north bank of the Altamaha 

River and Lewis Creek (Figure 2.2). These islands are the remnants of Pleistocene 

sand dunes, and these soil conditions support a unique xeric plant community 

within the swamp (Wharton et al. 1982). This community had the highest 

elevation, at 6.5 m above NAVD88 (Table 2.1). The canopy is almost exclusively 

live oak (Q. virginianus), with 96% of IV (Table 2.1). The understory is a mixture 

of saw palmetto (Serenoa repens [W. Bartram] Small) and yaupon holly. Only 

one plot occurred in this community, but based on other reports and interpretation 

of aerial imagery, we believe it to be a valid community. 

 

2.5 Discussion 

This study examined the species composition of the Altamaha tidal fresh forest based on 

a field survey of 38 plots. Using hierarchical clustering and indicator species analysis, we 

identified eight distinct forest communities (Table 2.1). Species composition differed 

significantly from community to community based on MRPP analysis (A=0.428, p=0.001). Plot-

level species composition was significantly correlated with elevation and longitudinal river 

distance (Figure 2.7, Table 2.2).   

The tree species and ecological gradients we observed (Table 2.2, Figure 2.7) are 

consistent with existing descriptions of tidal fresh forests in the Southeastern United States 

(Anderson et al. 2013; Conner et al. 2011; Duberstein and Kitchens 2007; Duberstein et al. 2014; 
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Krauss et al. 2009). Bald cypress, swamp tupelo, and water tupelo are the dominant species at 

low-elevation sites (Table 2.1), a pattern documented in prior studies (Duberstein and Kitchens 

2007; Duberstein et al. 2014; Krauss et al. 2009; Tiner 2013; Wharton et al. 1982). At higher 

elevations within the floodplain, oak, sweetgum, and other less flood-tolerant species increase in 

importance (Table 2.1, Figure 2.2) (Wharton et al. 1982). On uplands adjacent to the floodplain, 

forests are composed of flood-intolerant species such as pines and live oak (Table 2.1, Figure 

2.2).  

Additionally, the forest communities we identified through hierarchical clustering (Figure 

2.4, Table 2.1) correspond in part with prior studies of tidal fresh forests in Georgia (Duberstein 

and Kitchens 2007; Duberstein et al. 2014). For example, our Water Tupelo and Swamp Tupelo 

communities appear to be homologous with classes of the same name identified by Duberstein et 

al. (2014), with similar species compositions and distributions of importance values. Water 

tupelo was the dominant species in our Water Tupelo community (IV of 0.43 on a scale of 0-1), 

followed by ash (IV of 0.16) (Table 2.1). In Duberstein et al.’s (2014) study, within their Water 

Tupelo community, water tupelo and ash are also the two most dominant species, with IV of 34.3 

and 14.1, respectively (scale of 0-100) (Duberstein et al. 2014, Table 3). Basal area is also 

comparable, with our Water Tupelo community having 73 m2/ha (Table 2.1) and theirs 70 m2/ha 

(Duberstein et al. 2014, Table 3). This level of agreement gives us high confidence in our results 

for these classes. Stem densities for all of our communities are significantly lower than those 

observed by Duberstein and Kitchens (2014), but this is likely the consequence of different 

sampling methodologies and locations detailed below. 

Unlike prior surveys of tidal fresh forests in the Southeast (Anderson and Lockaby 2011; 

Duberstein and Kitchens 2007; Duberstein et al. 2014), we identified two bald cypress-
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dominated communities: Bald Cypress and Bald Cypress/Tupelo (Table 2.1, Figure 2.4). Bald 

cypress is widely described as codominant with water tupelo in frequently or continuously 

flooded swamps throughout the Southeast (Larson et al. 1981; Tiner 2013; Wharton et al. 1982). 

In our fieldwork, we encountered numerous sites where bald cypress grows in nearly 

monospecific stands, but these areas were patchily distributed, possibly reflecting natural 

gradients and disturbance history (Wharton et al. 1982). Previous studies of tidal fresh forest 

communities on the Altamaha River sampled areas of the forest where bald cypress is less 

abundant (Duberstein et al. 2014; Stahl et al. 2018). Our field sampling sites were more widely 

distributed within the extent of tidal fresh forests in comparison to prior studies on the Altamaha 

River, and our use of stratified random sampling based on a preliminary classification enabled us 

to deliberately target bald cypress-dominated areas. Finally, because our field plots included 

upland areas adjacent to the tidal fresh forest, our community analysis identified several upland 

communities (Live Oak, Pine) not documented in previous studies (See Appendix B). 

Some differences between our results and those of Duberstein et al. (2014) are likely due 

to differences in sampling methodology. Because our focus was on identifying communities 

detectable via remote sensing (canopy down view), vines, herbaceous vegetation, and other 

ground cover were excluded. For instance, the palms Sabal minor and Serenoa repens were 

abundant in some plots. However, unlike Duberstein et al. (2014), we grouped them with 

herbaceous ground cover, noting their presence and estimating their relative abundance without 

measuring individuals. Additionally, we only measured trees larger than 2.5 cm DBH, while 

Duberstein et al. measured all trees and shrubs greater than 1.4 m tall. These choices likely 

account for the disparity in stem density for otherwise similar communities.  
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As a result of the study design and purpose, our classification represents tree species 

communities with a focus on canopy and understory vegetation. While prior studies have placed 

greater emphasis on taxonomic detail across all strata (Duberstein et al. 2014), our 

classification’s focus on dominant canopy species may lend itself better to long-term monitoring 

via remote sensing. The species and species associations identified in this study will be evaluated 

as habitat classes in subsequent analyses using remote sensing imagery. As noted by Duberstein 

et al. (2014), this type of community classification can be a valuable first step prior to remote 

sensing classification. Ideally, this community classification will enable us to produce a remote 

sensing-based classification that better reflects actual ecological gradients than a classification 

based only on spectral separability. One of the challenges of this approach, however, is that 

closely related taxa or communities (especially those with different ratios of the same species) 

may not be spectrally distinct enough to classify accurately (Schriever and Congalton 1995). In 

the next chapter, we will detail the process of applying this community classification to satellite 

remote sensing data to produce a detailed map of forest cover. 

 

2.6 Conclusion 

In conclusion, this study successfully identified eight tidal fresh forest communities using 

hierarchical clustering and supported by additional multivariate statistical analysis. These 

communities correspond well with prior characterizations of tidal fresh forests throughout the 

Southeastern U.S. Overall species distributions and the influence of environmental variables 

(elevation and river distance) were also consistent with existing studies. Compared to prior 

studies, our more widely distributed sample plots better represented the diversity of the Altamaha 

River tidal fresh forest and adjacent upland areas. The results of this study contribute to our 
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understanding of the community and structure of the Altamaha River tidal fresh forests, a 

relatively understudied ecosystem. These results represent an important first step in anticipating 

and managing future threats from tropical storms and sea level rise. 
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2.8 Tables and Figures 

 

Figure 2.1 Workflow for our analyses of Altamaha River tidal fresh forest communities based 

on our ground reference data. 
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Figure 2.2 Location of our field sampling locations within our study area (black outline) on the 

Altamaha River, Georgia. Plots are colored based on the forest community to which they were 

assigned based on hierarchical clustering and indicator species analysis.  
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Figure 2.3 Plot-level importance values (IV) for our 38 sampling locations on the Altamaha River, GA. Bars represent the cumulative 

IV of all species in each plot. Only the eight species with the highest total IV across all plots are shown.
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Figure 2.4 Dendrogram produced by hierarchical clustering using Hellinger distance and Ward 

linkage for 22 tree species from 38 plots in the Altamaha tidal fresh forest. This analysis was 

based on relative species abundance only. Plot names are listed on the left, and community 

names are given for each of the eight groups, with pruning indicated by color.  
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Figure 2.5 Summary of results of indicator species analyses for the Relative Abundance Only 

analysis. Hierarchical clustering was used to group plots (n=38) into 2-10 clusters. For each 

clustering level, an indicator value (IVI) was calculated for each species. P-values are based on 

1000 Monte Carlo simulations with randomized data, then totaled for all species at each 

grouping level (x-axis). The vertical dashed line represents our final pruning level, selected to 

maximize the number of significant indicator species and minimize total p while giving a 

reasonable ecological interpretation. 
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Figure 2.6 Plot of gap statistic values for the Relative Abundance Only hierarchical clustering 

analysis. The vertical dotted line indicates the optimal pruning level of eight clusters. 
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Figure 2.7 NMDS ordination of field plots in species space. Communities are based on the 

Relative Abundance Only analysis. They include: Oak/Hornbeam (red), Water Tupelo (orange), 

Swamp Tupelo (purple), Bald cypress/Tupelo (blue), Bald cypress (yellow), Pine (plots 311 and 

333), Alder/Magnolia (plot 331), and Live Oak (plot 350). Biplot overlays indicate the 

relationship of DEM elevation (above NAVD88) and longitude (“Long”, as a proxy for river 

distance) to plot ordination. Overlays were not statistically derived. Both elevation and longitude 

were significantly correlated with both axes (Table 2.2).
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Table 2.1 Mean importance values for trees and shrubs in each community identified from our Relative 

Abundance Only analysis. Bolded numbers are dominant species that total more than 50% of the importance in each 

community. 
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Table 2.2 envfit results for the Relative Abundance Only analysis showing the correlation 

between NMDS axes 1 and 2 in species space with environmental variables. Elevation is the 

mean plot elevation above NAVD88 derived from a USGS 3DEP DEM of the study area. 

Longitude is the distance in meters west of 0°, and serves as a proxy for river distance. 

  NMDS 1 NMDS 2 r2 p-value 

Elevation -0.88 -0.48 -0.51 < 0.001 

Longitude 0.85 0.53 0.47 < 0.001 
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CHAPTER 3 

CLASSIFICATION OF SATELLITE IMAGERY 

3.1 Introduction 

Tidal fresh forests are widely described as understudied (Anderson et al. 2013; Craft 

2012; Doyle et al. 2007)(Doyle et al. 2007, Craft et al. 2012, Anderson et al. 2013, among 

others), despite their ecological importance and vulnerability to sea level rise. One reason for this 

oversight is the difficulty of conducting fieldwork in wetland ecosystems (Conner et al. 2007; 

Doumlele et al. 1984; Higinbotham et al. 2004; Wharton et al. 1982). Satellite imagery-based 

classification of vegetation is commonplace and enables mapping and monitoring of large spatial 

extents with less dependence on laborious fieldwork (Higinbotham et al. 2004; Ozesmi and 

Bauer 2002). This chapter details our efforts to classify Sentinel-2 Multispectral Imager (MSI) 

satellite imagery of the Altamaha River tidal fresh forest using field data and a Random Forest 

classifier with the goal of maximizing ecological and taxonomic detail. In particular, we wanted 

to accurately classify the forest-marsh transition area to facilitate subsequent temporal change 

analyses (see Chapter 4). 

