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Abstract

Motivated by the important growth of VTOL vehicles research such as quadrotors

and to a small extent autonomous flight, PID control laws and a path planning

strategy are studied in this thesis. Since this type of multirotor vehicle has a com-

plex dynamics, it is not an easy task to achieve a precise control. So, the main

goal is to implement a PID controller in simulation. It has showed an acceptable

performance particularly in hover condition. Additionally, an autopilot simulator

is used as well to validate the attitude and altitude stabilization of a quadrotor.

Some changes are made to certain dynamic variables to determine and get a better

understanding of the quadrotor flight dynamics (X configuration). In the same way,

some modifications to the control parameters are also made in order to examine

attitude changes when different paths are designed (X and + configurations). The

shortest and/or other possible paths are studied by applying Dubins curves. This

method will help to verify the feasibility of these kind of paths for quadrotors. The

results are presented through MATLAB and simulations with AP mission planner

for Linux.

Key Words: Quadrotor, PID Control, VTOL, Flight Dynamics, Path

Planning.
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Resumen

En los últimos años el interés por la investigación en veh́ıculos aéreos no tripulados

autonomos tipo VTOL (Despegue y Aterrizaje Vertical) ha tenido un significante

crecimiento. En éste trabajo se estudian las leyes de control PID y una estrategia

de planificación de trayectoria. Debido a la compleja dinámica de éste tipo de

plataformas multirotor, lograr un control adecuado de las mismas resulta no ser una

tarea fácil. Por lo tanto, el principal objetivo es implementar un controlador PID en

simulación el cuál ha evidenciado tener un rendimiento adecuado particularmente

en condición hover. Adicionalmente, se emplea un simulador de autopiloto con el

propósito de validar el comportamiento de la orientación y la altura de un quadrotor.

Se realizan algunos cambios a los valores de las variables dinámicas con el fin de

determinar y tener una mejor compresión de la mecánica de vuelo. (Configuración

X). Igualmente, ciertan modificaciones se realizan a los parámetros de control para

examinar los cambios que se puedan presentar en orientación cuando se diseñan

diferentes trayectorias (Configuraciones X, +). Las trayectorias posibles y/ó las

más cortas se plantean aplicando curvas de Dubins. Este método será útil para

verificar la viabilidad de ésta clase de trayectorias en quadrotores. Los resultados

se presentan haciendo uso de MATLAB y simulaciones con AP mission planner en

Linux.

Palabras Clave: Quadrotor, Control PID, VTOL, Dinámica de Vuelo,

Planificación de trayectoria.

Key Words: Quadrotor, PID control, VTOL, Flight Dynamics, Path

Planning.
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Notations

Variable Description Unit

E-Frame Earth Inertial Frame −

B-Frame Body Fixed Frame −

N -Frame Navigation Coordinate System −

S-Frame Sensor Fixed Frame −

CE
G Geodetic Coordinate Frame −

CE
G Transformation from Geodetic to E-Frame −

CE
N Transformation from Navigation to E-Frame −

CE
G Transformation from Geodetic to E-Frame −

ξE Linear Position in E-Frame m

ΘE Vehicle Orientation or Attitude radians

RN Ellipsoid Radius m

h Height m

u v w Linear Velocities m s−1

u̇ v̇ ẇ Accelerations WRT the B- Frame m s−2

vE Linear Velocity Vector WRT E-Frame m s−1

vB Linear Velocity Vector WRT B-Frame m s−1

v̇B Linear Acceleration Vector WRT the B-Frame m s−2

ωB Angular Acceleration WRT the B-Frame rads−1

ω̇B Angular Velocity WRT the B-Frame rads−2
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ix

Variable Description Unit

φ Roll Angle radians

θ Pitch Angle radians

ψ Yaw Angle radians

θ̇E Angular Velocity WRT the E-Frame rads−1

θ̈E Angular Acceleration WRT the E-Frame rads−2

p Roll Rate rads−1

q Pitch Rate rads−1

r Yaw Rate rads−1

g Gravity Acceleration ms−2

RΥ Rotation matrix −

Tχ Transformation matrix −

I Inertia matrix −

Ix Moment of Inertia in Roll Nms−2

Iy Moment of Inertia in Pitch Nms−2

Iz Moment of Inertia in Yaw Nms−2

τr Roll Moment Nm

τp Pitch Moment Nm

τy Yaw Moment Nm

q Quaternion +

Kτ Quasi-stationary Maneuvers Constant −

l Distance between a motor and the CG of the vehicle m

S Wing Area Surface m2

Q Dynamic Pressure Pa

ρ Air density Kgm−3

m Quadrotor mass Kg

φ̇ θ̇ ψ̇ Attitude Rates rads1

Ω Motor Angular Velocity rads−1

Ω̇ Motor Angular Acceleration rads−2
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x

Variable Description Unit

Ωp Propeller Angular Velocity rads−1

R Motor Resistance Ohms

i Motor Current Flow Amps

ηm Efficiency of the Motor %

τm Torque of the Motor Nm

τl Torque of the Load Nm

Kq Constant of the Motor Torque Nm/Amps

Ke Constant of the Motor Speed V srad−1

V Motors Voltage Input V olts

ηg Efficiency of the Gearbox %

fom Figure of Merit of the Propeller −

Jm Inertia of the Motor Kg.m2

b Thrust Factor N s2

Kdrag Drag Constant N m s2

φd Desired roll rads

θd Desired pitch rads

ψd Desired yaw rads

U1 Vertical Thrust (Throttle) WRT the B-Frame N

U2 Roll Torque (Control Input) WRT the B-Frame Nm

U3 Pitch Torque (Control Input) WRT the B-Frame N m

U4 Yaw Torque (Control Input) WRT the B-Frame N m

Kp Proportional gain s−2

Ki Integral gain s−3

Kd Derivative gain s−1

Rmin Minimum Turning Radius m

Sl Dubins Line Segment m

Rh Helix Radius m

Hi, Hf Initial and Final Height m

Tk Time Constant s−1
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Chapter 1

Introduction

Humanity has been having a significant development increase that centuries ago it

would not have been possible to believe that the first manned airplane had been

built and flown by the Wright brothers in the early 1900s. Aircrafts are not the

only ones with flight capacities. There are other flying vehicles like drones or un-

manned aerial vehicles (UAVs) which can do so. Hence, there have been many re-

searchers and engineers from different areas interested in developing aerial vehicles

without the influence of humans. Several engineering areas such as aerodynamics,

control, embedded electronics are associated to this type of systems. These type

of vehicles can have small designs that favor their abilities for carrying or payload.

The term “drones” has been used because of the autonomy constraints they could

have. This is the reason why embedded and guidance control systems are applied to

drones which permit autonomous flight tasks. One of the categories of UAVs is the

multirotor which has the possibility of vertical takeoff and landing (VTOL). Nowa-

days, unmanned aerial vehicles play a very meaningful role in the current aerospace

industry. They can provide different autonomous flight applications such as envi-

ronmental research, rescue, traffic monitoring, agricultural inspections, image and

video, scientific research, inspections of places with very difficult access and even

more recently, home delivery of products. Therefore, it is important to remark that

their uses are not just limited to dangerous roles. Due to the great progress of

technology, UAVs have been evolving up to autonomous systems. They are capable

of running by themselves without any kind of interventions from humans and with
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Chapter 1. Introduction 2

a pre-determined flight mission. Therefore, this fact has drawn the attention to

research more in-depth about autonomous aircrafts. [Poy14], [Pha15]. Generally,

the mission of an aircraft is established by setting a starting point and a destination

point or goal. One of the interests of this work is the path planning generation

for a quadrotor in a free-obstacle environment which can be achieved at a constant

altitude and velocity. There are different methods for path planning generation. In

this research work an analytical geometry method will be applied. The other focus

of this work is attitude and position control of the vehicle by using PID control laws

and by changing dynamic parameters of the quadrotor. Some aggressive maneuver-

ings will be considered in simulation as well. As these types of aerial vehicles are

designed for different purposes, they can be classified as: [G+14].

� High-altitude long-endurance (HALE)

� Medium-altitude long-endurance (MALE)

� Medium-Range or Tactical UAV (TUAV)

� Close-Range UAV

� Mini and Micro UAV

� Fixed Wing

� Rotary Wing

1.0.1 Summary of UAVs’ History

Unmanned aerial vehicles were seen at first as devices that could perform defensive

and offensive actions. However, later on, they began having a strong electronics

impact due to the improvements in last technologies. For instance, in the early 1900s

the US Navy developed a pilotless bomber called the “Aerial Torpedo” powered by

a Ford engine. (Figure 1.1). Another vehicle was named “LARYNX” (Figure 1.2).

The most important advancement was the radio control inserted. Also, during

the 1930s, the British Royal Air Force decided to focus on an aircraft capable of

carrying out mission through a complete radio control. It was the starting point
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for the development of the “Queen Bee”. Such aircraft used to be controlled by a

human pilot with commands from a radio control and achieved an important flight

autonomy. (Figure 1.3). Another important accomplishment during that time was

the advance with the “Project Fox” which was fitted with a TV camera on the

nose. Later in the 1960s, the first UAVs were used for reconnaissance tasks. This

was the case of the “Firebee” fitted with a camera as well. (Figure 1.4). The

VTOL vehicles (vertical take-off and lading) came up with a short operation range.

The one shown in figure 1.5 was named the “Westland Wisp”. It was capable

of transmitting real-time video. This breakthrough set the first advantages and

importance of hover capabilities during for instance surveillance missions. The most

common aerial systems with rotary wing are the helicopters. During the 1990s, one

the first rotary wing UAV the “Yamaha R50”. (Figure 1.6) was introduced which

was mainly used in agricultural applications. The “RMAX” helicopter (Figure 1.7)

is currently considered as the most advanced in the UAV market. It is equipped with

an attitude controller and autonomous navigation that improves hover capacities.

Figure 1.1: Aerial Torpedo

Taken from: [G+14]
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Figure 1.2: LARYNX

Taken from: [G+14]

Figure 1.3: Queen Bee

Taken from: [G+14]
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Figure 1.4: FireBee

Taken from: [G+14]

Figure 1.5: Westland Wisp

Taken from: [G+14]
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Figure 1.6: Rmax

Taken from: [G+14]

Figure 1.7: RMAX helicopter

Taken from: [Yam17]
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Figure 1.8: Predator

Taken from: [predator]

Figure 1.9: Global Hawk

Taken from: [nor17]
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In the middle 2000s, General Atomics which manufactures different devices for mil-

itary purposes within the defense market, developed the “Predator”. This aircraft

has the capacity of flying longer with a much better autonomy. (Figure 1.8). Dur-

ing the same decade or ever a bit earlier, Northrop Grumman corporation came out

with the “Global Hawk” which is a HALE aircraft system. This vehicle can perform

tasks then can exceed 30 hours. That is the reason why it has taken part in sev-

eral civil and military missions and has flown for more than 100.000 hours. (Figure

1.9). Regarding some brief quadrotor history, it is necessary to get back to the early

1900s. In 1907, two brothers named Louis Bréguet and Jacques Bréguet advised by

a professor named Charles Richet, were the first ones that built a quadrotor. They

called it “Bréguet Richet Gyroplane No.1” (Figure 1.10). Later on, in 1922, other

additional quadrotor concepts were built by Georges de Bothezat and Ivan Jerome.

It was x-shaped with a six-rotor configuration. In 1924 the other quadrotor proto-

type was designed by Étienne hmichen. It was able to fly one kilometer. (Figure

1.11).

Figure 1.10: Bréguet Richet Gyroplane No.1

Taken from: [RG10]

The most well-known quadrotors have been made by some companies such as As-

cending Technologies (AscTec) ((Figure 1.12), parrot, Aeryon Labs, and others that

have also developed different quadrotor platforms. They have shown very significant

capabilities for autonomous navigation missions employing IMUs (Inertial Naviga-

tion Units) and video cameras. The parrot model is also recognized as the one

that reduced considerably the system costs. This model was initially designed to
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Figure 1.11: Quadrotor built by Georges de Bothezat and Ivan Jerome

Taken from: [RG10]

play games. (Figure 1.13). The “Firefly” model from AscTec is a hexacopter ca-

pable of flying with just five rotors. This kind of system is known as redundant

propulsion system. In addition, since the payload and IMU are decoupled from the

rotors vibration, the quality of the camera and sensors are raised. These technical

improvements can be considered as a clear six rotor innovation. Another simi-

lar development was the “Draganflyer” from Draganfly innovations. (Figure 1.14).

It is another hexarotor model that became very popular due to its application in

cinematography. Its particular configuration improved the flight efficiency and its

behaviour during perturbations. When quadrotors require to perform missions in an

indoor environment, there is a difficulty with the GPS signals. They are commonly

unavailable or even noisy. Based on this trouble, the AR drone parrot was used in a

recent study to test a particular control technique that employs gestures and visual

computation. [Pop+16]. Another interesting model which has been used for aca-

demic research purposes is the “The Stanford Testbed of Autonomous Rotorcraft

for Multi-Agent Control, STARMAC”. It is mainly a fleet of quadrotors. Novel

algorithms for autonomous navigation have been tested with this platform. Such

algorithms have been applied for path planning and trajectory tracking specially in

an obstacles environment. More detailes can be found in [HWT08]. Nowadays, the

most important multirotor research fields are automated flight tests, autonomous

indoor and autonomous outdoor navigation, computer vision, agressive maneuvering

among others. Other recent models from Amazon and Lockheed Martin are shown
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in figures 1.15 and 1.16.

Figure 1.12: Firefly Multirotor

Taken from: [Ast17]

Figure 1.13: Parrot Multirotor

Taken from: [par17]

Figure 1.14: Draganflyer

Taken from: [Dra17]
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Figure 1.15: Amazon Air Octocopter

Taken from: [Wei15]

Figure 1.16: Amazon Air Octocopter

Taken from: [Wei15]
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1.0.2 Problem Formulation

As it is known, a quadrotor is an underactuated and non-linear system. However,

it keeps being a pretty good platform to test different control techniques. In spite

of the fact that there have been relevant advances in stabilization control of UAVs,

there is still more work to be done for instance for a more effective autonomy. For the

purposes of the present research, the complex dynamics of a quadrotor establishes

an important challenge in finding a way to couple it with a suitable control method.

Consequently, as a first step, it will be necessary to have a simplified dynamics

model. Then, a classical control technique will be applied. In flight modes like

hovering, control PID has demonstrated to be suitable and useful for stabilization

control of quadrotors. Therefore, PID control simulations are carried out in order

to study the attitude and altitude behaviour of the quadrotor. Firstly, numerical

dynamics values are established for six different quad models (moments of inertia,

mass, distance from the center of mass to the rotors) in the PID simulation tool

to check the control performance and comparison purposes. Also, some basic paths

will be set and by means of the control tool to verify again the control response.

Besides, based on the time simulation of these paths and some variables such as,

weight and battery specifications, a method for energy calculation is considered.

One of the aims would be also to determine some kind of comparison among the

flight times calculations and determine which one will be the longest. Additionally,

when there are some attitude constraints and a quadrotor flies at a constant velocity,

it is common to consider Dubins curves to design paths. When used, the goal is to

find the shortest path. Hence, a path planning algorithm based on Dubins curves

is employed and some feasible paths for quadrotors are proposed. Also, by using

an autopilot simulator which allows to change flight modes, dubins paths can be

obtained as well. Likewise, attitude and speed changes can be determined as well

as an energy consumption estimation. If a shortest path is achieved, it might be

possible to reduce the energy consumption and increase the flight time according to

the battery capacity and payload.
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1.1 Literature Review

1.1.1 Quadrotor PID Control

PID control is used extensively since it is the most common classic control technique

for easy implementation. It only has three gains to be adjusted and in most of the

cases accomplishes an acceptable performance. By giving the right gains, it can

stabilize a plant without the necessity of a precise model. In highly non-linear

systems this control type may not have a good performance. However, after some

years of research it has been proved to be a good control law for VTOL vehicles.

It is certainly adequate for stable flight of quadrotors. [Mal16], [Mej16]. In the

OS4 quadrotor project presented in [BS07] and [BNS04], PID control was applied

and the simulation results showed that the vehicle was controlled efficiently in hover

mode. The experiments also showed that the autonomous flight was successful.

However, another control option would have to be considered to deal with strong

perturbations. In [KKP09], the proposed PID controllers achieved a very stable

attitude and height control. Besides, in [AH11] another PID approach is presented

for attitude control. It was proved that this controller was sufficient for stable flight.

1.1.2 Path Planning for Aerial Vehicles

Path planning is a very a important component in UAVs motion and specially for

autonomous systems. For this research approach the aim is to find a feasible or short

path in a free obstacle environment. Since UAVs are required for a great variety of

tasks, they have to fly from a determined position and attitude to another. Basically,

it means that these flying devices have to fly from an initial position and heading

angle to a new position and heading angle. If a vehicle moves at a constant speed,

the path with the minimum distance between two points will be a Dubins path which

is one of the different path planning methods. A proper Dubins path is the one that

consists of a constant radius turn followed by a straight line and then followed again

by another radius turn. A vehicle which follows a Dubins path is known as a Dubins

car. [VV14]. The Dubins car model will be extended to the Dubins aircraft model

in this research for path planning simulation purposes.
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1.2 Motivation, Research Goal and Contributions

Unmanned aerial vehicles have a significant research interest particularly when it is

about autonomous systems. It is not an easy task to apply a control law to stabilize

a VTOL vehicle such as a quadrotor. Different research works have concluded that

VTOL machines have a complex dynamics and it can become a challenge to control

them when autonomous flight is of special interest. When dynamics variables are

changed and then a control technique is applied, it is really interesting to be aware

of the behaviour or reaction of this type aerial vehicle. This kind of task done in

simulation would be able to give a better idea and understanding of the quadrotor

flight mechanics. Another aspect which is also of a great interest is the option to

access to the autopilot parameters in simulation. Changing flight parameters within

an autopilot will provide a better insight regarding the dynamic response of the

quadrotor while a mission. So, this thesis work aims to contribute to the analysis

of flight dynamics, path planning and control. Consequently, as a result of reaching

the objectives, the main contributions are:

1. � After a careful review, it is inferred that it is hard to find a consolidated

mathematical model. Hence, a more complete model which includes all the

equations of motion (dynamics and kinematics) is presented in chapter 1. Ad-

ditionally, some important aerodynamics features are also included.

2. � Taking advantage of the very agile capacities of a multirotor, a couple of

aggressive maneuvers (inverted flight) are achieved in simulation by changing

some attitude parameters and speeds in configurations X and + (cross-plus).

Thus, it is possible to compare the reply of both configurations in terms of

control performance and orientation or attitude changes due to this kind of

motion. In addition, the parameters for a PD and a PID controller are calcu-

lated. Based upon a review, different transfer functions approaches have been

considered for altitude and attitude. So, several options are used to obtain the

gains values.
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3. � There is not a clear evidence in the literature review of different path

options along with control performance simulations in which quadrotor con-

figurations such as x and + have been included. Therefore, different paths are

designed and simulated applying such configurations. It contributes to try to

get a better understanding of the vehicle flight dynamics and control. Besides,

based on a study and an analysis, a straightforward method to compute energy

consumption is employed. This approach considers thrust required, battery

capacity and current used in order to accomplish the most appropriate flight

time.

4. � Since there is not much insight into path planning in which Dubins curves

are applied to quadrotors, some 3D path designs based on this method are

proposed. Also, by using an autopilot simulation tool, several Dubins paths

are created from some waypoints. For this goal flight modes are changed.

There is always a tendency to keep a constant altitude when Dubins curves

are employed. However, altitude is changed in climbing flight as well as the

radii of arcs and circles. There are not explicit studies about turning flight

with bank angles, turn and radius rates that can be related to quadrotor flight

dynamics. So, chapter 4 can contribute to consider two possibilities for both

bank or roll angle and attitude computations when turning flight is needed.

1.3 Objectives

1.3.1 Main Objective

� Compute a control law for altitude and attitude (orientation). Select an appropi-

ate path planning technique for an UAV type Quadrotor.

1.3.2 Specific Objectives

� Establish the quadrotor dynamics and kinematics model.

� Analytically determine the control law parameters of a PID controller for altitude

and attitude based on the mathematical model of the vehicle.
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� Select and validate a path planning method to be implemented in simulation

with different parameters.

