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Abstract

Systems evolve rapidly and exist in many variations to address dierent and changing re-
quirements. This leads to subsequent revisions (variability in time) and concurrent product
variants (variability in space). Redundancies and dependencies between dierent products
across various revisions on the one hand and heterogeneous types of artifacts on the other
hand quickly lead to inconsistencies during the evolution of a variable system. Handling
the complexity while managing both variability dimensions uniformly and consistently is
a major challenge when developing large and long-living variable systems. Variability in
space is primarily considered in software product line engineering (SPLE), while variability
in time is mainly addressed in software conguration management (SCM). Consistency
preservation between heterogeneous artifact types and view-based software development
are major research topics in model-driven software development (MDSD). The isolation
of these three related engineering disciplines has led to a plethora of research, approaches
and tools from each area, which impedes a common shared understanding and causes
redundant research. Therefore, tools from these areas are usually not well integrated,
leading to a heterogeneous tooling landscape and high manual eort for evolving a variable
system, which, in turn, harms the system’s quality and increases maintenance costs.

Based on the current state of the art in these three disciplines, this thesis presents three
main contributions to cope with the complexity of evolving variable systems.
The unied conceptual model documents and unies concepts and relations for simul-
taneously coping with variability in space and time based on a diverse set of analyzed
tools and approaches from SPLE and SCM. Beyond their mere combination, the unied
conceptual model proposes novel ways of relating both variability dimensions.
The unied operations form the basis for operational management of variability in space
and time using the unied conceptual model as data structure. Based on an analysis of
diverse contemporary tools that follow dierent modalities and paradigms, the unied
operations provide functionality beyond the state of the art by preserving each tool’s
functionality while extending it to uniformly cope with both variability dimensions.
The unied approach renes the unied conceptual model and unied operations and
additionally integrates consistency preservation mechanisms. To this end, dierent types
of variability-related inconsistency types have been identied that can occur during the
evolution of variable systems comprised of heterogeneous artifacts. The unied approach
integrates automated consistency preservation for a selected subset of the identied
inconsistency types to support consistent unied management of variable systems.

Every main contribution of this thesis has been empirically evaluated. The unied concep-
tual model and unied operations have been evaluated based on expert surveys, devised
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Abstract

metrics to assess the appropriateness of a unication, and exemplary applications. More-
over, the functional suitability of the unied approach has been evaluated by applying
it to two real-world case studies: the well-known ArgoUML-SPL data set that has been
extracted from a snapshot of ArgoUML, a UML modeling tool, and MobileMedia, a mobile
application for media management. The unied approach is implemented using the Eclipse
Modeling Framework (EMF) and the Vitruvius approach.

With the presented contributions, this thesis broadens the body of knowledge on unied
management of variability in space and time and bridges it with automated consistency
preservation across heterogeneous artifact types.

iv



Zusammenfassung

Systeme entwickeln sich schnell weiter und existieren in verschiedenen Variationen,
um unterschiedliche und sich ändernde Anforderungen erfüllen zu können. Das führt
zu aufeinanderfolgenden Revisionen (Variabilität in Zeit) und zeitgleich existierenden
Produktvarianten (Variabilität in Raum). Redundanzen und Abhängigkeiten zwischen un-
terschiedlichen Produkten über mehrere Revisionen hinweg sowie heterogene Typen von
Artefakten führen schnell zu Inkonsistenzen während der Evolution eines variablen Sys-
tems. Die Bewältigung der Komplexität sowie eine einheitliche und konsistente Verwaltung
beider Variabilitätsdimensionen sind wesentliche Herausforderungen, um große und lang-
lebige Systeme erfolgreich entwickeln zu können. Variabilität in Raum wird primär in der
Softwareproduktlinienentwicklung betrachtet, während Variabilität in Zeit im Software-
kongurationsmanagement untersucht wird. Konsistenzerhaltung zwischen heterogenen
Artefakttypen und sichtbasierte Softwareentwicklung sind zentrale Forschungsthemen in
modellgetriebener Softwareentwicklung. Die Isolation der drei angrenzenden Disziplinen
hat zu einer Vielzahl von Ansätzen und Werkzeugen aus den unterschiedlichen Bereichen
geführt, was die Denition eines gemeinsamen Verständnisses erschwert und die Gefahr
redundanter Forschung und Entwicklung birgt. Werkzeuge aus den verschiedenen Diszipli-
nen sind oftmals nicht ausreichend integriert und führen zu einer heterogenen Werkzeug-
landschaft sowie hohem manuellen Aufwand während der Evolution eines variablen Sys-
tems, was wiederum der Systemqualität schadet und zu höheren Wartungskosten führt.

Basierend auf dem aktuellen Stand der Forschung in den genannten Disziplinen werden
in dieser Dissertation drei Kernbeiträge vorgestellt, um den Umgang mit der Komplexität
während der Evolution variabler Systeme zu unterstützten.
Das unizierte konzeptionelle Modell dokumentiert und uniziert Konzepte und Rela-
tionen für den gleichzeitigen Umgang mit Variabilität in Raum und Zeit basierend auf einer
Vielzahl ausgewählter Ansätze und Werkzeuge aus der Softwareproduktlinienentwicklung
und dem Softwarekongurationsmanagement. Über die bloße Kombination vorhandener
Konzepte hinaus beschreibt das unizierte konzeptionelle Modell neue Möglichkeiten,
beide Variabilitätsdimensionen zueinander in Beziehung zu setzen.
Die unizierten Operationen verwenden das unizierte konzeptionelle Modell als Da-
tenstruktur und stellen die Basis für operative Verwaltung von Variabilität in Raum und
Zeit dar. Die unizierten Operationen werden basierend auf einer Analyse diverser An-
sätze konzipiert, welche verschiedene Modalitäten und Paradigmen verfolgen. Während
die unizierten Operationen die Funktionalität von analysierten Werkzeugen abdecken,
ermöglichen sie den gleichzeitigen Umgang mit beiden Variabilitätsdimensionen.
Der unizierte Ansatz basiert auf den vorhergehenden Beiträgen und erweitert diese
um Konsistenzerhaltung. Zu diesem Zweck wurden Typen von variabilitätsspezischen
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Zusammenfassung

Inkonsistenzen identiziert, die während der Evolution variabler heterogener Systeme
auftreten können. Der unizierte Ansatz ermöglicht automatisierte Konsistenzerhaltung
für eine ausgewählte Teilmenge der identizierten Inkonsistenztypen.

Jeder Kernbeitrag wurde empirisch evaluiert. Zur Evaluierung des unizierten konzep-
tionellen Modells und der unizierten Operationen wurden Expertenbefragungen durch-
geführt, Metriken zur Bewertung der Angemessenheit einer Unizierung deniert und
angewendet, sowie beispielhafte Anwendungen demonstriert. Die funktionale Eignung des
unizierten Ansatzes wurde mittels zweier Realweltfallstudien evaluiert: Die häug ver-
wendete ArgoUML-SPL, die auf ArgoUML basiert, einem UML-Modellierungswerkzeug, so-
wieMobileMedia, einemobile Applikation fürMedienverwaltung. Der unizierte Ansatz ist
mit dem Eclipse Modeling Framework (EMF) und dem Vitruvius Ansatz implementiert.

Die Kernbeiträge dieser Arbeit erweitern das vorhandene Wissen hinsichtlich der unifor-
men Verwaltung von Variabilität in Raum und Zeit und verbinden diese mit automatisierter
Konsistenzerhaltung für variable Systeme bestehend aus heterogenen Artefakttypen.
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1. Introduction

This chapter builds on publications at VariVolution [9], SPLC [3, 7], Empirical Software
Engineering [5], and VaMoS [10, 6].

The development and evolution of software-intensive systems is a dicult endeavor that
faces many challenges [163]. Among others, these challenges involve a high diversity of
artifacts, great degree of variation, and frequent evolution. In other words, engineers need
to deal with variable, evolving systems composed of heterogeneous artifacts.

Most modern software-intensive systems exist in dierent variations to be able to oer
tailored customization. For example, to fulll varying customer requirements, regulations
or hardware limitations. In the literature, concurrent variations (i.e., products) of a system
at one point in time are commonly referred to as variability in space and are primarily
addressed in the research area of software product line engineering (SPLE) [191, 12, 178, 53,
105, 206, 51]. A product line promotes the usage of a shared set of artifacts in all its products
– thereby enabling a higher degree of eciency compared to traditional software develop-
ment approaches. Features, i.e., distinguishing characteristics of a product [191], are used
to congure a custom-tailored product. For realizing a product based on a conguration, a
variability mechanism must be employed, which assembles all implementation artifacts
for building a particular product. The following three categories of variability mecha-
nisms can be distinguished [12]: annotative (e.g., via conditional compilation with C/C++
preprocessor directives or in Java with the Antenna preprocessor [13]), compositional
(e.g., with feature-oriented programming [28] or aspect-oriented programming [119]) and
transformational (e.g., via delta modeling [205]). Over time, systems undergo various
changes, such as changing customer requirements, bug xes or refactorings, known as
software evolution [134]. In the literature, sequential variations (i.e., revisions) of a system
are commonly referred to as variability in time and are primarily addressed in the research
area of software conguration management (SCM) [63, 48, 151, 190, 201]. A sub-discipline
of SCM are version control systems (VCS) that are used to manage changes and control
software evolution. Moreover, modern variable systems comprise not only one type of
artifact, like source code, but dierent kinds of artifacts, such as UML diagrams or SysML
models. Specically, artifacts may originate from dierent engineering disciplines, such as
electrical, mechanical or software engineering.
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1.1. Problem Statements

Variability in space and time aect almost every software-intensive system nowadays.
Nonetheless, the research areas of SPLE and SCM have developed largely independently
of each other, and various techniques originating from one of the areas aim at coping with
the respective other variability dimension. On the one hand, when developing a system
with common VCSs (e.g., SVN [190] or Git [145]), variability is often managed in parallel
development branches, employing one branch per product. Since the concept of a feature
does not exist, merging between branches is required in order to maintain the products.
Although this strategy is simple, it does not scale and leads to high manual eort [61, 198].
On the other hand, the missing proactive management of variability in time in SPLE has
led to numerous approaches [59, 78, 124, 179, 182, 211], such as mining information (e.g.,
feature changes) from VCSs retroactively [59]. To this end, Krüger et al. [127] analyze the
costs of development strategies for variable systems, underpinning that missing explicit
tracking of feature evolution incurs high additional costs. Nonetheless, combining existing
approaches that cope with variability in space and time does not suce. A heterogeneous
tooling landscape (e.g., a VCS for managing the evolution of a system, a product-line
management tool for managing its products, and a mining tool for recovering feature
evolution information) requires developers to often switch context along with manual
eort, which is error-prone and increases maintenance costs. Moreover, cross-dimensional
variability modeling and analyses, such as modeling feature revisions and analyzing their
frequency of change, are not supported. As a consequence, due to the lack of methodology
and common understanding for eective unied management, a plethora of approaches
and tools has emerged that tackle the same problems independently [26, 137, 185, 201]. This
not only leads to redundant research and development, but also hampers understanding
how contemporary tools that cope with variability in space and time dier in detail as
well as the design of novel eective techniques for unied variability management. Thus,
the following rst problem statement is derived:

P1 Lack of methodology and common understanding for uniform management of vari-
ability in space and time leads to redundant research and development, hampers the
comparison of existing approaches as well as the design of new ones, and increases
the complexity and manual eort for evolving a variable system, which is error-prone
and incurs additional costs.

Besides uniformly and eectively dealing with variability in space and time, current
practices in SPLE face several challenges [141, 137]. On the one hand, the development of
variable systems by means of traditional variability mechanisms lacks automation and
is a mostly manual task, as variation points (e.g., preprocessor directives) need to be
added and updated manually. Furthermore, some variability mechanisms, such as aspect-
oriented programming, are not commonly known and require expertise of developers to
be able to eectively use them. Consequently, current practices for managing variable
systems are cognitively complex [214, 212]. One the other hand, practices lack support for
handling heterogeneous artifacts: The dierent categories of variability mechanisms (e.g.,
a transformational mechanism such as delta modeling) must be specialized for concrete
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types of artifacts to be applicable in practice (e.g., DeltaJ [119] as delta language for the
Java programming language). In the worst case, this requires developers to employ as
many variability mechanisms as there are dierent types of artifacts in their system, which
demands expert knowledge and requires high manual eort. Thus, a high diversity of
artifact types makes it increasingly dicult to realize variability. Moreover, evolving a
variable system can lead to dierent types of variability-related inconsistencies (e.g., the
consistent evolution of a variability model [176, 17, 100] or the consistent co-evolution of
the variability model and congurations [78, 174]) that impair the system’s quality and
increase maintenance costs. Their detection and repair is an open research problem that
has been tackled by numerous approaches with varying notions of consistency, leading
to an unorganized research landscape which impedes communication and scoping of
research [3]. In case of heterogeneous artifacts, additional manual eort is required to also
keep variability consistent across the dierent types of artifacts, which is challenging and
error-prone [64, 141]. For example, changing a feature in one artifact type of one product
may impact other artifacts types of the same product as well as other products that must
all be kept consistent. While automated consistency preservation between heterogeneous
artifact types is a major research topic in model-driven software development (MDSD) [60,
62, 95, 116, 196, 242], these approaches have hardly been leveraged in SPLE research yet.
From these observations, the second problem statement is derived:

P2 Current practices in variability management require high manual eort and expert
knowledge while lacking support for heterogeneous artifact types when developing
and evolving variable systems. This not only increases the complexity of managing
such systems, but also the chance of variability-related inconsistencies, which both
harm the system’s quality and increase maintenance costs.

To summarize, dealing with systems that vary in space and time while being composed of
heterogeneous artifacts is highly demanding and may lead to dierent variability-related
inconsistency types. Every aspect is challenging to deal with on its own, yet various
industrial branches demand their unied management [180, 68, 38, 74].

1.2. Research Goal and Questions

Based on the described problems, the research goal of this thesis is formulated and pre-
sented in the following.

Research Goal

Dene a common foundation to deal with variability in space and time that addresses gaps in
state of the art. Based on this foundation, conceive an approach that is capable of handling
variability-related inconsistencies during the evolution of a system composed of heterogeneous
artifacts. Ultimately, the goal is to enable unied consistent management of variable systems.
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Achieving the research goal requires to deal with the two described problems. Referring to
these problems, research questions are formulated which are introduced in the following.

The strong demand for coping with variability in space and time has led to various man-
agement techniques and contemporary approaches of both the SPLE and SCM community.
However, both research areas have developed independently of each other which has
resulted in various approaches that target the management of variability in space, time, or
both, while their commonalities and dierences are unclear. Gaining a deep understanding
of the existing approaches and tools not only allows to reason about their compatibility, but
also enables to detect gaps in the state of the art of managing both variability dimensions.
Therefore, the rst research question is introduced and further subdivided:

RQ 1 How can existing approaches that cope with variability in space, time, and both
be unied to provide a common foundation that also advances state of the art by
addressing the identied gaps?

RQ 1.1 Which concepts and relations exist to cope with either or both variability
dimensions in the studied approaches and how can they be unied?

RQ 1.2 Which operations are provided to cope with either or both variability dimen-
sions in the studied approaches and how can they be unied?

RQ 1.3 How can the appropriateness of a unication with respect to the studied
approaches be quantied?

Answering RQ 1 helps to uniformly manage variability in space and time simultaneously
by means of concepts, their relations, and operations based on state of the art. Nonetheless,
the consistent evolution of systems dealing with both variability dimensions, that are addi-
tionally comprised of heterogeneous artifacts, is still a major problem. To this end, the Vit-
ruvius approach [116] supports view-based consistency preservation for heterogeneous
artifacts. Leveraging the consistency preserving mechanisms of Vitruvius and under-
standing which variability-related inconsistency types (including their causes and possible
repairs) can occur during evolution allows for dealing with variability-related inconsis-
tencies. Therefore, the second research question is introduced and further subdivided:

RQ 2 How can the consistent evolution of variable systems comprised of heterogeneous
artifacts be supported?

RQ 2.1 What types of inconsistency can occur in variable systems?

RQ 2.2 How can unied operations be combined with consistency preservation of
variability-related inconsistency types?

RQ 2.3 How can the Vitruvius approach be leveraged to support variability in
space and time and preserve consistency in variable systems comprised of
heterogeneous artifacts?

Answering RQ 2 nally enables to support consistent evolution of systems that vary in
space and time comprising heterogeneous artifacts.
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1.3. Envisioned Solution and Contributions

In this thesis, a unied solution is proposed to address the described problems and answer
the research questions. In the following, every part of the envisioned solution along with
the respective contributions is described.

Unifying concepts of SPLE and SCM to explicitly and proactively manage variability in
space and time is gaining traction [34, 110, 140, 172, 126, 82, 235]. In this regard, pioneer
work by Conradi and Westfechtel [48, 241] extends version models and relates concepts of
variability in space and time. However, this works prescribe either development processes
or implementation specics (e.g., propositional logic or deltas). While recent work primar-
ily focuses on classifying and comparing approaches coping with variability in space or
variability in time [26, 77, 185], contemporary approaches from the upcoming research area
of Variation Control Systems (VarCS) [141] (e.g., SuperMod [215] or ECCO [73]), manage the
evolution of a variable system in a uniform manner. Thus, VarCS play a signicant role in
the rst part of the solution: A classication and unication of concepts of approaches dealing
with variability in space or/and time, and alignment of terminology used in the research areas
of SPLE and SCM. In contrast to prior approaches, unied concepts shall be devised that
appropriately cover and describe all relevant concepts of contemporary tools for dealing
with variability in space and time. This leads to the rst contribution of this thesis:

C1 A unied conceptual model that serves as common base for communication, scoping
and comparison. The conceptual model goes beyond the mere combination of con-
cepts of SPLE and SCM and introduces novel hybrid relations to uniformly cope with
variability in space and time, guiding the conception of novel approaches (RQ 1.1).

Besides a unied data structure, appropriate operations are required for the operational
management of both variability dimensions. Many of the VarCS, that deal with variability
in space and time, provide such operations. However, they vary considerably in their
behavior regarding how a system can be edited (i.e., directly or via well-dened views)
and the paradigm followed to develop a variable system (i.e., product-oriented or platform-
oriented). A survey on the operations of VarCS [137, 141] revealed that many provide
view-based editing capabilities due to various advantages (e.g., a higher degree of automa-
tion). Moreover, view-based editing is well-suited for handling heterogeneous artifacts as
well as variable systems, since it can represent both a specic type of artifact [22, 72, 116]
and a particular product [73, 141, 215, 229]. Consequently, developers work on a specic
product to evolve a variable system. This does not only reduce the complexity of applying
changes to the product line, but also liberates from the burden of employing a suitable
variability mechanism for each artifact type, as described in Section 1.1. Therefore, oper-
ations of approaches dealing with variability in space or/and time are classied. Additionally,
novel, view-based unied operations are conceived. The static structure (i.e., concepts and
relations) of the unied conceptual model together with unied view-based operations
provide a foundation to develop novel solutions that deal with both variability in space
and time, leading to the second contribution of this thesis:

7



1. Introduction

C2 Unied operations as operational management of variability in space and time that
operate on the unied conceptual model as data structure (RQ 1.2).

To goal of the unication of elicited approaches is to unify their concepts, relations and
operations such that they are neither too specic nor too generic. Guizzardi et al. [90] pro-
pose a framework for language evaluation and introduces properties to assess the design of
modeling languages. Since no means exist to quantify and evaluate the appropriateness of
abstractions with respect to concrete approaches yet, the respective framework is extended
and metrics for unication are dened, leading to the third contribution of this thesis:

C3 Metrics for unication to evaluate the appropriateness of granularity and coverage of
a unication with respect to a set of selected tools (RQ 1.3).

Contributions C1 and C2 fully cover the unied management of variability in space and
time. However, evolving a system that copes with both variability dimensions and consists
of heterogeneous artifacts easily leads to variability-related inconsistencies. Such incon-
sistencies can occur on the level of abstraction of the product line, e.g., in the variability
model [120, 100] (commonly referred to as the problem space [191]), within the implemen-
tation of a product consisting of heterogeneous artifacts and between products [39, 186]
(commonly referred to as the solution space [191]), or involving both spaces, often referred
to as software product line co-evolution [21, 40, 65, 112]. Numerous approaches tackle
their detection and repair, but the research landscape has not been mapped, which impedes
communication and scoping of research. Therefore, a literature survey is performed and
its results are generalized and mapped to a classication schema to obtain a set of complete
and disjoint variability-related inconsistency types that can occur during the evolution
of a variable system. This leads to the fourth contribution of this thesis.

C4 A classication and enumeration of variability-related inconsistency types along with
their possible causes, eects, and repair options (RQ 2.1).

Although a considerable amount of research has been conducted on inconsistency detection
and repair in variable systems [146, 149, 100, 85, 208], consistency preservation in a system
dealing with variability in space and time simultaneously has been much less addressed
while consistency preservation between heterogeneous artifacts of a product is hardly
considered in SPLE research yet [64, 141]. With this research, the aim is to bridge the gap
between existing approaches for consistency preservation between heterogeneous artifacts
and variability-related inconsistencies that can occur in the solution space. The key idea is
to embed the consistency preserving mechanisms of Vitruvius in the evolution process
of a system dealing with variability in space and time. This contribution is based on the
unied concepts and operations of C1 and C2 as well as on the identied variability-related
inconsistency types and repairs of C3. Therefore, the unied conceptual model is rened
and the unied operations are augmented with consistency-preservation capabilities. This
leads to the fth contribution.

C5 A unied approach for automated consistency preservation during view-based evolu-
tion of variable heterogeneous systems (RQ 2.2, RQ 2.3).
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This contribution leverages and extends the Vitruvius approach [116] to cope with
variability and handle variability-related inconsistencies. Specically, artifact views in Vit-
ruvius are generalized to product views and existing consistency preservationmechanisms
are utilized for dierent artifact types.

To evaluate the unied approach, real-world data sets of variable systems must meet
various requirements: i) provide an evolution history, ii) consist of multiple types of
artifacts, iii) employ a variability model and, iv) be realistic and publicly available. Since
such data sets are barely available, the widely used ArgoUML-SPL data set [49] (a snapshot
of the ArgoUML modeling tool) has been manually evolved by retroactively replaying the
revision history of ArgoUML on the ArgoUML-SPL. Thus, a data set that constitutes the
nal contribution of this thesis is contributed:

C6 An evolved data set of the ArgoUML-SPL comprising nine revisions.

The contributions C1, C2, and C4 represent main contributions towards the principal
contribution C5. The contributions C3 and C6 represent subordinate contributions.

1.4. Assumptions

For the principal contribution that constitutes the unied approach (C5), several assump-
tions are made that are introduced in this section.

The development process of variable software-intensive systems is model-driven and view-
based. Dierent models describe the system of discourse containing (partially overlapping)
information about the system. Thus, models represent views on dierent parts of the
system, either on the abstraction of the variable system (i.e., the problem space) or on its
implementation (i.e., the solution space).

Variability-related inconsistencies may not always be preserved fully automatically. Since
SPLE enables intensional versioning (i.e., the specication of congurations where features
can be combined before having ever been combined in a product [48]), their implemen-
tation may conict. In such cases, consistency cannot be ensured at all time but instead
is assumed to be repaired by the developer.

Furthermore, a metamodel must be available for every type of engineering artifact in
the solution space. Moreover, for every pair of metamodels, consistency preservation
rules must be available that use model transformations to preserve consistency in other
models, thus allowing to consistently cope with arbitrary artifact types. Consequently,
the preservation of consistency ranges from suggestions to developers to fully automated
repairs of the system under construction.
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1. Introduction
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Figure 1.1.:Overview of goal, problems (P), research questions (RQ) and contributions (C).

1.5. Research Overview

Figure 1.1 depicts the relation between the described research goal, the problem statements,
research questions and contributions. Addressing the rst problem statement (P1) requires
to classify, compare and unify existing approaches. In consequence, it allows to answer RQ 1
by providing a common foundation of concepts, their relations and operations, and address
gaps that currently exist in state of the art. A unied conceptual model is contributed (C1),
unied operations (C2) (that operate on the unied conceptual model as data structure),
and metrics to quantify the appropriateness of granularity and coverage of a unication
with respect to the studied approaches (C3).

Addressing the second problem statement (P2) requires to understand which variability-
related inconsistency typesmay occur during evolution, how to augment unied operations
with automated consistency preservation and how to leverage the Vitruvius approach
to preserve consistency among heterogeneous artifacts. In consequence, it allows for
answering RQ 2 by enumerating variability-related inconsistency types, their causes and
possible repairs (C4) and, ultimately, a unied approach to support the consistent evolution
of variable systems composed of heterogeneous artifacts (C5). The functional suitability of
the unied approach is evaluated based on the two real-world data sets MobileMedia [71]
and the widely used ArgoUML-SPL, which is extended with an evolution history from
the original ArgoUML (C6). Note that the contributions of this thesis are not independent.
Instead, every contribution serves as input to the following ones or is used for evaluation.
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1.6. Thesis Outline

1.6. Thesis Outline

The remainder of this thesis is structured as follows.

Part I. The rst part introduces the preliminaries of the thesis. Chapter 2 provides a
running example that is used throughout this thesis, introduces basic denitions and
comprises a description of contemporary tools for variability in space, time, and both as
well as of relevant engineering paradigms.

Part II. The second part comprises the main contributions to support unied consistency-
aware variability management. Along with the general unication process in Chapter 4, it
presents the unied conceptual model in Chapter 5 and the unied operations in Chapter 6.
Moreover, this part encompasses a classication and enumeration of variability-related
inconsistency types in Chapter 7 and, ultimately, the unied approach building upon the
preceding contributions in Chapter 8.

Part III. The third part of this thesis presents an empirical evaluation of the main contribu-
tions, structured according to the GQM method [27]. It comprises the general evaluation
process along with the metrics for unication in Chapter 10. The specialized evaluation
process, questions and results are presented for the unied conceptual model in Chap-
ter 11, for the unied operations in Chapter 12, and for the unied approach Chapter 13,
comprising the evolved data set of the ArgoUML-SPL.

Part IV. The fourth and nal part reects on this thesis’ contributions. It encompasses brief
answers to the research questions in Section 15.1, comprises a discussion of related work
in Chapter 14, and concludes the thesis with a consideration of the industrial relevance of
the conducted research in Chapter 15.
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2. Foundations

This chapter encompasses the fundamentals of this thesis. Section 2.1 introduces the
running example that is used throughout the thesis. This is followed by foundations of
variability in space in Section 2.2, variability in time in Section 2.3 and their combination
in Section 2.4 comprising basic concepts and contemporary tools. In Section 2.5 and
Section 2.6, the basics of model-driven software engineering and view-based software
engineering are briey described. To this end, the Vitruvius approach is introduced
which is employed in this research. Finally, in Section 2.7, variability-related consistency
notions are dened that are used throughout this thesis.

2.1. Running Example

Figure 2.1 shows an illustrative example of a simple Car system that exists in nine revisions.
In its rst revision, it comprises either a Gasoline (Gas) or an Electric (Ele) engine. In
later revisions, an optional output of remaining Distance (Dist) is added, along with a
constraint that Ele requires Dist. Ultimately, the feature Car has one revision, features Gas
and Dist have three revisions, and the feature Ele has four revisions. EngineType (ET) is
an abstract feature without implementation and thus without revisions. Figure 2.2 shows
a Java source code and a SysML block denition diagram view on the implementation of
the system in its nal revision. For each line of code, the respective comment (highlighted
in green) depicts the mapping to a revision of a feature or feature interaction.

Car 
1

 
EngineType 

 

Gasoline 
1 

Electric 
1 

1
mandatory
optional

OR group

XOR group

(a) Initial feature model.

Car 
1

EngineType 

Gasoline 
1     2     3 

Distance 
1     2     3 

Electric 
1     2     3     4 

1      2      3      4      5      6      7      8      9

Electric3,4 ⇒ Distance3

(b) Final feature model.

Figure 2.1.: Feature model evolution. Adapted from [3, Fig. 1].
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Java 
 
 
 
 

 1 class EngineController  //Car1 
 2      double gasLevel;      //Gas1,2,3 
 3      double battLevel;      //Ele1,2,3,4 
 4      void doDriving() {      //Car1 
 5        getDistanceLeft();   //Ele3,4 
 6      } 
 7      double getDistanceLeft() { //Dist1,2,3 
 8        return f_g(gasLevel); //Gas2,3 && Dist2,3 && !Ele 
 9        return f_e(battLevel); //Ele2,3,4 && Dist3 && !Gas 
 10      return f_ge(gasLevel, batLevel);  //Gas3 && Ele4 
 11     } 
 12 } 

SysML 

 2  double gasLevel   //Gas1,2,3 
 3  double battLevel   //Ele1,2,3,4

    
 4  void doDriving()    //Car1 
 5  double getDistanceLeft()//Dist1,2,3
    

Operations

 
                        block 
 1     <<EngineController>>  //Car1

Values

Figure 2.2.: System implementation (Car.java left and Car.sysml right). Adapted from [3, Fig. 1].

2.2. Variability in Space

With an increasing demand for customized systems due to a variety of requirements,
variability has become a key characteristic of many systems. The term variability in space
constitutes concurrent variations of a system in terms of products or features. In the
running example of the Car system, the developer is able to choose between a gasoline
engine (i.e., feature Gas) or an electric engine ((i.e., feature Gas). In this thesis, Denition 2.1
for variability in space is used.

Denition 2.1 (Variability in space) “Variability in space is the existence of an artefact
in dierent shapes at the same time.” [191, p. 66]

Variability in space is extensively studied in the context of software product line engineer-
ing that is introduced in the following.

2.2.1. Soware Product Line Engineering

Software Product Line Engineering (SPLE) [107, 191, 45] is an established engineering
paradigm to systematically engineer and manage the reusability and extensibility of soft-
ware. It promotes a reusable platform (i.e., a set of reusable artifacts) that can be congured
individually for each product [191]. The commonalities and dierences across products are
commonly represented by features, where a feature represents a “prominent or distinctive
user-visible aspect, quality, or characteristic of a software system or system” [107, p. 3]. A
product line covers a domain (e.g., cars). The domain abstraction of a product line helps cus-
tomers and developers understand the commonality and the variability of the product line.
In this thesis, the domain abstraction of a product line is simply referred to as domain.
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Variability Models. A variability model represents the congurable knowledge of an SPL
where constraints between features govern which combinations are valid or invalid [107,
29, 51]. The variability model captures the entirety of constraints and, as a consequence,
describes all conguration rules that must be satised when deriving a product. Dierent
notions of variability models exist, for instance, feature models [107] or decision mod-
els [164]. Feature models represent the commonalities and dierences of an SPL in terms
of a hierarchical feature tree topology, illustrated in the running example in Figure 2.1.
Tree constraints impose dependencies between features in a group or between a parent
feature and its child feature. A mandatory feature is always selected together with its
parent feature in a conguration (e.g., feature ET). Contrary, an optional feature requires
its parent feature to be selected as well, while the parent feature may be selected without
the optional child feature (e.g., feature Dist). Moreover, alternative or or groups govern
the number of features in a group that must be present in a conguration. Feature models
might also comprise core features that itself are mandatory as well as all of its predecessors
in the feature tree. Thus, they must be present in every conguration and represent a com-
monality of an SPL. Finally, Cross-tree Constraints represent dependencies between
features and span across the feature tree (e.g., the Ele feature implies the Dist feature so
that both must be selected in a conguration).

Problem Space and Solution Space. Czarnecki and Eisenecker [50] introduce the prob-
lem space and the solution space of an SPL. The problem space represents the variability
of a domain and comprises artifacts, such as the variability model. The solution space
represents the implementation in the form of a reusable platform comprising dierent
types of artifacts, such as models or source code (e.g., Java or SysML). To manage variability
holistically, artifacts of both spaces must be linked.

Development Processes. There are three ways for engineering an SPL: the proactive, re-
active, and extractive approach [191, 125]. The proactive approach describes a development
of the product line from scratch. This requires to initially perform domain engineering, e.g.,
specifying the variability model and implementing reusable artifacts among all products.
Subsequently, application engineering is performed for every product, e.g., conguring
the product and implementing product-specic artifacts. The reactive approach starts
by specifying the variability model and implementing artifacts for only a few products.
Incrementally, more products are added. Finally, the extractive approach uses existing
products (often realized by clone-and-own [200]) as base and extracts the variability model
from these products. Depending on which engineering strategy is employed by an organi-
zation, the dominant model varies. In case of the proactive approach, the dominant models
origin from the specication and implementation of the domain engineering, such as the
variability model. Consequently, the application engineering builds on the domain engi-
neering, e.g., the variability model guides the derivation of viable products. In case of the
reactive approach, the dominant models change, as domain engineering and application
engineering alternate. In case of the extractive approach, the products are the dominant
models which prescribe the features, their dependencies and reusable artifacts which are
specied and implemented for domain engineering.
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Variability Mechanisms. The derivation of a product from a reusable platform de-
pends on the employed variability mechanism in the solution space, out of which three
categories exist: annotative, compositional and transformational [14, 232]. Annotative
mechanisms [13], such as preprocessor directives, assemble all variations of implementa-
tion artifacts of an SPL in one monolithic artifact that is commonly referred to as the 150%
model. Annotations relate parts of the 150% model with features or feature interactions.
Based on a conguration, only those parts are retained whose annotations are satised
by a conguration. Compositional mechanisms [41] are employed by dierent paradigms
such as feature-oriented programming [28] or aspect-oriented programming [111]. Based
on a core model, commonly referred to as the 75% model, and a conguration, relevant
implementation artifacts are assembled (usually by a composer) to create a product. Fi-
nally, transformational mechanisms employ transformation operations that add, modify, or
remove elements to transition from one product to another. Delta modeling [205] is a promi-
nent realization of the transformational mechanism. It is based on a core module and a set of
delta modules that apply changes (i.e., deltas) to the core module to obtain a valid product.

2.2.2. Contemporary Tools

Variability in space is supported by dierent tools in research and industry, employing
dierent variability mechanisms.

Several limitations of current variability management practices increase the complex-
ity of managing variable systems [141], such as the manual modication of mappings
(that represent a relation between features and implementation artifacts), the manual
integration of changes into the platform, the missing uniform management of product
variants and revisions, or concrete variability mechanisms that are specic for a certain
type of artifact and further complicate the variability management of systems composed of
heterogeneous artifacts. The upcoming research area of Variation Control Systems (VarCS)
aims to overcome these limitations. In this thesis, Denition 2.2 for VarCS is used.

Denition 2.2 (Variation Control System) “A Variation Control System (VarCS) sup-
ports managing variant-rich systems in terms of features. It supports editing variant subsets,
which are represented by a selection of features, and it automatically integrates the edited
variant subsets back into the variant-rich system in a transactional way.” [141, p. 2].

In the following, four SPLE tools including one VarCS are presented.

FeatureIDE [130, 157] is a popular open-source framework for modeling, analyzing and
developing SPLs. It builds on the Eclipse platform and is used both in academia and
industry. FeatureIDE supports development phases of SPLs such as domain analysis (that,
for example, comprises extensive feature modeling and analyses), domain implementation
and semi-automated generation of congurations, compilation and testing (i.e., product-
based analysis). FeatureIDE is extensible via composers that enable the use of dierent
variability mechanisms and thus support variability mechanisms of all three categories.
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VTS (VariationTrackingSystem) [228] is a VarCS that manages variability in space. It allows
for editing products and partial views on the SPL, and integrating changes automatically
based on a manually provided ambition that species the edited features. To conform to
basic consistency principles given by the lens laws [76], its get and put operations are
used to derive views from the platform and integrate changes back into the SPL, while
any change performed in the view shall not aect features that are not part of it. VTS
employs an annotative variability mechanism with proprocessor annotations in text les
to represent the SPL as well as the derived views.

SiPL [187, 188] is a delta-based modeling framework for SPLE that employs a transforma-
tional variability mechanism. Variability in space is captured by delta modules. A delta
is rened by a consistency-preserving edit script generated by comparing two models.
Thus, deltas are not specied manually but computed fully automatically. Based on edit
scrips, SiPL provides analyses of deltas such as dependencies between deltas (i.e., deltas
can only be applied in a certain order) or conicts (i.e., deltas cannot be applied together).
While delta modeling constitutes the solution space of SiPL, the tool integrates FeatureIDE
to describe the problem space.

pure::variants [35] is a commercial SPL tool used in industry. It provides support for
developing, testing and maintaining SPLs while employing several variability mechanisms.
In particular, it focuses on the annotative variability mechanism by means of preprocessor
directives. Note that in this thesis, the pure::variants evaluation edition is considered.
Further proprietary tools similar to pure::variants exist, such as Gears from BigLever [37].

2.3. Variability in Time

Over the course of time, a system evolves due to refactorings, bug xes or changed
requirements [134]. The term variability in time constitutes sequential variations of a
system in terms of revisions. Thus, it represents a further dimension of variability. In the
running example of the Car system, the developer is able to choose from the nine (system)
revisions of the feature model. The rst revision enables the Car feature, its mandatory
child Engine Type, and its alternative feature children Gasoline and Electric. In this
thesis, Denition 2.3 for variability in time is used.