3.2 Methods 

3.2.1 Sentinel-2 MSI data 

This study employed 10 m spatial resolution 13- spectral band, 12-bit radiometric 

resolution Sentinel-2 MSI data of Altamaha River, GA tidal marsh and tidal fresh forests (Figure 

1.1). These data are freely available from the European Space Agency’s (ESA) Copernicus data 

hub (scihub.copernicus.eu). The Sentinel-2A satellite was launched in 2015, and the Sentinel-2 

constellation became fully operational with the launch of the second satellite (Sentinel-2B) in 
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March 2017, reducing the revisit time to five days (Persson et al. 2018). The MSI sensor has 13 

spectral bands ranging from 0.443 to 2.19 μm (Table 3.1). It produces imagery with a 10 m 

spatial resolution in the visible (VIS) and near-infrared (NIR) spectra and a 20 m resolution for 

red edge and shortwave infrared (SWIR) (Immitzer et al. 2016). These bands can produce true 

color (4,3,2) and color infrared (CIR) (8,4,3) images as well as a wide variety of spectral indices 

which can be used to emphasize specific vegetation attributes, including chlorophyll content, 

water content, and biomass (Asner 1998). The horizontal geolocation error of Sentinel-2 data is 

less than its 10 m pixel size, and both L1C (top of atmosphere) and L2A (surface reflectance) 

data are pixel-registered and orthorectified (Vajsova and Åstrand 2017). Therefore, pixel values 

should accurately represent the spectral reflectance of ground-truth locations, and be directly 

comparable between multiple images (Langston et al. 2021). 

The first image classified was acquired on May 28, 2021. This image was chosen because 

it was collected during our fieldwork (see section 2.2), facilitating visual interpretation. 

Additionally, the image was cloud-free and captured at a low tide. The image was delivered in 

the atmospherically corrected L2A format.  Pre-processing was performed with the Sen2Cor280 

processor in the Sentinel Application Platform (SNAP) (step.esa.int). All bands were resampled 

to a 10 m resolution to match the visible and NIR bands, and the image was reprojected to the 

NAD 1983 (2011) UTM Zone 17N (EPSG 6346) coordinate system. Using ENVI 5.6.1 (L3 

Harris Geospatial, Boulder CO), images were subset to the study area. A normalized difference 

vegetation index (NDVI) (Table 3.2) image was produced, and pixel values below 0.1 were 

excluded, as very low index values indicate water (Svejkovsky et al. 2020). This mask was 

applied to the original image to effectively exclude water pixels. Additionally, several areas in 

the image were clipped out using manually delineated polygons. These areas are impoundments 
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on Rockedundy Island, which are managed for waterfowl as part of the Altamaha Wildlife 

Management Area (WMA), and rice fields on Butler and Champney Islands, which are still 

under active cultivation (Higinbotham et al. 2004). Although the entire study area has been 

subject to extensive human modification, these areas are still actively managed and are not 

subject to the same hydrologic dynamics as the surrounding study area and therefore support 

atypical vegetation communities.  

In addition to the Sentinel-2 data, two other sources of imagery were used to identify tidal 

fresh forest species: one-meter spatial resolution National Agricultural Imagery Program (NAIP) 

imagery from the US Department of Agriculture accessed via ArcGIS’ Living Atlas (7/4/2021) 

and 15 cm aerial imagery collected in 2018 as part of an NSF RAPID project (Award 1803166; 

(Alber et al. 2019). Both datasets have four spectral bands: Red, Green, Blue, and NIR, 

permitting true color and CIR visualization. The higher spatial resolution of these datasets was 

helpful when interpreting the 10 m Sentinel-2 data and delineating training data. 

3.2.2 Training Data 

 The Random Forest classifier requires data to train and validate the classification 

algorithm. Training and validation pixels were identified based on field observations and 

supplemented with user-defined regions of interest (ROIs). ROI polygons were manually 

delineated in ArcGIS Pro 2.9.2 (ESRI) using the Sentinel-2 MSI and high-resolution (0.15 m 

spatial resolution) aerial imagery as reference. Image interpretation and plant identification were 

aided by personal experience in the field and field notes and photographs taken at each plot 

location during field surveys (see Chapter 2.2). Class delineation was an iterative process 

primarily determined by spectral separability. Our initial goal was to determine if the remote 

sensing classification could be based on the taxonomically and ecologically distinct communities 
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identified in Chapter 2. However, several closely related species were not spectrally separable at 

the spatial resolution of the Sentinel-2 MSI sensor. For instance, water tupelo and swamp tupelo 

are visually distinct and occupy different ecological niches but have extremely similar spectral 

signatures and, as a consequence, had to be combined into a single class at the genus level. Live 

Oak and Oak/Hornbeam forest also had similar spectral signatures. However, we were confident 

that including a LIDAR-derived digital elevation model (DEM) as one of the classifier predictor 

variables would minimize confusion, as these two classes occupy markedly different elevation 

ranges. After editing ROIs, the shapefiles were exported from ArcGIS Pro and imported into 

ENVI 5.6.1, where spectral statistics and class separability were calculated (Appendix E). This 

process was repeated until an acceptable compromise between ecological fidelity and spectral 

separability was obtained. Our final classification contained 21 classes (Table 3.2). Minor classes 

and those composed of mixed vegetation had low separability values based on spectral data alone 

but were preserved on the basis that the inclusion of a DEM and the performance of the Random 

Forest model would produce acceptable results. An additional class, “Pine/Sweetgum”, which 

was not represented in our field sites, was identified from aerial imagery. 

 For each image date, ROI polygons from all classes were divided randomly into training 

and validation groups in a 60:40 ratio (Table 3.2). These ROI polygons were converted into point 

features centered on the 10 m Sentinel-2 pixels.  

3.2.3 Image Classification 

This project used a Random Forest machine learning classifier (Breiman 2001). This 

technique is widely used in vegetation mapping (Immitzer et al. 2012; Persson et al. 2018; Smart 

et al. 2020), and others) and accepts a variety of inputs, including satellite imagery and LiDAR 

elevation and texture images. Random Forest classifiers work by producing a set of decision 
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trees, each based on a different subset of training data. Classification results are calculated by 

averaging the outputs of a large number of independent trees. This approach helps Random 

Forest classify highly correlated or collinear datasets without overfitting the model to the training 

data (Immitzer et al. 2016). The randomized construction of decision trees also permits 

calculation of the relative importance of each input feature, which can be used to assess the 

influence of elevation and related variables on species distributions. 

The volume of training data for each class varied widely, from just 48 pixels for Panicum 

virgatum to more than 3000 for Zizaniopsis miliacea (Table 3.1). Because of this, a Balanced 

Random Forest approach was used (Chen et al. 2004). Rather than drawing bootstrap samples in 

proportion to the total number of samples, Balanced Random Forest reduces the proportion of 

large classes and increases the proportion of minor classes. In our case, the number of training 

samples was limited to 20 times the smallest class (P. virgatum). Due to changes in the total 

number of training data for each class, unique balancing values were calculated for each year. 

Supervised classification of imagery was carried out with the Random Forest classifier 

using the R package randomForest (Liaw and Wiener 2002). The classification included the 

following raster predictor variables: Sentinel-2 MSI spectral bands (12 separate raster bands), 

seven vegetation indices (MNDWI, NDMI, ARI 1, SGI, NDBI, GDVI, ARI 2), and a DEM 

(Table 3.1). Because of the strong influence of flooding on species distributions, elevation data is 

widely used in the classification of coastal vegetation (Borchert et al. 2018; Hladik et al. 2013; 

Ury et al. 2021). A 2-meter horizontal resolution LIDAR DEM of the study area was 

downloaded from NOAA’s Digital Coast (coast.noaa.gov) and resampled to 10 m resolution to 

match the Sentinel-2 MSI data. Note that the LIDAR DEM was not corrected for potential 

vegetation biases (Hladik and Alber 2012). By calculating the ratio between two or more spectral 
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bands, vegetation indices emphasize unique spectral characteristics of different species and can 

increase the classification accuracy of multispectral data (Gerstmann et al. 2016; Klemas 2013). 

The Spectral Indices tool in ENVI was used to calculate 48 vegetation indices. These VIs were 

used as input for a Random Forest classification. The seven vegetation indices which performed 

the best based on caret’s varImp function were retained and included in the final classification 

(Table 3.1). The pixel values for each of the raster predictor variables were extracted for the 

training dataset. As part of the post-classification procedures, pixel aggregation was applied to 

remove the salt and pepper appearance of classified images. In this process, all groups of fewer 

than five raster cells were replaced by values from the surrounding cells.  

3.2.4 Variable Importance and Accuracy assessment  

The primary Random Forest outputs used in this analysis were class value and variable 

importance for each predictor variable measured as the mean decrease in accuracy. Random 

forest quantifies this measure by estimating how much prediction error decreases when each 

variable is removed from the tree (Breiman 2001). Several statistics were calculated following 

classification and pixel aggregation. Classification accuracy was calculated based on the out-of-

bag error estimates. Additionally, classification accuracy was evaluated by constructing a 

confusion matrix and calculating the overall accuracy, producer’s accuracy, user’s accuracy, and 

errors of omission and commission (Congalton 1991) using the reserved validation data that 

were not used to train the classifier.  

3.3 Results 

Overall accuracy for the May 28, 2021 Sentinel-2 MSI image was 84.6%, with a Kappa 

coefficient of 0.81 (Table 3.3). Individual class accuracies range from 100% for Pine/Sweetgum 
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to 27% for Panicum virgatum (Table 3.4). All purely forested classes performed well, with 

Oak/Hornbeam having the lowest accuracy at 77% and Pine/Sweetgum having the highest 

accuracy at 100% (Table 3.4). Salt-Stressed Tidal Forest (a composite community containing 

both tidal fresh forest and marsh vegetation) was overclassified at the expense of several tidal 

fresh marsh classes (commission error 45%) (Table 3.3). Salt-Stressed Tidal Forest was most 

commonly confused with bald cypress (14%), P. virgatum (11%), and Zizaniopsis miliacea (7%) 

(Table 3.3). In general, forest classes had higher producer’s and user’s accuracies compared to 

marsh classes (Table 3.4). Tidal marsh class accuracies ranged from 27% for P. virgatum to 94% 

for Juncus roemerianus. P. virgatum was confused with Spartina cynosuroides (which occupies 

the same habitat) 38% of the time (Table 3.3). 

The spatial distribution of classes within the image (Figure 3.2) generally corresponds 

well with expected species distribution patterns and observations in the field. Salt marsh 

vegetation such as smooth cordgrass (S. alterniflora Loisel.) dominate low-elevation sites near 

river/creek banks in the eastern part of the study area, replaced by J. roemerianus at slightly 

higher elevations in brackish marshes. Further upstream, S. americanus covers large expanses of 

Broughton Island, eventually giving way to the tidal fresh marsh species Z. miliacea. Salt-

Stressed Tidal Forest is found along the upstream margin of the tidal fresh marsh, particularly 

along the banks of creeks and drainage ditches (Figure 3.2). Tupelo and bald cypress are 

abundant at lower elevations near river/creek banks. Tupelo is the most abundant class, covering 

37.8 km2, 25% of the study area (Table 3.5). Mixed floodplain forest occupies higher elevations 

that are less frequently flooded, and floodplain oak communities are found on river berms and 

the floodplain-upland boundary.  
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Upland areas are defined by human activity, with monoculture pine plantations 

dominating the southern bank of the Altamaha along with Pine/Sweetgum, an early successional 

class in clear-cuts. The exception is the live oak community found on several isolated islands in 

the northern part of the study area which are protected in the Altamaha WMA, and whose high 

elevation and sandy soils prevent colonization by flood-tolerant species.  