� Experimentally establish in simulation the quadrotor performance depending on

the PID control parameters and geometrical configurations.

1.4 Thesis Outline

This thesis is divided in five chapters. Chapter 1 provides an introduction, motiva-

tion, the research goal and contributions. Chapter 2 presents a detailed description

of the quadrotor mathematical model. The quadrotor control model and simulation

results are presented in Chapter 3. Chapter 4 outlines the path planning generation

method by using Dubins curves along with the respective simulations. Finally, in

Chapter 5 conclusions of this research are provided as well as possibilities for future

work.
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Chapter 2

Mathematical Model

2.1 Preliminary notions of the quadrotor

The word helicopter comes from the Greek word screw for spiral and wing. Quadro-

tor would be more correct than Quadcopter [MKC12]. Control systems exist in

different engineering fields. The components of a control system might be electri-

cal, mechanical, hydraulic or any other kind of device as the quadrotor helicopter.

Differential equations are used to describe the dynamic behaviour of a quadcopter.

Theory applied to helicopters should be used to obtain a good mathematical model.

Since quadrotors have four propellers in close proximity, it makes the problem more

complex. Propellers which are made of plastic, make them very flexible and can

not be modelled precisely as propellers. Therefore, models similar to helicopters

rotors are required. Translational and rotations motions are combined to define the

general motion of a rigid body. Considering the flexibility of the wings, dynamics

of the actuators and the whole set of variables involved, all of them make the com-

plete dynamics of a helicopter very complex for control purposes. Consequently, a

simplified model has to be considered retaining the minimum inputs and states for

control laws design. [Poy14], [MKC12].
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Figure 2.1: Quadrotor reference frames and conventions

Taken from: [Mej16]

2.2 The Newton-Euler Model for a quadrotor

Within aerial robotics there are two formalisms applied to describe the dynamics of a

plant. One is the Newton-Euler and the other one is the Euler-Lagrange formalism.

The model provided in this section is based on the Newton-Euler formalism. [Ori14].

2.2.1 Reference Frames and Coordinate Systems

It is necessary to have at least one reference frame to describe any position or motion.

The use of additional reference frames will make the derivation of the equations

of motions easier. When using multiple reference frames there is one important

issue which is related to the transformation of vector coordinates from one frame to

another. The rotation matrices used in this chapter are based on the Euler angles.

A reference fixed frame is applied to determine distance and direction. A coordinate

system is used to represent measurements in a frame. In flight dynamics there

are two reference frames clearly defined, the Earth Fixed Frame and Body Fixed

Frame. Details about other important coordinates systems will be also provided in

the following sections. [Poy14], [Mul07], [Lug+14], [Cor14]
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Figure 2.2: Quadrotor reference frames

Taken from: [G+14] (Modified by the author).

2.2.1.1 Earth inertial frame (E-frame)

The E-frame is chosen as the inertial frame. (0E XE YE ZE). The origin is at OE.

XE points in North direction, YE points towards the West and ZE points upwards.

In this reference frame the linear position (ξE) and angular position (ΘE) of the

quadrotor are defined.

2.2.1.2 Body fixed reference frame of the vehicle (B-frame)

The other reference frame required is the body frame (0B XB YB ZB) which is

attached to the quadrotor body. XB points in direction of the quadrotor front, YB

points towards the quadrotor left and ZB points up. The origin is at the vehicle’s

reference point OB. This point coincides with the center of gravity of the quadrotor.

In this B-frame the linear velocity, the angular velocity and the forces and torques

are defined.

2.2.1.3 Ellipsoid WGS-84 Reference

The World Geodetic reference system from 1984 provides the official guidelines used

for the global position system (GPS) and most of aircraft navigation systems. The

parameters defined for the ellipsoid and more details can be found in [Mul00],

January 9, 2018



2.2. The Newton-Euler Model for a quadrotor 20

[Cor14]. The geodetic model of the earth is shown in figure 2.3 where xi, yi, zi

refers to the Earth Centered Inertial frame (ECI). The Earth Centered Earth Fixed

frame (ECEF) is expressed as xe, ye, ze. The North East Down (NED) system is

given as xn, yn, zn. The origin of the navigation coordinate system is at C which

is the center of gravity of the aircraft. In addittion, ωE is the angular turn, a is the

semi-major axis, b is the semi-minor axis e is the eccentricity, and β is the angle

between the ECI and ECEF frames.

Figure 2.3: Navigation coordinate system and Earth Fixed frame

Taken from: [Cor14].

2.2.1.4 The Geodetic coordinate system (G-frame)

The geodetic coordinates are used in many fields including navigation which is our

main interest. This coordinate system is employed to define the position of an object

on the Earth’s surface. The geodetic position is given by the latitude γ, longitude

Λ, and height h (Figure 2.3). Geodetic coordinates can be transformed into E-frame

coordinates with the following expressions:

CE
G =


X

Y

Z

 =


RN + h cosγcosΛ

RN + h cosγsinΛ

RN [1− e2 + h]sinγ

 (2.2.1)
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Where CE
G is the coordinate transformation from Geodetic to E-frame, RN is the

radius of the ellipsoid which is expressed as: RN =

[
a√

1−e2sin2γ

]
.

2.2.1.5 The navigation coordinate system (N-frame)

This coordinate system N-frame is mainly used to represent the vehicle’s velocity.

For this transformation, the geodetic coordinates are required to construct the Di-

rection Cosine Matrix:

CE
N =


−sinγcosΛ −sinγsinΛ cosγ

−sinΛ cosΛ 0

−cosγcosΛ −cosγsinΛ −sinγ

 (2.2.2)

2.2.1.6 Sensor fixed reference frame (S-frame)

The sensor frame S-frame is an individual reference system which is usually oriented

with the aircraft’s body frame. The origin and axes are established depending how

measurements are taken. The required transformations between the s frame and

B-frame are determined depending on the location of a sensor within the vehicle’s

body axis.

2.2.2 Quadrotor assumptions for modelling

Considering that computation of any model is just an approximation to real con-

ditions found in the real world, some assumptions need to be made for simulation

purposes:

• The quadrotor is treated as a rigid structure.

• The propellers are rigid. Aerodynamics effects such as blade flapping are

neglected.

• Gyroscopic effects and aerodynamic torques can be ignored.

• The quadrotor structure is treated as symmetrical.
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• Wind disturbances are ignored.

2.2.3 Quadrotor system variables

The quadrotor motion has six degrees of freedom (6DOF) which are defined as

follows: ξ = (x, y, z) that represents the linear position of the quadrotor and Θ =

(θ, φ, ψ) is the attitude or orientation. These are also known as the Euler angles

pitch, roll and yaw. Therefore, if Θ = (θ, φ, ψ) and ξ = (x, y, z), so the general

position vector Φ is:

Φ =

 ξ
Θ

 =



x

y

z

θ

φ

ψ


(2.2.3)

Let v and ω be the quadrotor linear and angular velocities v = (u, v, w) ω = (p, q, r).

Therefore, the linear and angular velocities are:

υ =

v
ω

 =



u

v

w

p

q

r


(2.2.4)

2.2.4 Direction cosine matrix

The Euler angles are used to describe the rotation of a rigid body. They were

introduced by Leonhard Euler. To be able to transform the vectors from the E-

frame to the B-frame a direction cosine matrix is required. If the rotations are done

first around x axis then around y and the final one around z axis, the rotation matrix

is: RΥ = R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ). [Poy14], [Ori14], [Sab15],[Mul07].
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Roll rate: p = φ̇− ψ̇ sin θ

Pitch rate: q = θ̇ cos φ+ ψ̇ sin φ cos θ

Yaw rate: r = ψ̇ cos φcos θ − θ̇ sin φ

Additional details about body rates calculation will be provided in the following

section.

Rx(φ) =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (2.2.5)

Ry(θ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (2.2.6)

Rz(ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (2.2.7)

Then, the complete rotation matrix is the product of the three rotation matrices:

RΥ(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ)

The following matrix is obtained:

RΥEB
=


cosθcosψ cosψsinθsinφ-sinψcosφ sinφsinψ+cosφcosψsinθ

sinψcosθ cosψcosφ+sinψsinθsinφ sinψsinθcosφ-cosψsinφ

-sinθ cosθsinφ cosφcosθ

 (2.2.8)

And the inverse will be:

RΥBE
=


cosθcosψ cosθsinψ -sinθ

sinφsinθcosψ-cosφsinψ sinφsinθsinψ + cosφcosψ sinφcosθ

cosφsinθcosψ + sinφsinψ cosψsinθsinψ-sinφcosψ cosφcosθ


(2.2.9)
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2.3 Quadrotor Kinematics

The relationship between the angular velocity ω̇ in (E-frame) and the angular ve-

locity in (B-frame) is given by: ω̇ = Tχ ω. The transformation matrix Tχ is found

by computing the attitude rates (φ̇, θ̇, ψ̇) and body rates (p, q, r) as follows:

vE = ξ̇E =


ẋ

ẏ

ż

 = RΥv
B (2.3.10)

⇒

vE = RΥ =


cosθcosψ cosψsinθsinφ-sinψcosφ sinφsinψ+cosφcosψsinθ

sinψcosθ cosψcosφ+sinψsinθsinφ sinψsinθcosφ-cosψsinφ

-sinθ cosθsinφ cosφcosθ



u

v

w


(2.3.11)

A set of differential equations is required to calculate the Euler angles which can be

obtained in the following way. Firstly, i, j, k are the unit vectors that are denoted as

x, y, z and correspond to the directions. The vector that represents an infinitesimal

∆t rotation in time from the orientation that has been determined by ψ + ∆ψ,

θ + ∆θ, φ+ ∆φ is:

∆r ∼= i3 ∆ψ + j2 ∆θ + k1 ∆φ (2.3.12)

And the angular velocity is:

ω = i3 ∆ψ̇ + j2 ∆θ̇ + k1 ∆φ̇ (2.3.13)

The angular body rates p, q, r are shown in figure 2.4. First, roll rotates around the

angle φ and angular velocity φ̇. Then, pitch which rotates around the θ angle with

θ̇ angular velocity. Likewise, yaw rotates through angle ψ with angular velocity ψ̇.

Hence, the relationship between the aerial vehicle body rates and attitude rates is

given as:

Roll rate:
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Figure 2.4: Transformation of angular velocities

Taken from: [Coo07].

p = φ̇− ψ̇ sin θ (2.3.14)

Roll rotation can be also visualized in figure 2.5.

Pitch rate:

q = θ̇ cos φ+ ψ̇sinφ cosθ (2.3.15)

Pitch rotation is shown in figure 2.6.

Yaw rate:

r = ψ̇ cosφ+ cosθ − θ̇sin φ (2.3.16)

Similarly, Yaw rotation is in figure 2.7.

By using equation 2.3.12 the unit vectors in the B-frame will be:

i3 =


1

0

0

 j2 =


0

cosφ

−sinφ

 k1 =


−sinθ

cosθsinφ

cosθcosφ

 (2.3.17)
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Figure 2.5: Roll rotation

Taken from: [Ste15].

Since ωB = [p q r]T , and rewriting equations 2.3.14, 2.3.15, 2.3.16 in matrix notation

we obtain:


p

q

r

 =


1 0 −sinθ

0 cosφ sinφcosθ

0 −sinφ cosφcosθ



φ̇

θ̇

ψ̇

 (2.3.18)

And the inverse form of 2.3.18 is:


φ̇

θ̇

ψ̇

 = Tχ(ω) =


1 sinφtanθ cosφtanθ

0 cosφ −sinφ

0 sinφsecθ cosφsecθ



p

q

r

 (2.3.19)

Which is the transformation matrix Tχ.

When the quadrotor Euler angles (φ, θ, ψ) are consired small (φ, θ, ψ ∼= 0) the body

rates equations can be taken as:

[Coo07],[Poy14], [Sab15].
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Figure 2.6: Pitch rotation

Taken from: [Ste15].


φ̇

θ̇

ψ̇

 =


p

q

r

 (2.3.20)

Since [x, y, z, φ, θ, ψ]T is the vector that contains the linear and angular position

of the quadrotor in the E-frame and [u, v, w, p, q, r]T is the vector which contains

the linear and angular velocities in the B-frame, then these two reference frames are

related as follows:

v = RΥ · vB (2.3.21)

ω = Tχ · ωB (2.3.22)

Similarly, the forces that act on the quadrotor are FB, weight, thrust and drag which

are defined as:

FB =


Fx

Fy

Fz

 =


Fgx

Fgy

Fgz

+


FDx

FDy

FDz

+


FTx

FTy

FTz

 (2.3.23)
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Figure 2.7: Yaw rotation

Taken from: [Ste15].

Substituting we get:

FB =


Fx

Fy

Fz

 =


−mgsinθ

mgsinφcosθ

mgcosφcosθ

+


1
2
CDxSρẋ

2

1
2
CDySρẏ

2

1
2
CDzSρż

2

+


0

0

F1 + F2 + F3 + F4

 (2.3.24)

Where S is the wing area surface, Q = 1
2
ρ v2 is known as the dynamic pressure,

[ẋ, ẏ, ż]T are the velocities and ρ is the air density. Therefore the following is got:


Fx

Fy

Fz

 =


−mgsinθ + 1

2
CDxSρv

2
x

mgsinφcosθ + 1
2
CDySρv

2
y

mgcosφcosθ + 1
2
CDzSρv

2
z + F1 + F2 + F3 + F4

 (2.3.25)

Finally, the kinematic model of a quadrotor is:
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

ẋ = w[sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)]− v[cos(φ)sin(ψ)− cos(φ)sin(ψ)sin(θ)] + u[cos(ψ)cos(θ)]

ẏ = v[cos(φ)cos(ψ) + sin(φ)sin(ψ)sin(θ)]− w[cos(ψ)sin(φ)− cos(ψ)sin(ψ)sin(θ)] + u[cos(θ)sin(ψ)]

ż = w[cos(φ)cos(θ)]− u[sin(θ)] + v[cos(θ)sin(φ)]

φ̇ = p+ r[cos(φ)tan(θ)] + q[sin(φ)tan(θ)]

θ̇ = qcos(φ)− rsin(φ)

ψ̇ = q sin(φ)
cos(θ)

+ r cos(φ)
cos(θ)

(2.3.26)

2.4 Quadrotor Dynamics

The second Newton’s law states that a forced applied in the E reference frame is

equal to the product of the vehicle’ s mass and its acceleration. i.e,

Force = mass x acceleration. Therefore, it can be inferred that:

F = m

(
dv

dt

)
= m

(
d2ξ

dt2

)
(2.4.27)

From equation 2.2.3:

(
d2ξE

dt2

)
= ξ̈E =


ẍ

ÿ

z̈

 (2.4.28)

The total force exerted on the quadrotor is given by the following matrix relation:

m(ωB × vB + v̇B) = FB (2.4.29)

Where × is the cross product, m is the quadcopter mass and FB = [Fx Fy Fz]
T

which is the total force. So, a skew symmetric matrix is got and expressed as:

[Poy14],[Sab15].

ωB × vB =


qw − rv

ru− pw

pv − qu

 (2.4.30)
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And if the differential of the linear velocity is:

v =


u̇

v̇

ẇ

 (2.4.31)

Therefore, the following equation is obtained:

FB = m


u̇

v̇

ẇ

+


qw − rv

ru− pw

pv − qu

 (2.4.32)

If the column vector FB = [Fx Fy Fz]
T is substituted and dividing by m, we get:

1

m


Fx

Fy

Fz

 =


u̇

v̇

ẇ

+


qw − rv

ru− pw

pv − qu

 (2.4.33)

Rewriting, the following is acquired:


u̇

v̇

ẇ

 =
1

m


Fx

Fy

Fz

−

qw − rv

ru− pw

pv − qu

 (2.4.34)

Then, the total torque applied to the quadrotor is given by:

Iω̇B + ωB × (IωB) +MG = MB (2.4.35)

Where ωB × vB is known as the Coriolis term, [Mx My Mz] = MB is the total

torque, MG gyroscopic effects due to rotor’s inertia and I known as the inertia

matrix. [Poy14], [Sab15],[H+14].

A quadcopter is assumed as symmetric:

Ixy = Ixz = Iyx = Iyz = Izx = Izy = 0 (2.4.36)
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I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.4.37)

The following equation shows how the angular acceleration is given:

ω̇B = I−1[Tχτ
B − (ωB × IωB)] (2.4.38)

Where τB is given as:

τB = [τr τp τy]
T (2.4.39)

And therefore Tχτ
B is:

Tχτ
B =


τr

τp

τy

 = Iω̇B + [ωB × (IωB)] (2.4.40)

And the inverse of matrix 2.4.37 is:

I−1 =


1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

 (2.4.41)

If the angular velocities in equation 2.2.4 are derived we obtain:

ω̇B =


ṗ

q̇

ṙ

 (2.4.42)

Now substituting in equation 2.4.38 results:

ω̇B =


ṗ

q̇

ṙ

 = I−1

TχτB −


p

q

r

×

Ixx 0 0

0 Iyy 0

0 0 Izz



p

q

r



 (2.4.43)
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Simplifying:

ω̇B =


ṗ

q̇

ṙ

 = I−1



τr

τp

τy

−

qrIzz − rqIyy
rpIxx − prIzz
pqIyy − qpIxx


 (2.4.44)

Substituting I−1 in equation 2.4.44 we get:

ω̇B =


ṗ

q̇

ṙ

 =


1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz




τr

τp

τy



qrIzz − rqIyy
rpIxx − prIzz
pqIyy − qpIxx


 (2.4.45)

Simplifying:

ω̇B =


ṗ

q̇

ṙ

 =


τr
Ixx

τp
Iyy

τy
Izz

−

Izz − Iyy qr

Ixx

Ixx − Izz prIyy
Iyy − Ixx pqIzz

 (2.4.46)

See Appendix C for more details about moments of inertia calculation.

2.4.1 Gravity Force

This force acts opposite to the quadrotor lift and is considered as the major force

that acts on the vehicle in the E-frame. [Ire14],[Poy14].

Fg =


0

0

mg

 (2.4.47)

2.4.2 Thrust and Moment

It is assumed that the torque and thrust caused by each rotor acts particularly in

the z axis of the B-frame. Accordingly, the net propulsive force in the zB direction

is given by:

Ft =


x

y

z

 =


0

0

F1 + F2 + F3 + F4

 (2.4.48)
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Moment results from the thrust action of each rotor around the center of mass that

induces a pitch and roll motion. Furthermore, there is a reactive torque of the rotors

on the vehicle which produces a yaw reply. The moment vector is therefore: [Ire14],

[Poy14].

Mt =


τr

τp

τy

 =


lb(F2 − F4)

lb(F3 − F1)

(F1 − F2 + F3 − F4)d

 (2.4.49)

Where l is distance between any rotor and the center of the drone, b is the thrust

factor and d is the drag factor. [Poy14], [Ire14],[Voo09].

The external forces used are based on the model found in [Mul07] and [Coo07]:

Fx = Wsinθ + x = m(u̇+ qw − rv)

Fy = Wcosθcosψ + x = m(v̇ + ru− pw)

Fz = Wcosθcosψ + z = m(ẇ + pv − qu)

(2.4.50)

Mx = Ixxṗ+ (Izz − Iyy)qr

My = Iyy q̇ + (Ixx − Izz)rp

Mz = Izz ṙ + (Iyy − Ixx)pq

(2.4.51)

The Matrix 2.4.52 shows the relationship between the the net torque that is per-

formed on the vehicle and the angular acceleration. The total torque is the summa-

tion of the aerodynamic torque τa and the torque generated by the rotors.[Mal16].
Mx

My

Mz

Aero+


Mx

My

Mz

Quad =


Ixxṗ− (Iyz(q

2r2)− Izx(ṙ + pq)− Ixy(q̇ − rp)− (Iyy − Izz)qr

Iyy q̇ − Ixz(r2 − p2)− Ixy(ṗ+ qr)− Iyz(ṙ − pq)− (Izz − Ixx)rp

Ixxṗ− Iyz(q2 − r2)− Izx(ṙ + pq)− Ixy(q̇ − rp)− (Iyy − Izz)qr


(2.4.52)

The quadrotor dynamic model in the B-frame is therefore:
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

Fx = m(u̇+ qw − rv)

Fy = m(v̇ − pw + ru)

Fz = m(ẇ + pv − qu)

Mx = Ixxṗ+ (Izz − Iyy)qr

My = Iyy q̇ + (Ixx − Izz)rp

Mz = Izz ṙ + (Iyy − Ixx)pq

(2.4.53)

The rotation of the propellers combined with the rotation of the body results in a

gyroscopic torque which is given by:

MG = Jm(ωB × zB)(Ω1 + Ω2 + Ω3 + Ω4) (2.4.54)

Where Ω (i = 1, 2, 3, 4) is propeller angular velocity, Jm is the inertia of each motor.

