
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2011

SIMULATION AND CONTROL OF A QUADROTOR UNMANNED SIMULATION AND CONTROL OF A QUADROTOR UNMANNED

AERIAL VEHICLE AERIAL VEHICLE

Michael David Schmidt
University of Kentucky, mdschm2@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Schmidt, Michael David, "SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE"
(2011). University of Kentucky Master's Theses. 93.
https://uknowledge.uky.edu/gradschool_theses/93

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE

The ANGEL project (Aerial Network Guided Electronic Lookout) takes a

systems engineering approach to the design, development, testing and
implementation of a quadrotor unmanned aerial vehicle. Many current

research endeavors into the field of quadrotors for use as unmanned vehicles
do not utilize the broad systems approach to design and implementation.

These other projects use pre-fabricated quadrotor platforms and a series of
external sensors in a mock environment that is unfeasible for real world use.
The ANGEL system was designed specifically for use in a combat theater

where robustness and ease of control are paramount. A complete simulation
model of the ANGEL system dynamics was developed and used to tune a

custom controller in MATLAB and Simulink®. This controller was then
implemented in hardware and paired with the necessary subsystems to
complete the ANGEL platform. Preliminary tests show successful operation of

the craft, although more development is required before it is deployed in
field. A custom high-level controller for the craft was written with the

intention that troops should be able to send commands to the platform
without having a dedicated pilot. A second craft that exhibits detachable
limbs for greatly enhanced transportation efficiency is also in development.

Keywords: Quadrotor, ANGEL, Unmanned Aerial Vehicle, Control, Simulation

__Michael David Schmidt___

______04/18/2011________

SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE

By

Michael David Schmidt

___Dr. Bruce Walcott_______

Director of Thesis

___Dr. Stephen Gedney_____

Director of Graduate Studies

________04/18/2011_______

RULES FOR USE OF THESES

Unpublished theses submitted for the Master‟s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be
used only with due regard to the rights of the authors. Bibliographical

references may be noted, but quotations or summaries of parts may be
published only with the permission of the author, and with the usual scholarly

acknowledgements.

Extensive copying or publication of the thesis in whole or in part also requires

the consent of the Dean of the Graduate School of the University of
Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure

the signature of each user.

Name Date

THESIS

Michael David Schmidt

The Graduate School

University of Kentucky

2011

SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering

in the College of Engineering

at the University of Kentucky

By

Michael David Schmidt

Lexington, Kentucky

Director: Dr. Bruce Walcott, Professor of Electrical Engineering

Lexington, Kentucky

2011

Copyright © Michael David Schmidt 2011

iii

Table of Contents

List of Tables: .. vi

List of Figures: .. vii

Section I: Introduction .. 1

UAV Historical Perspective and Applications ... 1

Vertical Take-off and Landing (VTOL) Aircraft .. 2

The Quadrotor ... 4

Section II: Literature Review and Motivation .. 5

The Cutting Edge ... 5

Commercial Products .. 6

Research Motivation ... 7

Section III: ANGEL Simulation Model ... 8

Introducing the Aerial Network Guided Electronic Lookout (ANGEL) 8

Coordinate Systems ... 11

ANGEL System State .. 12

ANGEL Actuator Basics .. 13

Coordinate System Rotations ... 15

ANGEL Body Forces and Moments .. 15

ANGEL Moments of Inertia .. 20

ANGEL Kinematics and the Gimbal Lock Phenomenon 23

The Quaternion Method ... 25

MATLAB Simulation of ANGEL .. 26

Section IV: ANGEL Control Development .. 32

Control Fundamentals ... 32

Model Simplifications .. 35

Input Declarations .. 37

MATLAB Control Implementation .. 37

Controller Tuning and Response ... 41

Section V: Platform Implementation .. 46

ANGEL v1 Platform Basics ... 46

ANGEL v1 Power System ... 49

ANGEL Actuators (ESC/Motor/Propeller) .. 51

iv

ANGEL Main Avionics .. 54

ANGEL v1 Avionics Loop Description ... 55

ANGEL Sensors .. 56

Sensor Fusion Algorithm and Noise... 59

ANGEL User Control (Xbee and Processing GUI) 62

Control Library Implementation ... 65

ANGEL v2 Build Description ... 67

Section VI: Testing and Results .. 69

Testing and Results Introduction .. 69

Test Bench and Flight Harness Construction .. 69

Thrust Measurement ... 71

Pitch and Roll Test Data .. 72

Pitch and Roll Test Results... 74

Avionics Loop Testing ... 74

Section VII: Concluding Remarks and Future Development 75

Simulation Conclusions and Future Work ... 75

Controller Conclusions and Future Work .. 75

Sensors and Fusion Algorithm Conclusions and Future Work 76

User Interface Conclusions and Future Work .. 77

Physical Build Conclusions and Future Work ... 78

Thesis Objective Conclusion ... 78

APPENDIX A – CODE ... 80

A-1 – System Dynamics MATLAB Code used in Simulation 80

A-2 – Code for Attitude Control in MATLAB Simulation 81

A-3 – Block to translate controller outputs to speed inputs 83

A-4 – Disabled Altitude Control Block .. 83

A-5-1 Arduino Motor Library (QuadMotor.h) .. 84

A-5-2 – Arduino Motor Library (QuadMotor.cpp) 85

A-6-1 – Arduino PID Library (SchmidPID.h) ... 87

A-6-2 – Arduino PID Library (SchmidtPID.cpp) 87

A-7-1 – Arduino IMU Sensor Library (IMU.h) 89

A-7-2 – Arduino IMU Sensor Library (IMU.cpp) 90

v

A-7-3 – Arduino IMU Sensor Library Example (Processing) 93

A-8 – Arduino Main Avionics Loop... 95

A-9 – Processing Controller Code ... 102

APPENDIX B – CAD Schematics... 112

B-1 – ANGEL v1 Junction Drawing .. 112

B-2 – Uriel Arm Junction Model (no dimensions) 113

B-3 – Motor Mount for Uriel (no dimensions) 113

B-3 – Large Uriel Assembly Diagram ... 114

REFERENCES .. 115

VITA .. 118

vi

List of Tables:
Table 1: VTOL Vehicles .. 3
Table 2: Aircraft Comparisons... 5
Table 3: Quadrotor differential thrust examples 14
Table 4: P, I, D values for Roll .. 42
Table 5: Properties of Thermoplastic and PVC ... 48
Table 6: Battery Parameters ... 50
Table 7: ESC Settings for ANGEL platform .. 54

vii

List of Figures:
Figure 1: Perley's bomber in 1863 [1] ... 1
Figure 2: Nazi V-1 bomber [1] .. 1
Figure 3: Draganflyer X8 from Draganfly Innovations 6
Figure 4: Parrot AR Drone Quadrotor Toy ... 7
Figure 5: DoD ConOps for ANGEL system ... 9
Figure 6: ANGEL v1. Note the propellers are removed. 10
Figure 7: ANGEL v2 'Uriel' .. 10
Figure 8: Body and Earth frame axes with corresponding flight angles 12
Figure 9: Zero roll/pitch thrust force ... 17
Figure 10: 40° roll angle thrust force ... 17
Figure 11: Motor numbers and axes for inertia calculations 21
Figure 12: Gimbal Lock Phenomenon. Photo from HowStuffWorks.com 24
Figure 13: ANGEL Simulation Block Diagram .. 27
Figure 14: Actuator Signal Input for Pitch Forward Attempt 28
Figure 15: Flight path under single actuator change 28
Figure 16: Roll, Pitch and Yaw angles for single actuator simulation 29
Figure 17: New Yaw Compensating Input Signal 30
Figure 18: Correct flight path with updated signals 30
Figure 19: Roll/Pitch/Yaw graphs with updated input signals 31
Figure 20: Simulink model of ANGEL simulation 32
Figure 21: Centrifugal Governor .. 33
Figure 22: Generic Control System .. 34
Figure 23: Controller Sub Block .. 40
Figure 24: Roll axis ultimate gain oscillations.. 41
Figure 25: Parallel Form Gain Response ... 42
Figure 26: Standard Form Gain Response .. 43
Figure 27: Full simulation and controller model 44
Figure 28: Controller example input signals .. 44
Figure 29: Roll, Pitch and Yaw response to the input signals 45
Figure 30: Controller output signals .. 46
Figure 31: ANGEL v1 Hub .. 47
Figure 32: ANGEL v1 Subsystem Location .. 49
Figure 33: Power Distribution on ANGEL v1 .. 51
Figure 34: Brushless Outrunner Motor ... 52
Figure 35: Motor Mount ... 52
Figure 36: Propeller Balancer ... 53
Figure 37: Example of how accelerometers measure force 57
Figure 38: ANGEL Controller GUI .. 64
Figure 39: CAD Diagram and 3D model of Uriel build 68
Figure 40: Dean-Y connectors made for Uriel .. 69
Figure 41: Roll and Pitch Axis Test Bench ... 70
Figure 42: Flight Harness ... 71
Figure 43: Thrust Stand ... 72
Figure 44: Roll Axis Test Results ... 73
Figure 45: Pitch Axis Test Results ... 73

1

Section I: Introduction

UAV Historical Perspective and Applications

Recent military conflicts have put the development of unmanned

systems as combat tools in the global spotlight. The proliferation of

unmanned aerial vehicles (UAVs) has been of particular interest to the

mainstream media. While the impact of these systems may be new to some,

their use has roots in conflict dating back to the Civil War. Pre-aviation UAVs,

such as Perley‟s aerial bomber (Figure 1), were generally nothing more than

floating payloads with timing mechanisms designed to drop explosives in

enemy territory. With limited technological resources available at the time,

most pre-aviation UAV endeavors proved too inaccurate to achieve

widespread success.

 In 1917, the combat potential of UAVs was finally realized with varying

designs of aerial torpedoes. Although WWI ended before any deployable

UAVs were used in theater, the push towards successful military integration

had already begun. The British Royal Navy developed the Queen Bee in the

1930‟s for aerial target practice. During WWII, Nazi Germany extensively

used the feared V-1 UAV (Figure 2) to bomb nonmilitary targets. The work

towards eliminating the threat of the V-1 proved to be the beginnings of

post-war UAV development for the United States. During the 1960s,

surveillance drones were used for aerial reconnaissance in Vietnam, and the

1980s saw wide integration of several Israeli Air Force UAVs into the US fleet

design [1].

Figure 1: Perley's bomber in 1863 [1]

Figure 2: Nazi V-1 bomber [1]

2

 After Operation Desert Storm, UAV development boomed in the United

States. Current market studies estimate that worldwide UAV spending will

more than double during the next 10 years, from $4.9 billion to $11.5 billion

annually. This amounts to a total expenditure of just over $80 billion over the

next decade [2]. While a large percentage of this spending will be for defense

and aerospace applications, non-military use of UAVs has also increased.

These include such practices as pipeline/powerline inspection, border patrol,

search and rescue, oil/natural gas searches, fire prevention, topography and

agriculture [3].

Vertical Take-off and Landing (VTOL) Aircraft

 VTOL aircraft provide many benefits over conventional take-off and

landing (CTOL) vehicles. Most notable are the abilities to hover in place and

the small area required for take-off and landing. VTOL aircraft include

conventional helicopters, other craft with rotors such as the tiltrotor, and

fixed-wing aircraft with directed jet thrust capability. The two desirable

benefits of VTOL aircraft make them especially useful for aerial

reconnaissance, asset tracking, munitions delivery, etc. Table 1 shows a

small sample of VTOL craft.

3

Table 1: VTOL Vehicles

Westland Apache WAH-64D Longbow
Helicopter

Manned Vehicle
Single Rotorcraft

Schiebel Camcopter S-100
Unmanned Vehicle

Single Rotorcraft

McDonnell Douglas AV-8B Harrier II
Manned Vehicle

V/STOL (Vertical/Short Take-off and
Landing)

Directed Thrust Jet

Bell-Boeing V-22 Osprey

Manned Vehicle
V/STOL
Tiltrotor

De Bothezat Quadrotor, 1923
Manned Vehicle

VTOL
Four rotor rotorcraft (Quadrotor)

4

The main disadvantage of VTOL vehicles, especially rotorcraft, are the

increased complexity and maintenance that comes with the intricate

linkages, cyclic control of the main rotor blade pitch, collective control of the

main blade pitch, and anti-torque control of the pitch of the tail rotor blades.

The Quadrotor

 The quadrotor is considered an effective alternative to the high cost

and complexity of standard rotorcraft. Employing four rotors to create

differential thrust, the craft is able to hover and move without the complex

system of linkages and blade elements present on standard single rotor

vehicles. The quadrotor is classified as an underactuated system. This is due

to the fact that only four actuators (rotors) are used to control all six degrees

of freedom (DOF). The four actuators directly impact z-axis translation

(altitude) and rotation about each of the three principal axes. The other two

DOF are translation along the x- and y-axis. These two remaining DOF are

coupled, meaning they depend directly on the overall orientation of the

vehicle (the other four DOF). Additional quadrotor benefits are swift

maneuverability and increased payload. Drawbacks include an overall larger

craft size and a higher energy consumption, which generally means lower

flight time. [4] subjectively compares different types of VTOL miniature flying

robots (MFR) in several categories.

5

Table 2: Aircraft Comparisons

A=Single Rotor, B=Axial Rotor, C=Coaxial Rotor, D=Tandem Rotors,

E=Quadrotor, F=Blimp, G=Bird-like, H=Insect-like. 1=Poor, 4=Excellent [4]

As is seen in Table 2, the quadrotor configuration provides many advantages

in the quest for an achievable and usable UAV as a VTOL MFR. This thesis

aims to further explore the modeling and simulation of a quadrotor vehicle

with focus on good mechanical design and robust control system

implementation.

Section II: Literature Review and Motivation

The Cutting Edge

 Quadrotor research is a very popular area, especially in the academic

setting. Arguably at the head of quadrotor research is UPenn‟s GRASP

(General Robotics, Automation, Sensing and Perception) Lab. GRASP is

currently pushing the envelope with aggressive quadrotor maneuvering and

detection/avoidance algorithms, which allows the vehicle to accomplish such

feats as autonomously flying through a moving object, such as a thrown

Categories A B C D E F G H

Power Cost 2 2 2 2 1 4 3 3

Control Cost 1 1 4 2 3 3 2 1

Payload/volume 2 2 4 3 3 1 2 1

Maneuverability 4 2 2 3 3 1 3 3

Mechanics

Simplicity

1 3 3 1 4 4 1 1

Aerodynamics

Complexity

1 1 1 1 4 3 1 1

Low Speed

Flight

4 3 4 3 4 4 2 2

High Speed

Flight

2 4 1 2 3 1 3 3

Miniaturization 2 3 4 2 3 1 2 4

Survivability 1 3 3 1 1 3 2 3

Stationary

Flight

4 4 4 4 4 3 1 2

TOTAL 24 28 32 24 33 28 22 24

6

hoop. Their other research involves swarm-based task management, where

individual quadrotor vehicles cooperate to lift heavy payloads. Additional

areas of research include perching and landing algorithms, which allow the

vehicles to grip onto abnormal landing surfaces [6]. It should be noted that

most of the test bed vehicles from UPenn are bought commercially and

tracked with an external Vicon® Motion Capture System to have complete

position and orientation information for the vehicle.

Commercial Products

 In addition to the highly scientific and technical research being

performed on quadrotor systems, they have a strong footing in the

commercial market as well. Draganfly Innovations [16] has a large section of

the quadrotor market locked down for the industrial sector with their line of

Draganflyer helicopter systems (comprised of tri-, quad-, and octo- rotor

setups). Figure 3 shows the popular 8 rotor Draganflyer X8, used for aerial

surveillance.

Figure 3: Draganflyer X8 from Draganfly Innovations

While this line of aerial surveillance robots offers many attractive features

such as a folding frame, robust chassis design and high payload capacity for

attaching several different camera or surveillance packages, they still require

the use and training of a proprietary controller.

7

 Where Draganfly is at the top of the list for the commercial/industrial

market, the Parrot AR Drone [17] has a strong footing in the toy market

(shown in Figure AB). This drone achieves an extremely light weight through

its foam outer shell while maintaining good aerodynamics. It is controlled via

an iPhone/iPod Touch using the built in accelerometers to deliver pitch and

roll commands wirelessly. Two cameras feed back to the controller, allowing

the user to navigate remotely. The light weight of the craft does not make it

suitable for a medium or high disturbance environment, and the weight

reductions mean a smaller battery capacity which directly affects the flight

time of the platform.

Figure 4: Parrot AR Drone Quadrotor Toy

Research Motivation

 The motivation for the research in this thesis builds on the previous

work discussed above in quadrotor research. While each of these systems

provide an important component of the bigger picture (high tech research,

usable commercial product, fun and inexpensive toy), none of them provide a

8

full systems engineering approach to the problem of usability in a combat

theater. The research presented here is the first step towards a more

complete understanding of the quadrotor as a dynamic system. Although

much of the work presented has been completed or overcome before,

working through it personally while keeping in mind the end goal of a troop

usable system has uncovered problems not addressed in the previous

endeavors. Relying on external sensing systems or complex controllers and

disregarding flight time and platform weight may still result in a usable

system, as is evident from the commercial and academic successes listed

previously. But by tackling the problem with a fresh set of objectives, this

thesis aims to correct those inadequacies and offer solutions and alternatives

in response to the development and testing of a new platform.

Section III: ANGEL Simulation Model

Introducing the Aerial Network Guided Electronic Lookout (ANGEL)

 Before diving into the kinematics and simulation that describe how a

quadrotor system acts in flight, a brief introduction to the specific system we

are using is necessary. The Aerial Network Guided Electronic Lookout

(ANGEL) platform was developed at the University of Kentucky with funding

from a Department of Defense grant through the UK Center for Visualization.

The platform was intended as a man portable, MAV (Micro Air Vehicle)

capable of short range reconnaissance through a variety of sensor

subsystems. Additionally, the vehicle was to be controllable only at a high

level in order to allow ground forces to focus their attention elsewhere. This

“set-and-forget” mentality is something majorly different than most UAVs

deployed today, as they require constant attention from a ground station

based pilot. See Figure 5 for the DoD concept of operations diagram. Two

versions of the platform were developed and built. Regrettably, the funding

cycle for the grant ended mid-build, and further platform development has

been placed on hold until a suitable source of funding is found. This,

however, has not impeded development of the simulation model or testing of

9

the control algorithms, which will be covered later in this paper. Figure 6

illustrates the first unnamed version of the ANGEL platform, and Figure 7

shows the much-improved second version, named „Uriel‟. More information

on the builds and features are found in the Platform Builds section.

Figure 5: DoD ConOps for ANGEL system

10

Figure 6: ANGEL v1. Note the propellers are removed.

Figure 7: ANGEL v2 'Uriel'

11

Coordinate Systems

Unlike conventional rotorcrafts that use complex mechanisms to

change blade pitch to direct thrust and steer the craft, the quadrotor employs

a much simpler differential thrust mechanism to control roll, pitch, and yaw.