Of the 20 predictor variables, elevation was the most important as measured by caret’s 

varImp function (Mean Decrease in Accuracy of 282) (Figure 3.3). The most important spectral 

bands were Coastal Aerosol (B1) (Mean Decrease in Accuracy: 158), Vegetation Red Edge 1 

(B5) (Mean Decrease in Accuracy: 149), SWIR 2 (B12) (Mean Decrease in Accuracy: 135), and 

SWIR 1 (B11) (Mean Decrease in Accuracy: 126) (Figure 3.3). The Red (B4) (Mean Decrease in 

Accuracy: 84) and NIR (B8) (Mean Decrease in Accuracy: 72) were among the least important. 

The most helpful vegetation indices were the Modified Normalized Difference Water Index 

(MNDWI) (Mean Decrease in Accuracy: 152) and Normalized Difference Mud Index (NDMI) 

(Mean Decrease in Accuracy: 137). Adopting a Balanced Random Forest approach gave a 5% 

improvement in overall OOB error rate over a standard Random Forest classification with all the 

same other parameters. 

3.4 Discussion 

This study represents the first detailed, remote sensing-based classification of the tidal 

fresh forests on the Altamaha River. We mapped 21 tidal forest and marsh vegetation classes 

(Figure 3.2) using moderate spatial resolution Sentinel-2 MSI satellite imagery and the Random 

Forest classifier and achieved an overall accuracy of 84.6% (Kappa = 0.81) (Table 3.3).  

The overall classification accuracy is comparable to, or greater than, other detailed 

satellite remote sensing classifications of forest ecosystems. Mickelson et al. (1998)mapped 33 
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land cover classes in northwestern Connecticut forests using 30 m spatial resolution Landsat 

Thematic Mapper (TM) data, with an overall accuracy of 79%. Sheeren et al. (2016) classified 

17 tree species using 8-meter, 4-band Formosat data. Despite this low spectral resolution, their 

Random Forest classification achieved an overall kappa of 0.9 and overall accuracy of 93%. 

Clark (2020) mapped forest types in California at a forest alliance level based on the U.S. 

National Vegetation Classification, achieving an overall accuracy of 74.3% for 16 classes using 

Sentinel-2 data and a Support Vector Machine (SVM) classifier. (See Appendix B for an 

explanation of the USNVC classification system).  

In all of these studies, misclassification was generally the result of confusion between 

classes with closely related species or mixed classes with similar species compositions (Clark 

2020; Mickelson et al. 1998; Sheeren et al. 2016). For example, in his classification of Sentinel-2 

imagery, Clark (2020) had a producer’s accuracy of just 12.8% for Black Oak (Quercus 

kelloggii), which was mainly confused with Oregon white oak (Quercus garryana), a more 

abundant species in the same genus. Mixed classes (those containing two or more species) 

present a similar challenge, as their spectral characteristics are a hybrid of their constituent 

species (Mickelson et al. 1998). Mickelson et al. (1998) had several mixed classes with the same 

dominant species, distinguished only by differences in codominant or understory species. For 

example, among their ten oak-dominated classes, 74% of total commission errors were the result 

of confusion with other oak-dominated classes (Mickelson et al. 1998). Errors in our 

classification followed similar patterns. For instance, S. americanus was misclassified as its 

congener S. tabernaemontani 15% of the time, and Oak/hornbeam was confused with Live Oak 

11% of the time. (Table 3.3). These types of errors are to be expected, given the similar spectral 

characteristics of these classes.  
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As in this study, all of these classifications attempted to identify trees at the genus or 

species level (Clark 2020; Mickelson et al. 1998; Sheeren et al. 2016). As described above, this 

introduces issues with spectral separability, which these studies resolved by using multi-season 

or time series imagery to exploit differences in phenology between closely related species (Clark 

2020; Mickelson et al. 1998; Sheeren et al. 2016). The high classification accuracy we achieved 

for 21 classes with a single image date demonstrates the capabilities of the Sentinel-2 MSI 

sensor. Using multi-date imagery could improve accuracy or permit an even more detailed 

classification. For instance, we might be able to resolve water tupelo and swamp tupelo, which 

we were forced to merge due to a lack of spectral separability.  

In a study closely related to this analysis, Smart et al. (2020) achieved an overall 

accuracy of 85% using Random Forest to classify Landsat imagery of ghost forests in North 

Carolina. Another similar study by Ury et al. (2021)used Landsat data to monitor forest-marsh 

transition. Unlike Smart and Ury, we did not identify a specific “ghost forest” class. Some relict 

dead cypress trees are present in what is now brackish marsh, but they were not numerous or 

dense enough to be spectrally separable from the surrounding marsh vegetation (Appendix E). 

Our nearest comparable class was “Salt-Stressed Tidal Forest”, a transitional forest state which 

contains both living and dead trees, as well as marsh vegetation.  

The detailed classification results in this study represent a substantial improvement over 

existing classifications of coastal ecosystems, particularly those which focus on the wetland-

upland boundary. These studies typically use broad land cover classes such as open water, tidal 

marsh, transitional forest, and upland (Raabe and Stumpf 2015); marsh, ghost forest, and forest 

(Smart et al. 2020); and sometimes low spatial resolution MODIS data (White and Kaplan 2021). 

While such classification schemes have their uses, a classification with more detailed classes and 
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higher spatial resolution has several advantages. Because species have different tolerances for 

salinity, a single “forest” or “marsh” class may not accurately identify the areas at risk of 

salinization. For instance, the Georgia coast has extensive tidal freshwater marshes, which have 

very low tolerance to salinity (Solohin et al. 2020). Tidal fresh marshes are more productive and 

ecologically diverse than the more saline downstream brackish and salt marshes (Solohin et al. 

2020), but any transition from tidal freshwater marsh to brackish or salt marsh would not be 

captured by a single “marsh” class.  

Similarly, tidal fresh forest species have varying salinity tolerances. Of all tidal fresh 

forest vegetation native to Georgia, bald cypress has the highest salinity tolerance, capable of 

surviving chronic exposure of 3-4 psu (Duberstein et al. 2020). Therefore, as rising salinity 

causes mortality in other tidal fresh forest species, bald cypress could increase in dominance in 

areas affected by saltwater intrusion (Krauss et al. 2009). Our ability to accurately classify bald 

cypress (producer’s accuracy of 80%) demonstrates the viability of monitoring this trend via 

satellite remote sensing. 

The vegetation distributions in our classified image (Figure 3.2) are consistent with 

existing research on the Altamaha and other similar systems and reflect the physiological 

constraints imposed by salinity and flooding (Wharton et al. 1982). The distribution of marsh 

vegetation is broadly consistent with prior studies of the Altamaha estuary, with three major 

zones visible: tidal fresh, brackish, and salt (Wiegert and Freeman 1990). S. alterniflora is most 

abundant downstream in salt marshes, where salinities are highest (White and Alber 2009). S. 

cynosuroides increases in dominance further upstream in brackish areas (<15 psu) (White and 

Alber 2009). Juncus roemerianus is the dominant brackish marsh plant, particularly in higher 

elevation, less frequently flooded areas of Broughton Island and Rockedundy Island 
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(Higinbotham et al. 2004). Tidal fresh marshes extend from the western edge of Broughton 

Island upstream to the margin of the tidal fresh forest and are dominated by Z. miliacea and S. 

tabernaemontani (Higinbotham et al. 2004). 

The dominance of our Tupelo class (38 km2, 25% of the total study area) supports the 

findings of Duberstein et al. (2014), who documented the dominance of both water tupelo and 

swamp tupelo in the Altamaha tidal fresh forest (Duberstein et al. 2014). The effects of drainage 

ditches and natural creeks on vegetation distributions are clearly visible (Figure 3.2). These 

features can accelerate forest-marsh transition by facilitating saltwater intrusion and subsequent 

elevation loss due to erosion and subsidence (Bhattachan et al. 2018; Poulter et al. 2008). In our 

classified image, they appear to be associated with the presence of Salt-Stressed Tidal Forest 

(Figure 3.2) (Doyle et al. 2021). Unlike other classifications of the tidal forest/tidal marsh 

boundary (Smart et al. 2020; Ury et al. 2021), we found little to no shrub/scrub vegetation. In 

these studies, shrubs represented a transitional state between forest and marsh (Smart et al. 2020; 

Ury et al. 2021), but in our classified image (Figure 3.2), the transition from tidal fresh marsh to 

tidal fresh forest is quite abrupt, and shrub/scrub vegetation is limited to creek banks.   

Of the 20 predictor variables, elevation was most important as measured by caret’s 

varImp function (Mean Decrease in Accuracy: 282) (Figure 3.3). This result reinforces the 

findings of prior studies (Alexander and Hladik 2015; Hladik et al. 2013; Huylenbroeck et al. 

2020) and emphasizes the importance of maintaining accurate, up-to-date elevation data of 

coastal regions. Similar to other studies, our results show the importance of the blue and SWIR 

bands for vegetation mapping and the relative unimportance of the red and NIR (Grybas and 

Congalton 2021; Immitzer et al. 2016; Persson et al. 2018). Blue wavelengths are sensitive to 

chlorophyll content, which may explain the importance of Band 1 (Grybas and Congalton 2021). 
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The reflectance of senescing vegetation peaks in the SWIR wavelengths and well-timed 

autumnal images can maximize spectral separability by capturing plant species at different stages 

of senescence (Mickelson et al. 1998; Persson et al. 2018), and others). The high importance 

values of the SWIR bands in our classification are likely elevated because of our choice of 

autumn image dates.  

Interestingly, across previous studies, differences in spatial resolution do not seem to 

have a large impact on forest classification accuracy (Clark 2020; Sheeren et al. 2016), and 

others). Spatial resolution is always a tradeoff between spectral and radiometric resolution, data 

size, expense, and areal coverage. Our results and others (Immitzer et al. 2016; Persson et al. 

2018; Sunde et al. 2020; Svejkovsky et al. 2020), and others) suggest that many forest canopies 

are homogeneous enough at 10 m resolution that smaller pixels may increase within class 

variability and lead to greater classifier error.  As tidal marsh classes were more mixed and 

generally had lower classification accuracies in our study, they may have more accurate results 

using a smaller pixel size. A higher resolution DEM would be particularly valuable, as the 

elevation differences between marsh species at a 10 m spatial resolution are not great enough to 

overcome the spectral ambiguity of mixed pixels. Alternatively, species-level classes could be 

combined into more general species associations when using coarser spatial resolution imagery. 

The potential future applications of a detailed habitat classification are manifold. Remote 

sensing studies are widely used for temporal change studies in coastal ecosystems where the 

areal extent or rate of change makes on-the-ground sampling impractical (Ozesmi and Bauer 

2002; Svejkovsky et al. 2020; Ury et al. 2021) (See Chapter 4). In conjunction with appropriate 

ground reference data, reflectance data can be linked to various biophysical variables such as leaf 

area, water content, and nutrient deficiency (Asner 1998)(Asner 1998). With LiDAR data, which 
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provides more information on forest structure, detailed estimates of biomass and carbon 

dynamics are possible (Schumacher et al. 2019; Smart et al. 2020). Finally, our vegetation map, 

in combination with a DEM, river discharge data, and data on tidal fresh forest species salinity 

tolerance, could be used to create a model of tidal fresh forest response to sea level rise 

analogous to the Sea Level Affects Marshes Model (SLAMM) (Craft et al. 2009). 