Denition 2.3 (Variability in time) “Variability in time is the existence of dierent ver-
sions of an artifact that are valid at dierent times.” [191, p. 65]

Variability in time is extensively studied in the context of software conguration manage-
ment that is introduced in the following.
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2.3.1. Soware Configuration Management

Software Conguration Management (SCM) [48] is an engineering paradigm that supports
identication, controlling, and traceability of the software system during its evolution. For
example, some of the fundamental aspects of SCM constitute the unambiguous identi-
cation of any software artifact, their storage and access, the concurrent modication of
artifacts, and the alignment with a specic development process.

Version Models. Analogously to variability models, SCM promotes version models that
manage changes within directories or les and provide operations to retrieve old versions
and construct new ones [48]. In SCM, a version describes an abstract concept that is
specialized by either a revision (i.e., a version that is intended to supersede its predecessor)
or a variant (i.e., versions that are intended to coexist). Although the management of
variants has been recognized in SCM [241], it has been largely sidestepped [151, 141].

Extensional and Intensional Versioning. The SCM community dierentiates between
two kinds of version space organization: extensional versioning and intensional version-
ing [48]. While extensional versioning describes the sole retrieval of versions that have
been previously constructed, intensional versioning allows for retrieving versions in a exi-
ble manner such that new combinations of software artifacts are constructed on demand.

VersionControl. Version Control (VC) [201] represents a sub-discipline of SCM. It supports
several functionalities such as persisting and identifying dierent revisions of software
artifacts in a repository, or providing working copies to developers that can be modied
and integrated back into the repository leading to a new version. Revisions graphs are
employed that vary from an ordered sequence of revisions to an acyclic graph.

2.3.2. Contemporary Tools

SVN and Git are two well-established Version Control Systems (VCS) that both rely on
extensional versioning.

Subversion (SVN) [190] is an open-source centralized VCS. Typically for version control,
developers are able to checkout a central repository at a certain point in time (i.e., a specic
revision identied by a revision number) in a local workspace. Performed modications
can be commited back to the central repository, leading to a new revision. SVN supports
branches (that are created as directories) and their merging.

Git [145] is an open-source decentralized VCS. In contrast to SVN, Git supports multiple
distributed repositories. Upon the distributed operation clone, an exact copy of a repository
is provided to a user, leading to a distributed network of repositories. Modications are
rst to be integrated into a local copy of the repository via commit and then distributed to
other copies of the repository via push to synchronize clones.
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2.4. Variability in Space and Time

Variability in space and variability in time are highly intertwined. The evolution of a
system may aect available conguration options which, vice versa, may guide the evo-
lution of the system [231, 216]. In the following, state of the art is briey recapped and
contemporary tools dealing with both variability dimensions are introduced.

2.4.1. State of the Art

A missing common foundation and techniques for proactively managing variability in
space and time have led to a plethora of approaches [59, 124, 182, 179, 160]. For instance,
VCSs do not support the concept of a feature. Instead, the products or features are managed
in branches, which requires highmaintenance eort [186, 200, 243, 131]. Thus, retroactively
mining feature evolution information is the focus of several research [160, 59, 128, 199],
leading to high additional costs [127]. As a consequence, new approaches have emerged in
the last years that promote the explicit and proactive management of variability in space
and time. For example, by extending feature models to additionally document revisions
of individual features (i.e., hyper feature models [218]), or the upcoming research area of
VarCS that encourages an integrated and uniform view on research from SPLE and SCM.

2.4.2. Contemporary Tools

The following ve tools cope with both variability in space and time:

ECCO [75, 73, 139, 138] is a VarCS that supports a feature-oriented and distributed devel-
opment of variable systems. Originally, ECCO was an approach used for feature location
and has evolved to a VarCS following the checkout-modify-commit workow of products
while still employing feature location for computing mappings. ECCO promotes feature
revisions in the problem space but no variability model (and, consequently, no constraints).
Moreover, the tool can be extended via adapters to support dierent types of artifacts.

SuperMod [215, 214, 212] represents a model-driven VarCS that is based on an annotative
variability mechanism. It builds upon and extends the uniform version model [241]. Anal-
ogously to ECCO or VTS, SuperMod follows the same transactional workow of evolving an
SPL product-wise. In contrast, it supports system revisions and provides a feature model
representing one particular revision to the user that can be used for conguring a product.
For integrating the changes performed on a product and similar to VTS, SuperMod requires
an ambition (i.e., a logical expression) upon any commit. The ambition is used to annotate
the elements of the product line with visibility information including the system revision.

DeltaEcore [219, 220, 216] is a model-driven tool-suite that employs a transformational
variability mechanism based on delta-modeling. It introduces the hyper feature model [218]
which constitutes an extended feature model with feature revisions that represent further
congurable units for product denition. Moreover, it is possible to specify constraints
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in the problem space between features and ranges of feature revisions. DeltaEcore auto-
matically derives delta languages that comprise delta operations based on metamodels.
Developers can use the delta languages to specify concrete delta modules that they can
map to features and feature revisions.

DarwinSPL [170, 169] is a model-driven tool suite that integrates DeltaEcore for product
derivation. In contrast to DeltaEcore, DarwinSPL introduces the temporal feature model in
the problem space that captures the evolution of the whole system (in contrast to feature
revisions, that are not explicitly supported). In addition, it supports the planning of future
evolution of the SPL as well as its re-planning. To consider changing functionality based
on a dierent environment (i.e., context), DarwinSPL integrates contextual information
that restricts the congurable space.

VaVe [10] is a model-driven tool that realizes a uniform management of variability in space
and time via features and feature revisions (referred to as VAriants (space) and VErsions
(time)). Similar to ECCO and SuperMod, the tool supports the product-wise development of
an SPL while automatically integrating the changes into the platform, constituting to a
VarCS. Moreover, it provides import and export functionalities with FeatureIDE to make
use of its advanced feature modeling capabilities.

Some of the tools dealing with variability in space, time, or both could be used in com-
bination to support both variability dimensions simultaneously, such as FeatureIDE and
Git. However, such combinations are not considered in this research because they do not
contribute new concepts or relations for uniform variability management.

2.5. Model-Driven Soware Development

According to Stachowiak’s general model theory [223], a model exposes three main char-
acteristics: representation, abstraction, and pragmatism.

Representation. A model is a mapping from or a representation of the original it reects.
An original might be natural or articial, such as an existing entity or a concept.

Abstraction. A model comprises only a seemingly relevant subset of the properties of the
original it represents. Thus, models are abstract representations of originals.

Pragmatism. A model is designed for a specic purpose and be capable of replacing the
original regarding that purpose.

Moreover, a model can have one or more roles that reect its purpose [46]: descriptive
(reecting a system and its current or past properties), predictive (reecting the future
system behavior to allow, for instance, decision-making and simulations) and, prescriptive
(reecting the system’s design to be eventually taking into account for realization).

Model-Driven Software Development (MDSD) [86, 224] systematically employs the idea of
models and raises them as rst-class artifacts for software development. As a consequence,
models are not solely used for documentation and communication, but also to generate
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executable code from. In this thesis, any artifact (regardless of whether in the problem
space in the solution space) is considered a model. This comprises, for instance, employing
a metamodel for Java code in the solution space of a variable system. In the following,
foundations of modeling languages and metamodels are introduced.

2.5.1. Metamodels, Modeling Formalisms and Languages

In MDSD, each model conforms to a certain metamodel. A metamodel species all types
of model elements and relations between them. As a consequence, each model can be
considered an instance of a metamodel. The Meta-Object Facility (MOF) is a standard from
the Object Management Group (OMG). It describes the relation between models and their
metamodels as a four-layer hierarchy that comprises models at Layer M1, metamodels
at Layer M2 and a self-describing meta-metamodel at Layer M3 representing the highest
level of abstraction. Layer M0 comprises real world objects.

According to Völter et al. [239, p. 26], a modeling language species the concrete syntax,
the abstract syntax, the static semantics, and the execution semantics:

Concrete Syntax. A user-facing representation of a model (e.g., textual or graphical) that
developers can interact with directly.

Abstract Syntax. An internal representation of a model (e.g., tree or graph) that is not
visible to developers.

Static Semantics. Additional constraints of a model (e.g., specied with the Object Con-
straint Language [181]) that must hold beyond the model’s structural well-formedness.

Execution Semantics. The behavior of a model during its execution.

To be able to treat source code as models, the grammar of the respective textual language
(e.g., the Java programming language) can be represented as a metamodel. The concrete
syntax (e.g., concrete Java source code) must be parsed and transformed into the abstract
syntax representation (i.e., the Abstract Syntax Tree (AST)), which is a model that is an
instance of the respective metamodel.

2.5.2. Modeling Frameworks

The Essential MOF (EMOF) standard is a subset of the comprehensive MOF standard and is
implemented by the meta-metamodel Ecore. The Eclipse Modeling Framework (EMF) [225]
is a framework that contains Ecore and that oers a wide range of tools to leverage MDSD.
The EObject of the Ecore meta-metamodel is the super class of all Ecore model elements
(analogously to all Java classes extending Object). Ecore denes model elements such as
EClasses (a class with zero or more attributes and references), EAttributes (an attribute with
a name and a type) and EReferences (one end of an association between two classes, with
an explicit containment attribute). Every Ecore model has an EPackage as root element.
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EPackages can contain further EPackages as well as EClassiers (i.e., EClass or EDataTypes).
To this end, the implementation of the devised concepts in this thesis is based on EMF.

2.6. View-Based Soware Development

The complexity of systems is ever increasing, challenging their development, evolution,
and maintenance [163]. Many approaches have been proposed to cope with large and
complex systems, such as automotive systems, that are comprised of heterogeneous artifact
types (e.g., CAD diagrams from mechanical engineering, circuit diagrams from electrical
engineering, or source code from software engineering). View-based development has
the potential to keep cognitive complexity at bay via the usage of tailored views, each
showing a particular part of a system [72, 43]. As a consequence, models can be changed
only through well-dened views. This, in particular, provides distinct advantages for
coping with variability [141]. Views may only show a part (e.g., a specic product) of
the entire variable system, and, as a consequence, reduce the complexity of developing
and maintaining it. Moreover, view-based development allows for higher automation,
such as the automated computation of mappings (i.e., relations between features and their
implementation-specic artifacts), which otherwise is tedious and error-prone [214].

The ISO 42010 standard for architecture description distinguishes the synthetic and the pro-
jective approach for the construction of views [102]. In a synthetic approach, information
about the system is distributed over several distinct views and their relations. In a projective
approach, information is centralized in a so-called Single Underlying Model (SUM) [22]. The
SUM conforms to the Single UnderlyingMetamodel (SUMmetamodel) [116]. In the context of
view-based software development and variability modeling, projectional editing [240, 228]
corresponds to the projective view construction approach and represents a product of the
variable system derived from the reusable platform. For both the synthetic and projective
approach and view-based software development in general, the preservation of consistency
between views is a major challenge and extensively researched [197, 226, 150].

2.6.1. Orthographic Soware Modeling

Orthographic Software Modeling (OSM) constitutes an approach for view-based develop-
ment [23, 22]. It employs a SUM that is assumed to be neither exposed to redundancies nor
dependencies and thus be free of any inconsistency thereof. The OSM realizes a projective
approach for the creation and management of views that are created on demand. A view
conforms to a metamodel, which is also referred to as view type [84]. The dimension-based
view navigation introduces a scheme for navigating along dierent perspectives of the
system. A dimension represents a property of a system’s description, such as its composi-
tion (e.g., the (de)composition of components into sub-components) or its abstraction level
(e.g. the platform independent model (PIM) or implementation (e.g., Java)). Moreover, a
dimension may enumerate the product variants of the system. The number of dimensions
is not limited and induces a multi-dimensional cube, each view representing a cell in it. The
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direction of a dimension-based view navigation is dened based on a dominance hierarchy
between the dimensions, while choices made of a higher level dimension may aect the
remaining choices of a lower level dimension. For instance, selecting the abstraction level
(which, in the MDSD context, could adhere to the most dominant dimension) aects the
possible notations. For instance, selecting Java as level of abstraction only allows for a
syntax tree (instead of a graphical notation). Consistency is achieved by transformations
that create well-formed views from the SUM and integrate modications on the view
back into the SUM that, in turn, can be checked against well-formedness rules. Thus,
views do not need to be pair-wise kept consistent as long as the view creation and change
integration adheres to consistency constraints that constitute well-formedness rules.

2.6.2. The Vitruvius Approach

The model-driven and delta-based Vitruvius approach supports consistent view-based
development of systems comprised of heterogeneous artifact models [116]. It bases on OSM
and thus promotes the usage of a SUM. However, maintaining and developing a monolithic
SUM that describes dierent types of engineering artifacts of the system while keeping
it free from redundancies and dependencies is overly complex [156]. As a consequence,
Vitruvius introduces the Virtual Single Underlying Model (V-SUM) conforming to the
Virtual Single Underlying Metamodel (V-SUM metamodel). While the V-SUM metamodel
appears again as a monolithic SUM, internally, the V-SUM metamodel consists of several
coupled metamodels. Moreover, the V-SUM metamodel can contain redundancies and
dependencies in contrast to the SUM metamodel.

To ensure consistency, metamodels are pair-wise coupled by manually dened incremental
model transformations, i.e., Consistency Preservation Rules (CPRs). Performed changes
by a developer (referred to as original changes throughout this thesis) are recorded by a
change monitor and processed by CPRs to check and enforce consistency of instances of a
V-SUM metamodel (referred to as consequential changes throughout this thesis). Changes
comprise all modications that transition one valid instance of a metamodel to another.
Vitruvius uses a metamodel that represents all possible types of changes that can be
applied to Ecore-based models, e.g., the insertion or removal of model elements. Moreover,
it is possible to compose atomic changes to compound changes, such as moving a model
element which is the composition of the two atomic changes remove and insert.
Moreover, Vitruvius inductively guarantees consistency. In particular, models are as-
sumed to be in a consistent state before changes are processed that trigger consistency
preserving mechanisms. Consistency preservation in Vitruvius can be dened by sev-
eral languages: the declarative Mappings language [121], which is the foundation for the
Commonalities language [114], and the imperative Reactions language [115], which can
be used to realize CPRs. Whenever a CPR modies a model in response to changes in
another model, correspondences between elements whose consistency shall be preserved
are created, as specied in the CPRs, in a traceability model called correspondence model.
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Figure 2.3.:A V-SUM metamodel and V-SUM of the Car system with derived views. Adapted from [114,
Fig. 2.3].

Figure 2.3 shows the V-SUM metamodel and V-SUM with derived views for the running
example of the Car system. The V-SUM metamodel consists of a Java metamodel and a
SysML metamodel. A transformation T species how instances of one or more metamodels
can be transformed to a view of a certain type. The respective views View1 and View2 can
be instantiated from ViewType1 and ViewType2 by executing the corresponding transfor-
mations𝑇1 and𝑇2. View1 and View2 correspond to a source code representation of Java and
a SysML block denition diagram. A CPR is specied for a pair of metamodels and ensures
that, for example, every time a class is added to the Java model (e.g., EngineController),
a block with the same name is added to the SysML model and vice versa. In this thesis,
CPRs are specied in the Reactions language and used to consistently propagate changes
from a Java model to a UML model.

Vitruvius does not consider variability but provides consistency preservation mechanisms
between heterogeneous artifact types while promoting projective views, which are well-
suited for managing variable systems via views on particular products [141].
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2.7. Consistency Notions

Numerous works focus on variability-related consistency management that ranges from
inconsistency detection to their fully automated repair. However, there is no standardized
or explicit denition of consistency in SPLE [132, 12]. Rather, consistency notions dier
depending on whether the system evolves in the problem space, in the solution space, or
in both spaces [182, 3]. Henceforth, three consistency notions of SPLE are distinguished
throughout this thesis that are introduce in the following.

Increasing complexity of a variability model impairs its maintainability, making it prone
to anomalies or defects [33]. Two types of anomalies are considered that can occur in a
variability model. First, structural anomalies violate well-formedness rules of a variability
model [100]. For instance, such rules could specify that every feature must have a unique
name and that a feature groupmust consist of at least two features. Second, variability mod-
els can also be prone to semantic anomalies [120, 33, 94]. Void feature models (i.e., no prod-
ucts can be derived from the product line), dead features (i.e., features can never be selected
in any product of the product line), or redundant constraints (i.e., the removal of a constraint
does not change the congurable space) are examples of such inconsistencies. Another
form of problem space inconsistencies represent congurations that violate any constraint
of the variability model [174, 78, 244]. Thus, a conguration must satisfy all constraints of
the variability model. In this thesis, Denition 2.4 for problem space consistency is used.

Denition 2.4 (Problem space consistency) A necessary criterion for problem space
consistency is the absence of structural or semantic anomalies in the variability model.
Moreover, a conguration 𝑐 must be valid with respect to the variability model, i.e., for no
constraints of the variability model 𝑐𝑡𝑣𝑚 , the formula 𝑐∧𝑐𝑡𝑣𝑚 is unsatisable.

Changes in the implementation of a variable system can harm the solution space consis-
tency. While dierent artifact types within one product of the variable system describe
partially overlapping information that must be kept consistent [116, 62, 56, 242], products
also share partially overlapping information in the form of features. Thus, if a feature
changes in one product, all other products with the same feature must be changed ac-
cordingly [39, 186]. Consistency rules specify conditions that must hold in any consistent
system. Such consistency rules can refer to artifacts of one particular type, or to artifacts
of dierent types. Such rules can, for example, concern the syntactic correctness of Java
source code with respect to its grammar, the conformance of a model to its metamodel and
OCL rules [181] (i.e., within an artifact type), or a correspondence of a Java class structure to
the class structure in a UML class diagram [116, 121] (i.e., between artifact types). Similarly,
the products and the reusable artifacts must co-evolve consistently [81], e.g., if a feature is
added or changed in a product, the artifacts from which the product was derived must be
changed accordingly. In this thesis, Denition 2.5 for solution space consistency is used.

Denition 2.5 (Solution space consistency) A necessary criterion for solution space con-
sistency is the absence of violations of any of the given consistency rules. A consistency rule
species a condition that must hold in any consistent system.
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Considering the variable system entirely, the problem space and the solution space may
evolve independently from each other. In particular, after a product has been derived
from the variable system, it evolves independently from the reusable platform and the
variability model, which is subject to evolution as well. This is also commonly referred
to as product and product-line co-evolution [198, 81, 112, 144, 21, 65, 211, 40]. Specically,
each valid conguration in the problem space must lead to a consistent product. This also
entails that (non-abstract) features in the variability model must have an implementation.
In this thesis, Denition 2.6 for problem space–solution space consistency is used.

Denition 2.6 (Problem space–Solution space consistency) A necessary criterion for
problem space–solution space consistency is that all valid congurations must lead to a
consistent product.
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Part II.

Unified Consistency-Aware Variability
Management





3. Overview

Part II presents the main contributions of this thesis. Chapter 4 explains the general unica-
tion process. Chapter 5 introduces concepts and relations that were identied from elicited
tools in the SPLE and SCM research eld, contributing a unied conceptual model (C1).
Chapter 6 extends the unication work by identifying and devising unied operations
that build on the unied conceptual model as data structure and constitute the operational
management of variability in space and time (C2). Chapter 7 presents an enumeration and
classication of identied variability-related inconsistency types that may occur during the
evolution of a variable system including causes, eects and repair options (C4). Finally, the
unied view-based approach is introduced in Chapter 8. It builds on the prior contributions
by concretizing the unied conceptual model as well as the unied operations. Beyond
that, the unied approach integrates variability-aware consistency preservation during
the evolution of a variable system comprised of heterogeneous artifacts (C5).
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4. Unification Process

This chapter builds on a publication at SPLC [3] and Empirical Software Engineering [5].

This chapter presents a general unication process to convey how the results were obtained
with the purpose of reproducability and transparency and with the aim of improving
validity. For the unied conceptual model (C1) and the unied operations (C2), the same
general unication process was applied while being tailored to the specic contribution.

The construction of the unied conceptual model and specication of the unied operations
was inspired by the construction process for a conceptual reference model proposed by
Ahlemann and Riempp [1]. Specically, the authors propose a four-phase research process.
The rst phase comprises the problem denition. The second phase aims at exploring
and generating hypotheses, i.e., the construction of an initial model and an analysis of
related approaches and standards, followed by a renement of the initial model. The third
phase targets the evaluation of the constructed model. Specically, this is performed by
conducting interviews with selected domain experts upon which the model is rened
until the experts reach consensus. The evaluation also involves an application of the
constructed model and a follow-up renement of the model based on the insights. Finally,
the fourth phase involves documentation which contains the model itself, a description of
the construction process and a documentation of the interview results.

Based on the described phases, a general process tailored to the purpose of unication is
presented in Section 4.1. An overview of selection criteria of contemporary tools that cope
with variability in space, time, or both follows in Section 4.2. A summary in Section 4.3
closes this chapter.

4.1. General Unification Process

Figure 4.1 shows the general unication process. The goal of the unication comprises
two main aspects: First, a classication of individual tool elements, i.e., tool constructs
and tool operations, to support an understanding of their commonalities and dierences.
Second, their unication in a redundancy-free and unambiguous manner, in order to i)
provide a common base for researchers and practitioners to compare, communicate and
scope work and research and, ii) support the development of novel techniques that cope
with both variability dimensions simultaneously.

Step 1 encompasses a selection of relevant tools based on specied selection criteria.
Then, expert surveys using interviews or questionnaires are conducted in Step 2 . Based
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Figure 4.1.:General unication process [3, Fig. 2].

on the gathered results from the expert survey, a construction mapping is obtained. It maps
tool elements (such as constructs, their relations, well-formedness rules or operations) of
the individual tools to initial elements that serve as initial hypothesis and starting point
for the identication phase of unied elements. In the follow-up Step 3 , semantically
equivalent elements across the contemporary tools are identied and a classication is
created. The nal Step 4 encompasses a unication of the individual tool elements that
result in unied elements.

Note that the general unication process is specialized for the unied conceptual model (C1)
and unied operations (C2).

4.2. Selection Criteria for Contemporary Tools

To conduct the unication processes for the unied conceptual model and unied opera-
tions, a denition of selection criteria for contemporary tools to be used in the unication
is presented in the following.

1. Support for variability in space, time, or both

2. Open source or expert availability

3. Consideration of the problem space and the solution space

The set of selected tools should be representative by means of involving tools for each
variability dimension and combination as well as for each category of variability mech-
anism (i.e., annotative, transformational, and compositional) to collect a diverse set of
tools. Consequently, tools are excluded that support only the solution space (e.g., Feature-
House [16, 15]) or the problem space (e.g., tools that only address variability modeling
or analyses [19, 30, 83, 207]). These requirements constrain the set of suitable tools from
the SPLE community. Additionally, a study by Horcas et al. [101] reports that out of 97
tools supporting software product line engineering, only 19% are available online. Out
of these, most systems only deal with the problem space and do not consider the solution
space, which signicantly limits the number of suitable tools.
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4.3. Summary

This chapter presented the conducted unication process to foster reproducability. The
process was inspired by the construction process for a conceptual reference model pro-
posed by Ahlemann and Riempp [1]. Figure 4.1 shows the general unication process of the
unied elements (i.e., the unied conceptual model (C1) and the unied operations (C2)).
This chapter also provided selection criteria of contemporary tools for unication, such
as support for either or both variability dimensions, and the consideration of the problem
space as well as the solution space.
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5. Unified Conceptual Model

This chapter builds on publications at VariVolution [9], SPLC [7] and Empirical Software
Engineering [5]. An open-access repository comprises artifacts related to the construction and
evaluation of the unied conceptual model.1

This chapter presents a conceptual model that unies and relates concepts established
in SPLE and SCM, and aligns their terminology. The goal is to provide a foundation for
researchers and practitioners to compare, communicate and scope their work, obtain
understanding of existing approaches coping with variability in space and time, and design
novel techniques for managing both variability dimensions.

Referring to problem statement P1, the following research question is asked:

RQ 1.1 Which concepts and relations exist to cope with either or both variability dimen-
sions and how can they be unied?

First, Section 5.1 presents the specialized unication process. Section 5.2 introduces the
unied conceptual model along with main design decisions and well-formedness rules.
Expected benets of the unied conceptual model are described in Section 5.3. A summary
in Section 5.4 closes this chapter.

This chapter thus constitutes the contribution C1.

5.1. Specialized Unification Process

Figure 5.1 presents a specialization of the general unication process shown in Figure 4.1
for the unied conceptual model. In the following, each step is described in detail.

Initial Conceptual Model

In the conceptual modeling group of the Dagstuhl seminar 19191 (Software Evolution
in Time and Space: Unifying Version and Variability Management [34]) (Step 0 ), we
conceived the initial conceptual model shown in Figure 5.2 [9]. It models concepts that
were found common to systems supporting variability in space, time, or both (white) as
well as concepts for variability in time (orange) and space (green). The System Space

1 https://doi.org/10.5281/zenodo.5751916
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Figure 5.1.:Unication process of the unied conceptual model. Adapted from [5, Fig. 3].

describes any software-intensive system. It is composed of Fragments that describe a
system and represent dierent levels of granularity (e.g., a le or line of code). Due to a
generalization of the composite design pattern, Fragments can be composed in dierent
combinations. The Revision Space conceptually corresponds to the System Space and
is a set of all systems under revision control. A Versioned System is described by its
Revisions, each representing the system at a particular point in time. Subsequent and pre-
ceding revisions form a revision graph, while multiple direct successors and predecessors
enable branching and merging. The Variant Space consists of all possible Product Lines.
A Variation Point describes an option of a Product Line and associates its realizing
Fragment. A Product results from a conguration that requires every Variation Point to
be realized by its corresponding Fragments. The conguration is modeled with a ternary
association of the Product Line, the Variation Point, and the Fragment. A Versioned

Item represents the versioning of concepts of all three spaces. It is realized by the concepts
Product Line, Variation Point, and Fragment.

Although the initial conceptual model documents concepts and their relations for vari-
ability in space and time, concepts are combined but not unied yet, and have not been
systematically selected and conceived. Therefore, the initial conceptual model serves as
foundation for the unied conceptual model.

Tool Selection

To systematically rene the initial conceptual model, relevant contemporary tools were
elicited based on the criteria described in Section 4.2 (Step 1 ). Table 5.1 shows the selected
tools, and how they dier regarding their support of variability in space and/or time, and
regarding the employed variability mechanism. FeatureIDE [130, 157], pure::variants [35]
and SiPL [187, 188] represent tools that support variability in space. FeatureIDE supports
dierent categories of variability mechanisms by means of integrated composers, e.g., the
preprocessor Antenna as annotative mechanism or AspectJ as a compositional variability
mechanism. The tool pure::variants employs an annotative mechanism by means of tagging
model elements. Finally, the tool SiPL uses a transformational variability mechanism via
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Table 5.1.:Distinguishing characteristics of the selected tools.

Tool

Property

Space Time

Annota-

tive

Transfor-

mational

Composi-

tional

Open

Source

FeatureIDE  —     

pure::variants  —  — — —
SiPL  — —  —  

SVN —  — — — —
Git —  — — — —
SuperMod    — — —
DarwinSPL   —  —  

DeltaEcore   —  —  

ECCO   — —   

VaVe   — —  —

deltas. SVN [190] and Git [145] are widely used VCSs that cope with variability in time. Since
both tools do not explicitly cope with variability in space (e.g., features and constraints),
they do not employ any variability mechanism. Finally, contemporary tools that deal with
variability in space and time are SuperMod [215, 214], DarwinSPL [170], DeltaEcore [219,
220], ECCO [75, 73, 139], and VaVe [10]. As these tools employ dierent concepts, modalities,
and development paradigms, diverse perspectives for unifying variability in space and
time could be incorporated. A more detailed description of the tools for variability in
space is provided in Section 2.2.2, of the tools for variability in time in Section 2.3.2, and of
tools coping with both dimensions in Section 2.4.2. Although some tools could be used in
combination to support variability in space and time, such as FeatureIDE and Git, they do
not provide novel concepts or relations for dealing with both dimensions. Therefore, such
combinations are considered to be covered by analyzing each tool individually.
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Expert Interviews

To rene the initial conceptual model accordingly, I conducted semi-structured interviews,
once per tool with one expert of the respective tool (Step 2 ). Experts were invited
based on their involvement in the conceptual design or implementation of an elicited tool
and thus are highly knowledgeable of it. The tool experts are mostly researchers from
academia with one expert being from industry. Experts for SVN or Git were not invited as
both tools are widely used with profound documentation available. The eight interviews
lasted 83 minutes on average and were based on a blank interview guide that was jointly
completed to ensure consistency, eliminate misunderstandings and clarify questions. The
interview guide consisted of four successive parts. The rst part presented the initial
conceptual model. The second part comprised amapping between the concepts of the initial
conceptual model and constructs of the respective tool to be jointly completed, resulting
in a construction mapping. Moreover, the mapping asked for any tool constructs that are
not covered by concepts of the initial conceptual model. To obtain a holistic understanding
of each tool and distinguish it from other tools, the third part of the guide additionally
asked for the tools’ main use cases, and the supported operations in the fourth part.

Construction Mapping

The construction mappings (one per tool) provided insights regarding each tool, its em-
ployed concepts, their relations and used terminology. Mappings between model concepts
and tool constructs were obtained based on semantic equivalence and not merely on names,
because some tools use the identical name for constructs that map to dierent model con-
cepts. For example, the term Variant represents a Configuration in FeatureIDE, and a
Product in pure::variants and ECCO. Based on insights from the mappings, we improved the
initial conceptual model by removing, adding, merging and splitting up concepts. Speci-
cally, in tools dealing with variability in space, the constructs Feature and Constraint did
not correspond to any concept of the initial conceptual model. Moreover, tools that cope
with variability in space and time simultaneously do not dierentiate between concepts of a
Versioned System and Product Line. Instead, a single construct is used (e.g., Repository
in ECCO or Product Line in DeltaEcore). Finally, many tools use the concept of a Mapping
(i.e., a relation between Features or Revisions and Fragments) and a Configuration. The
initial model represents both constructs only implicitly via relations (i.e., the Mapping is
represented with a directed association relationship between the Variation Point and the
Fragment, and the Configuration is represented with a ternary association of the Product
Line, the Variation point, and the Fragment).

Workshops

I organized a series of closed and specialized workshops to construct the unied conceptual
model based on the insights from the construction mappings. All tool experts as well as
further researchers and practitioners that voiced their interest to participate were invited.
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Specically, two subsequent workshops took place (Steps 3 and 4 ). The format of the
rst workshop was a one-day open discussion with 15 participants. I prepared interview
results and impulse questions uponwhichwe gradually rened the initial conceptual model.
The format of the secondworkshopwas an onlinemeetingwith 12 participants for 1.5 hours.
Important cornerstones of the meeting involved a retrospective of the performed changes
to the initial conceptual model based on the rst workshop, and discussion of remaining
open issues. Major agreed changes involved the unication of concepts. Particularly,
while tools that cope with either variability in space and time employ a Product Line or
Versioned System, tools that cope with variability in space and time simultaneously use
one unied concept to represent both. Moreover, the initial conceptual model species the
concept of Configuration only for variability in space, which is however also present in
tools dealing with variability in time [48] (e.g., a commit hash in Git). Thus, we extended
the Configuration to also be able to refer to concepts of variability in time as well, thereby
representing a unied concept. Further concepts were added or made explicit based on the
construction mappings. Specically, the concept of a Constraint was added to constrain
the validity of congurations. The concept of a Feature was added to represent design
options, since we found the concept Variation Point relevant in the implementation only
(and, thus, lowering the degree of abstraction). Also, the Mapping was modeled explicitly,
since this concept carries signicance in most of the tools. Finally, hybrid concepts were
introduced that were found in tools focusing on both variability dimensions as well as
new relations that do not exist in any of the studied tools.

5.2. Unified Conceptual Model

This section presents the unied conceptual model (C1). It starts by describing the main
design decisions that impacted the unied model. Then, its concepts and relations, a formal
notation and static semantics in the form of well-formedness rules are introduced.

5.2.1. Design Decisions

The design process of the unied conceptual model involved several design decisions
during the unication process. In the following, the main design decisions regarding
terminology and modeling are presented.

Terminology

The construction mappings revealed that terminology used for concepts of variability in
space and time in SPLE and SCM suers from ambiguity and homonyms. Therefore, we
aimed for generic and unambiguous terms not commonly used in either research area. This
particularly concerned the term Variant. For instance, it corresponds to the Configuration
construct in FeatureIDE, and to the Product construct in ECCO, according to the tool experts.

39



5. Unied Conceptual Model

Thus, even within the SPLE community, terms are used inconsistently. Furthermore,
the term Variant is also used in literature to represent an option of a Variation Point.
Therefore, this term is avoided and Product is used instead. Moreover, the term Variation

Point is generally associated in the SPLE area with implementation. Therefore, Option is
used as generic term to describe any variation. Another decision on terminology concerns
the system representing variability in space, time, or both. In the initial conceptual model,
Product Line and Versioned System contain most other concepts. While both terms
are associated with SPLE and SCM, respectively, tools that cope with both variability
dimensions represent the system with a single construct. As the term Repository is close
to implementation (i.e., persistence), the term Unified System is used.

Modeling Pragmatics

The rst design decision relates to the structure of Fragments. The initial conceptual
model allows to form a complex structure with a generalized composite design pattern.
Based on the selected tools, some organize Fragments as a tree structure (e.g., Git), and
some as a graph structure (e.g., DeltaEcore). To cover all tool constructs and relations,
the Fragment structure is modeled as a graph, which generalizes the tree structure. The
second design decision concerns the modeling of dierent types of revisions. Specically,
some tools employ Revisions of the Unified System (e.g., Git and SuperMod) while others
use revision control of each Feature (e.g., DeltaEcore and ECCO). To clearly dierentiate
between Revisions of both concepts and separate the concerns, the concept of System
Revision and its counterpart Feature Revision is introduced. The third design decision
relates to Constraints. While this concept is common in most tools coping with variability
in space to restrain combinations of Features, Constraints can be formulated on Feature

Revisions (e.g., DeltaEcore). Therefore, the concept Feature Option is introduced as a gen-
eralization of the Feature and Feature Revision concept, and Constraints to be dened
over Feature Options. The fourth design decision concerns the relationship between a
Feature and its Feature Revisions. Since the existence of a Feature Revision strongly
depends on its Feature, the relation is modeled as a composition. The nal design decision
relates to the versioning of Configurations and Mappings. However, since both can refer
to the same Options that would be used for versioning them (e.g., a System Revision could
enable a Mapping and, at the same time, be referred to by this Mapping), this would have
introduced cycles. Note that abstract classes are used to indicate that they should not be
specialized. Instead, the respective sub-classes should be used for further instantiation.

5.2.2. Concepts and Relations

Figure 5.3 shows a UML class diagram of the resulting unied conceptual model. Concepts
for variability in space are highlighted in green, concepts for variability in time in orange,
concepts of both variability dimensions in purple, and unied concepts are white. Lighter
colors and an italic font is used to represent abstract classes. The left part of the model
comprises the concepts located in the problem space in SPLE or version space in SCM (i.e.,
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the abstraction of the domain). The right side comprises the concepts located in the solution
space in SPLE or product space in SCM (i.e., the implementation artifacts of the system).
Notably, mostly all of the unied concepts are located in the solution space or on the
border to the problem space, which, in turn, contains the remaining concepts for variability
in space, time, or both. In the following, the concepts and relations of each variability
dimension and their combination are introduced, gradually describing the model from left
to right and referring to the running example of the Car system presented in Section 2.1.

Concepts and Relations for Variability in Space

Variability in space is supported by all studied tools except for Git and SVN (note that in
this research, branches are considered a temporal divergence for concurrent development
only). It is represented by the concepts Feature, Constraint, and Feature Option.

A Feature is considered a “prominent or distinctive user-visible aspect, quality, or charac-
teristic of a software system or system” [107, p. 3] that represents a concrete specialization
of the abstract concept Feature Option. Example: In the nal feature model of the Car

system in Figure 2.1b, four concrete features exist: the Car feature, the Gas feature, the Ele
feature, and the Dist feature.

A Constraint is formulated over Feature Options. It governs which Feature Options

can, should, or should not be combined together. Example: The Ele feature implies the
Dist feature so that both must be selected in a valid Configuration.

Concepts and Relations for Variability in Time

Variability in time is supported by Git, SVN, SuperMod and DarwinSPL. It is represented by
the concepts Revision and System Revision.

The abstract concept Revision describes the evolution history and is used by the unied
conceptual model as an abstract representation of time. The Revision refers to its preceding
and successive revisions, forming a revision graph. Multiple directly predecessors and
successors represent branches and merges.

A System Revision specializes a Revision and describes a particular state of the system
at one point in time. Example: Nine subsequent System Revisions describe the evolution
history of the Car system.