These three critical angles of rotation about the center of mass of the craft

make up the overall attitude of the craft. In order to track these attitude

angles and changes to them while the craft is in motion, the use of two

coordinate systems is required. The body frame system is attached to the

vehicle itself at its center of gravity. The earth frame system is fixed to the

earth and is taken as an inertial coordinate system in order to simplify

analysis. The North-East-Down convention will be used when describing the

axes of the earth frame system to comply with standard aviation systems

and to satisfy the right hand rule (as opposed to, for example, North-East-

Up). The angular difference between these two coordinate systems is

sufficient to define the platform attitude at any point in space. Specifically,

starting with both systems parallel, the attitude of the system can be

replicated by first rotating the body frame around its z-axis by the yaw angle,

, followed by rotating around the y-axis by the pitch angle, , and lastly by

rotating around the x-axis by the roll angle, . Figure 8 illustrates the axes of

both the body and earth frame, and how the flight attitude angles affect

these axes. This rotation sequence is known as Z-Y-X rotation, as the order

of axis rotation is of extreme importance.

12

Figure 8: Body and Earth frame axes with corresponding flight angles

ANGEL System State

In defining the dynamic behavior of the ANGEL platform, we must

have knowledge of the state of the craft. While more about the ANGEL state

vector will be discussed later, knowledge of the parameters involved in

defining the state describing the craft at any instant in time will help in

understanding the derived dynamics.

The angles that make up the attitude of the craft with respect to the

body coordinate system have already been discussed. The roll angle, Φ, the

pitch angle, θ, and the yaw angle, Ψ, will all be represented in the state

vector. Additionally, the angular velocities of these about each axis will be

represented using dot notation, . These 6 states effectively define the

attitude of the craft with respect to its own coordinate system. An additional

6 states are necessary to define the relationship of the craft with respect to

the earth fixed coordinate system. These states include the physical location

of the craft within the earth fixed system along each of its principal axes,

denoted as X, Y, and Z. Additionally, the velocity of the craft in each of these

directions is also necessary, and will be denoted as .

13

Together, these 12 state variables make up the state vector of the

ANGEL platform. This state vector is provided in equation (1)

 (1)

With this state now available, we can begin the overview of the platform

dynamics, knowing exactly what parameters we need to define in order to

have a complete model of the platform.

ANGEL Actuator Basics

With this basic review of aircraft attitude, it is now important to

understand how the quadrotor is able to change the thrust output of each

actuator to force a change in one or more of the attitude angles. It is

important to remember that the quadrotor is by nature an underactuated

system. This means that the vehicle is able to control all six DOF (three axes

of translation and an angle of rotation about each translational axis) with

only four input actuators. This underactuated state means that two DOF are

coupled, in this case, the x- and y-axis translations. Translation on these

axes depends directly on the attitude of the craft with respect to the other

four degrees of freedom. The pictures in Table 3 illustrate the possible thrust

configurations and the resulting angular shift. One of the simplifying

principals of the quadrotor configuration over a single rotor configuration is

the lack of an anti-torque rotor. By allowing two rotors to spin CW and the

other two to spin CCW, as long as the ratio of thrust generated by CW to

CCW actuators stays constant, the craft will not be subject to a non-zero

torque resulting in a yaw deviation.

14

Table 3: Quadrotor differential thrust examples

HOVER / ALTITUDE CHANGE
When all actuators are at equal

thrust, the craft will either hold in
steady hover (assuming no
disturbance) or increase/decrease

altitude depending on actual thrust
value.

YAW RIGHT
If the CW spinning actuators are

decreased (or the CCW actuators
increased), a net torque will be
induced on the craft resulting in a

yaw angle change. In this instance, a
CW torque is induced.

ROLL RIGHT

If one of the actuators is decreased
or increased on the roll axis as

compared to the other actuator on
the same axis, a roll motion will
occur. In this instance, the craft

would roll towards the right.

PITCH UP

Similar to the roll axis, if either
actuator is changed on the pitch axis,

the axis will rotate in the direction of
the smaller thrust. In this instance,
the craft nose would pitch up towards

the reader (out of the page) due to
the differential on the pitch axis.

15

Coordinate System Rotations

 It was previously mentioned that two coordinate systems are needed

to define the instantaneous state of the platform at any time. First, a body

fixed system with the x-axis along the front of the craft, the y-axis to the

right, and the z-axis down. Second, an earth fixed inertial system using the

North-East-Down convention typical of aviation applications. The rotation of

one frame relative to the other can be described using a rotation matrix,

comprised of 3 independent matrices describing the craft rotation about each

of the earth frame axes. These rotation matrices are given in equations (2) –

(4).

 (2)

 (3)

 (4)

Using these rotation matrices, the complete orientation of one coordinate

system with respect to the other can be calculated [11]. The total rotation

matrix equation is provided in equation (5).

 (5)

ANGEL Body Forces and Moments

 In order to create an accurate model of the platform, the various

forces and moments induced on the craft must be understood and accounted

for. As these forces and moments are discussed, some assumptions are

16

made in order to simplify analysis. These assumptions will be discussed in

the appropriate areas.

 The forces and moments induced on the craft are responsible for its

movement and overall attitude. Each of the forces can be broken into an x,

y, and z component. The following Newton-Euler form equation (6) defines

the total influence of the net forces and moments on the craft. Using this

equation with the individual forces and moments defined for each degree of

freedom below, we can determine the full equations of motion for the craft.

 (6)

The variables of concern in designing the control system are the (change of

body linear velocity) and the (change of body angular velocity). Carrying

the differential through to the sub variables that specify the various axes and

degrees of freedom available to both velocities, we arrive at our state

variables that will be used to specify the orientation of the craft to the control

system.

 Figure 9 and Figure 10 show how forces are interpreted differently

based on which reference coordinate system is used. In Figure 9, where both

the earth fixed system and the craft system are aligned in the Z-axis

direction, the thrust generated by the actuator is the same for each

coordinate system representation. As the craft undergoes a roll movement

(for example, a 40 degree roll to the left shown in Figure 10), the alignment

of the coordinate systems disappears. The full thrust force is still available to

the craft fixed coordinate system, but only a portion of it is available in the z-

axis of the earth fixed system. This illustrates the need of the rotation

matrices previously developed, and will be useful in describing the craft in

both systems for attitude estimation and translational movement.

17

Figure 9: Zero roll/pitch thrust force

Figure 10: 40° roll angle thrust force

From the reference of the onboard craft coordinate system, the thrusts

generated by the motors/propellers are always in the crafts z-direction. The

gravity vector, however, is always in the fixed frame z direction (towards the

center of the earth). In this instance, it is important to utilize the rotation

matrix from equation (5). We can therefore write the force of gravity as

(7)

It is important to remember that this force is taken with respect to the craft

coordinate system, affixed to the center of gravity of the ANGEL platform.

Along with gravity, the only other forces to be considered are the forces

generated by the propeller/motor combos. These forces combined with the

force of gravity, allow us to solve equation (6) for the forces acting on the

platform, and determine the acceleration of the craft in terms of the craft-

fixed frame.

18

(8)

The last matrix containing rotational and translational velocities is the result

of the cross product of the ω and V time derivatives in equation (6). Of

special note is the fact that the only thrust component existing in the body

frame is in the z-direction. To simplify the simulation model, the hub forces

(horizontal forces on the blades) and friction/drag induced by the air on the

blades will be ignored in the x- and y- directions.

At this point, another assumption should be noted. On take off and

landing, there are significant aerodynamic changes due to a phenomenon

known as the ground effect. While operating near the ground, a reduction in

the induced airflow velocity provides greater efficiency from the rotor, and

thus more thrust. Since autonomous take off and landing is not within the

scope of this paper, the ground effect will be ignored when developing the

simulation model of the ANGEL platform.

Next the moments will be considered in order to determine the acceleration

rates of the various attitude angles. Each of the three angle accelerations is

subject to the Frame (or body) gyroscopic effect. This is the moment induced

by the angular velocity of the frame as a whole. The following equations

illustrate the Frame Gyro Effect on each attitude angle.

Roll Angle Gyro Effect (9)

Pitch Angle Gyro Effect (10)

Yaw Angle Gyro Effect (11)

The equations show that the velocities at which the other angles are

changing directly influence the acceleration of the target angle. A derivation

and description of the moments of inertia of the three axes is given following

the descriptions of all contributing moments. The next moment to discuss is

19

the moment generated by the rotor thrusts. This moment, known as the

Thrust-Induced Moment, only affects the roll and pitch angles. The equations

that follow illustrate this moment.

Roll Angle Thrust Induced Moment (12)

Pitch Angle Thrust Induced Moment (13)

Although the yaw angle is not affected by the thrust-induced moment, it is

still impacted by the various rotor thrusts due to imbalance in the counter

rotating torques. While the thrusts are balanced, the yaw angle change

should nearly be zero, neglecting any external noise or disturbance. Thrust

imbalance controls yaw, which negates the need of a second anti-torque

rotor. The equation for Counter-rotating Thrust Imbalance follows.

Counter-rotating thrust

imbalance

 (14)

The last set of moments to consider are the individual moments from the

propeller induced gyroscopic effects. These effects are based on the rotor

inertia, rotor velocity, and changing attitude angle. The Rotor gyroscopic

effects are summarized below.

Roll Rotor Gyro Effect (15)

Pitch Rotor Gyro Effect (16)

The inertial counter-torque moment on the z-axis is analogous to the rotor

gyroscopic effects for the x- and y-axis and is given in [12].

Inertial counter-torque effect (17)

Equations (15), (16) and (17) comprise the total moment effects of the

propeller itself. In comparison to the other moments, these gyroscopic

20

effects have very insignificant roles in the overall attitude of the craft. They

are presented to provide a more accurate model, but will not be used in the

simulation or implementation of the control system in order to reduce the

overall complexity of the system [9].

Together, these moments determine the overall behavior of the principle

attitude angles of the craft. The equations illustrating the acceleration of

rotation around each axis are given in (18-20).

 (18)

 (19)

 (20)

ANGEL Moments of Inertia

Calculating the moments of inertia about the various axes is the next

step towards accurate modeling of the ANGEL system. While the notation (for

example, Ixx) denotes the moment of inertia around the x-axis while the

platform is rotation around the x-axis (or rolling), we will assume the rolling,

pitching and yawing of the platform will not change the moment for any

specific axis. The derivation of these principal moments of inertia (Ixx, Iyy,

and Izz) is adapted from [8]. For the remainder of the inertia discussion, refer

to Figure 11 for the various axes and motors.

21

Figure 11: Motor numbers and axes for inertia calculations

Assuming perfect symmetry between the x- and y-axis, it is safe to assume

the moments about each of these axes are numerically equivalent. To

simplify the modeling process, all mass components of the platform will be

modeled as solid cylinders attached by zero mass and frictionless arms. The

moment of inertia of a cylinder rotating about an axis perpendicular to its

body is given by

 (21)

In (21), m refers to the cylinder mass, r to the cylinder radius, and h to the

cylinder height. For this implementation, the cylinder includes the motor,

motor bracket and landing gear. Taking the x-axis as the first effort, the

moment of inertia due to the motors on either side of the axis (motors 2 and

4) is approximated by

 (22)

22

Again, m refers to the mass of a single cylinder and l refers to the arm length

of one side of the craft. The last items of concern to the moment of inertia

are the two motors in line with the x-axis (motors 1 and 3) and the central

hub where the arms meet. The equation governing the effect of these objects

on the moment of inertia is derived from (18).

 (23)

The first bracketed portion of the equation accounts for motors 1 and 3. The

latter portion refers to the central hub, which includes all the electronic speed

controllers for the motors, the avionics, sensors, and the batteries and power

distribution system. Together, equations (22) and (23) form the overall

moment of inertia approximation for the x- and y-axis.

 (24)

Due to symmetry, equation (24) applies to both the x- and y-axis. The

moment of inertia for the z-axis rotation (yaw) can be attributed to all 4

motor/mount/gear cylinders and the central hub. The moment of the central

hub modeled as a cylinder rotating about an axis through and parallel to its

center is given by

 (25)

For the 4 motors at an arm‟s length away from the axis of rotation, the total

moment of inertia is

 (26)

23

Therefore, by combining equations (25) and (26), the total equation for the

approximation of the moment of inertia about the z-axis is

 (27)

ANGEL Kinematics and the Gimbal Lock Phenomenon

 The kinematics of the ANGEL platform consider the movement of the

body as a whole within its environment with no consideration paid to the

forces or moments that actually induce these movements. Classically, this

involves determining the velocity of the body from its position information

through a time derivative. If we wish to determine the linear velocity of the

craft, we can use the rotation matrix along with the time derivative of the

position. This is shown in equation (28).

 (28)

From [11], it is shown that inverse of the total rotation matrix is equal to its

transpose (orthogonal matrix), which means (28) can be rewritten as

 (29)

Also from [11], we know that the attitude (Euler) angles are not constant

with time. Therefore, a relationship between the Euler angle rates (with

respect to the earth fixed system) and the body axis rates (with respect to

the craft fixed system) must be determined. At first glance, the Euler rates

and body axis rates appear the same. However, under constant rotational

velocity, the body axis rates are constant, but the Euler rates are not, due to

24

the direct dependence on the angular displacement of the coordinate

systems. Equation (29) shows the derived Euler angle rates as a function of

the body axis rates [11].

 (30)

The use of these Euler rates is, however, not without disadvantages. While it

is easy to immediately see the physical application of these Euler angles

through visible rotations of the craft, their use opens the simulation model

(and the physical system) to a phenomenon known as gimbal lock. Gimbal

lock occurs when a craft capable of 3D rotation rotates such that two

formerly exclusive axes of rotation coincide in the same plane. This

phenomenon is illustrated in Figure 12.

Figure 12: Gimbal Lock Phenomenon. Photo from HowStuffWorks.com

Using Euler angles, if the pitch angle rotates to pi/2, the independent axis to

force a yaw rotation is lost. It is therefore general practice when dealing with

25

crafts that may experience these angles to use a different method of defining

them. This is known as the quaternion method.

The Quaternion Method

 While quaternions are not as visual as Euler angles (it is harder to

imagine the implied craft movement when looking at the quaternion tuple),

they offer a greatly simplified approach to 3D rotation. Where Euler angle

rotation requires 3 successive angles of rotation (Z-Y-X, or Yaw-Pitch-Roll) to

completely describe the craft orientation, the quaternion describes the

rotation in a single move (rotate by θ degrees around the axis directed by

the defined vector). When implemented, the quaternion used to define a

rotation is a set of 4 numbers (s,x,y,z), such that

 (31)

In application, the quaternion is constructed around a unit vector defining the

axis of rotation (x0, y0, z0) and the angle of rotation θ.

 (32)

From [11], the expression of these quaternion components [q0, q1, q2, q3] in

terms of the Euler angles is given as

26

 (33)

Alternatively, we can use an equivalent quaternion rotation matrix to derive

the Euler angles back from the quaternion implementation.

 (34)

This relationship will allow us to redefine any equations of motion describing

the behavior of the craft in terms of quaternions instead of Euler Angles.

MATLAB Simulation of ANGEL

In order to accurately simulate the behavior of the ANGEL system, we must

build a loop through which an input command to the ANGEL can be applied

and the resulting state space vector is updated. Figure 13 shows a block

diagram of how this system should be implemented.

27

Figure 13: ANGEL Simulation Block Diagram

The input block in the simulation diagram allows us to change the commands

(C1, C2, C3, C4) going to the motors. Thus, disregarding any external

disturbances or noise from the physical implementation of the system, we

can track how the system will react to changes in the actuator output. This

will give us some idea of how the craft will react, and will allow us to design

the control system based on desired performance parameters.

 One of the most straightforward movements the craft can make is a

simple pitch or roll in order to move either forward/back or left/right. To the

novice user unfamiliar with the actuator interactions and coupling, the first

attempt may involve changing the output speed of only one motor. For

example, if a slight forward propagating pitch angle is desired, the first

attempt may be to turn on all actuators to gain altitude, provide a negative

pulse to the front motor momentarily in order to cause the craft to pitch

forwards, travel forwards for a few seconds before providing a positive pulse

to the front motor to kick the craft out of forward pitch. The net movement of

the craft would presumably be in the positive x-direction of the earth fixed

frame with no movement in the fixed y-direction. This however, is not the

result that occurs. Figure 14 illustrates the input signal described in the

preceding paragraph.

28

Figure 14: Actuator Signal Input for Pitch Forward Attempt

The actuators are powered on at 5s, steadily gaining in altitude. At 10s, a

negative pulse is provided to the front motor, causing a drop in speed, which

should cause the craft to pitch forward and move in the positive x-direction.

At 12s, a positive pulse is applied to presumably bring the craft out of

forward pitch and back into steady hover. This however, is not what occurs.

Figure 15 illustrates the overall flight path of the craft in the earth XY plane.

Figure 15: Flight path under single actuator change

29

As is evident, the craft does not exhibit the desired behavior. We can analyze

what occurs by studying the roll, pitch, and yaw moments as a function of

time. Figure 16 shows these values for this particular simulation.

Figure 16: Roll, Pitch and Yaw angles for single actuator simulation

From the figure, we see the desired pitch angle response previously

predicted. The actuators all turn on equally at 5s, and there is no deviation in

the roll, pitch or yaw angles. At 10s, the effect of the short negative pulse on

the front motor is evident in the pitch response curve, followed closely by the

short positive pulse to bring the pitch back to a nearly zero offset. Thus, the

pitch acts in accordance to the expectations. The yaw angle, however, does

not look correct. There was no intended yaw movement in our signal

description, and the presence of this deviation is entirely responsible for the

odd trajectory of the craft. Due to the change in ratio of counter-clockwise

propeller speed to clockwise propeller speed, an overall yaw moment was

induced, as described by equations (14) and (20). As the front motor speed

was decreased, the back motor speed should have increased simultaneously

to compensate for the decreased overall clockwise thrust. Instead, the

counter-clockwise spinning motors dominated the ratio, inducing a clockwise

moment causing the craft to spin towards the negative y-direction in Figure

15. The pitching and yawing movements, when combined, changed the

30

thrust vector of the craft, similar to Figure 10. This caused the overall roll

deviation, which accounts for the craft rolling off in the negative x-direction.

 The correct method for implementing a forward movement will rectify

the CCW/CW thrust ratio problem that caused the erratic behavior in the first

simulation attempt. The new input signals for the actuators are shown in

Figure 17.

Figure 17: New Yaw Compensating Input Signal

While still not perfect, these signals provide something much closer to the

intended behavior. The XY flight path plot and the Roll/Pitch/Yaw graphs are

shown in Figure 18 and Figure 19, respectively.

Figure 18: Correct flight path with updated signals

31

Figure 19: Roll/Pitch/Yaw graphs with updated input signals

Looking at the angle graphs, the first reaction may be that we did not solve

anything by changing the input signals. The roll and yaw deviations,

however, are much smaller in magnitude when compared to the pitch

deviation. The presence of the roll/yaw changes is actually correct and not an

error in the simulation. Referring to equations (18) and (20), the roll and

yaw accelerations depend directly on the velocity of the changing pitch angle

through the roll/yaw gyroscopic effects given in (9) and (11). Therefore,

these minute deviations are part of the intended response, but do not play a

significant role in the overall trajectory of the craft. For reference, the code

used in the dynamics simulation of the platform is provided in Appendix A-1

and a diagram illustrating the Simulink Model used for the simulation is

provided in Figure 20. The results of this simulation also verify the need for a

control system to provide input to the motors. Notice the magnitude of the

pitch angles. While we can manually actuate the motors, these results show

that a very small change in motor input results in a change from 0 radians

pitch to over 100 radians (almost 16 revolutions) in a matter of 25 seconds.

In order to track a desired reference angle, a controller will need to be

implemented and optimized.

