42 research outputs found

    Trajectory Generation and Tracking Control for Aggressive Tail-Sitter Flights

    Full text link
    We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g

    SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE

    Get PDF
    The ANGEL project (Aerial Network Guided Electronic Lookout) takes a systems engineering approach to the design, development, testing and implementation of a quadrotor unmanned aerial vehicle. Many current research endeavors into the field of quadrotors for use as unmanned vehicles do not utilize the broad systems approach to design and implementation. These other projects use pre-fabricated quadrotor platforms and a series of external sensors in a mock environment that is unfeasible for real world use. The ANGEL system was designed specifically for use in a combat theater where robustness and ease of control are paramount. A complete simulation model of the ANGEL system dynamics was developed and used to tune a custom controller in MATLAB and Simulink®. This controller was then implemented in hardware and paired with the necessary subsystems to complete the ANGEL platform. Preliminary tests show successful operation of the craft, although more development is required before it is deployed in field. A custom high-level controller for the craft was written with the intention that troops should be able to send commands to the platform without having a dedicated pilot. A second craft that exhibits detachable limbs for greatly enhanced transportation efficiency is also in development

    A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques

    Get PDF
    Unmanned Aerial Vehicles (UAV) have revolutionized the aircraft industry in this decade. UAVs are now capable of carrying out remote sensing, remote monitoring, courier delivery, and a lot more. A lot of research is happening on making UAVs more robust using energy harvesting techniques to have a better battery lifetime, network performance and to secure against attackers. UAV networks are many times used for unmanned missions. There have been many attacks on civilian, military, and industrial targets that were carried out using remotely controlled or automated UAVs. This continued misuse has led to research in preventing unauthorized UAVs from causing damage to life and property. In this paper, we present a literature review of UAVs, UAV attacks, and their prevention using anti-UAV techniques. We first discuss the different types of UAVs, the regulatory laws for UAV activities, their use cases, recreational, and military UAV incidents. After understanding their operation, various techniques for monitoring and preventing UAV attacks are described along with case studies

    PRECISE LANDING OF VTOL UAVS USING A TETHER

    Get PDF
    Unmanned Aerial Vehicles (UAVs), also known as drones, are often considered the solution to complex robotics problems. The significant freedom to explore an environment is a major reason why UAVs are a popular choice for automated solutions. UAVs, however, have a very limited flight time due to the low capacity and weight ratio of current batteries. One way to extend the vehicles\u27 flight time is to use a tether to provide power from external batteries, generators on the ground, or another vehicle. Attaching a tether to a vehicle may constrain its navigation but it may also create some opportunities for improvement of some tasks, such as landing. A tethered UAV can still explore an environment, but with some additional limitations: the tether can become wrapped around or bent by an obstacle, stopping the drone from traveling further and requiring backtracking to undo; the tether can fall loose and get caught while dragging on the ground; or the base of the tether could be mobile and the UAV needs to have a way to return to it. Most issues, like those listed above, could be solved with a vision system and various kinds of markers, but this approach could not work in situations of low light, where cameras are no longer effective. In this project, a state machine was developed to land a tethered, vertical take-off and landing (VTOL) UAV using only angles taken from both ends of the tether, the tension in the tether, and the height of the UAV. The main scenarios focused on in this project were normal operation, obstacle interference, loose tether, and a moving base. Normal operation is essentially tether guidance using the tether as a direction back to the base. The obstacle case has to determine the best action for untangling the tether. The loose tether case has to handle the loss of information given by the angle sensors, as the tether direction is no longer available. This case is performed as a last-ditched effort to find the landing pad with only a moderate chance for success. Lastly, the moving base case uses the change in the angles over time to determine the speed needed to reach the base. The software was not the only focus of this project. Two hardware components of this project were a landing platform and a matching landing gear to support the landing process. These two components were designed to aid in the precision of the landed location and to ensure that the UAV was secured in position once landed. The landing platform was designed as a passive funnel-type positioning mechanism with a depression in the center that the landing gear was designed to match. The tension of the tether is used to further lock the UAV into place when in motion. While some of this project remained theoretical, particularly the moving base case, there was flight testing performed for validation of most states of the proposed state machine. The normal operation state was effective at guiding the UAV onto the landing pad. The loose tether case was also able to land within reasonable expectations. This case was not always successful at finding the landing pad. Particular methods of increasing the likelihood of success are discussed in Future Work. The Obstacle Case was also able to be detected, but the response action has yet to be tested in full. The prior testing of velocity following can be used as proof of concept due to its simplicity. In conclusion, this project successfully developed a state machine for precisely landing a tethered UAV with no environmental knowledge or localization. Further development is necessary to improve the likelihood of landing in problematic scenarios and more testing is necessary for the system as a whole. More landing scenarios could also be researched and added as cases to the state machine to increase the robustness of the landing process. However, each current subsystem achieved some level of validation and is to be improved with future developments