Taking into an account that τB = [τp τr τy] are the torques generated by the actuators

action and τa = [τax τay τaz] are the aerodynamic torques, finally, the complete

quadrotor dynamic model is:



−mg[sin(θ)] + Fax = m(u̇+ qw − rv)

mg[cos(θ)sin(φ)] + Fay = m(v̇ − pw + ru)

mg[cos(θ)cos(φ)] + Faz − ft = m(ẇ + pv − qu)

τp + τax = ṗIxx − qrIyy + qrIzz

τr + τay = q̇Iyy + prIxx − prIzz

τy + τaz = ṙIzz − pqIxx + pqIyy

(2.4.55)

Putting together the equations of motion 2.3.25 and 2.4.34


u̇

v̇

ẇ

 =
1

m


−mgsinθ + 1

2
CDxSρẋ

2

mgsinφcosθ + 1
2
CDySρẏ

2

mgcosφcosθ + 1
2
CDzSρż

2

−

qw − rv

ru− pw

pv − qu

 (2.4.56)

If the drag force is disregarded, the following expression is obtained:
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
u̇

v̇

ẇ

 =


−mgsinθ + qw − rv

mgsinφcosθ + ru− pw

mgcosφcosθ + 1
m

(F1 + F2 + F3 + F4) + pv − qu

 (2.4.57)

As indicated earlier FB = [Fx Fy Fz] [N], RΥ is the rotation matrix and m [kg] is

the mass of the quadrotor. So, it is possible to combine them as follows: [Poy14],

[Sab15].

FB =


Fx

Fy

Fz

 = mRΥ
d

dt
ξ̇ = mRΥ


ẍ

ÿ

z̈

 (2.4.58)

They can be arranged as:


ẍ

ÿ

z̈

 =
1

m
R−1

Υ


Fx

Fy

Fz

 (2.4.59)

Making substitutions the equation is simplified as:


ẍ

ÿ

z̈

 =
1

m
R−1

Υ


−mgsinθ

mgsinφcosθ

mgcosφcosθ

+


0

0

F1 + F2 + F3 + F4

 (2.4.60)

Therefore:


ẍ = Ftotal

m
[sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)]

ÿ = Ftotal
m

[cos(φ)sin(ψ)sin(θ)− cos(ψ)sin(φ)]

z̈ = −g Ftotal
m

[cos(φ)cos(θ)]

(2.4.61)

Again, as stated earlier for smalls angles of movement [φ̇ θ̇ ψ̇]T = [p q r]T , hence,

the dynamic model of quadrotor in the E-frame is:
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

ẍ = Ftotal
m

[sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)]

ÿ = Ftotal
m

[cos(φ)sin(ψ)sin(θ)− cos(ψ)sin(φ)]

z̈ = −g Ftotal
m

[cos(φ)cos(θ)]

φ̈ = Iyy−Izz
Ixx

θ̇ψ̇ + τx
Ixx

θ̈ = Izz−Ixx
Iyy

φ̇ψ̇ + τx
Iyy

ψ̈ = Ixx−Iyy
Izz

φ̇θ̇ + τx
Izz

(2.4.62)

2.4.3 Motor Dynamics Model

The brushless DC motor is also known as trapezoidal back electromotive (EMF)

motor. In this type of motor the magnetic fields are uniformly distributed. It

means that when it is turning at constant speed, the back EMF has a trapezoidal

shape. Its armature is in the stator and the magnets on the rotor. The permanent

magnet replaces electromagnets. Besides, it uses an electronic commutator rather

than a mechanical one. It certainly makes it a free-maintenance motor. These

improvements allow a better cooling a higher voltages can be accomplished. One

of the most important technical features of the BLDC motor is the motor speed

control when the rotor position is detected. The three BLDC phase configuration is

the most common because its efficiency and low ripple of torque. [G+14], [Bal05].

The power input and the torque developed are given by:

P = Eaia + Ebib + Ecic = τm Ωm (2.4.63)

Where En and in are the back EMF and the current for the a, b and c phases. τm

is the motor torque and Ωm is the motor speed. If the Kirchhoff’s voltage law is

applied, voltage can be expressed as:

V = VR + VL + E (2.4.64)

where VR is the voltage [Volts] in the resistor, VL is the voltage [Volts] in the inductor

and E is back electromotive force [Volts] which is proportional to the motor speed.

If the above equation is rewritten, the following expression is obtained:
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Figure 2.8: Circuit for DC Motor

V = Ri+ L
di

dt
+KE Ωm (2.4.65)

Where i [Amps] is the motor current, KE is known as the voltage motor constant

[rad s/V ] and Ωm is the motor angular speed [rad s−1]. If the inductor effect is not

considered, the following equation is obtained:

V = Ri+KEΩm (2.4.66)

Therefore, the dynamics equation of the motor is described as:

Jm Ω̇m = τm − τl (2.4.67)

Where Jm is the motor inertia [N m s2], Ω̇m is the motor angular speed [rad/s2],

τm and τ l are respectively the motor torque and load torque [N m]. There is an

acceleration or deceleration of the angular speed of the motor Ωm when the torques

τm and τl are not the same. The motor torque τm is proportional to the current i

and through the torque constant Kq [Amps/Nm]. Therefore:

τm = Kqi (2.4.68)

So, the following equation is got:

Jm Ω̇m = Kq i− τl (2.4.69)
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Where τl = Kq i− Jm Ω̇m. τl comes from the propeller’s drag.

Likewise, the following differential equation is derived as:

Jm Ω̇m = −KE Kq

R
Ωm − τl +

Kq

R
V (2.4.70)

The torque of the motor is opposed by an aerodynamic drag τdrag which is considered

as a load torque τl and is given as: [G+14].

τdrag = KdragΩ
2
m (2.4.71)

Where Kdrag is a constant which depends on the air density ρ, the shape of the

blade, the radius among other features. Then, clearing V and including τdrag in

equation 2.4.70, the following expression is obtained:

V = τdrag
R

Kq

+
R Jm Ω̇m

Kq

+KE Ωm (2.4.72)

Therefore, substituting τdrag in equation 2.4.72, the relationship between the voltage

and propeller angular velocity is:

V =
R Kdrag Ω2

m

Kq

+
R Jm Ω̇m

Kq

+KE Ωm (2.4.73)

If a gearbox is incorporated to the DC motor dynamics model, equation 2.4.70 can

be rewritten as:

Jm +
Jp
ηgN2

Ω̇m = −KEKq

R
+KE Ωm −

Kdrag

ηgN3
Ω2
m +

Kq

R
V (2.4.74)

Where N is the gearbox reduction which is expressed as N = Ωm
Ωp

. Consequently, Ωp

is the propeller angular speed [rad s−1] and ηg is the gearbox conversion efficiency.

The dynamics of the gearbox can be calculated as follows:

Jm Ωm = τm − τmp

Jp Ωp = τmp − τp
(2.4.75)
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Where τp is the propeller torque [N m], τpm is the propeller torque within the axis

of the motor [N m], τmp is the torque of the motor within the propeller axis, and Ωp

is the angular acceleration of the propeller. Moreover, the total moment of inertia

of the motor and load torque are given by:

Jτm total = Jm +
Jp

ηg N2

τl =
τp

ηg N

(2.4.76)

The propeller torque is given by:

τp = Kdrag Ω2
p =

Kdrag Ω2
m

N2
(2.4.77)

Where Kdrag is a drag constant. Finally, the load torque can be computed as follows:

τl =
Kdrag

Ω2
m

ηg N
3 (2.4.78)

More details about the derivation and aerodynamics calculations of the above equa-

tions can be found in [Bre08]. Rewriting equations 2.4.73 and 2.4.74 we obtain:

[
Jm +

Jp
ηg N2

]
Ω̇m = −KE Kq

R
− Ωm −

Kdrag

ηg N3
Ω2
m +

Kq

R
V (2.4.79)

If equation 2.4.79 is rewritten in terms of the propeller, the following expression is

got:

[
Jm +

Jp
ηg N2

]
Ω̇p = −KE Kq

R
− Ωp −

Kdrag

ηg N3
Ω2
p +

Kq

R
V (2.4.80)

Therefore, the total moment of inertia of the propeller [N m s2] is:

Jτp total = Jp + ηg N
2 Jm (2.4.81)

Now, to be able to find the relationship between thrust and voltage, it is required

to combine some equations. Firstly, based on equation 2.4.68, if i = τm
Kq

, it can be

substituted in the following electrical power expression:
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P = iV =
τm
Kq

V (2.4.82)

Then, power required to hover is given as:

P = TVi ≡ TVrh = T

√
T

2ρAb
=

T 3/2

√
2ρAb

(2.4.83)

Therefore, the motor’s efficiency power output can be given as:

Pout = ηmP = ηm
τm
Kq

V (2.4.84)

Where ηm is the motor’s efficiency. In addition, the following equation is applied to

get the propeller’s efficiency:

fom =
Prh
Preq

(2.4.85)

The efficiency is in the form of figure of merit fom which is a way of measuring

the rotor hover efficiency. It is defined as the ratio of the minimum possible power

required to hover to the current power required to hover. [DS08], [Joh12]. Therefore,

if equation 2.4.82 is rewritten, the following expression is acquired:

Prh = fom ηm
τm
Kq

V (2.4.86)

If the ideal power at Prh is:

Prh = Tvrh = fom η
τm
Kq

v = Tvrh (2.4.87)

where v is the speed applied at hover. The momentum theory is used to relate the

thrust to the induced velocity at the rotor disk as follows:

vrh ≡ vi =

√
T

2ρAb
(2.4.88)
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Where Ab is the area cleaned out by the rotor blades and ρ is the air density. The

above expression can be related to the induced velocity vrh in forward flight as:

vi =
v2
rh√

(v∞cosα)2 + (vi − v∞sinα)2
(2.4.89)

Where α is rotor angle of attack and v∞ is velocity stream flow. The induced velocity,

is also known as the velocity imparted to the mass of air contained in the control

volume within the rotor disk. [Lei06], [Hua+09]. If equation 2.4.83 is substituted

for vrh, it results;

fom ηm
τm
Kq

V = T

√
T

2ρAb
(2.4.90)

The rotor power in forward flight is given by:

P = T (v∞ sin α + vi) (2.4.91)

So, the ideal thrust T when a power input P can be calculated as follows:

T =
P

v∞ sin α + vi
(2.4.92)

Where the denominator is the airspeed across the rotors.

The motor torque is proportional to the thrust constant Kt:

τm = KtT (2.4.93)

If equation 2.4.83 is substituted for τm, it gives:

fom ηm
KtT

Kq

V = T

√
T

2ρAb
(2.4.94)

Finally, the relationship between voltage and thrust is given by:

T = 2ρAb

[
fom ηm Kt

Kq

]2

V 2 (2.4.95)
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2.4.4 Roll Torque

It is shown in equation 2.4.49 that τr is described as:

τr = l(F2 − F4) (2.4.96)

Where τr = Ixφ̈. If T is taken as the force F , so, substituting in equation 2.4.96 and

simplifying, results:

φ̈ =
2ρAbl

Ix

[
fom ηm Kt

Kq

]2

(V 2
2 − V 2

4 ) (2.4.97)

2.4.5 Pitch Torque

From equation 2.4.49 τp is defined as:

τp = l(F3 − F1) (2.4.98)

With τp = Iyθ̈, therefore:

θ̈ =
2ρAl

Iy

[
fom ηm Kt

Kq

]2

(V 2
3 − V 2

1 ) (2.4.99)

2.4.6 Yaw Torque

As shown in equation 2.4.49 τy is given as:

τy =
4∑

m=1

= (τm1 − τm3 + τm2 − τm4) = (τy = l(F1 − F2 + F3 − F4)d (2.4.100)

Torque τm is provided by each motor that is balanced by the drag torque. Accord-

ingly, the torque acting on the propeller is:

τm = JmΩ̇ + τdrag (2.4.101)

So, the yaw torque is:

τy = Izψ̈ = τm1 − τm3 + τm2 − τm4 (2.4.102)
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Now substituting and rewriting equation 2.4.102 leads to:

τy = Izψ̈ = Jm(Ω̇1 + Ω̇3 − Ω̇2 − Ω̇4) + (τdrag1 + τdrag3 − τdrag2 − τdrag4) (2.4.103)

Since the drag torque is τdrag = KdragΩ
2, simplifying and rewriting equation 2.4.103

results:

ψ̈ =
Jm
Iz

(Ω̇1 + Ω̇3 − Ω̇2 − Ω̇4) +
Kdrag

Iz
(Ω2

1 + Ω2
3 − Ω2

2 − Ω2
4) (2.4.104)

2.4.7 Acceleration in z axis

The acceleration in the z axis is generated by the motors action. Considering equa-

tion 2.4.62 and in voltage terms, the following expression is obtained:

z̈ =
2ρA

m

[
fom ηm Kt

Kq

]2

(V1 + V2 + V3 + V4)cosθ cosφ− g (2.4.105)

2.4.8 Quadrotor dynamic model using quaternions

There are different ways of representing the attitude (orientation) of a rigid body.

The Euler parameters are also known as Quaternions discovered by William Hamil-

ton in 1886 as a research outcome about complex numbers which may be represented

by points in a 3D space. [Yoo04]. Quaternions are also used because Euler angles

have some limitations known as singularities. [Mol+17]. If m is the quadrotor mass,

J is the moment of inertia, and ri is the position of the center of mass of the quadro-

tor with respect to the inertial frame, the attitude of the vehicle will be described

by the quaternion q. The rotational speeds in the B-frame are Ωi. [Cut12]. The

quaternion nomenclature is as follows:

q =

q0

~q

 (2.4.106)
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Where q0 is the scalar part and ~q is the vector part of the quaternion. The

quaternion rotation of the vector v from the B-frame to E-frame can be defined as: 0

vF

 = q* ⊗

 0

vB

 = ⊗ q* (2.4.107)

Where q* is the quaternion conjugate of q and ⊗ is the multiplication operation

of the quaternion. The inertial frame (E-frame) time derivative is related to the

rotational speeds by [Cut12]:

q̇ =
1

2
q⊗

 0

ΩB

 (2.4.108)

Using the above quaternion formulation, the Newton-Euler equations that describe

the quadrotor dynamic are given by: 0

r̈E

 =
1

m
q*⊗

 0

FB

 = ⊗ q−

 0

gE

 (2.4.109)

Ω̇B = J−1[MB − ΩB ∧ JΩB] (2.4.110)

Where gE = [0 0 g] is the gravitational vector, FB = [0 0 Ftotal] is the thrust vector

in the B-frame and MB is the moment vector in the B-frame. The total thrust Ftotal

and quadrotor moments are related to each rotor thrust in the following way:

Ftotal
MB

 =


1 1 1 1

d 0 −d 0

0 d 0 −d

−c c −c c




F1

F2

F3

F4

 (2.4.111)

Where d is the distance from the center of mass of the quadrotor to the propeller

and c is the drag coefficient which relates the yaw moment to the thrust of the four

rotors. [Cut12]. A more detailed description of quaternions properties and use can

be found in [Kui+99], [Die06].
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Quadrotor Control

A quadrotor is controlled by providing four torques (τ1 τ2 τ3 τ4) to the rotors which

produce four thrust forces (F1 F2 F3 F4) in the z axis. The net torques acting on the

body can be calculated by using the inputs U = (U1 U2 U3 U4) that can be applied

to control the quadrotor. As an aerodynamic consideration forces and torques are

proportional to the squared propeller’s speed. [Bre08]. Therefore the relationship

between motions and propellers’ squared speed is as follows:

FT = b(Ω2
1 + Ω2

2 + Ω2
3 − Ω2

4)

τx(θ) = bl(Ω2
2 − Ω2

4)

τy(φ) = bl(Ω2
1 − Ω2

3 )

τz(ψ) = Kdrag(Ω
2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(3.0.1)

Where l [m] is the distance between any rotor and the center of the drone, b is

the thrust factor [N s2], Kdrag is a drag constant [N m s2] and Ωi [rad s−1] is

the propeller angular acceleration. [Sab15], [Poy14], [H+14]. Then, substituting

equation 3.0.1 in 2.4.55 the following dynamic model of the quadrotor is obtained:

45
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

−mg[sin(θ)] + Fax = m(u̇+ qw − rv)

mg[cos(θ)sin(φ)] + Fay = m(v̇ − pw + ru)

mg[cos(θ)cos(φ)] + Faz − b(Ω2
1 + Ω2

2 − Ω2
3 − Ω2

4) = m(ẇ + pv − qu)

bl(Ω2
3 − Ω2

1) + τax = ṗIx − qrIy + qrIz

bl(Ω2
4 − Ω2

2) + τay = q̇Iy − prIx + prIz

Kdrag(Ω
2
2 + Ω2

4 − Ω2
1 − Ω2

3) + τaz = ṙIz − pqIx + pqIy

(3.0.2)

3.0.1 Quadrotor State-Space Model

Considering the quadrotor as a plant, the propellers and motors as the actuators,

the drag and thrust coefficients as constant and neglecting the DC motor dynamics,

the control system of the quadrotor can be described as a vector state as follows:

[BS07].

x = [φ θ ψ φ̇ θ̇ ψ̇ x y z ẋ ẏ ż]T (3.0.3)

With:

x1 = φ

x2 = ẋ = φ̇

x3 = θ

x4 = ẋ3 = θ̇

x5 = ψ̇

x6 = ẋ5 = ψ̇

x7 = z

x8 = ẋ7 = ż

x9 = x

x10 = ẋ9 = ẋ

x11 = ẏ

x12 = ẋ11 = ẏ

And U = [U1 U2 U3 U4]T

If equations from 2.3.26 and 2.4.46 are derived and rewritten we obtain:



φ̇ = p+ qsin(φ)tan(θ) + rcos(φ)tan(θ)

θ̇ = qcos(φ)− rsin(φ)

ψ̇ = q sinφ
cos(θ)

+ r cosφ
cosθ

ṗ = Iy−Iz
Ix

rq + τx+τax
Ix

q̇ = Iz−Ix
Iy

pr + τy+τay
Iy

ṙ = Ix−Iy
Iz

pq + τz+τaz
Iz

(3.0.4)
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3.0.2 Un as Control Inputs

The overall propeller’s velocities Ω [rad s−1] and propeller’s velocities vector Ω are

defined as: [Bre08].

Ω = −Ω1 + Ω2 − Ω3 + Ω4 (3.0.5)

Ω =


Ω1

Ω2

Ω3

Ω4

 (3.0.6)

Where Ω1 [rad s−1] and Ω3 [rad s−1] are the front and rear propeller’s speeds,

likewise Ω2 [rad s−1] and Ω4 [rad s−1] are the right and left propeller’s speeds. The

following equations system shows the relationship between the control inputs and

the propellers’ squared speed:


U1

U2

U3

U4

 =


b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

bl(Ω2
4 − Ω2

2)

bl(Ω2
3 − Ω2

1)

d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

 (3.0.7)

Where l [m] is the distance from the center of the quadrotor and the propeller and

[U1 U2 U3 U4] are the propeller’s speed control inputs. U1 is the combination of thrust

forces responsible for the quadrotor altitude z. U2 is the differential thrust between

rotors 2 and 4 which generate the roll moment. U3 is the thrust differential between

rotors 1 and 3 that create the pitch moment. Finally, U4 is the combination of the

individual torques between the clockwise and counterclockwise rotors in charge of

generating yaw rotation. Consequently, U1 generates the desired quadrotor altitude,

U2 and U3 generate the respective roll and pitch angles whereas U4 creates the yaw

angle. [H+14], [Cow08], [Bre08].