32

Figure 20: Simulink model of ANGEL simulation

 From these two simulations, the complexity of by-hand control of the

ANGEL platform should be clear. Each axis will need an independent control

system implementation tuned to the specific characteristics and variables of

the axis. The development and implementation procedure of the control

systems are covered in Section IV.

Section IV: ANGEL Control Development

Control Fundamentals

A control system is an external architecture placed on any

(controllable) dynamical system in order to maintain equilibrium determined

by an input set point. By comparing the values that define the overall state

or orientation of a system to the desired values, gaps and errors can be

accounted for and rectified in order to achieve homeostasis. Control systems

are present everywhere in nature. Biologically, the temperature of a human

body is achieved through a complex process of thermoregulation. The

33

healthy bodily temperature is the set point, and the actual temperature of

the body is constantly driven to that set point through organ heat generation

and dissipation through evaporation (sweat) and vasodilatation.

 Of importance to the study of unmanned vehicles and mechanical

systems is the development of applicable control systems. Historically, one of

the most popular examples of feedback control is the Centrifugal Flyball

Governor engineered by J. Watt in 1788. In order to control the speed of

steam engines, which exhibited rotary output, the speed of the rotation

needed constant monitoring and control. The solution to this problem was to

affix a device comprised of two rotating flyballs spun outwards by the

centrifugal force generated by the rotary engine (Figure 21). As the engine

speed increased, the rotational speed increased and the flyballs were forced

up and out. This actuated a steam valve that slowed the engine, and the first

version of automatic speed control was implemented.

Figure 21: Centrifugal Governor1

This type of controller is known as “bang-bang” control, or On/Off control. If

the speed needs to be increased or decreased, the valve is closed or opened.

1 Photo by Joe Mabel

34

The discrete states of the system make implementation and testing very

straightforward.

For more complex systems where a more continuous approach is

necessary, linear feedback control may be used. One of the simplest

implementations of linear feedback control is “Proportional Control”. In this

sense, the control system actuates the system in proportion to the current

error between the actual operation point (Process Variable) and the desired

set point. However, the simplicity of proportional control is not without its

drawbacks. If the proportional gain is set too low, the system becomes

sluggish in its response, but is generally safer and more stable. Alternatively,

if the gain is too high, the system will quickly respond to errors, but will

experience oscillations around the set point.

Introducing two more gains, the derivative gain and integral gain,

allows us to more completely define the desired behavior of the control

system. The derivative portion controls the rate of change of the process

variable, and as such can much more intuitively approach the set point if

designed correctly. The integral portion looks at the global steady state error,

and becomes more influential the longer the error is not zero. Together,

these gains make up the extremely popular PID (Proportional, Integral,

Derivative) controller. Figure 22 illustrates the controller architecture on a

generic plant.

Figure 22: Generic Control System

The reference (denoted as r) is actually the desired set point for the process

variable (system output) y. This reference signal is compared via negative

feedback to the measured output from the sensor subsystem. The result of

35

this comparison is the error signal (e), which is the input to the controller.

The controller is concerned with forcing this error signal to zero through the

use of the previously discussed proportional, integral and derivative controls

(or through other mechanisms if a different controller architecture is used).

The controller then outputs an appropriate signal (u) as an input to the

system with the idea that u will drive y more towards r, thus decreasing the

magnitude of e.

With the advent and wide use of electronic controllers, the complexity

of control system available to the average user has increased dramatically in

recent years. While control systems can be implemented with a series of

operational amplifiers and passive circuitry, the real power of adaptive,

dynamic control comes in the form of microcontrollers. These control systems

and corresponding gains can be changed based on sensor inputs and

changing plant parameters. With a dynamic controller installed, some

systems are even capable of tuning themselves, setting the appropriate gains

in order to achieve the desired response characteristics for their current

implementation.

 In the following sub-sections, the model developed in Section III will

be analyzed, and a control system will be selected and implemented based

on a set of desired criteria. This system will be modeled in MATLAB in order

to test the system response before it is implemented on the avionics

platform.

Model Simplifications

 In model-based control, it is typical to take the full simulation model

and reduce it such that the control is applied to a specific behavior envelope.

This makes the initial design of the system less intensive, and allows

calibrating the system for the most significant effects before introducing

minor effects that may add greatly to the complexity of the controller or

sensor subsystems. Equations 35 – 37 below show the rotational equations

of motion from the full simulation model developed in Section III.

36

 (35)

 (36)

 (37)

As previously noted in Section III, the rotor gyroscopic effects induced by the

rotational motion of the propellers are not significant when compared to the

moments induced by the actuator thrusts. For this reason, they are

disregarded in both the simulation and the controller development process.

To limit the envelope over which the controller is valid (thus reducing the

complexity of the controller while accomplishing the most vital characteristics

of the craft) a hover state will be the desired orientation of the craft. This

means we are only concerned with the rotations of the craft near hover. As a

result, we will only consider the rotational subsystem for the roll, pitch, and

yaw angles. X,Y, and Z values, while important for obstacle avoidance and

path following, all fall out of the angle subsystem due to coupling (with the

general exception of the Z value, as this is determined by a separate input

comprised of all the thrust values of the motors). Since the area around a

steady hover has been selected as the appropriate envelope, the angular

velocities for roll, pitch, and yaw will be very small. For this reason, we can

also disregard the angle gyroscopic effects introduced in Section III. These

reductions form the simplified control model used to develop the controller.

These simplified equations of motion are provided in equations 38 – 40.

 (38)

 (39)

37

 (40)

Input Declarations

 With this simplified model defined, the next step is to define the U

vector that will be used to control the system dynamics from the controller.

In the simulation, the input to the system dynamics model was based on the

relationship between the pulse-width modulation command send from the

controller to the actuators and the actual thrust output. This relationship,

however, is only linear for a small portion of the thrust curve. It is therefore

beneficial to switch from PWM input to a more tangible rotational speed.

From [4], it is shown that thrust generated by a motor-propeller combo is

related to the square of the propeller speed when the flight regime is in

hover and not translational movement, with a thrust constant factor and drag

moment factor considered. Therefore, the inputs selected for the system can

be formulated and are given in equations 41 – 43.

 (41)

 (42)

 (43)

There exists a fourth input, the altitude input, which is comprised of all the

actuator inputs as a sum to fix the altitude of the craft. For this portion of the

controller derivation, altitude is not a concern, so this input will be set to a

constant value of craft mass multiplied by gravity in order to produce

constant thrust.

MATLAB Control Implementation

 In order to test and tune the controller before implementing it on the

ANGEL platform itself, the decision was made to model it in MATLAB and tune

38

it using the simulation model developed in Section III (and reduced in the

previous subsection).

 The output of the controller serves as the input of the system

dynamics model in the controller simulation. In the actual implementation of

the controller, the outputs will be modified PWM commands sent to the

motors in order to change the output speed (and consequently the thrust) of

each of the 4 rotors. This will allow the ANGEL platform to track the desired

attitude angles set by the user. These output commands (whether in the

simulation or implementation) are comprised of the three gain correction

terms, the sum of which creates the manipulated process variable (roll, pitch,

or yaw). In PID controller theory, these correction factors are comprised of

the gains (P, I, D for a PID controller) and the correct time form of the error

signal.

 For the proportional portion of the controller, the signal will be

comprised of the P gain and the error function e(t), which in this case is

simply the negative feedback function formed in the generic controller

example in Figure 22. For the purposes of discussion, the examples will only

be shown using the roll angle, although each attitude angle (roll, pitch and

yaw) will have a separate controller tuned to their own individual dynamics.

For example, the error signal for use in the proportional section of the roll

controller would be the difference between the set point roll value (in hover,

this would be 0 radians) and the actual roll value (from the state vector

provided by the system dynamics model), such that

 (44)

 The integral portion of the controller is comprised of the I gain and an

integration of the error over time. This portion is responsible for looking at

the instantaneous error as a sum over the entire implementation of the

controller. This allows the controller to eliminate steady state errors and

drive the output signal towards the desired reference signal. The introduction

of the integration term also decreases the rise-time of the output signal but

39

increases the settling time. The error function in this instance includes an

integral, which in practice is just the sum of the error between the reference

signal and the actual state over a period of time. This is accomplished in the

controller simulation by keeping a running sum of the instantaneous error in

the controller subsystem. The equation governing the I portion of the

modified process variable is given in equation (45).

 (45)

 Lastly, the D term of the modified signal deals with the speed with

which the error signal is changing. This is used to reduce overshoot of the

reference signal. It is comprised of the derivative gain and a derivative

function of the error signal, and is shown in equation (46).

 (46)

Each of these terms can be collected and summed to create the overall

input to the system dynamics block (equation (47)). Recall that this example

only deals with the roll controller, and that the total U vector will be

comprised of the signals from each of the three controllers.

 (47)

 The implementation of the controller was achieved using a custom-

written block in MATLAB. Figure 23 shows this block along with its inputs and

outputs.

40

Figure 23: Controller Sub Block

The desired reference signals (Roll Set, Pitch Set, and Yaw Set) along with

the state vector from the dynamics model are fed into the attitude controller

sub block. The subsystem block towards the bottom of the figure which is fed

the Altitude Set point along with the state vector is a disabled altitude

controller. For the testing and tuning of the attitude controller, the altitude

controller always outputs a signal that will equal the force of gravity on the

craft. The outputs of the attitude controller are the roll, pitch and yaw

signals, respectively. These (along with the constant signal from the altitude

subsystem) are multiplexed together and fed to the controller block output.

For debugging and tuning purposes, the roll, pitch and yaw signals are also

sent to a scope for visual inspection. The MATLAB code for the attitude

controller and a few other controller blocks is provided in Appendix A-2

through A-4.

41

Controller Tuning and Response

 With the controller successfully implemented inside the MATLAB

simulation environment, the next step was to tune the controller to the

behavior of each attitude angle. Again, the roll axis will be used for this

example, although the tuning method was applied to each axis individually.

There are several tuning methods available to a controls engineer in order to

fix the P, I and D gains appropriately to match a desired response. These

include manual tuning (tweaking until the desired response is met), Ziegler-

Nichols (tuning using a set algorithm), software tuning, and Cohen-Coon

tuning (providing a step input, measuring the response, and setting

parameters from this response). In the actual implementation of the

platform, rejection of disturbances (wind, for example) is much more

important than hitting the reference signal exactly every time. According to

[12], the Ziegler-Nichols tuning method gives the loop exceptional

disturbance rejection at the cost of slightly diminished reference tracking

performance. For this reason, the Ziegler-Nichols tuning method was selected

as a first pass algorithm. The method dictates that the I and D terms of the

controller are zeroed out with the P term set such that loops output signal

oscillates with a constant amplitude. For the roll axis, a P value of 1 resulted

in the following output signal (Figure 24).

Figure 24: Roll axis ultimate gain oscillations

The oscillation period of this signal was determined to be 1.4 Hz. Using this

signal along with the standard implementation of the Z-N method the

following gains were set (Table 4):

42

Table 4: P, I, D values for Roll

P 0.5

I 0.8571

D 0.175 (standard)

As indicated in the table, the standard form (non-parallel) of the controller

was utilized in selection of the I and D values. This only means that in the

implementation of the output signal equation (46), the proportional gain

value is actually applied to both the integral and derivative terms in addition

to the proportional term. This standard method is widely encountered in

industry, as opposed to the parallel ideal form which equation (46) currently

illustrates. The slight differences of these two forms are shown in the figures

that follow. Figure 25 shows the response under a slightly different set of

parameters that would accommodate the parallel form.

Figure 25: Parallel Form Gain Response

For a reference signal of 0.25 radians, the controller overshoots by 20%

before quickly settling to the desired signal. While this is a decent response,

overshoot should be avoided in most cases where non-acrobatic flight is

required and a slower response time is permissible. This avoids fast

oscillations to the actuators which may negatively impact the attitude of the

craft depending on its dynamics. When tuned to the standard form of the

modified process variable signal, the following response shown in Figure 26 is

observed.

43

Figure 26: Standard Form Gain Response

In this response, no overshoot occurs at a slightly longer response time,

which is the desired behavior. For these purposes, the Z-N standard method

will be used, which utilizes the ultimate gain oscillation period only due

already accounted for presence of the p-gain in the modified process variable

signal.

 With each of the independent attitude axes tuned separately, the

controller can be tested with real values, and the response of each angle can

be viewed and analyzed. For this example, the pitch and yaw angle reference

signals will be set to 0 radians, and the roll angle reference signal will go

from 0 radians to 0.2618 radians (15 degrees) after a time of 15s. Figure 27

shows the full controller merged with the simulation model, giving the

experimenter control over whether or not to include the controller, and if

included, how the controller gets its reference signals (whether through the

signal builder or as a constant). Figure 28 shows the input reference signals

as a function of time for this example.

44

Figure 27: Full simulation and controller model

Figure 28: Controller example input signals

45

From 0 to 15 seconds, the system is in complete homeostasis, since the

initial conditions are all set to 0. If this were not the case (if, for example,

the initial condition for the roll angle had been set to pi/2) the controller

would work to overcome this error from the start of the simulation. Figure 29

shows the actual roll, pitch and yaw angles as a function of time from the

system dynamics block.

Figure 29: Roll, Pitch and Yaw response to the input signals

The roll angle response is exactly what was expected per the tuning of the

controller. The angle matches the 15 degree reference signal change after

the expected response time with no overshoot. The pitch angle, with a

constant zero reference signal, stays at 0 for the duration of the simulation.

The yaw angle exhibits a very small (8e-7) magnitude deviation in response

to the controller shifting the thrust values for the roll axis signal. It corrects

this minor deviation and returns to zero with little to no perceptible

movement of the craft itself. This can be verified by studying the actual

output of the controller (Figure 30).

46

Figure 30: Controller output signals

From this graph, it is readily determined that the controller was swiftly

responding to the changed input signal on the roll axis, exhibited by the

sharp impulse in the output signal for the roll axis. Looking at the yaw

output, the signal is not an impulse, verifying that the controller is changing

in response to a shifting state vector value of the craft itself (error generated

from state, not from reference).

Section V: Platform Implementation

ANGEL v1 Platform Basics

The first version of the ANGEL platform was designed and built over a

period of roughly 2 months. While many basic design questions were

answered by [10], the design itself, component placement, and all

manufactured parts were completed by the principal author.

 The first step in determining the layout of the platform was fixing a

motor-to-motor distance. From the forces acting on the platform, it is evident

that a small motor-to-motor distance would mean a larger force is necessary

to actuate roll and pitch motions, while a larger motor-to-motor distance

47

would require much smaller input forces from the motor. In an effort to make

the craft capable of capitalizing on small inputs while still being portable, an

initial motor-to-motor distance of 24 inches was chosen. From this

constraining dimension, a central hub was designed to join the 4 arms that

would make up the platform body (Figure 31).

Figure 31: ANGEL v1 Hub

Please refer to Appendix B for CAD drawings of critical rapid-prototype parts.

The hub (in addition to several other important parts on the ANGEL platform)

was created using a Stratasys 3D printer. The choice to print the parts over

building them from scratch provided several benefits during the design

process. First, the parts could be designed precisely to within 0.0100” using

CAD software, which yields tighter tolerances and closer approximations to

the assumptions made in the simulations and modeling sections. Secondly,

the printer prints using a thermoplastic material, which has similar strength

properties to PVC. The downside to the printer approach is that the

48

thermoplastic is more brittle than conventionally used materials in aircraft

(such as aluminum) and hence is more prone to fracture on impact. Table 5

illustrates the similarities between the ABS thermoplastic and conventional

PVC.

Table 5: Properties of Thermoplastic and PVC

Properties

ABS Industrial

Thermoplastic

(Stratasys)

PVC (efunda.com) 2

Tensile Strength

(MPa)
37 41 – 45 @ yield

Tensile Modulus

(MPa)
2320 2415 – 4140

Flex Strength (MPa) 53 69 – 110

Flex Modulus (MPa) 2250 2070 – 3450

Specific Gravity 1.04 1.3 – 1.58

From the properties listed, the thermoplastic is shown to have lower overall

strength compared to the variants of PVC. However, the one property which

is more desirable that the thermoplastic exhibits is a lower specific gravity.

This weight reduction and fine detail available to the 3D printer made it a

more desirable option.

 All prints were done using a sparse-fill option. In this mode, the 3D

printer creates a lattice structure in solid areas of the parts, reducing the

weight of the part considerably without sacrificing too much strength. For

large pieces that are not susceptible to direct impact force (such as the hub),

this option was chosen.

 The next design decision involved locating all the proper subsystems

needed by the platform on its chassis. It was immediately determined that

the majority of the weight should be distributed as low on the platform as

2 The range of values for PVC is due to the presence of several variants.

49

possible, well below the plane of the rotors. Placement of the weight at a

considerable distance would allow for a more stable platform that is better

equipped to resist rolling or pitching by 180 degrees. With this in mind, a

battery platform capable of holding the batteries and power distribution

system was designed and placed just above the landing blades. Above this

platform was a second custom designed shelf to hold the avionics needed by

ANGEL. Figure 32 illustrates the subsystem location on the ANGEL chassis.

Figure 32: ANGEL v1 Subsystem Location

An additional advantage to this layout was the inherent protection provided

to the avionics. The platforms were connected together by nylon all thread to

decrease the overall weight of the system.

ANGEL v1 Power System

 The power system employed in ANGEL v1 consisted of two separate

lines. The first system line was used to power the electronic speed controllers

(ESCs) and the motors. The second line was used to power the avionics. The

decision to separate these lines was made in order to provide a cleaner,

50

steadier voltage to the avionics. Additionally, if avionics were powered from

the main motor line, an expensive and heavy switching regulator would need

to be used in order to efficiently bump the voltage down to a usable level.

Providing the avionics with its own power source is a much cleaner solution.

 For the motors/ESCs, a Zippy Flightmax battery was selected. For the

avionics, a Rhino battery was selected. Parameters for both battery packs are

listed in Table 6.

Table 6: Battery Parameters

Parameters Zippy Flightmax Rhino

Capacity 4000mAh 360mAh

Discharge 20C Constant/30C Burst 20C/30C

Voltage 3 Cell – 11.1V 2 Cell – 7.4V

Weight 306g 22.5g

The main motor battery (Zippy Flightmax) was chosen after looking into the

requirements of the brushless outrunner motors selected as the actuators for

the platform. The lithium polymer battery provides excellent energy density

for the weight of the battery, and the 4000mAh capacity ensures adequate

run time (depending on the all-up weight of the craft). Similarly, the Rhino

LiPoly used for the Arduino exhibits the desired voltage for powering the

avionics with enough capacity to outlast the motor battery at full charge.

The distribution system for the main 11.1V line is accomplished using

an 8-position barrier strip. The battery supplied the power to the strip which

was then distributed to the 4 ESCs used to control the motors. See Figure 33

for a wiring diagram.

51

Figure 33: Power Distribution on ANGEL v1

The main drawback to the use of the barrier strip (shown as the black box in

the figure) was its weight. A lighter solution was designed for the second

ANGEL version, which will be discussed later.

ANGEL Actuators (ESC/Motor/Propeller)

 The ANGEL platform has a total of 4 actuators that are responsible for

orienting and translating the craft according to the outputs of the controller.

The actuator lines are made up of the Electronic Speed Controller (ESC), the

motors, and the propellers. The ESC gets power from the 11.1V line and an

input signal in the form of a Pulse-Width-Modulation (PWM) command from

the Arduino. The ESC then translates these PWM commands into the

appropriate rotating magnetic field used to control the speed of the motors.