    Aerodynamic force interactions and measurements for micro quadrotors

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become mainstream through the success of several large commercial drone manufacturers. Quadrotors have been widely adopted due to their mechanical simplicity, ability to take off from a small area and hover at a fixed location. As these aircraft are increasingly being used in urban environments and indoors their ability to maintain stable flight in the presence of disturbances and nearby obstacles is of growing importance.Understanding the aerodynamics acting in these environments is the first step to improving quadrotor behaviour. This presents a challenge, as to characterise and verify models of the aerodynamic phenomena it is essential to collect numerous consistent experimental data points. On a typical quadrotor the motor response changes as the battery discharges, leading to variation in flight performance. Typically, this is addressed through the use high gain feedback control regulating attitude and position. To overcome this a unique voltage regulator for quadrotor power was developed to maintain constant supply voltage over the quadrotors flight. This enables the quadrotor to produce consistent and repeatable behaviour as the battery discharges.One way to improve the performance of quadrotors flying in constrained environments with limited sensing is to exploit aerodynamic effects for passive control and stability. Ground effect and rotor inflow damping are two effects of interest: ground effect provides a quadratic increase in thrust as a rotor moves closer to the ground; rotor inflow damping acts to resist axial motion by causing a change thrust opposing the movement. By canting the rotors of a quadrotor these effects were brought from the vertical axis into the lateral axis as well. A canted quadrotor flying over a v-shaped channel was modeled and found to exhibit passive stability in position. A demonstrator aircraft and v-shaped channel were tested in a number of configurations and shown to be stable for a channel slope of 10, 15 or 20 degrees with a rotor cant of 15 or 20 degrees.In order to observe more subtle aerodynamic effects, such as wall effect, it is necessary to have a method to measure rotor forces directly during quadrotor flight. Existing force torque sensors are too bulky, heavy, expensive or insensitive. To overcome these limitations a novel force torque sensor was developed that costs less than $50, weighs 3g and is capable of measuring sub mN forces. These sensors utilise an array of micro-electro-mechanical system (MEMS) barometers encapsulated in rubber to measure the strain field imparted by forces acting on the attached load plate. Mounting force torque sensors under the motors of a quadrotor allows the lateral rotor forces to be transmitted through the motor body and measured as torques at the base.Closely related to this, one of the key limitations faced by quadrotors is their inability to directly measure the airspeed of the aircraft. Providing an oncoming wind speed measurement will allow them to compensate for disturbances improving trajectory tracking and gust rejection. Blade flapping and induced drag are aerodynamic phenomena which relate lateral motion to a force acting in opposition to the rotors motion. By measuring this force using a rotor force sensor the airspeed of the aircraft is computed directly using induced drag and rotor blade flapping models. It was found that lateral velocity could be measured for the velocities tested, up to 1.5m/s, and showed a strong linear relationship to ground truth measurements.The work of this thesis has led to the development of: a quadrotor platform for consistent flight behaviour; a passive position-keeping quadrotor; and a novel rotor force sensor for direct measurement of quadrotor airspeed. These technologies open up avenues to improve the flight performance of quadrotors and better understand subtle aerodynamic interactions in flight

    Performance study of the flight control and path planning for a UAV type Quadrotor

    Get PDF
    Abstract: Motivated by the important growth of VTOL vehicles research such as quadrotors and to a small extent autonomous flight, PID control laws and a path planning strategy are studied in this thesis. Since this type of multirotor vehicle has a complex dynamics, it is not an easy task to achieve a precise control. So, the main goal is to implement a PID controller in simulation. It has showed an acceptable performance particularly in hover condition. Additionally, an autopilot simulator is used as well to validate the attitude and altitude stabilization of a quadrotor. Some changes are made to certain dynamic variables to determine and get a better understanding of the quadrotor flight dynamics (X configuration). In the same way, some modifications to the control parameters are also made in order to examine attitude changes when different paths are designed (X and + configurations). The shortest and/or other possible paths are studied by applying Dubins curves. This method will help to verify the feasibility of these kind of paths for quadrotors. The results are presented through MATLAB and simulations with AP mission planner for Linux.Resumen: En los últimos años el interés por la investigación en vehículos aéreos no tripulados autónomos tipo VTOL (Despegue y Aterrizaje Vertical) ha tenido un significante crecimiento. En éste trabajo se estudian las leyes de control PID y una estrategia de planificación de trayectoria. Debido a la compleja dinámica de éste tipo de plataformas multirotor, lograr un control adecuado de las mismas resulta no ser una tarea fácil. Por lo tanto, el principal objetivo es implementar un controlador PID en simulación el cuál ha evidenciado tener un rendimiento adecuado particularmente en condición hover. Adicionalmente, se emplea un simulador de autopiloto con el propósito de validar el comportamiento de la orientación y la altura de un quadrotor. Se realizan algunos cambios a los valores de las variables dinámicas con el fin de determinar y tener una mejor compresión de la mecánica de vuelo. (Configuración X). Igualmente, ciertas modificaciones se realizan a los parámetros de control para examinar los cambios que se puedan presentar en orientación cuando se diseñan diferentes trayectorias (Configuraciones X, +). Las trayectorias posibles y/ó las más cortas se plantean aplicando curvas de Dubins. Este método será útil para verificar la viabilidad de ésta clase de trayectorias en quadrotores. Los resultados se presentan haciendo uso de MATLAB y simulaciones con AP mission planner en Linux.Maestrí

    IMU Validation Apparatus for Human Joints

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Fall 2020Inertial measurement units (IMUs) are small sensor packs that include accelerometers, gyroscopes, and magnetometers that are used to conduct movement analysis outside of a laboratory setting. IMUs use an integration process to determine absolute orientation and location of the object they are attached to, so error in their output is vulnerable to discrepancies from the effects of long-term data collection. Additional error can also be introduced through magnetic interference with the magnetometer readings. To combat this, calibration and post-processing algorithms can be made to adjust for these measurement errors, but ground truth angle data is needed to quantify their performance. This report outlines the requirements, specifications, evaluated concepts, verification methods, and developed solution for a device that is capable of measuring ground truth angles for comparison with angles derived from different IMU algorithms.Dr. Stephen Cain, Mechanical Engineering, University of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/164441/1/IMU_Validation_Apparatus_for_Human_Joints.pd
    corecore