If equations 3.0.1 and 2.4.39 are combined and substituted, the forces on the quadro-

tor are:
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Ftotal =


0

0

U1

 (3.0.8)

Rewriting and combining equations 3.0.8, 2.4.28 and considering the other variables

we get: [H+14], [Seo16].

ẍ =
U1

m
(sinφdsinψ + cosφdcosψsinθd)

ÿ =
U1

m
(cosφdsinψsinθd − cosψsinφd)

(3.0.9)

Then, written in matrix form as:

−sinψ − cosψ
cosψ − sinψ

φd
θd

 =
m

U1

ẍd
ÿd

 (3.0.10)

Which is inverted to get:

φd
θd

 =

−sinψ − cosψ
cosψ − sinψ

−1

m

U1

ẍd
ÿd

 (3.0.11)

φd
θd

 =
m

U1

ẍdsinφ+ ÿdcosψ

ẍdcosψ + ÿdsinψ

 (3.0.12)

The linearization is obtained around an equilibrium point that may be x and can

be written as: ẋ = f(x, u). So, the linear model is: [H+14], [Sab15].

f(x,u) =



φ̇ = p

θ̇ = q

ψ̇ = r

ṗ = τx+τax
Ix

q̇ = τy+τay
Iy

ṙ = τz+τaz
Iz

(3.0.13)
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Simplifying and including U variables we get:

f(x,u) =



φ̇ = θ̇ψ̇λ1 + θ̇λ2Ωr + b1U2

θ̇ = φ̇ψ̇λ3 + φ̇λ4Ωr + b2U3

ψ̇ = θ̇φ̇λ5 + b3U4

ẍ = µx
1

m
U1

ÿ = µy
1

m
U1

z̈ = g − (cosφcosθ)
1

m
U1


(3.0.14)

Where:

λ1 = (Iy−Iz)

Ix

λ2 = Jr
Ix

λ3 = (Iz−Ix)
Iy

λ4 = Jr
Iy

λ5 = (Ix−Iy)

Iz

b1 = l
Ix

b2 = l
Iy

b3 = l
Iz

Ωp [rad s−1] is the propeller’s angular velocity and Jm [N m/ s2] is the motor inertia.

It is quite important to recall that the thrust force along each axis in the E-frame

is given as:

Fx = (cosφsinθcosψ + sinφsinψ)

Fy = (cosφsinθsinψ − sinφcosψ)

Fz = (cosφcosθ)

(3.0.15)

Therefore;

µx = (cosφsinθcosψ + sinφsinψ)

µy = (cosφsinθsinψ − sinφcosψ)

µz = (cosφcosθ)

(3.0.16)

3.1 Control Model

The quadrotor is an underactuated system. It has 6DOF (degrees of freedom)

but just four control inputs (the velocities of each rotor). Based upon this, it is not

possible to control 6 degrees of freedom with only four control inputs and mostly the
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control action is done on attitude and heading (yaw). Hence, for the development of

this project only the Eulers angles (φ θ ψ) and height z will be considered for control

stabilization during simulation. Position equations x and y will be disregarded for

control simulations. They will be considered later in chapter 4. There have been

many control methods proposed for quadrotor control. Some of them are visual

feedback, backstepping control, MPC (Model Predictive Control), LQR control,

PID control among others [Wan13]. For simulation purposes in this project + and

X quadrotor configurations will be used with PID control techniques.

Additionally, there is not a standard model and some simplifications of it are required

since the quadrotor is operated at a stable hover and at low velocities. There are not

lifting surfaces, so the aerodynamic forces and moments can be disregarded. In fact,

aerodynamics forces are difficult to model. There are several control algorithms for

linear systems. The most usual type of control system is the Proportional-Integral-

Derivative (PID) control. The controller calculates the difference between the actual

and desired state and produces an error value. Extensive research has been done and

the results found have proved that this control technique is acceptable for quadrotors

and a particular knowledge of the system would not be needed. [Mal16], [Wan13].

The dynamics model which is commonly applied in control is as follows:



z̈ = g − (cosφcosθ)
1

m
U1

φ̈ =
U2

Ix

θ̈ =
U3

Iy

ψ̈ =
U4

Iz


(3.1.17)

It is observed that in the above linear model the gyroscopic effects are not considered.

It makes easier the design of a PID controller.

3.1.1 Altitude Control

A PID controller is used for altitude control of the quadrotor. The following is the

derived control law:
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U1 = Kz
pez +Kz

d ėz +Kz
i

∫
(ez), ez = z − zd (3.1.18)

Where Kp, Kd, Ki are the proportional, derivative and integral gains, ėz is the

change ratio for the desired altitude and zd is the desired altitude.

3.1.2 Attitude Control

3.1.2.1 Roll Control

The derived law control that controls the quadrotor roll angle is given by:

U2 = Kφ
p eφ +Kφ

d ėφ +Kφ
i

∫
(eφ), eφ = φ− φd (3.1.19)

Where Kp, Kd, Ki are the proportional, derivative and integral gains, ėφ is the

change ratio for the desired roll angle and φd is the desired roll angle.

3.1.2.2 Pitch Control

The below derived law control is applied to control the quadrotor pitch angle which

is given as:

U3 = Kθ
peθ +Kθ

d ėθ +Kθ
i

∫
(eθ), eθ = θ − θd (3.1.20)

Where Kp, Kd, Ki are the proportional, derivative and integral gains, ėθ is the

change ratio for the desired pitch angle and θd is the desired pitch angle.

3.1.2.3 Yaw Control

Similar to the other PID controllers, the following is the derived control law for the

yaw angle control:

U4 = Kψ
p eψ +Kψ

d ėψ +Kψ
i

∫
(eψ), eψ = ψ − ψd (3.1.21)

Where Kp, Kd, Ki are the proportional, derivative and integral gains, ėψ is the

change ratio for the desired yaw angle and ψd is the desired pitch angle.
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3.1.3 Position Control

The quadrotor accelerations are computed as shown in equation 3.1.17. Therefore,

a PID position control is given as the following equation:

ẍd = Kx
p ex +Kx

d ėx +Kx
i

∫
(ex), ex = x− xd

ÿd = Ky
pey +Ky

d ėy +Ky
i

∫
(ey), ey = y − yd

(3.1.22)

Where Kp, Kd, Ki are the proportional, derivative and integral gains, xd is the

desired x position, yd is the desired y position, ėx is the change ratio for the desired

x position and ėy is the change ratio for the desired y position.

The direction of the thrust force is determined by the orientation of the quadrotor.

If the desired thrust is considered as Ftotald = [Fxd +Fyd +Fzd], desired roll φd pitch

θd and yaw ψd will be computed as shown in the below equations:

Fxd = Kx
p ex +Kx

d ėx +Kx
i

∫
(ex)

Fyd = Ky
pey +Ky

d ėy +Ky
i

∫
(ey)

Fzd = Kz
pez +Kz

d ėz +Kz
i

∫
(ez)

(3.1.23)

Then, to find the desired angles:

φd = sin−1

[
Fxd sinψd − Fyd cosψd

Ftotald

]
θd = tan−1

[
Fxd cosψd − Fyd sinψd

Fzd

] (3.1.24)

Hence, φd and θd can be calculated from the desired ψd.

3.1.4 Motor Control

Since quadrotors do not have swashplate devices, the differential thrust which is

produced by each motor, is adjusted for vehicle control. They certainly require

electrical propulsion. Due to their size, they are just equipped with batteries that
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provide CD current. So, a DC motor can be used to operate the propellers. The

BLDC motor has a very significant advantage. It gives feedback of the rotational

speed through the position of the motor poles. To achieve this, a position sensor

is needed. The most common is the hall effect sensor that is able to provide direct

rotor speeds measurements. There are other indirect methods which are used with

small quadrotor models. Both approaches ensure a precise speed control. This is

the main reason why electrical motors are used in quadrotors. BLDC motors require

an electronics speed controller (ESC). It converts DC voltage into voltage of three

phases. [Ban+17]. A detailed explanation of the motor dynamics is presented in

chapter 2.

3.1.5 Quadrotor Model Linearization

The first step taken to determine the linear model of the quadrotor is through

the calculation of an operating point for voltage and motor speed. Basically, this

operating point is when the aerial vehicle is in hover. During this condition the

thrust is assumed to be constant. This situation results when the vehicle’s attitude

along with its first and second derivatives are 0. Besides, there is not any movement

in the x, y or z directions and consequently the accelerations and velocities are also

0. [Cut12], [Poy14]. If the acceleration equations in 2.4.62 are rewritten in terms of

voltage V , they become:



z̈ = −g 2ρA
m

(
fomηKt
Kq

)2

(V 2
1 + V 2

2 + V 2
3 + V 2

4 )[cos(φ)cos(θ)]

θ̈ = 2lρA
Ix

(
fomηKt
Kq

)2

(V 2
3 − V 2

1 )

φ̈ = 2lρA
Iy

(
fomηKt
Kq

)2

(V 2
2 − V 2

4 )

ψ̈ = Jm
Iz

(Ω̇1 + Ω̇3 − Ω̇2 − Ω̇4) +
Kdrag
Iz

(Ω2
1 + Ω2

3 − Ω2
2 − Ω2

4)

(3.1.25)

If the above equations are expressed in angular velocities terms, the constant Kl is

included and it is taken as a lift coefficient. Thus, the equations obtained are as

follows:
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

z̈ = −g 2ρA
m

(
fomηKt
Kq

)2

Kl(Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4)[cos(φ)cos(θ)]

θ̈ = 2lρA
Ix

(
fomηKt
Kq

)2

Kl(Ω
2
3 − Ω2

1)

φ̈ = 2lρA
Iy

(
fomηKt
Kq

)2

Kl(Ω
2
2 − Ω2

4)

ψ̈ = Jm
Iz

(Ω̇1 + Ω̇3 − Ω̇2 − Ω̇4) +
Kdrag
Iz

Kl(Ω
2
1 + Ω2

3 − Ω2
2 − Ω2

4)

(3.1.26)

Based on the matrix 3.0.7, if it is inverted the relationship between U and Ω2 is

found as follows:


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


1
4b

0 1
2bl
− 1

4d

1
4b
− 1

2bl
0 1

4d

1
4b

0 1
2bl
− 1

4d

1
4b

1
2bl

0 1
4d




U1

U2

U3

U4

 (3.1.27)

The group of equations in 3.1.26 are used to compute the linear and angular accel-

erations with:



x = y = z = ẋ = ẏ = ż = 0

ẍ = ÿ = z̈ = 0

φ = θ = ψ = 0

φ̇ = θ̇ = ψ̇ = 0

φ̈ = θ̈ = ψ̈ = 0

Ωm = Ωh = 0

Ω̇ = Ω̈ = 0

(3.1.28)

3.1.5.1 Quadrotor Equations Linearization

Firstly, a voltage running point Vrh is determined at hover mode. Moreover, the

equation 2.4.70 shows the relationship between voltage and motor speed. Then,

after calculating V which is equal to Vrh and applying Taylor series to such equation

and considering just the first order terms, the following expression is acquired:
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V = Vrh = AΩ̇ +BΩm + CΩ2 (3.1.29)

Clearing Ω̇ results:

Ω̇ =
V

A
− B

A
Ω− C

A
Ω2 = f(Ω, V ) (3.1.30)

Where A = KE Kq ηg N2

R Jτp total
B = kq

R
V and C =

Kdrag Ω2
rh

η N3 Jτp total
.

Then, the following first order coefficients using Taylor series are applied for lin-

earization at the desired running point:

ςl =
∂f

∂Ω

∣∣∣∣
rh

= −B
A
− 2CΩrh

A
=
−B2CΩrh

A

ςm =
∂f

∂V

∣∣∣∣
rh

=
1

A

d∆Ω

dt
=
−B2CΩrh

A
∆Ω +

1

A
∆V

(3.1.31)

Consequently, the linearized quadrotor model will be:

d∆Ω

dt
= ςi∆Ω + ςi∆V (i = l,m, n...) (3.1.32)

Where ∆Ω = Ω− Ωh and ∆V = V −∆V .

Therefore, for vertical acceleration z̈:

z̈ = Z(V 2
1 + V 2

2 + V 2
3 + V 2

4 )(cosθ cosφ)− g = f(V1, V2, V3, V4) (3.1.33)

ςl =
∂f

∂z

∣∣∣∣
rh

= 0

ςm =
∂f

∂V1

∣∣∣∣
rh

= −2ZV1 = −2ZVrh

ςn =
∂f

∂V2

∣∣∣∣
rh

= 2ZV2 = −2AVrh

ςo =
∂f

∂V3

∣∣∣∣
rh

= −2ZV3 = −2ZVrh

ςp =
∂f

∂V4

∣∣∣∣
rh

= −2ZV4 = −2ZVrh

d∆ż

dt
= ςl∆z + ςm∆V1 + ςn∆V2 + ςo∆V3 + ςp∆V4

(3.1.34)
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Where Z = 2ρA
m

(
fomηKt
Kq

)2

For Roll angular acceleration:

φ̈ = R(V 2
2 − V 2

4 ) = f(V2, V4)

ςl =
∂f

∂φ

∣∣∣∣
rh

= 0

ςm =
∂f

∂V2

∣∣∣∣
rh

= 2RV2 = 2RVrh

ςn =
∂f

∂V4

∣∣∣∣
rh

= −2RV4 = 2RVrh

d∆φ̇

dt
= ςl∆θ + ςm∆V2 + ςn∆V4

(3.1.35)

Where R = 2lρA
Ix

(
fomηKt
Kq

)2

For angular Pitch acceleration:

θ̈ = P (V 2
3 − V 2

1 ) = f(V3, V1)

ςl =
∂f

∂θ

∣∣∣∣
rh

= 0

ςm =
∂f

∂V2

∣∣∣∣
rh

= 2PV3 = 2PVrh

ςn =
∂f

∂V4

∣∣∣∣
rh

= −2PV1 = 2PVrh

d∆θ̇

dt
= ςl∆θ + ςm∆V2 + ςn∆V4

(3.1.36)

Where P = 2lρA
Iy

(
fomηKt
Kq

)2

For Yaw angular acceleration:

ψ̈ = W (Ω̇1 + Ω̇3 − Ω̇2 − Ω̇4) + Y (Ω2
1 + Ω2

3 − Ω2
2 − Ω2

4) = f(Ω, Ω̇) (3.1.37)

ςl =
∂f

∂ψ

∣∣∣∣
rh

= 0 (3.1.38)
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ςm =
∂f

∂Ω̇1

∣∣∣∣
rh

= W

ςn =
∂f

∂Ω̇2

∣∣∣∣
rh

= −W

ςo =
∂f

∂Ω̇3

∣∣∣∣
rh

= W

ςp =
∂f

∂Ω̇4

∣∣∣∣
rh

= −W

(3.1.39)

ςq =
∂f

∂Ω1

∣∣∣∣
rh

= 2Y Ω1 = 2Y Ωrh

ςr =
∂f

∂Ω2

∣∣∣∣
rh

= −2Y Ω2 = −2Y Ωrh

ςs =
∂f

∂Ω3

∣∣∣∣
rh

= 2Y Ω3 = −2Y Ωrh

ςt =
∂f

∂Ω4

∣∣∣∣
rh

= −2Y Ω4 = −2Y Ωrh

(3.1.40)

d∆ψ̇

dt
= ςl∆φ+ ςm∆Ω1 + ςn∆Ω2 + o∆Ω3 + ςp∆Ω4 + ςq∆Ω̇1 + ςr∆Ω̇2 + ςs∆Ω̇3 + ςt∆Ω̇4

(3.1.41)

Where W = Jm
Iz

and Y =
Kdrag
Iz

3.1.6 Transfer Functions for the Quadrotor Linear Model

The transfer functions for attitude are computed as follows:

GΦ/U2(s) =
1

s2Ix

GΘ/U3(s) =
1

s2Iy

GΨ/U4(s) =
1

s2Iz

(3.1.42)

And for the altitude case, from the Newton’s second law it is known that:

F −mg = ma (3.1.43)

So, it can be inferred that:
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F = m

(
dv

dt

)
= m

(
d2ξ

dt2

)
(3.1.44)

Therefore:

F = mξ̈ (3.1.45)

Where F represents the total thrust force. Thus, for altitude control in closed-loop,

the following function is considered:

Gz/U1(s) =
1

s2 m
(3.1.46)

The Step responses plots of these systems are shown in figures 3.1 and 3.2.

Figure 3.1: Attitude Systems Step Response PID Control

Figure 3.2: Altitude System Step Response PID Control
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3.1.7 PID Controller Design

PID control is very common employed within autopilots for quadrotors. As it is

known, PID stands for Proportional (P), Derivative (D) and Integral (I). For this

kind of unmanned aerial systems if proportional control signal were just applied,

it would give a roll command that would make the vehicle to roll to the left. If

this roll point set is passed, the proportional control will move the quadrotor back

to the original starting position and will do this over and over. It means that the

vehicle can begin oscillating due to overshooting. At this stage is when integral and

derivative actions are needed. In the integral case, it will give a slow correction to

the position at a proper amount. Such correction is not as big as the proportional.

The derivative action will calculate an extra correction that will make the vehicle

get the precise position based on the previous command and if there are not other

command changes. It is considered as an upcoming signal. According to some

autopilot details, the Proportional, Integral and Derivative outputs are calculated

as:

Poutput = (gyroscope− receiver)Kp

Ioutput = Ioutput + (gyroscope− receiver)Ki

Doutput = (gyroscope− receiver − gyroscopeprevious − receiverprevious)Kd

Thus, since PID control is used, the following is the transfer function for a PID

controller:

G(s) = P +
I

s
+

Ds

s+ 1
(3.1.47)

Sometimes autopilot systems apply just PD control and omit I. So, the transfer

function for a PD controller is:

G(s) = P +
Ds

s+ 1
(3.1.48)

The closed-loop transfer function for a PID controller is:

G(φ θ ψ)(s) =
Gc GQ

1 +Gc GQ

(3.1.49)
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Where Gc is the controller transfer function and GQ is the transfer function for the

plant (Quadrotor). After some calculations the following characteristic polynomial

is obtained:

s2 +
D

Ixyz
s+

P

Ixyz
(3.1.50)

Additionally, the following parameters are considered for the controller design:

PD-PID Controller Parameters

ζ = 0.6 ts = 5s β = 10ζωn

Table 3.1: Parameters for the Controller Design

Where ts is the stabilization time. The value taken for ζ will let some oscillation.

Moreover, ωn = 3
ζ ts

, ωd is defined as ωd = ωn
√

1− ζ2 and the peak overshoot

Mp = e−(ζωn/ωd)π. Substituting, we obtain:

2ζωn = 1.2

ωn = 1 rad/s

Mp = 5.2%

(3.1.51)

An average of the moments of inertia and controller gains are applied for the calcula-

tions (See section 3.3 for moments of inertia values for different quadrotor models).

So, it is found that the controller parameters are given by:

P = ω2
nIxyz

D = 2ζωnIxyz

The PD gains calculated for attitude and altitude are applied to a PD control

simulink model as established in [Bou07]. However, some of the attitude gains

computed do not provide a proper response. So, a tune process is done with a

MATLAB tool to be able to get a better performance. Also, in the majority of the

simulations a PID technique will be employed. Hence, the characteristic polynomial

is given by:
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s3 +
D

Ixyz
s2 +

P

Ixyz
s+

I

Ixyz
(3.1.52)

After some computations the parameters for the controllers are as follows:

P = 2ζωnβ + ω2
nIxyz

I = ω2
nβIxyz

D = 2ζωnβIxyz

For altitude computation gains, after computing and then simplifying the following

characteristic polynomial is obtained:

s2 +
D

m
s+

P

m
(3.1.53)

Therefore, the controller parameters are as follows:

P = mω2
n

D = 2ζωnm

For a PID controller the characteristic polynomial obtained is:

s3 +
D

m
s2 +

P

m
s+

I

m
(3.1.54)

Hence, the parameters for the controller will be:

P = 2ζωnβ + ω2
nm

I = ω2
nβm

D = 2ζωn + βm

Different ways to control attitude stabilization and altitude for quadrotors have been

explored in several research works. In figure 3.3 a closed-loop system is considered

in which a PID or PD controller can be used. This is the option that will be applied

in simulation. The outputs are the variables U that are required to be inverted

through the inversion matrix 3.1.27 to get the respective angular speeds. Also, the

linearized motor dynamics in equation 3.1.29 is included in the control loop. It has

January 9, 2018



3.1. Control Model 62

voltage V as the output towards the quadrotor motors. There are four variables

running in parallel and are indicated in the control diagram. An additional block is

incorporated for sensor fusion or IMU. This approach is similar to the one presented

in [Bre08].