3.5 Conclusions 

  The results of this study demonstrate that detailed, accurate classification of tidal fresh 

forests is possible using freely available, moderately high-resolution Sentinel-2 MSI satellite 

imagery. We mapped 21 classes of tidal marsh and forest vegetation with an overall accuracy of 

84.6%. This represents a substantial improvement in ecological detail over existing remote 

sensing classifications of similar ecosystems, with little to no reduction in overall accuracy. 

Importantly, we were able to effectively discriminate between forests undergoing forest-marsh 

transition and both marsh and healthy forest vegetation. These results show potential for ongoing 

monitoring of tidal fresh forests and modeling of potential tidal forest loss. 
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3.7 Figures and Tables 

 

Figure 3.1 Workflow for our Balanced Random Forest classification of Sentinel-2 MSI data. 
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Figure 3.2. Final Balanced Random Forest classified image for the 05/28/2021 image date with 

21 land cover classes. Overall classification accuracy was 84.6%. The classified image was 

smoothed with a 5-pixel minimum aggregation applied prior to accuracy assessment.
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Figure 3.3 Variable importance values for predictor variables in our Balanced Random Forest 

classification of the 05/28/2021 image. The Y-axis shows predictor variable input bands: a 

digital elevation model (DEM), twelve Sentinel-2 MSI spectral bands, and seven vegetation 

indices derived from the MSI data (See Table 3.2). The X-axis shows the mean decrease in 

accuracy; that is, how much the average error rate increases when a variable is excluded. 
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Table 3.1 Land cover reference data for training and validation for the 05/28/2021 Random Forest image 

classification generated based on ground reference data and visual interpretation of orthoimagery. Cover class is 

the classified habitat grouping. The description column details vegetation in each class. Habitat indicates the 

salinity range: BM is brackish marsh, TFF is tidal fresh forest, and TFM is tidal fresh marsh. Plots are the 

number of ground reference sites surveyed for each cover class. Training and validation pixels are the numbers 

of pixels used to train and validate the classification. 
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Table 3.2 Names and descriptions of the predictor rasters used for Balanced Random Forest classifications. All predictor bands were 

resampled to a 10 m resolution to match the visible and NIR bands, and the image was reprojected to the NAD 1983 (2011) UTM 

Zone 17N (EPSG 6346) coordinate system. 
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Table 3.3 Balanced Random Forest confusion matrix for tidal forest and tidal marsh cover classes for the Sentinel-2 MSI image collected 

05/28/2021. Columns represent reference data (what the pixel actually was based on validation data), and rows represent image data (what the pixel 

was classified as). Shaded cells are those where the classification was accurate. Percentages are rounded to the nearest decimal place and may not 

sum to 100% for each cover class. Overall classification accuracy was 84.6%.
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Table 3.4 Balanced Random Forest classification errors of commission, errors of omission, 

producer’s accuracies, and user’s accuracies for each cover class for the 05/28/2021 image. 

Percentages are rounded to the nearest decimal place and may not sum to 100% for each cover 

class. 
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Table 3.5 Land cover composition of the Altamaha tidal fresh forest study site from the 

05/28/2021 image. Class area is in square kilometers. Percentages have been rounded to the 

nearest decimal place and may not sum to 100. 
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CHAPTER 4  

TEMPORAL CHANGE 

4.1 Introduction 

  Hurricanes are a major source of ecological disturbance in coastal regions (Ross et al. 

2020) and have been implicated in tidal fresh forest dieback and marsh transgression (Ury et al. 

2021). In 2016 and 2017, the Georgia coast was impacted by two major tropical storms: Matthew 

and Irma (Cangialosi et al. 2018; Stewart 2017). Hurricane Irma (2017) was one of the most 

powerful storms recorded on the Georgia coast in the last century (Alber et al. 2019). The 

damage from hurricane-force winds and storm surges has immediate impacts on tidal fresh forest 

health, and long term can precipitate shifts in vegetation distributions (Middleton 2016). One of 

the major advantages of satellite remote sensing is the ability to monitor change over time 

without the need to make repeated visits to the field (Ozesmi and Bauer 2002). This is 

particularly advantageous for studying ecosystem response to hurricanes, as a single satellite 

image instantaneously captures a spatially explicit measure of the storm’s impact, and the regular 

re-imaging of the site simplifies tracking the long-term effects (Svejkovsky et al. 2020). 

The overall objective of this chapter was to classify six Sentinel-2 Multispectral Imager 

(MSI) images taken annually from 2016 to 2021 and use these classified images to track changes 

in vegetation distributions. These images capture the effects of hurricanes Irma (2017) and 

Matthew (2016) on the tidal fresh marshes of the Altamaha River. The Random Forest classifier 

was used to identify between 21 and 23 vegetation classes on each date, and change detection 

analysis was used to quantify changes. Of particular interest were any land cover shifts near the 

marsh-tidal forest boundary.  
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4.2 Methods  

4.2.1 Sentinel-2 Multispectral Imager Data 

Images from the Sentinel-2 MSI were acquired from the Copernicus Open Access Hub 

provided by the European Space Agency (ESA) (scihub.copernicus.eu). Six anniversary images, 

taken each fall from 2016-2021, were used to assess change over time (Table 4.1). Fall image 

dates were chosen to capture any damage from hurricanes and to maximize spectral separability 

by exploiting variation in seasonal senescence between species (Mickelson et al. 1998; Persson 

et al. 2018). The 2016 image was delivered in the non-atmospherically corrected L1C format and 

was atmospherically corrected using the Sen2Cor 280 processor in the Sentinel Applications 

Platform (SNAP) (step.esa.int). Images captured since 2016 were provided in the L2A format 

with atmospheric correction pre-applied (Table 4.1, Figure 4.1).  

 

4.2.2 Training and Validation Data 

The Random Forest classifier requires data to train and validate the classification 

algorithm. Training and validation pixels were identified based on field observations and 

supplemented with user-defined regions of interest (ROIs). ROI polygons were manually 

delineated in ArcGIS Pro 2.9.2 (ESRI) using the Sentinel-2 MSI and high resolution (0.15 m 

spatial resolution) aerial imagery (acquired as part of an NSF RAPID grant (Alber et al. 2019))  

as reference. Image interpretation and plant identification were aided by personal experience in 

the field and field notes and photographs taken at each plot location during field surveys (see 

Chapter 2.2). The classes used in our classification of the May 28, 2021, image were used for all 

other image dates, with the addition of another marsh class (Juncus/Schoenoplectus) that was not 

present in 2021.  
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Based on visual interpretation of the high-resolution aerial imagery, most classes 

exhibited relatively limited change throughout the study period, so by positioning ROIs away 

from the transitional areas between vegetation types, we could the same training and validation 

ROIs for all image dates. The exceptions were Wrack, Mud, and the Juncus/Schoenoplectus 

class. Wrack was abundant in the 2017-2018 images but decreased in abundance throughout our 

sampling period and was absent entirely in 2020 and 2021 (Table 4.2). In places where wrack 

has lain for extended periods, the marsh vegetation will die, and a mudflat will form (Wiegert 

and Freeman 1990). To accurately classify these classes, we drew unique training and validation 

polygons for Wrack and Mud for each year. The Juncus/Schoenoplectus class was primarily 

confined to Rockedundy Island but exhibited a dramatic shift in range and robustness throughout 

the study period. In 2016 it appeared healthy and had a north-south distribution, but by 2020 it 

was concentrated on the southern bank of the island and by 2021 had disappeared entirely and 

been replaced by Juncus roemerianus and medium Spartina alterniflora. As with Mud and 

Wrack, we adjusted the training and validation polygons to accommodate these shifts. Because 

of this, the number of classes and training and validation pixels varied with each image date 

(Table 4.2). From 2016 to 2019, we had 23 classes (Table 4.2). In 2020 there were 22 classes due 

to the absence of Wrack, and in 2021, 21 classes due to the absence of both Wrack and 

Juncus/Schoenoplectus (Table 4.2).  

4.2.3 Image Classification 

Classification of all images proceeded using the same methodology as the initial 

classification in Chapter 3. Classification was performed in R version 4.1.0 (R Core Team 2021) 

using the randomForest package (Liaw and Wiener 2002). Because of the large differences in 

class sizes in our training and validation datasets, we used a Balanced Random Forest approach, 
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which reduces the proportion of large classes and increases the proportion of minor classes. In 

our case, the number of training samples was limited to 20 times the smallest class (Panicum 

virgatum). Raster predictor bands included all twelve Sentinel-2 MSI spectral bands, a digital 

elevation model (DEM), and seven vegetation indices derived from the MSI data (Table 3.1). 

Following classification and post-classification smoothing, classification accuracy was evaluated 

by constructing a confusion matrix and calculating the overall accuracy, producer’s accuracy, 

user’s accuracy, and errors of omission and commission (Congalton 1991) using the reserved 

validation data that were not used to train the classifier. 

4.2.4 Change Detection Analysis 

Temporal change between classified images was calculated in ENVI 5.6.1 (L3 Harris 

Geospatial, Boulder, CO) using the Thematic Change Workflow tool. Change was calculated 

between each subsequent year (2016-2017, 2017-2018, 2018-2019, 2019-2020, and 2020-2021) 

and over the entire study period (2016-2021). Outputs included areal change statistics and to-

from pixel statistics, which were arranged in a change matrix and used to calculate percent 

change. To examine larger-scale trends that might be obscured by classification error, we merged 

our detailed marsh classes into three: salt marsh, mesohaline marsh, and tidal fresh marsh, and 

performed a final temporal change analysis for the 2016-2020 period. 

 

4.3 Results 

4.3.1 Image Classification 

Sentinel-2 MSI imagery was classified using the Random Forest classifier, and standard 

confusion matrices were generated to assess image and class accuracies. Overall classification 

accuracies ranged from 82% in 2016 to 86 % in 2021, with reasonably consistent class 
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accuracies for major classes (Table C1, Figure D1). Pine/Sweetgum and S. americanus were the 

most accurately classified across image dates, with producer’s accuracies ranging from 97% to 

100% and 93% to 99%, respectively (Table C2). Salt-Tolerant Shrubs and P. virgatum were 

consistently least accurate, with producer’s accuracies ranging from 36% to 51% and 27% to 

70%, respectively. (Table C2). Salt-Tolerant Shrubs were most commonly confused with J. 

roemerianus, Zizaniopsis miliacea, and Spartina cynosuroides (Table C1a-C1f). P. virgatum was 

most commonly confused with S. cynosuroides and J. roemerianus (Table C1a-C1f). Among 

forest classes, Salt-Stressed Tidal Forest and Oak/Hornbeam were the least accurately classified 

across our six image dates (Table C2). Producer’s accuracy for Salt-Stressed Tidal Forest was 

highly variable, ranging from 20% in 2018 to 76% in 2016. Salt-Stressed Tidal Forest was 

mainly confused with Z. miliacea and Tupelo classes (Table C1a-C1f). Oak/Hornbeam was 

somewhat more consistent, with producer’s accuracies between 40% (2019) and 70% (2018) 

(Table C2). Confusion was mainly between Pine and Live Oak classes (Table C1a-C1f). Besides 

P. virgatum, Tall S. alterniflora and Cladium jamaicense were the least accurately classified 

marsh classes. Tall S. alterniflora producer’s accuracies ranged from 41% to 70% (Table C2), 

and it was commonly confused with Medium S. alterniflora and S. cynosuroides (Table C1a-

C1f). Producer’s accuracies for C. jamaicense ranged from 36% to 65% (Table C2), and it was 

commonly confused with Schoenoplectus tabernaemontani (Table C1a-C1f). 