Concepts and Relations for Variability in Space and Time

Concepts for variability in space and time relate to concepts from both variability dimen-
sions. The concept Feature Revision was identied as such, which is employed by the
tools ECCO, DeltaEcore, and VaVe.
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Figure 5.3.:UML class diagram of the unied conceptual model [5, Fig. 4].
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5.2. Unied Conceptual Model

A Feature Revision specializes the Feature Option and the Revision. In contrast to a
System Revision that represents the state of an entire system, a Feature Revision is
specic to a single Feature. Thus, every feature has its own revision graph. Example: In
the nal Car system, the Gas feature has three subsequent revisions: Gas1, Gas2, Gas3.

Interestingly, no tool employs both Feature Revisions and System Revisions simulta-
neously. Instead, Feature Revisions are retrospectively mined from System Revisions

or the other way round, leading to high additional costs [59, 127]. This missing relation
between System Revisions and Feature Revisions is a gap in state of the art. The combi-
nation of both revision types is challenging, since they cannot be managed independently
and new structure as well as behavior must be dened with respect to their interaction. To
address this problem, System Revisions are used in the unied conceptual model to sup-
port the management of Feature Revisions. Specically, this research proposes to let a
System Revision enable Feature Revisions. Consequently, it is explicitly modeled which
Feature Revisions relate to a System Revision. This enables cross-dimensional analyses,
for instance, drawing conclusions about compatibility of Feature Revisions or tracking
the frequency of feature changes whereby a high frequency might indicate a poor design.
Example: The rst System Revision of the Car system enables Car1, Gas1 and Ele1.

Unified Concepts

Unied concepts are relevant for either variability dimension and are supported by all
studied tools. The Unified System (highlighted with a black border) represents the entire
variable system that describes variability space, time, or both, such as the Car system. It
is located on the border of both the problem space and the solution space since it contains
concepts located in either space.

The abstract concept Option represents any variation of either variability dimension. Thus,
it can be specialized as a Feature, a System Revision, or as a Feature Revision.

Analogously to the initial model, a Fragment represents an implementation artifact of any
level of granularity, e.g., models, delta modules, or entire les. Using a self-reference, the
unied conceptual model employs a graph structure of Fragments. Example: In the Car
system, Fragments are represented by the Java and SysML le as well as by lines of code.

Analogously to the Unified System, the Mapping is also located on the border of both
spaces. It relates concepts from the problem space (i.e., Options) with concepts from
the solution space (i.e., Fragments). Note that Options can exist that are not present in
any Mapping. For instance, such Options could represent abstract features. Example: The
Fragmentwhich represents Line 10 in the Car system in Figure 2.2 maps to the feature inter-
action Gasoline3&&Electric4. The abstract feature ET is not referred to by any Mapping.

The concept of a Configuration exists in both SPLE and SCM. While a Configuration is
rather complex in SPLE (i.e., the selection of particular Features), in SCM, it is simply
represented by a System Revision (e.g., a commit hash in Git). Therefore, a Configuration
is unied such that it is a selection of Options. Example: {Car1, ET, Gas1}.
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5. Unied Conceptual Model

A Product is derived by tool-specic variability mechanisms, such as delta modeling, that
specify which Fragments are composed according to a Configuration. Since the Unified
System is not eected by the Product, it is detached from the system after its derivation.

5.2.3. Notation

The following notation is used to refer to concepts and relations of the unied conceptual
model and to provide an example based on the running Car system.

Denition 5.1 A Unied System𝑈𝑆 is comprised of a set of System Revisions 𝑆𝑅, a set of
Features 𝐹 , a set of Constraints 𝐶𝑇 , a set of Congurations 𝐶 , a set of Fragments 𝐹𝑇 , and a
set of Mappings𝑀 .

The Car system in its nal state has the set of System Revisions 𝑆𝑅 = {1, 2, 3, 4, 5, 6, 7, 8, 9},
the set of Features 𝐹 = {Car, ET, Dist, Gas, Ele}, of Constraints 𝐶𝑇 = {Car, Car ⇔
ET, Dist⇒ Car, Gas⇒ ET, Ele⇒ ET, Gas∨Ele, Ele3,4 ⇒ Dist3}, the set of Configurations
𝐶 = {}, the set of Fragments 𝐹 = {class EngineController, double gasLevel, ...}, and the
set of Mappings𝑀 = {(class EngineController, Car1), (double gasLevel, Gas1,2,3), ...}.

Denition 5.2 𝐹𝑅𝑓 denotes the set of Feature Revisions of Feature 𝑓 ∈ 𝐹 .

For example, the feature Gas has the set of feature revisions 𝐹𝑅Gas = {Gas1, Gas2, Gas3}.

Denition 5.3 A System Revision 𝑠𝑟 ∈ 𝑆𝑅 enables a set of Features 𝐹𝑠𝑟 ⊆ 𝐹 , a set of Feature
Revisions 𝐹𝑅𝑠𝑟,𝑓 ⊆ 𝐹𝑅𝑓 for every feature 𝑓𝑠𝑟 ∈ 𝐹𝑠𝑟 , and a set of Constraints 𝐶𝑇𝑠𝑟 ⊆ 𝐶𝑇 . The
set of all Feature Options enabled by 𝑠𝑟 is 𝐹𝑂𝑠𝑟 = 𝐹𝑠𝑟 ∪

⋃
𝑓 ∈𝐹𝑠𝑟 𝐹𝑅𝑠𝑟,𝑓 .

The System Revision 9 enables features 𝐹9 = 𝐹 = {Car, ET, Dist, Gas, Ele}, Feature
Revisions of Gas 𝐹𝑅9,Gas = {Gas3}, and Constraints 𝐶𝑇9 = 𝐶𝑇 .

Denition 5.4 𝑚𝑠𝑟,𝑓 𝑡 ∈ 𝑀 is used to denote the mapping of Fragment 𝑓 𝑡 ∈ 𝐹𝑇 at System
Revision 𝑠𝑟 ∈ 𝑆𝑅. A Mapping can be treated as a Boolean expression over Options. 𝐹𝑇𝑚 ⊆ 𝐹𝑇

denotes the set of Fragments of a Mapping𝑚 ∈ 𝑀 , and 𝐹𝑇𝑠𝑟,𝑚 ⊆ 𝐹𝑇 the set of Fragments of a
Mapping𝑚 ∈ 𝑀 at System Revision 𝑠𝑟 ∈ 𝑆𝑅.

For example, the Mapping of Fragment class EngineController ∈ 𝐹𝑇 at
System Revision 9 ∈ 𝑆𝑅 is denoted as 𝑚9,class EngineController = Car1, and
the set of Fragments that map to Car1 at System Revision 9 as 𝐹𝑇9,Car1 =

{class EngineController, void doDriving()}.

Denition 5.5 A Conguration 𝑐 is a set of positive or negative features. It can be treated
as a conjunction of its positive and negative feature literals

∧
𝑙∈𝑐

𝑙 .

An example of a valid Configuration at the nal System Revision is 𝑐1 =

{Car1, ET, Dist3, Gas3,¬Ele} which is equivalent to the expression Car1 ∧ ET ∧ Dist3 ∧
Gas3 ∧ ¬Ele.
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5.2. Unied Conceptual Model

1 context UnifiedSystem

2 def:

3 getAllOptions : Set(Option) =

4 self.feats -> union(self.revs) -> union(self.feats -> collect(f:Feature | f.revs)

-> flatten())

5

6 context Configuration

7 def:

8 getAllSystemRevisions : Set(SystemRevision) =

9 self.opts -> select(o:Option | o.oclIsTypeOf(SystemRevision))

10 def:

11 getAllFeatureOptions : Set(FeatureOption) =

12 self.opts -> select(o:Option | o.oclIsKindOf(FeatureOption))

Listing 5.1:Auxiliary denitions for well-formedness rules [5, Listing 4].

5.2.4. Static Semantics

During interviews and discussions with the tool experts, several constraints dened on
tool constructs became obvious. For example, the tool ECCO employs an acyclic revision
graph. Since the UML notation does not provide the required level of conciseness and
expressiveness, the Object Constraint Language (OCL) is used to specify the static semantics
of the unied conceptual model in a formal way [181]. In the following, auxiliary denitions
are introduced that specify well-formedness rules.

Auxiliary Definitions

Listing 5.1 comprises the denitions of three auxiliary operations. The rst denition
species the operation getAllOptions that returns a set of all Options in a Unified

System (i.e., System Revisions, Features, and Feature Revisions). The second denition
species the operation getAllSystemRevisions for collecting all System Revisions in a
Configuration. The third denition species the operation getAllFeatureOptions for col-
lecting all Feature Options (i.e., Features and Feature Revisions) in a Configuration.

Well-Formedness

In the following, ten well-formedness rules are introduced that specify the static semantics
of the unied conceptual model. Listing 5.2 provides three rules that dene the well-
formedness of the revision graph.

Rule 1 states that every direct predecessor of a Revision 𝑟 must have 𝑟 as successor, and
that every direct successor of 𝑟 must have 𝑟 as a predecessor. This rule essentially enforces
a bidirectional relationship between predecessor and successor revisions.
Rule 2 denes revision graphs to be directed and acyclic by stating that the transitive
closure over the successor revisions of a Revision 𝑟 must exclude the Revision 𝑟 itself. It
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5. Unied Conceptual Model

1 context Revision

2 -- Rule 1: Every predecessor of a Revision must have the Revision as successor and vice

versa.

3 inv:

4 self.preds -> forAll(r : Revision | r.succs -> includes(self))

5 inv:

6 self.succs -> forAll(r : Revision | r.preds -> includes(self))

7

8 -- Rule 2: The revision graph must be a directed acylic graph.

9 inv:

10 self.succs -> closure(r : Revision | r.succs) -> excludes(self)

11

12 -- Rule 3: All Revisions of a revision graph must be of the same type and have the same

container.

13 inv:

14 self.preds -> forAll(r : Revision | self.oclType() = r.oclType() and

15 self.container = r.container)

16 inv:

17 self.succs -> forAll(r : Revision | self.oclType() = r.oclType() and

18 self.container = r.container)

Listing 5.2:Well-formedness of the revision graph [5, Listing 5].

ensures that no revision can be visited multiple times while traversing a revision graph.
Rule 3 species that all Revisions in a revision graphmust havematching types (i.e., either
only System Revisions or only Feature Revisions) and have the same container (i.e.,
the Unified System, in the case of System Revisions, or the same Feature, in the case of
Feature Revisions). A revision graph can thus either only contain System Revisions of
the same Unified System or only Feature Revisions of the same Feature.

In Listing 5.3, three rules are dened that specify the use of concepts that are contained in
the same Unified System.

Rule 4 states that all Options that a Configuration refers to must be part of the same
Unified System as the Configuration itself. A Configuration can thus not refer to
Options that are contained in another Unified Systems or in no Unified System at all.
Rule 5 denes that all Options and Fragments to which a Mapping refers must be part
of the same Unified System as the Mapping itself. A Mapping can thus neither refer to
Options nor to Fragments that are contained in another or in no Unified System.
Rule 6 species that all Feature Options, that a Constraint refers to, must be part of
the same Unified System as the Constraint itself. A Constraint can thus not refer to
Feature Options contained in another or in no Unified System.

Listing 5.4 shows threewell-formedness rules of the enables relations from System Revision

to Feature Option and to Constraint.

Rule 7 states that all Feature Options and Constraints that a System Revision en-
ables must be part of the same Unified System as the System Revision itself. A System

Revision cannot enable Feature Options or Constraints of another Unified System.
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1 -- Rule 4: All Options of a Configuration must be contained in the Unified System.

2 context Configuration

3 inv:

4 self.opts -> forAll(o:Option | self.us.getAllOptions -> includes(o))

5

6 -- Rule 5: All Fragments and Options of a Mapping must be contained in the Unified

System.

7 context Mapping

8 inv:

9 self.opts -> forAll(o:Option | self.us.getAllOptions -> includes(o))

10 inv:

11 self.fragments -> forAll(f:Fragment | self.us.fragments -> includes(f))

12

13 -- Rule 6: All Feature Options of a Constraint must be contained in the Unified System.

14 context Constraint

15 inv:

16 self.opts -> forAll(o:FeatureOption | self.us.getAllOptions -> includes(o))

Listing 5.3:Well-formedness of containments in a Unified System [5, Listing 6].

Rule 8 denes that Constraints can only refer to Feature Options that are enabled by
the same System Revision as the Constraints itself. This rule is only relevant for tools
that support multiple System Revisions. It ensures that, at no point in time, a Constraint
is visible that refers to Feature Options that are not visible.
Rule 9 species that, for every Feature 𝑓 that has at least one Feature Revision and
that is enabled by a System Revision 𝑟 , the same System Revision 𝑟 must also enable at
least one Feature Revision of Feature 𝑓 . This rule is only relevant for tools that support
System Revisions and Feature Revisions simultaneously. It ensures that, at any point
in time where a Feature is visible, also at least one of its Feature Revisions is visible.
Yet, it permits Features to be visible that do not have any Feature Revision, which is the
case either for abstract or newly created Features that have not been implemented yet.

Finally, Rule 10 denes the well-formendess of a Configuration in Listing 5.5. In case a
Configuration refers to at least one System Revision, all Feature Options that it refers
to must be enabled by at least one of the System Revisions that it refers to. In case
a Configuration does not refer to any System Revision, it may refer to any Feature

Options. This rule ensures that only Feature Options are selected in a Configuration

that are visible at one or more points in time. This rule species the minimal require-
ments for the well-formedness of a Configuration, without making any statement about
completeness or validity of a Configuration with respect to a set of Constraints.

5.3. Expected Benefits

So far, the unied conceptual model, its unication process, design decision and well-
formedness rules have been introduced and described. This section comprises a discussion
of the expected benets of the unied conceptual model.
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5. Unied Conceptual Model

1 -- Rule 7: All Feature Options and Constraints enabled by a System Revision must be

contained in the same Unified System as the System Revision.

2 context SystemRevision

3 inv:

4 self.opts -> forAll(c:Constraint | self.us.constrs -> includes(c))

5 inv:

6 self.opts -> forAll(f:FeatureOption| self.us.getAllOptions -> includes(f))

7

8 -- Rule 8: Constraints may only refer to Feature Options enabled by the same System

Revision.

9 inv:

10 self.constrs -> forAll(c:Constraint | self.opts -> includesAll(c.opts))

11

12 -- Rule 9: For every Feature that is enabled by a System Revision, the same System

Revision must also enable at least one Feature Revision of that Feature.

13 inv:

14 self.opts -> select(o:Option | o.oclIsTypeOf(Feature)) -> forAll(f:Feature |

15 f.revs -> isEmpty() or f.revs -> exists(fr:FeatureRevision |

16 self.opts -> includes(fr))

17 )

Listing 5.4:Well-formedness of the enables relations of System Revision [5, Listing 7].

1 -- Rule 10: A Configuration may only refer to Feature Options that are enabled by at

least one of the System Revisions it refers to.

2 context Configuration

3 inv:

4 self.opts -> exists(o:Option | o.oclIsTypeOf(SystemRevision)) implies (

5 self.getAllFeatureOptions -> forAll(f:FeatureOption |

6 self.getAllSystemRevisions -> exists(s:SystemRevision | s.opts.includes(f))

7 )

8 )

Listing 5.5:Well-formedness of Configuration [5, Listing 8].

A model can have one or more roles (i.e., a descriptive, prescriptive, or predictive role) that
reect its purpose [46]. To this end, the unied conceptual model can play a descriptive as
well as a prescriptive role.

On the one hand, it systematically builds on and describes concepts and relations for
dealing with variability in space, time, and both of contemporary approaches and tools.
Based on this common foundation, researchers and practitioners gain understanding of
the state of the art, and can communicate and compare their work based on common and
distinguishing concepts and relations of the unied conceptual model.

On the other hand, the unied conceptualmodel can play a prescriptive role since it does not
only cover identied concepts and relations, but also provides meaningful novel relations
between concepts that do not appear in combination in any of the studied approaches (i.e.,
System Revisions and Feature Revisions). Thus, it prescribes the concepts and relations
of a system aiming to deal with variability in space and time simultaneously. Based on that,
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Figure 5.4.:Contribution of Chapter 5 of the thesis.

cross-dimensional variabilitymodeling and analyses become possible, for instance, tracking
revisions per features to analyze their frequency of change (for which expensive and
approximate mining techniques are currently used). In conclusion, the unied conceptual
model can be employed to drive the construction of a system by providing a systematically
devised foundation for dealing with both variability dimensions.

5.4. Summary

This chapter presented the unied conceptual model for uniformly describing and relating
concepts of variability in space and time (C1). it comprises concepts of variability in space,
variability in time, unied concepts (that can be used to deal with either variability dimen-
sion) and hybrid concepts for dealing with both variability dimensions simultaneously.
Major design decisions that impacted terminology and modeling have been explained. In
addition, a formal notation of the unied conceptual model and OCL rules to ensure the
well-formedness of the unied model have been provided. To support reproducability of
this unication eort, the unication process of the unied conceptual model has been
documented and related artifacts were made available.
The unied conceptual model provides means for researchers and practitioners to clarify,
communicate and compare their work based on the model’s concepts and relations. Beyond
that, the unied conceptual model can guide the design of novel approaches for managing
variability in space and time. To this end, none of the studied tools support the explicit
combination of Feature Revisions and System Revisions. This a gap in tool support for
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5. Unied Conceptual Model

managing both variability dimensions that is currently mitigated by retrospective mining
of feature evolution, which leads to additional costs. This research proposes to use System
Revisions to govern which Feature Revisions are available. In conclusion, the unied
conceptual model extends the body of knowledge on unied variability management.

Thus, this contribution addresses RQ 1.1. Figure 5.4 shows an overview of all contributions
and highlights the contribution of this chapter in grey.
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6. Unified Operations

This chapter builds on a publication at VaMoS [6]. An open-access repository comprises all
artifacts related to the unication process and evaluation of the unied operations.1

This chapter presents the unied operations to manage variability in space and time
simultaneously. So far, ten existing tools from the SPLE and SCM communities have been
analyzed and a conceptual model for unifying concepts of variability in space and time
has been conceived (C1). However, tools operate not only on dierent data structures, but
follow dierent edit modalities and development paradigms when it comes to managing
variability, even if they consider the same variability dimensions [141]. For instance,
some tools enforce (partially) contradicting pre-conditions for the same operations. Thus,
understanding the dierent ways of handling both dimensions allows for establishing a
common foundation for the operational management of variability in space and time.

Referring to problem statement P1, the following research question is asked:

RQ 1.2 Which operations are provided to cope with either or both variability dimensions
in the studied tools and how can they be unied?

First, Section 6.1 presents the specialized unication process. The identication of the
commonalities and dierences of the individual tool’s operations is described in Section 6.2.
Then, the unied operations are introduced in Section 6.3, along with their pre and post-
conditions, for coping with variability in space and time. Expected benets of the unied
operations are described in Section 6.4. A summary in Section 6.5 closes this chapter.

This chapter thus constitutes the contribution C2.

6.1. Specialized Unification Process

Figure 6.1 presents the specialization of the general unication process shown in Figure 4.1
for the unied operations. In the following, each step is described in detail.

1 https://doi.org/10.5281/zenodo.5825135
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Figure 6.1.:Unication process of the unied operations [6, Fig. 2].

Table 6.1.:Distinguishing concepts of the selected tools [6, Tab. 1].

Tool

Concept

Feature Constraint

System

Revision

Feature

Revision

FeatureIDE   — —
VTS  — — —
SiPL   — —
SVN — —  —
Git — —  —
SuperMod    —
DarwinSPL    —
DeltaEcore   —  

ECCO  — —  

VaVe   —  

Tool Selection

We elicited tools based on the selection criteria described in Section 4.2 (Step 1 ). Table 6.1
shows the selected tools, and how they dier regarding their supported concepts for
variability in space (i.e., Feature, Constraint) variability in time (i.e., System Revision),
and both dimensions (i.e., Feature Revision). Note that these tools are mostly the same
as the ones selected for the unied conceptual model (see Section 5.1). Tools for variability
in space, i.e., FeatureIDE [130, 157], VTS [228] and SiPL [187, 188], support Features and,
except for VTS, Constraints. Tools for variability in time, i.e, SVN [190] and Git [145],
support System Revisions. Tools that support variability in space and time via Features,
Constraints and System Revisions are SuperMod [215, 214] and DarwinSPL [170]. Tools
that support variability in space and time via Feature Revisions instead of System

Revisions are DeltaEcore [219, 220], ECCO [75, 73, 139] and VaVe [10]. Again, combinations
of tools (e.g., FeatureIDE and Git) are not considered as they do not provide dedicated func-
tionality for dealing with both variability dimensions simultaneously. A more detailed de-
scription of the tools for variability in space is provided in Section 2.2.2, of the tools for vari-
ability in time in Section 2.3.2, and of tools coping with both dimensions in Section 2.4.2.
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6.1. Specialized Unication Process

Expert Survey

In Step 2 , I conducted an expert survey based on questionnaires comprising an initial
set of use cases. Experts were invited that are among the most knowledgeable people
of an elicited tool, all being researchers from academia. Analogously to the unication
process of the unied conceptual model (see Figure 5.1), experts for SVN or Git were not
invited as both tools are widely used with profound documentation available. Per tool, one
questionnaire was completed by an expert. The goal was to obtain a mapping between
a set of use cases presented in the questionnaire and the functionality (i.e., operations)
provided by a respective tool. For each use case, the questionnaire therefore asked for its
input and output, pre and post-condition and a description of its semantics. Furthermore,
the questionnaire asked for further functionality related to the management of variability
in space, time, or both that was not covered by the initial set of use cases.

Use cases were formulated on the abstraction level of the unied conceptual model, which
excludes tool-specic operations related to, for example, delta modules or feature models.
Moreover, use cases were considered that modify a unied system and produce non-trivial,
mutable output from a Unified System. This excludes operations for variability analysis
that compute a Boolean or integer value as well as run-time variability which operates on
a running product.

Figure 6.2 depicts the set of selected use cases. User-facing user-goal use cases (white) and
sub-function use cases (grey) are dierentiated. In the following, non-trivial use cases are
briey described. Every use case is always executed in the context of a Unified System.

• Add Unied System: Adds another Unified System to this Unified System. This
entails adding new Features, Revisions, Mappings, Fragments and/or Constraints.
For the sake of clarity, all include-relationships between this use case and included
add/update/delete use cases are omitted.

• Add Product: Adds a Product to this Unified System. This entails adding new
Features of the Product and/or new Revisions of changed Features of the Product
and/or new Fragments in the Product to this Unified System, including the corre-
sponding addition or update of Mappings. For the sake of clarity, include-relationships
between this use case and included add/update/delete use cases are omitted.

• Derive Product: Derives a Product from this Unified System based on a valid and
complete Configuration.

• Derive Unied System: Derives a Unified System from this Unified System.
Features, Fragments, Mappings, and Constraints of the derived Unified System

are a subset of the ones of this Unified System.

• Check Well-formedness: Checks the well-formedness of the given Fragments. The
precise realization of this use case depends on what the Fragment represent. For
example, in the case of Java source code, this use case checks for syntactical validity.
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<<user-goal>> 
Add Unified System

<<sub-function>> 
Check Configuration

Validity

<<sub-function>> 
Check Configuration

Completeness

<<sub-function>> 
Check Wellformedness

<<sub-function>> 
Check Expression  

 Validity

<<user-goal>> 
Derive Unified System

<<user-goal>> 
Derive Product

<<sub-function>> 
Select Mappings

<<include>>

Figure 6.2.:Use cases for expert survey [6].

• Check Expression Validity: Checks the validity of a given expression with re-
spect to the Constraints in the Unified System. If the expression represents a
Configuration, this is a special case of this use case and equivalent to the use case
Check Conguration Validity

• Check Conguration Completeness: Checks the completeness of a given
Configuration considering its selected or deselected Options.

• Select Mappings: Selects a subset of the Mappings in the Unified System given an
expression against which the expression in each Mapping is evaluated.
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Use Case Mappings

The use case mappings (one per tool) provided insights regarding each tool, its operations,
their semantics and used terminology. The mapping was created by the tool experts based
on semantic equivalence of the described use cases and the individual tool operations. The
completed use case mappings showed that every use case is covered by at least one tool.
Furthermore, depending on the tool, use cases could be user-facing (e.g., Add Mapping is
user-facing in DeltaEcore, but not in ECCO), or may include other use cases as depicted in
Figure 6.2 (e.g., in VTS, the use case Add Fragment to Mapping includes the use case Add
Fragment, since Mappings contain the Fragments. Moreover, no use cases were missing that
would have met the scope criteria. Finally, the used terminology in the use cases introduced
ambiguities. For instance, Add Product could either be interpreted in a product-oriented
way in the sense of clone-and-own (as it is in case of ECCO) or in a platform-oriented
way (as it is in case of SuperMod, where the user provides an ambition to explicitly map
changes to a Feature expression).

Operation Identification

The completed use case mappings were input to the identication of operations that deal
with variability in space, time, or both (Step 3 ). Specically, I evaluated the mappings
and mapped the inputs and outputs of the individual tool operations to the concepts of
the unied conceptual model (C1). Then, I classied each operation according to common
and distinguishing properties and categorized the tool’s operations based on a clear and
self-contained concern to avoid redundancies and ambiguities and discussed the results
with the tool experts. For instance, one category was dened for the integration of changes
performed on a product while another category was dened for the integration of changes
performed on an instance of a unied system (i.e., a partial product line). Predicates, that are
used in pre and post-conditions of tool operations, were identied by the same means.

Operation Unification

The identication of each individual tool’s operations along with the specied categories
were input to the unication (Step 4 ). For each category, we specied its operation
signature based on the name, inputs and outputs. Furthermore, the behavior of operations
was unied such that the functionality of studied tools was preserved. Moreover, each
operation was extended to cope with both variability dimensions if only one dimension
was supported. The same unication procedure was applied for predicates. Afterwards, I
presented the resulting unied operations to the tool experts to avoid misunderstandings
and make sure the individual tools are covered correctly.
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6.2. Identification of Operations

This section presents the identied predicates and operations (Step 3 in Figure 6.1). It
starts with a classication to distinguish commonalities and dierences of operations.

6.2.1. Classification

When examining the individual tool operations based on the completed use case mappings,
commonalities and dierences among the tool’s functionality became obvious. While, for
instance, the derivation of a Product is supported by all tools in a user-facing way, some
tools employ functionality that is non user-facing but triggered through user-facing actions.
For example, the addition of a Feature and its Fragments in ECCO would require a user
to perform changes on a Product and commit them, while the Mapping is generated fully
automatically without the user being able to modify it directly. Contrary, in DeltaEcore,
the user would need to manually provide the Mapping of the new Feature (i.e., by directly
modifying the Mapping Model of DeltaEcore). Based on insights and discussions with the
tool experts, the identied operations could be classied by means of two aspects: the
edit modality and the development paradigm. The edit modality is realized by either direct
or view-based editing and describes the way in which a Unified System can be modied.
Direct editing allows the user to directly modify any part of the system, while view-based
editing only allows modications to the system through views [22]. The development
paradigm is realized by either product-oriented or platform-oriented development and
describes the way in which a Unified System is developed. In platform-oriented devel-
opment, the user needs to be aware of the entire platform when evolving the system.
Contrary, in product-oriented development, the user evolves the system based on a single
Product without considering the entire platform. While the former represents traditional
SPLE, the latter is closer to clone-and-own [73, 198].

6.2.2. Predicates

Predicates are used in pre and post-conditions that evaluate to true or to false. Table 6.2
presents a categorization of the four identied predicates. The predicate Complete Cong-
uration is supported by all tools except for VTS and ECCO. It checks whether all Options
employed by a tool (e.g., Features in FeatureIDE or Features and Feature Revisions in
DeltaEcore) are bound in a Configuration. The predicate Valid Conguration is supported
by the same tools and checkswhether a Configuration violates any Constraints. The pred-
icate Well-formed Product is supported by SuperMod, DarwinSPL and DeltaEcore. It checks
whether a set of Fragments satises a given set of rules that specify the well-formedness of
certain types of Fragments. For instance, the syntactical validity of Java source code or the
conformance between a model and metamodel. The predicate Valid Expression checks if a
propositional expression over Feature Options contradicts any Constraints. Note that
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6.2. Identication of Operations

Table 6.2.:Categorization of predicates [6, Tab. 2].
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Valid Expression

1 — — — — — — — — — —
Predicate is either evaluated  or not —. 1Required for unied operations.

this predicate is not employed by any tool, but was dened retroactively as it is required
for the unied operations, as explained later.

6.2.3. Direct Editing Operations

Table 6.3 presents a categorization of the 21 identied direct editing operations. For
every concept contained in a Unified System, there is an add, an update, and a delete
operation. Since these operations could be found only in tools that employ platform-
oriented development (i.e., FeatureIDE, VTS, SiPL, DarwinSPL and DeltaEcore), all direct
editing operations are classied as platform-oriented. Tools that only deal with variability
in space (i.e., FeatureIDE, VTS, SiPL) allow the user to add, update, and delete instances of their
concepts for variability in space. Tools that only deal with variability in time (i.e., SVN, Git)
do not support direct editing at all. Tools that deal with both variability dimensions support
direct editing in varying degrees: SuperMod, ECCO, and VaVe do not allow direct editing
at all. DarwinSPL allows to directly modify only concepts for variability in space and only
permits to directly add a Feature and Constraint but not to update or delete it in order to
guarantee a reproducible past. Finally, DeltaEcore, as the only tool, permits the direct editing
of concepts of both dimensions. Note that direct editing operations can be considered
atomic operations without complex behavior and thus do not need unication.

6.2.4. View-Based Operations

Table 6.4 presents a categorization of seven view-based operations (one operation per
category) that are classied according to the supported development paradigms. While Ex-
ternalize operations create an editable view of the Unified System, Internalize operations
are performed on a view and modify the Unified System. Note that names common for
operations in SPLE and SCM (e.g., derivation or checkout) were intentionally not used, but
instead the terminology proposed in a recent survey of VarCS [141] (see Denition 2.2).
In contrast to direct editing operations, view-based operations oer a higher degree of
automation by essentially executing predened sequences of direct-editing operations

57
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Table 6.3.:Categorization of direct editing operations [6, Tab. 3].
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to ensure the system’s integrity. For instance, adding a Feature leads to the automated
creation of a new Mapping and System Revision. View-based operations are used in tools
that employ platform-oriented development, product-oriented development, or both. The
operation Externalize Domain derives a set of Feature Options and Constraints from
the Unified System. It is supported by SuperMod and DarwinSPL for retrieving a feature
model. A changed domain can be integrated into the system via Internalize Domain, which
is only supported via commit in SuperMod. Both operations are part of platform-oriented
development. The operation Externalize Product retrieves a Product from the Unified

System and is the only operation supported across all tools. A modied Product can be
integrated either via the product-oriented operation Internalize Product (e.g., commit in Git
or ECCO), or the platform-oriented operation Internalize Changes (e.g., commit in SuperMod,
that additionally requires an ambition which maps Features and changed Fragments). The
operations Externalize Unied System and Internalize Unied System are employed by Git
and ECCO and support distributed development. While the rst operation creates a new
instance of a Unified System (e.g., clone in Git or ECCO), the second operation integrates
another instance of a Unified System (e.g, pull/push in Git or ECCO). Both operations are
part of both development paradigms.
Note that the branch and merge operations of the tool Git are not in scope, as they do not
satisfy the scope criteria. The merge operation only modies the Product (i.e., working
copy in Git) and not the Unified System (i.e., repository in Git), as it does not create a
merge point in a revision graph. Instead, the commit operation, that follows a merge
operation, creates the actual merge point in a revision graph. The branch operation neither
modies the Product nor the Unified System, as it only assigns a label to a commit and
does not create a branch point in a revision graph. Instead, again the following commit
operation creates the actual branch point.

For each of the seven view-based operations, there is at least one tool that supports it. One
view-based operation (Externalize Product) is supported by all tools. None of the tools sup-
port all view-based operations or implements any view-based operation for both System
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Revisions and Feature Revisions. Furthermore, some tools provide a single operation to
address multiple concerns. For instance, in VTS, the operation get can be used to derive a
Product or a product line depending on whether the provided Configuration is complete
or partial. Following the design principle of separation of concerns (i.e., one operation
per concern), the individual tool operations were factorized based on their concerns.

6.3. Unification of Operations

This section presents the unied predicates and operations for managing variability in
space and time. The main commonalities and dierences among the tools are discussed and
main insights and design decisions of the unication explained (Step 4 in Figure 6.1).

6.3.1. Predicates

Predicates are Boolean properties of concepts. They can be used on their own or in pre and
post-conditions of operations. Figure 6.3 provides denitions of the unied predicates.

Predicate: Complete Conguration. Evaluates for a given Configuration, whether all
Options (i.e., Features, Feature Revisions, System Revisions) of a Unified System are
bound. The denition of a Complete (or full) Conguration diers based on whether the
tool supports variability in space, variability in time, or both. While the semantics of a
complete conguration are well understood for variability in space and uniformly used
in SPLE, the semantics of completeness of a conguration over time (including System

Revisions or Feature Revisions) is not obvious. A conguration that is not complete is
also referred to as a partial conguration.

Comparison: All tools evaluate the completeness of a Configuration except for VTS and
ECCO, which simply assume any not explicitly selected Feature or Feature Revision as
deselected. In tools coping with variability in space (i.e., FeatureIDE, SiPL), a conguration is
complete if it either selects or deselects every Feature in a Unified System. In tools coping
with variability in time (i.e, SVN, Git), a Configuration (a revision number or a commit

hash) is complete if it selects exactly one System Revision. In tools coping with both
variability dimensions via Feature Revisions (i.e., DeltaEcore, ECCO, VaVe), a conguration
is complete if it either selects or deselects every Feature and, for every selected Feature,
it selects exactly one Feature Revision. ECCO is an exception in this regard, as it allows a
complete conguration to select multiple Feature Revisions for every selected Feature

for merging. In tools coping with both variability dimensions via System Revisions and
Features (i.e., SuperMod, DarwinSPL), a conguration is complete if it selects exactly one
System Revision and all of its enabled Features are either selected or deselected.

Unication: The semantics of a complete Configuration in either space, time, or both do
not contradict each other and can be unied straightforward as presented in Figure 6.3.
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Table 6.4.:Categorization of view-based operations [6, Tab. 4].
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6.3. Unication of Operations

Predicate: Complete Conguration

Input: Unified System 𝑈𝑆 , Configuration 𝑐

Conguration 𝑐 is complete, if and only if it selects one system revision 𝑠𝑟 , either selects
or deselects every feature 𝑓𝑠𝑟 enabled by 𝑠𝑟 , and selects at least one feature revision 𝑓 𝑟 𝑓𝑠𝑟
enabled by 𝑠𝑟 for each selected feature 𝑓𝑠𝑟 .

complete

Predicate: Valid Conguration

Input: Unified System 𝑈𝑆 , Configuration 𝑐

Conguration 𝑐 is valid, if and only if all features in 𝑐 exist in 𝑈𝑆 and are either selected 𝑓 ∈
𝑐 or deselected ¬𝑓 ∈ 𝑐 and never both, for any deselected feature ¬𝑓 ∈ 𝑐 no feature revision
𝑓 𝑟 𝑓 is selected in 𝑐 , if 𝑐 selects a system revision 𝑠𝑟 in 𝑈𝑆 , then

• all selected features 𝑓 ∈𝑐 and feature revisions 𝑓 𝑟 𝑓 ∈𝑐 are enabled by 𝑠𝑟 , and

• for no constraint 𝑐𝑡𝑠𝑟 enabled by 𝑠𝑟 , expression 𝑐∧𝑐𝑡𝑠𝑟 is unsatisable.

valid

Predicate: Valid Expression

Input: Unified System 𝑈𝑆 , System Revision 𝑠𝑟 , Expression 𝑒

An arbitrary propositional expression 𝑒 over feature options is valid for a given system revi-
sion 𝑠𝑟 , if and only if there is no constraint 𝑐𝑡𝑠𝑟 enabled by 𝑠𝑟 where 𝑒 ∧ 𝑐𝑡𝑠𝑟 is unsatisable.

validExpr

Predicate: Well-Formed Product

Input: Product 𝑝

Product 𝑝 is well-formed, if and only if no fragment 𝑓 𝑡 ∈ 𝐹𝑇𝑝 references a fragment 𝑓 𝑡 ′ ∉ 𝐹𝑇𝑝 ,
where 𝐹𝑇𝑝 denotes the fragments from which 𝑝 was constructed.

wellformed

Figure 6.3.:Overview of the predicates [6, Fig. 3].

Note that the condition of selecting exactly one Revision per Feature to at least one
Revision is relaxed to allow merging of Feature Revisions.

Predicate: Valid Conguration. Evaluates whether a Configuration contradicts any
Constraints in a Unified System. A Valid Conguration neither contradicts any explicitly
specied Constraints (e.g., via a variability model) nor any implicit Constraints (e.g.,
dierent System Revision exclude each other). Analogously to a Complete Conguration,
the semantics of a Valid Conguration are well-understood for variability in space in the
area of SPLE, but not so obvious with variability in time.