Figure 3.3: Control Diagram

Another option is focused on voltage inputs for motor speeds control. In [Poy14], the

control approach is an open-loop control system which is divided in four subsystems

(roll, pitch, yaw, actuators). The inputs for the roll and pitch subsystems are the

voltages and the outputs are the angular speeds for the propellers [rad/s] (figure

3.4). Then, these angular speeds are the inputs to the yaw subsystem. Although

there are an array of variables to select for control aims, it is important to make

clear that just voltage constants obtained in hover condition as studied in [Bal07]

are considered for simulation. The goal is to examine the performance of a PID

controller taking such constants as inputs.

Figure 3.4: Control Diagram with voltage inputs
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� Height Control:

zd [m] stands for the desired altitude while z is the measured altitude computed by

the sensors (IMU). ez [m] is the altitude error, g is the acceleration of the gravity

[m s−2] and U1 is the required thrust [N ]. Ki [s−3], Kp [s−2], Kd [s−1], are the

controller gains. The simulink diagram is shown in figure 3.5.

Figure 3.5: PID Height Control System

� Roll Control:

The quadrotor forward and backward movements are achieved when the roll angle is

changed. Thus, φd [rad] is the desired roll angle, φ [rad] is roll angle measurement,

eφ is the error of the roll angle [rad]. U2 is the roll moment [N m]. Ki [s−3], Kp [s−2],

Kd [s−1], are the controller parameters. Figure 3.6 shows the respective simulink

model.

� Pitch Control:

τx(θ) permits to change the pitch angle of the quadrotor. So, θd [rad] represents the

desired pitch angle which is taken as the control signal, θ [rad] is the measured pitch

angle, eθ is the pitch angle error [rad]. U3 is the pitch moment [N m]. Ki [s−3], Kp

[s−2], Kd [s−1], are the controller gains. The system model is displayed in figure 3.7.

� Yaw Control:

ψd [rad] represents the desired yaw angle, ψ [rad] is the yaw angle measurement,
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Figure 3.6: PID Roll Control System

Figure 3.7: PID Pitch Control System

eθ is the yaw angle error [rad]. U4 is the yaw moment [N m]. Ki [s−3], Kp [s−2],

Kd [s−1], are the controller parameters. In figure 3.8 the simulink system model is

presented.

All the signals in the above system models are logged and streamed to be able to

visualize the controllers performance during and after runtime. Also, by using the

PID Tuner tool in MATLAB, it is possible to get or adjust the gains Kp, Ki, and

Kd. In table 3.2 the additional variables for control simulation are presented. The

plots show that the system is stable and has a fast response. The following plots

show the different control performances of the plant (quadrotor). These controller

parameters are verified along with the quadrotor dynamics. In addition, models

with voltage as inputs are also studied in simulation. The gain values and a DC
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Figure 3.8: PID Yaw Control System

gain are based on the ones presented in [Bal07], [Mar07], [Pop+16]. Two simulink

models are studied (altitude and attitude). These are open loop control systems.

Quadrotor Dynamic Variables for Control

Jm = 4e−7 kg m2

b = 3.13e−5 - 1.33e−5 N s2

d = 3.13e−5 - d = 1.3e−5 N m s2

Table 3.2: Quadrotor Dynamic Parameters for Control Simulation
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Figure 3.9: Altitude/Attitude PD Controller Response For Models 1, 2, 3

Figure 3.10: Altitude/Attitude PD Controller Response For Models 4, 5, 6
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Figure 3.11: Altitude/Attitude PID Controller Response For Models 1, 2, 3

Figure 3.12: Altitude/Attitude PID Controller Response For Models 4, 5, 6
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Figure 3.13: Altitude System Model with Input Voltages

Figure 3.14: Altitude PID Control Response with Input Voltages
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Figure 3.15: Attitude System Model with Input Voltages

Figure 3.16: Attitude PID Control Response with Input Voltages
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3.1.8 Quadrotor Configurations

In the first chapter a very detailed explanation of the mathematical model for a

quadrotor is given and one important aspect covered is about the coordinate systems

that are used. In this project two quadrotor configurations (X and +) will be

considered for control and some trajectory simulation. Therefore, an important

consideration will be granted to the coordinate systems in both as they vary. As

seen in figure 3.18, the plus + configuration has the x axis along the motor 1 arm

which rotates counterclockwise and the y axis along motor 2 arm that spins in the

opposite direction. The z axis points upward. Additionally, as stated earlier in the

dynamics model, there is a value d which represents the distance from a rotor to the

axis of rotation and should be the same for every single rotor. A x configuration

is defined as a 45 degrees x − y plane rotation in the positive direction of yaw.

If this type of configuration is used, the d estimation will change. The result is

a x axis located between rotor 1 and 2. In any configuration the x axis is taken

as the positive forward movement of the vehicle. [MKC12]. As mentioned before,

to be able to maneuver a quadrotor, its rotors angular speeds have to be changed

simultaneously to go up or descend (figure 3.20) (arrows’ width is proportional to

the rotors’ angular speeds). By doing it that way, the combination of the Euler

angles (φ, θ, ψ) is achieved and it will be posible to keep the desired or planned

path.

Figure 3.17: Quadrotor + and x configurations

Taken from: [Mej16]

The inertia matrix shown in 2.4.37 is identical for either x or + configuration.
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Figure 3.18: Quadrotor configurations

Taken from: [ard17]

Figure 3.19: Quadrotor angular speeds variation. (a) Yaw, (b) Take-off or Go up

(c) Roll (d) Pitch

Taken from: [Bou+07] (Modified by the author)

3.1.8.1 Rotor Thrust Generated

Non-dimensional coefficients are normally used in rotor analysis. The thrust gener-

ated can be modeled by using moment theory. However, a simple parameter can be

defined as:

T = KtΩ
2 (3.1.55)

where Kt is the thrust coefficient which is modeled as a constant and is determined

from thrust tests.
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3.1.8.2 Reaction Torque

Torques are related to angular velocities as: [G+14], [Poy14].

τ = I[ψ̈ θ̈ ψ̈] (3.1.56)

There is a reactive torque which acts on the vehicle and is generated by a hovering

rotor (shaft acceleration and blades drag). it can be modeled as:

τMi
= KτΩ

2
m (3.1.57)

Where Kτ is the torque coefficient which can be determined by thrust tests as well.

For quasi-stationary maneuvers Ωm is taken as constant, [G+14]. So:

τMi
= τdrag (3.1.58)

3.1.8.3 Throttle Command

This command is provided by changing at the same value the propeller’s speeds

(increasing or decreasing). The motor input commands are between 0% to 100%

throttle which is the maximum throttle command range of signals. The RPM values

are not determined directly by the control system. Therefore, a linear regression is

required to transform the command values from throttle to RPM values. This

research will not go through linear regression theory, just results from simulations

will be the main approach based on the linear regression proposed in [Mej16]. A

linear regression is given by

y = kx+ b (3.1.59)

which is the relationship between a independent variable x and a dependent variable

y. So, if throttle % is the throttle command, kRPM is the conversion coefficient from

throttle % to RPM that affects the velocity w in the z direction and b is a least

square linear coefficient, we get:
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ΩmotorRPM = kRPM (Throttle%) + σ (3.1.60)

Where σ is expressed as:

σ =
{ ∑

yi
∑
x2i−

∑
xi

∑
xiyi

N
∑
x2i−(

∑
xi)2

}
(3.1.61)

ΩmotorRPM is the expected motor RPM and N is the number of data collected.

[Sun12].

Based on the inverted matrix 3.1.27, U1, U2, U3, U4 are linear combinations for the

four motor signals which are given as:


umotor1

umotor2

umotor3

umotor4

 =


1 −1 1 −1

1 −1 −1 1

1 1 −1 −1

1 1 1 1




U1

U2

U3

U4

 (3.1.62)

The above matrix shows how the outputs of the controller are mapped to the motors.

These signals are between a 0 to 1 range that is the maximum and minimum signal

power received by the electronic speed control ESC.

3.1.8.4 Quadrotor Aerodynamics Torques and Thrust

After several tests that have been performed in different research works to calculate

these coefficients, now it is possible to create a matrix describing the thrusts and

torques of the system:

”+” Configuration

∑
T

τφ

τθ

τψ

 =


Kt Kt Kt Kt

0 d+Kt 0 −d+Kt

−d+Kt 0 d+Kt 0

−Kτ Kτ −Kτ −Kτ




Ω2

1

Ω2
2

Ω2
3

Ω2
4

 (3.1.63)
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”X” Configuration

∑
T

τφ

τθ

τψ

 =


Kt Kt Kt Kt

−dxKt dxKt dxKt −dxKt

−dxKt −dxKt dxKt dxKt

−Kτ Kτ −Kτ −Kτ




Ω2

1

Ω2
2

Ω2
3

Ω2
4

 (3.1.64)

Where dx is the arm length from the quadrotor center to the motor/propeller. If

a d+ configuration is used this can be computed d+ (sin 45) as this would be the

distance from the center of the vehicle to the motor/propeller. [Mej16],[MKC12],

[Lei06].

3.1.8.5 Gyroscope Forces

The rotors like any rotating device are subject to the gyroscopic effect. The gyro-

scopic forces done on the body are governed by the inertia of each motor Jm, the roll

and pitch rates (p q) and the angular speed of each propeller Ωi. So, the rotation of

the rotor blades combined with the body rotation results in a gyroscopic torque:

τφgyro = bl(Ω2
4 − Ω2

2) + Jmq
( π

30

)
(Ω1 − Ω2 + Ω3 − Ω4) (3.1.65)

τθgyro = bl(Ω2
3 − Ω2

1) + Jmp
( π

30

)
(−Ω1 + Ω2 − Ω3 + Ω4) (3.1.66)

The π
30

term corresponds to the required change from RPM to radians for the gyro-

scopic force calculation.

3.2 Inertial Measurement Unit

Inertial navigation is a technique for determining a vehicle’s position and velocity

by measuring its acceleration and processing the acceleration information in a com-

puter. It can capture the 6 DOF (degrees of freedom) of the vehicle motion by

itself without any other sensor support. IMUs contains 3D inertial sensors. Nowa-

days many of these sensors are made of micro-machined electromechanical system

(MEMS) technology. Some advantages of this navigation method are:
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• Indication of position and velocity is instantaneous and continuous.

• Navigation is possible in all regions, in all weather without the need for ground

stations.

• Provides outputs of position, ground speed, heading and attitude.

Nevertheless, this navigation system has also some disadvantages:

• Position and Velocity information degrades with time.

• Sensor equipment is expensive.

• Accuracy to some extent depends on vehicle manoeuvres.

[Mej16],[KF97].

3.2.1 Inertial Navigation Basic Concepts

Inertia is the tendency of bodies to keep constant rotational and translational veloc-

ity unless disturbed by torques or forces. It clearly refers to the Newton’s first law

of motion. A inertial reference frame is a coordinate frame in which Newton’s laws

of motion are validated. Double integration of acceleration is necessary to be able to

obtain position and velocity in the navigation frame. Hence, acceleration needs to

be measured in the navigation frame and not in vehicle’s body frame. Besides, in-

formation about quadrotor’s attitude is required. Inertial sensors measure rotation

and acceleration. An inertial navigation system has an inertial measurement unit

(IMU) which contains accelerometers and gyroscopes. Likewise, it has navigation

computers that are responsible for measuring the gravitational acceleration. [KF97].

3.2.2 Inertial Sensors

Firstly, it is important to define the term Mechanisation in which the inertial sen-

sors measurements are combined to find a navigation solution. Mechanisation has

an important preference since for instance, attitude can be got directly from the

direction cosine matrix (DCM) or quaternions. It also provides navigation details in
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terms of north and east speed, latitude and longitude that permit a simple gravity

model. Earth fixed reference frame (E-frame) is a suitable option for short distance

navigation. The principle of inertial sensors is greatly related to Newton’s first and

second laws. Basically, the first law states that changes in motion are created by

external forces. The second law states that acceleration is proportional and in the

same direction as the resultant force. The quadrotor IMU consists of the following

basic sensors: [Asc13], [Cor14].

• An accelerometer

• A gyroscope

• An electronic compass

Figure 3.20: Inertial Navigation System IMU

3.2.2.1 Gyroscope

In an inertial navigation system IMU this sensor measures the angular velocity

around the three axes. The gyroscope measurements done by the IMU can be given

by:

ωsIMU = Cb
sω

b
IMU + εsg + ωsg (3.2.67)

Where ωbIMU is the rotation ratio, C is the direction cosine matrix, ωbIMU , (ω =

[p q r]) is measurement error. The additional error is:
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εsg = Cb
s(Sg +Mg)ω

b
IMU + bsg (3.2.68)

Where Sg is the scale factor matrix and Mg is the misalignment matrix.

3.2.2.2 Accelerometer

The accelerometer measures the translational acceleration along the three axes. Such

acceleration is called proper acceleration. Basically, this sensor measures the acceler-

ation of the vehicle that contains the accelerometer. The acceleration measurements

done by the IMU can be given by:

asIMU = Cb
sa

b
IMU + εsa + ωsa (3.2.69)

Where asIMU is the vehicle force (acceleration + gravity), εsa is the measurement

errors and ωsa is the undetermined measurement. The additional error is:

εsa = Cb
s(Sa +Ma)ω

b
IMU + bsa (3.2.70)

Where Sa is the scale factor matrix and Ma is the misalignment matrix.

3.2.2.3 Electronic Compass

An electronic compass (EC) measures the intensity and the direction of a magnetic

field. It provides heading data to the navigation system. If the compass is aligned

with the vehicle’s body axis, the measurements can be given as:

hsc = Cb
sC

n
b h

n + εsh + ωsh (3.2.71)

Where εsh is the compass error, ωsh is the undetermined measurement and hn is the

magnetic field vector. Then, the compass error is:

εsh = Cb
sC

n
b Shh

n + bsh (3.2.72)
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3.2.3 Attitude Representation and Estimation

There are different representation models to define the attitude of a body regarding

the coordinate frame. The body frame (B-frame) is related to the navigation frame

through the Direction Cosine Matrix (DCM), Euler angles or Quaternions. The

direction cosine matrix was covered in chapter 1 and is the method that will be

employed during simulations in this research work. However, if quaternions are used,

some other guidelines are given next. Firstly, a quaternion is a complex number of

four elements q = [q0 q1 q2 q3]T . The quaternions from q1 to q3 are the quaternion

vector part and q0 is the scalar part. The quaternion attitude representation allows

a transformation from one coordinate frame to another which is done by a rotation

about a vector defined in the reference frame. Multiplication of two quaternions

for instance p q is performed by the Kronecker product which is indicated as ⊗.

If p is a rotation and q is another one, so p ⊗ q represents a combined rotation.

Therefore, the quaternion method and matrix representation are as follows:

p⊗ q = Q(q) =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (3.2.73)

The following differential equation is used to propagate quadrotor’s attitude:

q̇ =
1

2
Q(q)ω (3.2.74)

Where ω = [ωx ωy ωz]
T . Propagation is necessary to track the evolution of the

vehicle’s attitude. Transformations to create a Direction Cosine Matrix (DCM) are

required at each time step. [Mej16],[KF97], [FN13].

To find current values for Quaternions, the below equation is used:

q = qt−1 + q̇dt (3.2.75)
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The quaternion vector is created by using the following equation which shows the

Euler to Quaternion transformation:

q0 = cos

(
ψ

2

)
cos

(
θ

2

)
cos

(
φ

2

)
+ sin

(
ψ

2

)
sin

(
θ

2

)
sin

(
φ

2

)
q1 = cos

(
ψ

2

)
cos

(
θ

2

)
sin

(
φ

2

)
− sin

(
ψ

2

)
sin

(
θ

2

)
cos

(
φ

2

)
q2 = cos

(
ψ

2

)
sin

(
θ

2

)
cos

(
φ

2

)
+ sin

(
ψ

2

)
cos

(
θ

2

)
sin

(
φ

2

)
q3 = sin

(
ψ

2

)
cos

(
θ

2

)
cos

(
φ

2

)
− cos

(
ψ

2

)
sin

(
θ

2

)
sin

(
φ

2

)
(3.2.76)

The direct cosine matrix (DCM) in terms of quaternions is:

C =


(q2

0 + q2
1 − q2

2 − q2
3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q3 + q0q3) (q2
0 − q2

1 + q2
2 − q2

3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

 (3.2.77)

Angles are estimated by

φ = tan−1C32

C33

=
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

θ = sin−1(−C32) = −2(q2q3 + q0q1)

ψ = tan−1C21

C11

=
2(q1q3 + q0q3)

(q2
0 + q2

1 − q2
2 − q2

3)

(3.2.78)

Velocity is estimated by:

Vnt = Vnt−1 + an ∗ dt (3.2.79)

Position is estimated by:

Px = Pxt−1 + lȧt ∗ dt

Py = Pyt−1 + lȯng ∗ dt

Pz = Pzt−1 − vz ∗ dt

(3.2.80)
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Where an = Cn
b ∗ ab

And

[
lȧt =

Vxt
RM + Pzt−1

]
[
lȧt =

Vn
RM + h

] (3.2.81)

[
lȯng =

Vyt
cos(Pxt−1) ∗ (RP + Pzt−1)

]
[
lȯng =

Ve
RP + h

] (3.2.82)

RM → meridian radius (used for latitude change).

RP → prime radius (used for longitude change).

h → Aircraft’s Altitude.

3.3 Attitude Control Simulations

3.3.1 Attitude and altitude control of different quadrotor

models

In this section some PID control simulations are presented. The goal is to verify the

performance of the orientation and altitude control. Six different quadrotor models

are chosen (commercial and research platforms). For each one, dynamics values are

taken from previous studies. The respective gains are assumed and kept constant

for all models.
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Dynamic variables Value

m 0.1 kg

Ix 0.45 kg ·m2

Iy 0.51 kg ·m2

Iz 0.95 kg ·m2

l 0.5 m

Table 3.3: Quadrotor Model 1 Parameters

Figure 3.21: Quadrotor Model 1 l = 0.5 m
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Figure 3.22: Initial Position Quadrotor Model 1

Figure 3.23: Desired z Position Quadrotor Model 1
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Figure 3.24: Measured Position Quadrotor Model 1

Figure 3.25: Measured Roll Quadrotor Model 1
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Figure 3.26: Measured Pitch Quadrotor Model 1

Figure 3.27: Measured Yaw Quadrotor Model 1
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If a larger mass value is considered and the moments of inertia are smaller, the

control response gets an important improvement as shown in the following figure.

Figure 3.28: Altitude/Attitude PID Controller Performance Quadrotor Model 1

Dynamic variables Value

m 0.09 kg

Ix 0.45 kg ·m2

Iy 0.51 kg ·m2

Iz 0.95 kg ·m2

l 0.5 m

Table 3.4: Quadrotor Model 2 Parameters

In order to get a much better stabilization the mass numerical value is increased

and the moments of inertia are reduced. (Figure 3.35).
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Figure 3.29: Initial Position Quadrotor Model 2

Figure 3.30: Desired z Position Quadrotor Model 2
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Figure 3.31: Measured Position Quadrotor Model 2

Figure 3.32: Measured Roll Quadrotor Model 2
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Figure 3.33: Measured Pitch Quadrotor Model 2

Figure 3.34: Measured Yaw Quadrotor Model 2
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Figure 3.35: Altitude/Attitude PID Controller Performance Quadrotor Model 2
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Dynamic variables Value

m 0.14 kg

Ix 0.45 kg ·m2

Iy 0.51 kg ·m2

Iz 0.95 kg ·m2

l 0.35 m

Table 3.5: Quadrotor Model 3 parameters

Figure 3.36: Quadrotor Model 3 l = 0.35 m
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Figure 3.37: Initial Position Quadrotor Model 3

Figure 3.38: Desired z Position Quadrotor Model 3
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Figure 3.39: Measured Position Quadrotor Model 3

Figure 3.40: Measured Roll Quadrotor Model 3
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Figure 3.41: Measured Pitch Quadrotor Model 3

Figure 3.42: Measured Yaw Quadrotor Model 3
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To accomplish a better attitude and altitude stabilization the mass is increased as

well as l. The moments of inertia are considered smaller. (Figure 3.43).