Elevation was consistently the most important predictor variable as assessed by caret’s 

varImp function (Kuhn 2008). The digital elevation model (DEM) was ranked as the most 

important variable in all classifications except Sept. 25, 2021, when it ranked second (Table C3). 

Of the Sentinel-2 spectral bands, the Coastal Aerosol band (B1, 443 nm) was consistently the 

most important (Table C3). The Vegetation Red Edge (B5, 705 nm) and Water Vapor (B9, 945 
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nm) bands were also among the most important predictors (Table C3). As in the May 28, 2021 

classification, NDMI and MNDWI were the most important vegetation indices for all other 

image dates (Table C3). 

4.3.2 Overall Temporal Change  

We did not observe substantial changes from any forest class to any marsh class for our 

study period from 2016 to 2021 (Table D1f, Figure D1a, and Figure D1f). Most land cover 

classes were consistently distributed, with only moderate changes at the edges of zones (Figures 

D1a and D1f). The classes with the greatest reductions in area were wrack, 

Juncus/Schoenoplectus, and C. jamaicense. Both wrack and Juncus/Schoenoplectus lost 100% of 

their area between 2016 and 2021. C. jamaicense lost 0.26 km2, 38% of its initial area (Table 

D1f). The class with the greatest increase in area was Tupelo, which gained 9 km2. The most 

stable classes were Iva frutescens/S. alterniflora, which decreased in area by just 0.02 km2, and 

Pine, which increased by 0.4 km2. Between 2016 to 2021, Salt-Stressed Tidal Forest showed a 

slight increase in total area from 9.17 to 9.83 km2, but only 47% of initial state Salt-Stressed 

Tidal Forest pixels remained in the same class in 2021 (Table D1f). Of the initial state pixels, 

18% changed to Z. miliacea in 2021, and 13% changed to Tupelo (Table 4.3). 

4.3.3 Temporal Change from Year-to-Year 

There were substantial year-to-year fluctuations in the total area of land cover classes, 

making it difficult to discern a trend in land cover change from classification error (Table 4.2). 

For example, from 2020 to 2021, Tupelo increased in total area from 21 to 36 km2 (Table 4.2). In 

the same interval, the mixed deciduous floodplain class decreased from 17 to 11 km2 (Table 4.2). 

Tidal marsh classes were equally variable, with some classes (e.g., Z. miliacea) nearly doubling 

in area in a single year (Table 4.2). Salt-Stressed Tidal Forest increased from 6.81 to 12.69 km2 
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between 2017 and 2018 before declining to 8.06 km2 the following year (Table 4.2). The 

majority of these changes occurred between marsh classes and other marsh classes or forest 

classes with other forest classes, which gives us confidence in monitoring forest-marsh 

transition. The exception was Salt-Stressed Tidal Forest, which frequently gained and lost pixels 

to Z. miliacea, S. tabernaemontani, and other tidal freshwater marsh classes. For example, 39% 

(3.6 km2) of Salt-Stressed Tidal Forest in 2016 became Z. miliacea in 2017, but the following 

year (2017-2018), 10% of Z. miliacea (1.7 km2) became Salt-Stressed Tidal Forest (Table D1a-

D1f).  

4.3.4 Temporal Change with Merged Marsh Classes 

When tidal marsh classes were merged into salt marsh, mesohaline marsh, and tidal fresh 

marsh classes, change from 2016-2021 between marsh classes and between forest and marsh was 

reduced (Table D1g). From the total 84 km2 area of all forest classes, only 0.02 km2 (0.024%) 

was converted to any marsh class. 2.0 km2 (2.4%) of all forest classes became Salt-Stressed Tidal 

Forest, but 1.98 km2 (21%) of Salt-Stressed Tidal Forest reverted to other forested classes, 

resulting in a net loss of only 0.02 km2 of healthy forest. 18% (1.7 km2) of Salt-Stressed Tidal 

forest became tidal fresh marsh, while 4% (~0.3 km2) became mesohaline marsh and salt marsh 

(Table D1g). A similar amount of Salt-Stressed Tidal Forest (1.1 km2, 11.9%) changed to 

Tupelo. There was a decrease in the total area of tidal fresh marsh (21 km2 to 11 km2), most of 

which was converted to mesohaline marsh (2.5 km2, 10.5%) or salt marsh (1 km2, 4.6%). 

Because of this, these more salt-tolerant classes increased in area, with mesohaline marsh 

growing by 34% to 10 km2 and salt marsh growing by 26% to 7.6 km2. 
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4.4 Discussion 

This study classified satellite imagery for a six-year period (2016-2021) to monitor 

changes in the abundance and distribution of tidal fresh forest and tidal marsh vegetation, the 

first study of its kind for the Altamaha tidal fresh forest. We found that while there were no 

major changes from forest classes to marsh classes indicative of large-scale habitat shifts, there 

were substantial year-to-year changes between classes within these two broad categories.  

 Overall accuracies for each of our six images ranged from 80-86% (Table C1a-C1f). In 

general, class accuracy had a positive association with the amount of training data available, 

even with the use of the Balanced Random Forest classification technique. For example, J. 

roemerianus, the class best represented in the training data (~3000 pixels), had consistently high 

producer’s accuracies (84% to 94%) (Table C2). Salt-tolerant Shrubs, however, with just 175 

training pixels, was one of the most error-prone classes, and its producer’s accuracy never 

exceeded 51% (Table C2). The relationship between the amount of training data and 

classification accuracy is well established (Lu and Weng 2007). In our case, merging the smaller 

marsh classes with the most ecologically or spectrally similar class could reduce overall and 

class errors without unduly compromising our objective of monitoring tidal fresh forests.  

While classification accuracies for our forest classes were generally good (Tables C1a-

C1f), classifier error most likely resulted in the observed change in class areas and distributions 

on a year-to-year basis. For example, from 2020 to 2021, Tupelo increased in total area from 21 

to 36 km2, an increase of 171% (Table 4.2). We doubt that this represents an actual change in 

land cover, based on published rates of forest succession for tupelo swamps (Song et al. 2012). 

Examination of the classified images (Figures C1a-C1f) and change matrices (Table C1a-C1f) 

show that this increase came at the expense of the Mixed Deciduous Forest and Bald Cypress 
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classes. These classes are frequent neighbors, occupy similar elevation ranges, and Mixed 

Deciduous Forest contains some tupelo trees, all factors which contribute to classifier error. 

Subtle differences in phenology from year to year could change land cover class spectral 

signatures and cause the classifier to erroneously assign the same pixel to different classes in 

subsequent years, even if the land cover did not actually change (Ozesmi and Bauer 2002; 

Plakman et al. 2020). Because our training and validation datasets covered only a small 

proportion of our study area (~3.4km2 out of a total study area of ~150 km2), such erroneous 

changes were unlikely to be captured by the accuracy assessment process. To avoid these types 

of errors, others have recommended that a 75% Producer’s accuracy be the cutoff for inclusion in 

temporal change analyses (D. Mishra, pers. comm.). 

 An additional source of classification error was mixed pixels. At the 10 m spatial 

resolution of the Sentinel-2 MSI sensor, many pixels, particularly in transitional zones between 

more homogeneous areas, contain more than one type of vegetation, particularly in tidal marsh 

areas. This complicates classification, as these pixels will have a spectral signature that is a 

hybrid of their component species (Lu and Weng 2007). Variable phenology (discussed above) 

complicates classification of mixed pixels further. We suspect that this may cause the pattern of 

the alternately increasing and decreasing area of Salt-Stressed Tidal Forest. Salt-Stressed Tidal 

Forest is a composite of tidal fresh forest vegetation (primarily bald cypress) and TFM 

vegetation (Z. miliacea, S. tabernaemontani, among others). These marsh vegetation persist 

through the winter when bald cypress is leafless (White and Kaplan 2021). Thus, the extent of 

leaf loss at the time of imaging will change the relative influence of marsh and forest vegetation 

on the class’s spectral signature (White and Kaplan 2021). 
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Despite these potential sources of misclassification, there were several important results 

from our temporal change analyses. At a fine spatial scale (10 m), there were changes over our 

six-year study period, but there was no sign of large-scale ecotone shifts. Most importantly, there 

was no apparent trend for tidal fresh forest to transition to stressed forest or for stressed forest to 

transition to marsh. Salt-Stressed Tidal Forest increased in area by 0.66 km2, but these increases 

came primarily from mud and tidal fresh marsh classes rather than forest (Tables D1a-D1g). We 

were unable to identify any year-to-year trends in forest cover in the aftermath of Hurricanes 

Matthew and Irma (pulse disturbances) or over the study period from 2016 to 2021 (press 

disturbance). However, we did observe an increase in the area of salt marsh and brackish marsh 

in our Merged Marsh Classes analysis. These results are consistent with the findings of Alber et 

al. (2019) that tree mortality was limited, but that there was an expansion of salt-tolerant marsh 

vegetation and a loss of tidal fresh marsh (Alber et al. 2019).  

The lack of a clear trend in forest cover could be due to several factors. First, a six-year 

time frame may not be long enough for the effects of sea level rise or saltwater intrusion to 

manifest (Taillie et al. 2019). Sentinel-2 began collecting data in the fall of 2015, limiting us to a 

six-year study period (Immitzer et al. 2016). Prior studies of sea level rise and forest-marsh 

transition examined change over ten years or more using Landsat or MODIS imagery, which 

have decades-long data catalogs (Raabe and Stumpf 2015; Smart et al. 2020; Ury et al. 2021; 

White and Kaplan 2021). Repeating this study with Landsat data (30 m spatial resolution) might 

provide a better understanding of trends over multidecadal timescales, at the expense of the finer 

spatial resolution of Sentinel-2 MSI (10 m). Visual interpretation of panchromatic high-

resolution NAIP orthoimagery shows a gradual decline in tidal fresh forest extent and canopy 

cover since the 1980s, but only at the downstream limits of forested area.  
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 Our study site may be less vulnerable than other tidal fresh forests on the Gulf and 

eastern US coasts. Most research on tidal fresh forests and forest-marsh transition in the US has 

been performed at the Alligator River NWR, NC (Doyle et al. 2021; Smart et al. 2020; Taillie et 

al. 2019; Ury et al. 2021), Delmarva Peninsula (Brinson et al. 1995; Jin et al. 2017; Kearney et 

al. 2019; Middleton 2016; Nordio and Fagherazzi 2022), and the Gulf coast from Florida to 

Louisiana (Bianchette et al. 2009; Desantis et al. 2007; Doyle et al. 2010; Langston et al. 2017; 

McCarthy et al. 2021; Raabe and Stumpf 2015). The majority of these studies have documented 

substantial loss of tidal fresh forest, some in as little as five years (Ury et al. 2021). A 

combination of factors could be responsible for the relative stasis at our Altamaha River study 

site.  

