804 research outputs found

    BPMNt : a proposal for flexible process tailoring representation in BPMN /

    Get PDF
    Business Process Model and Notation (BPMN) is a de-facto standard for business process modeling, which focuses on the representation of the process behavior. However, it can also succeed in representing the behavior of software processes, since they are a type of business process. Although BPMN has been extensively used for modeling processes in different domains, its standard specification does not have any mechanism to support users in activities related to process adaptation (tailoring). Moreover, researches extending BPMN are based on complex consolidated models, which hamper the analysis and maintenance of individual variant process models and are not appropriate for application domains in which process variations are difficult to predict, such as in software development processes. Thus, our objective was to provide a BPMN-compliant extension and associated mechanisms for specifying flexible process tailoring on models produced with this language while ensuring the correctness of adapted process models and explicitly capturing change traces. We have focused our research on the domains of Software Process Engineering (SPE) and Business Process Management (BPM). At last, we evaluated the applicability of the proposal for representing realistic tailoring scenarios in both domains.BPMN (Business Process Model and Notation) é um padrão para modelagem de processos de negócio, que tem seu foco na representação do comportamento de processos. No entanto, ele pode também ser usado para representar o comportamento de processos de software, já que eles são um tipo de processo de negócio. Embora BPMN tem sido extensivamente usado para modelar processos em diferentes domínios, sua especificação padrão não possui nenhum mecanismo para apoiar usuários em atividades relacionadas à adaptação de processos. Pesquisas que estendem o padrão são baseadas em modelos complexos, que dificultam a análise e manutenção de modelos variantes, e não são apropriadas para domínios de aplicação onde variações de processo são difíceis de predizer, como em processos de desenvolvimento de software. Assim, nosso objetivo foi fornecer uma extensão para BPMN, chamada BPMNt, e mecanismos de suporte para especificar, de modo flexível, adaptações em processos modelados com esta linguagem. BPMNt deve também garantir a corretude de modelos adaptados e explicitamente capturar rastros de mudanças realizadas. Essa pesquisa teve como foco os domínios de Engenharia de Processos de Software e Gerenciamento de Processos de Negócio. Por fim, nós avaliamos a aplicabilidade da proposta para representar cenários de adaptação reais em ambos os domínios

    Consistency-Preserving Evolution Planning on Feature Models

    Get PDF
    A software product line (SPL) enables large-scale reuse in a family of related software systems through configurable features. SPLs represent a long-term investment so that their ongoing evolution becomes paramount and requires careful planning. While existing approaches enable to create an evolution plan for an SPL on feature-model (FM) level, they assume the plan to be rigid and do not support retroactive changes. In this paper, we present a method that enables to create and retroactively adapt an FM evolution plan while preventing undesired impacts on its structural and logical consistency. This method is founded in structural operational semantics and linear temporal logic. We implement our method using rewriting logic, integrate it within an FM tool suite and perform an evaluation using a collection of existing FM evolution scenarios

    Generating Counterexamples of Model-based Software Product Lines: An Exploratory Study

    Get PDF
    International audienceModel-based Software Product Line (MSPL) engineering ai- ms at deriving customized models corresponding to individ- ual products of a family. MSPL approaches usually promote the joint use of a variability model, a base model expressed in a specific formalism, and a realization layer that maps variation points to model elements. The design space of an MSPL is extremely complex to manage for the engineer, since the number of variants may be exponential and the derived product models have to be conformant to numerous well-formedness and business rules. In this paper, the objec- tive is to provide a way to generate MSPLs, called counterex- amples, that can produce invalid product models despite a valid configuration in the variability model. We provide a systematic and automated process, based on the Common Variability Language (CVL), to randomly search the space of MSPLs for a specific formalism. We validate the effective- ness of this process for three formalisms at different scales (up to 247 metaclasses and 684 rules). We also explore and discuss how counterexamples could guide practitioners when customizing derivation engines, when implementing check- ing rules that prevent early incorrect CVL models, or simply when specifying an MSPL

    Consistent View-Based Management of Variability in Space and Time

    Get PDF
    Developing variable systems faces many challenges. Dependencies between interrelated artifacts within a product variant, such as code or diagrams, across product variants and across their revisions quickly lead to inconsistencies during evolution. This work provides a unification of common concepts and operations for variability management, identifies variability-related inconsistencies and presents an approach for view-based consistency preservation of variable systems

    Quality of process modeling using BPMN: a model-driven approach

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaContext: The BPMN 2.0 specification contains the rules regarding the correct usage of the language’s constructs. Practitioners have also proposed best-practices for producing better BPMN models. However, those rules are expressed in natural language, yielding sometimes ambiguous interpretation, and therefore, flaws in produced BPMN models. Objective: Ensuring the correctness of BPMN models is critical for the automation of processes. Hence, errors in the BPMN models specification should be detected and corrected at design time, since faults detected at latter stages of processes’ development can be more costly and hard to correct. So, we need to assess the quality of BPMN models in a rigorous and systematic way. Method: We follow a model-driven approach for formalization and empirical validation of BPMN well-formedness rules and BPMN measures for enhancing the quality of BPMN models. Results: The rule mining of BPMN specification, as well as recently published BPMN works, allowed the gathering of more than a hundred of BPMN well-formedness and best-practices rules. Furthermore, we derived a set of BPMN measures aiming to provide information to process modelers regarding the correctness of BPMN models. Both BPMN rules, as well as BPMN measures were empirically validated through samples of BPMN models. Limitations: This work does not cover control-flow formal properties in BPMN models, since they were extensively discussed in other process modeling research works. Conclusion: We intend to contribute for improving BPMN modeling tools, through the formalization of well-formedness rules and BPMN measures to be incorporated in those tools, in order to enhance the quality of process modeling outcomes