 The motors selected for use on the ANGEL platform are Hacker KDA

20-22L brushless outrunner motors (pictured in Figure 34). These motors

have a stationary internal core and windings with magnets on the outer

cylinder. This outer cylinder is the portion that rotates. Since no brushes are

involved and the only friction points are at the shaft, these motors are of

much higher efficiency when compared to standard brushed motors. A

52

tertiary option would be in-runner motors, similar to brushed DC motors

except with a stationary internal core. Again, since friction is minimized, in-

runner motors have extremely good efficiency but do not have the desired

torque output.

Figure 34: Brushless Outrunner Motor

These motors are attached to the ANGEL v1 platform with custom designed

and rapid-prototyped motor mounts. These mounts (Figure 35) allow for

easy wiring of the motor through the arms of the platform, and provide a flat

standard mounting surface.

Figure 35: Motor Mount

53

The propellers selected for use on the ANGEL platform are a combination of

slow flyer and slow flyer pusher APC propellers with a diameter of 10 inches

and a pitch of 4.7”. The use of two different styles of propeller is important.

If the same type of propeller were used for all 4 motors, 2 of the actuator

combos would be highly inefficient due to the yaw requirement that 2 motors

operate in a CW fashion and 2 operate in a CCW fashion. Essentially, two of

the propellers would be spinning in a very inefficient manner, where the

intended leading edge becomes the trailing edge (unless the propeller was

flipped upside down). By combining regular propellers with pusher propellers

along with the counter rotating motors, the efficiency of each actuator is

maintained. The plastic molded propellers required careful balancing to

ensure mitigation of vibration while running at high RPMs. This was achieved

using a hobby prop balancer (Figure 36). Clear, low profile tape was applied

to the propellers to help offset any inherent instability.

Figure 36: Propeller Balancer

The Turnigy Plush ESCs used on the ANGEL platform required programming

before use to set operation characteristics matched to the ANGEL platform.

Table 7 shows the parameters used.

54

Table 7: ESC Settings for ANGEL platform

Parameter Value Description

Electronic
Brake

Disabled Default for helicopters, saves battery

Batt Type Li-XX LiPo Battery is used

Low-Voltage
Cut Off

Soft Cut
Slowly reduce motor speed when below voltage

threshold

Cut Off Voltage Med
Sets the level of the low voltage threshold.

Guards against battery being discharged too low

Startup
Very
Soft

Smooth startup (not racing)

Timing Low
Depends on motor, good balance of

power/efficiency.

ANGEL Main Avionics

 The main avionics system for both implementations of the ANGEL

platform is an Arduino MEGA. The Arduino platform was chosen due to its

extreme ease of use, built in hardware, and wide range of add-on shields to

expand its capabilities. The Arduino MEGA variant is based on the

ATmega1280. It has 14 PWM pins (4 of which are used to send commands to

the ESCs to control the motors), 16 analog inputs (each of which have 10

bits of resolution capable of analog values from ground to 5V), 128KB of

flash memory, and a bootloader which allows for easy programming from a

computer without the use of an external programmer.

 The main function of the Arduino is to parse incoming sensor data,

couple that data with the desired attitude sent by the user, and compute the

proper commands to send to the motors to shift the craft accordingly. The

Arduino therefore must be able to communicate with the sensors and the

users controller, in addition to running the control loop to determine the

correct orientation of the craft. Libraries to handle these job functions were

written and implemented on the platforms and are available in Appendix A-5-

1 through Appendix A-7-3.

55

ANGEL v1 Avionics Loop Description

 The main avionics loop implemented on the Arduino is responsible for

all control output and sensor aggregation input that together dictates the

behavior and attitude of the craft. Once setup is complete the Arduino runs

through an infinite loop, constantly comparing sensor values to reference

signals and parsing user input.

 The setup of the Arduino involves calls to the custom libraries written

to interface with the sensor modules, the motors, and the control

architecture. During setup, the craft is assumed to be on a flat level surface.

When power is first applied to the Arduino, the gyroscopes and

accelerometers responsible for reporting the attitude angle of the craft are

zeroed with a self calibrating constant such that any acceleration measured

should be due entirely to gravity. This calibration is necessary due to small,

unavoidable movements in the sensors in between uses of the platform. The

next step of the setup sequence is for the Arduino to establish a connection

to the electronic speed controllers (ESCs) and the motors. By applying a

prescribed pulse-width modulation command to the ESCs, successful control

of the motors can be verified before entering the main loop. It is important

the power be applied to the avionics system before the main motor power is

applied. If the motors are powered before the system can send the initializing

command, the motors will assume that something is incorrect with the

controlling interface and will fail to start. This ensures that the correct type

and range of command signal is being sent from the avionics to the motors.

Following initialization of the motors, a series of instance creations for the

objects defined in the libraries occurs. These include PID controller instance

creations for each of the 3 principal rotation axes, and the complete inertial

measurement unit instance creation where all controlling voltages are set so

that calculations of attitude angles can be properly achieved. Once instance

creation has been completed, a serial communication channel is opened

through an Xbee interface in order for the user to send the platform

commands from a computer wirelessly. With confirmation that this serial

56

communication has been successfully opened, the setup is complete and the

ANGEL avionics system enters its main loop.

 The first action of the main loop is to check the communications buffer

in order to parse any waiting user commands sent through the serial

interface. If a user command is present, the Arduino completes the required

action and clears the buffer before proceeding with the rest of the loop. One

main important feature of the ANGEL platform is a built in software safety

that prohibits the motors from starting until a safety command has been

issued from the user. This mitigates the possibility of an unintended motor

start while the user is near the craft. If the safety and startup sequences

have been satisfactorily cleared, the attitude angles are requested from the

sensors (both the accelerometers and gyroscopes through a sensor fusion

algorithm) and these values are passed to the respective axis PID instance

for comparison to the reference signal. The controller instances each

compute values necessary to force the craft towards the reference signal.

These values are then combined together (for each axis and throttle) and

sent through the motor controller instance to each of the four motors. This

process repeats itself over again, with new sensor values being reported

every loop. The main avionics loop is provided in Appendix A-8.

ANGEL Sensors

 The subsystem which enables the ANGEL platform to perform as an

unmanned aerial vehicle is the sensor network. Without this important

subsystem, the craft would have no idea of its current orientation, and the

controller would essentially be operating on an open loop with no feedback.

The sensors serve the negative feedback to the controller that allows it to

compare the current state vector to the desired state vector. The sensor

subsystem on the first version of the ANGEL platform consists of an

integrated five degree of freedom MEMS (Micro Electro-Mechanical System)

IMU (Inertial Measurement Unit), which itself consists of the IDG500 dual-

axis gyroscope and a the ADXL335 triple-axis accelerometer. This sensor

allows the platform to track accelerations along the three principal axes of

57

translation (x, y and z) via the accelerometer and rotational speed around

two of the principal axes of rotation (in this case, roll and pitch). In order to

complete the IMU with a yaw rotation for tracking in all six degrees of

freedom, the IXZ500 dual-axis gyroscope will be used in conjunction with the

5DOF system to give us a total of 6DOF available to the IMU with one axis on

the added gyro left unused.

 The 5DOF integrated MEMS IMU was selected for its small, low profile

package and low power requirements. In order to derive meaningful data

from the output of the accelerometer portion of the IMU, it is important to

explain how it actually measures acceleration. Imaging a box with pressure

sensitive walls, inside of which exists a sphere. As the box undergoes

accelerations, the sphere impacts the walls, and these pressures are

recorded and output by the sensor (Figure 37 [13]).

Figure 37: Example of how accelerometers measure force

 In this manner, the accelerometer will detect a force in the opposite

direction of the acceleration the craft is currently undergoing. It follows that

accelerometers do not actually measure accelerations, just forces and

pressure differentials against a bounding box. For example, due to the

acceleration of gravity, the accelerometer would indicate a force in the –Z

direction while the craft is sitting still on the ground.

58

 The analog accelerometers in the chosen IMU provide the information

about changing forces through varying voltage levels in a predefined range.

For the ADXL335, this is anywhere between 270 and 330 mV per g of

acceleration, with a typical value of 300mV/g for a given supply voltage.

Additionally, the sensors have a prescribed zero-bias level, the voltage which

is reported for each axis if no forces are detected. Using the actual reported

value from the sensor after it has been converted by the Arduino‟s analog-to-

digital converter (ADC) along with the zero bias level for the axis in question

and the sensitivity, the voltage readings can be converted to acceleration

vector components with units of g.

The Arduino ADC provides 10 bits of resolution, which means it will

output digital values of 0 to 210-1, or 0 to 1023. For each channel of the

accelerometer, the following equation can be used to convert the ADC values

into useable voltage values.

 (48)

In the Arduino case, unless an external reference voltage is supplied, 3.3V is

used as the ADC reference. ADCout refers to the output value (0-1023) from

the ADC. Once this voltage is determined, the next step is to remove the

portion of the voltage that is reported when 0g is measured (the zero-bias).

Combining this difference with the sensitivity of the accelerometer, the

voltage is converted to meaningful data.

 (49)

This calculation is performed for each of the three channels to get

acceleration values in the x, y and z directions. These values can optionally

be fused together as a triplet to provide a Direction Cosine that indicates the

resultant vector of the force.

 The gyroscope (integrated IDG-500) measures the rate of change of

rotation around an axis. The 5DOF IMU contains a 2-axis gyro, and an

additional 2-axis gyro was added in order to track rotational velocities around

59

all three axes of rotation. The gyroscope reports the values of these

rotational velocities in a similar manner as the accelerometer, and an

equation must be derived to convert from the ADC values to the voltages and

finally to the values of degrees/s that will provide a portion of the state

vector to the controller. There are a few important differences between the

sensors, aside from their measurement methodologies. The gyroscope

actually provides two separate outputs per axis, one for standard

measurements and one for high sensitivity measurements. The standard

measurement axis provides a 500 degrees/s full scale range at a sensitivity

of 2.0mV/deg/s. The high sensitivity output provides 110 degrees/s full scale

output at a sensitivity of 9.1mV/deg/s. For the purposes of the ANGEL

platform, where only the hover state is to be considered, the high sensitivity

output can be used due to the diminished values of roll, pitch and yaw

velocities. However, after further development into more aerobatic

maneuvers, it will be necessary to switch to the standard output to take

advantage of the larger full scale output range. Another important distinction

has to do with the impact of the supply voltage on the sensor readings.

Where they accelerometer outputs depended directly on the supply voltage

(3.3V for the default Arduino case), the gyroscopes are not ratiometric to the

supply voltage. This is an important distinction when changing the supply

voltages. The accelerometer equations will need to be updated, because the

sensitivities will change ratiometrically with the supply voltages, where the

gyroscopic values for sensitivity will remain the same. An equation nearly

identical to equation (49) can be used to determine the deg/s value for each

axis as needed.

Sensor Fusion Algorithm and Noise

 With an understanding of how the sensors report values to the main

avionics processor and how the processor then converts the values to usable

values, the next step is understanding how the processor uses the values

from each of the three sensors together to make a meaningful and pertinent

decision. There are typically three merging strategies used for combining

60

sensor data. The first is known as correction. In this instance, the data from

one sensor is used to correct another. Second is colligation. This involves

merging different parts of a sensor together and disregarding other parts.

The last, and perhaps best, method for merging sensor data is fusion. In this

manner, the values from each sensor are merged together in a weighted,

statistical fashion to produce optimal results. For IMUs where the

accelerometer is used to provide the direction cosine which dictates the

overall direction of gravity and as a byproduct the attitude of the craft, the

gyroscope plays a pivotal role. Due to the nature of acceleration

measurement, the outputs fluctuate not only to changes in the gravitational

vector (which is the desired output), but also to very small accelerations and

disturbances (translational acceleration, thrust and altitude changes, wind,

etc). This means the accelerometer outputs are inherently very noisy and

prone to error. The gyroscopes are used to smooth out these errors to an

extent. The gyros are, however, not without their own limitations. Although

they suffer little from translational noise components (linear mechanical

movements) due to their rotational measurement system, they tend to suffer

heavily from drift and hysteresis. By statistically averaging the values from

the sensors together, the attitude of the craft can be determined with a

diminished noise and error component.

Typically, sensor fusion algorithms use a form of Kalman filtering to

observe a noisy signal over time in order to produce a signal that is closer to

the true value of the measurement. The Kalman filter approach typically uses

the time domain principles of the noise with no regard to the signal transfer

functions or frequency components. Alternatively, the Complementary filter

approach concerns itself with analysis of the frequency domain with no

consideration of the statistical description of the noise signal. The

Complementary filter is actually simply a stationary (steady-state) Kalman

filter. It has been determined that digital implementation of the steady-state

Kalman filter is much simpler and efficient due to the assumption that the

measurements are corrupted by stationary white noise [14]. A simplified

version of the steady-state Kalman filter is derived and used in the sensor

61

library to provide the correct weights for each sensor. This algorithm is based

on the technique covered in [13].

From the filter loop, an estimated resultant vector that accounts for

measurement noise is expected as the output. The inputs available to the

loop are the raw accelerometer values (Rx, Ry and Rz) and the raw

gyroscope values (roll velocity, pitch velocity, yaw velocity). Using these

values along with previous estimations (the previous output of the loop is fed

back to the input), the corrected estimate is formed. For the first run through

the loop, the accelerometers are assumed to be correct (zeroed and

subjected to little or no noise) and the estimated value is set such that

 (50)

For step n, the previous estimate and the current accelerometer values are

available to the loop as inputs, in addition to the rates reported from the

gyroscope. Using the roll axis as an example, knowing the previous values of

the estimate X and Z accelerometer values, the previous angle on the XZ

angle of the resultant force vector can be determined as

 (51)

The atan2 function simply reports the angle in radians between a plane and

the point provided by the function arguments. Using this previous roll angle,

the new roll angle can be estimated from the gyroscope readings and the

loop timing T.

 (52)

Because the acceleration vector has been normalized to 1 and the individual

vectors produced by these angles can be combined using the Pythagorean

Theorem, the following x-axis direction vector can be derived from the

gyroscopic readings. Similar values can be given for y and z directions.

62

(53)

Now, for the nth step, the loop has the noisy Racc vector and the computed

Rgyro vector, both of which define the direction cosine of the overall

acceleration on the craft. The loop finished by combining these values into

Rest(n) using a steady state weight, such that

 (54)

The gyro weight is an experimentally determined value that balances the

emphasis put on the gyro measurements against the accelerometer

measurements. It is essentially a measure of how much trust is placed in the

gyro as compared to the accelerometer. In a normal Kalman filter, this

weight is continuously updated based on the changing amount of measured

noise. For the purposes of the ANGEL platform and with the limited

computational power of the avionics controller, the constant weight will

perform adequately. The last calculation the loops makes is to normalize the

estimated R vector to 1. It will then repeat again using these newly

calculated values as the (n-1) input for the next step. The functions for this

estimation and user friendly reading of the sensor data are available in

Appendix A-7-1 through A-7-3.

ANGEL User Control (Xbee and Processing GUI)

 Early in the development phase of the ANGEL platform, it was decided

that traditional user control methods would not be used. These methods

generally include complicated custom controllers that either take too much

devoted concentration to use, or too long to master for the craft to be used

effectively. For the ANGEL platform to be used in a combat scenario

successfully, it should respond to commands such as “Follow Me”, “Scout

Ahead”, or “Follow this Path”. These high level commands are only

achievable through either on board processing (feasible, but possibly cost or

weight prohibitive) or through local processing of the high level commands

63

with low level actions sent to the platform by the controller. The latter

approach was decided as the first past approach for user control.

 With the delegation of processing determined, the next step was to

determine the interface and the architecture of the controller. It was decided

that a computer of some kind (in this case, a laptop) would be used to

control and send commands to the ANGEL platform. This would also allow the

user to view image and sensor feeds from the platform without designing a

custom hardware controller. Next, the interface needed to be specified that

would allow the computer (controller) to talk with the platform (Arduino

avionics system). The following characteristics of the wireless network used

to communicate with the platform were determined:

 High data rate is not necessary due to the nature of the commands

being sent.

 Range should be large with relative high fidelity.

 Very low power consumption to conserver battery life on the platform

 Complexity should be minimized to mitigate in-field errors.

When considering each of these design requirements, the immediately

defined candidate was the ZigBee wireless standard. While lower in data rate

(Kbit range) when compared to Wi-Fi (11 or 54Mbits/s), Bluetooth (1

Mbits/s) or UWB (100-500 Mbits/s), ZigBee boasts incredible signal range

(up to 1500m for the Xbee Pro line transceivers) at very low power

consumption [15]. The ZigBee protocol is setup similar to a wireless serial

link, and once paired, is capable of group communication. This would allow

one controller to command several ANGEL platforms as a group or as

individually addressable machines. The ability to expand off this protocol was

another attractive feature of the standard.

 With both the interface standard and the controller implementation

defined, the next step was to design how the user would actually interact

with the craft. As stated earlier, the end goal is to have the user issue high-

level commands to the craft to minimize the focus controlling the craft

demands. For the first implementation of the controller, however, it was

determined that implementing low-level commands to control the craft and

64

tune it‟s parameters would make testing and debugging easier. A screenshot

of ANGEL Controller v1 is shown in Figure 38.

Figure 38: ANGEL Controller GUI

The controller, even in its early alpha state, has several attractive features

built in. The user starts by selecting the COM port through which the Xbee

antenna will communicate. The action is recorded to an on-screen, live

updating communications log. The ANGEL platform acknowledges the

connection, which is also displayed in the log. From here, the user can

choose to enter debug mode or stay in standard flight mode. Debug mode

enables graphical outputs of all sensor data to ensure the proper signals are

being received. In order to turn on the motors, the user must manually

disengage the electronic safety. Only after this will the motors receive

commands. Other functions of the GUI include a MOTOR PULSE commands to

test that all motors are responding properly, a ZERO SENSORS command to

re-zero the IMU in case the craft was powered on while in a non-zero

position, a START command to turn the motors on to their lowest power

setting, and a KILL command to shut power to the motors off and reengage

the safety. For controller testing and tuning, the PID values of the axes (roll

axis shown) can be updated directly from the controller. This allows the

65

debugger to carefully tune out slight oscillations. Although it is not visible in

the above screenshot, the main control of the platform appears in the large

blank area to the right. A square that tracks mouse positions allows the user

to control roll and pitch by using the x- and y- axes of the track pad on the

controlling laptop. This version of the controller was developed with Java and

Processing. The source code for the controller appears in Appendix A-9.

 Eventually, these functions will be removed and replaced by a high-

level GUI that parses user commands into functions the platform can

interpret. The controller could eventually be compressed into a more mobile

friendly device, such as a smartphone or tablet. This would free the end user

from wrestling with a cumbersome controller and allow them to focus on the

operation at hand.

Control Library Implementation

 The controller designed and tested in MATLAB from Section IV

provided a great testing opportunity for the actual implementation of the

controller within the on-board microcontroller. In this subsection, details of

the implementation of the controller on the Arduino and corresponding

libraries written to achieve this will be discussed.

 Keeping with the object oriented approach to the design and

architecture of the code used on the ANGEL platform, a PID controller class

was written in C++. By writing the class and assigning it the necessary

private variables and functions, a separate instance of the class could be

declared for each axis. Thus, three controllers are easily created from a

single class, while still maintaining the needed customization to account for

inherent inaccuracies between the model and the implementation. The

header and source code files are located in Appendix A-6-1 and A-6-2, but an

explanation of the class and its methods is given below.