Direct landfall of hurricanes in Georgia is relatively rare, totaling just 14 instances since 

1851 and none since 1979 (Bossak et al. 2014). Instead, prevailing atmospheric conditions tend 

to divert storms north to the Carolinas or out into the Atlantic (Bossak et al. 2014). While storms 

which do not make landfall can still have adverse impacts on coastal areas (Jackson 2010), the 

lower Georgia coast has historically been less-frequently affected by hurricane-force winds than 

either Florida or the Carolinas (Bossak et al. 2014). Lower wind speeds reduce damage from 

windthrow, one of the primary sources of acute tree mortality from storms (Sharma et al. 2021; 

Song et al. 2012). Additionally, the relatively unbroken canopy in the majority of the Altamaha 

River’s tidal fresh forest reduces the risk of windthrow (Shaffer et al. 2009). The main effect of 

hurricanes on the Altamaha River’s tidal fresh forest is defoliation, and this damage is quickly 

reversed during the next growing season (C. Craft, pers. comm.). 

In the weeks to months following a hurricane, salty water delivered by the storm surge 

stresses trees by impairing their uptake of water and nutrients (Doyle et al. 2021). In comparison 
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to the tidal fresh forests in the Gulf or north Atlantic coast, the extensive marshes of the 

Altamaha River delta absorb much of the energy of storm surges, limiting the extent of saltwater 

intrusion within the tidal fresh forest. The large drainage of the Altamaha delivers higher 

volumes of freshwater than the rivers at the majority of other study sites in the literature, which 

can help to flush salinity from the system (Shaffer et al. 2009). Data from a GCE LTER data 

logger located in the Altamaha River near Lewis Island (81° 29’ 34.1” W, 31° 22’ 45.8” N) 

showed a dramatic spike in salinity up to 10.2 PSU for Hurricane Matthew and 21.9 PSU for 

Hurricane Irma, but salinity returned to normal within twelve hours (Di Iorio 2018). Following 

both storms, salinity levels were suppressed below normal and showed no signs of tidal 

influence, likely due to increased freshwater discharge as a result of inland precipitation from the 

storms (Figure 1.3).  

Along with this freshwater input, the Altamaha River delivers substantial amounts of 

sediment to the tidal fresh forest (1.3-2.2mm yr-1) (Craft 2012). While not enough to keep up 

with the 3 mm yr-1 rate of local sea level rise (Craft 2012), the dynamic is more favorable than 

for tidal fresh forests at other sites (Anderson and Lockaby 2007). Altogether, the tidal fresh 

forests of the Altamaha River may be less acutely threatened than tidal fresh forests in other 

areas, but the long-term prognosis is not good, with one model predicting that under current sea 

level rise scenarios, 24% of Georgia’s tidal fresh forests could be converted to marsh by 2100 

(Craft et al. 2009). 

 

4.5 Conclusions 

Tidal fresh forests are among the ecosystems most acutely threatened by sea level rise 

and saltwater intrusion. Given their role in carbon sequestration and other critical ecosystem 
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services, monitoring tidal fresh forest health is vitally important. In this chapter, we classified six 

Sentinel-2 MSI images from 2016 to 2021 and calculated changes in land cover. We did not 

observe any long-term (2016-2021) changes in forest cover in response to hurricanes Matthew 

and Irma, a result consistent with other research conducted on the Altamaha River in the same 

time frame (Alber et al. 2019). We were unable to discern any short-term trends in tidal fresh 

forest class distributions due to the instability of our classification results from year to year. In 

future studies, we will refine our classification and temporal change methodologies to reduce 

these errors and better elucidate trends in vegetation distributions. 
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4.7 Tables and Figures 

 

Figure 4.1 Workflow for our temporal change analysis of classified Sentinel-2 MSI imagery. 

  



106 

 

 

 

Table 4.1 Sentinel-2 MSI images chosen for classification and temporal change analysis. Cloud-

free images as close to one year apart as possible were selected. All but the 2016 image were 

delivered with atmospheric correction applied. The 2016 image was corrected using Sen2Cor in 

SNAP (see section 4.2.1). 
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Table 4.2 Number of training pixels (A) and validation pixels (B) for each classified image. The 

“-” symbol indicates that the class was not present that year.
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Table 4.3 Summary of total area for each class from 2016 to 2021 in square kilometers. Net 

change indicates the difference between the total class area in 2021 and the total class area in 

2016.
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CHAPTER 5 

CONCLUSION 

 The goal of this study was to observe the large-scale impacts of hurricanes on the tidal 

fresh forest of the Altamaha River, GA, through the following objectives. 

1. Characterize TFF vegetation communities 

2. Map these communities using satellite-based multispectral imagery 

3. Conduct a temporal change analysis to monitor changes in vegetation distributions. 

We identified eight tidal fresh forest communities using hierarchical clustering and 

additional multivariate statistical analyses. These communities correspond well with prior 

characterizations of tidal fresh forests throughout the Southeastern U.S. Overall species 

distributions and the influence of environmental variables (elevation and river distance) were 

also consistent with existing studies. Compared to prior studies, our more widely distributed 

sample plots better represented the diversity of the Altamaha River tidal fresh forest and adjacent 

upland areas. These results contribute to our understanding of the community and structure of the 

Altamaha River tidal fresh forests, a relatively understudied ecosystem, and represent an 

important first step in anticipating and managing future threats from tropical storms and sea level 

rise. 

We mapped 21 classes of tidal marsh and forest vegetation with an overall accuracy of 

84.6%, demonstrating that detailed, accurate classification of tidal fresh forests is possible using 

freely available, moderately high-resolution Sentinel-2 MSI satellite imagery. This represents a 

substantial improvement in ecological detail over existing remote sensing classifications of 

similar ecosystems, with little to no reduction in overall accuracy. Importantly, we were able to 
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effectively discriminate between forests undergoing forest-marsh transition and both marsh and 

healthy forest vegetation. 

Finally, we classified six Sentinel-2 MSI images from 2016 to 2021 and calculated 

changes in land cover. We did not observe any long-term (2016-2021) changes in land cover in 

response to hurricanes Matthew and Irma, a result consistent with other research conducted on 

the Altamaha River in the same time frame (Alber et al. 2019). We were unable to discern any 

short-term trends in vegetation distributions due to the instability of our classification results 

from year to year.  

Tidal fresh forests are among the ecosystems most acutely threatened by sea level rise 

and saltwater intrusion. Given their role in carbon sequestration and other critical ecosystem 

services, monitoring tidal fresh forest health is vitally important. In future studies, we will refine 

our classification and temporal change methodologies to reduce these errors and better elucidate 

trends in vegetation distributions.  
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APPENDIX A 

COMMUNITY ANALYSIS WITH RELATIVE ABUNDANCE AND SALT-

STRESS 

Methods 

 The methodology for this analysis was the same as for the Relative Abundance Only 

analysis (Chapter 2), but with the inclusion of a binomial variable to distinguish sites suffering 

from saltwater intrusion, as assessed in the field based on tree morphology and herbaceous 

vegetation cover. The variable was added to the table of relative abundance values prior to 

Hellinger transformation or distance matrix calculation. All subsequent steps (hierarchical 

clustering, indicator species analysis, MRPP, and NMDS) used the same parameters as the 

Relative Abundance Only analysis. 

Results: Salt-Stressed Analysis 

Hierarchical clustering including the salt stress variable produced a dendrogram with an 

agglomerative coefficient of 0.88 (scale of 0 - 1), indicating fairly strong clustering (Figure A1). 

Following Duberstein et al. (2014), based on indicator species analysis, we plotted the number of 

significant indicator species and the total p value for all species at each clustering level (Figure 

A2). Clustering levels with low total p values and a high number of indicator species represent 

optimal pruning levels (McCune and Grace 2002). Based on these criteria, three, four or nine 

clusters are possible. We chose to prune at nine clusters, as this gave the most reasonable 

ecological interpretation and agreed with the gap statistic (see Figure A3). Subsequent MRPP 

and NMDS analyses provided additional support for this decision (see Figure A4). Cophenetic 

distance measures how closely the dendrogram preserves pairwise distances compared to the 
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original distance matrix. Our value is 0.79 (on a scale of 0 - 1), which indicates high fidelity to 

the original distances. 

Inspection of the dendrogram reveals clear ecological stratification based on species 

composition and environmental conditions (Figure A1). The two highest level clusters separate 

stressed from non-stressed plots. Pruning at three clusters would produce a clear division within 

non-stressed plots between those plots which are continuously or frequently flooded and 

seasonally flooded or upland plots. The former are occupied by flood tolerant species such as 

tupelo and bald cypress, while the latter have varying compositions of oak (Quercus spp.) and 

pine (Pinus spp.). Within these two broad categories, many species are widely distributed (Table 

A1), so subsequent groupings are dependent on relative abundance rather than presence-absence. 

MRPP results indicated that these nine communities have significantly different species 

compositions, A=0.516, p=0.001, meaning that more than half of the variation in species 

composition could be explained by cluster identity. Mean within group distance was 0.351 and 

mean between group distance was 0.677. 

NMDS ordination showed clear separation between groups of plots and strong 

environmental gradients (Figure A4). A two dimensional solution was chosen as it provided an 

acceptably low stress score of 0.13 and optimal ecological interpretation (Clarke 1993). Both 

longitude and elevation were strongly correlated with both axes (p=0.001) (Table A2). 

Alder/Magnolia, Stressed Cypress, and Stressed Tupelo communities, which contained all plots 

identified in the field as salt-stressed, were well separated from non-stressed communities 

(Figure A4). NMDS reinforces the spatial pattern visible in the map (Figure A5), that stressed 

sites are significantly associated with elevation and longitudinal position on the river (Table A2). 
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Prior plant community characterizations of the Altamaha tidal fresh forest were based on 

less widely distributed field sites which did not fully capture the diversity of floral communities 

present (Duberstein et al. 2014; U.S. Fish and Wildlife Service 2014). Using our more extensive 

ground-reference dataset, we produced a more detailed community analysis supported by 

hierarchical clustering (Figure A1, Table A2), MRPP, and NMDS results (Figure A4, Table A2). 

Clustered forest communities for the Salt-Stressed analysis  

Communities with the same name as those in the Relative Abundance Only analysis are the same 

community, but importance values (IV), mean basal area, and stem density may have changed 

due to the reassignment of some plots. 

1. Oak/Hornbeam 

Unchanged from the Relative Abundance Only analysis 

2. Water Tupelo  

This community covered substantial areas of the backswamp further from the 

river. When we visited in May of 2021, they were flooded to depths of 2 - 10 cm. 

The canopy was dominated by water tupelo (36% of IV), with some bald cypress 

(13% of IV). Individuals of both species were generally mature and large in 

stature, with heights of up to 35 m. Canopy coverage was complete (96%) (Table 

A1). The understory was sparse, but mainly ash (14% of IV) and sweetgum (7% 

of IV). Herbaceous ground cover was variable. In less deeply flooded areas, 

lizard’s tail was abundant.  