    Consistent View-Based Management of Variability in Space and Time

    Get PDF
    Systeme entwickeln sich schnell weiter und existieren in verschiedenen Variationen, um unterschiedliche und sich ändernde Anforderungen erfüllen zu können. Das führt zu aufeinanderfolgenden Revisionen (Variabilität in Zeit) und zeitgleich existierenden Produktvarianten (Variabilität in Raum). Redundanzen und Abhängigkeiten zwischen unterschiedlichen Produkten über mehrere Revisionen hinweg sowie heterogene Typen von Artefakten führen schnell zu Inkonsistenzen während der Evolution eines variablen Systems. Die Bewältigung der Komplexität sowie eine einheitliche und konsistente Verwaltung beider Variabilitätsdimensionen sind wesentliche Herausforderungen, um große und langlebige Systeme erfolgreich entwickeln zu können. Variabilität in Raum wird primär in der Softwareproduktlinienentwicklung betrachtet, während Variabilität in Zeit im Softwarekonfigurationsmanagement untersucht wird. Konsistenzerhaltung zwischen heterogenen Artefakttypen und sichtbasierte Softwareentwicklung sind zentrale Forschungsthemen in modellgetriebener Softwareentwicklung. Die Isolation der drei angrenzenden Disziplinen hat zu einer Vielzahl von Ansätzen und Werkzeugen aus den unterschiedlichen Bereichen geführt, was die Definition eines gemeinsamen Verständnisses erschwert und die Gefahr redundanter Forschung und Entwicklung birgt. Werkzeuge aus den verschiedenen Disziplinen sind oftmals nicht ausreichend integriert und führen zu einer heterogenen Werkzeuglandschaft sowie hohem manuellen Aufwand während der Evolution eines variablen Systems, was wiederum der Systemqualität schadet und zu höheren Wartungskosten führt. Basierend auf dem aktuellen Stand der Forschung in den genannten Disziplinen werden in dieser Dissertation drei Kernbeiträge vorgestellt, um den Umgang mit der Komplexität während der Evolution variabler Systeme zu unterstützten. Das unifizierte konzeptionelle Modell dokumentiert und unifiziert Konzepte und Relationen für den gleichzeitigen Umgang mit Variabilität in Raum und Zeit basierend auf einer Vielzahl ausgewählter Ansätze und Werkzeuge aus der Softwareproduktlinienentwicklung und dem Softwarekonfigurationsmanagement. Über die bloße Kombination vorhandener Konzepte hinaus beschreibt das unifizierte konzeptionelle Modell neue Möglichkeiten, beide Variabilitätsdimensionen zueinander in Beziehung zu setzen. Die unifizierten Operationen verwenden das unifizierte konzeptionelle Modell als Datenstruktur und stellen die Basis für operative Verwaltung von Variabilität in Raum und Zeit dar. Die unifizierten Operationen werden basierend auf einer Analyse diverser Ansätze konzipiert, welche verschiedene Modalitäten und Paradigmen verfolgen. Während die unifizierten Operationen die Funktionalität von analysierten Werkzeugen abdecken, ermöglichen sie den gleichzeitigen Umgang mit beiden Variabilitätsdimensionen. Der unifizierte Ansatz basiert auf den vorhergehenden Beiträgen und erweitert diese um Konsistenzerhaltung. Zu diesem Zweck wurden Typen von variabilitätsspezifischen Inkonsistenzen identifiziert, die während der Evolution variabler heterogener Systeme auftreten können. Der unifizierte Ansatz ermöglicht automatisierte Konsistenzerhaltung für eine ausgewählte Teilmenge der identifizierten Inkonsistenztypen. Jeder Kernbeitrag wurde empirisch evaluiert. Zur Evaluierung des unifizierten konzeptionellen Modells und der unifizierten Operationen wurden Expertenbefragungen durchgeführt, Metriken zur Bewertung der Angemessenheit einer Unifizierung definiert und angewendet, sowie beispielhafte Anwendungen demonstriert. Die funktionale Eignung des unifizierten Ansatzes wurde mittels zweier Realweltfallstudien evaluiert: Die häufig verwendete ArgoUML-SPL, die auf ArgoUML basiert, einem UML-Modellierungswerkzeug, sowie MobileMedia, eine mobile Applikation für Medienverwaltung. Der unifizierte Ansatz ist mit dem Eclipse Modeling Framework (EMF) und dem Vitruvius Ansatz implementiert. Die Kernbeiträge dieser Arbeit erweitern das vorhandene Wissen hinsichtlich der uniformen Verwaltung von Variabilität in Raum und Zeit und verbinden diese mit automatisierter Konsistenzerhaltung für variable Systeme bestehend aus heterogenen Artefakttypen

    Consistent View-Based Management of Variability in Space and Time

    Get PDF
    Developing variable systems faces many challenges. Dependencies between interrelated artifacts within a product variant, such as code or diagrams, across product variants and across their revisions quickly lead to inconsistencies during evolution. This work provides a unification of common concepts and operations for variability management, identifies variability-related inconsistencies and presents an approach for view-based consistency preservation of variable systems
    corecore