Comparison: Except for VTS and ECCO, which do not employ Constraints, all consid-
ered tools evaluate the validity of a Configuration. In the analyzed tools coping with
variability in time, a Configuration is valid if the Unified System contains the selected
System Revision. In tools coping with variability in space or with both variability di-
mensions via Feature Revisions, a Configuration is valid if it does not contradict any
of the Constraints in the Unified System. In tools coping with both variability dimen-
sions via Features and System Revisions, a Configuration is valid with respect to a
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6. Unied Operations

selected System Revision, if all selected Features are enabled, and none of the enabled
Constraints are contradicted.

Unication: The above denitions of a Valid Conguration align well and can be combined
in a unied denition considering variability in space and time via Features, Feature
Revisions, and System Revisions, as presented in Figure 6.3. Note that the unied de-
nition of a Valid Conguration can be applied to complete or to partial Configurations.

Predicate: Valid Expression. Evaluates whether an expression over Feature Options in
a Unified System contradicts any Constraints. A Valid Expression generalizes the Valid
Conguration predicate from a Configuration (i.e., conjunction of Options) to arbitrary
expressions over Feature Options.

Comparison and Unication: This predicate is not used by any of the analyzed tools, but
is required for the unied operation iC. Figure 6.3 presents the denition of the Valid
Expression predicate.

Predicate: Well-Formed Product. Evaluates whether the implementation of a Product
(i.e., a set of Fragments) is well-formed based on a set of rules that are specic to the
Fragments. For instance, this involves the validation of OCL constraints, the conformance
of a UMLmodel with the corresponding metamodel or the syntactic validity of Java code.

Comparison: SuperMod, DarwinSPL, and DeltaEcore perform well-formedness checks of
Products, such as checking the conformance of a model to its corresponding metamodel.

Unication: For the unication, well-formedness is dened generically (i.e., without con-
sidering specics of certain types of Fragments) and on the level of abstraction of the
unied conceptual model, where the only available information in this regard is the set of
Fragments and how they reference each other. Figure 6.3 shows the unied denition of
theWell-Formed Product predicate.

6.3.2. Operations

Figure 6.4 depicts possible execution sequences of the unied view-based operations
in the form of a UML state chart diagram. States represent currently available concept
instances. Transitions represent operation executions on the instances. Operations are
highlighted based on the supported development paradigm: Operations for product-
oriented development are highlighted in orange, while operations for platform-oriented
development are highlighted in yellow. Finally, operations are highlighted that are used
in both paradigms in blue. A remote Unified System can be used to externalize a local
instance of a Unified System via 𝑒𝑈𝑆 . To modify the domain of the variable system,
Feature Options (i.e., Features and Feature Revisions) and Constraints must rst be
obtained via 𝑒𝐷 , which provides a clean (i.e., unmodied) view on the domain. While the
view remains clean, the 𝑒𝐷 operation can be used to switch to a view on the domain at
another point in time. Once the view has been modied (e.g., by adding a new optional
Feature) it is marked as dirty (i.e., modied). Changes to the domain view are integrated
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Local  
US

Remote
US

Clean
Domain

Clean
Product

iUS eUS

iD

ePeD

iP

iC
edit

Dirty
Product

Dirty
Domain

editiC

eD eP

Both paradigms

eP externalize Product iP internalize ProducteD externalize Domain
iC internalize Changes

iD internalize Domain
eUS externalize Unified System iUS internalize Unified System

Product-oriented paradigm Platform-oriented paradigm 

Figure 6.4.: Execution sequences of unied operations [6, Fig. 4].

Operation: Externalize Domain

Input: Unified System 𝑈𝑆 , System Revisions 𝑆𝑅
Output: Feature Options 𝐹𝑂 , Constraints 𝐶𝑇

Returns the sets of feature options 𝐹𝑂 =
⋃

𝑠𝑟∈𝑆𝑅 𝐹𝑂𝑠𝑟 and constraints 𝐶𝑇 =
⋃

𝑠𝑟∈𝑆𝑅 𝐶𝑇𝑠𝑟 , where
𝐹𝑂𝑠𝑟 and 𝐶𝑇𝑠𝑟 are the feature options and constraints enabled by the system revision 𝑠𝑟 ∈ 𝑆𝑅
in the unied system 𝑈𝑆 .

eD

Figure 6.5.:Denition of Externalize Domain operation [6, Fig. 5].

back into the local Unified System via 𝑖𝐷 . Analogously, to modify the implementation of
the local Unified System, a Product is rst externalized via 𝑒𝑃 . Again, 𝑒𝑃 can be repeatedly
performed to switch between dierent Products as long as it remains unmodied (i.e.,
clean). Editing a Productmarks it as dirty. There are two options for integrating a changed
Product into the local Unified System. In product-oriented development, 𝑖𝑃 can be used
to internalize an entire Product, and in platform-oriented development, 𝑖𝐶 can be used to
internalize the changes performed in a Product. In contrast to 𝑖𝑃 , 𝑖𝐶 requires an expression
provided by the user to integrate changes in a ne-grained manner, leading again to a
clean product. Note that an 𝑖𝐶 operation must be performed once per feature or feature
interaction. Consequently, the edit and 𝑖𝐶 cycle can be performed repeatably as long as
changes aect the same Product. Finally, either the entire local Unified System or parts
of it (e.g., a new Feature) can be integrated into the remote Unified System via 𝑖𝑈𝑆 .

In the following, each operation is discussed.

Operation: Externalize Domain (𝑒𝐷). This platform-oriented operation creates a view
on the domain of a Unified System, for instance, in the form of a variability model.
The view comprises the Feature Options and Constraints of the Unified System that
are visible at one or more specied points in time, i.e., that are enabled by at least one
of potentially multiple given System Revisions. The operation can be used to edit the
domain, merge domains at dierent points in time or to create congurations.
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Operation: Internalize Domain

Input: Unified System 𝑈𝑆 , System Revisions 𝑆𝑅,
Feature Options 𝐹𝑂 , Constraints 𝐶𝑇

Integrates the sets of feature options 𝐹𝑂 and constraints 𝐶𝑇 into the unied system 𝑈𝑆 .
Creates a new system revision 𝑠𝑟 ′ that is added as successor of each system revision 𝑠𝑟 ∈ 𝑆𝑅,
creating a merge point at 𝑠𝑟 ′ if |𝑆𝑅 | > 1, and a branch point at 𝑠𝑟 if 𝑠𝑟 has a successor. All
feature options 𝐹𝑂 and constraints 𝐶𝑇 are enabled by 𝑠𝑟 ′. Creates new mappings 𝑚𝑠𝑟 ′ = 𝑚𝑠𝑟

for all mappings 𝑚𝑠𝑟 in 𝑈𝑆 with 𝑠𝑟 ∈𝑆𝑅.

iD

Figure 6.6.:Denition of Internalize Domain operation [6, Fig. 5].

Comparison: This operation is supported by SuperMod, where it is part of the checkout oper-
ation, and by DarwinSPL via its operation getCopyOfValidModel. Both tools equally consider
both variability dimensions via Features and System Revisions and behave coinciding.

Unication: Consequently, the unication of 𝑒𝐷 is the behavior of the tools as dened
in Figure 6.5. Note that in the unication, the produced domain view also comprises
Feature Revisions in addition to Features. Moreover, multiple System Revisions can
be specied as input in order to be able to merge domain views and create merge points in
the System Revision graph.

Operation: Internalize Domain (𝑖𝐷). This platform-oriented operation integrates edits
on a domain view (created via 𝑒𝐷) into the Unified System.

Comparison: This operation is supported by SuperMod via its commit operation. Although
DarwinSPL supports the generation of domain views, it does not oer this view-based
operation for internalizing a changed domain view. Instead, DarwinSPL oers direct editing
operations for the domain where the user must specify the enabling System Revision for
every Feature and Constraint manually.

Unication: For the unication, the behavior is extended to consider Feature Revisions

by generalizing from Features to Feature Options (that also include Feature Revisions),
as dened in Figure 6.6. However, the user is intentionally not allowed to add new Feature

Revisions to a domain view, only new Features. Thus, Constraints may only be formu-
lated using Features or the Feature Revisions that are visible in the externalized domain
view. Furthermore, the behavior is extended to support distributed development: The
𝑖𝐷 operation creates a new System Revision 𝑠𝑟 ′ that becomes the successor of all System
Revisions specied for 𝑒𝐷 . If a System Revision 𝑠𝑟 was specied for 𝑒𝐷 that already
has a successor, adding the new System Revision 𝑠𝑟 ′ as another successor makes 𝑠𝑟 a
branch point in the revision graph. If multiple System Revisions were specied for 𝑒𝐷 ,
𝑠𝑟 ′ becomes successor to all of them and thus a merge point in the revision graph.

Operation: Externalize Product (𝑒𝑃 ). This operation creates a Product that consists of
Fragments contained in the Unified System. A Product is externalized based on a com-
plete and valid Configuration. The operation 𝑒𝑃 is part of both development paradigms.
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Operation: Externalize Product

Input: Unified System 𝑈𝑆 , Configuration 𝑐
Pre-condition: valid(𝑈𝑆, 𝑐) ∧ complete(US,c)
Output: Product 𝑝
Post-condition: wellformed(𝑝)
Creates a well-formed product 𝑝 from a complete and valid conguration 𝑐 . Selects all map-
pings 𝑀 ′= {𝑚′∈𝑀 |𝑐 ⇒𝑚′} from the mappings 𝑀 in the unied system 𝑈𝑆 implied by 𝑐 and
collects their fragments 𝐹𝑇𝑚′ into 𝐹𝑇𝑝 =

⋃
𝑚′∈𝑀′ 𝐹𝑇𝑚′ to create the product 𝑝 .

eP

Figure 6.7.:Denition of Externalize Product operation [6, Fig. 5].

Comparison: This operation is supported by all of the studied tools. Furthermore, its
behavior is essentially the same across all tools. All Mappings of the Unified System are
evaluated and, in case their expression is satised by the Configuration, selected. Based on
the selected Mappings, the respective Fragments are used to generate the Product. The in-
dividual tool operations dier with respect to the Options that are used in Configurations

and Mappings, as the available Options depend on the supported variability dimensions.
Except for SVN, Git, ECCO and VTS, which do not include Constraints, all considered tools
evaluate the completeness and validity of a Configuration as a pre-condition. Tools cop-
ing with variability in space often refer to this operation as product derivation. In tools
coping with variability in time, it is referred to as checkout. In SVN or Git, that support
product-oriented development and solely the time dimension, only previously internalized
Products can be externalized, as Options are realized only by System Revisions, of which
only one (or multiple for merging) can be specied in a valid conguration. This is referred
to as extensional versioning [48]). Tools that support platform-oriented development and
variability in space (e.g., via direct editing in FeatureIDE or the iC operation such as the
commit operation in SuperMod), can also externalize Products with Configurations that
have not previously been internalized, as Options are at least realized by Features, of
which multiple can be combined in valid and complete Configurations. This is referred
to as intensional versioning [48]). An exception is ECCO, which neither supports direct
editing nor the iC operation, but still supports intensional versioning. ECCO performs
feature location [160] to compute Mappings and locate relevant Fragments from previously
internalized Products when externalizing a Product.

Unication: Figure 6.7 shows the denition of the unied operation 𝑒𝑃 . The feature location
technique of ECCO does not conict with the behavior of the other tools, and can therefore
be optionally included in the eP operation. This would enable intensional versioning for
product-oriented development.

Operation: Internalize Product (𝑖𝑃). This product-oriented operation supports a de-
velopment process similar to clone-and-own for integrating a Product into the Unified
System. Specically, edits are performed on an externalized Product.

Comparison: This operation is realized by all tools that support product-oriented devel-
opment, i.e., SVN, Git, and ECCO. As common behavior among the tools, a new System

Revision 𝑠𝑟 ′ is created and mapped to the Fragments of the internalized Product. Among
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Operation: Internalize Product

Input: Unified System 𝑈𝑆 , Product 𝑝
Pre-condition: wellformed(𝑝) ∧ valid(𝑈𝑆, 𝑐𝑝)
Updates the unied system 𝑈𝑆 to additionally cover product 𝑝 . Creates a new system revi-
sion 𝑠𝑟 ′ and adds it as successor of the system revision in 𝑐𝑝 . Creates a new feature revision
𝑓 𝑟 ′

𝑓
for every feature 𝑓 in conguration 𝑐𝑝 that is either new (and added to 𝑈𝑆) or was

changed in product 𝑝 . Adds 𝑓 𝑟 ′
𝑓
as successor to every feature revision 𝑓 𝑟 𝑓 of 𝑓 selected in

𝑐𝑝 , creating a merge point if multiple were selected, and a branch point if 𝑓 𝑟 𝑓 has a successor.
Enables all new and all unchanged features and feature revisions appearing in the congura-
tion 𝑐𝑝 . Adds all fragments 𝐹𝑇𝑝 of product 𝑝 to 𝑈𝑆 and adds new mappings from 𝑠𝑟 ′ to each
fragment 𝑓 𝑡 ∈𝐹𝑇𝑝 .

iP

Figure 6.8.:Denition of Internalize Product operation [6, Fig. 5].

the three tools, ECCO supports both variability dimensions via Features and Feature

Revisions, which extends its behavior compared to Git and SVN. To indicate the modied
Features for which a new Feature Revision must be created, they must be manually
marked in a Product’s Configuration.

Unication: The unied operation combines the tool behaviors in a fairly straightforward
manner, as dened in Figure 6.8. In all cases, a new System Revision is created and
mapped to all Fragments of the Product. The expression in the Mapping is automatically
set to 𝑡𝑟𝑢𝑒 . Additionally, the new System Revision enables all Feature Options that were
selected in the Configuration of the internalized Product. Consequently, 𝑖𝑃 explicitly
tracks the Feature Revisions. This is not the case in SVN and Git, where Feature Options

are not tracked. Therefore, in practice, other methods are often used in conjunction, such
as the use of a preprocessor to mark Features, the manual documentation of modied
Features in the commit message, or approaches for retroactively mining variability in-
formation. Furthermore, 𝑖𝑃 can create branch and merge points in revision graphs. If
the Configuration of an externalized Product contains multiple Revision of a Feature

for which a new Feature Revision was created, the new Feature Revision becomes a
successor to all of them and thus a merge point in its revision graph. In case the System
Revision or a Feature Revision of a modied Feature in the Product’s Configuration
already have a successor, these Revisions receive yet another successor and thus become
branch points in their respective revision graphs.

Operation: Internalize Changes (𝑖𝐶). This platform-oriented operation integrates
changes applied to an externalized Product back into the Unified System based on an
expression over Feature Options that a user provides manually to indicate what Feature
Options should be aected by the changes. In practice, this operation is performed in
place, i.e., the current instance of the Unified System is updated instead of creating a
new instance. Its behavior is closer to SPLE (i.e., support for modifying the product-line
platform based on individual features) than it is to clone-and-own (see 𝑖𝑃 ).

Comparison: This operation is supported by the tools SuperMod, VTS, and VaVe that each
require the user to provide an expression over Features that is referred to as ambition by
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Operation: Internalize Changes

Input: Unified System 𝑈𝑆 , Product 𝑝 , Expression 𝑒 over Feature Options 𝐹𝑂
Pre-condition: validExpr(𝑈𝑆, 𝑠𝑟𝑐𝑝 , 𝑒) ∧ (𝑐𝑝 ⇒ 𝑒) ∧wellformed(𝑝)
Integrates changes made to a product 𝑝 (with a complete and valid conguration 𝑐𝑝 ) into
the unied system 𝑈𝑆 . Determines the set of fragments that were added 𝐹𝑇 +, remained
unchanged 𝐹𝑇𝑜 and were removed 𝐹𝑇 − from product 𝑝 . Creates a new system revision 𝑠𝑟 ′.
Creates new feature revision 𝑓 𝑟 ′

𝑓
enabled by 𝑠𝑟 ′ for each positive feature 𝑓 appearing in

expression 𝑒 . Adds 𝑠𝑟 ′ as successor to the system revision 𝑠𝑟 in 𝑐𝑝 , such that it enables the
same features and feature revisions as 𝑠𝑟 (except those succeeded by any of the new feature
revisions). Adds each new feature revision 𝑓 𝑟 ′

𝑓
as successor to every feature revision 𝑓 𝑟 𝑓 of

𝑓 selected in 𝑐𝑝 , creating a merge point if multiple were selected, and a branch point if 𝑓 𝑟 𝑓
has a successor. Creates new mappings 𝑚′

𝑠𝑟 ′,𝑓 𝑡 for every fragment 𝑓 𝑡 based on its mapping
𝑚𝑠𝑟,𝑓 𝑡 in the previous system revision 𝑠𝑟 , such that 𝑚′

𝑠𝑟 ′,𝑓 𝑡+ = 𝑚𝑠𝑟,𝑓 𝑡+ ∨ 𝑒 , for each 𝑓 𝑡+ ∈ 𝐹𝑇 +;
𝑚′

𝑠𝑟 ′,𝑓 𝑡𝑜 =𝑚𝑠𝑟,𝑓 𝑡𝑜 , for each 𝑓 𝑡𝑜 ∈𝐹𝑇𝑜 ; and 𝑚′
𝑠𝑟 ′,𝑓 𝑡− =𝑚𝑠𝑟,𝑓 𝑡−∧¬𝑒 , for each 𝑓 𝑡− ∈𝐹𝑇 −.

iC

Figure 6.9.:Denition of Internalize Changes operation [6, Fig. 5].

SuperMod and VTS. The expression can be a partial Configuration (i.e., a conjunction of
selected and deselected Features) like in SuperMod, an arbitrary expression over Features
like in VTS, or consist of a single Feature like in VaVe. SuperMod and VaVe employ the Valid
Conguration predicate to ensure that the expression does not violate any Constraints.
In VTS, the validity of the expression is not evaluated as it does not support Constraints.
Another interesting case related to pre-conditions is the relation between the conguration
of the provided product 𝑝 and the provided expression 𝑒 . While in VTS, the expression
𝑒 given to 𝑖𝐶 must imply the Configuration 𝑐𝑝 of Product 𝑝 (𝑒 ⇒ 𝑐𝑝 ), this is exactly the
opposite in SuperMod (𝑐𝑝 ⇒ 𝑒). The rationale for the latter is that changes applied to
a Product must be visible at least in the Configuration of the Product on which they
were performed. This ensures that, for example, users cannot specify an expression such
that changes performed in a Product would aect a Feature that is not even part of
that Product. In VTS, the rationale of the pre-condition is that changes must not aect
Configurations other than the one of the Product on which the changes were performed,
thus following consistency principles derived from the lens laws [76]. This condition is
only sensible if the view is not a Product based on a complete Configuration (as is the
case for this operation), but a view on a partial Configuration.

Unication: Figure 6.9 shows the denition of the unied operation 𝑖𝐶 . Since 𝑒𝑃 is dened
such that a view is a Product based on a complete Configuration (and not a subset
Unified System), the pre-condition of VTS can be reduced to 𝑒 ⇔ 𝑐 . This strongly limits
the eect of an edit, as it could only aect the exact view (i.e., Product) in which it
was performed. Therefore, this pre-condition is excluded from the unication of this
operation. The pre-condition of SuperMod (𝑐𝑝 ⇒ 𝑒) is used in the unication as is. Finally,
to be able to combine the pre-condition of SuperMod and VaVe (where the expression
is a partial Configuration that must not violate any Constraints) with the behavior of
VTS (where the expression can be of arbitrary form), the new Valid Expression predicate
is used. Note that the expression is extended from being formulated only on Features
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Operation: Externalize Unied System

Input: Unified System 𝑈𝑆 , Configuration 𝑐
Pre-condition: valid(𝑈𝑆, 𝑐)
Output: Unified System 𝑈𝑆 ′

Creates a new unied system 𝑈𝑆 ′ from the existing unied system 𝑈𝑆 and the (partial) valid
conguration 𝑐 by selecting only those features, mappings, fragments, and revisions (includ-
ing their predecessors) that are not contradicted by 𝑐 .

eUS

Figure 6.10.:Denition of Externalize Unied System operation [6, Fig. 5].

to Feature Options to let the user decide whether or not new Feature Revisions shall
be created when performing 𝑖𝐶 . In case no Feature Revision of a Feature appearing
in the expression is provided, a new Feature Revision is created for that Feature. In
case the user provides the same Feature Revision as is selected in the conguration of
the externalized Product, no new Feature Revision is created for the respective Feature.
Other feature revisions cannot be specied in the expression. This addresses interesting
corner cases, such as the creation of a new Feature Revision only for one of the Features
of a feature interaction. Beyond that, the intention and behavior is essentially the same
across the three tools. Each tool rst computes the Fragments 𝐹𝑇 + that were added, the
Fragments 𝐹𝑇 𝑜 that remained unchanged, and the Fragments 𝐹𝑇 − that were removed
from the Product. Then, the Mappings for the added, unmodied and removed Fragments

𝐹𝑇 +, 𝐹𝑇 𝑜 and 𝐹𝑇 − are computed by SuperMod, VTS and VaVe. Analogously to 𝑖𝑃 , a new
Feature Revision becomes a merge point in its revision graph if more than one Feature
Revision of the same Feature were selected in the Configuration of the externalized
Product, as it becomes the successor to all of them. A Feature Revision in the Product’s
Configuration becomes a branch point if it already has a successor when receiving a
new Feature Revision as successor. A System Revision in the Product’s Configuration
becomes a branch point if it already has a successor.

Operation: ExternalizeUnied System (𝑒𝑈𝑆). This operation derives a Unified System

𝑈𝑆′ that is a subset of the original Unified System 𝑈𝑆 . The derived Unified System 𝑈𝑆′

is a full clone of the Unified System 𝑈𝑆 if the given Configuration 𝑐 is empty, and a
partial clone otherwise.

Comparison: This operation is supported by FeatureIDE, VTS, Git, and ECCO. The behav-
ior of tools dealing with variability in space (FeatureIDE, VTS, ECCO) coincides: Feature
Options that are neither selected nor deselected in the partial conguration (and, thus,
have no value assigned) remain variable and are essentially copied to the new Unified

System. Selected Feature Options are retained and set to true, so all Mappings and cor-
responding Fragments where the Feature Option appears negated are not retained, and
the positive Features and Feature Revisions are substituted by true in Mapping expres-
sions and Constraints. Deselected Feature Options are removed and replaced by false
in expressions of Mappings and Constraints, together with all elements (Fragments or
Mappings) that require the Feature to be selected. Mappings (including the corresponding
Fragments) whose expression cannot be satised anymore (i.e., contradicts conguration
𝑐) are removed. As the only tool for variability in time that supports 𝑒𝑈𝑆 , Git applies
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Operation: Internalize Unied System

Input: Unified System 𝑈𝑆 , Unified System 𝑈𝑆 ′

Integrates another unied system 𝑈𝑆 ′ into an existing unied system 𝑈𝑆 by merging their
fragments, mappings, features, constraints, and revisions (including their relations) creating
their union.

iUS

Figure 6.11.:Denition of Internalize Unied System operation [6, Fig. 5].

additional behavior regarding ancestors of Revisions selected in the Configuration. It
creates a full clone of a Unified System if no System Revision is selected, and a partial
clone otherwise, by only keeping selected System Revisions along with their ancestors.

Unication: Figure 6.10 shows the denition of the unied operation 𝑒𝑈𝑆 . All tools exhibit
essentially the same behavior when it comes to Features, Mappings and Fragments. While
only FeatureIDE supports Constraints, its behavior is consistent with the desired seman-
tics of this operation (i.e., to obtain a subset of a Unified System by ltering unneeded
Options based on a partial Configuration) and can thus also be transferred directly to
the unication. Unifying the tools’ behavior of dealing with Feature Revisions (ECCO)
and System Revisions (Git) is less straightforward, as it is not yet supported by any of
the existing tools. Specically, when it comes to variability in time, Git exhibits behavior
regarding the ancestors of selected System Revisions that is not present in how ECCO
copes with Feature Revisions. However, there is also no contradicting behavior. Conse-
quently, the behavior of Git is applied to Feature Revisions and System Revisions of the
unied denition, i.e., only the selected System Revisions and Feature Revisions and
their ancestors are retained during this operation. Consequently, this unication provides
additional semantics for uniformly dealing with variability in space and time beyond the
behavior of the analyzed tools.

Operation: Internalize Unied System (𝑖𝑈𝑆). This operation combines two Unified

Systems by essentially merging their contents and creating their union. In practice, this op-
eration is performed in place. It updates a Unified System𝑈𝑆 by integrating the contents
of another Unified System𝑈𝑆′.

Comparison: This operation is supported by Git and ECCO (i.e., pull/push), and VTS (i.e.,
put given a partial Configuration). While Git merges the System Revisions, ECCO be-
haves analogously by merging the Features and Feature Revisions. In both cases, each
respective revision graph is merged by merging the predecessors and successors of each
individual Revision. Additionally, both tools merge Fragments and Mappings. VTS sup-
ports this operation via its put operation given an empty (or true) expression as parameter
if it follows a get operation with a partial Configuration. Since VTS does not support
variability in time and thus has no Revisions, its put operation essentially replaces the
contents of the Unified System𝑈𝑆 with the contents of the Unified System𝑈𝑆′.

Unication: The unication of this operation is described in Figure 6.11 and considers
an aspect from each of the three tools: System Revisions from Git, Features from VTS
and ECCO, and Feature Revisions from ECCO; and applies the underlying intention to
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each dimension, namely to combine two Unified Systems in a single Unified System.
Specically, the Fragments, Features, Revisions (including predecessors, successors, and
enables relations), and Mappings are combined into a single Unified System.

6.4. Expected Benefits

So far, the unied operations, their unication process as well as main design decisions
have been described. This section comprises a discussion of the expected benets of the
unied operations.

Likewise to the expected benets of the unied conceptual model (see Section 5.3), the
unied operations can be used in a descriptive manner. By systematically building on the
functionality of contemporary and diverse tools from both the SPLE and SCM research
area, they extend the common foundation for unied management of variability in space,
broadening the body of knowledge and advancing state of the art. Researchers and
practitioners can use the operations for understanding and getting an overview of recent
research and practices, and for comparing functionalities of existing tools. Beyond that,
compatibility of tools can be analyzed by means of their supported operations and expected
inputs and provided outputs.

Moreover, the unied operations can be used in a prescriptive manner. A tool that supports
the unied operations could provide benets in several ways: Since it manages both
variability dimensions simultaneously, it liberates from the necessity of employing and
maintaining particular tools for either version control or product line engineering that
need to be compatible while requiring developers to often switch context. Thus, no het-
erogeneous tool landscape is required, which reduces maintenance costs and development
time, since data does not need to be imported and exported between tools, which may also
lead to loss of information. Furthermore, by addressing gaps in state of the art (such as
dealing with variability in space and time while explicitly managing Feature Revisions

and System Revisions simultaneously) and not losing functionality of the analyzed tools,
the unied operations propose novel ways for uniformly operating on concepts for vari-
ability in space and time. Upon every modication of the Unified System, either of the
problem space (i.e., Features and Constraints) or the solution space (i.e., Fragments), the
computation of a new System Revision, Feature Revisions and Mappings happens in a
fully automated manner. While direct editing operations require signicant manual eort
and are thus error-prone and costly, the high degree of automation of view-based editing
signicantly reduces the manual eort and the cognitive complexity of evolving a variable
system. Consequently, unied view-based operations support the conception of novel
techniques with a higher degree of automation compared to direct editing operations.
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Figure 6.12.:Contribution of Chapter 6 of the thesis.

6.5. Summary

This chapter presented the unied operations (C2). The goal was to specify the operational
management of variability in space and time while considering Feature Revisions and
System Revisions simultaneously, which is beyond the behavior of the analyzed tools. In-
puts and outputs of the unied operations were dened based on the concepts of the unied
conceptual model (see Figure 5.3) to lift the operations to the same level of abstraction. To
identify relevant tool operations, an expert survey was conducted based on use case ques-
tionnaires which were completed by one expert per tool, revealing the individual tool op-
erations. Tool operations were considered that i) deal with variability in space and time, ii)
operate on the abstraction level of the unied conceptual model and, iii) modify the Unified
System or produce non-trivial, mutable output from a Unified System. Operations were
categorized based on a clear and self-contained concern to avoid redundancies and ambi-
guities, for instance, one operation for externalizing a Product and another operation for
externalizing a Unified System. Moreover, the identied operations were classied accord-
ing to the edit modality (direct or view-based editing) and development paradigm (platform
or product-oriented development). Finally, the unied operations were specied based on
inputs, outputs, and semantics, such that the capabilities of the studied tools are preserved
while extending the unied operations to support both variability dimensions. The same
process was applied to identify and unify predicates that are used in pre and post-conditions
of operations. As result of the identication and unication process, four predicates, 21
direct editing operations, and seven view-based operations are provided. None of the tools
support all operations along with all pre and post-conditions for both variability dimen-

71



6. Unied Operations

sions, which we consider a gap in current tool support for managing variability in space and
time simultaneously. Consequently, the unied operations provide means for researchers
and practitioners to clarify, communicate and compare their work based on their common
and distinguishing operations. Moreover, the unied operations provide guidance for the
design of novel unied variabilitymanagement techniques while liberating from the burden
of employing a heterogeneous tool landscape to deal with both variability dimensions.

Thus, this contribution addresses RQ 1.2. Figure 6.12 shows an overview of all contributions
and highlights the contribution of this chapter in grey.
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This chapter builds on a publication at SPLC [3].

This chapter presents a classication of variability-related inconsistencies that may occur
during the evolution of a variable system including causes and repair options.

The detection and repair of inconsistencies during the evolution of a variable system
is an open research problem that has been addressed by numerous works in the SPLE
community. Various types of inconsistencies can occur that dier in their causes, eects
and possible repair options. Thus, notions of consistency in SPLE are manifold and vary
for the problem space and the solution space. Developing an understanding of when, why
and in which artifacts inconsistencies occur helps to support the evolution of a variable
system in a consistency-aware manner.

To organize the research landscape in this eld, a literature survey has been performed,
and its results have been generalized and mapped to a classication schema. Moreover,
gaps in the schema have been lled while ensuring that there is no overlap among the
types of inconsistencies (i.e., they are disjoint). The goal was to obtain a generalized,
complete, and disjoint classication of variability-related inconsistency types.

Referring to problem statement P2, the following research question is asked:

RQ 2.2 What types of inconsistencies can occur in variable systems?

Section 7.1 presents the literature survey. Section 7.2 introduces a classication of variability-
related inconsistency types. In Section 7.3, the identied types are discussed with respect
to their completeness and symmetry. Finally, Section 7.4 concludes this chapter with the
expected benets. The results are summarized in Section 7.5.

This chapter thus constitutes the contribution C4.

7.1. Literature Survey

I followed the methodology proposed by Kitchenham [113] to systematically search the lit-
erature for identifying types of inconsistencies. The literature survey focused on variability-
related inconsistencies, i.e., any inconsistencies that can occur during the evolution of a
variable system and therefore aect artifacts of the problem space or the solution space.
Consequently, the main objective of a publication should be related to providing support
for consistent variability evolution.
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7. Variability-Related Inconsistencies

1 ("Software product line engineering" OR "Product line" OR "Variability" OR "Variant") AND

2 ("Consistency" OR "Inconsistency" OR "Inconsistent" OR "Well-formedness" OR "Well-formed"

OR "Repair" OR "Fix") AND ("Evolution" OR "Evolved" OR "Co-evolution")

Listing 7.1: Search string of the literature survey.
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Figure 7.1.: Results of the literature search process.

After careful consideration, the search string presented in Listing 7.1 was used in dierent
scientic databases to retrieve relevant publications.

The following exclusion criteria was specied and applied while inspecting the title and
abstract of the publications:

1. The publication is not written in English.

2. The publication originates from outside the software engineering area.

3. The year of the publication is before 2000.

4. The publication is not peer-reviewed.

Figure 7.1 shows the results of the literature search process. Step 1 encompassed a digital
libraries search. Table 7.1 shows the ndings based on IEEE Xplore, the ACM Digital
Library and SpringerLink. In total, 406 publications were retrieved from which 25 papers
were elicited based on the exclusion criteria. Step 2 built on a systematic mapping study
by Santos et al. [202] that provides an overview of strategies for consistency checking
on SPLs. Based on this mapping study, snowballing was performed that provided 16
relevant publications until 2015, out of which 9 were already retrieved in Step 1 and thus
represented duplicates. Finally, Step 3 involved an inspection of the last six instances of
conference proceedings known to be key venues of publication of the SPLE community:
the Systems and Software Product Line Conference (SPLC) and the Variability Modelling
of Software-Intensive Systems (VaMoS) Working Conference, revealing 8 further relevant
publications. Based on a total of 40 elicited publications between the years 2000 and 2021,
a classication of variability-related inconsistency is proposed in the following.
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7.2. Types of Inconsistencies

Table 7.1.:Overview on the literature survey of scientic databases.

Database Results Excluded Otopic Remaining

IEEE Xplore 116 92 15 9
ACM Digital Library 24 10 (+ 2 duplicates) 7 5
SpringerLink 266 143 (+ 7 duplicates) 105 11

7.2. Types of Inconsistencies

This section describes the identied variability-related inconsistency types that may occur
during evolution of a variable system. Moreover, their causes, eects as well as repair
options are discussed.

The results of the literature survey were generalized and mapped onto four discrete areas
in which inconsistencies can be caused or repaired. Figure 7.2 shows these areas and the
identied types of inconsistencies. The region outside the square represents a variable
system and the region inside the square represents a Product. Separated by a dashed
line on the left hand side, a variability model and variable implementation of another
variable system indicate distributed development. The upper area outside the square is the
problem space of the variable system, which comprises a variability model, i.e., Features and
Constraints. The lower area outside the square is the solution space of the variable system,
which comprises the variable implementation, i.e., Fragments and Mappings. The upper
area inside the square is the problem space of a product, which comprises its Configuration.
The lower area inside the square is the solution space of a product, which comprises its
non-variable implementation, i.e., only Fragments. An inconsistency can be caused or
repaired in any of the four areas. Each type of inconsistency is depicted as an arrow from
cause (left side) to repair (right side). The Inconsistency Types 1 – 6 are either caused
or repaired in a Product, Types 7 – 12 are caused or repaired in the variable system, and
Types 13 – 14 occur due to distributed development across variable systems.

Table 7.2 shows an overview of the 40 publications collected in the literature survey dis-
tinguished between those only considering consistency checking and those additionally
including consistency preservation. A publication is arranged according to the addressed
Inconsistency Type (rows), and whether it only considers consistency checking (rst
column) or additionally includes consistency preservation (second column). Note that
some publications handle multiple inconsistency types to support round-trip consistency
preservation (e.g., Types 2 and 5 or Types 11 and 12).

7.2.1. Product-Level Inconsistencies

Type 1 is caused in the problem space of the system if features are removed or dependencies
are introduced between features by adding constraints to the variability model, which
decreases the congurable space (in case of feature modeling, this is commonly referred
to as specialization [236]). This might invalidate previously valid congurations that
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Figure 7.2.:Variability-related inconsistency types. Adapted from [3, Fig. 4].

Table7.2.:Overview of the 40 elicited publications of variability-related inconsistencies distinguished between
those only considering consistency checking and those additionally including consistency preservation.

Type Checking Checking & Preservation

1 - [78, 25, 175, 174]
2 [85, 203, 57, 237, 2] [149, 217]
3 - -
4 - -
5 [204, 85, 57, 147, 237, 103, 234, 133] [217, 65]
6 [85, 148, 64] [238, 186, 39]
7 [209] [29, 91, 192, 120, 18, 176, 17, 100, 94]
8 [54] [58, 44]
9 - [58]
10 [132] -
11 [70] [93, 213, 211, 81, 208, 214]
12 - [211, 81]
13 - [177]
14 - [87]
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can be repaired by being transitioned to a valid conguration [25, 78, 174, 175]. All
contributions propose semi-automated repair options. Nieke et al. [174, 175] propose
an approach for guiding the evolution of congurations. For example, in cases where
features are merged, a conguration is computed that maintains the product behavior
by automatically transitioning it to a conguration with the same set of artifacts based
on mappings. Barreiros et al. [25] focus on the repair of invalid congurations based on
partioning and analysis of the feature model while identifying the minimal number of
changes to feature (de)selection from the initial conguration. Gámez and Fuentes [78]
additionally consider the automated update of congurations (by adding or removing
features) based on changes of cardinality-based feature models.

Likewise, Type 2 is caused in the problem space of the system if new features are added
or dependencies between features are removed by deleting constraints from the variabil-
ity model, which increases the congurable space (in case of feature modeling, this is
commonly referred to as generalization [236]). This can validate previously invalid cong-
urations and thus enable new combinations of features. However, deriving a product based
on such new conguration might lead to an inconsistent implementation, for instance,
because a new combination of features requires additional implementation [85, 203, 57,
237, 2, 149, 217]. A repair would require to modify the implementation of aected products,
respectively. This type of inconsistency cannot be fully automated since manual inspection
is required in case of new feature combinations that may lead to inconsistencies in the
solution space. For instance, if features 𝐹1 and 𝐹2 can be selected in the same congura-
tion after changing the variability model, features 𝐹1 may delete methods required by 𝐹2.
Lopez-Herrejon and Egyed [149] propose hints to support the user in xing such inconsis-
tencies. The authors combine model-driven development with feature-oriented modeling
and propose a heuristic based on a feature model analysis to identify the features (and,
consequently, the feature modules) where a x (i.e., required model elements) should be
placed. Seidl et al. [217] focus on evolution support due to changes of either the variability
model or the non-variable implementation. To this end, the authors propose remapping
operations that perform consistency preserving updates of mappings between features
and implementation artifacts.