 To declare a new PID instance, the following line is used:

 (55)

66

This declaration allows the user to set a specific P, I and D value for the axis

at hand. The windup value is a guard against massive accumulation of error

in the integration term while the machine is “warming up”. This windup is

essentially the maximum negative and positive values for the accumulated

integration error value. If the platform experiences high oscillations during

take-off due to the aforementioned ground effects, where the platform

experiences a thrust advantage, the windup guard minimizes the range of

the integrated error, which would inaccurately bias the i-term for the

moments just after take-off.

 The class gives the user access to 6 methods used to interact with the

controller. updatePID(float target, float current) is the main function of

interest. Calling this method calculates the appropriate P, I and D factors

using the various derivatives and integrations of error as outlined in Section

IV, along with the P, I and D constant values defined in the class instance

creation. The target is the desired angle offset (in the case for hover, this

would be 0), and current is the main attitude of the craft. Both the target and

current values are computed and reported by the avionics loop from the user

data and the sensor data.

 The second method made public is the setValues(int P, int I, int D)

method. This allows the user to change the values for the P-gain, I-gain and

D-gain after the class has been initialized. Through this method, in-flight

adjustments can be made to the controllers for each axis individually through

the GUI detailed in the previous subsection.

 The third public method is the zeroError() method. This returns the

accumulated error of the I-term to the initial value of 0. This is useful if the

craft is being manipulated by hand for testing purposes.

 The last three methods are getP(), getI(), and getD(). These methods

simply return the currently set P, I and D gains. These functions were built in

for the user to have constant awareness of the state of the controller, as well

as for future development of an auto-tuning algorithm for the controller.

67

ANGEL v2 Build Description

 After initial testing and implementation of the ANGEL v1 craft with

limited success, it was determined to parallel development of a secondary

craft to dynamically update and change craft parameters and test new build

techniques. There were several changes to be implemented between the

unnamed v1 craft and the v2 craft, named „Uriel‟.

1. While the low battery placement on v1 was ideal for stability, it

negatively affected how the craft handled in more aggressive roll and

pitch movements. It was decided that Uriel should be more compact

while still maintaining a majority of its weight under the plane of the

propellers.

2. The landing gear on the v1 craft was too fragile, and located too close

to the central column, leaving the craft largely unbalanced on slightly

uneven terrain. Updates to Uriel would include landing feet below each

motor that could be easily changed if broken.

3. While the individual tiers of the v1 craft meant easy subsystem

mounting, it was not friendly to modifications or battery replacement.

This problem would be addressed in the Uriel build by reorienting the

placement of the subsystems.

4. During crashes in the test flights of the v1 craft, it was apparent that

the likely points of failure were the motor mounts (extremities of the

craft). A main design change on the Uriel platform was removable

arms to quicken the process of changing out bad motors or broken

mounting equipment.

5. The v1 craft lacked a good location for mounting an ultrasonic altitude

sensor. A position for this sensor was made in the Uriel design.

Figure 39 shows the drawing of the Uriel platform. The smaller overall size

and detachable arms fell in line with the overall systems approach to the

design of the craft as something that would be easily transported in a satchel

or backpack.

68

Figure 39: CAD Diagram and 3D model of Uriel build

The motor-to-motor distance on Uriel is smaller at 18” when compared to the

24” parameter on the v1 build. The battery is strapped to the underside of

the main chassis, thus mitigating any increased roll/pitch behavior during

aggressive maneuvering. This also facilitates in easy battery removal and

charging.

 A more advanced wiring interface was used on Uriel. Instead of relying

on a heavy distribution hub, a series of custom-made Deans-Y connectors

were constructed and used. This made it much easier to ensure proper wire

connections and decreased the amount of excess wire needed. Figure 40

shows an example of the Deans-Y connectors made for the craft.

69

Figure 40: Dean-Y connectors made for Uriel

 Vibration dampening bolts were added to the mount points for the

avionics sensor board. It was determined that much of the inaccuracies of

the accelerometers could be reduced by eliminating the vibration noise from

the craft. Additionally, foam coated rapid-prototyped blocks will be added

beneath the sensors themselves to keep them from vibrating at the pin out

connection points on the sensor board.

 The next section discusses some of the testing experiments and

results for the v1 craft and further discusses how some negative results were

overcome and updated with the modifications to the Uriel craft.

Section VI: Testing and Results

Testing and Results Introduction

 In this section, some of the tests performed on the ANGEL platforms

will be discussed. The data garnered from these tests will be shown and the

ensuing analysis and decisions will be explained. The last section (Section

VIII) will go into more depth about the conclusions of both ANGEL builds and

the future development needed to make it a fully functioning platform.

Test Bench and Flight Harness Construction

 To aid in the flight testing of the platform, two separate test benches

were made to facilitate debugging while providing a buffer to catastrophic

flight crashes where possible. The first test bench provides for no thrust and

was only used to test the reaction of the main avionics loop to changes in the

70

sensor data. This test bench was vital for making minor adjustments to the

PID controller instance in the avionics loop to tune out minor oscillations. It,

however, did not allow for any testing of sustained random disturbances. The

test bench is shown in Figure 41.

Figure 41: Roll and Pitch Axis Test Bench

This bench, however, did not allow for any yaw movement testing or testing

without the stability provided by the bench.

 The second bench that was constructed consisted of two guide wires

rigidly mounted to the ceiling and pinned to the ground. Small eye hooks

were added to the ANGEL platform and the guide wires were threaded

through these hooks, allowing the platform to translate up and down with

small roll and pitch movements but no yaw movement. It also kept the

platform in a vertical column to keep it from translating in the earth fixed XY

plane. This system is shown in Figure 42.

71

Figure 42: Flight Harness

Thrust Measurement

 In the development of the controller, the input values for the

simulation were specified in terms of the rotor speed (rotations per minute).

This provides a number directly related to the thrust output in Newtons from

the rotor/motor combo. However, this does not include such factors as

battery power effects or inefficiencies in the actuator line (ESC-Motor-

Propeller). To test a series of motor/propeller combos, a thrust stand was

constructed to directly measure the force exerted by the actuator as a

function of changing PWM input. Figure 43 shows this thrust stand. These

figures were backed up with the use of a handheld tachometer to verify the

relationship between output thrust and propeller speed. Future development

72

of a voltage monitor will scale the PWM-RPM relationship to changing values

of the battery output.

Figure 43: Thrust Stand

Pitch and Roll Test Data

 The main source of error in the testing process was making sure the

errors and noise from the sensors were sufficiently ignored. The sensor

fusion algorithm previously discussed did a good job of smoothing out these

noisy values. A custom data logger was written in Java to grab the sensor

data from the fusion function and the reported motor commands from the

controller over the Xbee network link. Figure 44 shows the test results for

the roll axis on the test bench, and Figure AC shows the test results for the

pitch axis on the test bench. These results show the actual implementation of

the controller as it drives the inputs to the motors in response to the sensor

data and the set point of stable hover (zero radians) on both axes.

73

Figure 44: Roll Axis Test Results

Figure 45: Pitch Axis Test Results

74

Pitch and Roll Test Results

 Although the data indicates proper response of the control system to

the reported sensor values, the actual flight test had much different results.

A free test flight took place after the test bench check, which resulted in a

“belly-up” scenario for the craft. Since the controller was not tuned to this

portion of the flight envelope, the platform quickly plummeted to the ground.

Further inspection of the actual platform response and testing with a

tachometer uncovered a problem with the roll axis. At first, it seemed as if

one of the motors was underpowered. The axis always seemed to favor one

side over the other at higher speeds. Two replacement ESCs were

interchanged with the roll axis ESCs and all the connections were checked.

After an extended period of debugging to further isolate the issue to the

ESCs, it was determined that one of the speed controllers was overpowering

its motor beyond a certain input signal threshold. This ESC was replaced and

testing of the platform continued.

Avionics Loop Testing

 Another source of error during the testing process was the timing of

the avionics loop. Originally, the loop was set to run as fast as possible,

listening to commands at the beginning of the loop, then grabbing updated

sensor data, and finally outputting the correct motor commands to the

actuators. It was determine, however, that a loop timing mechanism was

needed in order to section off time for receiving commands, grabbing new

sensor data, and updating the motors in accordance with the individual

subsystem update interval. The problem manifested itself when several

commands over the Xbee network stacked themselves on the buffer,

resulting in a large and unintended boost in thrust output of the actuators.

75

Section VII: Concluding Remarks and Future Development

Simulation Conclusions and Future Work

 The simulation programmed in MATLAB and Simulink made the

development and testing of the controller implemented on the platform much

more straightforward. While the model worked sufficiently for the near-hover

flight envelope, the hub forces and air friction forces neglected would need to

be added in for the model to be even more accurate. Additionally, the

gyroscopic effects ignored in the development of the equations of motion

could be revisited in future revisions of the simulator.

 In addition to adding in the removed assumptions, certain subsystems

that were assumed 100% efficient would need to be modeled more

realistically. For example, the motors are not 100% efficient, as they do not

immediately output based on their signal input. This delay could be simulated

with a first-order model of the DC motor and would allow for more testing

and simulation of actuator limits and bandwidth. This model would be formed

from a gain and a pole that is related to the timing constant for the motor,

and it would be tuned to each of the actuators on the platform individually.

 The sensors could also be modeled to improve the accuracy of the

simulation. Instead of assuming that the sensors will report the actual true

value of the craft based on the equations of motion, using a sensor model

would account for the inherent inaccuracies of the inexpensive sensors used

in the platform.

 Lastly, environmental effects such as collisions, wind, temperature and

precipitation could be added to an advanced simulation in order to fully test

the platform in a variety of conditions.

Controller Conclusions and Future Work

 The PID controller developed for the ANGEL platform is very

straightforward, which made it (computationally) easier to implement and

debug. However, as the platform is developed further, a more aggressive and

capable controller will need to be used to handle aggressive movement, way

76

point tracking, and other higher level features. While the current

implementation of the controller is actually comprised of 3 Single Input

Single Output (SISO) systems for each of the principal attitude axes, a Linear

Quadratic Regulator (LQR) could be implemented to treat the system as a

whole as a Multiple Input Multiple Output (MIMO) system. From [4], it is

shown that the LQR would be an improvement on the PID controller, but both

implementations are poorly equipped to reject strong disturbances. An

alternative attempt at correcting the disturbance rejection was to design the

system based on a backstepping technique, where outlying unstable

subsystems are progressively stabilized as new controller are developed

while “stepping back” from the core stable system. Although this technique

results in strong disturbance rejection, it loses the robustness of stabilization

in near-hover flight. By combining these controllers with a special form of

backstepping known as integral backstepping, [4] found the proper balance

of disturbance rejection and autonomous stable hover. Updates to the ANGEL

platform would push the control architecture more towards a system similar

to the description in [4], which would allow the platform to function in a

wider flight envelope, as well as open the possibilities of autonomous take-off

and landing.

Sensors and Fusion Algorithm Conclusions and Future Work

 The platform saw great improvement after the simplified steady-state

Kalman filter was designed and included to merge data from the gyroscopes

and accelerometers. This filter was able to account for the long-term drift

present in the roll and pitch axes of the gyroscope by pairing the short term

accelerometer data, and the noise of the accelerometer was smoothed out by

the steady weighted inclusion of the gyroscope. However, the long term drift

of the yaw axis is still unaccounted for. Inclusion of a magnetometer to

provide a heading reading would allow the yaw drift to correct itself. While

the filter implemented on the craft does a decent job of providing an

estimation of the true sensor values, this can be improved. By adding

functions to track the noise, the weight that each sensor system plays in the

77

overall fusion could be adjusted in real time, thus moving away from a

steady state Kalman and more towards a standard Extended Kalman filter.

Subsystem modifications planned for Uriel (the dampening bolts for the

avionics platform and wedge pieces for the sensors) will also help mitigate

the noisy sensor signals, making it easier for the filter to provide a true

signal estimation.

 Other sensors remain to be implemented on the platform. A downward

facing ultrasonic sensor is planned for the further development of the Uriel

platform. This will allow the system to have a reference of how far it is above

the ground. This sensor alone is not sufficient for altitude determination

above a certain threshold and would need to be combined with a barometer

to estimate true altitude. Together, these sensors would allow for altitude

control and autonomous take-off and landing, as well as perching

movements. Additionally, integration of a GPS would be vital to waypoint

following and true autonomous flight.

User Interface Conclusions and Future Work

 Although the user interface currently used to send commands to the

platform is sufficient for debugging and testing, it would need large

improvements for use in the field. As it is used now, the interface is not ideal

for set-and-forget flight. Some testing has gone into compressing the

controller into a more user-friendly format such as a small touch-enabled

device like an Android based phone or an iPhone/iPod Touch. This would

allow the end user to strap the controller to his/her arm and give commands

without pulling focus from the task at hand. Early testing shows connection

and control of the platform from a small handheld touch enabled device is

quite possible, with the ability to forward camera feeds and sensor data from

the platform back to these devices so the user can make decisions about

further mission parameters.

 Although not necessary for the immediate development stage of the

platform, the existing interface DOES support control of multiple crafts in

tandem through the broadcast of the Xbee system. This feature would be

78

expanded to include individual addressable control and possible swarm

tactics as the need for such methods arises.

Physical Build Conclusions and Future Work

 The prototypes built around the development and research of this

thesis have proven to be invaluable in testing how robust the simulation and

controller models are in real flight scenarios. Several updates were made

between the creation of the v1 system and the updated version of the ANGEL

platform, the Uriel system. Unfortunately, the budget used for the ANGEL

platform ended near October of 2010, which resulted in a halt on prototype

development for the last 7 months. Personal funding of the Uriel subsystem

resulted in the implementation of several good design changes, but until a

more stable funding source is available, the needed prototyping development

cannot proceed. On the v1 system, a two of the motors need to be replaced,

and several sensors need to be added. On the Uriel system, an ESC needs to

be replaced and the vibration dampening system needs some further work.

Once more funding is secured, these parts and changes can be implemented

and further testing can proceed. Until such time, development and testing

will be limited to a simulation environment.

 One constantly updatable parameter of the prototypes is reduction of

weight. This will allow for longer flight times and more agility for in flight

maneuvers. The weight and complexity of the prototype can be reduced by

switching to a small Gumstix-like on-board computer with a more integrated

sensor board. Additionally, updates to the power distribution system can

further decrease the weight of the craft and make repairs more efficient.

Thesis Objective Conclusion

 The overall objective of this research endeavor was to approach the

design of a man-portable UAV from a systems engineering standpoint. The

focus was to be on the system and its use as a whole, not isolating any one

or two subsystems or using an external environment to facilitate the craft‟s

79

movement in the terrain. The derivation of the modeling equations and the

raw implementation of a simulation model and controller allowed for the

understanding of the physical characteristics that dictate the behavior of the

craft. These models were tuned based on the specific craft parameters of the

prototypes built to test the actual flight of the platform. The platform is

comprised of several subsystems, each of which have been studied in-depth

to understand how the various subsystems can work together for synergistic

benefit. These systems include the avionics, sensors, actuators, chassis, and

user control architecture. The test flight experiments performed using the v1

build prototype indicates that successful flight is possible with adequate

funding. Although faulty sensors and subsystem components paired with a

lack of continued funding kept this current prototype confined to the test

bench, small tweaks to the avionics loop and the addition of new sensors and

ESCs promise to make for a stable, autonomous platform.

80

APPENDIX A – CODE

A-1 – System Dynamics MATLAB Code used in Simulation
function [Xout] = sysdyn(Xin)
%SYSDYN This function computes ANGEL system response given a state vector and PWM
%input
% Xout = [X_ddot Y_ddot Z_ddot Roll_ddot Pitch_ddot Yaw_ddot X_dot Y_dot
% Z_dot Roll_dot Pitch_dot Yaw_dot]
%
% Xin = [X_dot Y_dot Z_dot Roll_dot Pitch_dot Yaw_dot X Y Z Roll Pitch
% Yaw F_PWM R_PWM B_PWM L_PWM]
%
%
 % this loads the necessary constants into the workspace
angel;
%---------STATE DEFINITIONS-------------------

X_dot=Xin(1); %X-axis Velocity (m/s)
Y_dot=Xin(2); %Y-axis Velocity (m/s)
Z_dot=Xin(3); %Z-axis Velocity (m/s)
Roll_dot=Xin(4); %Roll Velocity (rad.s^-1)
Pitch_dot=Xin(5); %Pitch Velocity (rad.s^-1)
Yaw_dot=Xin(6); %Yaw Velocity (rad.s^-1)
X=Xin(7); %X position (earth) (m)
Y=Xin(8); %Y position (earth) (m)
Z=Xin(9); %Z position (earth) (m)
Roll=Xin(10); %Roll Angle
Pitch=Xin(11); %Pitch Angle
Yaw=Xin(12); %Yaw Angle

%---------INPUT DEFINITIONS-----------

F = Xin(13); %Front Motor Speed
R = Xin(14); %Right Motor Speed
B = Xin(15); %Back Motor Speed
L = Xin(16); %Left Motor Speed

%--------THRUST CONVERSIONS----------

TF = b*F^2; % front thrust calculation (N)
TR = b*R^2; % right thrust calculation (N)
TB = b*B^2; % back thrust calculation (N)
TL = b*L^2; % left thrust calculation (N)
D = d*(-F+R-B+L);

%--------SYSTEM DYNAMICS------------

% X_ddot = -(1/craft_m)*(cos(Roll)*sin(Pitch)*cos(Yaw) + sin(Roll)*sin(Yaw))*(TF+TR+TL+TB);
% Y_ddot = -(1/craft_m)*(cos(Roll)*sin(Pitch)*sin(Yaw) + sin(Roll)*cos(Yaw))*(TF+TR+TL+TB);
% z_craft_component = (1/craft_m)*cos(Roll)*cos(Pitch)*(TF+TR+TL+TB)
% Z_ddot = g - z_craft_component;
% Roll_ddot = Pitch_dot*Yaw_dot*(Iyy-Izz)/Ixx + (arm_l/Ixx)*(-TR+TL);
% Pitch_ddot = Roll_dot*Yaw_dot*(Izz-Ixx)/Iyy + (arm_l/Iyy)*(TF-TB);

81

% Yaw_ddot = Roll_dot*Pitch_dot*(Ixx-Iyy)/Izz + (D)/Izz;

%---------SIMPLIFIED MODEL FOR CONTROL USE (LINEARIZED)
X_ddot = -(1/craft_m)*(cos(Roll)*sin(Pitch)*cos(Yaw) + sin(Roll)*sin(Yaw))*(TF+TR+TL+TB);
Y_ddot = -(1/craft_m)*(cos(Roll)*sin(Pitch)*sin(Yaw) + sin(Roll)*cos(Yaw))*(TF+TR+TL+TB);
z_craft_component = (1/craft_m)*cos(Roll)*cos(Pitch)*(TF+TR+TL+TB);
Z_ddot = g - z_craft_component;
Roll_ddot = (arm_l/Ixx)*(-TR+TL);
Pitch_ddot = (arm_l/Iyy)*(TF-TB);
Yaw_ddot = (D)/Izz;