Figure 3.43: Altitude/Attitude PID Controller Performance Quadrotor Model 3

Dynamic variables Value

m 4.5 kg

Ix 0.8185 kg ·m2

Iy 0.11589 kg ·m2

Iz 0.1977 kg ·m2

l 0.545 m

Table 3.6: Quadrotor Model 4 Parameters

To obtain an improved stabilization the mass and moments of inertia are reduced.

(Figure 3.51).
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Figure 3.44: Quadrotor Model 4 l = 0.545 m

Figure 3.45: Initial Position Quadrotor Model 4

January 9, 2018



3.3. Attitude Control Simulations 96

Figure 3.46: Desired z Position Quadrotor Model 4

Figure 3.47: Measured Position Quadrotor Model 4
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Figure 3.48: Measured Roll Quadrotor Model 4

Figure 3.49: Measured Pitch Quadrotor Model 4
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Figure 3.50: Measured Yaw Quadrotor Model 4

Figure 3.51: Altitude/Attitude PID Controller Performance Quadrotor Model 4
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Dynamic variables Value

m 0.547 kg

Ix 0.0033 kg ·m2

Iy 0.0033 kg ·m2

Iz 0.0058 kg ·m2

l 0.5 m

Table 3.7: Quadrotor Model 5 Parameters

In this case a more suitable control performance is acquired when the mass is larger

and the moments of inertia values are reduced. (Figure 3.58).

Figure 3.52: Initial Position Quadrotor Model 5
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Figure 3.53: Desired z Position Quadrotor Model 5

Figure 3.54: Measured Position Quadrotor Model 5
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Figure 3.55: Measured Roll Quadrotor Model 5

Figure 3.56: Measured Pitch Quadrotor Model 5

January 9, 2018



3.3. Attitude Control Simulations 102

Figure 3.57: Measured Yaw Quadrotor Model 5

Figure 3.58: Altitude/Attitude PID Controller Performance Quadrotor Model 5
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Dynamic variables Value

m 1.58 kg

Ix 0.0028 kg ·m2

Iy 0.0028 kg ·m2

Iz 0.00325 kg ·m2

l 0.33 m

Table 3.8: Quadrotor Model 6 Parameters

For this model, once the moments of inertia are higher and l is a bit increased, a

much better attitude/altitude stabilization is achieved. (Figure 3.66).

Figure 3.59: Quadrotor Model 6 l = 0.33 m
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Figure 3.60: Initial Position Quadrotor Model 6

Figure 3.61: Desired z Position Quadrotor Model 6
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Figure 3.62: Measured Position Quadrotor Model 6

Figure 3.63: Measured Roll Quadrotor Model 6
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Figure 3.64: Measured Pitch Quadrotor Model 6

Figure 3.65: Measured Yaw Quadrotor Model 6
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Figure 3.66: Altitude/Attitude PID Controller Performance Quadrotor Model 6

Dynamic variables Value

φ 180 deg

θ 120 deg

ψ 120 deg

z 10 m

M1 7000 RPM

M2 7000 RPM

M3 7000 RPM

M4 7000 RPM

Table 3.9: Quadrotor parameters for inverted flight in X and + configurations

PID Gains z Roll Pitch Yaw

Kp 2 2 2 4

Ki 1.1 1.1 1.1 0.5

Kd 3.3 1.2 1.2 3.5

Table 3.10: PID controller gains for inverted flight in X and + configurations
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Figure 3.67: Inverted Flight with X Configuration

Figure 3.68: Attitude, Positions and Velocities for Inverted Flight in X Configu-

ration
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Figure 3.69: Inverted Flight with + Configuration

Figure 3.70: Attitude, Positions and Velocities for Inverted Flight in + Configu-

ration
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3.3.2 Paths designed using X and + configurations

PID Gains z Roll Pitch Yaw

Kp 2 0.32 0.32 0.32

Ki 0.458 0.43 0.43 0.43

Kd 2 1.102 1.102 1.102

Table 3.11: PID controller gains for path planning simulations in X and + con-

figurations

Figure 3.71: Triangular Path with X Configuration
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Figure 3.72: Attitude Changes with Triangular Path

Figure 3.73: Attitude, Position, Velocities for Triangular Path in X Configura-

tion
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Figure 3.74: Motor Speeds for Triangular Path in X Configuration

Figure 3.75: Triangular Path with + Configuration
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Figure 3.76: Attitude, position, Velocities for Triangular Path in + Configura-

tion

Figure 3.77: Diamond Path with X Configuration

January 9, 2018



3.3. Attitude Control Simulations 114

Figure 3.78: Attitude Changes with Diamond Path

Figure 3.79: Attitude, position, Velocities for Diamond Path in X Configuration
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Figure 3.80: Motor Speeds for Diamond Path in X Configuration

Figure 3.81: Diamond Path with + Configuration
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Figure 3.82: Attitude, Position, Velocities for Diamond Path in + Configuration

Figure 3.83: Square Path with X Configuration
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Figure 3.84: Attitude, Position, Velocities for Square Path in X Configuration

Figure 3.85: Motor Speeds for Square Path in X Configuration
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Figure 3.86: Square Path with + Configuration

Figure 3.87: Attitude, Position, Velocities for Square Path in + Configuration
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Figure 3.88: Combined Path with X Configuration

Figure 3.89: Attitude, Position, Velocities for Combined Path in X Configura-

tion
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Figure 3.90: Combined Path with + Configuration

Figure 3.91: Attitude, Position, Velocities for Combined Path in + Configura-

tion
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Figure 3.92: Combined Path with X Configuration

Figure 3.93: Attitude, Position, Velocities for Combined Path in X Configura-

tion
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Figure 3.94: Combined Path with + Configuration

Figure 3.95: Attitude, Position, Velocities for Combined Path in + Configura-

tion
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Figure 3.96: Circle Path with X Configuration

Figure 3.97: Attitude Changes with Circle Path 1
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Figure 3.98: Attitude Changes with Circle Path 2

Figure 3.99: Attitude, Position, Velocities for Circle Path in X Configuration
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Figure 3.100: Motor Speeds for Circle Path in X Configuration

Figure 3.101: Circle Path with + Configuration
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Figure 3.102: Attitude, Position, Velocities for Circle Path in + Configuration

Figure 3.103: Combined Path with X Configuration
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Figure 3.104: Attitude, Position, Velocities for Combined Path in X Configura-

tion

Figure 3.105: Motor Speeds for Circle Path in X Configuration
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Figure 3.106: Combined Path with + Configuration

Figure 3.107: Attitude, Position, Velocities for Combined Path in + Configura-

tion
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Figure 3.108: Standard Path Agriculture Type with X Configuration

Figure 3.109: Attitude, Position, Velocities for Agriculture Path in X Configu-

ration
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Figure 3.110: Standard Agriculture Path Type with + Configuration

Figure 3.111: Attitude Changes with Agriculture Path Type
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Figure 3.112: Attitude, Position, Velocities for Agriculture Path in + Configura-

tion
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3.3.3 Motor Performance and Energy Consumption

For computation of energy consumption, firstly several steps are taken in the pro-

cess of selecting an appropriate brushless motor for the different quadrotor models

considered in this work. Therefore, after a motor selection, the performance charts

included in Appendix A are used to calculate thrust required, throttle percentage,

RPMs and propeller efficiency for each model. Additionally, by using the flight

times during simulation, it is possible to estimate the energy consumption. When

a motor for a multirotor vehicle is chosen, it is suggested to have a 1 to 3 thrust to

weight ratio (T/W). [inn17]. If the weight of the quadcopter model 1 is 14.8 ounces,

3 times this weight will be equal to 44.4 ounces. If this total thrust value is divided

by 4 motors, each motor will need to make around 11.1 ounces of thrust. (Table

3.12)

3.3.3.1 Performance and Energy Consumption Quadrotor Model 1

Weight (g/oz) Battery (Amps/hr) Thrust required (oz) Thrust per motor (oz)

420/14.8 5 44.4 11.1

Table 3.12: Parameters for performance/energy computation Quadrotor Model 1

After finding the motor that can provide the thrust per motor needed, from the

performance charts, the thrust required is 11.24 oz which is very close to 11.1

oz calculated previously. So, the throttle setting is at 74%. It means that to fly

this vehicle in hover mode each motor has to be at 74% of throttle to generate

the required thrust. In addition, the current that each motor will pull out of the

battery will be 6.5 Amps. The total current will be 26 Amps. At 74% throttle the

RPMs are about 17.500 RPM. The propeller efficiency will be about 3.7 grams

of thrust/watt. If the capacity of the battery is 5 Amps/hr and the total current

is 26 Amps, it will have a discharge rate of 26/5 or 5.2C. Therefore, the flight time

can be calculated in the following way:
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Flight T ime =
60min

5.2
= 11.5 Minutes.

Considering the simulation in figure 3.106 which is a 6 minute-simulation approx-

imately. It means that the quadrotor flew for around 6 minutes, then the battery

pack was recharged. It is assumed that 80% of the battery capacity is taken (4

Amps/hr). The remaining 20% of battery energy is left in the pack. After recharg-

ing, it is observed that 3.2 Amps/hr of energy were put back in the battery. Hence,

the energy consumption could be determined as follows:

ε =
3.2

6
= 0.533 Amps/min.

which is the average power use per minute. If the 5 Amps/hr battery pack is de-rated

to 4 Apms/hr, then divided by 0.533, we get:

Flight T ime =
4

0.533
= 7.5 Minutes.

The same calculations apply if another battery pack is added in parallel to have a

higher battery capacity. This will result in a longer flight time.

3.3.3.2 Performance and Energy Consumption Quadrotor Model 2

Weight (g/oz) Battery (Amps/hr) Thrust required (oz) Thrust per motor (oz)

878/30.97 5.5 92.9 23.22

Table 3.13: Parameters for performance/energy computation Quadrotor Model 2

The thrust required for this model is 23.22 oz for each motor. (Table 3.13). The

motor chosen provides 24.4 oz. The throttle setting is at 67%. At this throttle

percentage 11.5 Amps are pulled out of the battery pack. So, the total current is

45 Amps. Additionally, 16.500 RPM are reached at 67% throttle. The propeller

efficiency is at 4 grams of thrust per watt. If the capacity of the battery is 5.5

Amps/hr, the discharge rate will be 8.2C. Hence, the flight time will be:
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Flight T ime =
60min

8.2
= 7.3 Minutes.

For energy computation, the simulation shown in figure 3.103 and its respective

time are taken. The simulation time is 7 minutes and 80% of the battery pack is

considered. After recharge, 3.52 Amps/hr were put back in the battery. Also it was

de-rated to 4.4 Amps/hr. So, the energy consumption is as follows:

ε =
3.52

7
= 0.50 Amps/min.

This is the average consumption per minute. Now, the flight time after being de-

rated is:

Flight T ime =
4.4

0.50
= 8.8 Minutes.

3.3.3.3 Performance and Energy Consumption Quadrotor Model 3

Weight (g/oz) Battery (Amps/hr) Thrust required (oz) Thrust per motor (oz)

1388/49 5.87 147 36.75

Table 3.14: Parameters for performance/energy computation Quadrotor Model 3

The motor selected for the necessary thrust gives 36.4 oz for each individual motor.

(Table 3.14). The throttle is set at 84%. The current got out of the battery pack is

10.5 Amps. The total current is 42 Amps. At 84% the RPM are at about 6250

RPM and 6.8 grams of thrust per watt is the propeller efficiency found. With

a battery capacity of 5.87 Amps/hr, the discharge rate is 42/5 or 7.2C. Then, the

flight time is:

Flight T ime =
60min

7.2
= 8.3 Minutes.

The simulation in figure 3.101 is taken into consideration for energy calculations

with a simulation time of about 5.8 minutes. The battery is recharged and 3.75
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Amps/hr are put back in it. It is also de-rated to 4.96 Amps/hr. Thus, the average

energy consumed per minute is:

ε =
3.75

5.8
= 0.64 Amps/min.

Finally, after the battery is de-rated the flight time will be:

Flight T ime =
4.96

0.64
= 7.75 Minutes.

3.3.3.4 Performance and Energy Consumption Quadrotor Model 4

Weight (g/oz) Battery (Amps/hr) Thrust required (oz) Thrust per motor (oz)

4500/158.73 4 476.2 119

Table 3.15: Parameters for performance/energy computation Quadrotor Model 4

Based on the motor performance charts from Appendix A the best motor option is

the one that provides 119.05 oz. (Table 3.15). The throttle setting is at 100%. The

current pulled out the battery pack is 40 Amps. Hence, the total current is 160

Amps. The RPMs are around 6250 RPM. 3.8 grams of thrust per watt is the

efficiency achieved. The battery capacity is rated at 4 Amps/hr. So, the discharge

is estimated at 160/4 or 40C. Consequently the flight time will be:

Flight T ime =
60min

40
= 1.5 Minutes.

For the model of this case, it can be noticed that it uses a significant amount of

current. Adding another battery in parallel would have to be considered to be

able to get much longer flight times. However, it will increase the vehicle weight

and more energy will be used as well. In addition, the propeller efficiency will be

reduced. The simulation in figure 3.92 is employed and its simulation time is about

4 minutes. After recharging the battery, 2.56 Amps/hr are restored. If the battery

pack is de-rated to 3.2 Amps/hr, the average energy used per minute is:
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ε =
2.56

4
= 0.64 Amps/min.

Next, after de-rating the battery, the flight flight time is:

Flight T ime =
3.2

0.64
= 5 Minutes.

3.3.3.5 Performance and Energy Consumption Quadrotor Model 5

Weight (g/oz) Battery (Amps/hr) Thrust required (oz) Thrust per motor (oz)

350/12.34 2.2 37.2 9.26

Table 3.16: Parameters for performance/energy computation Quadrotor Model 5

During the motor selection process the one that produces 9.20 oz of thrust was

chosen. (Table 3.16). The throttle setting is about 77%. The current used for each

motor is 6.25 Amps. Thus, the total current is 25 Amps. At 77% throttle the

RPMs are approximately 16250 RPM. The efficiency is about 3.63 grams of

thrust per watt. If the battery pack capacity is 2.2 Amps/hr, the discharge rate

is estimated at 25/2.2 or 11.36C. So, the flight time will be:

Flight T ime =
60min

11.36
= 5.3 Minutes.

The simulation considered is visualized in figure 3.96 and the simulation time is

about 6.3 minutes. After the recharging process 1.4 Amps/hr are restored back in

the pack. The battery is de-rated to 1.7 Amps/hr. Therefore, the average energy

consumption per minute is:

ε =
1.4

6.3
= 0.22 Amps/min.

After all, if the battery is de-rated to 1.7 Amps/hr, the flight time is:

Flight T ime =
1.7

0.22
= 7.72 Minutes.
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3.3.3.6 Performance and Energy Consumption Quadrotor Model 6

Weight (g/oz) Battery (Amps/hr) Thrust required (oz) Thrust per motor (oz)

1600/56.4 4 169.2 42.3

Table 3.17: Parameters for performance/energy computation Quadrotor Model 6

The motor selected in this case generates 42.33 oz of thrust. (Table 3.17). The

throttle found is about 98%. The current used is 29.5 Amps for each motor. So,

the total current calculated is 118 Amps. The RPMs at 98% of throttle are around

16250 RPM. The propeller efficiency found is approximately 3.7 grams of thrust

per watt. The battery pack capacity is 3.2 Amps/hr. Hence, the discharge is rated

at 118/4 or 29.5C. Then, the flight time is:

Flight T ime =
60min

29.5
= 2.0 Minutes.

The 5.5 minute simulation shown in figure 3.110 is selected for energy computations.

The average energy used per minute is:

ε =
2.56

5.5
= 0.46 Amps/min.

The above result is obtained when the recharging process shows that 2.56 Amps/hr

are put back. In addition, the battery pack in this case is de-rated to 3.20 Amps/hr.

Consequently, the flight time is:

Flight T ime =
3.20

0.46
= 7.0 Minutes.

The following tables (3.18, 3.19) show a comparison and results summary of the

above calculations.
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Table 3.19: Energy Consumption Comparative Summary
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Chapter 4

Quadrotor Path Planning

Motion planning involves path planning and trajectory planning. Path planning is

an essential feature in autonomous systems. Path planning can be defined as the

search of a feasible path from a starting point to a final point or a goal in which there

should be an appropriate and a collision-free environment. Besides, physical and

kinematic constraints of the vehicle are satisfied. There is an important difference

between path and trajectory planning. The first one takes care of the geometry

evolution of a path. Trajectory planning deals more with the time evolution of a

path. It is more focus on any given path point and at a certain point time. There

is a significant array to design paths. In this research work just path planning with

2D Dubins curves will be considered. However, some 3D paths will be designed as

well.

Dubins paths for an aerial vehicle could be more complex than Dubins car paths

due to the altitude variable. The shortest paths will reduce fuel consumption, travel

time, energy and vehicle durability (life cycle). In fact, an unmanned aerial vehicle

that flies with a constant altitude can save more fuel. In order to deal with path

planning solutions, the vehicle system model has to be defined as well as the reference

frames or coordinate systems used in aeronautics and aerospace. They were covered

and detailed descriptions were provided in chapter 1. Path planning represented in a

2D environment will lead to a path with a constant altitude. Different research tasks

have shown that path planning is a very relevant topic to assure that an UAV can

carry out long distance missions successfully. [Oma12], [Sha+07], [TWS10], [VV14].
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4.1 Dubins Curves

It is shown in Dubins [Dub57] that the shortest path between two points in a plane

is a combination of lines and circular arc segments. Dubins paths for an aircraft

are arranged as low, medium, or high altitude gains. For this work, both a constant

altitude and some altitude changes are examined. There are three options for a

particle to travel. They are a straight line, a left curve and a right curve. The paths

that will result from this combination be either CCC or CSC in which C represents

a circular arc with a radius ρ or Rmin and S represents a straight line tangent to C.

This approach is known as the Dubins path that is a very basic definition. Therefore,

there are different possible path configurations that can be taken from the Dubins

set: D = LSL, LSR, RSR, RSL, LRL, RLR. The arcs represent a left (L) or right

(R) turn and (S) straight line. So, there are six possible paths. The first step to

construct a Dubins path is to determine what kind of path would have to be used.

[Lug+14], [Gry09]. There are even more path planning generation options which

can be found in more detail in [BM12], [Ale17].

4.1.1 Dubins Aircraft Model

An aircraft is considered to be moving with a constant velocity v and a constant

altitude h, g is neglected as an aerial vehicle is going to be considered. Hence, the

system in 2D is:

Dubins’ car model: Dubins’ aerial vehicles model:


ẋ

ẏ

ψ̇

 =


cos ψ

sin ψ

u



ẋ

ẏ

ψ̇

 =


v cos ψ

v sin ψ

ω

 (4.1.1)

Where ω is the turning rate of the vehicle, v is the vehicle velocity, x and y are the

inertial position of the aircraft and ψ is heading angle.
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4.1.2 Dubins Paths

In order to create feasible Dubins paths is necessary to look at the aerial vehicle

constraints. One of the most significant constraints is the minimum turning radius.

In addition to the points (start and goal), the orientation angle is important as well.

Another UAV constraint is safety. However, it is not considered since it is involved

in obstacle avoidance and this aspect is out of this research task scope. So, if the

curvature constraint is denoted as κ the equation for path planning can written as:

Pi(xi, yi, ψi)
κ−→ Pf (xf , yf , ψf ) (4.1.2)

The solution to the above equation can be found based on the steps described in

the following subsections.

4.1.2.1 Minimum Turning Radius

When an UAV is flying along a circle with constant velocity, the radius of the circle

and turning angular velocity are expressed as:

Rmin =
v2

g
√
n2 − 1

(4.1.3)

To get the smallest turning radius, the highest load factor and a low velocity are

desired. Else, to obtain a significant turning rate, the largest possible load factor is

desired as well. The minimum velocity is preferred. At any velocity the maximum

load factor for a steady turning flight is restricted by the available thrust. [And99].