In contrast, Type 3 and 4 occur in the problem space of a product if an invalid congu-
ration has been selected. For Type 3, a repair requires the transition of the conguration
to a valid one. In that case, repair options for Inconsistency Type 1 could be applied. For
Type 4, a repair requires the modication of the variability model, such that the desired
conguration becomes valid. Similar techniques as for Type 7 could be leveraged to update
the variability model in order to support a desired conguration.

Type 5 is caused in the solution space of a product if a change is performed in a product’s
implementation. This may aect other products, such that their implementation becomes
inconsistent [204, 85, 57, 147, 237, 103, 234, 217, 133, 65]. For instance, if a feature 𝐹1
(that is part of several products) is modied in one product 𝑝 to reference an element
introduced by another feature 𝐹2 that is part of 𝑝 , but not part of all the other products
with feature 𝐹1, this would lead to an inconsistent implementation for all products with
feature 𝐹1 but without feature 𝐹2. A repair would require to invalidate congurations of
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the now inconsistent products by lifting the dependencies between features on the solution
space to the variability model in the problem space (e.g., 𝐹1 ⇒ 𝐹2). While most identied
publications focus on consistency checks, Seidl et al. [217] propose consistency preserving
updates of mappings between features and implementation artifacts due to changes either
in the solution space of a product or the variability model (as described above for Type
2). Feichtinger et al. [65] propose an approach that performs a static code analysis of
individual products to determine all dependencies and visualizes these as links between
features in the feature model to guide the developer in repairing inconsistencies.

Likewise, Type 6 is caused by changing the solution space of a product. While dierent
artifact types within one product of the variable system describe partially overlapping
information that must be kept consistent [116, 62, 56, 242], products also share partially
overlapping information in the form of features. Thus, if a feature changes in one product,
all other products with the same feature must be changed accordingly [39, 186, 85, 148, 238,
64]. Across all identied publications in the research area of SPLE, consistency between het-
erogeneous artifacts of a particular product is supported by means of consistency checking
and error messages without repair options. For instance, Vierhäuser et al. [238] propose an
approach where manually dened consistency constraints between the involved artifacts
are incrementally evaluated. In case of violated constraints, error messages are provided
to support repairs. To deal with heterogeneous artifacts, the approach requires a specic
facade for each artifact type in order to convert the elements contained in an artifact into
a generic and artifact-agnostic representation. To ensure consistency between products in
case a feature has been changed, Pfofe et al. [186] introduce the rather recent approach Vari-
antSync that employs feature trace recording [39] to automatically synchronize products.

7.2.2. System-Level Inconsistencies

Type 7 is caused in the problem space of the system if dependencies are introduced between
features by adding constraints to the variability model, like for Type 1. This can lead to
inconsistencies in the variability model, often referred to as defects or anomalies [120, 94,
29, 100, 176, 91, 18, 17, 209, 192], such as dead features (i.e., features cannot be selected in
any valid conguration of the product line) or redundant constraints (i.e., the removal of
a constraint does not change the congurable space). A repair would require to x the
variability model in order to resolve the inconsistencies. Several works go beyond the mere
detection of variability model inconsistencies (mostly using SAT) and additionally provide
explanations to guide the user in xing [29, 120, 94, 192], or avoiding them [176, 100]. Guo
et al. [91] provide an overview of semantic and syntactic consistency constraints of feature
models and propose an ontology-based approach to identify feature model inconsistencies
and restore them by means of additionally executed operations (e.g., the removal of
a feature invalidates its child features which thus would be removed to maintain the
consistency of the feature model). Arcaini et al. [18, 17] propose a rather recent approach
to support the automated evolution of feature models upon change requirements, i.e.,
based on a desired set of features and congurations, an evolutionary algorithm aims at
obtaining a feature model that satises the specied requirements.
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Similarly, Type 8 is caused in the problem space of the system by adding features or re-
moving constraints. Analogously, a repair would require to modify the solution space [54,
58, 44]. However, in contrast to Type 2, the repair is not performed on a product view,
but directly on the variable implementation of the system. Buchmann et al [44] propose
an annotative approach for mapping constraints of the feature model to model elements.
The approach preserves consistency per construction (e.g., it is not allowed to annotate
model elements with undeclared features) or by performing repairs (feature annotations
are automatically propagated to dependent model elements).

Type 9 is caused in the solution space of the system if the variable implementation is
changed such that dependencies between feature implementations are added that are not
reected in the variability model. In such a case, the implementation and the variability
model have become inconsistent. This would require the modication of the variability
model (which could be the same repair as for Type 5). To support the co-evolution of
the variable implementation with the variability model, Dhungana et al. [58] propose a
model-driven approach that identies changes in the variable implementation using a
state-based comparison and suggests actions for repairing the variability model by adding
or deleting model elements.

Type 10 is caused in the solution space of the system if a change in the variable imple-
mentation leads to an inconsistency in the implementation of products, e.g., syntactically
malformed products in case of undisciplined annotations [135] or dangling references in
some products. Lauenroth and Pohl [132] propose a formal framework to automatically
check the consistency of the requirements specication of the product line and thereby
support the detection of inconsistencies prior to the derivation of individual products.

Likewise to Type 10, Type 11 is caused in the solution space of the system if the variable
implementation has been changed. This can lead to a non-viable implementation of prod-
ucts [93, 70, 213, 211, 81, 208, 214]. A repair is performed on the externalized products.
Several works propose approaches to preserve consistency for this inconsistency type.
Heider et al. [93] research the impact of changes to the variable implementation on derived
products, classify types of changes and propose conict resolutions during updates of
products (e.g., by replaying conguration decisions in case only non-variable parts of the
variable implementation have been changed). Schulze et al. [211] present an approach that
identies and repairs inconsistencies between an evolved variable implementation and an
evolved product based on a three-way comparison (i.e., a product that constitutes an evolved
working copy, a newly derived product based on the evolved variable implementation, and
the product before the evolution serving as common base). The approach provides merging
techniques ranging from fully automated to manual inconsistency repair. Gerling [81]
proposes to support the co-evolution of the solution space of the system and product by
automatically merging semantic units (i.e., semantically related lines of code for a particular
purpose). For instance, if a feature is added or changed in a product, the artifacts from
which the product was derived must be changed accordingly. In the tool SuperMod [213,
208, 214], which is also studied in this thesis, well-formedness consistency rules are dened
and evaluated after a product’s externalization. Note that when externalizing a product in
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SuperMod, the workspace is populated upfront with a feature model which is used to cong-
ure the product. In case of violated consistency rules (e.g., an object with multiple container
objects), default resolution strategies (e.g., the most recent change to add a containment
reference value with respect to the object) are applied to the respective product.

Type 12 is caused by changing the implementation of a product, for instance, to perform
improvements or x bugs. Consequently, the product and the variable implementation
dier. The desired repair integrates the improvements of the product into the variable
implementation [211, 81]. While in case of direct editing this is an entirely manual task,
view-based operations (such as the ones provided in this thesis, e.g., 𝑖𝐶) automate this
task to a point where the user only needs to specify an expression manually. Similar as for
Type 11, the approaches proposed by Schulze et al. [211] and Gerling [81] for supporting
the co-evolution between the evolved variable implementation and an evolved product
also support Type 12.

7.2.3. Cross-System Inconsistencies

Type 13 and Type 14 cover inconsistencies due to distributed development.

In Type 13, the problem space of two instances of the unied system (e.g., created via
a distributed operation such as 𝑒𝑈𝑆) evolve independently. For instance, an alternative-
group of features is changed to an or-group in another instance of the unied system.
When the two instances shall be integrated again (e.g., via the distributed operation 𝑖𝑈𝑆),
these changes must be consolidated. Depending on how far the two problem spaces have
diverged from each other, the eort for the consolidation can range from trivial (fully
automated) to very complex manual merges. Niu et al. [177] propose resolution strategies
for integrating variability models, e.g., in case a feature is mandatory in the variability
model of one instance of the unied system but optional in another, it becomes mandatory
in the other instance of the unied system.

Likewise, in Type 14, the variable implementation of two instances of a unied system
evolve independently. For example, the mappings (e.g., in the form of annotations such as
if-defs) have been changed in one instance of the unied system and shall be integrated
into the instance it has been derived from (e.g., via the distributed operations 𝑒𝑈𝑆 followed
by 𝑖𝑈𝑆). To this end, Greiner et al. [87] propose an approach to automatically propagate
annotations from one variable system to another.

7.3. Discussion

The literature survey provides evidence that, for most inconsistency types, numerous
works exist that target the detection of such inconsistencies. Some approaches additionally
provide explanations on the cause of the inconsistency (particularly of inconsistencies
that are caused in the problem space), while only very few works exist that deal with the
repair of inconsistencies. Consequently, consistency preservation ranges from providing
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recommendations for repair to actually performing them fully automatically. To this end,
several relevant scientic databases and diverse publication venues were considered to
improve the reliability of the ndings and the generalizability of the results.

As an inconsistency can be caused or repaired in any of the four areas (i.e., the problem and
solution space of the variable system and of the product), there are theoretically 42 = 16
possible types of inconsistencies (excluding the two cross-system inconsistency types).
However, not all of those combinations of cause and repair are sensible, covered by the
denitions of consistency of this thesis (see Section 2.7), or can be found in the literature.
Therefore, this work only considers 12 of the 16 possible combinations of cause and repair
as types of variability-related inconsistencies.

The literature survey did not yield research on Type 3 and Type 4 inconsistencies. However,
according to the denitions of consistency of this thesis (see Section 2.7) reasonable
scenarios could be constructed with corresponding causes and repairs. For example, in
case of Type 4, such a scenario would be reactive SPLE [12], where the variable system
shall be extended with a new (not yet valid) conguration by accordingly adapting the
variability model. Therefore, these two types of inconsistencies were deemed relevant and
included to obtain a complete picture and ensure that the identied variability-related
inconsistency types are general enough to also remain relevant in the future.

Two of the combinations that were not considered as types of inconsistencies are caused
in the solution space of the system (i.e., the variable implementation) and repaired in the
problem space of a product (i.e., its conguration), and vice versa. Both cases are covered
by a sequence of other types of inconsistencies with an intermediate step via the problem
space of the system (i.e., the variability model). In the former case, if the implementation
of a system is modied such that the conguration of a product must be changed, this is
covered by Type 9 (which is caused in the implementation of a system) followed by Type 1
(which is repaired in the conguration of a product). In the latter case, if the conguration
of a product is modied such that the implementation of the system must be changed,
this is covered by Type 4 (which is caused in the conguration of a product) followed by
Type 8 (which is repaired in the implementation of the system).

The remaining two combinations that were not considered as types of inconsistencies
are caused and repaired in the solution space of the product (i.e., its implementation) and
the problem space of the product (i.e., its conguration). The literature survey did not
reveal work where a modication of the implementation of a product requires to repair the
conguration of the product and it is questionable whether sensible scenarios can be found.
Conversely, a modication of the conguration of a product that requires a repair in the
implementation of the product was also not evident by the literature survey. In this case,
it can even be questioned, whether the transition of a product to another conguration
is sensible, as the identity of a product is given by its conguration. Therefore, in a case
where another conguration is desired, instead of changing the conguration of an existing
product, simply a new product can be derived from the system.

There is a symmetry between causes and repairs over all inconsistency types, as for every
type of consistency there is another type with the same, but reversed, areas of cause and
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repair. For example, Type 2 is symmetric to Type 5. Such symmetry does not exist between
problem space and solution space. For example, Type 2 is caused in the problem space of
the system (i.e., variability model) and repaired in the solution space of the product, but
there is no type of inconsistency that is caused in the solution space of the system and
repaired in the problem space of the product. Similarly, there is no symmetry between the
system and the product.

7.4. Expected Benefits

In total, 14 types of variability-related inconsistencies were identied and classied ac-
cording to their cause and repair in either the problem space or the solution space. This
section comprises a discussion of the expected benets.

The performed synthesis of the existing body of knowledge on variability-related in-
consistency types maps and organizes the corresponding research landscape. It enables
researchers to classify, communicate, and scope their work. Furthermore, the literature
survey revealed inconsistency types that are less considered and thus might be candidates
for further research. Moreover, beyond the results of the literature survey, further inconsis-
tency types were identied. Due to the generality and disjointedness of the inconsistency
types, future work on variability-related inconsistencies is expected to be classiable
according to the proposed types. The product line community is invited to classify their
research according to the proposed classication scheme.
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7.5. Summary

This chapter presented the identied variability-related inconsistencies (C4). Based on
a literature survey [113], 40 relevant publications were collected, generalized, mapped
to a schema, and gaps in the schema have been lled while ensuring that there is no
overlap among the types of inconsistencies (i.e., they are disjoint). The goal was to obtain
a generalized, complete, and disjoint classication of variability-related inconsistency
types. Ultimately, 14 dierent inconsistency types were identied and classied according
to their cause and repair in either the problem space or the solution space of either the
variable system or a product. This chapter comprised a description of each inconsistency
type, introduced relevant works in that eld and explained repair options. Interestingly,
it became obvious that while some inconsistency types are often subject to research in
SPLE (i.e., Type 1, 2, 5, 7, and 11), the remaining inconsistency types are researched less.
While several approaches propose explanations of inconsistencies or fully-automated
repair options, this particularly addresses the problem space. Consistency preservation
involving the solution space is addressed signicantly less, especially when it comes to
heterogeneous artifacts and distributed development.

Thus, this contribution addresses RQ 2.1. Figure 7.3 shows an overview of all contributions
and highlights the contribution of this chapter in grey.
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This chapter builds on a publication at VaMoS [10] and SPLC [3].

This chapter presents the unied view-based approach to support consistent management
of variable systems. Since the unied approach builds upon all prior contributions (C1–
C4), it benets from the insights of unifying concepts, their relations, and operations to
deal with variability in space and time simultaneously as well as of variability-related
inconsistencies, their causes and possible repairs. The goal is to provide an approach that
deals with variability in space and time involving both Feature Revisions and System

Revisions and that is also capable of handling variability-related inconsistencies during
the evolution of a system.

Referring to problem statement P2, two research questions are asked:

RQ 2.2 How can unied operations be combinedwith consistency preservation of variability-
related inconsistency types?

RQ 2.3 How can the Vitruvius approach be leveraged to support variability in space
and time and preserve consistency in variable systems comprised of heterogeneous
artifacts?

Section 8.1 introduces the construction process of the unied approach. Section 8.2 gives
an overview of the conceptual architecture of the unied approach. The proposed work-
ow of the unied approach when evolving a variable system is presented in Section 8.3.
Section 8.4 comprises an augmentation of unied operations with consistency preservation,
while Section 8.5 encompasses a demonstrating application. Finally, Section 8.6 provides
details on how the unied approach deals with a selected subset of variability-related
inconsistencies caused or repaired in the solution space. Section 8.7 presents the proto-
typical implementation of the unied approach before expected benets in Section 8.8 and
a summary of the results in Section 8.9 conclude this chapter.

This chapter thus constitutes the contribution C5.

8.1. Construction Process

Figure 8.1 shows the process for constructing the unied approach.
In Step 1 , I identied types of inconsistencies that occur during the evolution of a variable
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system and possible repair options (see Chapter 7). In Step 2 , I rened the unied ele-
ments (i.e., the unied conceptual model and unied operations) into a concrete metamodel
and corresponding operations of the unied approach. Finally, in Step 3 , I augmented the
unied operations with capabilities of consistency preservation, ranging from automated
suggestions to restore consistency to fully-automated repair. In the following, necessary
renements to the unied conceptual model and operations are explained.

Augmentation with
consistency
preservation

Identification of
variability-related
inconsistencies 

Refinement 

Types of
inconsistencies 

Concrete metamodel
and operations 

Unified approach 

Unified
elements 

1 2 3

Figure 8.1.:Unied approach construction process.

8.2. Conceptual Architecture

This section presents the conceptual architecture of the unied approach. Main design
ideas of the approach are explained and key mechanisms described. The section starts with
renements made to the unied conceptual model, and continues with the integration with
the Vitruvius approach and renements of the employed unied view-based operations.

8.2.1. Concrete Metamodel

Figure 8.2 shows the concrete metamodel of the unied approach as a renement of the
unied conceptual model. Thereby, metaclasses are created for each concept and newmeta-
classes are introduced where necessary. Equivalent to the conceptual model, metaclasses
for variability in space are colored green, for variability in time orange, for variability
in both dimensions purple, and metaclasses for unied concepts (that cope with either
one variability dimension or both) are white. Relations are colored analogously. Lighter
colors and italic fonts represent abstract metaclasses. The concrete metamodel employs
the metaclasses Unified System, Feature, Feature Revision, System Revision, Mapping,
and Configuration, and renes Constraint and Fragment. A Feature Model is used as
variability model, which is the de-facto standard of variability modeling in research
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Figure 8.2.:Concrete metamodel of the unied approach. Adapted from [3, Fig. 3].

and industry [50, 107, 117, 194]. Both Tree Constraint and Cross-tree Constraint

specialize Constraint. While Tree Constraints only refer to Features (that can be
decomposed into optional Features, mandatory Features, or-groups, and alternative-
groups), Cross-tree Constraints can be formulated on Features and Feature Revisions
via a Boolean Expression. The Unified System contains Delta Modules that specialize
Fragments and represent the variability mechanism for composing Products based on a
Configuration. A Delta Module comprises Deltas that for now are omitted from the gure.
A Mapping relates Delta Modules and Options via a Boolean Expression. The expression is
represented by an expression tree where inner nodes represent operators, such as Implica-
tion orConjunction, and leafs represent Options. An additional OCL constraint in Listing 8.1
ensures that expressions contained in Cross-tree Constraints only refer to Feature

Options instead of any Option, as is the case for expressions contained in Mappings.

8.2.2. Integration with Vitruvius

To leverage Vitruvius’ consistency preservation mechanisms between dierent artifact
types (see Section 2.6.2), its integration with the unied approach is explained in the
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1 context CrossTreeConstraint

2 inv:

3 Set{self.expression} -> closure(e:Expression |

4 if e.oclIsKindOf(Operator) then e.expr else Set{})

5 -> select(e:Expression | e.oclIsKindOf(Variable))

6 -> forAll(v:Variable | v.option.oclIsKindOf(FeatureOption))

Listing 8.1:Well-formedness of a Cross-tree Constraint.

following. Figure 8.3 shows a conceptual model that describes the connection between
the unied approach and Vitruvius, highlighting concepts that belong to the solution
space in orange and concepts that belong to the problem space in blue. Note that only the
connecting concepts are depicted.

Most depicted concepts are part of the solution space. The Delta Module of the unied ap-
proach renes the Fragment and comprises Changes (i.e., Deltas) fromVitruvius. A Change

can be atomic, such as an additive or subtractive Change, or be a compound Change. Vitru-
vius uses a dedicated metamodel to describe possible change types that are omitted for the
sake of simplicity. An Artifact Model is derived by applying Changes and represents an
engineering artifact of a particular type, e.g., an artifact model for Java source code or an ar-
tifact model for a UML diagram. An Artifact Model conforms to an Artifact Metamodel,
e.g., Java metamodel or UML metamodel. A V-SUM is comprised of Artifact Models and
conforms to the V-SUM Metamodel that, in turn, contains the Artifact Metamodels. More-
over, the V-SUM Metamodel comprises Consistency Preservation Rules (CPRs) that are
specied between two Artifact Metamodels. The V-SUM Product specializes the V-SUM

of Vitruvius and the Product of the unied approach. Specically, the V-SUM Product

temporarily stores Changes (i.e., original changes performed by the developer during the
modication of an Artifact Model) until they are integrated into the Unified System.
Moreover, the V-SUM Product contains its valid and complete Configuration (see Fig-
ure 6.3), that connects concepts of the problem space (i.e., Options) with concepts of the
solution space (i.e., Product). Based on the System Revision and Feature Revisions in
this Configuration, the newly created System Revision and Feature Revisions can be
related correctly in the revision graphs of the Unified System upon the integration of
Changes. The Unified System contains Configuration and Mappings. All three concepts
connect the problem space and the solution space (i.e., the Unified System contains con-
cepts that are part of both spaces, while the Mapping relates Optionswith Fragments). Note
that consequential changes are not stored since they may vary based on the context, i.e.,
the Configuration of the Product, in which the causing original changes are applied.

In sum, the unied approach leverages the consistency preserving mechanisms of Vitru-
vius to preserve consistency between artifact models in the solution space. Specically, by
employing the Deltas used in Vitruvius and by specializing its V-SUM as Product. In turn,
the unied approach extends Vitruvius with concepts of the problem space to enable
unied variability management.

88



8.2. Conceptual Architecture

* 

*

 
* 

Change

Fragment

Additive Change Subtractive Change

Product

V-SUM Product

 

<<derive>>

<<derive>>

Excerpt of Vitruvius Concepts

V-SUM

Consistency Preservation Rule

Artifact Model

Artifact Metamodel

<<instance of>>

2
*

*

V-SUM Metamodel

<<instance of>>

*

<<derive>>

Delta Module

*

{incomplete}

*

Option

*

**
1

Excerpt of Unified Approach Concepts

Problem  
Space

Solution  
Space

Unified SystemMapping Configuration

Figure 8.3.:A conceptual model of the relevant concepts for describing the connection between the unied
approach and Vitruvius.

8.2.3. Concrete Operations

The inputs and outputs of the view-based unied operations are rened accordingly to
the concrete metamodel. The 𝑒𝐷 operation produces a feature model as output and the
𝑖𝐷 operation takes a feature model as input instead of sets of Features and Constraints.
The 𝑒𝑃 operation utilizes Deltas as transformational variability mechanism [206]. The 𝑖𝐶
operation internalizes the manually performed changes on a product view by propagating
recorded Deltas to the Unified System. In the following, the algorithms for each operation
are presented using the notation introduced in Section 5.2.3.

The 𝑒𝐷 operation is shown in Algorithm 8.1. It takes as input a set of System Revisions 𝑆𝑅.
The set of Feature Options 𝐹𝑂′, Tree Constraints 𝑇𝐶′ and Cross-tree Constraints

𝐶𝑇𝐶′, that are enabled by any of the given System Revisions 𝑠𝑟 ∈ 𝑆𝑅, are obtained and
used to construct the feature model 𝐹𝑀 . Finally, the feature model 𝐹𝑀 is returned.

The 𝑖𝐷 operation is shown in Algorithm 8.2. It takes as input a feature model 𝐹𝑀 . First, a
new System Revision 𝑠𝑟 ′ is created. All System Revisions from which the feature model
𝐹𝑀 was created via 𝑒𝐷 are set as predecessors of the new System Revision 𝑠𝑟 ′ and re-
ceive it as successor. Next, the new System Revision 𝑠𝑟 ′ is added to the Unified System.
It enables the Feature Options, Tree Constraints and Cross-tree Constraints in the
feature model 𝐹𝑀 . Existing Mappings 𝑀′, that contain any of the System Revisions in
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𝑆𝑅𝐹𝑀 , are obtained and copied to𝑀′′, and all occurrences of any System Revision in their
expression 𝑒𝑚 of a Mapping𝑚 ∈ 𝑀′′ are replaced by the new System Revision 𝑠𝑟 ′. The
copied and updated Mappings are added to the Unified System.

The 𝑒𝑃 operation is shown in Algorithm 8.3. It takes as input a Configuration 𝑐 . First, it
is checked whether 𝑐 is a valid and complete Configuration. Then, all Mappings𝑀′ ⊆ 𝑀

in the Unified System whose expression is satised by the given Configuration 𝑐 are
obtained in the same order in which they were added to the Unified System via 𝑖𝐶 (shown
in Algorithm 8.4). These Mappings 𝑀′ are used to construct the Product 𝑝 . Specically,
each Fragment 𝑓 𝑡 ∈ 𝐹𝑇𝑚 to which a Mapping𝑚 ∈ 𝑀′ refers represents a Change. These
Changes are applied in sequence to the initially empty model 𝐼 . Note that no additional
re-ordering of Changes is needed, since the deltas are recorded on product views and
not created manually. This guarantees that required deltas are already contained in the
Unified System as they are needed for the externalization of the Product in the rst place.
Finally, the Product 𝑝 is constructed and returned.

The 𝑖𝐶 operation is shown in Algorithm 8.4. It takes as input a Product 𝑝 and a conjunction
of Feature Options 𝑒 . First, a new System Revision 𝑠𝑟 ′ is created. All System Revisions

of the Configuration 𝑐𝑝 of the given Product 𝑝 are set as direct predecessors. The new
System Revision 𝑠𝑟 ′ is set as successor for all its predecessors and added to the Unified
System 𝑢𝑠 . Next, the enables relations of all predecessor System Revisions are copied
to the new System Revision. For every Feature 𝑓 in the expression 𝑒 , a new Feature

Revision 𝑓 𝑟 ′
𝑓
is created and added to that Feature’s set of Feature Revisions 𝑓 .𝐹𝑅. Each

new Feature Revision is set as direct successor for all Feature Revisions of the same
Feature 𝑓 in the Configuration 𝑐𝑝 of the given Product 𝑝 . The new Fragments 𝐹𝑇 + (which
constitute the recorded Changes that were applied to Product 𝑝) are obtained. Existing
Mappings 𝑀′, that contain any of the System Revisions in 𝑐𝑝 , are obtained and copied
to 𝑀′′, and all occurrences of any System Revision in their expression 𝑒𝑚 of a Mapping

𝑚 ∈ 𝑀′′ are replaced by the new System Revision 𝑠𝑟 ′. The copied and updated Mappings

are added to the Unified System. Finally, a new Mapping is created for the new Fragments

𝐹𝑇 + with the expression 𝑠𝑟 ′ ∧ 𝑒 and also added to the Unified System.

Algorithm 8.1 Externalize Domain (eD) operation
1: function eD(𝑆𝑅)
2: 𝐹𝑂′← ⋃

𝑠𝑟∈𝑆𝑅 𝐹𝑂𝑠𝑟 ⊲ Obtain enabled features
3: 𝑇𝐶′← ⋃

𝑠𝑟∈𝑆𝑅𝑇𝐶𝑠𝑟 ⊲ Obtain enabled tree constraints
4: 𝐶𝑇𝐶′← ⋃

𝑠𝑟∈𝑆𝑅𝐶𝑇𝐶𝑠𝑟 ⊲ Obtain enabled cross-tree constraints
5: 𝐹𝑀 ← (𝑆𝑅, 𝐹𝑂′,𝑇𝐶′,𝐶𝑇𝐶′) ⊲ Construct feature model
6: return 𝐹𝑀

7: end function
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Algorithm 8.2 Internalize Domain (iD) operation
1: function iD(𝐹𝑀)
2: 𝑠𝑟 ′← () ⊲ Create new system revision
3: 𝑠𝑟 ′.succ← {}
4: 𝑠𝑟 ′.pred← {𝑠𝑟 | 𝑠𝑟 ∈ 𝑆𝑅 ∧ 𝑠𝑟 ∈ 𝑆𝑅𝐹𝑀 } ⊲ Set predecessors of new system revision
5: for each 𝑠𝑟 ∈ 𝑠𝑟 ′.pred do

6: 𝑠𝑟 .succ← 𝑠𝑟 .succ ∪ {𝑠𝑟 ′} ⊲ Add new system revision as successor
7: end for

8: 𝑆𝑅 ← 𝑆𝑅 ∪ {𝑠𝑟 ′} ⊲ Add new system revision to unied system
9: 𝐹𝑂𝑠𝑟 ′ ← 𝐹𝑂𝐹𝑀 ⊲ New system revision enables feature options of FM
10: 𝑇𝐶𝑠𝑟 ′ ← 𝑇𝐶𝐹𝑀 ⊲ New system revision enables tree constraints of FM
11: 𝐶𝑇𝐶𝑠𝑟 ′ ← 𝐶𝑇𝐶𝐹𝑀 ⊲ New system revision enables cross-tree constraints of FM
12: 𝑀′← {𝑚 | 𝑚 ∈ 𝑀 ∧ 𝑠𝑟 ′.pred ∩ 𝑒𝑚 ≠ ∅} ⊲ Obtain mappings that contain current

system revision(s)
13: 𝑀′′← <Copy each mapping𝑚 ∈ 𝑀′ and replace all occurrences of any 𝑠𝑟 ∈ 𝑆𝑅𝐹𝑀

in the expression of any𝑚 ∈ 𝑀′′ by 𝑠𝑟 ′>
14: 𝑀 ← 𝑀 ∪𝑀′′ ⊲ Add copied and updated mappings to unied system
15: end function

Algorithm 8.3 Externalize Product (eP) operation
1: function eP(𝑐)
2: if ¬valid(𝑐) ∨ ¬complete(𝑐) then ⊲ Check if conguration is valid and complete
3: return ERROR
4: end if

5: 𝑀′← {𝑚 | 𝑚 ∈ 𝑀 ∧ 𝑆𝐴𝑇 (𝑐 ∧ 𝑒𝑚} ⊲ Obtain mappings whose expression is satisifed
by the conguration

6: 𝐼 ← () ⊲ Create empty model
7: for each𝑚 ∈ 𝑀′ do
8: for each 𝑓 𝑡 ∈ 𝐹𝑇𝑚 do

9: 𝐼 ← apply(𝐼 , 𝑓 𝑡) ⊲ Apply delta module to model
10: end for

11: end for

12: 𝑝 ← (𝑐, 𝐼 ) ⊲ Construct product
13: return 𝑝

14: end function

8.3. ProposedWorkflow

Figure 8.4 depicts a UML activity diagram of the general workow with involved roles
of the unied approach. Traditional proactive SPLE distinguishes between domain en-
gineering and application engineering [191]. Respectively, the domain engineer denes
the variability at an appropriate level of abstraction (for developers as well as customers)
by dening the variability model and establishing the reusable platform. The application
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Algorithm 8.4 Internalize Changes (iC) operation
1: function iC(𝑝 , 𝑒)
2: 𝑠𝑟 ′← () ⊲ Create new system revision
3: 𝑠𝑟 ′.succ← {}
4: 𝑠𝑟 ′.pred← {𝑠𝑟 | 𝑠𝑟 ∈ 𝑢𝑠.𝑆𝑅 ∧ 𝑠𝑟 ∈ 𝑐𝑝} ⊲ Set predecessors of new system revision
5: for each 𝑠𝑟 ∈ 𝑠𝑟 ′.pred do

6: 𝑠𝑟 .succ← 𝑠𝑟 .succ ∪ {𝑠𝑟 ′} ⊲ Set new system revision as successor
7: end for

8: 𝑢𝑠.𝑆𝑅 ← 𝑢𝑠.𝑆𝑅 ∪ {𝑠𝑟 ′} ⊲ Add new system revision to unied system
9: 𝑠𝑟 ′.enablesF← ⋃

𝑠𝑟∈𝑠𝑟 ′.pred 𝑠𝑟 .enablesF
10: 𝑠𝑟 ′.enablesTC← ⋃

𝑠𝑟∈𝑠𝑟 ′.pred 𝑠𝑟 .enablesTC
11: 𝑠𝑟 ′.enablesCTC← ⋃

𝑠𝑟∈𝑠𝑟 ′.pred 𝑠𝑟 .enablesCTC
12: for each 𝑓 ∈ 𝑒 do
13: 𝑓 𝑟 ′

𝑓
← () ⊲ Create new feature revision

14: 𝑓 𝑟 ′
𝑓
.𝑓 ← 𝑓 ⊲ Set feature of feature revision

15: 𝑓 .𝐹𝑅 ← 𝑓 .𝑓 𝑟𝐹𝑅 ∪ {𝑓 𝑟 ′
𝑓
} ⊲ Add feature revision to feature

16: 𝑓 𝑟 ′
𝑓
.succ← {}

17: 𝑓 𝑟 ′
𝑓
.pred← {𝑓 𝑟 𝑓 | 𝑓 𝑟 ∈ 𝐹𝑅𝑓 ∧ 𝑐𝑝} ⊲ Set predecessor of new feature revision

18: for each 𝑓 𝑟 𝑓 ∈ 𝑓 𝑟 ′
𝑓
.pred do

19: 𝑓 𝑟 𝑓 .succ← 𝑓 𝑟 𝑓 .succ ∪ {𝑓 𝑟 ′𝑓 } ⊲ Set new feature revision as successor
20: end for

21: end for

22: 𝐹𝑇 + ← 𝑝.recordedChanges ⊲ Get recorded changes
23: 𝑀′← {𝑚 | 𝑚 ∈ 𝑀 ∧ 𝑠𝑟 ′.pred ∩ 𝑒𝑚 ≠ ∅} ⊲ Obtain mappings that contain current

system revision(s)
24: 𝑀′′← <Copy each mapping𝑚 ∈ 𝑀′ and replace all occurrences of any 𝑠𝑟 ∈ 𝑐𝑝 in

the expression of any𝑚 ∈ 𝑀′′ by 𝑠𝑟 ′>
25: 𝑢𝑠.𝑀 ← 𝑢𝑠.𝑀 ∪𝑀′′ ⊲ Add copied and updated mappings to unied system
26: 𝑚′← (𝑠𝑟 ′ ∧ 𝑒, 𝐹𝑇 +) ⊲ Create mapping for new fragments (i.e., deltas)
27: 𝑢𝑠.𝑀 ← 𝑢𝑠.𝑀 ∪ {𝑚′} ⊲ Add mapping to unied system
28: end function

engineer builds customer-specic applications by deriving and completing Products based
on the platform established in domain engineering. While the unied approach proposed
in this thesis relies on the main principles of SPLE, such as the reusable platform and
feature-oriented development, it represents a VarCS (see Denition 2.2) and thus encour-
ages product line development based on product views to overcome limitations of existing
variability management practices (see Section 2.2.2). Consequently, the roles of the unied
approach deviate from the traditional roles in SPLE.

Analogously to the domain engineer in SPLE, the problem space engineer denes the
variability and commonality of the product line by means of a variability model (i.e., a fea-
ture model). Based on a particular System Revision, the operation 𝑒𝐷 (see Algorithm 8.1)
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Figure 8.4.: Proposed workow of the unied approach with roles.

provides a feature model to the problem space engineer. Due to changed requirements, the
problem space engineer evolves the feature model, for instance, by adding new Features.
To integrate the performed changes back into the Unified System, the evolved feature
model is input to the operation 𝑖𝐷 (see Algorithm 8.2) and leads to an updated instance
of the Unified System. Analogously to the application engineer in SPLE, the solution
space engineer externalizes a Product based on a Configuration via 𝑒𝑃 (see Algorithm 8.3)
and develops product-specic artifacts. Moreover, the solution space engineer is also
responsible for developing reusable artifacts of the platform. Respective Changes to the
Product are recorded by a change monitor, and integrated into the Unified System in a
ne-grained feature-oriented manner via 𝑖𝐶 based on an expression (see Algorithm 8.4),
which further updates the Unified System. Finally, a user can externalize a Product based
on a Configuration via 𝑒𝑃 .

To sum up, instead of domain and application engineering, the unied approach classies
activities into problem space and solution space engineering. By integrating changes per-
formed on a product in a ne-grainedmanner into the reusable platform, other products can
benet from these changes. Additionally, documenting changes in a feature-aware manner
allows for intensional versioning (i.e., the externalization of Products that have never
been internalized before). While the described workow supports traditional proactive
development of an SPL, it particularly encourages reactive development.
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8.4. Augmentation of Operations with Consistency
Preservation

Table 8.1 maps the product-level types of inconsistencies to unied view-based operations.
For every inconsistency type, the causing operation, the aected artifact, respective repair
operations (denoted as regular expressions) and the artifact in which the repair is performed
are identied. While the unied approach oers consistency preservation for inconsistency
types that are either caused or repaired in the solution space (i.e., Type 2, 5, and 6), the
augmentation of unied view-based operations with consistency preservation for every
product-level type of inconsistency is described in the following to answer RQ 2.2.

Producing a view on the feature model via 𝑒𝐷 and integrating modications, such as
the addition of a constraint, via 𝑖𝐷 , may lead to Type 1 or 2 inconsistencies. Removing
features or adding constraints between features (Type 1) reduces the congurable space,
which might invalidate congurations currently in use. After 𝑖𝐷 , a repair automatically
suggests an alternative conguration according to one of several possible strategies. Such
strategies could be based on already existing ideas in literature (see Section 7.2.1). In
addition, update strategies can be conceived by analyzing and quantifying dierences in
features as well as in implementation for the selection of adjacent valid congurations:
i) the highest number of common features, i.e., the lowest number of removed features;
ii) the lowest number of feature dierences, i.e., the lowest number of added and removed
features; iii) the highest overlap of implementation, i.e., the lowest number of deletions in
the implementation; iv) the smallest dierence in implementation, i.e., the lowest number
of insertions and deletions in the implementation. Furthermore, v) already performed
changes on a product implementation and yet another update strategy that minimizes
the aect of the transition on the already changed parts of the implementation could be
considered. Optionally, the developer may intervene and manually adapt the computed
conguration, or simply conrm it as input to 𝑒𝑃 to transition to the new product.