%--------FUNCTION OUTPUT-------------

Xout = [X_ddot Y_ddot Z_ddot Roll_ddot Pitch_ddot Yaw_ddot X_dot Y_dot Z_dot Roll_dot
Pitch_dot Yaw_dot];

end

A-2 – Code for Attitude Control in MATLAB Simulation
function rc_out = rotationControl(rc_in)
%rotationControl PID controller for the attitude of the ANGEL craft
% The input for the controller should be r_set, p_set, y_set, state,
% i_error(3), last_pos(3)

%------------VARIABLE ASSIGNMENT-----------------

roll_set = rc_in(1);
pitch_set = rc_in(2);
yaw_set = rc_in(3);
% x_dot = rc_in(4);
% y_dot = rc_in(5);
% z_dot = rc_in(6);
roll_dot = rc_in(7);
pitch_dot = rc_in(8);
yaw_dot = rc_in(9);
% x = rc_in(10);
% y = rc_in(11);
% z = rc_in(12);
roll = rc_in(13);
pitch = rc_in(14);
yaw = rc_in(15);
% roll_i_error = rc_in(16);
% pitch_i_error = rc_in(17);
% yaw_i_error = rc_in(18);
% roll_last_pos = rc_in(19);
% pitch_last_pos = rc_in(20);
% yaw_last_pos = rc_in(21);

%-----------PID Values----------------
roll_p = 0.5; %0.5

82

roll_d = 0.175; %0.175

pitch_p = .5;
pitch_d = .175;

yaw_p = 5;
yaw_d = 10;

%-------------CONTROLLER LOOPS-------------

roll_error = roll_set - roll;
pitch_error = pitch_set - pitch;
yaw_error = yaw_set - yaw;

%roll_i_error = roll_i_error + (roll_error*0.02);
%pitch_i_error = pitch_i_error + (pitch_error);
%yaw_i_error = yaw_i_error + (yaw_error*0.02);

% roll_d_error = roll-roll_last_pos;
roll_d_error = roll_dot;
% pitch_d_error = pitch-pitch_last_pos;
pitch_d_error = pitch_dot;
% yaw_d_error = yaw-yaw_last_pos;
yaw_d_error = yaw_dot;

roll_return = (roll_p*roll_error)-(roll_d*roll_d_error);
pitch_return = (pitch_p*pitch_error)-(pitch_d*pitch_d_error);
yaw_return = (yaw_p*yaw_error)-(yaw_d*yaw_d_error);

% roll_return = (roll_p*roll_error)+(roll_i*roll_i_error)+(roll_d*roll_d_error);
%pitch_return = (pitch_p*pitch_error)+(pitch_i*pitch_i_error)+(pitch_d*pitch_d_error)
% yaw_return = (yaw_p*yaw_error)+(yaw_i*yaw_i_error)+(yaw_d*yaw_d_error);

% roll_last_out = roll; %Stores the current position for use as last position
% pitch_last_out = pitch;
% yaw_last_out = yaw;

rc_out(1) = roll_return;
rc_out(2) = pitch_return;
rc_out(3) = yaw_return;

% rc_out(4) = roll_last_out;
% rc_out(5) = pitch_last_out;
% rc_out(6) = yaw_last_out;
% rc_out(7) = 0;
% rc_out(8) = 0;
% rc_out(9) = 0;
% rc_out(7) = roll_i_error;
% rc_out(8) = pitch_i_error;
% rc_out(9) = yaw_i_error;
end

83

A-3 – Block to translate controller outputs to speed inputs
function [out] = controlToSpeed(in)
%controlToSpeed Transforms the controller outputs to the speed inputs
% Detailed explanation goes here
angel;
% Control inputs
U(1)=craft_m*g;
U(2)=in(2);
U(3)=in(3);
U(4)=in(4);

MM = [1/(4*b), 0, 1/(2*arm_l*b), -1/(4*d);
 1/(4*b), -1/(2*arm_l*b), 0, 1/(4*d);
 1/(4*b), 0, -1/(2*arm_l*b), -1/(4*d);
 1/(4*b), 1/(2*arm_l*b), 0, 1/(4*d)];

MA=MM*U';

Omd = sqrt(abs(MA));

% outputs
out(1)=Omd(1); % [dec]
out(2)=Omd(2);
out(3)=Omd(3);
out(4)=Omd(4);

end

A-4 – Disabled Altitude Control Block
function alt_out = altitudeControl(alt_in)
%altitudeControl PID controller for the attitude of the ANGEL craft
% The input for the controller should be alt_set, state,
% i_error(1), last_pos(1)

%------------VARIABLE ASSIGNMENT-----------------

altitude_set = alt_in(1);
x_dot = alt_in(2);
y_dot = alt_in(3);
z_dot = alt_in(4);
roll_dot = alt_in(5);
pitch_dot = alt_in(6);
yaw_dot = alt_in(7);
x = alt_in(8);
y = alt_in(9);
z = alt_in(10);
roll = alt_in(11);
pitch = alt_in(12);
yaw = alt_in(13);
altitude_i_error = alt_in(14);
altitude_last_pos = alt_in(15);

84

%-----------PID Values----------------
altitude_p = 3;
altitude_i = 0;
altitude_d = .2;

%-------------CONTROLLER LOOPS-------------

altitude_error = altitude_set - z;

%altitude_i_error = altitude_i_error + (altitude_error*0.02);

altitude_d_error = z_dot;

altitude_return = (altitude_p*altitude_error)-(altitude_d*altitude_d_error);

altitude_last_out = z; %Stores the current position for use as last position

alt_out(1) = altitude_return;
alt_out(2) = altitude_last_out;
alt_out(3) = 0;

end

A-5-1 Arduino Motor Library (QuadMotor.h)
/*

 QuadMotor.h - Library for controlling 4 quadrotor motors.

 Created by Michael D. Schmidt.

 Last Updated: 06/21/2010

*/

#ifndef QuadMotor_h

#define QuadMotor_h

#include "WProgram.h"

class QuadMotor

{

 public:

 QuadMotor(int FRONTPIN, int BACKPIN, int RIGHTPIN, int LEFTPIN);

 void initMotors();

 void kill();

 void setEach(int,int,int,int);

 void setAll(int);

 int getCommand(char);

 void pulseMotors(int);

 private:

 int _fpin;

85

 int _bpin;

 int _lpin;

 int _rpin;

 int _fcom;

 int _bcom;

 int _rcom;

 int _lcom;

};

#endif

A-5-2 – Arduino Motor Library (QuadMotor.cpp)

/***************************************

* INCLUDES

**/

#include "WProgram.h"

#include "QuadMotor.h"

/***************************************

* CONSTRUCTORS

**/

QuadMotor::QuadMotor(int FRONTPIN, int BACKPIN, int RIGHTPIN, int

LEFTPIN)

{

 _fpin = FRONTPIN;

 _bpin = BACKPIN;

 _lpin = LEFTPIN;

 _rpin = RIGHTPIN;

 _fcom = 0;

 _bcom = 0;

 _rcom = 0;

 _lcom = 0;

}

/***************************************

* METHODS

**/

void QuadMotor::initMotors()

{

 pinMode(_fpin, OUTPUT);

 analogWrite(_fpin, 124);

 _fcom = 124;

 pinMode(_bpin, OUTPUT);

 analogWrite(_bpin, 124);

 _bcom = 124;

 pinMode(_rpin, OUTPUT);

 analogWrite(_rpin, 124);

 _rcom = 124;

 pinMode(_lpin, OUTPUT);

 analogWrite(_lpin, 124);

 _lcom = 124;

}

void QuadMotor::kill()

86

{

 analogWrite(_fpin, 124);

 _fcom = 124;

 analogWrite(_bpin, 124);

 _bcom = 124;

 analogWrite(_lpin, 124);

 _lcom = 124;

 analogWrite(_rpin, 124);

 _rcom = 124;

}

int QuadMotor::getCommand(char motor)

{

 if(motor == 'f' || motor == 'F'){

 return _fcom;

 }

 if(motor == 'b' || motor == 'B'){

 return _bcom;

 }

 if(motor == 'r' || motor == 'R'){

 return _rcom;

 }

 if(motor == 'l' || motor == 'L'){

 return _lcom;

 }

}

void QuadMotor::setEach(int f, int b, int r, int l)

{

 analogWrite(_fpin, f);

 _fcom = f;

 analogWrite(_bpin, b);

 _bcom = b;

 analogWrite(_lpin, l);

 _lcom = l;

 analogWrite(_rpin, r);

 _rcom = r;

}

void QuadMotor::setAll(int com)

{

 analogWrite(_fpin, com);

 _fcom = com;

 analogWrite(_bpin, com);

 _bcom = com;

 analogWrite(_lpin, com);

 _lcom = com;

 analogWrite(_rpin, com);

 _rcom = com;

}

void QuadMotor::pulseMotors(int q)

{

 for (int i = 0; i < q; i++) {

 setAll(165);

 delay(250);

 setAll(124);

87

 delay(250);

 }

}

A-6-1 – Arduino PID Library (SchmidPID.h)
/*

 SchmidtPID.h - Library for PID control.

 Created by Michael D. Schmidt.

 Last Updated: 06/22/2010

 Portions of this library were modified from Ted Carancho's AeroQuad

PID Controller (www.AeroQuad.com)

 and from

http://www.arduino.cc/playground/Main/BarebonesPIDForEspresso

*/

#ifndef SchmidtPID_h

#define SchmidtPID_h

#include "WProgram.h"

class SchmidtPID

{

 public:

 SchmidtPID(float P, float I, float D, float windup);

 float updatePID(float,float);

 void setValues(int,int,int);

 void zeroError();

 float getP();

 float getI();

 float getD();

 private:

 float _last;

 float _p;

 float _i;

 float _d;

 float _iError;

 float _guard;

};

#endif

A-6-2 – Arduino PID Library (SchmidtPID.cpp)

/***************************************

* INCLUDES

**/

88

#include "WProgram.h"

#include "SchmidtPID.h"

/***************************************

* CONSTRUCTORS

**/

SchmidtPID::SchmidtPID(float P, float I, float D, float windup)

{

 _p = P;

 _i = I;

 _d = D;

 _guard = windup;

 _last = 0;

 _iError = 0;

}

/***************************************

* METHODS

**/

float SchmidtPID::updatePID(float target, float current)

{

 float instant_error;

 float dTerm;

 instant_error = target - current; //instant error between target

and current

 _iError += instant_error; //accumulated Error since PID creation

 if(_iError < -_guard){

 _iError = -_guard;

 }

 else if(_iError > _guard){

 _iError = _guard;

 }

 dTerm = _d * (current - _last);

 _last = current;

 return (_p * instant_error) + (_i * _iError) + dTerm;

}

void SchmidtPID::setValues(int P, int I, int D)

{

 _p = P;

 _i = I;

 _d = D;

}

void SchmidtPID::zeroError()

{

 _iError = 0;

}

float SchmidtPID::getP()

{

 return _p;

}

89

float SchmidtPID::getI()

{

 return _i;

}

float SchmidtPID::getD()

{

 return _d;

}

A-7-1 – Arduino IMU Sensor Library (IMU.h)
/*

 IMU.h - Library for reading IMU sensors.

 Created by Michael D. Schmidt.

 Last Updated: 03/31/10

*/

#ifndef IMU_h

#define IMU_h

#include "WProgram.h"

#include <math.h>

class IMU

{

 public:

 IMU(int XACCPIN, int YACCPIN, int ZACCPIN, int YRATEPIN, int

XRATEPIN, int ZRATEPIN, float vref, float vs, float gyroW);

 float getXAccel();

 float getYAccel();

 float getZAccel();

 float getRateAX();

 float getRateAY();

 float getRateAZ();

 void zeroGyros();

 void zeroAccels();

 float angleRad(char);

 float angleDeg(char);

 float estimate(char);

 private:

 int _xpin;

 int _ypin;

 int _zpin;

 int _yrpin;

 int _xrpin;

 int _zrpin;

 float _vref;

 float _vsup;

 float _zerog_x;

 float _zerog_y;

 float _zerog_z;

 float _accelsens;

 float _gyrosens;

 float _gyrozero_x;

 float _gyrozero_y;

90

 float _gyrozero_z;

 unsigned long _previousTime;

 char _firstSample;

 float _RxEst;

 float _RyEst;

 float _RzEst;

 float _RxGyro;

 float _RyGyro;

 float _RzGyro;

 float _gyroW;

};

#endif

A-7-2 – Arduino IMU Sensor Library (IMU.cpp)

/***************************************

* INCLUDES

**/

#include "WProgram.h"

#include <math.h>

#include "IMU.h"

/***************************************

* CONSTRUCTORS

**/

IMU::IMU(int XACCPIN, int YACCPIN, int ZACCPIN, int YRATEPIN, int

XRATEPIN, int ZRATEPIN, float vref, float vs, float gyroW)

{

 _xpin = XACCPIN;

 _ypin = YACCPIN;

 _zpin = ZACCPIN;

 _yrpin = YRATEPIN;

 _xrpin = XRATEPIN;

 _zrpin = ZRATEPIN;

 _vref = vref;

 _vsup = vs;

 _accelsens = _vsup*0.1;

 _gyrosens = 0.002;

 _gyrozero_x = 1.35;

 _gyrozero_y = 1.35;

 _gyrozero_z = 1.35;

 _zerog_x = _vsup/2;

 _zerog_y = _vsup/2;

 _zerog_z = _vsup/2;

 _previousTime = 0;

 _firstSample = 1;

 _gyroW = gyroW;

}

/***************************************

* METHODS

**/

float IMU::getXAccel()

{

91

 int xa = analogRead(_xpin);

 float Rx = (((xa*_vref)/(1023))-_zerog_x)/_accelsens;

 return Rx;

}

float IMU::getYAccel()

{

 int ya = analogRead(_ypin);

 float Ry = (((ya*_vref)/(1023))-_zerog_y)/_accelsens;

 return Ry;

}

float IMU::getZAccel()

{

 int za = analogRead(_zpin);

 float Rz = (((za*_vref)/(1023))-_zerog_z)/_accelsens;

 return Rz;

}

float IMU::getRateAX()

{

 int axz = analogRead(_xrpin);

 float Raxz = (((axz*_vref)/1023)-_gyrozero_x)/_gyrosens;

 return Raxz;

}

float IMU::getRateAY()

{

 int ayz = analogRead(_yrpin);

 float Rayz = (((ayz*_vref)/1023)-_gyrozero_y)/_gyrosens;

 return Rayz;

}

float IMU::getRateAZ()

{

 int azz = analogRead(_zrpin);

 float Razz = ((((azz*_vref)/1023)-_gyrozero_z)/_gyrosens);

 return Razz;

}

void IMU::zeroGyros()

{

 delay(100);

 int rot_x = analogRead(_xrpin);

 int rot_y = analogRead(_yrpin);

 int rot_z = analogRead(_zrpin);

 float rvalue_x = ((rot_x*_vref)/1023)-(0*_gyrosens);

 float rvalue_y = ((rot_y*_vref)/1023)-(0*_gyrosens);

 float rvalue_z = ((rot_z*_vref)/1023)-(0*_gyrosens);

 _gyrozero_x = rvalue_x;

 _gyrozero_y = rvalue_y;

 _gyrozero_z = rvalue_z;

}

void IMU::zeroAccels()

{

 delay(100);

92

 int grav_x = analogRead(_xpin);

 int grav_y = analogRead(_ypin);

 int grav_z = analogRead(_zpin);

 float value_x = ((grav_x*_vref)/1023)-(0*_accelsens);

 float value_y = ((grav_y*_vref)/1023)-(0*_accelsens);

 float value_z = ((grav_z*_vref)/1023)-(1*_accelsens);

 _zerog_x = value_x;

 _zerog_y = value_y;

 _zerog_z = value_z;

}

float IMU::angleRad(char axis)

{

 float Ax = getXAccel();

 float Ay = getYAccel();

 float Az = getZAccel();

 if (axis == 'x') return atan2(Ax, sqrt(Ay * Ay + Az * Az));

 if (axis == 'y') return atan2(Ay, sqrt(Ax * Ax + Az * Az));

}

float IMU::angleDeg(char axis)

{

 return degrees(angleRad(axis));

}

float IMU::estimate(char axis)

{

 float Axz;

 float Ayz;

 char signRzGyro;

 unsigned long currentTime = millis();

 float RxAcc = getXAccel(); //pull raw data

 float RyAcc = getYAccel();

 float RzAcc = getZAccel();

 unsigned long deltaT = currentTime - _previousTime;

 _previousTime = currentTime;

 float RaccAbs = sqrt(RxAcc*RxAcc + RyAcc*RyAcc + RzAcc*RzAcc);

//find vector length

 RxAcc /= RaccAbs;

 RyAcc /= RaccAbs;

 RzAcc /= RaccAbs;

 //If this is the first time through the loop, let former

estimated angles be the Accel angels

 if(_firstSample){

 _RxEst = RxAcc;

 _RyEst = RyAcc;

 _RzEst = RzAcc;

 }

 else{

 if(abs(_RzEst) < 0.1){

 _RxGyro = _RxEst;

 _RyGyro = _RyEst;

93

 _RzGyro = _RzEst;

 }

 else{

 float gyroX = getRateAX(); //get gyro data in deg/s

 float gyroY = getRateAY(); //get gyro data in deg/s

 gyroX *= deltaT / 1000.0f; //get angle change in deg

 gyroY *= deltaT / 1000.0f; //get angle change in deg

 Axz = atan2(_RxEst,_RzEst) * 180 / 3.14159265358979f;

//get angle and convert to degrees

 Ayz = atan2(_RyEst,_RzEst) * 180 / 3.14159265358979f;

 Axz += gyroX; //get updated angle

according to gyro movement

 Ayz += gyroY; //get updated angle

according to gyro movement

 //estimate sign of RzGyro by looking in what qudrant the

angle Axz is,

 //RzGyro is pozitive if Axz in range -90 ..90 =>

cos(Awz) >= 0

 signRzGyro = (cos(Axz * 3.14159265358979f / 180) >=0

) ? 1 : -1;

 _RxGyro = sin(Axz * 3.14159265358979f / 180);

 _RxGyro /= sqrt(1 + (cos(Axz * 3.14159265358979f /

180))*(cos(Axz * 3.14159265358979f / 180)) * (tan(Ayz *

3.14159265358979f / 180))*(tan(Ayz * 3.14159265358979f / 180)));

 _RyGyro = sin(Ayz * 3.14159265358979f / 180);

 _RyGyro /= sqrt(1 + (cos(Ayz * 3.14159265358979f /

180))*(cos(Ayz * 3.14159265358979f / 180)) * (tan(Axz *

3.14159265358979f / 180))*(tan(Axz * 3.14159265358979f / 180)));

 _RzGyro = signRzGyro * sqrt(1 - (_RxGyro*_RxGyro) -

(_RyGyro*_RyGyro));

 }

 _RxEst = (RxAcc + _gyroW * _RxGyro) / (1 + _gyroW);

 _RyEst = (RyAcc + _gyroW * _RyGyro) / (1 + _gyroW);

 _RzEst = (RzAcc + _gyroW * _RzGyro) / (1 + _gyroW);

 float R = sqrt(_RxEst*_RxEst + _RyEst*_RyEst +

_RzEst*_RzEst);

 _RxEst /= R;

 _RyEst /= R;

 _RzEst /= R;

 }

 _firstSample = 0;

 if (axis == 'x') return _RxEst;

 if (axis == 'y') return _RyEst;

 if (axis == 'z') return _RzEst;

}

A-7-3 – Arduino IMU Sensor Library Example (Processing)
/*

IMU Library Example

Created by: Michael D. Schmidt

Description: This IMU Library example file demonstrates the main

functionalities of the IMU Library. These functions include:

 getXAccel()

 getYAccel()

94

 getZAccel()

 getRateAX()

 getRateAY()

 getRateAZ()

 zeroGyros()

 zeroAccels()

 angleRad()

 angleDeg()

Last Updated: 06/18/2010 14:50

*/

#include <IMU.h>

/*Create IMU instance,

 XACCPIN = 0 - Pin for X axis acceleration

 YACCPIN = 1 - Pin for Y axis acceleration

 ZACCPIN = 2 - Pin for Z axis acceleration

 YRATEPIN = 3 - Pin for Y axis Gyro

 XRATEPIN = 4 - Pin for X axis Gyro

 ZRATEPIN = 5 - Pin for Z axis Gyro

 VREF = 5V - Reference voltage (this is the ADC voltage)

 VS = 3.3V - Sensor Supply Voltage (this is the voltage the sensor

uses)

 */

IMU IMU(0,1,2,3,4,5,5,3.3); //create a new IMU instance

float pitch;

float roll;

float x;

float y;

float z;

float Rx;

float Ry;

float Rz;

int incomingByte;

void setup(){

 IMU.zeroGyros(); //Zero the Gyros

 IMU.zeroAccels(); //Zero the Accelerometers

 Serial.begin(9600);

 Serial.println("Initialized...");

}

void loop(){

 //Press Z during testing to zero all sensors

 if(Serial.available() > 0) {

 incomingByte = Serial.read();

 if(incomingByte == 'Z'){

 IMU.zeroGyros();

 IMU.zeroAccels();

 Serial.println("");

 Serial.println("SENSORS ZEROED");

95

 }

 }

 // getXAccel() reads the X acceleration value (will be between -1 and

1)

 // similar functions for the Y and Z axes

 x = IMU.getXAccel();

 y = IMU.getYAccel();

 z = IMU.getZAccel();

 // getRateAX() provides the deg/sec rotation rate around the X axis.