3.  Pine 

Unchanged from the Relative Abundance Only analysis. 

4. Bald Cypress 



115 

 

 

These plots represent almost homogeneous stands of bald cypress (45% of IV). 

Swamp tupelo was sparsely present in the understory or canopy (17% of IV). The 

uniformly tall canopy and nearly complete canopy closure (89%) largely excluded 

understory and underbrush species, but sweetgum and red maple were sometimes 

present. Ground cover was mainly lizard’s tail, dwarf palmetto (Sabal minor 

[Jacq.] Pers.), and pickerelweed (Pontederia cordata L.). 

5. Swamp Tupelo 

This was the most abundant community in our study area, typically occupying 

areas adjacent to the main channel of the river. The canopy is dominated by 

swamp tupelo (38% of IV), with sweetgum (10% of IV) and ash (23% of IV) 

occasionally emerging from the understory. The abundance of these trees in the 

understory contributes to this community having the highest average density, at 

1500 stems·ha-1. A dense network of surface roots created low hummocks which 

supported less flood tolerant vegetation such as dwarf palmettos or oaks. Ground 

cover was abundant, typically a mixture of lizard’s tail and pickerelweed. 

6. Alder/Magnolia 

Unchanged from the Relative Abundance Only analysis.  

7. Stressed Bald Cypress 

This community represents various stages in the transition from the Bald Cypress 

Community to tidal freshwater marsh or brackish marsh. Living trees were mature 

bald cypress (57% of IV), swamp tupelo (21% of IV), and ash (18% of IV). The 

leaf area of living trees was reduced, and many had dead branches in their crown, 

both indicators of osmotic stress due to saltwater intrusion. Standing dead trees 
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(ghost forest), likely bald cypress, were common. Saplings and seedlings were 

few to none. Salt tolerant shrubs such as Southern wax myrtle or groundsel tree 

(Baccharis halimifolia L.) were present on hummocks. At lower elevations, the 

more open canopy (83.5% coverage) permitted herbaceous marsh vegetation to 

become established. The composition of this transitional marsh varied, but 

included softstem bulrush (Schoenoplectus tabernaemontani [C.C.Gmel] Palla), 

hop sedge (Carex lupulina Muhl. ex Willd.), big cordgrass, Southern Cattail 

(Typha domingensis Pers.), and pickerelweed, among others. The basal area (27.4 

m2·ha-1) and stem density (404 stems·ha-1) of this community were the lowest of 

all communities. The dominance of bald cypress and low stem density in this 

community is consistent with patterns reported by Krauss et al. (2007) and Krauss 

et al. (2009). 

8. Stressed Tupelo 

This community was represented by three plots. Swamp tupelo is the most 

abundant canopy tree (57% of IV), along with scattered ash trees (21% of IV). All 

trees showed signs of salt stress: small stature, reduced leaf area, and dead 

branches. Seedlings and saplings were nonexistent. Canopy coverage was the 

lowest of all communities at 74%, which permitted dense herbaceous ground 

cover, primarily softstem bulrush, southern cattail, lizard’s tail, and pickerelweed. 

9. Live Oak 

Unchanged from the Relative Abundance Only analysis.  
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Tables and Figures 

 

Figure A1 Dendrogram produced by hierarchical clustering using Hellinger distance and Ward 

linkage for 22 tree species from 38 plots in the Altamaha tidal fresh forest.  This analysis was 

based on relative species abundance and a binomial variable assessing whether or not the site 

appeared to be suffering from saltwater intrusion. Plot names are listed on the left, and 

community names are given for each of the 9 groups, with pruning indicated by color. The strong 

influence of the salt stress variable is clearly visible. 
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Figure A2 Summary of results of indicator species analyses for the Salt-Stressed analysis. 

Hierarchical clustering was used to group plots (n=38) into 2-10 clusters. For each clustering 

level, an indicator value (IVI) was calculated for each species. P-values are based on 1000 Monte 

Carlo simulations with randomized data, then totaled for all species at each grouping level (x 

axis). The dashed line represents our final pruning level, selected to maximize the number of 

significant indicator species and minimize total p while giving a reasonable ecological 

interpretation. 
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Figure A3 Plot of gap statistic values for the Salt-Stressed hierarchical clustering analysis. The 

vertical line indicates the optimal pruning level of nine clusters. 
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Figure A4 NMDS ordination of field plots in species space. Communities are based on the Salt-

Stress Included analysis, and include: Oak/Hornbeam (red), Water Tupelo (orange), Swamp 

Tupelo (purple), Bald cypress (teal), Salt-stressed Tupelo (pink), Salt-stressed Bald cypress 

(blue), Pine (plots 311 and 333), Alder/Magnolia (plot 331), and Live Oak (plot 350). Biplot 

overlays indicate the relationship of elevation above NAVD88 and longitude (“Long”, as a proxy 

for river distance) to plot ordination. Both elevation and longitude were significantly correlated 

with both NMDS1 (Table A2). 
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Figure A5 Study area and field sampling plot locations on the Altamaha River, Georgia. Forest 

communities were identified via hierarchical clustering and indicator species analysis of field 

plot data in our Salt-Stressed analysis (Figure A1). 
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Table A1 Mean importance values for trees and shrubs in each community identified from our 

Salt-Stressed analysis. Bolded numbers are dominant species that total more than 50% of the 

importance in each community. 

 

 

Table A2 envfit results for the Salt-Stressed analysis showing the correlation between NMDS 

axes in species space with environmental variables. Elevation is the mean plot elevation above 

NAVD88 derived from a USGS 3DEP DEM of the study area. Longitude is the distance in 

meters west of 0°, and serves as a proxy for river distance. 

 

  NMDS 1 NMDS 2 r2 P 

Elevation -0.98 -0.22 -0.31 0.001 

Longitude 0.99 0.10 0.58 0.001 
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APPENDIX B 

COMPARISON OF COMMUNITY ANALYSIS RESULTS WITH USNVC 

Introduction 

To facilitate comparison to other geographic areas and validate our classification, plant 

communities were matched with the best fitting United States National Vegetation Classification 

(USNVC) alliance or association. The goal of the USNVC is to provide a standardized 

methodology for describing plant communities to facilitate botanical research at different scales 

and localities (Jennings et al. 2009). The two main functional units of the USNVC are the 

association and alliance. Both levels are defined based on species composition, growth form, 

environmental gradients and site history (Jennings et al. 2009). Associations are the smallest and 

more specific unit, defined by the relative abundance of a few diagnostic species and a relatively 

narrow range of environmental conditions (Jennings et al. 2009). Alliances are the next largest 

unit, composed of multiple similar associations which share diagnostic species but encompass a 

wider range of habitats and growth forms (Jennings et al. 2009). Open data, including detailed 

plot data, and peer review of proposed associations/alliances maintain data integrity, and the 

classification is regularly reviewed and updated (Jennings et al. 2009). 

Jennings et al. (2009) proposed that remote sensing studies could benefit from the 

consistent and well documented data of the USNVC, but in practice, sensor spatial and spectral 

resolutions are often too coarse to consistently discriminate between closely related plant 

associations (Clark 2020). 

Our hierarchical clustering analyses (Chapter 2, Appendix A) were based on our field 

data, and our interpretation of these results was informed by indicator species analysis and our 
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fieldwork. Post-hoc comparison of these results with communities described in the USNVC 

serves as an additional layer of external validation and facilitates comparison with other sites. 

Studies of the floral communities of the Altamaha’s tidal fresh forest are few, so while two of 

our communities are directly comparable to those identified by Duberstein et al. (2014) (Chapter 

2.3), the USNVC enables us to compare our communities with those identified by researchers at 

other localities. We performed keyword searches of the USNVC database 

(https://usnvc.org/explore-classification/) by both common and scientific names and identified 

the USNVC plant alliance or association that most closely corresponded to our own classes. In 

most cases, we found one or more close matches (Table B1).  

Table B1. Most similar USNVC associations for our forest communities. The community 

column indicates our community. The analysis column indicates in which of our analyses the 

community was present. RA is the Relative Abundance Only analysis, SS is the Salt-Stress 

included analysis. ID is the USNVC association code, which links to the report for that 

association. Colloquial name is the common name from the USNVC. 

Community Analysis  ID Colloquial Name 

Oak/Hornbeam RA, SS CEGL007348 Laurel Oak Bottomland Forest 

Bald Cypress RA, SS CEGL002420 Bald-cypress Floodplain Forest 

Swamp Tupelo RA, SS CEGL007864 Swamp Tupelo Floodplain Forest 

Water Tupelo RA, SS CEGL002419/ 

CEGL008561 

Water Tupelo Swamp Forest/Water 

Tupelo Tidal Forest 

Live Oak RA, SS CEGL004676 South Atlantic Swamp Island 

Alder/Magnolia RA, SS CEGL004627 Tidal Freshwater Alder Shrubland 

Salt-stressed Bald 

Cypress 

SS CEGL003739 South Atlantic Tidal Bald-cypress 

Woodland 

https://usnvc.org/explore-classification/
https://www1.usgs.gov/csas/nvcs/unitDetails/683821
https://www1.usgs.gov/csas/nvcs/unitDetails/683252
https://www1.usgs.gov/csas/nvcs/unitDetails/685499
https://www1.usgs.gov/csas/nvcs/unitDetails/683253
https://www1.usgs.gov/csas/nvcs/unitDetails/683253
https://www1.usgs.gov/csas/nvcs/unitDetails/684147
https://www1.usgs.gov/csas/nvcs/unitDetails/683103
https://www1.usgs.gov/csas/nvcs/unitDetails/685313
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Salt-stressed Swamp 

Tupelo 

SS CEGL004484 Hardwood Tidal Swamp Forest 

Bald Cypress/Tupelo RA CEGL007431 Bald-cypress - Tupelo Brownwater 

Floodplain Forest 

Pine RA, SS CEGL008462 Ruderal Loblolly Pine - Sweetgum 

Forest 

 

Discussion 

The communities we identified in Chapter 2 and Appendix A correspond closely with 

similar plant communities described in the USNVCs, which supports the ecological validity of 

our results. This is particularly important for our Live Oak and Alder/Magnolia communities, 

which were poorly represented in our field sampling, and our Salt-Stressed Swamp Tupelo and 

Salt-Stressed Bald Cypress communities, which were present only in the Salt Stressed analysis. 

In the case of our Live Oak community, the South Atlantic Swamp Island association is 

specifically noted as occurring on islands within the Altamaha floodplain. The USNVC 

description of Tidal Freshwater Alder Shrubland as “a fringing shrubland, zonal between Zizania 

aquatica tidal marshes and tidal cypress - gum forests” fits our single sampling plot perfectly, 

although in our case Z. miliacea was the dominant marsh plant. The South Atlantic Tidal Bald-

cypress Woodland and Hardwood Tidal Swamp Forest associations are close matches for our 

Salt-Stressed Bald Cypress and Salt-Stressed Swamp Tupelo communities, respectively, lending 

support to our Salt Stressed Analysis, which identified them as separate communities. The main 

limitation in comparing our results to the USNVC is the detail of our ground reference data. The 

field sampling on which the USNVC is based is far more detailed than we undertook, 

encompassing all vegetation from canopy trees to the smallest herbaceous vegetation, as well as 

edaphic conditions. As a result there are some discrepancies between our communities and the 

USNVC associations they are matched with (Table B1). These differences are primarily in co-

dominant or understory tree species, vines, and herbaceous vegetation and ground cover. 