In contrast, adding features or removing constraints between them (Type 2) increases the
congurable space and enables new congurations that may not (yet) lead to consistent
product implementations due to missing implementation of new feature(s) or feature
interaction(s). Thus, after 𝑖𝐷 , an enumeration of new features and feature combinations
is provided. Henceforth, in case the developer externalizes an aected conguration via
𝑒𝑃 , a hint is issued that the product implementation produced by 𝑒𝑃 may be missing
implementation for new features or feature combinations and thus be inconsistent. While
the approach provides suggestions for the developer, the actual x must be implemented
manually and internalized via (𝑖𝐶)+.

Producing a product via 𝑒𝑃 based on an invalid conguration leads to Type 3 and 4 in-
consistencies. A repair requires either to externalize another product via 𝑒𝑃 with a valid
conguration (semi-automatically by selecting a transition strategy, as mentioned for
Type 1) or by adapting the feature model (via approaches such asminimal unsatisable sub-
sets [136], which could be used to suggest possible repair options in the feature model). In
the latter case, a view on the feature model corresponding to the causing conguration can
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be generated automatically via 𝑒𝐷 , and possible repairs to the feature model can be applied
to the externalized view automatically. Again, the developer may intervene and make fur-
ther modications, or simply conrm and internalize the repaired feature model via 𝑖𝐷 .

Producing the product via 𝑒𝑃 and integrating changes via 𝑖𝐶 may lead to Type 5 and 6
inconsistencies. In both cases, the implementation may have become inconsistent. If a
feature dependency has been added on implementation level that is not captured by the
feature model (Type 5), products with an inconsistent implementation may be externalized.
A repair requires to add the respective implementation level dependency between features
in the feature model. The view on the domain can be created via 𝑒𝐷 and the corresponding
feature dependency can be added as a cross-tree constraint to the feature model auto-
matically to invalidate congurations of inconsistent products. Again, the developer can
make further modications to the feature model view, e.g., perform a more impactful
restructuring of the feature model, and then conrm the repair by performing 𝑖𝐷 .

Changing redundant or dependent information across heterogeneous artifacts of the same
product, e.g., by modifying the Java view of a product produced via 𝑒𝑃 and applying it to the
system via 𝑖𝐶 , can quickly lead to inconsistencies in other artifact types and products due
to redundancies or dependencies (Type 6). Based on consistency preserving mechanisms
provided by Vitruvius (see Section 2.6.2), this type of inconsistency can be detected and re-
paired (semi-) automatically by applying consequential changes as reaction to the manually
performed original changes of the developer. The consequential changes can perform re-
pairs in the same type of artifacts and other types of artifacts, or other products entirely. In
the latter case, these consequential changes may dier based on the product in which they
are applied. If the abstraction level of the corresponding artifacts diers, several valid repair
options can be possible. Thus, the automatically applied consequential changes may re-
quire user interaction, e.g., an added Java class could represent a UML component or not be
propagated at all in case it is only supposed to represent a class on implementation level.

In conclusion, inconsistencies can be caused by modications to dierent artifacts of a
variable system and require dierent kinds of repairs that may vary in their potential
for automation. While in some cases, e.g., Types 3 and 4, several semi-automated repair
options exist, there are cases that require manual inspection, such as Type 2.

8.5. Demonstrative Application

This section illustrates the above described unied consistency preservation based on the
running example (Section 2.1). We start at system revision one where feature Dist does
not exist yet and all other features have exactly one feature revision.

Assume that we externalize the domain (i.e., feature model) in the rst system revision via
𝑒𝐷 . We add feature Dist to the feature model and internalize it via 𝑖𝐷 , leading to the second
system revision. The newly supported products are initially inconsistent as they aremissing
the implementation for the new feature (Type 2). Therefore, we externalize a product via
𝑒𝑃 with the conguration {Car1, ET, Gas1, Dist}. We add Lines 7 and 11 to it and internalize
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Table 8.1.:Mapping between inconsistency types and unied operations.
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8.6. Preservation of Solution Space Inconsistencies

the changes via 𝑖𝐶 with the expressionDist, leading to the rst feature revision for Dist and
the third system revision. Additionally, we add the interaction between features Gas and
Dist by adding Line 8. We internalize it with expression Gas && Dist, leading to the second
revision of Gas and Dist, and the fourth system revision. In the process, other artifact types
and products may have become inconsistent (Type 6). To restore consistency in the SysML
model, changes performed in Java are automatically propagated to the SysML model in
Line 5. To restore consistency in other aected products that involve the added feature Dist,
such as {Car1, ET, Ele1, Dist2}, we externalize it via 𝑒𝑃 . This product is inconsistent as it
lacks a return statement in method getDistanceLeft(). Thus, Line 9 is added and internalized
with the expression Ele && Dist, leading to the second revision for Ele, the third revision
for Dist and the fth system revision. Since electric cars need to constantly monitor the
remaining distance, Line 5 is added and internalized with the expression Ele. While this
leads to the third revision for Ele and the sixth system revision, it causes a dependency
between Ele3 and Dist3 that is not covered by the feature model (Type 5), and thus allows
for externalizing inconsistent products (e.g., {Car1, ET, Ele3). Specically, the mapping of
Line 5 (Ele3) in conjunctionwith the featuremodel does not imply themapping the required
Line 7 (Dist3). Therefore, the feature model is externalized via 𝑒𝐷 , the cross-tree constraint
Ele3 ⇒ Dist33 is added as a constraint to the feature model, and the repaired feature
model is internalized again via 𝑖𝐷 , which this leads to the seventh system revision. As a
consequence, the product {Car1, ET, Ele3} is not supported anymore (Type 1). Transitioning
the conguration to {Car1, ET, Ele3, Dist3}—with the highest number of common features
and lowest number of feature dierences—validates the conguration. Finally, assume that
we strive for a hybrid car and create a conguration {Car1, ET, Ele3, Gas2, Dist3}, which,
however, is not supported by the feature model. Since we do not want to change our
conguration (Type 3), we externalize the domain (in the latest system revision) and change
the alternative group of the features Gas and Ele to an or group (Type 4), leading to the
eighth system revision. Now, we just need to add the missing interactions between Gas2,
Ele3 and Dist3 in the hybrid car product (Type 2). Thus, we remove Lines 8 and 9 from
the product, add Line 10 and internalize the changes with Gas && Ele, leading to the third
revision for Gas, the fourth revision for Ele, and the ninth system revision. Note that the
mappings of the deleted lines are appended with the negation of the provided features.

8.6. Preservation of Solution Space Inconsistencies

While the unied operations have been augmented with consistency preservation ca-
pabilities for all product-level types of inconsistencies, the unied approach integrates
consistency preservation for a selected subset of these. Specically, it addresses inconsis-
tency types that are either caused or repaired in the solution space of a product, i.e., Type 2
(feature model to product consistency), Type 5 (product to feature model consistency), and
Type 6 (product consistency). In the following, the workow of the unied approach for
dealing with each of these inconsistency types is depicted.
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8.6.1. Feature Model to Product Consistency

Figure 8.5 shows a UML sequence diagram, and Figure 8.6 an illustrative depiction, of the
workow of the proposed unied approach for Type 2 inconsistencies. First, the developer
externalizes the domain via 𝑒𝐷 (e.g., at the second System Revision via 𝑒𝐷 (𝑆𝑅.2)) that
returns a feature model at that point in time. The developer edits the feature model by
removing constraints (e.g., by removing the excludes constraint ¬𝐴 ∨¬𝐵 between features
A and B). This increases the congurable space, since features or feature revisions may now
be combined in a valid conguration that previously could not. Internalizing the changed
feature model via 𝑖𝐷 triggers an analysis of the conguration space based on a SAT solver.
For each individual feature and feature combination, the unied approach checks whether
it is supported by the unchanged feature model and the changed feature model, respectively.
Specically, the set 𝐻 of new features and feature combinations is computed as follows:

𝐻 = {ℎ | SAT(𝐹𝑀new ∧ ¬𝐹𝑀old ∧ ℎ)}

In case a valid assignment can be found for all features and feature combinations in both
feature models, the congurable space has not changed. In case a valid assignment can be
found for a particular feature or feature combination only in the unchanged feature model,
the congurable space has decreased. Finally, in case a valid assignment can be found for a
feature or feature combination only in the changed feature model, the congurable space
has increased. In this case, all newly valid features and feature combinations are stored.

Upon 𝑒𝑃 , newly valid and not yet dealt with features or feature combinations may lead to
an inconsistent product. On the one hand, desired feature interactions may be missing
and need to be implemented. On the other hand, undesired static or dynamic feature
interactions may occur. In the former case, the implementation of one feature may
conict with the implementation of another, e.g., one feature may delete a method that is
required by the other feature. The latter is the case when the behaviors of two features
interfere, which may lead to undesired behavior of the system. When the developer
externalizes a product with a conguration with new features or combinations thereof
(e.g., via 𝑒𝑃 (𝑆𝑅.1, 𝐴.1, 𝐵.2,𝐶.1)), the approach provides a set of respective hints 𝐻 to the
developer in the form of a list of not yet dealt with features and feature combinations that
could aect the product:

𝐻 = {ℎ | ℎ ∈ 𝐻 ∧ SAT(ℎ ∧ 𝑐)}

The developer becomes aware of the missing feature or possible interaction and may
resolve it if necessary, e.g., by providing an implementation particularly for the interaction
of features. If the developer internalizes changes via 𝑖𝐶 with an expression that addresses
one of the hinted at features or feature combinations (e.g., via 𝑖𝐶 (𝑝1, 𝐴∧𝐵)), the respective
hint (e.g., 𝐴∧𝐵) is removed from the list of hints and will not be provided anymore for the
feature or combination of the features that have been specied in the expression 𝑒 of 𝑖𝐶 :

𝐻 ′ = 𝐻 \ {𝑒}
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Figure 8.5.: Sequence diagram of the feature model to product consistency.

Example: In the demonstrative application of the Car system (see Section 8.5), inconsisten-
cies of this type occur twice. First, when the feature Dist is added to the feature model, as
it is missing implementation. Although this does not lead to an inconsistency with respect
to syntactic well-formedness, the implementation of the feature should be added to ensure
problem space–solution space consistency (see Section 2.7). Second, this inconsistency
occurs when the alternative group of the features Gas and Ele is changed to an or group
in the feature model, which requires to add the pair-wise interaction between Gas2 and
Ele3 to realize the Car product with a hybrid engine.
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Figure 8.6.: Feature model to product consistency overview.

8.6.2. Product to Feature Model Consistency

Figure 8.7 shows a UML sequence diagram, and Figure 8.8 an illustrative depiction, of
the workow of the proposed unied approach for Type 5 inconsistencies. First, the
developer externalizes a product (e.g., via 𝑒𝑃 (𝑆𝑅.1, 𝐴.1, 𝐵.2)) and adds a dependency in the
solution space between elements of two feature revisions (e.g., an element of 𝐴.1 refers
to an element of 𝐵.2) that were independent before on both the problem space as well as
the solution space. Next, the developer internalizes the performed changes on the product
and species the feature to which the change applies (e.g., feature 𝐴 via 𝑖𝐶 (𝑝1, 𝐴)). The
𝑖𝐶 operation triggers a dependency analysis.

In the rst step of the analysis, all pairs of deltas are identied that either require or
exclude each other based on the elements they aect (e.g., a delta that adds a reference to
an element excludes a delta that deletes that element, and requires a delta that creates the
element). Then, dependencies are lifted from the solution space (deltas) to the problem
space (features) via the mappings between them. Based on the requiring and excluding
deltas, the respective mappings that refer to the deltas are identied. Consequently,
mappings may require or exclude other mappings. Thus, the expression 𝑒1 (e.g., 𝐴.1) of
a requiring mapping must imply the expression 𝑒2 (e.g., 𝐵.2) of the required mapping
(𝑒1 ⇒ 𝑒2), and at least one of the expressions 𝑒3 and 𝑒4 of two exclusive mappings must be
false (¬𝑒3 ∨ ¬𝑒4). A SAT solver is used to check whether the above conditions hold for a
feature model 𝐹𝑀 . Specically, for a requires relationship to be violated, all clauses of a
feature model 𝐹𝑀 together with requiring expression 𝑒1 and negated required expression
¬𝑒2 must be satisable:

𝑆𝐴𝑇 (𝐹𝑀 ∧ 𝑒1 ∧ ¬𝑒2)
If this is the case, there is at least one conguration where the requiring delta is applied
without the required delta and the dependency of the solution space is not represented
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by the problem space. The current feature model is externalized via 𝑒𝐷 (e.g., at system
revision 𝑆𝑅.2 via 𝑒𝐷 (𝑆𝑅.2)) and the constraint 𝑒1 ⇒ 𝑒2 is automatically added to the
feature model (e.g., 𝐴.1⇒ 𝐵.2). For an excludes relationship to be violated, all clauses of a
feature model together with the two excluding expressions 𝑒3 and 𝑒4 must be satisable:

𝑆𝐴𝑇 (𝐹𝑀 ∧ 𝑒3 ∧ 𝑒4)

If this is the case, there is at least one conguration where both excluding deltas are applied
and the dependency of the solution space is automatically added as constraint to the feature
model. The developer may investigate the feature model with the performed repair and
perform further modications before internalizing them into the unied system via 𝑖𝐷 .

Example: In the demonstrative application of the Car system (see Section 8.5), inconsis-
tencies of this type occur once. Adding Line 5 and internalizing it with the expression
Ele leads to a dependency between Ele3 and Dist3 that is not covered by the feature
model. The dependency analysis is performed, which leads to the cross-tree constraint
Ele3 =⇒ Dist3. The constraint is automatically added by the approach to the feature
model to resolve the inconsistency between the product and the feature model.

8.6.3. Product Consistency

Figure 8.9 shows a UML sequence diagram, and Figure 8.10 an illustrative depiction, of
the workow of the unied approach for Type 6 inconsistencies. First, the developer
externalizes a product via 𝑒𝑃 (𝑆𝑅.1, 𝐴.1, 𝐵.2) and edits it. In case redundant or dependent
information across heterogeneous artifact models were modied, e.g., by modifying the
Java view of the product, this may lead to inconsistencies of other artifact models. Based
on the Consistency Preservation Rules (CPRs) of Vitruvius (see Section 2.6.2), changes are
propagated to dependent artifact models by (semi-) automatically applying consequential
changes as reactions to original changes performed by the developer.

Next, the developer integrates the performed changes into the system by providing the
changed product and specifying the aected feature(s) in the respective expression via
𝑖𝐶 (𝑝1, 𝐴)). In this way, a change applied in one product may aect other products. On
the one hand, this illustrates an advantage of the unied approach that allows to prop-
agate improvements or xes made to a feature implementation in one product to all other
aected products. Consequently, other products benet from the changes performed in
one particular product. On the other hand, this may lead to inconsistencies in the other
products, as the context (i.e., other present features) is dierent in each product.
To summarize, changes are propagated between heterogeneous artifact models when one
type of artifact is modied via a product view, or when a new product is externalized and
changes are propagated that were originally performed on another product.

Example: In the demonstrative application of the Car system (see Section 8.5), inconsis-
tencies of this type occur several times. Changes to the Java view that realize the feature
Dist (Lines 7 and 11) and the interaction between Gas and Dist (Line 8) are automatically
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Figure 8.7.: Sequence diagram of the product to feature model consistency.

propagated to the SysML view (Line 5). To restore consistency in other aected products
that involve the added feature Dist, such as {Car1, ET, Ele1, Dist2}, it is externalized via
𝑒𝑃 . This product is inconsistent, as it lacks a return statement in method getDistanceLeft().
Thus, Line 9 is added and internalized with the expression Ele && Dist.

8.7. Prototypical Implementation as VaVe 2.0 Tool

The presented unied approach for supporting the consistent evolution of variable systems
composed of heterogeneous artifacts has been prototypically implemented in the VaVe 2.0
(unied Variants and Versions management) tool. Note that VaVe 2.0 is an extension of
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Figure 8.8.: Product to feature model consistency overview.
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Figure 8.10.: Product consistency overview.

the VaVe tool (see Section 2.4.2) and realizes the unied approach. VaVe 2.0 has been
implemented in Java using the Eclipse Modeling Framework (EMF) 1 (see Section 2.5.2).

The metamodel shown in Figure 8.2 has been implemented as Ecore metamodel. VaVe 2.0
makes use of the Vitruvius framework (see Section 2.6.2) for product derivation and
consistency preservation. Specically, the Delta Module in the VaVe 2.0 metamodel refers
to the EChanges in the change descriptions metamodel of Vitruvius, which denes a
metaclass for each type of change that is possible in Ecore models. Furthermore, the V-SUM
Product (which represents the Product concept of the unied conceptual model) has been
implemented as a specialization of the V-SUM of Vitruvius and thus inherits support
for multiple heterogeneous artifact models and consistency preservation among them
(see Section 8.2.2). For the latter, the unied approach makes use of the Reactions language
of Vitruvius (see Section 2.6.2) that is used for dening unidirectional transformations
that preserve consistency between elements of the same or dierent models. The unied
view-based operations were implemented as methods of the VaVe 2.0 Unified System

according to the specications given in Listings 8.1, 8.2, 8.3 and 8.4.

8.8. Expected Benefits

The proposed unied approach, its architecture, integration with the Vitruvius approach,
workow and consistency preservation has been explained. This section comprises a
discussion on the expected benets of the unied approach.

1 https://www.eclipse.org/modeling/emf/
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Krüger and Berger [127] explain how missing proactive tracking of variability evolution
may lead to additional costs. To this end, the unied approach addresses this shortcoming
by tracking the revision history of the variable system as well as of its comprised features
while explicitly relating both. Consequently, costs can be reduced, the need for retrospec-
tive information mining is eliminated, and immediate analyses of evolution history is
enabled, i.e., how often a feature changes in the course of a particular time period.

By following product line development based on product views, as encouraged by the
upcoming research area of VarCS (see Denition 2.2), limitations of existing variability
management practices, such as manually integrating changes into the reusable platform,
can be overcome [141, 214]. The user develops the variable system based on a product
where variability is fully bound (i.e., each feature is either selected or deselected) while
variability is managed fully automatically by employing a variability mechanism internally
and hidden from the user. Moreover, other products benet from improvements performed
in one particular product, since these changes are integrated into the reusable platform
and, thus, can be propagated to other products. This not only eases the transition from
tedious clone-and-own development to a systematic evolution process for variable systems,
it also reduces cognitive complexity [212, pp. 128] since several tasks are performed fully
automatically (e.g., adding a feature automatically creates a new system revision, a new
feature revision, links them respectively and computes a corresponding mapping). Thus,
the unied approach is expected to reduce the complexity as well as manual eort when
managing a variable system.

Finally, the unied approach helps to detect and repair the variability-related inconsisten-
cies caused or repaired in the solution space (i..e, Types 2, 5, and 6), ranging from hints to
developers for Type 2 to fully automated repairs for Types 5 and 6. As a consequence, the
unied approach is therefore expected to reduce costs and improve the system’s quality.

8.9. Summary and Conclusion

This chapter presented the unied approach to support consistent management of vari-
able systems (C5). The unied approach renes the unied conceptual model (C1) and
unied operations (C2)), augmenting the unied operations with consistency preserva-
tion. Fragments of the unied conceptual model are rened using Deltas and feature
modeling is enabled through rening Constraints by Tree Constraints and Cross-tree

Constraints. The evolution of a variable system is supported based on a product or do-
main view (i.e., the feature model). Consequently, no specic variability mechanisms for
dierent types of artifacts are required anymore since variability is already fully bound in
the product. Moreover, multiple tasks are performed fully automatically to support the
evolution of a variable system, such as the automated addition of system revisions and
feature revisions upon the integration of changes, while also reducing cognitive complexity
for the developer [212, pp. 128]. Since the unied approach builds on insights from the
unication (i.e., C1 and C2), it combines the advantages of the analyzed tools. Additionally,
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Figure 8.11.:Contribution of Chapter 8 of the thesis.

it closes the gap of handling Feature Revisions and System Revisions simultaneously,
which additionally enables it to support systems that vary in space and time holistically.

Moreover, the unied approach supports the consistent evolution of a variable system. It
oers consistency preservation for dealing with variability-related inconsistency types
that are either caused or repaired in the solution space (i.e., Type 2, 5, and 6).
Adding features or removing constraints between them increases the congurable space
and enables new congurations that may not (yet) lead to valid product implementations
due to missing implementation of new feature(s) or feature interaction(s) (Type 2). While
the unied approach cannot repair such inconsistencies fully automatically, it supports the
user in increasing the awareness of potential inconsistencies by providing hints in the form
of all new features or new valid feature combinations for which no implementation has
been provided yet. If a feature dependency has been added on implementation level that
is not captured by the feature model, products with an inconsistent implementation may
be externalized (Type 5). The unied approach performs a dependency analysis between
deltas of the Unified System and, if necessary, lifts the dependencies to the feature model
by automatically adding missing constraints. Finally, changing redundant or dependent in-
formation across heterogeneous artifacts of the same product can lead to inconsistencies in
other artifact types and products due to redundancies or dependencies (Type 6). To this end,
the unied approach integrates the consistency preservingmechanism of theVitruvius ap-
proach to propagate changes between dependent artifact models as well as when deriving a
product to ensure consistency among all artifact models of the respective product. Particu-
larly, the unied approach employs the Deltas used in Vitruvius and specializes its V-SUM
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as Product. Thus, consistency preserving mechanisms of Vitruvius are leveraged while it
is extended with concepts of the problem space to enable unied variability management.

This contribution addresses RQ 2.2 and RQ 2.3. Figure 6.12 shows an overview of all
contributions of the thesis and highlights the contribution of this chapter in grey.
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Part III.

Evaluation and Discussion





9. Overview

Chapter 5-Chapter 8 described main contributions of this thesis to support consistent
management of variable systems composed of heterogeneous artifacts. This encompassed
unied concepts to cope with variability in space and time (C1), unied operations (C2),
variability-related inconsistencies that may occur during the evolution of a system (C4)
and, nally, the unied approach building upon the preceding contributions (C5).

Part III presents an empirical evaluation of the proposed contributions, structured according
to the GQMmethod [27]. First, the general evaluation process of the unication results is ex-
plained in Chapter 10. To this end, metrics for unication are proposed (C3). Subsequently,
the conducted evaluation is presented for the unied conceptual model in Chapter 11, for
the unied operations in Chapter 12, and for the unied approach in Chapter 13. For each
contribution, the evaluation goal, questions, evaluation process and results are discussed.
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10. Evaluation Process and Metrics

This chapter builds on publications at SPLC [7] and Empirical Software Engineering [5].

This chapter describes the performed evaluation process in a generalized way for the uni-
ed conceptual model (C1) and unied operations (C2) with the purpose of reproducability.
The goal of the evaluation is to make reliable statements about whether individual tool
elements have been appropriately unied as well as about their applicability.

Referring to problem statement P1, the following research question is asked:

RQ 1.3 How can the appropriateness of a unication with respect to the studied ap-
proaches be quantied?

Section 10.1 describes the general evaluation process for the unied conceptual model (C1)
and unied operations (C2). Section 10.2 introduces and illustrates the conceived metrics
for unication (C3). A summary in Section 10.3 closes this chapter.

This chapter thus constitutes the contribution C3.

10.1. General Evaluation Process

Figure 10.1 shows the general two-step evaluation process of the unication. Based on
the construction mappings (between the unied elements and each tool’s elements), I
conceived metrics for unication. The metrics are based on properties for the evaluation
of modeling languages proposed by Guizzardi et al. [90] (Step 5 ). The metric results
indicate the appropriateness of the unied elements regarding granularity and coverage
with respect to the individual tool elements. Moreover, the application of unied elements
is exemplary demonstrated (Step 6 ), which concludes the evaluation process.

10.2. Metrics for Unification

Evaluating the appropriateness of an abstraction for a diverse set of tools is dicult as the
abstraction shall describe a common mental model that suites each analyzed tool. Unfortu-
nately, no techniques are provided in the literature yet to quantify and assess the appropri-
ateness of an abstraction. The closest work is proposed by Guizzardi et al. [90]. The authors
introduce a framework to evaluate the appropriateness of modeling languages comprising
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Figure 10.2.:Overview of the unication metrics. Abstraction refers to the unication elements and tool
refers to a tool’s elements [5, Fig. 6].

the properties laconic, lucid, complete, and sound. This thesis contributes metrics for evalu-
ating the appropriateness of a unication (C3) based on this framework. Although the same
properties are used, their framework is augmented in three ways: First, instead of a tool’s
language, its abstraction in the form of the tool’s structure and operations is considered.
Second, metrics are introduced that range from 0.0 to 1.0 to measure to what extent these
properties hold for an abstraction (i.e., the unied model and operations) and a tool. Finally,
metrics are added to compare an abstraction not just to a single tool but to a set of tools. The
metrics laconicity and lucidity quantify the granularity of the abstraction. The metrics com-
pleteness and soundness quantify their coverage. Each metric is dened for a unication𝑈
and a tool𝑇 ∈ T , where T is the set of studied tools. The unication𝑈 is a set of unied el-
ements 𝑢 ∈ 𝑈 . A tool𝑇 ∈ T is a set of tool elements 𝑡 ∈ 𝑇 . R𝑈

𝑇
⊆ 𝑈 ×𝑇 is the set ofmappings

of unied elements in𝑈 onto tool elements in 𝑇 . Figure 10.2 shows graphical illustrations
of the four metrics. In the following, each metric is dened and an example is provided.

Denition 10.1 presents the metric laconicity. As an example, consider Figure 10.2a, where
all four tool elements (right side) are laconic. Consequently, the laconicity of the abstraction
(left side) with respect to the tool (right side) is 1. In Figure 10.2e, two of the three tool
elements (right side) are laconic. Consequently, the laconicity of the abstraction (left side)
with respect to the tool (right side) is 0.67.

114



10.2. Metrics for Unication

Denition 10.1 (Metric laconicity [5, p. 29]) A tool’s element 𝑡 is laconic, i it imple-
ments at most one unied element𝑢 of the unication𝑈 . Laconicity ∈ [0..1] (higher is better)
is then the fraction of laconic tool elements:

laconic(𝑈 ,𝑇 , 𝑡) =
{
1 if |{𝑢 | (𝑢, 𝑡) ∈ R𝑈

𝑇
}| ≤ 1

0 otherwise

laconicity(𝑈 ,𝑇 ) =
∑

𝑡∈𝑇 laconic(𝑈 ,𝑇 , 𝑡)
|𝑇 |

Low laconicity indicates that elements of the unication may be too ne-grained, i.e., there
are redundant elements in the unication that should be merged.

Denition 10.2 presents the metric lucidity. As an example, consider Figure 10.2b, where all
four unication elements (left side) are lucid. Consequently, the lucidity of the abstraction
(left side) with respect to the tool (right side) is 1. In Figure 10.2f, two of the three unication
elements (left side) are lucid. Consequently, the lucidity of the abstraction (left side) with
respect to the tool (right side) is 0.67.

Denition 10.2 (Metric lucidity [5, p. 29]) A unication’s element 𝑢 is lucid, i it is
implemented by at most one element 𝑡 of a tool 𝑇 . Lucidity ∈ [0..1] (higher is better) is then
the fraction of lucid unication elements:

lucid(𝑈 ,𝑇 ,𝑢) =
{
1 if |{𝑡 | (𝑚, 𝑡) ∈ R𝑈

𝑇
}| ≤ 1

0 otherwise

lucidity(𝑈 ,𝑇 ) =
∑

𝑚∈𝑀 lucid(𝑈 ,𝑇 ,𝑢)
|𝑈 |

Low lucidity indicates that elements of the unication may be too coarse-grained, meaning
that there are unspecic elements in the unication that should be split up.

Denition 10.3 presents the metric completeness. As an example, consider Figure 10.2c,
where all three tool elements (right side) are complete. Consequently, the completeness of
the abstraction (left side) with respect to the tool (right side) is 1. In Figure 10.2g, two of
the three tool elements (right side) are complete. Thus, the completeness of the abstraction
(left side) with respect to the tool (right side) is 0.67.

Denition 10.3 (Metric completeness [5, p. 30]) A tool’s element 𝑡 is complete, i it is
represented by at least one element 𝑢 in the unication𝑈 . Completeness ∈ [0..1] (higher is
better) is then the fraction of complete tool elements:

complete(𝑈 ,𝑇 , 𝑡) =
{
1 if |{𝑢 | (𝑢, 𝑡) ∈ R𝑈

𝑇
}| ≥ 1

0 otherwise

completeness(𝑈 ,𝑇 ) =
∑

𝑡∈𝑇 complete(𝑈 ,𝑇 , 𝑡)
|𝑇 |

Low completeness indicates that the unication may be missing concepts that should be added.
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Denition 10.4 presents the soundness metric. As an example, consider Figure 10.2d, where
all three unication elements (left side) are sound. Consequently, the soundness of the
abstraction (left side) with respect to the tool (right side) is 1. In Figure 10.2h, two of
the three unication elements (left side) are sound. Consequently, the soundness of the
abstraction (left side) with respect to the tool (right side) is 0.67.

Denition 10.4 (Metric soundness [5, p. 30]) A unication’s element 𝑢 is sound, i it
is implemented by at least one element 𝑡 in the tool 𝑇 . Soundness ∈ [0..1] (higher is better)
is then the fraction of sound unication elements:

sound(𝑈 ,𝑇 ,𝑢) =
{
1 if |{𝑡 | (𝑢, 𝑡) ∈ R𝑈

𝑇
}| ≥ 1

0 otherwise

soundness(𝑈 ,𝑇 ) =
∑

𝑢∈𝑈 sound(𝑈 ,𝑇 ,𝑢)
|𝑈 |

Low soundness indicates that the unication may include unused elements that should be
removed.

Finally, in Denition 10.5, metrics are specied for a nite set of tools T to quantify
whether the unication is of appropriate granularity and coverage with respect to all
selected tools T . Laconicity and completeness for a set of tools are dened such that the
properties laconic and complete are evaluated for the union of all tools’ constructs. Lucidity
and soundness for a set of tools are dened such that respectively all tools (min) and at
least one tool (max) must satisfy the corresponding property for each unied element.
Note that tool elements that map to the same unication element are not considered as
equivalent. Therefore, tool elements are unique (i.e., for all𝑇1,𝑇2 ∈ T with𝑇1 ≠ 𝑇2 it holds
that 𝑇1 ∩𝑇2 = ∅).

Denition 10.5 (Metrics over a set of tools [5, p. 31]) A unication element 𝑢 is lucid,
if it is lucid in all tools 𝑇 ∈ T . A unication element 𝑢 is sound, if it is sound in at least one
tool 𝑇 ∈ T :

laconicity(𝑈 ,T) = laconicity
(
𝑈 ,

⋃
𝑇 ∈ T

𝑇

)
lucidity(𝑈 ,T) =

∑
𝑢∈𝑀

(
min𝑇∈T lucid(𝑈 ,𝑇 ,𝑢)

)
|𝑈 |

completeness(𝑈 ,T) = completeness
(
𝑈 ,

⋃
𝑇 ∈ T

𝑇

)
soundness(𝑈 ,T) =

∑
𝑢∈𝑈

(
max𝑇∈T sound(𝑈 ,𝑇 ,𝑢)

)
|𝑈 |
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Figure 10.3.:Contribution of Chapter 10 of the thesis.

10.3. Summary

This chapter presented the general evaluation process with respect to the appropriateness
and applicability of a conceived unication (i.e., the unied conceptual model and unied
operations) performed in this thesis to foster reproducability. The evaluation process com-
prises the computation of the metrics for unication (C3) as well as an exemplary applica-
tion of the unication. The metrics have been conceived based on properties from the litera-
ture proposed by Guizzardi et al. [90] and quantify the appropriateness of a unication with
respect to a set of tools based on the granularity and coverage of the unied elements.

Thus, this contribution addresses RQ 1.3. Figure 10.3 shows an overview of all contributions
and highlights the contribution of this chapter in grey.
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11. Evaluation of the Unified Conceptual
Model

This chapter builds on publications at SPLC [7] and Empirical Software Engineering [5]. An
open-access repository comprises all artifacts related to the construction and evaluation of the
unied conceptual model.1

Chapter 5 presented the unied conceptual model for variability in space and time (C1).
This chapter presents its evaluation based on the GQM method [27].

Section 11.1 introduces the goals and questions of the evaluation. Section 11.2 presents the
specialized evaluation process of the unied conceptual model. Section 11.3 encompasses
the rst part of the evaluation which comprises a qualitative analysis based on an expert
survey. A quantitative analysis follows in Section 11.4 and uses the unication metrics
introduced in Section 10.2. The second part of the evaluation demonstrates an application of
the unied conceptual model in Section 11.5. Degrees of freedom for rening the conceptual
model are presented as well as the derivation of two exemplary tools. Additionally,
Section 11.6 presents a formal concept analysis to provide additional insights of the
unication. Section 11.7 oers answers to the posed questions while threats to validity are
considered in Section 11.8. Section 11.9 comprises a discussion of the limitations and future
work of the unied conceptual model. A summary of the main insights in Section 11.10
closes this chapter.

11.1. Goals and Questions

The unied conceptual model aims at appropriately unifying concepts and relations for
variability in space, time, and both based on the selected tools. The following three goals
regarding granularity, coverage and applicability shall be met by the conceptual model:

Granularity: The unied conceptual model shall describe concepts with appropriate gran-
ularity that are neither unnecessarily ne-grained nor unnecessarily coarse-grained.

Coverage: The unied conceptual model shall comprise all concepts and relations used
by the tools selected for unication, but no more than necessary.

1 https://doi.org/10.5281/zenodo.5751916
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11. Evaluation of the Unied Conceptual Model

Applicability: The unied conceptual model shall serve as foundation to derive new tools
that are able to cope with variability in space and time.

Based on these goals, the following questions are asked:

Q 1.1 To what extent is the unied conceptual model of appropriate granularity?

Q 1.2 To what extent is the unied conceptual model of appropriate coverage?

Q 1.3 To what extent is the unied conceptual model applicable?

11.2. Specialized Evaluation Process

Figure 11.1 shows the evaluation process of the unied conceptual model. It follows the
construction process shown in Figure 5.1 and extends the general evaluation process
(see Section 10.1) by a qualitative analysis that encompasses an expert survey. Step 5
represents the expert survey based on questionnaires with the unied conceptual model
(as input) which results in the validation mapping (as output). The mapping is input to
the quantitative analysis in Step 6 where metrics for unication are computed (see Sec-
tion 10.2). Finally, Step 7 comprises an exemplary application of the unied conceptual
model based on two illustrating tools to demonstrate possible renements as well as the
computation of the unication metrics.

Qualitative analysis: The qualitative analysis comprised an expert survey with one expert
per tool. I conducted the expert survey based on questionnaires. Each expert received
a questionnaire to create a mapping between tool constructs, their relations as well as
well-formedness rules and the concepts, relations and well-formedness rules of the unied
conceptual model. Additionally, experts were asked to document all tool constructs and
relations that could not be mapped to the unied conceptual model.

Quantitative analysis: The quantitative analysis involved an application of the metrics for
unication (see Section 10.2). I computed the metrics for the unied conceptual model
based on the created mappings for each tool and, in addition, an aggregated metric value
over all tools. The metrics laconicity and lucidity quantify the granularity of concepts (i.e.,
whether the concepts are as specic as possible while still being generic enough). The
metrics completeness and soundness quantify the coverage of concepts and relations.

Exemplary Application: To demonstrate applicability, I created two ctive tools based on
the unied conceptual model. Degrees of freedom for rening the unied conceptual
model are explained as well as the design choices of each tool. Additionally, the metrics
for unication are computed for each tool to illustrate them in greater detail.
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Metric
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Expert
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Unified  
conceptual  

model

Validation 
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Metric results
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application

7

Figure 11.1.: Evaluation process of the unied conceptual model. Adapted from [5, Fig. 5].

11.3. Qualitative Analysis

In the following, Step 5 of Figure 11.1 is described encompassing the expert questionnaires
and the resulting validation mappings.

11.3.1. Expert Questionnaire

For each tool, one expert completed a questionnaire for mapping the tool’s constructs,
relations, and well-formedness rules to the concepts, relations and well-formedness rules
of the unied conceptual model. The questionnaire guide consisted of three parts. First,
the unied conceptual model along with a denition of each concept and relation was
introduced. Second, the guide asked for a mapping between each concept and relation
of the conceptual model and a semantically equivalent construct and relation of the
respective tool (also asking for constructs and relations that could not be mapped by the
tool experts). Finally, well-formedness rules of the conceptual model were presented,
asking for a mapping to well-formedness rules employed by the respective tool.