Limits depend on sensor.

 // similar functions for the Y and Z axes

 Rx = IMU.getRateAX();

 Ry = IMU.getRateAY();

 Rz = IMU.getRateAZ();

 // angleDeg('x') reads the angle of the x axis wrt ground (will be

between -90 and 90 degrees)

 // angleRad('x') also exists and allows for reading the value in as a

radian value

 // similar functions exist for Y and Z axes

 pitch = IMU.angleDeg('x');

 roll = IMU.angleDeg('y');

 Serial.print(pitch);

 Serial.print("\t");

 Serial.println(roll);

 delay(100);

}

A-8 – Arduino Main Avionics Loop
//Library Includes

#include <SchmidtPID.h>

#include <IMU.h>

#include <QuadMotor.h>

//Constant Definitions:

const int FRONTPIN = 3;

const int BACKPIN = 9;

const int RIGHTPIN = 10;

const int LEFTPIN = 11;

const int LEDPIN = 13;

//Variable Definitions:

float pitch;

float roll;

int incomingByte;

byte buffer[3];

float r_value;

float p_value;

int throttle = 150;

int i;

int L_command;

int R_command;

int F_command;

int B_command;

boolean safety = true;

boolean debug = false;

96

boolean start = false;

int roll_target = 0;

int pitch_target = 0;

float roll_p = 4; //default roll P value

float roll_i = 0;

float roll_d = -10;

float pitch_p = 4;

float pitch_i = 0;

float pitch_d = -10;

//Instance Creation:

IMU sensors(0,1,2,3,4,5,5,3.3,10); //create a new IMU instance

QuadMotor motors(FRONTPIN,BACKPIN,RIGHTPIN,LEFTPIN); //create a new

motor control instance

SchmidtPID rollPID(roll_p,roll_i,roll_d,1000);

SchmidtPID pitchPID(pitch_p,pitch_i,pitch_d,1000);

//Setup Loop

void setup(){

 sensors.zeroGyros(); //Zero the Gyros

 sensors.zeroAccels(); //Zero the Accelerometers

 motors.initMotors();

 Serial.begin(115200);

 delay(2000);

 Serial.print("Initialized...");

 Serial.print("\n");

 digitalWrite(LEDPIN, HIGH);

}

void loop(){

 //Press Z during testing to zero all sensors

 if(Serial.available() > 0) {

 incomingByte = Serial.read();

 //If Incoming = 126 (~), this means a throttle value of three

digits has been sent

 if(incomingByte == 126){

 //The following code is for using a 3 digit number, which is

currently buggy

 /*

 i = 0;

 Serial.flush();

 delay(10);

 while(Serial.available() > 0){

 buffer[i] = Serial.read();

 i++;

 }

 //throttle = (buffer[0]-48)*100 + (buffer[1]-48)*10 + (buffer[2]-

48);

 throttle = (buffer[0]*100 + buffer[1]*10 + buffer[2]);

 if(throttle <= 124){

 throttle = 124;

 }

 if(throttle >= 250){

 throttle = 250;

 }

 */

 throttle += 1;

97

 if(throttle <= 124){

 throttle = 124;

 }

 if(throttle >= 250){

 throttle = 250;

 }

 Serial.print("Throttle Duty Cycle: ");

 Serial.print(throttle);

 Serial.print("\n");

 }

 if(incomingByte == 36){

 throttle -= 1;

 if(throttle <= 124){

 throttle = 124;

 }

 if(throttle >= 250){

 throttle = 250;

 }

 Serial.print("Throttle Duty Cycle: ");

 Serial.print(throttle);

 Serial.print("\n");

 }

 //If Incoming = 33 (!), this means a Roll P value of two digits has

been sent

 if(incomingByte == 33){

 i = 0;

 Serial.flush();

 delay(10);

 while(Serial.available() > 0){

 buffer[i] = Serial.read();

 i++;

 }

 //throttle = (buffer[0]-48)*100 + (buffer[1]-48)*10 + (buffer[2]-

48);

 roll_p = (buffer[0]*10 + buffer[1]);

 if(roll_p <= 1){

 roll_p = 1;

 }

 if(roll_p >= 25){

 roll_p = 25;

 }

 rollPID.setValues(roll_p,roll_i,roll_d);

 Serial.print("Roll Axis [P]: ");

 Serial.print(roll_p);

 Serial.print("\n");

 }

 if(incomingByte == 'Z'){

 sensors.zeroGyros();

 sensors.zeroAccels();

 rollPID.zeroError();

 pitchPID.zeroError();

 Serial.print("SENSORS ZEROED");

 Serial.print("\n");

98

 }

 if(incomingByte == 'I'){

 if(safety){

 Serial.print("Unable to Start, SAFETY ENABLED!");

 Serial.print("\n");

 }

 else if(!safety){

 Serial.print("STARTING, MOTORS ARMED!");

 Serial.print("\n");

 start = true;

 }

 }

 if(incomingByte == 'S'){

 if(safety){

 Serial.print("WARNING!! SAFETY OFF!");

 Serial.print("\n");

 }

 else{

 Serial.print("SAFETY ENABLED");

 Serial.print("\n");

 }

 safety = !safety;

 }

 if(incomingByte == 'X'){

 Serial.print("KILL");

 Serial.print("\n");

 motors.kill();

 safety = true;

 start = false;

 }

 if(incomingByte == 'G'){

 Serial.print("MOTOR VALUES:- ");

 Serial.print("F:");

 Serial.print(motors.getCommand('f'));

 Serial.print(",");

 Serial.print("B:");

 Serial.print(motors.getCommand('b'));

 Serial.print(",");

 Serial.print("R:");

 Serial.print(motors.getCommand('r'));

 Serial.print(",");

 Serial.print("L:");

 Serial.print(motors.getCommand('l'));

 Serial.print("\n");

 }

 if(incomingByte == 'P'){

 if(safety){

 Serial.print("Unable to Pulse, SAFETY IS ENABLED");

 Serial.print("\n");

 }

 else{

 Serial.print("MOTOR PULSE");

 Serial.print("\n");

 motors.pulseMotors(3);

 }

99

 }

 if(incomingByte == 'D'){

 if(debug){

 Serial.print("EXITING DEBUG MODE...");

 Serial.print("\n");

 }

 else{

 Serial.print("ENTERING DEBUG MODE...");

 Serial.print("\n");

 }

 debug = !debug;

 }

 if(incomingByte == 'V'){

 Serial.print("ANGEL INITIALIZED AND READY FOR FLIGHT");

 Serial.print("\n");

 /*

 i = 0;

 Serial.flush();

 delay(10);

 while(Serial.available() > 0){

 buffer[i] = Serial.read();

 i++;

 }

 throttle = (buffer[0]*100 + buffer[1]*10 + buffer[2]);

 roll_p = (buffer[4]*10 + buffer[5]);

 roll_i = (buffer[7]*10 + buffer[8]);

 roll_d = (buffer[10]*10 + buffer[11]);

 pitch_p = (buffer[13]*10 + buffer[14]);

 pitch_i = (buffer[16]*10 + buffer[17]);

 pitch_d = (buffer[19]*10 + buffer[20]);

 if(buffer[3] == 0) {roll_p *= -1;}

 if(buffer[6] == 0) {roll_i *= -1;}

 if(buffer[9] == 0) {roll_d *= -1;}

 if(buffer[12] == 0) {pitch_p *= -1;}

 if(buffer[15] == 0) {pitch_i *= -1;}

 if(buffer[18] == 0) {pitch_d *= -1;}

 Serial.print("Values Initialized to:");

 Serial.print("Throttle Value:");

 Serial.print(throttle);

 Serial.print("\n");

 Serial.print("Roll PID:");

 Serial.print(roll_p);

 Serial.print(",");

 Serial.print(roll_i);

 Serial.print(",");

 Serial.print(roll_d);

 Serial.print("\n");

 Serial.print("Pitch PID:");

 Serial.print(pitch_p);

 Serial.print(",");

 Serial.print(pitch_i);

 Serial.print(",");

 Serial.print(pitch_d);

 Serial.print("\n");

 */

 }

100

 if(incomingByte == 'T'){

 roll_target -= 1;

 Serial.print("Roll Target set to: ");

 Serial.print(roll_target);

 Serial.print("\n");

 }

 if(incomingByte == 'Y'){

 roll_target += 1;

 Serial.print("Roll Target set to: ");

 Serial.print(roll_target);

 Serial.print("\n");

 }

 if(incomingByte == 42){

 pitch_target -= 1;

 Serial.print("Pitch Target set to: ");

 Serial.print(pitch_target);

 Serial.print("\n");

 }

 if(incomingByte == 43){

 pitch_target += 1;

 Serial.print("Pitch Target set to: ");

 Serial.print(pitch_target);

 Serial.print("\n");

 }

 if(incomingByte == 44){

 roll_p += 0.1;

 rollPID.setValues(roll_p,roll_i,roll_d);

 Serial.print("Roll P Increased to: ");

 Serial.print(roll_p);

 Serial.print("\n");

 }

 if(incomingByte == 45) {

 roll_p -= 0.1;

 rollPID.setValues(roll_p,roll_i,roll_d);

 Serial.print("Roll P Decreased to: ");

 Serial.print(roll_p);

 Serial.print("\n");

 }

 if(incomingByte == 46){

 roll_d += 0.1;

 rollPID.setValues(roll_p,roll_i,roll_d);

 Serial.print("Roll D Increased to: ");

 Serial.print(roll_d);

 Serial.print("\n");

 }

 if(incomingByte == 47) {

 roll_d -= 0.1;

 rollPID.setValues(roll_p,roll_i,roll_d);

 Serial.print("Roll D Decreased to: ");

 Serial.print(roll_d);

 Serial.print("\n");

 }

 if(incomingByte == 48){

 pitch_p += 0.1;

 pitchPID.setValues(pitch_p,pitch_i,pitch_d);

 Serial.print("Pitch P Increased to: ");

101

 Serial.print(pitch_p);

 Serial.print("\n");

 }

 if(incomingByte == 49) {

 pitch_p -= 0.1;

 pitchPID.setValues(pitch_p,pitch_i,pitch_d);

 Serial.print("Pitch P Decreased to: ");

 Serial.print(pitch_p);

 Serial.print("\n");

 }

 if(incomingByte == 50){

 pitch_d += 0.1;

 pitchPID.setValues(pitch_p,pitch_i,pitch_d);

 Serial.print("Pitch D Increased to: ");

 Serial.print(pitch_d);

 Serial.print("\n");

 }

 if(incomingByte == 51) {

 pitch_d -= 0.1;

 pitchPID.setValues(pitch_p,pitch_i,pitch_d);

 Serial.print("Pitch D Decreased to: ");

 Serial.print(pitch_d);

 Serial.print("\n");

 }

 }

 if(start){

 roll = sensors.angleDeg('y');

 pitch = sensors.angleDeg('x');

 r_value = rollPID.updatePID(roll_target, roll);

 p_value = pitchPID.updatePID(pitch_target, pitch);

 r_value /= 10;

 p_value /= 10;

 //trying to switch values

 L_command = int(throttle + r_value);

 R_command = int(throttle - r_value);

 F_command = int(throttle - p_value);

 B_command = int(throttle + p_value);

 if(L_command > 253) L_command = 253;

 if(L_command < 160) L_command = 160;

 if(R_command > 253) R_command = 253;

 if(R_command < 160) R_command = 160;

 if(F_command > 253) F_command = 253;

 if(F_command < 160) F_command = 160;

 if(B_command > 253) B_command = 253;

 if(B_command < 160) B_command = 160;

 if(!safety){

 motors.setEach(F_command,B_command,R_command,L_command);

 }

 if(debug){

 Serial.print(F_command);

 Serial.print(",");

 Serial.print(B_command);

 Serial.print(",");

 Serial.print(pitch);

 Serial.print(",");

102

 Serial.print(R_command);

 Serial.print(",");

 Serial.print(L_command);

 Serial.print(",");

 Serial.print(roll);

 Serial.print(",");

 delay(100);

 }

 }

}

A-9 – Processing Controller Code

import processing.serial.*; // serial library

Serial[] myPorts = new Serial[1]; // lets only use one port in this

sketch

// GUI variables

import controlP5.*; // controlP5 library

ControlP5 controlP5; // create the handler to allow for controlP5 items

Textlabel txtlblWhichcom; // text label displaying which comm port is

being used

Textlabel l_debug;

Textlabel r_debug;

Textlabel l_safety;

Textlabel r_safety;

ListBox commListbox; // list of available comm ports

ListBox commList;

Textfield pr_field;

Textfield ir_field;

Textfield dr_field;

int corner_x = 5;

int corner_y = 160; //130

int button_w = 90;

int button_h = 20;

int throt = 150; //default throttle value

int p_r_val = 5;

int i_r_val = 0;

int d_r_val = -10;

int[] arr = new int[3];

int[] dual_arr = new int[2];

int holder;

int i = 0;

int h = hour();

int m = minute();

int s = second();

PImage logo;

boolean fast_climb = false;

// setup

void setup() {

 size(800,600);

 frameRate(30);

 controlP5 = new ControlP5(this); // initialize the GUI controls

103

 println(Serial.list()); // print the comm ports to the debug window

for debugging purposes

 // make a listbox and populate it with the available comm ports

 commListbox = controlP5.addListBox("myList",width-180-10,30,180,120);

//addListBox(name,x,y,width,height)

 commListbox.captionLabel().toUpperCase(false);

 commListbox.captionLabel().set("COM Ports");

 commListbox.close();

 for(int i=0;i<Serial.list().length;i++) {

 commListbox.addItem("port: "+Serial.list()[i],i); //

addItem(name,value)

 }

 // text label for which comm port selected

 txtlblWhichcom = controlP5.addTextlabel("txtlblWhichcom","No Port

Selected",width-180-30,10); // textlabel(name,text,x,y)

 l_debug = controlP5.addTextlabel("l_debug","Debug Mode:

",corner_x,corner_y-25);

 r_debug = controlP5.addTextlabel("r_debug","OFF",corner_x +

99,corner_y + 12-28);

 l_safety = controlP5.addTextlabel("l_safety","SAFETY:

",corner_x,corner_y + 30 - 25);

 r_safety = controlP5.addTextlabel("r_safety","ON",corner_x +

103,corner_y + 30 + 12-29);

 //set label colors

 l_safety.setColorValue(0x13eb1c);

commList = controlP5.addListBox("commList",corner_x,corner_y +

250,400,150);

commList.setItemHeight(15);

commList.setBarHeight(20);

commList.captionLabel().toUpperCase(false);

commList.captionLabel().set("COMMUNICATIONS LOG");

addToLog("CONTROL: Welcome to ANGEL Controller. Please select a COM

port.");

commList.scroll(1);

i += 1;

commList.setColorBackground(color(71,71,71));

commList.setColorActive(color(128,133,72));

 // a button to send the letter a

 controlP5.addButton("INITIALIZE",6,corner_x,corner_y +

30,button_w,button_h);

 controlP5.addButton("MOTOR_PULSE",1,corner_x,corner_y +

60,button_w,button_h); // buton(name,value,x,y,width,height)

 controlP5.addToggle("DEBUG",false,corner_x + 70,corner_y - 30,10,10);

 controlP5.addToggle("SAFETY",true,corner_x + 70,corner_y - 20 + 30-

10,10,10);

 controlP5.addButton("ZERO_SENSORS",2,corner_x,corner_y +

90,button_w,button_h); // buton(name,value,x,y,width,height)

 controlP5.addButton("GET_MOTOR_VALUES",5,corner_x,corner_y +

120,button_w,button_h);

 controlP5.addButton("START",3,corner_x,corner_y +

150,button_w,button_h);

104

 controlP5.addButton("KILL",4,corner_x,corner_y +

180,button_w,button_h);

 logo = loadImage("logo.jpg");

 pr_field = controlP5.addTextfield("Roll_P",corner_x + 140,corner_y +

70,38,20);

 //p_field.setFocus(true);

 pr_field.setAutoClear(false);

 pr_field.setText("5");

 controlP5.addButton("DEC1",6,corner_x + 110,corner_y + 70,25,20);

 controlP5.addButton("INC1",6,corner_x + 190,corner_y + 70,25,20);

 ir_field = controlP5.addTextfield("Roll_I",corner_x + 140,corner_y +

110,38,20);

 //p_field.setFocus(true);

 ir_field.setAutoClear(false);

 ir_field.setText("0");

 controlP5.addButton("DEC2",6,corner_x + 110,corner_y + 110,25,20);

 controlP5.addButton("INC2",6,corner_x + 190,corner_y + 110,25,20);

 dr_field = controlP5.addTextfield("Roll_D",corner_x + 140,corner_y +

150,38,20);

 //p_field.setFocus(true);

 dr_field.setAutoClear(false);

 dr_field.setText("-10");

 controlP5.addButton("DEC3",6,corner_x + 110,corner_y + 150,25,20);

 controlP5.addButton("INC3",6,corner_x + 190,corner_y + 150,25,20);

}

// infinite loop

void draw() {

 background(95);

 image(logo,5,5);

}

// print the name of the control being triggered (for debugging) and

see if it was a Listbox event

public void controlEvent(ControlEvent theEvent) {

 // ListBox is if type ControlGroup, you need to check the Event with

if (theEvent.isGroup())to avoid an error message from controlP5

 if (theEvent.isGroup()) {

 // an event from a group

 if (theEvent.group().name()=="myList") {

 InitSerial(theEvent.group().value()); // initialize the serial

port selected

 //println("got myList"+" value = "+theEvent.group().value());