ω =
g
√
n2 − 1

v
(4.1.4)

Where n is the load factor (maximum load an aircraft structure can carry) and g is

the gravity acceleration. The above equations are based on the dynamic performance

of the vehicle considered. A more detailed explanation is provided in appendix B.

Another way to compute the minimum turning radius is presented in [Lug+14] as:

ρmin =
v2

g tan φmax
(4.1.5)
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4.1.2.2 Start and Finish Circles Computation

If the starting point is denoted as Pi(xi, yi, ψi) and the finishing one is Pf (xf , yf , ψf ),

the center of each circle is computed as follows:

CRi = (xRi, yRi) = (xi +Rmin cos ψi yi,− R sin ψi) (4.1.6)

CLi = (xLi, yLi) = (xi −Rmin cos ψi yi,+ R sin ψi) (4.1.7)

CRf = (xRf , yRf ) = (xf +Rmin cos ψf yf ,− R sin ψf ) (4.1.8)

CLf = (xLf , yLf ) = (xf −Rmin cos ψf yf ,+ R sin ψf ) (4.1.9)

Where Rmin is the minimum turn radius.

An alternative way to express the above equations based on aircraft performance is

as follows:

for Ci(xci, yci):

Cxci = xi +Rmin cos
(
ψi +

π

2

)
(4.1.10)

Cyci = yi +Rmin sin
(
ψi +

π

2

)
(4.1.11)

and for Cf (xcf , ycf ):

Cxcf = xf +Rmin cos
(
ψf +

π

2

)
(4.1.12)

Cycf = yf +Rmin sin
(
ψf +

π

2

)
(4.1.13)

4.1.2.3 Heading Angle and Straight Line Segment χ Computation

The angle ψL is the angle measured from the straight line segment χ(ci−cf) to the y

axis and is given by:

ψL = ψci−cf = tan−1

(
ycf − yci
xcf − xci

)
(4.1.14)
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The shortest path is determined by comparing the distance between the center of

the circles. The distance between the center of the circles CRi and CRf is computed

as:

χ(ci−cf) =
√

(xcf − xci)2 + (ycf − yci)2 (4.1.15)

4.1.2.4 Length Dubins Path Computation

The total length of the Dubins path is:

χDubins = χarci + χtangent + χarcf (4.1.16)

4.1.3 Dubins Airplane Paths

It is possible to extend the previous model to a 3D one. An important consideration

regarding disturbances is that wind is not accounted in the motion equations when

the Dubins aircraft model is used. So, the kinematics model can be visualized as:


ẋ

ẏ

ż

ψ̇

 =


v cos γ cos ψ

−v cos γ sin ψ

v sin γ

ω

 (4.1.17)

Where v is the airspeed, ψ is the heading angle and γ is the flight angle. It is

assumed that a low level autopilot adjusts the airspeed to a control value vc, and

the flight path angle to a control value γc. The roll angle φ is also involved and is

adjusted to a control value φc. There is a relationship between the yaw angle ψ and

the roll or bank angle φ that is given by:

ψ̇ =
g

v
tan φ (4.1.18)

Where g is the gravity acceleration. Another assumption considered is that the

autopilot is tuned properly. Therefore, the airframe model can be described as:

[Li+15], [Lug+14].
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

ẋ = v cos ψ cos γ

ẏ = −v sin ψ cos γ

ż = v sin γ

ψ̇ =
g

v
tan φ


(4.1.19)

The height of the vehicle can be modified by changing the flight path angle γ which

is defined in the next sections. In addition, the physical constraints of the aircraft

place some limitations to the roll and flight path angles. These constraints can be

represented as: [OBM15].

|φc| = 6 φ̄ (4.1.20)

|γc| = 6 θ̄ (4.1.21)

Hence, the kinematic model with the constraints is given by:



ẋ = v cos ψ

ẏ = −v sin ψ

ż = |u1| 6 1

ψ̇ = |u2| 6 1


(4.1.22)

And to define a Dubins path for a vehicle, the kinematics model is expressed as:


ṗx = v cos ψ

ṗy = v sin ψ

ψ̇ = u

 (4.1.23)

Where v is the vehicle speed, u is the optimal time for the path between the initial

and final points or configurations (Pi, Pf ). As remarked before, the minimum Dubins

distance path consists of a circular arc of radius Rmin which starts at the initial

configuration, followed by a straight line and ending with another circular arc of

radius Rmin at the final configuration. There are four possible paths which are

made of arcs and straight lines, RSR, LSR, LSL, and RSL. They will be described

in the following sections.
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4.1.4 Shortest Dubins Paths

4.1.4.1 Case I: RSR

The RSR paths is made of a right-handed arc in a clockwise rotation until the ψL

angle as shown in figure 4.1 is achieved. It is followed by a straight line and finally

followed by another right-handed arc up to ψf . As displayed in figure 4.1 PM and

PN are parallel. Likewise, Ci and Cf are also parallel. The length of the middle

straight line in the Dubins path is given as:

χtangent = χ(ci−cf) (4.1.24)

And the direction of this segment is:

ψl = ψci−cf (4.1.25)

The distance traveled along χarci is given as:

ϕiRmin

[(
ψL −

π

2

)
−
(
ψi −

π

2

)]
(4.1.26)

Then, the distance traveled along Sarcf is given as:

ϕfRmin

[(
ψf −

π

2

)
−
(
ψL −

π

2

)]
(4.1.27)

After, the total length is expressed by:

χDubins1 = ϕiRmin

[(
ψL −

π

2

)
−
(
ψi −

π

2

)]
+χtangent(ci−cf)+ϕfRmin

[(
ψf −

π

2

)
−
(
ψL −

π

2

)]
(4.1.28)

4.1.4.2 Case II: RSL

The RSL case can be visualized in figure 4.4. It is a right-handed arc with a clockwise

rotation up to the ψL angle is accomplished. Then, it is followed by a straight line

and finally by a left-handed arc until ψf is reached. In this case PM , PN , Ci and Cf
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are not parallel anymore. So, the length of the straight line and the angle are given

as:

χtangent =
√
χ2

(ci−cf ) − 4R2
min (4.1.29)

ψl = sin−1

[
2Rmin

χtangent

]
(4.1.30)

And ψL is given as:

ψL = ψci−cf + ϕiψl (4.1.31)

The distance traveled along χarci is given as:

Rmin

[
(ψL + ϕi + ψl)− ψL

(
ψi −

π

2

)]
(4.1.32)

Then, the distance traveled along χarcf is given as:

Rmin

[
(ψL + π)−

(
ψf +

π

2

)]
(4.1.33)

Finally, the total length is expressed by:

χDubins2 =
√
χ2

(ci−cf ) − 4R2
min+Rmin

[
(ψL + ϕi + ψl)− ψL

(
ψi −

π

2

)]
+Rmin

[
(ψL + π)−

(
ψf +

π

2

)]
(4.1.34)

Where ϕ indicates how the path is moving along the circles arcs. The directions can

be clockwise or counter-clockwise. (Figure 4.4).

4.1.4.3 Case III: LSR

It starts with a left-handed arc in a counter-clockwise direction until the heading

angle ψL is obtained. Then, it is followed by a straight line. After that, it is followed

by a right-handed arc up to ψf . (Figure 4.3). The distance traveled along χarci is

given as:

Rmin

[(
ψi +

π

2

)
− (ψL + ϕiψl)

]
(4.1.35)

January 9, 2018



4.1. Dubins Curves 148

After that, the distance traveled along χarcf is given as:

Rmin

[(
ψf −

π

2

)
− (ψl + ψL + ϕiψl − π

]
(4.1.36)

Therefore, the total length is expressed by:

χDubins3 =
√
χ2

(ci−cf ) − 4R2
min+Rmin

[(
ψi +

π

2

)
− (ψL + ϕiψl)

]
+Rmin

[(
ψf −

π

2

)
− (ψl + ψL + ϕiψl − π

]
(4.1.37)

4.1.4.4 Case IV: LSL

This case is partly similar to the RSR path. The LSL is a left-handed arc generated

with a counter-clockwise rotation until the heading angle ψL is achieved. Then, it

is followed by a straight line. At the end, it is followed by another left-handed arc

until ψf . (Figure 4.2). The distance traveled along χarci is expressed as:

ϕiRmin

[(
ψf +

π

2

)
−
(
ψL +

π

2

)]
(4.1.38)

Similarly, the distance traveled along χarcf is given as:

ϕfRmin

[(
ψL +

π

2

)
−
(
ψf +

π

2

)]
(4.1.39)

Lastly, the total length is expressed as:

χDubins4 = ϕiRmin

[(
ψf +

π

2

)
−
(
ψL +

π

2

)]
+χ(ci−cf )+ϕfRmin

[(
ψL +

π

2

)
−
(
ψf +

π

2

)]
(4.1.40)

The shortest Dubins paths in 2D are shown in Figures 4.1, 4.2, 4.3, and 4.4.
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Figure 4.1: RSR Dubins path

Figure 4.2: LSL Dubins path
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Figure 4.3: LSR Dubins path

Figure 4.4: RSL Dubins path
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4.1.5 Helical Paths

A helical path can be expressed as:

p(t) = Ch +


Rh cos (Πh t+ ψh)

Rh sin (Πh t+ ψh)

−t Rh tan θh

 (4.1.41)

Where p(t) = [px py pz]
T is the position over the path, and Ch = [Cx Cy Cz] is the

center of the helix. The initial position of the helix is given by:

p(0) = Ch +


Rh cosψh

Rh sinψh

0

 (4.1.42)

Where Rh is the radius, Π = +1 means that the helix rotates in a clockwise direction

and Π = -1 is the counter-clockwise direction. θh is the path angle of the helix. Then,

a helical path is defined as:

Ph = (Ch ψh Πh Rh θh) (4.1.43)

Dubins airplane paths are more complex due to the altitude component that is

involved. There are three cases which depend on the difference of the altitude

among the start and final positions or configurations. These cases are defined as low

altitude, medium altitude and high altitude. [CL07], [OBM15]. H will be treated

as z for altitude and when referring to start and final configurations or altitude

difference.

Altitude between the initial and final configurations is low if:

|Hf −Hi| < χDubins ≤ Rmin tan θ̄ (4.1.44)

On the other hand, the altitude is medium if:

χDubins Rmin tan θ̄ < |Hf −Hi| ≤ (χDubins Rmin + 2πRmin) tan θ̄ (4.1.45)
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Likewise, the altitude is high if:

|Hf −Hi| > (χDubins Rmin + 2πRmin) tan θ̄ (4.1.46)

The path climbs and descends from Hi to Hf when γ is changed. So, it is expressed

as:

γ = tan−1

(
Hf −Hi

χtangent

)
(4.1.47)

4.1.6 Turning Flight Analysis

If the lift vector is rotated about the velocity vector, a level turn is achieved. Its

horizontal component makes the aircraft turns. In the helicopter case the centripetal

force in involved in turning maneuvers. This force pull the vehicle towards the curve

center and needs to be banked for an appropriate turn. When this flight condition is

reached, it is implied that the center of mass of the aircraft moves around a circular

arc with constant turn radius, bank angle (roll angle) φ and thrust. Therefore, the

equations for turning flight are as follows:

n = secφ (4.1.48)

The load factor n is straight related to the bank angle φ. Also, the angle of attack

is assumed very small (αa is about 1). However, the bank angle is not considered as

a small angle. These conditions are for steady turning flight. Hence, the following

equations are a simplification of this flight mode: [McC05]

Lcosφ−W = 0

D − T = 0

M = 0

Lsinφ =
W

g

v2

Rmin

(4.1.49)

Where Rmin is the constant radius of the turn and v is the airspeed and M is the

pitch moment which is taken as zero in steady turning flight. L, T , W and D
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are Lift, Thrust, Weight and Drag. Consequently, from the above equations the

following expressions are inferred:

tanφ =
v2

Rmin

φ = tan−1 v2

Rmin

(4.1.50)

Likewise, the velocity can be also expressed in terms of Rmin and φ as:

v =
√
gRmintanφ (4.1.51)

The radius can also be written in terms of bank angle and the airspeed as in equation

4.1.5. Additionally, the radius can be also expressed in the following ways: [McC05]

Rmin =
Wv2

Lgsinφ

Rmin =
2

ρgCL

1

sinφ

W

S

(4.1.52)

By using the above relationship, the turn radius can be written as:

Rmin =
2

ρgCL

n√
n2 − 1

W

S
(4.1.53)

Where W
S

is the wing load and CL is the lift coefficient. The angular turn speed is

given by:

ω =
v

Rmin

ω =
gtanφ

V

(4.1.54)

Thus, the time required for an aircraft to make a revolution around a circular path

is:

t =
2πv

gtanφ
(4.1.55)

Further, the angle of attack αa for an aircraft is defined as:

tanαa =
w

u
(4.1.56)
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Figure 4.5: Forces in Climbing Flight

Taken from: [McC05]

Where w and u are the aircraft velocity components in the E-Frame. So, according

to the geometry in figure 4.5, the pitch angle, the angle of attack and the flight path

angle are related as follows:

θ = αa + γ (4.1.57)

The flight path angle γ is the angle between the x axis and the velocity vector. Both

the angle of attack and the flight angle can be positive or negative. For steady flight

conditions the angle of attack is taken as positive. A steady flight without turns will

take a load factor n = 1, while in turning flight a greater load factor is required. The

equations for turning flight when climbing or descending are the same as the ones

described above. Another very important issue is to compute the required minimum

thrust when climbing in turning flight mode. It can be calculated in terms of the

bank angle as follows: [McC05]

Tmin = 2W

√
CdiCd
cos2φ

(4.1.58)

Based upon the above equation, it is also likely to express the bank angle while

climbing as:
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Figure 4.6: Forces in Turns Climbing Flight

Taken from: [McC05]

φ = cos−1

√
4π2CdiCD
T 2
min

(4.1.59)

Where Cdi and Cd are drag coefficients.

Some parameters are given to estimate a minimum thrust that would be required

according to the specifications given in tables 4.1, 4.2 (γmax, φ). Based on the plot

in figure 4.7, it may be likely to establish an approximate thrust value to be related

with the results from simulations. Besides, from equation 4.1.52, the bank angle can

be given as:

φ = sin−1

[
Wv2

RminTming

]
(4.1.60)

The following simulations show the different Dubins paths if fixed-wing drones are

considered. For this thesis work, low and high altitude cases are the only the ones

employed. However, details regarding the medium altitude case can be found in

[OBM15]. For the Quadrotor case, different values for θmax, ψmax, ψmin, Hi, Hf

and Rmin are taken. (Table 4.2). Some feasible Dubins paths for a quadrotor are

proposed and shown in the below figures. These types of paths are meaningful when

a quadrotor is flying at constant velocity and where there are roll and pitch angle
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Figure 4.7: Thrust required while Climbing in Turning Conditions

constraints. The velocity assumed is 15m/s. The minimum radius is reduced to

avoid large arcs and keep VTOL features. This fact leads to compute a maximum

flight path angle γ of 1.22 radians which is very close to the constraint considered in

[OBM15]. The minimum radius for helix path is taken as 1. It can travel clockwise

or counter-clockwise and it just represents a path extension. In this case, attitude

and altitude control performance results are presented. (Figure 4.29). To find the

flight path angle values after simulation (Table 4.3), equation 4.1.47 is employed.

Similarly, the pitch angle θ is computed by using equation 4.1.57, taking αa = 1

and the other parameters as displayed in table 4.3. (Results got in table 4.5). For

roll angle φ calculation, the Rmin is set based on table 4.2. Hence, by employing

equation 4.1.50, the roll angle φ obtained is in table 4.4 . In table 4.6 the estimation

obtained for the heading ψ angle is shown. For this angle, equations 4.1.14, 4.1.31

are applied. These computations are done just for the Dubins paths considered

suitable for a quadrotor and assuming a + configuration.

Dubins paths for Fixed-Wing Aircrafts Figures 4.8 to 4.15

Dubins paths for Quadrotors Figures 4.16 to 4.26
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Dubins Path Rmin γmax (rad) ψi ψf Hi Hf SDubins

RSR low altitude 40 m 10*π/180 4.712 0 150 200 353.42 m

RSR high altitude 40 m 10*π/180 4.712 0 100 350 451.32 m

RSL low altitude 40 m 10*π/180 1.22 -1.22 250 300 317.3 m

RSL high altitude 40 m 10*π/180 -1.22 -1.22 100 350 392.75 m

LSR low altitude 40 m 10*π/180 1.22 1.22 100 125 392.75 m

LSR high altitude 40 m 10*π/180 1.22 1.22 400 150 393 m

LSL low altitude 40 m 10*π/180 1.22 -2.35 100 125 210.44 m

LSL high altitude 40 m 10*π/180 1.22 -2.35 350 100 215 m

Table 4.1: Dubins Parameters for Fixed-Wing Paths

Dubins Path Rmin γmax (rad) ψi ψf Hi Hf SDubins

RSR low altitude 5 m 1.22 0.34 4.01 100 170 210.5 m

RSR high altitude 5 m 1.22 0.34 4.712 100 300 218.62 m

RSL low altitude 5 m 1.22 5.75 -6.8 150 200 145.07* m

RSL high altitude 5 m 1.22 5.2 -6.8 350 450 147.85* m

LSR low altitude 5 m 1.22 1.22 1.22 100 350 153.2 m

LSR high altitude 5 m 1.22 1.22 1.22 200 350 230.82 m

LSL low altitude 5 m 1.22 1.22 -2.35 350 90 149.8 m

LSL high altitude 5 m 1.22 -1.22 -2.35 350 100 233.18 m

Table 4.2: Dubins Parameters for Quadrotor Paths
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Flight Path Angle γ

RSR Low Altitude = 0.75 rad

RSR High Altitude = 0.73 rad

RSL Low Altitude = 0.33 rad

RSL High Altitude = 0.6 rad

LSR Low Altitude = 0.9 rad

LSR High Altitude = 0.57 rad

LSL Low Altitude = 0.78 rad

LSL High Altitude = 0.77 rad

Table 4.3: Flight Angle Computation

Roll Angle φ

φ = 1.53 rad

Table 4.4: Roll Angle Computation

Pitch Angle θ

RSR Low Altitude = 1.75 rad

RSR High Altitude = 1.73 rad

RSL Low Altitude = 1.33 rad

RSL High Altitude = 1.6 rad

LSR Low Altitude = 1.9 rad

LSR High Altitude = 1.57 rad

LSL Low Altitude = 1.78 rad

LSL High Altitude = 1.77 rad

Table 4.5: Pitch Angle Computation
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Yaw Angle ψ

RSR Low Altitude = 1.52 rad

RSR High Altitude = 1.54 rad

RSL Low Altitude = 0.85 rad

RSL High Altitude = 0.85 rad

LSR Low Altitude = 0.84 rad

LSR High Altitude = 0.84 rad

LSL Low Altitude = 0.82 rad

LSL High Altitude = 1.13 rad

Table 4.6: Yaw Angle Computation

Figure 4.8: RSR Dubins Path Low Altitude
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Figure 4.9: RSR Dubins Path High Altitude

Figure 4.10: RSL Dubins Path low Altitude
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Figure 4.11: RSL Dubins Path High Altitude

Figure 4.12: LSR Dubins Path Low Altitude
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Figure 4.13: LSR Dubins Path High Altitude

Figure 4.14: LSL Dubins Path Low Altitude
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Figure 4.15: LSL Dubins Path High Altitude

Figure 4.16: RSR Dubins Path Low Altitude
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Figure 4.17: RSR Dubins Path High Altitude

Figure 4.18: RSR Dubins Path (top view)
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Figure 4.19: RSL Dubins Path For Low Altitude

Figure 4.20: RSL Dubins For High Altitude
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Figure 4.21: LSR Dubins Path Low Altitude

Figure 4.22: LSR Dubins Path High Altitude
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Figure 4.23: LSR Dubins Path (top view)

Figure 4.24: LSL Dubins Path Low Altitude
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Figure 4.25: LSL Dubins Path High Altitude

Figure 4.26: LSL Dubins Path Low (top view)
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Figure 4.27: Helix Dubins Path X and + Configurations

Figure 4.28: Attitude Changes With Helix Path
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Figure 4.29: Attitude, Position and Velocities for Helix Path in X/+ Configura-

tions
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For the RSL case an important altitude difference between low and high is not

achieved. For the other cases, a relevant altitude gain is observed. Disturbances are

not considered, for instance, side slip angle due to wind. So, the heading angle is

the course angle.