11.3.2. Validation Mapping

The validation mappings were derived from the completed expert questionnaires. To
obtain an equivalent comparison between the tools and the model, the mappings were
performed on the conceptual level of the tools. Since abstract concepts (such as Option
and Revision) cannot be instantiated, they were not considered in a mapping.

11.3.3. Results

The validation mappings of concepts, relations, and well-formedness rules are shown
in Table 11.1, Table 11.2, and Table 11.3.
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11. Evaluation of the Unied Conceptual Model

Table 11.1.: Validation Mapping: Results of mapping the constructs of each tool to the concepts in the
conceptual model [5, Tab. 1].
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11.3. Qualitative Analysis

Table 11.1 shows the mapping of unied model concepts (rows) to the constructs of each
tool (columns). While all tools employ constructs for the ve concepts Unified System,
Fragment, Mapping, Configuration, and Product, the used terminology and their semantics
dier considerably across the tools. For example, the concept Fragment is realized by the
constructs Blob (le content) and Tree Object (directory) in the tool Git, while equivalent
constructs in SVN are called File Node and Directory Node. SuperMod and ECCO refer to
Fragment respectively as Product Element and Artifact. Moreover, delta-oriented tools
(i.e., SiPL, DeltaEcore, DarwinSPL, VaVe) use the Core Model and Delta Module as Fragments.
In some cases, the terminology used by the dierent tools is almost uniform. For instance,
seven tools use the term Configuration and six tools use the term Product. However,
across all tools, there are still ve dierent terms for Configuration and three dierent
terms for Product. This shows that there is quite some disparity in terminology even for
the constructs with the highest consensus among the tools. Particularly interesting to note
are the cases where dierent tools have constructs with the same name but with dierent
semantics that map to dierent model concepts. For example, the tools VaVe, ECCO and Fea-
tureIDE all have a construct named Variant. However, in each tool, it maps to anothermodel
concept, namely to Feature, Product and Configuration, respectively. Consequently, even
within just the SPLE community there are overloaded terms that are used to refer to dier-
ent concepts. Furthermore, one can see how the studied tools cover concepts for variability
in space and/or time. Git and SVN use System Revisions for variability in time, while
FeatureIDE, pure::variants, and SiPL use Features and Constraints for variability in space.
All remaining tools (i.e., ECCO, SuperMod, DeltaEcore, DarwinSPL, VaVe) cope with both
variability dimensions and involve the concept Feature in addition to System Revision or
Feature Revision. None of the studied tools deals both variability dimensions while also
considering System Revision and Feature Revision, as described in Section 5.2.2. Finally,
a Mapping is understood equivalently across all tools by connecting Fragments and Options.
While for tools coping with variability in time a Mapping simply links a System Revision

to Fragments, the Mapping becomes more complex for tools that (additionally) consider
variability in space, as Fragments can potentially be linked to any number of Features.

Table 11.2 shows whether relations among concepts of the unied conceptual model
(rows) also exist among the respective constructs of each of the studied tools (columns).
All tools employ the ve relations: Fragment has * Fragment, Mapping has * Fragment,
Configuration has * Option, Unified System has * Fragment and Unified System

has * Mapping. Whether the remaining relations are supported by a tool or not depends
on the supported variability dimension. Moreover, the unied conceptual model lacks the
remotes relation that is used by the tools Git and ECCO by which repositories (i.e., Unified
Systems) can refer to each other to support distributed development.

Table 11.3 shows the mapping of the well-formedness rules (see Section 5.2.4) of the unied
conceptual model to each tool. A tool either satises a rule by construction (�), enforces it
at all times ( ), evaluates it but does not enforce it ( G#), does not evaluate it (#), or the rule
does not apply for the tool (—). If a tool satises a rule by construction, it is not necessary
to enforce or evaluate it as the tool’s structure makes it impossible to create a violating
state. For instance, Rule 3 (see Listing 5.2) is satised by construction in SVN and Git, since
they only employ System Revisions for which the Repository is the only container. If a
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11. Evaluation of the Unied Conceptual Model

Table 11.2.:ValidationMapping: Results of mapping the relations in each tool to the relations in the conceptual
model [5, Tab. 2].
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 The relations are identical. G# The cardinality of the relation in the conceptual model is less restrictive
than the cardinality of the relation in the tool.
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11.3. Qualitative Analysis

Table 11.3.:Validation Mapping: Results of mapping the well-formedness rules of the conceptual model to
each tool [5, Tab. 3].

Rule

Tool FeatureIDE pure::variants SiPL SVN Git ECCO SuperMod DeltaEcore DarwinSPL VaVe

Rule 1 — — — � � — � � � �

Rule 2 — — — � � — � � � �

Rule 3 — — — � � — � � � �

Rule 4 �  �    �   �

Rule 5 # G# �    �   �

Rule 6   � — — — �   #

Rule 7 — — — — — — � —  —

Rule 8 — — — — — — � —  —

Rule 9 — — — — — — — — — —

Rule 10 — — — — — — � — � —

� The rule is satised by construction.  The rule is enforced at all times. G# The rule is evaluated, but not
enforced. # The rule is neither evaluated nor enforced. — The rule does not apply.

tool enforces a rule at all times, it guarantees its fulllment by means of checks. If a rule is
violated, the causing change is prohibited upfront or the system’s state is repaired. To this
end, DeltaEcore enforces Rule 4 (see Listing 5.3) at all times by evaluating and ensuring the
well-formedness of a conguration upon its creation. If a tool evaluates a rule but does
not enforce it, it only checks if the rule is violated, but does not enforce it by additional
actions if it is. For example, pure::variants evaluates Rule 5 (see Listing 5.3), but supports
the import of external Fragments. Moreover, some tools neither evaluate nor enforce some
rules even though they would be applicable. For instance, FeatureIDE neither evaluates nor
enforces Rule 5 and therefore allows external Fragments to be used. Finally, a rule does
not apply, if a tool neither employs concepts nor relations the rule refers to. For instance,
Rules 1–3 and 7–10 cannot be applied to tools that do not deal with variability in time.

SuperMod, that supports System Revisions, satises most of the rules by construction.
For instance, it ensures Rule 1 and Rule 2 by employing a linear sequence of revisions
(instead of a revision graph) where every new revision is appended at the end of the
sequence. DarwinSPL achieves similar mapping results while also using System Revisions,
but enforces most rules. Furthermore, across all tools, either all or no well-formedness
rules of the revision graph (i.e., Rules 1–3) are satised. Finally, Rule 9 is not applicable
to any tool, since no tool supports both System Revisions and Feature Revisions.
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11. Evaluation of the Unied Conceptual Model

11.4. Quantitative Analysis

In the following, Step 6 of Figure 11.1 is described. It encompasses an application of the
metrics for unication (see Section 10.2).

11.4.1. Metrics

The metrics laconicity (see Denition 10.1) and lucidity (see Denition 10.2) quantify
the granularity of concepts and relations of the unied conceptual model (Q 1.1) with
respect to the elicited tools. The metrics completeness (see Denition 10.3) and soundness
(see Denition 10.4) quantify their coverage (Q 1.2).

The unication𝑈 is the unied conceptual model𝑀 that is a set of model concepts𝑚 ∈ 𝑀 .
A tool 𝑇 ∈ T is a set of tool constructs 𝑡 ∈ 𝑇 . Relations are considered as concepts and
constructs, too. The mappings of unied model concepts and relations in 𝑀 onto tool
constructs and relations in 𝑇 are displayed in Tables 11.1 and 11.2, respectively.

The conceptual model 𝑀 with the concepts Fragment (𝐹𝑇 ), Product (𝑃 ), Unified

System (𝑈𝑆), Mapping (𝑀), Feature (𝐹 ), System Revision (𝑆𝑅), Feature Revision (𝐹𝑅),
Configuration (𝐶), and Constraint (𝐶𝑇 ) yields the set

𝑀 = {𝐹𝑇 , 𝑃,𝑈𝑆,𝑀, 𝐹, 𝑆𝑅, 𝐹𝑅,𝐶,𝐶𝑇 }

In the following, an example for each metric is shown by applying it to DeltaEcore. For
simplicity, in the example, we only consider unied conceptual model concepts and tool
constructs and not their relations. The metrics are thus computed based on the mapping
in Table 11.1. DeltaEcore implements nine constructs:

𝑇DeltaEcore ={Core Model,Delta Module, Product, Product Line,
Mapping Model, Feature,Version,Conguration,Constraint}

Laconicity No tool construct in DeltaEcore maps to more than one model concept, which
indicates that the unied conceptual model is not unnecessarily ne-grained. Thus,
the laconicity with respect to DeltaEcore is ideal:

laconicityDeltaEcore(𝑀,𝑇DeltaEcore) = 1+1+1+1+1+1+1+1+1
9 = 9

9 = 1.0

Lucidity The model concept Fragment maps to the two constructs Core Model and Delta

Module in DeltaEcore. All other model concepts are either not implemented by any
construct or by exactly one construct in DeltaEcore and have no impact on the value
of the metric. Thus, the unied conceptual model is slightly more coarse-grained
and generic than DeltaEcore and lucidity is fairly high:

lucidityDeltaEcore(𝑀,𝑇DeltaEcore) = 0+1+1+1+1+1+1+1+1
9 = 8

9 = 0.889
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Completeness There are no constructs in DeltaEcore that do not map to anymodel concept,
i.e., all its constructs correspond to at least one model concept. This indicates that
the unied conceptual model is not missing any concepts to fully cover DeltaEcore.
The completeness with respect to DeltaEcore is thus ideal:

completenessDeltaEcore(𝑀,𝑇DeltaEcore) = 1+1+1+1+1+1+1+1+1
9 = 9

9 = 1.0

Soudness The model concept System Revision cannot be mapped to any construct in
DeltaEcore. All other model concepts are implemented by at least one construct in
DeltaEcore. This indicates that there is one concept in themodel that is not required by
DeltaEcore. The soundness of the unied conceptual model with respect to DeltaEcore
is thus fairly high, albeit not ideal:

soundnessDeltaEcore(𝑀,𝑇DeltaEcore) = 1+1+1+1+1+0+1+1+1
9 = 8

9 = 0.889

11.4.2. Results

Table 11.4 shows the values of the four metrics (columns) for each tool (rows). The values
are presented separately for concepts and relations of variability in space, time, both, and
unied concepts and relations as well as in total. In case of lucidity and soundness, each
row shows the percentage and the absolute number of conceptual model concepts and
relations that satisfy each property. In case of laconicity and completeness, each row shows
the percentage and the absolute number of tool constructs and relations that satisfy each
property. A horizontal line indicates that a tool does not support a particular variability
dimension or their combination. For instance, the tool SiPL supports variability in space but
not variability in time (and, consequently, also no concepts and relations of both dimensions,
such as the Feature Revision). The values for laconicity, lucidity, and completeness are
between 92% and 100% for all analyzed tools. For example, lucidity of the conceptual model
with respect to Git is 96%, as the concept Fragmentmaps to the two constructs Tree Object

and Blob. As another example, the conceptual model is 93 % laconic with respect to SVN,
because the Revision Number represents both the model concepts System Revision and
Configuration. Since there is no tool that implements all concepts and relations of the
unied conceptual model, the soundness values are generally lower. Thus, for tools that do
not support one of the variability dimensions or their combination, the soundness value is
even zero. This is, for example, the case for all tools that do not support variability in time
(i.e., the concept System Revision and the two respective relations Unified System has

* System Revisions and Revision has * Successor and * Predecessor). Vice versa,
tools that only support variability in time (i.e, SVN, Git) have a soundness value of zero for
variability in space. Moreover, tools that support variability in space and time via Feature
Revisions but not via System Revisions reach a soundness value of 50% for variability in
both dimensions, since they support the Feature Revision concept and the containment
relation to the Feature, but not the two enables relations of the System Revision.

Table 11.5 shows the aggregated results over all tools. The four metrics are shown as
columns for concepts/constructs and relations and concepts/constructs and relations
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Conceptual Model Tool System
refinement instantiation

Figure 11.2.:Application stages of the conceptual model [5, Fig. 9].

for variability in space, time, both, and unied as rows. Metric values are at or close
to 100%. The lower value for laconicity is due to the construct Commit in Git and the
contruct Revision in SVN that each represent the two concepts Configuration and System

Revision. Note that the mapping to Configuration is debatable, since Git and SVN do
not have an explicit construct for a Configuration, as it would simply consist of a single
commit hash or revision number, respectively. The lower value for laconicity is due
to several constructs representing the Fragment concept. For example, delta-oriented
tools employ the constructs Core Model and Delta Modules to represent the Fragment.
Considering completeness, self-relating repositories (such as in Git and ECCO) are not
represented by the conceptual model. Finally, the conceptual model is entirely sound over
all tools, as for every concept and relation there is at least one tool that implements it.

11.5. Exemplary Application

This section describes Step 7 shown in Figure 11.1 to demonstrate the applicability of the
unied conceptual model. First, possible renements of the conceptual model are explained
when designing a conforming tool. Then, two exemplary tool metamodels are introduced
by rening the unied conceptual model: the rst tool uses a feature model and Feature

Revisions, while the second tool employs both System Revisions and Feature Revisions.
Finally, the computation of the unication metrics for both tools is demonstrated.

Figure 11.2 shows the two subsequent application stages for applying the conceptual
model. In the rst step, the conceptual model is rened by specifying abstract model
concepts, such as Fragments, with concrete constructs, such as Deltas. In the second
step, the resulting tool is instantiated for a system. While tool developers perform the
renement step, users implicitly perform the second step by applying the tool. UML class
diagrams are used to illustrate the result of the rst step while UML object diagrams are
used to illustrate the result of the second step for both tools.

11.5.1. Refinement Process of the Conceptual Model

To develop a conforming tool, the developer has to decide between several degrees of
freedom. Specically, concrete subclasses must extend non-abstract concepts. For exam-
ple, if a tool uses feature modeling, the Constraint concept may be rened by concrete
subclasses to represent alternative or mandatory Features. Abstract concepts such as
Feature Option, Option, and Revision are not supposed to be specialized when designing
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11.5. Exemplary Application

Table 11.4.:Metric Results for each tool individually [5, Tab. 4].

for laconicity lucidity completeness soundness
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e
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D
E

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Unied 100% (12/12) 100% (12/12) 100% (12/12) 100% (12/12)
Total 100% (17/17) 100% (24/24) 100% (17/17) 71% (17/24)
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s

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Unied 100% (12/12) 100% (12/12) 100% (12/12) 100% (12/12)
Total 100% (17/17) 100% (24/24) 100% (17/17) 71% (17/24)

S
i
P
L

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Unied 100% (11/11) 92% (11/12) 100% (11/11) 100% (12/12)
Total 100% (16/16) 96% (23/24) 100% (16/16) 71% (17/24)

S
V
N

Space − (0/0) 100% (5/5) − (0/0) 0% (0/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Unied 92% (11/12) 92% (11/12) 100% (12/12) 100% (12/12)
Total 93% (14/15) 96% (23/24) 100% (15/15) 63% (15/24)

G
i
t

Space − (0/0) 100% (5/5) − (0/0) 0% (0/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both − (0/0) 100% (4/4) − (0/0) 0% (0/4)

Unied 92% (12/13) 92% (11/12) 92% (12/13) 100% (12/12)
Total 94% (15/16) 96% (23/24) 94% (15/16) 63% (15/24)

E
C
C
O

Space 100% (2/2) 100% (5/5) 100% (2/2) 40% (2/5)
Time − (0/0) 100% (3/3) − (0/0) 0% (0/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unied 100% (12/12) 100% (12/12) 92% (11/12) 100% (12/12)
Total 100% (16/16) 100% (24/24) 94% (15/16) 67% (16/24)

S
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M
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d

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unied 100% (11/11) 100% (12/12) 100% (11/11) 100% (12/12)
Total 100% (21/21) 100% (24/24) 100% (21/21) 92% (22/24)

D
e
l
t
a

E
c
o
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e

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unied 100% (12/12) 92% (11/12) 100% (12/12) 100% (12/12)
Total 100% (20/20) 96% (23/24) 100% (20/20) 79% (19/24)

D
a
r
w
i
n

S
P
L

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unied 100% (12/12) 92% (11/12) 100% (12/12) 100% (12/12)
Total 100% (22/22) 96% (23/24) 100% (22/22) 92% (22/24)

V
a
V
e

Space 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)
Time 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)
Both 100% (2/2) 100% (4/4) 100% (2/2) 50% (2/4)

Unied 100% (11/11) 92% (11/12) 100% (11/11) 100% (12/12)
Total 100% (19/19) 96% (23/24) 100% (19/19) 79% (19/24)
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Table 11.5.:Metric results over all tools [5, Tab. 5].

Kind for laconicity lucidity completeness soundness
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n
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u
c
t Space 100% (15/15) 100% (2/2) 100% (15/15) 100% (2/2)

Time 100% (4/4) 100% (1/1) 100% (4/4) 100% (1/1)
Both 100% (3/3) 100% (1/1) 100% (3/3) 100% (1/1)

Unied 96% (48/50) 80% (4/5) 100% (50/50) 100% (5/5)
Total 97% (70/72) 89% (8/9) 100% (72/72) 100% (9/9)

R
e
l
a
t
i
o
n

Space 100% (22/22) 100% (3/3) 100% (22/22) 100% (3/3)
Time 100% (10/10) 100% (2/2) 100% (10/10) 100% (2/2)
Both 100% (7/7) 100% (3/3) 100% (7/7) 100% (3/3)

Unied 100% (68/68) 100% (7/7) 97% (66/68) 100% (7/7)
Total 100% (107/107) 100% (15/15) 98% (105/107) 100% (15/15)

A
l
l

Space 100% (37/37) 100% (5/5) 100% (37/37) 100% (5/5)
Time 100% (14/14) 100% (3/3) 100% (14/14) 100% (3/3)
Both 100% (10/10) 100% (4/4) 100% (10/10) 100% (4/4)

Unied 98% (116/118) 92% (11/12) 98% (116/118) 100% (12/12)
Total 99% (177/179) 96% (23/24) 99% (177/179) 100% (24/24)

tools based on the unied conceptual model. In the following, the degrees of freedom for
rening and applying the conceptual model are introduced.

Revision. The Revision concept can be rened by Feature Revisions, System Revisions

or a combination of both revision types.

Constraint. The Constraint can be extended by subclasses and rened by attributes, e.g.,
to express optional Features or cross-tree constraints in a feature model.

Fragment. Fragments can be rened analogously to Constraints. For instance, by em-
ploying a Core Model and Delta Modules in case a transformational variability mech-
anism is used to derive a Product.

Mapping. This concept can be rened to express relations between Options and Fragments.
For instance, by using Boolean expressions.

Configuration. The renement of the Configuration concept is optional. Developers
may use this concept directly as it is in the conceptual model (i.e., a set of references
to Options) or rene it similar to a Mapping. Also, its containment in the Unified

System is considered optional for representing non-persistent Configurations.

In the following, two exemplary tool renements are introduced encompassing design
choices, the resulting metamodels, a computation of the metrics for unication and an
exemplary instantiation based on the running example of the Car system.

11.5.2. Feature-Revision / Transformational Tool𝑇𝑇

Figure 11.3 shows the metamodel for the exemplary tool 𝑇𝑇 resulting from rening the
conceptual model. It employs a transformational variability mechanism.
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11.5. Exemplary Application

Design Decisions. The tool 𝑇𝑇 was created by extending and rening the unied concep-
tual model as described above. Added concepts are highlighted with a hatched area and are
the Change, Delta Module, Expression, Cross-tree Constraint, and Tree Constraint).
Unused concepts of the conceptual model are highlighted in red (i.e., System Revision and
its relations). Identical concepts and relations to the conceptual model are depicted as they
are within that model. Furthermore, attributes were added (e.g., value, or id) to several con-
cepts. The following design decisions were incorporated to derive the tool’s metamodel.

Revision: Feature Revisions. Feature Revisions are employed as the only type of revi-
sion. While incorporating System Revisions jointly with Feature Revisions oers
many advantages, for this example, both types of revisions were not combined to
reduce complexity.

Constraint: Feature Model. The Constraint concept is specialized by the two subclasses
Tree Constraint and Cross-tree Constraint. Tree Constraints can only refer to
Features. Cross-tree Constraints can refer to Feature Options (i.e., Features
and Feature Revisions) via a Boolean expression represented as a tree where nodes
are operators and leafs are Feature Options. For space reasons, these details are
omitted from the metamodel.

Fragment: Delta Module, Change. In the exemplary instantiation, deltas are used to im-
plement Fragments and to compose Products. Therefore, the new constructs Delta
Module and Change are added to the metamodel. A delta module comprises an or-
dered cohesive set of changes and can require other delta modules. A change can
be of additive or subtractive nature and thus be used to add or delete a Fragment

(i.e., value) at a certain position (i.e., path). A String value can be used for textual
Fragments, although the value is not limited to text.

Mapping: Boolean Expression. The relation between a Mapping and Options is repre-
sented with a Boolean expression.

Configuration: No Containment in Unified System. The Configuration is not considered
as part of the Unified System and therefore not contained in the tool’s metamodel.

Metrics Computation. The metrics for unication (see Section 11.4.1) are computed
for the unied conceptual model with respect to the constructs of 𝑇𝑇 . It denes nine
non-abstract constructs: 𝑇𝑇 = {Unified System, Feature, Tree Constraint, Cross-tree
Constraint, Feature Revision, Configuration, Mapping, Delta Module, Change } (note
that enumeration types are not considered and thus ignored for computation).

Since there is not a single construct in 𝑇𝑇 that can be mapped to more than one concept,
the laconicity of the unied conceptual model with respect to 𝑇𝑇 is:

laconicity𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
9
9 = 1.0
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Figure 11.3.: Feature-revision / transformational tool model 𝑇𝑇 [5, Fig. 10].

The two constructs Tree Constraint and Cross-tree Constraint implement the model
concept Constraint, while the remaining tool constructs correspond to at most one model
concept. Thus, lucidity of the unied conceptual model with respect to 𝑇𝑇 is:

lucidity𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
8
9 = 0.889

The constructs Unified System, Feature, Tree Constraint, Cross-tree Constraint,
Feature Revision, Configuration, Mapping and Delta Module map to at least one model
concept. Note that the construct Delta Module can be considered to map to Fragment (as
it represents a specialization). However, the construct Change of 𝑇𝑇 does not implement
any model concept. Consequently, the completeness of the unied conceptual model with
respect to 𝑇𝑇 is:

completeness𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
8
9 = 0.889

While 𝑇𝑇 implements the seven model concepts Unified System, Feature, Constraint,
Feature Revision, Configuration, Mapping and Fragment, there are no corresponding
constructs that represent the two model concepts System Revision and Product. Conse-
quently, the soundness of the unied conceptual model regarding the tool 𝑇𝑇 is:

soundness𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
7
9 = 0.778
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In sum, 𝑇𝑇 renes model concepts, which leads to lower lucidity. Furthermore, it adds
constructs, which lowers the completeness value. Moreover, not all model concepts are
employed, which lowers soundness. Since every construct maps to at most one concept,
the laconicity value remains ideal.

Instantiation. Figure 11.4 depicts an exemplary instance of the tool 𝑇𝑇 ’s metamodel
for an excerpt of the Car example. The Unified System (named Car) contains a Mapping,
Cross-tree Constraint and the root feature Car. The feature instances EngineType and
Distance are children of the Car feature. EngineType is a mandatory feature (due to the
Tree Constraint instance of type mandatory) and Distance an optional feature (due to
the Tree Constraint instance optional). The feature instances Gasoline and Electric are
children of the EngineType feature (due to a Tree Constraint instance of type or). While
the features Car and Gasoline have one Feature Revision, the feature Electric and
Distance exist in three subsequent Feature Revisions. Moreover, the Unified System

comprises a Cross-tree Constraint with the expression ¬𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 .3 ∨ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.3 that
requires a valid Configurationwith the feature Electric in its third revision to specify the
Distance feature in its third revision. The Mapping comprises the expression 𝐶𝑎𝑟 .1, which
refers to the rst revision of feature Car, and a Delta Module instance which consists
of two Change instances that are of type additive. The line "class EngineController" is
added to Line 1 of the le Car.java by Change c1, while Change c2 adds the line "void
doDriving()" to Line 4 of the same le. A Configuration instance refers to the rst
revision of features Car, Distance, and Gasoline.

11.5.3. Both-Revisions / Compositional Tool𝑇𝐶

For the second exemplary tool𝑇𝐶 , quite dierent design decisions were followed. The goal
was to create 𝑇𝐶 as close as possible to the conceptual model with minimal specialization.
Moreover, the tool 𝑇𝐶 employs a compositional variability mechanism and combines both
System Revisions and Feature Revisions. Figure 11.5 depicts the tool’s metamodel.

Design Decisions. The tool’s 𝑇𝐶 metamodel was rened by the constructs Mapping

Expression and Constraint Expression. The Mapping Expression is part of the Mapping
and refers to Options. The Constraint Expression is comprised by the Constraint and
can be dened over Feature Options, respectively. Both expression types represent
Boolean expressions in the form of expression trees, which are omitted for the sake of sim-
plicity. Nodes represent Boolean operators (such as implication or negation). Leafs represent
literals (i.e., Options in case of Mappings and Feature Options in case of Constraints).
Furthermore, selected and deselected Options in Configurations are distinguished. In
contrast to 𝑇𝑇 , a Product directly contains the Fragments (instead of being derived by
them, as is the case with Delta Modules as Fragments. The tool’s metamodel is based on
the following design decisions.

Revision: Feature Revisions and System Revisions. System Revisions and Feature

Revisions are employed jointly to explicitly manage both revision types.
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Figure 11.4.:Object diagram of tool 𝑇𝑇 applied to the Car example [5, Fig. 11].
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Figure 11.5.: Both-Revisions / Compositional tool model 𝑇𝐶 [5, Fig. 12].

Constraint: Boolean Expression. To represent Constraints, Boolean expressions are used
with Feature Options. Therefore, the new construct Constraint Expression relates
Constraints and Feature Options.

Fragment: Implementation Artifacts. Fragments are represented by implementation arti-
facts (e.g., source code). Based on a compositional variability mechanism, implemen-
tation artifacts are added in an arbitrary order to obtain a valid Product. This is in
contrast to the transformational variability mechanism of tool𝑇𝑇 using deltas, which
must be applied in a specic order to construct a Product and that are not directly
contained by the Product.

Mapping: Boolean Expression. To represent Mappings, Boolean expressions are used with
Options. Thus, the new construct Mapping Expression relates Mappings and Options.

Configuration: Selected and Deselected Options. The concept Configuration is rened
by means of distinguishing between explicitly selected and deselected Options. Also,
it is possible to leave Options undecided for expressing partial Configurations.

Metrics Computation. The metrics for unication (see Section 11.4.1) are computed for
the unied conceptual model with respect to the constructs of 𝑇𝐶 . It denes eleven
constructs: 𝑇𝐶 = { Unified System, Feature, Feature Revision, System Revision,
Constraint, Constraint Expression, Mapping Expression, Mapping, Configuration,
Fragment, Product }.
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11. Evaluation of the Unied Conceptual Model

Since there is not a single construct in 𝑇𝐶 that can be mapped to more than one concept,
the laconicity of the unied conceptual model with respect to 𝑇𝐶 is:

laconicity𝑇𝐶 (𝑀,𝑇𝑇𝐶 ) =
11
11 = 1.0

Moreover, there is not a single model concept that can be mapped to more than one
construct in 𝑇𝐶 . Thus, the lucidity of the unied conceptual model with respect to 𝑇𝐶 is:

lucidity𝑇𝐶 (𝑀,𝑇𝑇𝐶 ) =
9
9 = 1.0

While the eight 𝑇𝐶 constructs Unified System, Feature, Feature Revision, System

Revision, Constraint, Configuration, Mapping, Fragment, and Product map to at least
one model concept, the constructs Constraint Expression and Mapping Expression can-
not be mapped to any model concept. Thus, completeness of the unied conceptual model
with respect to 𝑇𝐶 is:

completeness𝑇𝐶 (𝑀,𝑇𝑇𝐶 ) =
9
11 = 0.818

Since all nine model concepts can be mapped to at least one construct in𝑇𝐶 , the soundness
of the unied conceptual model regarding tool 𝑇𝐶 is:

soundness𝑇𝑇 (𝑀,𝑇𝑇𝑇 ) =
9
9 = 1.0

In summary, only the added construct Expression (for dening Mappings and Constraints)
results in lower completeness, while the remaining metric values remain ideal.

Instantiation. Figure 11.6 shows an instance of the tool 𝑇𝐶 ’s metamodel for an excerpt
of the Car example. An instance of the Unified System named Car is located at its center
and contains the features Car, EngineType, Gasoline, and Electric. The features contain
instances of their Feature Revisions. Moreover, the Unified System contains one System
Revision that enables Feature Revision 1 of features Car, Gasoline, and Electric. Note
that the System Revision also enables the abstract feature EngineType. While these three
revisions result in a valid state of the Car system, other Feature Revision combinations
may lead to inconsistencies. Additionally, the Unified System comprises two Constraints.
Constraint c1 contains the Constraint Expression 𝐶𝑎𝑟 , specifying that the Car feature
must be always present in a Product, since it is the root feature. The second Constraint c2
contains the Constraint Expression 𝐶𝑎𝑟 ⇔ 𝐸𝑛𝑔𝑖𝑛𝑒𝑇𝑦𝑝𝑒 . It expresses that both features
Car and EngineType depend on each other and always appear together in a Product. Thus,
EngineType is a mandatory feature. Instead of expressing Constraint Expressions as
expression trees, they are shown in a simplied way as formulas placed on the respective
references. Finally, two Fragments represent each a line of code of the Car system (accord-
ing to the respective value attribute). Both Fragments are related to the rst revision of
the Car feature via the Mapping Expression 𝐶𝑎𝑟 .1. The Configuration Customer1 yields
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11.6. Formal Concept Analysis

a Product comprising both Fragments. Therefore, it selects Feature Revisions 𝐶𝑎𝑟 .1,
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒.1 and EngineType (represented by the “+” symbol), and deselects the feature
Electric (represented by the “-” symbol).

11.6. Formal Concept Analysis

To further analyze the commonalities and dierences of the studied tools and the unied
conceptual model, I performed a formal concept analysis (FCA) [79, 80]. FCA is an applied
branch of lattice theory. It derives a hierarchy of concepts and their attributes by means
of a concept lattice. For conducting the FCA, the same data (i.e., mappings) was used as
for computing the metrics for unication. The FCA oers a comprehensible overview of
the relationships among the tools as well as their relationships to the unied conceptual
model.

Figure 11.7 depicts the concept lattice between objects (represented by the studied tools)
and attributes (represented by concepts of the unied conceptual model). Every node
associates a set of tools with a set of concepts that could be mapped to constructs of these
tools. A blue lled upper semicircle indicates that there are one or more concepts attached
to the node. A black lled lower semicircle of a node indicates that there are one or more
tools attached to it. The color scheme of concepts of the unied conceptual model is reused
to highlight the edges of the FCA. The concept lattice is inspected from top to bottom.
The color of an edge stems from the concepts that are attached to the node it leads to, i.e.,
if an edge leads to a node with a concept attached for variability in time, such as Feature,
the edge is colored green, respectively. In case green and orange edges are input to a node,
the leang edge is colored purple. Consequently, purple edges remain of the same color
during their path from top to bottom. Inspecting the FCA reveals that nodes and edges
top left are related to variability in time. Nodes and edges in the center and top right
relate to variability in space. Those on the bottom and right side relate to both variability
dimensions. Consequently, the color of edges remain separate until they eventually merge
when approaching the unied conceptual model.

The top node depicts common concepts in all tools. The bottom node depicts the unied
conceptual model itself. The FCA oers two insights by inspecting the concept lattice: On
the one hand, the extent to which tools are related to the conceptual model based on their
concepts. On the other hand, the extent to which tools are related to each other. The tools
are grouped according to their supported concepts for variability in space, time, or both.
For instance, Git and SVN use System Revisions, while SiPL, pure::variants and FeatureIDE
employ Constraints and Features. Solely ECCO copes with variability in both dimensions,
but does not employ Constraints and therefore no variability model. While DarwinSPL,
SuperMod, VaVe, and DeltaEcore are closest to the unied conceptual model, there is no
tool that involves all of its concepts.

Figure 11.8 shows the concept lattice between the tools and, in addition to the concepts,
also the relations of the unied conceptual model. Concept labels are not depicted to

137



11. Evaluation of the Unied Conceptual Model

fe
at

4:
 F

ea
tu

re

 n
am

e=
"E

le
ct

ric
"

c2
: C

on
st

ra
in

t
ce

2:
 C

on
st

ra
in

t E
xp

re
ss

io
n

m
1:

 M
ap

pi
ng

m
e1

: M
ap

pi
ng

 E
xp

re
ss

io
n

fr3
: F

ea
tu

re
 R

ev
is

io
n

 id
="

1"

fe
at

3:
 F

ea
tu

re

 n
am

e=
"G

as
ol

in
e"

fr1
: F

ea
tu

re
 R

ev
is

io
n

 id
="

1"

sr
1:

 S
ys

te
m

 R
ev

is
io

n

 id
="

1"

co
n1

: C
on

fig
ur

at
io

n

 n
am

e=
"C

us
to

m
er

1" en
ab

le
s

f1
: F

ra
gm

en
t

 v
al

ue
="

cl
as

s 
En

gi
ne

C
on

tro
lle

r 

f2
: F

ra
gm

en
t

 v
al

ue
="

vo
id

 d
oD

riv
in

g(
)"

 

fr2
: F

ea
tu

re
 R

ev
is

io
n

 id
="

1"

fe
at

1:
 F

ea
tu

re

 n
am

e=
"C

ar
"

ce
1:

 C
on

st
ra

in
t E

xp
re

ss
io

n
C

ar
c1

: C
on

st
ra

in
t

fe
at

2:
 F

ea
tu

re

 n
am

e=
"E

ng
in

eT
yp

e"

fr4
: F

ea
tu

re
 R

ev
is

io
n

 id
="

2"
 p

re
ds

su
cc

s
fr5

: F
ea

tu
re

 R
ev

is
io

n

 id
="

3"
 p

re
ds

su
cc

s

Car ⇔ EngineType
sy

st
em

: U
ni

fie
d 

Sy
st

em

 n
am

e=
"C

ar
"

C
ar

.1

p1
: P

ro
du

ct

 

+Car.1, +EngineType,  
+Gasoline.1 ,-Electric

<<
de

riv
e>

>

Sp
ac

e 
C

on
ce

pt
s

Ti
m

e 
C

on
ce

pt
s

U
ni

fie
d 

C
on

ce
pt

s
Sp

ac
e 

& 
Ti

m
e 

C
on

ce
pt

s

 
 

 

Figure 11.6.:Object diagram of tool 𝑇𝐶 applied to the Car example [5, Fig. 13].
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Unified System 
Configuration 
Fragment 
Mapping 
Product

 SVN
 Git

System Revision

 SiPL 
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Feature
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Figure 11.7.: FCA of tools based on unied conceptual model concepts [5, Fig. 7].

reduce the visual overhead. This visualization allows to further dierentiate the tools
that employ the same concepts and support the comparison between tools and to the
conceptual model. The top node represents six relations common to all tools. Edges on
the left represent relations between concepts for variability in time and between unied
concepts, while edges on the right represent relations between concepts for variability in
space. Again, when getting closer to the conceptual model, edges merge as they represent
relations related to both variability dimensions. Interestingly, only the two tools DarwinSPL
and DeltaEcore are directly adjacent to the unied conceptual model. Moreover, tools that
employ System Revisions, Features, and Constraints, i.e., DarwinSPL and SuperMod, also
let System Revisions enable Constraints and Feature Options. Consequently, enables-
relations are not employed in tools that deal with just one of the variability dimensions.

11.7. Discussion

From the qualitative and quantitative analyses as well as the illustrating applications,
insights could be obtained to answer the questions and discuss the evaluation results.

Q 1.1: To what extent is the unied conceptual model of appropriate granularity?

Laconicity and lucidity indicate whether granularity is appropriate. The two tools Git and
SVN represent both model concepts System Revision and Configuration by the construct
Configuration, i.e., the System Revision is equivalent to the Configuration. Thus, the
laconicity values indicate that both model concepts are unnecessarily ne-grained with
respect to these tools and could be merged to increase the laconicity values for both tools.
Nonetheless, for any tool that deals with variability in space, a Configuration is a set of
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Figure 11.8.: FCA of tools based on unied conceptual model concepts and relations [5, Fig. 8].

Features. Merging both concepts would decrease the overall laconicity. The lucidity values
of the six tools Git, SVN, DeltaEcore, SiPL, DarwinSPL, and VaVe indicate that the concept
Fragment is too coarse-grained. The low values stem from dierent levels of abstraction:
delta-oriented tools (i.e., DeltaEcore, SiPL, DarwinSPL, and VaVe) rene a Fragment into
a Core Model and Delta Modules. In Git, a Fragment is represented by Blob and Tree

Object, and in SVN by File Node and Directory Node. These cases lead to lower lucidity
and could be split up. Since the unied conceptual model is intended to be tool-agnostic
(which, otherwise, would cause lower laconicity), a reduction in lucidity is justied.