Differences in the composition of co-dominant and understory trees may be a product of natural 

diversity between sites, while differences in herbaceous vegetation composition is likely due to 

our sampling methodology, which was focused on canopy and understory trees.  

https://www1.usgs.gov/csas/nvcs/unitDetails/685099
https://www1.usgs.gov/csas/nvcs/unitDetails/686827
https://www1.usgs.gov/csas/nvcs/unitDetails/688976
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APPENDIX C  

ACCURACY ASSESSMENT FOR SATELLITE IMAGERY CLASSIFICATION 

Table C1. Land cover class confusion matrices for Balanced Random Forest classification of Sentinel-2 MSI satellite imagery of the Altamaha River 

tidal fresh forest. (A). 10/01/2016, (B). 09/01/2017, (C).10/21/2018, (D). 09/26/2019, (E). 10/30/2020, and (F). 09/25/2021. The Balanced Random 

Forest classification included the following predictor rasters: DEM, MSI bands 1,2,3,4,5,6,7,8,8a,9,11, and 12, and six vegetation indices: MNDWI, 

NDMI, ARI 1, SGI, NDBI, GDVI, and ARI 2. Following classification, the images were smoothed using a 5 pixel minimum aggregation. Not all 

land cover classes were present in all images. Columns represent reference data (what the pixel actually was based on validation data) and rows 

represent the predicted image data (what the pixel was classified as). Shaded cells are those where the classification was accurate. Values represent 

the percentage of reference or predicted image pixels. Values are rounded to the nearest decimal place and may not sum to 100 percent for each cover 

class. 
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Table C2. Land cover class Producer’s Accuracy and Overall Accuracy for Balanced Random Forest classification of Sentinel-2 MSI satellite 

imagery of the Altamaha River tidal fresh forest. Producer’s Accuracy indicates how well reference pixels of a given cover type are classified. The 

Balanced Random Forest classification included the following predictor rasters: DEM, MSI bands 1,2,3,4,5,6,7,8,8a,9,11, and 12, and six vegetation 

indices: MNDWI, NDMI, ARI 1, SGI, NDBI, GDVI, and ARI 2. Following classification, the images were smoothed using a 5 pixel minimum 

aggregation. Not all land cover classes were present in all images, absent classes are indicated by “-”. 
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Table C3. Mean Decrease in Accuracy for predictor variables in our Balanced Random Forest classifications as calculated by randomForest’s 

importance function. Values are the mean decrease in accuracy for each predictor variable for all classes, divided by their standard errors. Larger 

values indicate that a predictor variable was more important to the classification. Bolded and shaded cells are the five most important predictor 

variables for each classification date.  

  

Predictor Variable 2016* 2017 2018* 2019* 2020* 2021

DEM 274.78 315.94 308.52 249.53 258.51 218.75

S-2 MSI Band 1 248.11 257.85 245.60 201.62 228.11 227.11

S-2 MSI Band 2 79.50 99.31 74.86 73.39 76.76 80.04

S-2 MSI Band 3 74.98 86.70 70.59 75.99 76.31 69.95

S-2 MSI Band 4 105.18 104.30 102.36 129.78 112.31 97.79

S-2 MSI Band 5 159.65 159.90 164.65 164.97 180.56 126.32

S-2 MSI Band 6 81.64 66.81 88.90 74.60 68.74 60.92

S-2 MSI Band 7 81.59 59.25 88.14 71.92 67.40 66.90

S-2 MSI Band 8 78.38 61.36 86.51 75.35 67.36 60.45

S-2 MSI Band 8a 90.22 62.07 96.68 72.03 81.81 61.66

S-2 MSI Band 9 181.77 122.47 199.44 146.27 159.25 177.08

S-2 MSI Band 11 134.97 163.43 145.88 122.35 122.23 141.77

S-2 MSI Band 12 127.51 145.37 129.52 143.64 128.73 146.60

MNDWI 131.67 181.20 134.06 145.63 122.33 157.45

NDMI 150.95 142.06 163.75 167.88 168.29 150.41

ARI1 80.99 104.23 90.57 89.88 91.27 88.45

SGI 78.43 87.30 71.48 74.45 77.79 68.75

NDBI 98.96 78.46 105.07 116.76 98.12 76.07

GDVI 89.43 63.28 95.90 70.07 81.36 61.34

ARI2 63.00 97.20 63.12 57.37 57.00 79.79

Mean Decrease in Accuracy
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APPENDIX D  

TEMPORAL CHANGE 

Figure D1. Final Balanced Random Forest classified images used for temporal change analysis. (A). 10/01/2016, (B). 09/01/2017, (C).10/21/2018, 

(D). 09/26/2019, (E). 10/30/2020, (F). 09/25/2021. The Balanced Random Forest classification included the following predictor rasters: DEM, MSI 

bands 1,2,3,4,5,6,7,8,8a,9,11, and 12, and six vegetation indices: MNDWI, NDMI, ARI 1, SGI, NDBI, GDVI, and ARI 2. Following classification, 

the images were smoothed using a 5 pixel minimum aggregation. 
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Table D1. Land cover class change statistics for Balanced Random Forest classifications of the various Sentinel-2 MSI images of the Altamaha River 

tidal fresh forest. (A). 2016-2017, (B). 2017-2018, (C). 2018-2019, (D). 2019-2020, (E). 2020-2021, (F). 2016-2021, and (G). 2016-2021 with 

merged marsh classes. Land cover indicates the dominant type of vegetation in that pixel. Not all land cover classes were present in all images. 

Columns represent the initial state classes (what the pixel was classified as in the initial image (T1)), and rows represent the final state classes (what 

the pixel was classified as in the final image (T2)). For each initial state class (columns), the table shows how these pixels were classified in the final 

state image (rows). Shaded cells are the proportion of pixels that did not change between the initial and final image dates. Values represent the 

proportion of initial or final image pixels. Proportions are rounded to the nearest decimal place and may not sum to 100% for each cover class. Class 

Changes are the percent of pixels that changed class between T1 and T2. Net Change is the area in square kilometers by which the class has increased 

or decreased between T1 and T2. 
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APPENDIX E  

SPECTRAL SEPARABILITY 

For accurate supervised classification of remote sensing data, user-designated classes must have distinct spectral signatures.  We 

evaluated the spectral separability of our land cover classes using Jeffries-Matusita distance, which measures the average distance between 

two class density functions (Richards and Jia 2006). Testing was implemented using the Spectral Separability tool in ENVI 5.6.1, using 

Sentinel-2 MSI bands 1-12 as input. Values range from 0 to 2, with higher values indicating better separability (Richards and Jia 2006). 

Testing of separability was iterative. With each iteration we removed poorly-performing classes, combined them with spectrally and 

ecologically similar classes, or adjusted our regions of interest (ROIs) to reduce ambiguity. Table E1 shows the final results for the training 

data used in our Balanced Random Forest classification of the May 28, 2021 Sentinel-2 MSI image. Most classes have excellent spectral 

separability (greater than 1.9) (Richards and Jia 2006). Some marsh classes (e.g., C. jamaicense, Iva frutescens/S. alterniflora, and Salt-

tolerant shrubs) have poor spectral separability from other marsh classes. This spectral similarity frequently resulted in classifier error 

between these classes. For example, C. jamaicense and S. tabernaemontani had a separability score of just 1.6, and 20% of C. jamaicense 

pixels were misclassified as S. tabernaemontani (Table 3.3). Overall classification accuracy could likely be improved by removing some of 

the smaller classes with lower separability scores and Producer’s accuracies. 

 

References 
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Table E1. Jeffries-Matusita spectral separability of training data for the May 28, 2021 Sentinel-2 MSI image. Values range from 0 to 2, with 

higher values indicating better spectral separability (greater differences between a pair of classes). Values above 1.8 are considered good. 

Shaded cells indicate pairs of classes with separability lower than 1.8. The table is symmetrical, so only half of the values are shown.  
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C. jamaicense 1.99822

Iva frutescens / S. alterniflora 1.99935 1.87026

J. roemerianus 1.99951 1.99861 1.99995

Mixed broadleaf swamp 1.99658 1.96433 1.95731 1.86838

Mud 1.99996 2.00000 2.00000 2.00000 2.00000

Tupelo 1.99995 1.99998 1.99995 2.00000 1.80082 2.00000

P. virgatum 1.99978 1.92947 1.99683 1.99984 2.00000 1.99885 1.99984

Pine 1.99927 1.99997 2.00000 2.00000 1.97678 1.99999 1.98544 1.99907

Pine/Sweetgum 2.00000 2.00000 2.00000 2.00000 1.99207 2.00000 1.98873 2.00000 1.96829

Oak/Hornbeam 1.99989 2.00000 2.00000 2.00000 1.96825 2.00000 1.78969 1.99947 1.34418 1.85475

Live oak 1.99907 1.98987 1.99904 2.00000 1.95119 1.99992 1.88570 1.96655 1.62598 1.86053 1.30986

S. americanus 1.99964 1.97482 1.99985 1.90480 2.00000 1.97347 2.00000 1.99515 1.99993 2.00000 2.00000 1.99996

S. tabernaemontani 1.99894 1.55029 1.94850 1.96272 2.00000 1.85420 1.99988 1.94787 1.99999 2.00000 1.99999 1.99604 1.81412

Salt-tolerant shrubs 1.99900 1.67623 1.73842 1.99997 1.99931 1.98828 1.99257 1.88201 1.99369 2.00000 1.99754 1.94935 1.99960 1.87669

Medium S. alterniflora 1.99920 1.68974 1.67464 1.97526 2.00000 1.82247 2.00000 1.98549 2.00000 2.00000 2.00000 1.99941 1.98999 1.58582 1.76570

S. cynosuroides 1.99809 1.69584 1.89338 1.99719 1.99987 1.92241 1.99778 1.76675 1.97562 1.99994 1.99370 1.94794 1.99378 1.78596 1.40601 1.73775

Tall S. alterniflora 1.99894 1.92232 1.79335 1.99984 2.00000 1.90667 1.99999 1.99924 1.99955 2.00000 2.00000 1.99836 1.99649 1.94200 1.94775 1.94448 1.68115

Salt-stressed tidal forest 1.99586 1.77674 1.77474 1.99989 1.99966 1.95458 1.98837 1.97494 1.99979 1.99998 1.99867 1.96980 1.99925 1.88577 1.59664 1.81546 1.73571 1.76024

Bald Cypress 1.99987 1.99988 1.99761 2.00000 1.90631 2.00000 1.70852 1.99948 1.96416 1.98529 1.92338 1.92126 2.00000 1.99918 1.98011 1.99992 1.99459 1.99925 1.96151

Z. miliacea 1.99703 1.44234 1.86694 1.98993 2.00000 1.80383 1.99994 1.98984 1.99999 2.00000 2.00000 1.99720 1.99430 1.75084 1.78921 1.61681 1.86917 1.98071 1.99959 1.99959
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