As mentioned in a preceding this section, the centripetal force is essential for turning

flight in helicopters. It is defined as follows:

CP =
mv2

Rgmin

(4.1.61)

Figure 4.30: Centripetal Force for a 360 ◦ Turn

Taken from [Wag96] (Modified by the author)

If the square velocity variable in the above equation is analyzed carefully, it is

inferred that the faster the vehicle flies, the greater the centripetal force. It is

absolutely necessary to be able to maintain a constant turn. In addition more

thrust is needed. If a helicopter keeps a constant bank angle and the total thrust

is increased, the centripetal force increases as well. So, at this point, the helicopter

can climb. This fact confirms the relationship between airspeed and bank angle for

a given turn rate. The calculation of the bank angle to maintain a standard turn

rate is as follows:

A standard rate known also as a rate-1 : 3 ◦ per second, 180 ◦ per minute or 360 ◦

per 2 minutes.

January 9, 2018



4.1. Dubins Curves 172

So, the bank angle calculation is:

For instance, taking the speed (15m/s) established in section 4.1.6, for a standard

turn rate, the first step is to remove the last digit (5). It becomes (1). Then, add

7 to 1, and it gives 8. Thus, the aircraft requires ◦8 bank angle for a standard

rate (rate-1). Now, for the turn radius a similar principle is applied. The faster

the helicopter flies, the greater the bank angle. Therefore, if airspeed increases, the

centripetal force will increase as well. The outcome will be a larger turn radius.

(Figure 4.31). As seen in the below figure, if two helicopters make the same turn,

they will have to finish at the same heading at the end of the maneuver. [Wag96].

Figure 4.31: Effects of Different Speeds on the Bank Angle and Turn Radius

Taken from [Wag96] (Modified by the author)

Another particular approach for Dubins paths simulation is proposed in [Li+15].

Similarly, in this chapter a very close approximation is considered by using an au-

topilot simulator which totally includes the quadrotor dynamics. So, the focus on

this research section is more on path planning design with waypoints to establish

the quadrotor performance. For the first simulation eleven waypoints are plotted

and the flight modes are changed from AUTO mode to CIRCLE mode in order to

apply the Dubins concept. Besides, a take-off point and a land point are fixed.

While climbing, the AUTO mode is changed to the CIRCLE one approximately

every 50 meters. The maximum altitude is fixed at 200 meters. In addition, around
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some points the quadrotor flight mode is changed to CIRCLE. (Figures 4.33, 4.34,

4.35). Additionally, circles are performed in clock and counterclockwise (Figures

4.43, 4.44, 4.45, 4.46). The battery voltage parameter is changed during runtime

to verify energy consumption. An outline of the simulation data and energy use is

presented in tables 4.7 and 4.8.

Figure 4.32: Dubins Path based on [Li+15]

Figure 4.33: Application of Dubins Path with Waypoints in Auto/Circle Mode 1
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Figure 4.34: Application of Dubins Path with Waypoints in Auto/Circle Mode 2

Figure 4.35: Application of Dubins Path with Waypoints in Circle Mode
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Figure 4.36: Attitude for Dubins Path with Waypoints in Auto Mode

Figure 4.37: Attitude Speeds for Dubins Path with Waypoints in Auto Mode
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Figure 4.38: Circle Flight Mode when climbing

Figure 4.39: Attitude for Dubins Path when climbing in Circle Mode
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Figure 4.40: Attitude Speeds for Dubins Path when climbing in Circle Mode

Figure 4.41: Circle Flight Mode Path Clockwise 1
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Figure 4.42: Circle Flight Mode Path Clockwise 2

Figure 4.43: Circle Flight Mode Path Anti-Clockwise 1
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Figure 4.44: Circle Flight Mode Path Anti-Clockwise 2

Figure 4.45: Attitude for Circle Flight Mode Clockwise/Anti-CLockwise
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Table 4.7: Autopilot Data for Straight-Circle Paths 1
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Table 4.8: Autopilot Data for Straight-Circle Paths 2
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The radii of the circles are changed as it is noticeable in figures 4.34, 4.35. The

throttle percentage measured is between 30-40%. Since throttle is given to get the

desired altitude, it has an influence in the other orientation angles. Else, the motor

configurations (X, +), make the vehicle incline or tilt in different ways depending on

the command received. The quadrotor will have to reduce and/or increase thrust in

the respective motors to change its orientation and position to get a waypoint. The

roll and pitch angles remains about 0 degrees in AUTO mode. However, there is an

important pitch angle change when there are altitude variations (Figure 4.36). The

negative values observed just indicate the tilt direction and does not affect the angle

magnitude. It seems that there is some deceleration when the different waypoints

are reached. So, because of this fact, the thrust vector changes its direction and the

vehicle experiences a lift loss. More thrust has to be applied to compensate it. This

would be an indication of the attitude speed fluctuations noted in figures 4.37 and

4.40. When ascending in CIRCLE mode flight there are abrupt attitude changes.

The roll angle is altered but not as much as pitch and yaw. When the flight mode

is changed to AUTO, the attitude tends to stabilize (figure 4.39). Similarly, the

speeds in this climbing circle mode condition get some important peaks. The yaw

speed reaches values over 1. Just as soon as this flight mode is disabled and AUTO

is set, the speeds stay or remain close to 0 (figure 4.40). Regarding CIRCLE mode

in clockwise-anticlockwise directions, there are also significant angles modifications

caused by the frequently clockwise-anticlockwise direction changes during simula-

tions (figure 4.45). In this case, the yaw angle has a large shift. Once CIRCLE mode

is off during some straight segments of the path, the roll angle tries to be steady

as AUTO mode is enabled. Finally, the pitch angle also changes continuously due

to the fact that the platform will need to tilt, accelerate or decelerate to come to a

specified point. The battery voltage parameter is modified from 12.6 to 14.0 volts

and the energy use is presented in the above tables.
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Chapter 5

Conclusions and future

developments

5.1 Conclusions

In chapter 2, a complete model is given using the Newton-Euler approach. Aerody-

namics effects such as blade flapping are neglected for control purposes. In chapter

3, it can be seen from the step response plots that the system has an acceptable

stability. It is noticed that the analytical calculation itself of the PID gains is not

enough to get a suitable performance. So, a MATLAB PID tool is used to adjust the

gains. The PD control simulations for models 1, 2 and 3 show some overshoot but

then a good attitude stabilization is obtained. In the case of the altitude response,

there is also an important overshoot and the control signal measured goes away from

the desired. This fact could be due to some altitude increase or some PID gains

tuning adjustment still required. For models 4, 5 and 6, there is an outstanding

PD and PID control performance. Attitude control signals show a very small peaks

and they are very close to the desired ones. Some kind of slow response is noticed

for the yaw angle. Anyway, a very good stabilization is achieved then. The average

of the dynamics values taken can be acceptable for the simulink model but some

additional changes are necessary. Regarding the simulations presented in section

3.3, the dynamics values are individually considered for each model.

During the first set of simulations (models 1, 2 and 3), it is noted that there are
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some kind of variations or oscillations particularly in the measured position. It

appears to be that there are less oscillations when the moments of inertia values

are larger. On the other hand, there are more oscillations when the moments of

inertia are small. Some oscillations also result in attitude when a larger mass value

is taken. However, after a PID tuning and by using an average moments of inertia

and gains, the performance improves and it could be determined that the dynamics

variables mentioned would have a pertinent impact on the PID control performance.

In any case, an important attitude/altitude stabilization is obtained. The attitude

changes are very fast in time. It is inferred that both configurations (X,+) generate

some negative values for some attitude changes. This may be found uncommon but

there are some kind of similarities with other research works. This fact could be

realated with the way in which thrust is increased or decreased. Based upon the

results for the other models (4, 5 and 6), significant stabilization is noticeable in

both attitude and position caused by modification of the dynamics numerical values

and PID gains. Else, the drag and thrust coefficients as well as motor speeds may

be higher. When the simulations in + configuration are carried out, it seems a bit

more difficult for the quadrotor to take off in a stable way and fly to reach the initial

point of the path. Therefore, the initial conditions may be adjusted or thrust would

have to be increased.

It is a plus to include in the simulations the motor dynamics because it is possible

to get some information about throttle percentage and RPMs changes over time for

a given path or maneuver. Since PD control shows appropriate results to some ex-

tent, it seems to be enough for attitude stabilization. In some way it is close to some

analyses presented in other studies. It is important not to have a big voltage differ-

ence in the rotor dynamics loop when voltage inputs are considered. So, a voltage

operating point is necessary in hover condition. Likewise, it is essential to tune the

controller appropriately. Otherwise, it seems that the controller could function in

an unstable and an unusual manner. In circular paths, when the simulation time is

close to the end, the attitude angles φ and θ begin having changes in very small time

steps and fluctuate between positive and negative values. This may be originated

by the configuration type and flight path angle variations. The ψ angle remains at
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zero degrees getting a stabilization point. Some of the results acquired for attitude

and altitude during control simulations are similar to the ones presented in [DTX15]

and [Cut12]. In helix path, a stabilization is observed in less than 30 seconds. The

measured signals correspond with the commanded inputs.

Concerning energy consumption, the quadrotor model 4 is the one that reaches the

most. Hence, its flight time reduces considerably compared to the other models.

The heavier the quadrotor the higher the energy use. It can be inferred that the

system is inefficient. For design aims, a light structure and payloads should be

selected. It looks like LiPo batteries do not save much energy. Time aloft would

need to be reduced to try to save energy. In chapter 4, as proposed, a quadrotor

can fly in RSR, RSL, LSL and LSR path modes keeping a steady minimum radius

and speed. Similarly, another way for turning flight can be accomplished just by

taking a constant speed as presented in [Wag96]. Thus, very similar paths without

applying Dubins curves can be realized. It is clearly determined that the battery

charge drops considerably after a 7-minute-flight when climbing in circle flight mode

and going around some waypoints. When the battery voltage parameter is changed

for a larger value, it does not really have a relevant influence in getting longer flight

times. This estimation of energy spent matches with some research papers which

state that quadrotors have a relevant energy use. Furthermore, it is noticed that

there are higher response peaks for attitude and speeds when circle mode is activated.

This could be because of important deceleration and position changes, particularly

in altitude. Besides, flight constraints in this mode are not considered. This fact is

especially remarkable while climbing in circles at different altitude points.

5.2 Recomendations and Future Work

Although there have been many research works about applying intelligent control

such as fuzzy logic and neural networks (NN) to quadrotors, it will be interesting

to try to keep exploring these kind of control techniques not only for control goals

but also for path planning and path following. The system model with voltage as

inputs can be improved by computing a running voltage point through some kind

January 9, 2018



5.2. Recomendations and Future Work 186

of experimental test. Aggressive maneuvers such as inverted flight would be also

a matter of importance since it could require a propeller that can have a variable

pitch to get such maneuvers. This fact will possibly increase the control variables.

A comparison or a combination of classical and intelligent control laws would be a

nice point of interest. It seems to be an acceptable approach to be able get a robust

control. Improving the design of helix paths in which the whole dynamics and control

system are included, can be a very interesting research goal. It will be also relevant

to determine accurately if there could be other attitude constraints that can make

possible to apply Dubins paths. It is required to meet the flight constraints (load

factor, thrust and stall) in turning flight mode. It will be significant to explore in

depth the feasibility of these paths being aware of the VTOL capabilities. Likewise,

it can be also important to explore an alternative for control implementation in

a quadrotor platform. It could help to determine if the oscillations for attitude

control in turning flight are close to the reality. When a quadrotor is designed, the

components would need to be chosen carefully. Light components are suggested.
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Appendix A

Motor Performance Calculation

Charts

Figure A.1: Quadrotor Model 1
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Figure A.2: Quadrotor Model 1

Figure A.3: Quadrotor Model 1
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Figure A.4: Quadrotor Model 1

Figure A.5: Quadrotor Model 2
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Figure A.6: Quadrotor Model 2

Figure A.7: Quadrotor Model 2
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Figure A.8: Quadrotor Model 2

Figure A.9: Quadrotor Model 2
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Figure A.10: Quadrotor Model 2

Figure A.11: Quadrotor Model 3
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Figure A.12: Quadrotor Model 3

Figure A.13: Quadrotor Model 4
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Figure A.14: Quadrotor Model 4

Figure A.15: Quadrotor Model 4

January 9, 2018



Chapter A. Motor Performance Calculation Charts 195

Figure A.16: Quadrotor Model 4

Figure A.17: Quadrotor Model 5
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Figure A.18: Quadrotor Model 5

Figure A.19: Quadrotor Model 5
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Figure A.20: Quadrotor Model 5

Figure A.21: Quadrotor Model 6
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Figure A.22: Quadrotor Model 6

Figure A.23: Quadrotor Model 6
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Figure A.24: Quadrotor Model 6
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Appendix B

Minimun Radius Turns

The relationship forces for a level turn is influenced by the roll angle φ. That is, the

lift force L and the roll angle equals the weight W .

L cosφ = W (2.0.1)

The aircraft altitude stays constant under this condition. Likewise, the equation for

a level turn is given as:

m
V 2

R
= L sinφ (2.0.2)

In the below equation it can be seen that mV 2

R
is a centrifugal force which is balanced

by a radial force L sinφ. The most important features in a turning maneuver are

the turn radius and the turn rate ω = dψ
dt

. It means that a turn rate is basically the

angular velocity of the aircraft along the curved path. The angle φ and L are not

independent, there is a relationship for a level turn according to equation 2.0.1 that

can me rewritten as follows:

cosφ =
W

L
=

1

L/W
(2.0.3)

In the below equation there is a very significant parameter related to the performance

of a turn flight which is known as the load factor n given by:

n =
L

W
(2.0.4)
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Therefore, equation 2.0.3 is rewritten as:

φ = sin−1 1

n
(2.0.5)

Since the turn performance depends on the load factor, to be able to obtain an

expression for the turning radius, the following substitution is included in equation

2.0.2:

m =
W

g
(2.0.6)

It is important to mention that the roll angle φ depends on the load factor n and

the other way around, if the load factor is known, then we can know the roll angle.

Hence, if m = W/g we get:

R =
m V 2

L sinφ
=
W

L

V 2

g sinφ
=

V 2

g n sinφ
(2.0.7)

Then, from equation 2.0.3 it is obtained:

cosφ =
1

n
(2.0.8)

From the following trigonometric identity:

cos2φ+ sin2φ = 1 (2.0.9)

Results:

(
1

n

)2

+ sin2φ = 1 (2.0.10)

Also it can be expressed as:

sinφ =

√
1− 1

n2
=

1

n

√
n2 − 1 (2.0.11)

Now by substituting equation 2.0.10 in 2.0.6 gives:

[
Rmin =

V 2

g
√
n2 − 1

]
(2.0.12)
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Which is the expression for turning radius. It is relevant to note that this radius is

only dependant on V and n. To get the minimum radius Rmin, it would be suitable

to have the highest load factor whenever it can be possible. In the same way, it would

be helpful to have the lowest velocity as possible. Now, recalling from physics, the

angular velocity is related to these variables as follows:

ω =
V

R
(2.0.13)

Similarly, by substituting equation 2.0.12 in 2.0.11, we get:

[
ω =

V 2

g
√
n2 − 1

]
(2.0.14)

To be able to obtain the largest turn rate, it would be desirable to have the highest

load factor and the lowest velocity as possible.
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Appendix C

Calculation of Moments of Inertia

In a rigid body model the moments of inertia are differential elements of mass dm

which fill the area occupied by the body. Hence, the moment of inertia defines the

required torque for a desired change in angular velocity about an axis of rotation.

Figure C.1: Mass of Differential Element dm WRT a Body Fixed Frame x y z

Taken from: [Gin98] (Modified by the author).

The position vector Φ̄A and angular velocity ω are:

Φ̄A = xī+ yj̄ + zk̄

ω̄ = ωxī+ ωy j̄ + ωzk̄
(3.0.1)
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If the above expressions are substituted in equation 3.0.3 for angular momentum

and converted to an integral, we obtain:

H̄A =

∫∫∫
(xī+ yj̄ + zk̄)× [(ωxī+ ωy j̄ + ωzk̄)× (xī+ yj̄ + zk̄)]dm (3.0.2)

If ωx ωy ωz are factored out, it becomes:

Ixx =

∫∫∫
(y2 + z2)dm

Iyy =

∫∫∫
(x2 + z2)dm

Izz =

∫∫∫
(x2 + y2)dm

(3.0.3)

Ixy = Iyx =

∫∫∫
xydm

Ixz = Izx =

∫∫∫
xzdm

Iyz = Izy =

∫∫∫
yzdm

(3.0.4)

The terms Inn are the moments of inertia and Imn are the porducts of intertia.

Therefore, a simplified expression to define angular momentum is given by:

HA = I ω (3.0.5)

Where A is the center of mass that is the origin for calculations and I is the inertia

matrix (see chapter 2). The net momentum of a rigid body is:

MA =
dHA

dt
(3.0.6)

The moments of inertia can be calculated assuming that the motors (M1 M2 M3 M4)

are alike and cylindrical- shaped. The quadrotor structure is symmetrical. The

motor radii are rM1 rM2 rM3 rM4, with masses mM1 mM2 mM3 mM4 and heights

hmotor1 hmotor2 hmotor3 hmotor4. Additionally, the quadrotor body has radius rB, mass

mB and height hB. Similarly, it is considered as a cylinder. Hence, the moments of

inertia calculations can be split in two parts: moments of inertia about the x and y

axes and second, around the z axis. So, the moment of inertia around the x axis is

generated because of:
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• � The motion of M2 and M4 around the x axis.

• � The motion of M1, M3 and quadrotor body around x axis.

Figure C.2: Moments of Inertia of a Quadrotor

Thus, the cylinder moment of inertia is: [Gin98]

Ixx = Iyy = m

(
1

4
r2 +

1

12
h2

)
Izz =

1

2
mr2

(3.0.7)

The moment of inertia for two spheres that are connected by an arm and rotate

around a vertical axis is given as: [AA11]

I = (0.5)(m)(l)2 (3.0.8)

Where m is the mass and l is the arm length. So, the moment of inertia generated

by the motion of M2 and M4 about the x axis can be approximated as: [AA11],

[Poy14]

I = 2ml2 (3.0.9)
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Where l is a rotation radius.

In addition, the moment of inertia due to the rolling action is:

Ixx = I2−4 + I1 + I3 + IB (3.0.10)

Thus, the moment of inertia due toM1, M3 and the quadrotor body can be computed

as:

IBx = mB

(
1

4
r2
B +

1

12
h2
B

)
IM1 = mM1

(
1

4
r2
M1

+
1

12
h2
M1

)
IM3 = mM3

(
1

4
r2
M3

+
1

12
h2
M3

) (3.0.11)

Since the motors are alike, it means that:

mM1 = mM2 = mM3 = mM4 = mMn

rM1 = rM2 = rM3 = rM4 = rMn

hmotor1 = hmotor2 = hmotor3 = hmotor4 = hn

So, the total of the moment of inertia around the x is:

Ixx =
mBr

2
B

4
+
mBh

2
B

12
+
mMnr

2
Mn

2
+
mMnh

2
n

6
+ 2mMnl

2 (3.0.12)

The moment of inertia about the y axis has same procedure:

Iyy =
mBr

2
B

4
+
mBh

2
B

12
+
mMnr

2
Mn

2
+
mMnh

2
n

6
+ 2mMnl

2 (3.0.13)

Finally, the moment of inertia around the z axis can be also divided into two parts:

• � The motion of the quadrotor body.

• � The motion of all four motors (M1 M2 M3 M4)
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Thus, the moment of inertia about z can be found based on equation 3.0.7. The

following expression is obtained for the inertia of all motors: [AA11], [Poy14]

I1234z = 4mMnl
2 (3.0.14)

Consequently, the total moment of inertia around the z axis is given by:

Izz =
mMnr

2
Mn

2
+ 4mMnl

2 (3.0.15)
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