// for debugging

 }

 }

 else {

 //println(theEvent.controller().name()); // for debugging

 }

}

// run this when buttonA is triggered, send an a

public void MOTOR_PULSE(int theValue) {

105

 addToLog("USER: Request Motor Pulse");

 myPorts[0].write('P');

}

// initialize the serial port selected in the listBox

void InitSerial(float portValue) {

 println("initializing serial " + int(portValue) + " in

serial.list()"); // for debugging

 String portPos = Serial.list()[int(portValue)]; // grab the name of

the serial port

 txtlblWhichcom.setValue("COM Initialized = " + portPos);

 addToLog("CONTROL: COM SELECTED - " + portPos);

 myPorts[0] = new Serial(this, portPos, 115200); // initialize the

port

 // read bytes into a buffer until you get a linefeed (ASCII 10):

 //myPorts[0].bufferUntil('\n');

 //println("done init serial");

}

// serial event, check which port generated the event

// just in case there are more than 1 ports open

void serialEvent(Serial thisPort) {

 // read the serial buffer until a newline appears

 String myString = thisPort.readStringUntil(10);

 //myString = trim(myString); // ditch the newline

 if(myString != null){

 addToLog("ANGEL: " + myString); // print to debug window

 /*

 String[] match1 = match(myString,"999");

 if(match1 != null){

 int values[] = int(split(myString,','));

 p_r_val = values[2];

 println(p_r_val);

 p_field.setText(str(p_r_val));

 }

 */

 }

 // uncomment the following if you are getting streaming packets of

data that need to be parsed

/*

 // if you got any bytes other than the newline

 if (myString != null) {

 //myString = trim(myString); // ditch the newline

 // split the string at the spaces, save as integers

 int sensors[] = int(split(myString, ' '));

106

 // convert to x and y or whatever

 if ((sensors.length == 2)&&(portNumber==0)) { // hardcoded

portNumber==0 because only using one port in this sketch

 //float x = sensors[0]/100.0; // whatever conversion you need to

do

 //float y = sensors[1]/100.0;

 }

 }

*/

} // end serialEvent

void DEBUG(boolean theFlag) {

 if(theFlag==true) {

 println("DEBUG ON");

 addToLog("USER: Debug ON");

 r_debug.setValue("ON");

 } else {

 println("DEBUG OFF");

 addToLog("USER: Debug OFF");

 r_debug.setValue("OFF");

 }

 myPorts[0].write('D');

}

void SAFETY(boolean theFlag) {

 if(theFlag==true) {

 println("SAFETY ON");

 addToLog("USER: Safety ON");

 r_safety.setValue("ON");

 l_safety.setColorValue(0x13eb1c);

 } else {

 println("SAFETY OFF");

 addToLog("USER: Safety OFF");

 r_safety.setValue("OFF");

 l_safety.setColorValue(0xff0006);

 }

 myPorts[0].write('S');

}

void addToLog(String val){

 h = hour();

 m = minute();

 s = second();

 commList.addItem("("+h+":"+m+":"+s+") "+ val,i);

 commList.scroll(1);

 i += 1;

}

public void ZERO_SENSORS(int theValue) {

 addToLog("USER: Request sensors be zeroed");

 myPorts[0].write('Z');

}

public void START(int theValue) {

 addToLog("USER: Request START");

107

 myPorts[0].write('I');

}

public void KILL(int theValue) {

 addToLog("USER: Request KILL");

 SAFETY(true);

 myPorts[0].write('X');

}

public void GET_MOTOR_VALUES(int theValue) {

 addToLog("USER: Request Motor Command Values");

 myPorts[0].write('G');

}

/*

public void P(String theText) {

 if(int(theText) < 1){

 p_r_val = 1;

 addToLog("CONTROL: MIN Roll P = 1");

 }

 if(int(theText) > 25){

 p_r_val = 25;

 addToLog("CONTROL: Roll P = 25");

 }

 if(int(theText) >= 1 && int(theText) <= 25){

 throt = int(theText);

 addToLog("USER: Set Roll P to " + p_r_val);

 }

 sendCValue(p_r_val,'a');

 }

 */

/*

public void DEC1(int theValue){

 p_r_val -= 1;

 if(p_r_val <= 1){

 addToLog("CONTROL: MIN P for roll = 1");

 p_r_val = 1;

 }

 pr_field.setText(Integer.toString(p_r_val));

 addToLog("USER: Decrease Roll P Value to " + p_r_val);

 sendCValue(p_r_val,'a');

}

public void INC1(int theValue){

 p_r_val += 1;

 if(p_r_val >=25){

 addToLog("CONTROL: MAX P for roll = 25");

 p_r_val = 25;

 }

 pr_field.setText(Integer.toString(p_r_val));

 addToLog("USER: Increasae Roll P Value to " + p_r_val);

 sendCValue(p_r_val,'a');

}

public void DEC2(int theValue){

 i_r_val -= 1;

 if(i_r_val <= 0){

 addToLog("CONTROL: MIN I for roll = 0");

108

 i_r_val = 0;

 }

 ir_field.setText(Integer.toString(i_r_val));

 addToLog("USER: Decrease Roll I Value to " + i_r_val);

 sendCValue(i_r_val,'b');

}

public void INC2(int theValue){

 i_r_val += 1;

 if(i_r_val >=12){

 addToLog("CONTROL: MAX I for roll = 12");

 p_r_val = 12;

 }

 ir_field.setText(Integer.toString(i_r_val));

 addToLog("USER: Increasae Roll I Value to " + i_r_val);

 sendCValue(i_r_val,'b');

}

public void DEC3(int theValue){

 d_r_val -= 1;

 if(d_r_val == 0){

 addToLog("CONTROL: D != 0");

 d_r_val += 1;

 }

 dr_field.setText(Integer.toString(d_r_val));

 addToLog("USER: Decrease Roll D Value to " + d_r_val);

 sendCValue(d_r_val,'c');

}

public void INC3(int theValue){

 d_r_val += 1;

 if(d_r_val == 0){

 addToLog("CONTROL: D != 0");

 d_r_val -= 1;

 }

 dr_field.setText(Integer.toString(d_r_val));

 addToLog("USER: Increasae Roll D Value to " + d_r_val);

 sendCValue(d_r_val,'c');

}

*/

public void INITIALIZE(int theValue){

 addToLog("USER: Request ANGEL Initialization");

 myPorts[0].write('V');

}

//The following two functions are used to send multi digit nums,

currently bugguy

/*

void sendThrottle(int value){

 holder = value;

 for(int i = 0;i<3;i++){

 arr[i] = holder % 10;

 holder /= 10;

 }

 myPorts[0].write('~');

 myPorts[0].write(byte(arr[2]));

 //delay(5);

109

 myPorts[0].write(byte(arr[1]));

 //delay(5);

 myPorts[0].write(byte(arr[0]));

}

void sendCValue(int value, char ind){

 holder = value;

 holder = int(nf(holder,2));

 for(int i = 0;i<2;i++){

 dual_arr[i] = holder % 10;

 holder /= 10;

 }

 if(ind == 'a'){

 myPorts[0].write('!');

 }

 else if(ind =='b'){

 myPorts[0].write('@');

 }

 else if(ind == 'c'){

 myPorts[0].write('#');

 }

 myPorts[0].write(byte(dual_arr[1]));

 //delay(5);

 myPorts[0].write(byte(dual_arr[0]));

}

*/

void keyPressed() {

 if (key == CODED) {

 if (keyCode == UP) {

 if(fast_climb){

 throt += 10;

 for(int i=0;i<10;i++){

 myPorts[0].write('~');

 }

 }

 else{

 throt += 1;

 myPorts[0].write('~');

 }

 if(throt > 250){

 throt = 250;

 addToLog("CONTROL: MAX Throttle = 250");

 }

 addToLog("USER: Increase Throttle to " + throt);

 } else if (keyCode == DOWN) {

 if(fast_climb){

 throt -= 10;

 for(int i=0;i<10;i++){

 myPorts[0].write('$');

 delay(10);

 }

 }

 else{

 throt -= 1;

 myPorts[0].write('$');

 delay(10);

110

 }

 if(throt < 124){

 throt = 124;

 addToLog("CONTROL: MIN Throttle = 124");

 }

 addToLog("USER: Decrease Throttle to " + throt);

 } else if (keyCode == SHIFT) {

 fast_climb = !fast_climb;

 }

 }

 if(key == 'a'){

 if(fast_climb){

 for(int i=0;i<10;i++){

 myPorts[0].write('T');

 addToLog("USER: Roll LEFT");

 delay(10);

 }

 }

 else{

 addToLog("USER: Roll LEFT");

 myPorts[0].write('T');

 }

 }

 if(key == 'd'){

 if(fast_climb){

 for(int i=0;i<10;i++){

 myPorts[0].write('Y');

 addToLog("USER: Roll RIGHT");

 delay(10);

 }

 }

 else{

 addToLog("USER: Roll RIGHT");

 myPorts[0].write('Y');

 }

 }

 if(key == 'w'){

 if(fast_climb){

 for(int i=0;i<10;i++){

 myPorts[0].write('*');

 addToLog("USER: Pitch DOWN");

 delay(10);

 }

 }

 else{

 addToLog("USER: Pitch DOWN");

 myPorts[0].write('*');

 }

 }

 if(key == 's'){

 if(fast_climb){

 for(int i=0;i<10;i++){

 myPorts[0].write('+');

 addToLog("USER: Pitch UP");

 delay(10);

 }

 }

111

 else{

 addToLog("USER: Pitch UP");

 myPorts[0].write('+');

 }

 }

 if(key == '-'){

 myPorts[0].write('-');

 addToLog("USER: Roll P Decrease");

 }

 if(key == '='){

 myPorts[0].write(',');

 addToLog("USER: Roll P Increase");

 }

 if(key == '['){

 myPorts[0].write('/');

 addToLog("USER: Roll D Decrease");

 }

 if(key == ']'){

 myPorts[0].write('.');

 addToLog("USER: Roll D Increase");

 }

 if(key == ';'){

 myPorts[0].write('1');

 addToLog("USER: Pitch P Decrease");

 }

 if(key == '\''){

 myPorts[0].write('0');

 addToLog("USER: Pitch P Increase");

 }

 if(key == '.'){

 myPorts[0].write('3');

 addToLog("USER: Pitch D Decrease");

 }

 if(key == '/'){

 myPorts[0].write('2');

 addToLog("USER: Pitch D Increase");

 }

}

112

APPENDIX B – CAD Schematics
B-1 – ANGEL v1 Junction Drawing

113

B-2 – Uriel Arm Junction Model (no dimensions)

B-3 – Motor Mount for Uriel (no dimensions)

114

B-3 – Large Uriel Assembly Diagram

115

REFERENCES

[1] NOVA, “Battle Plan Under Fire – Time Line of UAVs”. Available at:

http://www.pbs.org/wgbh/nova/wartech/uavs.html)

[2] PRNewswire (Feb 1, 2010). Teal Group Predicts Worldwide UAV Market

Will Total Over $80 Billion in its Just Released UAV Market Profile and

Forecast. PRNewswire. January 2011 from

http://www.prnewswire.com/news-releases/teal-group-predicts-worldwide-

uav-market-will-total-over-80-billion-in-its-just-released-2010-uav-market-

profile-and-forecast-83233947.html

[3] Valavanis, Kimon P., ed. Advances in Unmanned Aerial Vehicles: State of

the Art and the Road to Autonomy. Dordrecht: Springer, 2007.

[4] Bouabdallah, S. & Siegwart, R. “Design and Control of a Miniature

Quadrotor”, Advances in Unmanned Aerial Vehicles (2007): 171-210.

[5] Premerlani, W. & Bizard, P. (May 17, 2009). Direction Cosine Matrix IMU:

Theory. Available at: http://gentlenav.googlecode.com/files/DCMDraft2.pdf

[6] Mellinger, D., Shomin, M. & Kumar, V. “Control of Quadrotors for Robust

Perching and Landing”. Int. Powered Lift Conference, Philadelphia, PA, Oct

2010.

[7] Murray R., et al., A Mathematical Introduction to Robotic Manipulation,

CRC, Boca Raton, FL 1994.

http://www.pbs.org/wgbh/nova/wartech/uavs.html
http://www.prnewswire.com/news-releases/teal-group-predicts-worldwide-uav-market-will-total-over-80-billion-in-its-just-released-2010-uav-market-profile-and-forecast-83233947.html
http://www.prnewswire.com/news-releases/teal-group-predicts-worldwide-uav-market-will-total-over-80-billion-in-its-just-released-2010-uav-market-profile-and-forecast-83233947.html
http://www.prnewswire.com/news-releases/teal-group-predicts-worldwide-uav-market-will-total-over-80-billion-in-its-just-released-2010-uav-market-profile-and-forecast-83233947.html
http://gentlenav.googlecode.com/files/DCMDraft2.pdf

116

[8] Amir, M.Y.; Abbass, V.; , "Modeling of Quadrotor Helicopter

Dynamics," Smart Manufacturing Application, 2008. ICSMA 2008.

International Conference on , vol., no., pp.100-105, 9-11 April 2008

doi: 10.1109/ICSMA.2008.4505621

URL: http://ieeexplore.ieee.org.ezproxy.uky.edu/stamp/stamp.jsp?tp=&arnu

mber=4505621&isnumber=4505541

[9] Bouabdallah S. et al, “PID vs LQ Control Techniques Applied to an Indoor

Micro Quadrotor”, Proceedings, IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sendai, Japan, 2004.

[10] The Aeroquad Open Source Project (Available at:

http://www.aeroquad.com)

[11] Domingues, Jorge Miguel Brito, “Quadrotor Prototype”, Universidade

Tecnia de Lisboa, October 2009.

[12] Microstar Labs, “Ziegler-Nichols Tuning Rules for PID”, Available at:

http://www.mstarlabs.com/control/znrule.html

[13] Starlino, “A Guide to using IMU in Embedded Applications”, Available at:

http://www.starlino.com/imu_guide.html

[14] Higgins, W.T. "A Comparison of Complementary and Kalman

Filtering," Aerospace and Electronic Systems, IEEE Transactions on , vol.AES-

11, no.3, pp.321-325, May 1975

doi: 10.1109/TAES.1975.308081

URL: http://ieeexplore.ieee.org.ezproxy.uky.edu/stamp/stamp.jsp?tp=&arnu

mber=4101411&isnumber=4101405

http://ieeexplore.ieee.org.ezproxy.uky.edu/stamp/stamp.jsp?tp=&arnumber=4505621&isnumber=4505541
http://ieeexplore.ieee.org.ezproxy.uky.edu/stamp/stamp.jsp?tp=&arnumber=4505621&isnumber=4505541
http://www.aeroquad.com/
http://www.mstarlabs.com/control/znrule.html
http://www.starlino.com/imu_guide.html
http://ieeexplore.ieee.org.ezproxy.uky.edu/stamp/stamp.jsp?tp=&arnumber=4101411&isnumber=4101405
http://ieeexplore.ieee.org.ezproxy.uky.edu/stamp/stamp.jsp?tp=&arnumber=4101411&isnumber=4101405

117

[15] ZigBee Standard Comparisons, Available at:

http://www.stg.com/wireless/ZigBee_comp.html

[16] Draganfly Innovations, Inc. Available at: http://www.draganfly.com/

[17] Parrot AR Drone. Available at: http://ardrone.parrot.com/parrot-ar-

drone/usa/

http://www.stg.com/wireless/ZigBee_comp.html
http://www.draganfly.com/
http://ardrone.parrot.com/parrot-ar-drone/usa/
http://ardrone.parrot.com/parrot-ar-drone/usa/

118

VITA

Michael Schmidt was born in Honolulu, HI on July 28, 1986. He graduated

summa cum laude from the University of Kentucky with Bachelor of Science

degrees in Electrical and Mechanical Engineering in 2009. He was awarded

the Robert L. Cosgriff Award at graduation by the College of Engineering and

has passed the Fundamentals of Engineering exam. He has worked at the

University of Kentucky Center for Visualization and Virtual Environments

during his tenure as a student at the University. He wrote an award winning

paper over his research on expanding a 2D image search algorithm to

function in three dimensions. He also co-authored a paper currently awaiting

publication on a new approach to Lean Management practices utilizing Latent

Semantic Analysis.

	SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE
	Recommended Citation

	Abstract
	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Section I: Introduction
	UAV Historical Perspective and Applications
	Vertical Take-off and Landing (VTOL) Aircraft
	The Quadrotor

	Section II: Literature Review and Motivation
	The Cutting Edge
	Commercial Products
	Research Motivation

	Section III: ANGEL Simulation Model
	Introducing the Aerial Network Guided Electronic Lookout (ANGEL)
	Coordinate Systems
	ANGEL System State
	ANGEL Actuator Basics
	Coordinate System Rotations
	ANGEL Body Forces and Moments
	ANGEL Moments of Inertia
	ANGEL Kinematics and the Gimbal Lock Phenomenon
	The Quaternion Method
	MATLAB Simulation of ANGEL

	Section IV: ANGEL Control Development
	Control Fundamentals
	Model Simplifications
	Input Declarations
	MATLAB Control Implementation
	Controller Tuning and Response

	Section V: Platform Implementation
	ANGEL v1 Platform Basics
	ANGEL v1 Power System
	ANGEL Actuators (ESC/Motor/Propeller)
	ANGEL Main Avionics
	ANGEL v1 Avionics Loop Description
	ANGEL Sensors
	Sensor Fusion Algorithm and Noise
	ANGEL User Control (Xbee and Processing GUI)
	Control Library Implementation
	ANGEL v2 Build Description

	Section VI: Testing and Results
	Testing and Results Introduction
	Test Bench and Flight Harness Construction
	Thrust Measurement
	Pitch and Roll Test Data
	Pitch and Roll Test Results
	Avionics Loop Testing

	Section VII: Concluding Remarks and Future Development
	Simulation Conclusions and Future Work
	Controller Conclusions and Future Work
	Sensors and Fusion Algorithm Conclusions and Future Work
	User Interface Conclusions and Future Work
	Physical Build Conclusions and Future Work
	Thesis Objective Conclusion

	APPENDIX A – CODE
	A-1 – System Dynamics MATLAB Code used in Simulation
	A-2 – Code for Attitude Control in MATLAB Simulation
	A-3 – Block to translate controller outputs to speed inputs
	A-4 – Disabled Altitude Control Block
	A-5-1 Arduino Motor Library (QuadMotor.h)
	A-5-2 – Arduino Motor Library (QuadMotor.cpp)
	A-6-1 – Arduino PID Library (SchmidPID.h)
	A-6-2 – Arduino PID Library (SchmidtPID.cpp)
	A-7-1 – Arduino IMU Sensor Library (IMU.h)
	A-7-2 – Arduino IMU Sensor Library (IMU.cpp)
	A-7-3 – Arduino IMU Sensor Library Example (Processing)
	A-8 – Arduino Main Avionics Loop
	A-9 – Processing Controller Code

	APPENDIX B – CAD Schematics
	B-1 – ANGEL v1 Junction Drawing
	B-2 – Uriel Arm Junction Model (no dimensions)
	B-3 – Motor Mount for Uriel (no dimensions)
	B-3 – Large Uriel Assembly Diagram/

	REFERENCES
	VITA