To summarize, the results provide evidence that the granularity of the unied conceptual
model is appropriate. Concepts should neither be merged nor could be split up without
lowering the abstraction to an undesired level.

Q 1.2: To what extent is the unied conceptual model of appropriate coverage?

Completeness and soundness indicate whether coverage is appropriate. The relation
Remote of the two tools Git and ECCO is not represented by any relation of the conceptual
model. Consequently, this lowers the completeness values. Moreover, the soundness
values are rather low per tool. Since the unied conceptual model is intended to describe
all concepts and relations of the elicited tools, those supporting only one variability
dimension, such as SVN, Git or FeatureIDE (which are located on the upper half of the FCA
in Figure 11.8 and, thus, further away from the unied conceptual model) lead to lower
soundness. However, there are no unused concepts or relations in the conceptual model,
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which is evidenced by the aggregated values in Table 11.5. Consequently, every concept in
the unied conceptual model is required by at least one of the studied tools.

To summarize, the results provide evidence that the coverage of the unied conceptual
model is almost ideal. It neither employs unused concepts or relations, nor misses concepts.
Solely, the unied conceptual model misses support for distributed development. Con-
sequently, adding the relation Unified System refers to * Unified System is the only
remaining change that would lead to an improvement of themodel (i.e., completeness 100%).
Figure 11.9 shows the nal conceptual model with the missing added remotes relation.

Q 1.3: To what extent is the unied conceptual model applicable?

The illustrating examples presented in Section 11.5 demonstrate the applicability of the
unied conceptual model. Based on several degrees of freedom, such as rening the
Constraint to express feature modeling, or the Fragment depending on the employed
variability mechanism, the unied conceptual model can be rened to apply it in practice.
The renement process was exemplary performed by deriving two tools. While the rst tool
𝑇𝑇 employs Feature Revisions and a feature model, the second tool 𝑇𝐶 employs System
Revisions and Feature Revisions simultaneously. Additionally, metrics for unication
were demonstratively computed for both tools.

To summarize, the results provide evidence that the conceptual model can be applied to
dene new tools and to compare them against the unied conceptual model as well as
against other tools based on the metrics for unication.

11.8. Threats to Validity

This section describes threats to the validity and how they were mitigated.

Construct Validity. The mapping of tool constructs to model concepts was performed
on the conceptual level. Consequently, it was not always clear whether a tool construct
constituted the conceptual level or the implementation level. For instance, the concept
Constraint could be implemented in a tool by specic constructs to support feature model-
ing, e.g., an optional feature or alternative feature group. In such cases, the representative
parent constructs was selected for the mapping, such as the Constraint. Interestingly, the
tool experts provided answers usually on the same level of abstraction which reassured the
mapping results. In most cases, there was no necessity to adjust the level of abstraction,
and the answers were considered as literally as possible.

Internal Validity. Some tool experts were involved in the construction process of the
unied conceptual model. This could have led to bias towards their tools, which is
potential threat to internal validity. Involving further researchers and practitioners into
the construction process, as even recommended [1], mitigated this threat.

External Validity. Whether tools can be mapped to the unied conceptual model is
matter of external validity. It can be argued that the set of elicited tools is representative
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Figure 11.9.: Final unied conceptual model.
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as it covers a broad body of existing contemporary tools from both, SPLE and SCM.
Moreover, the selected tools are diverse by employing either or both variability dimensions
by dierent means, i.e., via System Revisions or Feature Revisions). Consequently, bias
and local optimizations towards particular tools were mitigated.

Conclusion Validity. Occasionally, the answers of tool experts left space for interpreta-
tion, or were incomplete, or posed questions. To mitigate this threat, I repeatedly conferred
with the tool experts until consensus. To improve the conclusion validity, all data is pub-
lished in an open-access repository, so other researchers are able to check the results.

11.9. Limitations and Future Work

Design decisions and evaluation results indicate limitations of the proposed unied con-
ceptual model. In the following, the limitations as well as future work is discussed.

During the construction of the unied conceptual model, several design decisions were
made that may be debatable. Versioning is applied to Options only but not to Constraints,
Configurations or Mappings. In the selected tools, these concepts are not versioned either.
Furthermore, it can be argued that, in contrast to Options, these concepts do not have their
own identity but instead are comprised of concepts with identity (e.g., Configurations
are comprised of Options, and Constraints are comprised of Feature Options).

Moreover, there may be other concepts or relations required by researchers or practitioners
in the future not covered by the unied conceptual model yet. While there is no dedicated
extension mechanism for the model, it relies on common object-oriented mechanisms for
renement. One idea for an extension would be to let Constraints be formulated over
System Revisions. In the current state of the unied conceptual model, Constraints can
only be formulated over Feature Options and not over Options in general. Nonetheless,
Constraints are enabled by System Revisions. While this relation is not as powerful as an
arbitrary expression in terms of expressiveness, it can be argued that practically relevant
cases can be covered. For example, since dierent System Revisions (i.e., points in time)
implicitly exclude each other, Constraints where two System Revisions exclude or re-
quire each other are either always or never satised, respectively. If this or any similarmodi-
cation is still required in the future, the relevant model concepts can be rened accordingly
(e.g., by creating a sub-class of Constraint that also refers to System Revisions).

For future work, it would be interesting to apply the conceptual model to a set of real-world
case studies from disciplines other than SPLE and SCM to identify further limitations or
shortcomings. This would also allow to investigate whether concepts or relations between
them are missing to provide benets beyond the current state of the art in SPLE and SCM.
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11.10. Summary

This chapter presented an evaluation of the appropriateness and applicability of the unied
conceptual model. The evaluation encompassed a qualitative analysis that involved a
mapping between concepts and relations of the unied conceptual model to constructs and
relations of selected tools based on an expert survey. Subsequently, a quantitative analysis
comprised an application of the metrics for unication to quantify the appropriateness of
granularity and coverage of the unied conceptual model with respect to the studied tools.
The evaluation results showed that concepts should neither be merged (i.e., generalized)
nor split up (i.e., made more specic). Moreover, the unied conceptual model neither
misses concepts nor employs unused concepts or relations, it did solely not support a
relation related to distributed development. Furthermore, the unied conceptual model
can serve as base to derive novel tools. Therefore, degrees of freedom when rening the
unied conceptual model were described and its applicability based on two exemplary tools
was demonstrated. Additionally, for both tools, metrics for unication were computed to
demonstrate their application. The unied conceptual model provides a foundation for
comparing and communicating current research as well as for designing novel tools for
managing variability in space and time.
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12. Evaluation of Unified Operations

Chapter 6 presented the unied operations to support the evolution of a variable system
that copes with variability in space and time (C2). This chapter presents their evaluation
following the GQM method [27].

Section 12.1 introduces the goals and questions of the evaluation. Section 12.2 presents
the specialized evaluation process of the unied operations. Section 12.3 encompasses the
rst part of the evaluation which comprises a quantitative analysis based on metrics to
quantify the unication of operations with respect to the analyzed tools. The second part
of the evaluation demonstrates an application of the unied operations based on evolution
scenarios from the literature in Section 12.4. Section 12.5 oers answers to the posed
questions while threats to validity are considered in Section 12.6. Section 12.7 comprises
a discussion of the limitations and future work of the unied operations. A summary of
the main insights in Section 12.8 closes the chapter.

12.1. Goals and Questions

Since the individual tools (used for constructing the unied operations) have already either
been published at peer-reviewed scientic venues, or are widely adopted and successful
in practice (e.g., Git and SVN), properties, such as correctness or scalability, of the unied
operations are not validated. Instead, the rst goal of the evaluation is to analyze whether
the unied operations appropriately unify operations from the individual tools without
losing any functionality while adding additional semantics for coping with variability in
space and time simultaneously where necessary. The second goal of the evaluation is to
demonstrate the applicability of the unied operations. Therefore, the following three
sub-goals are dened regarding granularity, coverage and applicability that shall be met
by the unied operations:

Granularity: The granularity of the unied operations shall be appropriate, that is, each
operation shall have one responsibility (i.e., deal with exactly one concern) which it
covers fully and shall not address any other.

Coverage: The unied operations shall cover all functionality of the selected tools in both
variability dimensions.

Applicability: The unied operations shall be applicable to common variability-related
evolution scenarios.
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Metric
computation

Use case
mappings

Unified
operations 

Metric results

5
Exemplary
application

6

Figure 12.1.: Evaluation process of the unied operations.

Based on these goals, the following questions are asked:

Q 2.1 Are the unied operations of appropriate granularity?

Q 2.2 Are the unied operations of appropriate coverage?

Q 2.3 To what extent are the unied operations applicable to support dierent develop-
ment paradigms (i.e., platform-oriented or product-oriented development)

Q 2.4 To what extent are the unied operations applicable to support dierent edit modal-
ities (i.e., direct or view-based editing)?

Answering these questions allows for assessing whether the unied operations meet the
dened goals.

12.2. Specialized Evaluation Process

Figure 12.1 shows the specialized evaluation process of the unied operations. It is consec-
utive to the unication process shown in Figure 6.1 and based on the general evaluation
process described in Section 10.1. Step 5 represents the quantitative analysis. The use
case mappings (Step 2 in Figure 6.1) are input to the metric computation in Step 5 .
Finally, Step 6 encompasses a demonstration of the applicability of the unied operations
based on diverse variability scenarios from the literature.

Quantitative analysis: For the quantitative analysis, I applied the metrics for unication
(see Section 10.2) to the unied operations with respect to the elicited tools. The metrics
laconicity and lucidity quantify the granularity of the unied operations. The metrics
completeness and soundness quantify the coverage of the unied operations.

Exemplary Application: To demonstrate the applicability of the unied operations, I iden-
tied variability scenarios from the literature, and analyzed how these scenarios can be
addressed by the unied operations.
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12.3. Quantitative Analysis

In the following, Step 5 shown in Figure 12.1 is described. It encompasses an application
of the metrics for unication (see Section 10.2).

12.3.1. Metrics

The metrics laconicity (see Denition 10.1) and lucidity (see Denition 10.2) quantify
the granularity of unied operations, that is, whether each operation addresses exactly
one responsibility (Q 2.1). The metrics completeness (see Denition 10.3) and soundness
(see Denition 10.4) quantify their coverage, that is, whether there is any unused or missing
functionality (Q 2.2).

The unication𝑈 is the set of unied operations𝑈𝑂 . A tool𝑇 ∈ T is a set of tool operations
𝑡 ∈ 𝑇 . The mappings of unied operations in 𝑈𝑂 onto tool operations in 𝑇 are displayed
in Table 6.2 and Table 6.4.

The set of unied operations 𝑈𝑂 comprises the 21 direct editing operations 𝑈𝑂𝐷𝑖𝑟𝑒𝑐𝑡 as
well as the seven view-based operations:

𝑈𝑂 = 𝑈𝑂𝐷𝑖𝑟𝑒𝑐𝑡 ∪ {𝑒𝐷, 𝑖𝐷, 𝑒𝑃, 𝑖𝑃, 𝑖𝐶, 𝑒𝑈𝑆, 𝑖𝑈𝑆}

In the following, an example for each metric is shown by applying it to the tool SuperMod.
Note that this tool employs view-based operations that are used in either platform-oriented
development or involved in both platform and product-oriented development. SuperMod
does not employ direct editing operations (that allow the user to directly edit the Unified
System). SuperMod implements two operations:

𝑇SuperMod = {checkout, commit}

Laconicity According to the operation mapping in Table 6.4, four unied operations are
implemented by two operations in SuperMod: 𝑒𝐷 (that is used in platform-oriented
development) and 𝑒𝑃 (that is used in both development paradigms) via checkout, and
𝑖𝐷 and 𝑖𝐶 (that are both used in platform-oriented development) via commit. This is
due to the fact that SuperMod uses both its operations as a two-step process: First, to
congure the domain for one point in time (i.e., via a System Revision) followed by
a conguration of the product (i.e., via Features) based on the externalized domain.
Analogously, the integration of changes into the Repository in SuperMod comprises
both the internalization of the updated domain as well as of the changed product.
The unied operations that do not map to any operation in SuperMod (i.e., 𝑖𝑃 , 𝑒𝑈𝑆

and 𝑖𝑈𝑆) do not aect the metric. The laconicity for SuperMod is therefore even zero:

laconicitySuperMod(𝑈𝑂,𝑇SuperMod) = 0+0
2 = 0

2 = 0.0
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Lucidity All unied operations (view-based or direct editing operations used in product
or platform-oriented development), according to the operation mappings in Table 6.3
and Table 6.4, are either implemented by at most one tool operation or by no tool op-
eration in SuperMod. The lucidity of the unied operations with respect to SuperMod
is thus ideal:

luciditySuperMod(𝑈𝑂,𝑇SuperMod) = 21+1+1+1+1+1+1+1
28 = 28

28 = 1.0

Completeness In the example of SuperMod, according to the operation mapping in Ta-
ble 6.4, there are no operations in SuperMod that do not map to any unied operation.
Both its two operations can be mapped to at least one unied operation. The com-
pleteness for SuperMod is therefore ideal:

completenessSuperMod(𝑈𝑂,𝑇SuperMod) = 1+1
2 = 2

2 = 1.0

Soudness Regarding SuperMod, out of the 28 unied operations, four are implemented by
at least one operation in SuperMod, according to the concept mappings in Table 6.3
and Table 6.4. This is due to SuperMod not employing direct editing operations at all
(out of which there are 21 operations) along with operations used only for product-
oriented development (i.e., 𝑖𝑃 ). Thus, the soundness of the unied operations with
respect to only SuperMod is quite low:

soundnessSuperMod(𝑀,𝑇SuperMod) = 0+1+1+1+0+1+0+0
28 = 4

28 = 0.14

12.3.2. Results

Table 12.1 shows the values for the four metrics (columns) per tool (rows), separated by the
development paradigm of an operation, i.e., platform-oriented, product-oriented, or both
as well as in total. In case of lucidity and soundness, each row shows the percentage and
the absolute number of unied operations that satisfy the condition for each metric. In case
of laconicity and completeness, each row shows the percentage and the absolute number
of individual tool operations that satisfy the condition for each metric. A horizontal line
indicates that a tool does not employ operations of either or both development paradigms.
For instance, the tool ECCO supports product-oriented development (i.e., the 𝑖𝑃 operation),
no operation for platform-oriented development, but operations for both development
paradigms (i.e., 𝑒𝑃 , 𝑒𝑈𝑆 , and 𝑖𝑈𝑆). The metric values for lucidity and completeness are
at 100 % for all analyzed tools, indicating that the unied operations are not too coarse-
grained and do not miss any concern of the individual tools. For almost every tool, the
metric values for laconicity are at 100%, indicating that the unied operations are not too
ne-grained. An exception is the tool SuperMod, which is the only tool whose metric values
for laconicity are at 0%. On the one hand, this is due to the fact that both 𝑒𝐷 and 𝑒𝑃 are part
of SuperMod’s checkout operation (note that this operation is counted as one that supports
both the platform-oriented and the product-oriented development paradigm). On the other
hand, both 𝑖𝐷 and 𝑖𝐶 art part of SuperMod’s commit operation. Consequently, both tool op-
erations are not laconic as they implement more than one unied operation. Another tool
whose laconicity value is lower at 82% is VTS. Both 𝑒𝑃 and 𝑒𝑈𝑆 art part of VTS’s get operation,
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while both 𝑖𝐶 and 𝑖𝑈𝑆 art part of VTS’s put operation. In contrast to SuperMod though, VTS
employs direct editing operations, such as add, update and delete of the concepts Mapping,
Fragment and Feature. Consequently, while its view-based operations are not laconic, its
direct editing operations are. Finally, the metric values for soundness of the unied oper-
ations vary between 7% and 64%. This is due to the fact the three direct editing operations
(add/update/delete System Revision) are not implemented by at least one tool.

Table 12.2 shows the aggregated results over all tools. The four metrics are shown as
columns for the view-based and direct edit modality and for the development paradigm of
an operation, i.e., platform-oriented, product-oriented, or both. The metric values are at or
close to 100%. While the lower values for laconicity are due to the described view-based
operations of SuperMod and VTS, the lower values for soundness are due to the direct
editing operations for System Revisions that none of the tools employ.

12.4. Exemplary Application

This section describes Step 6 shown in Figure 12.1 to demonstrate the applicability of
the unied operations based on variability scenarios.

12.4.1. Variability Scenarios

From the literature, eight variability scenarios (i.e., self-contained activities of a devel-
oper with a specic intent that are related to the management of a variable system) were
identied. While the collected scenarios may not be exhaustive, they shall be diverse
enough to demonstrate the applicability of the unied operations. Therefore, the following
requirements are dened:

1. Scenarios shall holistically address variability management and therefore involve
both the problem space and the solution space.

2. Scenarios shall be diverse and therefore involve product line evolution, clone-and-
own development and distributed development.

Table 12.3 shows the variability scenarios and the platform-oriented or product-oriented
operation sequences (noted as regular expressions) for addressing them. The scenarios
are lifted to the unied conceptual model and extended with temporal aspects in cases
where a scenario considers only spatial variations. For example, scenarios that include
updates or deletions shall not actually update or delete objects in the unied system, and
instead create new revisions to enable or disable them.

Scenarios S1, S2, and S3 are distributed development scenarios supported in both paradigms.
Scenario S1 [229, 127, 129] describes the transfer and integration of all contents of one
unied system into another. Scenario S2 (e.g., “propagating a feature” [104]) [229, 99, 129]
describes the transfer and integration of only a subset of all features (and the corresponding
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Table 12.1.:Metric results for each tool individually.

for laconicity lucidity completeness soundness

F
e
a
t
u
r
e

I
D
E

Platform 100% (15/15) 100% (24/24) 100% (15/15) 63% (15/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (2/2) 100% (3/3) 100% (2/2) 67% (2/3)
Total 100% (17/17) 100% (28/28) 100% (17/17) 61% (17/28)

V
T
S

Platform 100% (9/9) 100% (24/24) 100% (9/9) 42% (10/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 0% (0/2) 100% (3/3) 100% (2/2) 100% (3/3)
Total 82% (9/11) 100% (28/28) 100% (11/11) 46% (13/28)

S
i
P
L

Platform 100% (15/15) 100% (24/24) 100% (15/15) 63% (15/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (16/16) 100% (28/28) 100% (16/16) 57% (16/28)

S
V
N

Platform − (0/0) 100% (24/24) − (0/0) 0% (0/24)
Product 100% (1/1) 100% (1/1) 100% (1/1) 100% (1/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (2/2) 100% (28/28) 100% (2/2) 7% (2/28)

G
i
t

Platform − (0/0) 100% (24/24) − (0/0) 0% (0/24)
Product 100% (1/1) 100% (1/1) 100% (1/1) 100% (1/1)

Both 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Total 100% (4/4) 100% (28/28) 100% (4/4) 14% (4/28)

E
C
C
O

Platform − (0/0) 100% (24/24) − (0/0) 0% (0/24)
Product 100% (1/1) 100% (1/1) 100% (1/1) 100% (1/1)

Both 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
Total 100% (4/4) 100% (28/28) 100% (4/4) 14% (4/28)

S
u
p
e
r

M
o
d

Platform 0% (0/1) 100% (24/24) 100% (1/1) 13% (3/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 0% (0/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 0% (0/2) 100% (28/28) 100% (2/2) 14% (4/28)

D
e
l
t
a

E
c
o
r
e

Platform 100% (18/18) 100% (24/24) 100% (18/18) 75% (18/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 0% (0/3)
Total 100% (19/19) 100% (28/28) 100% (19/19) 64% (18/28)

D
a
r
w
i
n

S
P
L

Platform 100% (12/12) 100% (24/24) 100% (12/12) 50% (12/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (13/13) 100% (28/28) 100% (13/13) 46% (13/28)

V
a
V
e

Platform 100% (1/1) 100% (24/24) 100% (1/1) 4% (1/24)
Product − (0/0) 100% (1/1) − (0/0) 0% (0/1)

Both 100% (1/1) 100% (3/3) 100% (1/1) 33% (1/3)
Total 100% (2/2) 100% (28/28) 100% (2/2) 7% (2/28)

subset of mappings and fragments). Scenario S3 deals with the transfer and integration of
a product [161] (i.e., the relevant features, fragments, and mappings) from a remote unied
system into the local unied system. Scenario S4 [12, 129] describes the retrieval of a
product from a unied system based on a valid conguration that is already supported (i.e.,
the product has already been internalized via 𝑖𝑃 , or all required features and feature interac-
tions have been internalized via 𝑖𝐶). Scenario S5 (e.g., “asset merging” [183], “merge” [200])
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Table 12.2.:Metric results over all tools.

Kind for laconicity lucidity completeness soundness
V
i
e
w
-

B
a
s
e
d

Platform 67% (2/3) 100% (3/3) 100% (3/3) 100% (3/3)
Product 100% (3/3) 100% (1/1) 100% (3/3) 100% (1/1)

Both 81% (13/16) 100% (3/3) 100% (16/16) 100% (3/3)
Total 82% (18/22) 100% (7/7) 100% (22/22) 100% (7/7)

D
i
r
e
c
t

Platform 100% (68/68) 100% (21/21) 100% (68/68) 86% (18/21)
Product − (0/0) − (0/0) − (0/0) − (0/0)

Both − (0/0) − (0/0) − (0/0) − (0/0)
Total 100% (68/68) 100% (21/21) 100% (68/68) 86% (18/21)

A
l
l

Platform 99% (70/71) 100% (24/24) 100% (71/71) 88% (21/24)
Product 100% (3/3) 100% (1/1) 100% (3/3) 100% (1/1)

Both 81% (13/16) 100% (3/3) 100% (16/16) 100% (3/3)
Total 96% (86/90) 100% (28/28) 100% (90/90) 89% (25/28)

Table 12.3.: Scenarios and operation sequences.

Scenario

Platform-Oriented

Sequence

Product-Oriented

Sequence

S11 Transfer entire system iUS iUS
S21 Transfer subset of features eUS, iUS eUS, iUS
S31 Transfer individual product eUS, iUS (eUS, iUS) | (eP, iP)
S4 Retrieve supported product eP eP
S5 New combination of existing features eD, iD, (eP, (iC)+)+ eP, iP
S6 New separation of existing features eD, iD, (eP, (iC)+)+ eP, iP
S7 Add new feature eD, iD, (eP, (iC)+)+ eP, iP
S8 Update feature implementation in all products (eP, (iC)+)+ (eP, iP)+

1 Distributed development scenario. .

and S6 (e.g., “asset splitting” [183], “split asset” [168]) deal with the retrieval of a product,
where two features or feature revisions are combined or separated that have never been
combined or separated in any previously internalized product. Missing or surplus feature
interaction fragments may have to be added or deleted. The manually completed product
shall then be integrated into the unied system. In Scenario S7 (“merge” [200, 129]), a
new feature (including the relevant fragments, constraints, and mappings) is added to the
unied system. Finally, in Scenario S8 (“variant synchronization” [230, 110]), the intention
is to change the implementation of a feature (e.g., to x a bug), and have it take eect in
all products with that feature.

12.4.2. Results

For Scenario S1, only operation 𝑖𝑈𝑆 is needed. For Scenario S2, 𝑒𝑈𝑆 is used before 𝑖𝑈𝑆 ,
with a partial conguration that deselects all undesired features to derive a unied system
containing only the desired subset of features. For Scenario S3, a complete conguration
is used to derive a unied system containing a single product via 𝑒𝑈𝑆 , followed by 𝑖𝑈𝑆 .
Alternatively, the product can be externalized from one unied system via 𝑒𝑃 , and inter-
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nalized into another via 𝑖𝑃 . Scenario S4 is trivially possible via the operation 𝑒𝑃 , where
a conguration is specied that is already supported in the unied system (i.e., a product
with that conguration has been internalized before via 𝑖𝑃 or the necessary features have
been internalized via 𝑖𝐶). Scenarios S5, S6, and S7 are addressed using the same sequences
of operations. In case of platform-oriented development, the platform is edited via 𝑒𝐷 and
𝑖𝐷 to add new features and delete constraints, such that new feature combinations are
allowed. This is followed by a repetition of 𝑒𝑃 and 𝑖𝐶 to add fragments and corresponding
mappings to the platform, until the desired product can be derived entirely by the 𝑒𝑃
operation. During product-oriented development, an incomplete product is externalized
via 𝑒𝑃 by reusing relevant feature and feature interaction fragments from previously inter-
nalized products. The product must be modied by adding fragments that implement the
interaction of features (S5), removing surplus fragments (S6), or adding missing fragments
(S7). Finally, the nished product is internalized via 𝑖𝑃 . The operation sequences for
Scenario S8 are similar except that the domain (i.e., options and constraints) does not
need to be modied in the case of platform-oriented development. For product-oriented
development, this is a challenging scenario, since the sequence, albeit the same as before,
may need to be repeated many times—in the worst case once per product.

12.5. Discussion

From the quantitative analysis and the exemplary application, insights could be obtained
to answer the questions and discuss the evaluation results.

Q 2.1: Are the unied operations of appropriate granularity?

Laconicity and lucidity indicate whether granularity is appropriate. While the metric val-
ues for lucidity are always at 100% (i.e., a unied operation is implemented by at most one
operation of a tool), the laconicity values of view-based unied operations vary between
67% and 81% (i.e., a tool operation implements at most one unied operation). Specically,
the tools VTS and SuperMod provide two operations that each cover two unied operations.
For instance, VTS’s operation put represents both 𝑖𝑈𝑆 and 𝑒𝑈𝑆 and SuperMod’s operation
checkout represents both 𝑒𝐷 and 𝑒𝑃 . Considered as a whole, this aects all view-based
operations that support the platform-oriented paradigm (i.e., 𝑒𝐷 , 𝑖𝐷 , 𝑖𝐶) or both paradigms
(i.e., 𝑒𝑃 , 𝑒𝑈𝑆 , 𝑖𝑈𝑆). Nonetheless, the aected unied operations were not merged to avoid
ambiguities of an operation’s concern and to clearly separate their concerns and responsi-
bilities. Besides the direct editing operations (whose laconicity value as at 100%), the only
remaining view-based unied operation that is fully laconic is the 𝑖𝑃 operation which is
implemented in the tools SVN, Git and ECCO by exactly one operation.

To summarize, the results provide evidence that the unied operations are of appropriate
granularity. Operations should neither be merged nor split up.
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Q 2.2: Are the unied operations of appropriate coverage?

Completeness and soundness indicate whether coverage is appropriate. While the metric
values for completeness are always at 100% (i.e., a tool operation is represented by at least
one unied operation), the soundness values of direct unied operations are at 86% (i.e., a
unied operation is implemented by at least one operation in a tool). This is due to the fact
that directly adding, deleting and updating a System Revision is not supported by any
tool. Not supporting any direct edit operation for the System Revision would increase the
metric values for soundness. However, the direct editing of System Revisionswas retained
to provide a complete set of direct editing operations that is as comprehensive as possible.

To summarize, the results provide evidence that the unied operations achieve high
coverage. While the direct editing of System Revisions represents unused operations,
there are no missing operations.

Q 2.3: To what extent are the unied operations applicable to support dierent development
paradigms?

A comparison of the operation-execution sequences when solving each scenario with
operations of either development paradigm oers an answer to this question. While both
paradigms support the same scenarios, the number of necessary operations diers in
several cases. A major distinguishing factor is whether only a few or many products shall
be aected. It is not surprising that, in the latter case, platform-oriented development is
more suitable, since SPLE is tailored to that requirement. In the former case, it can be more
convenient to use product-oriented development, since developers can focus on individual
products, which has always been an advantage of clone-and-own [75]. However, thanks to
an increase in automated support for product-oriented development (e.g., automated reuse
among cloned variants via feature location [153, 20, 245, 160] or clone synchronization tech-
niques [186, 198]), this line starts to blur [127, 129]. This is also evidenced by the support for
intensional versioning [48] in product-oriented development provided by the operations.

In summary, each development paradigm has its merits and should be chosen based on
the scenario. While the unied view-based operations fully support each development
paradigm individually, it is still not possible to freely alternate between them, which
remains an open challenge.

Q 2.4: To what extent are unied operations applicable to support dierent edit modalities?

To answer this question, an analysis is performed whether view-based editing operations
can be used to perform the same edits as the direct editing operations shown in Table 6.3,
except those editing the time dimension (i.e., revisions). The rationale for this comparison
is that direct editing operations cover the entire evolution spectrum, since there is no
evolutionary change in any scenario that cannot be covered (albeit with signicant manual
eort) via direct editing operations. In contrast, view-based editing operations oer a
higher degree of automation (such as tracking revisions or modifying multiple mappings
at once), and are therefore often more convenient to use, but may be limited in what they
can achieve. View-based editing operations were found to support the same edits as direct
editing operations with the operation sequence (eD,iD)?(eP,(iC)+)+. However, changing
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mappings with view-based operations is not as straightforward as with direct editing,
since the view (i.e., product) only shows fragments but not the mappings. The only way to
modify a mapping via view-based operations is by creating a product via 𝑒𝑃 , modifying its
fragments, and then internalizing it via 𝑖𝐶 , where new mapping expressions are computed
automatically and only for fragments that were either added or deleted from the product.
This limits the way in which mapping expressions can be modied. If the desired change of
the current mapping expression𝑚 to the new mapping expression𝑚′ is such that𝑚′⇒𝑚,
the mapping expression becomes more restrictive and the fragment will be contained in
a subset of the previous products. This can be achieved via 𝑖𝐶 , since the new mapping
expression is computed by appending the expression provided by the developer to the
old mapping expression via a logical and. If the relation between𝑚 and𝑚′ is such that
𝑚 ⇒𝑚′ (i.e., it becomes less restrictive and the fragment will be contained in additional
products) or there is no relation, this cannot be achieved via view-based operations.

In summary, the unied view-based operations cannot fully replace the unied direct
editing operations, as the former do not support arbitrary modications of mappings.
However, this limitation of view-based operations is also present in the studied tools and
therefore represents an open challenge.

12.6. Threats to Validity

This section describes threats to the validity and how they were mitigated.

Internal Validity. The unication of the operations was performed on the level of ab-
straction of the unied conceptual model. Consequently, there may be further details
in the behavior of tools that may be missed. This threat was mitigated by two means:
i) conferring with the tool experts, and ii) verifying that the unied operations maintained
the functionality and support the same edits as the individual tools (the metric values
for completeness are always at 100%). Another potential threat to internal validity is
the involvement of tool experts in the unication process of the operations, which could
have introduced bias towards their tools. However, this had the advantage that current,
detailed, and reliable information could be elicited instead of only inspecting the respective
tool-related publications. Furthermore, this threat was mitigated by involving further
researchers and practitioners in the unication process.

External Validity. A diverse and representative set of tools was elicited and analyzed
from both the SPLE and SCM research areas. The selected tools are based on dierent
concepts and support dierent modalities and paradigms. Nonetheless, there may be other
tools comprising further operations that cope with variability in space and time. Thus,
the set of unied operations may not be fully generalizable. This threat was mitigated by
analyzing to what extent the operations can be applied to dierent variability scenarios
reported in the literature.
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12.7. Limitations and Future Work

The discussed evaluation results indicate limitations of the unied operations. In the
following, the limitations as well as future work are discussed.

The modication of mappings can be performed straightforward with direct editing. How-
ever, as the evaluation results showed, unied view-based operations (and, respectively,
the analyzed view-based tool operations) provide only limited possibilities to change map-
pings, since the view (i.e., product) only shows fragments but not the mappings. This is a
current limitation of the unied operations. Future work could address this shortcoming
by combining both edit modalities to leverage benets of both. While view-based unied
operations provide a high degree of automation, direct editing allows for exibility where
view-based operations don’t. However, combining both edit modalities is challenging.
The challenge would be to provide an editable view including mappings, since this could
require a particular view for every type of artifact. VTS is the only studied tool that supports
both edit modalities. Based on its 𝑔𝑒𝑡 operation, it either returns a product (that can be
edited in a view-based manner) or a partial product line (that can be edited directly). In VTS,
an editable view that also includes mappings can easily be provided, as fragments are lines
of text and mappings are annotations. While existing approaches allow for dynamically
switching between editable product and platform views, they are also limited to textual
fragments [162, 31]. Note that the direct editing of time concepts is discouraged in this
research to prevent the user from accidentally changing the history.

Further future work is the combination of development paradigms, that is envisioned
to further support the evolution of a variable system. The ability to arbitrarily alternate
between platform-oriented and product-oriented development would make it possible to
leverage the benets of both. However, this remains an open challenge in state of the art,
as none of the studied tools allow to switch between the two paradigms. Platform-oriented
development would be the paradigm of choice to make modications to the platform, but it
requires high cognitive eort [141, 214]. Product-oriented development reduces complexity
as it allows a developer to focus on a single product, but does not produce ne-grained
mappings that are necessary for platform-oriented development. Consequently, additional
techniques such as feature location [160, 20, 199] are required. Otherwise, it has only
limited support for intensional versioning (i.e., the derivation of new products [48]). Thus,
allowing a developer to pick the paradigm that is best suited for any given development
task can provide a substantial advantage.

12.8. Summary

This chapter presented the evaluation of the appropriateness and applicability of the uni-
ed operations. A quantitative analysis was performed to quantify the appropriateness of
the unied operations with respect to the analyzed tools. Therefore, metrics for unication
were applied (see Section 10.2). Main insights showed that while the unied operations
do not miss any functionality of the considered tools, they provide operations that are
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not employed by any tools (i.e., the direct editing of system revisions). Furthermore, the
application of the unied operations was demonstrated based on variability scenarios
identied from the literature. While the scenarios were fully supported, the number
of necessary operations when solving each scenario diers based on the development
paradigm. Furthermore, the modication of mappings is only supported in a limited way
via unied view-based operations (and, consequently, in the analyzed tools). Based on
the insights, future work as well as open challenges of combining editing modalities and
development paradigms are discussed.
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Chapter 8 presented the unied approach to support the consistent evolution of systems
that are subject to variability in space and time, and that are composed of heterogeneous
artifacts (C5). This chapter presents the evaluation of its functional suitability based on
the GQM method [27].

Section 13.1 presents the overall evaluation goal. Section 13.2 introduces two real-world
case study systems that are used for evaluation. For every inconsistency type that is
detected and resolved by the unied approach, i.e., Inconsistency Type 2 (feature model
to product consistency, as described in Section 8.6.1), Type 5 (product to feature model
consistency, as described in Section 8.6.2), and Type 6 (product consistency, as described
in Section 8.6.3), a tailored evaluation is provided in Section 13.3–Section 13.5. It encom-
passes an overview of the questions and metrics, the applied evaluation process, and a
discussion of the evaluation results. Section 13.6 comprises a brief description of the em-
ployed technologies. Section 13.7 involves a discussion of the limitations and future work of
the unied approach. A summary of the main insights in Section 13.9 closes the chapter.

13.1. Overall goal

The overall goal of the evaluation of the unied approach is to provide evidence on its func-
tional suitability1. In particular, the approach shall fully support the evolution of a variable
system (i.e., functional completeness), detect and repair inconsistencies correctly (i.e., func-
tional correctness) with the desired degree of automation (i.e., functional appropriateness).

13.2. Case Studies

To evaluate the unied approach holistically and realistically, case studies must meet
several requirements. In the following, the selection criteria is introduced and the selected
case studies are described.

1 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
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13. Evaluation of the Unied Approach

13.2.1. Selection Criteria

The goal is to evaluate the unied approach by taking into account both variability dimen-
sions, the heterogeneity of implementation artifacts, and the handling of variability-related
inconsistencies that were caused or repaired in the solution space (i.e., the heterogeneous
implementation). Therefore, case study systems were selected based on the following
selection criteria:

1. The case study is variable in space, for example, by managing a set of products and/or
features and providing a variability model.

2. The case study is variable in time by having an evolution history, ideally also of the
variability model.

3. The case study has an implementation comprised of dierent types of artifacts.

4. The case study is a real-world system.

5. The case study is publicly available.

ArgoUML-SPL and MobileMedia are two case study systems that satisfy the described
selection criteria and that are introduced in the following. Both are implemented in Java
and use a preprocessor as variability mechanism. Since the feature model only evolved
in MobileMedia and not in ArgoUML-SPL, MobileMedia was used for the evaluation of
Type 2 and Type 5. For Type 6, the evaluation was applied to both case studies.

13.2.2. ArgoUML-SPL

ArgoUML-SPL that has been extracted from a snapshot of ArgoUML, a UML modeling
tool, in 2009.2 The ArgoUML-SPL serves as real-world case study in the SPL research
community that is widely used [49, 153, 159, 154]. ArgoUML-SPL is implemented in
Java, has about 130 KLOC and uses conditional compilation via the Java preprocessor
as variability mechanism. Figure 13.1 shows the feature model of the ArgoUML-SPL. It
consists of three core features (i.e., ArgoUML-SPL, Diagrams, Class) and seven optional
features (e.g., Activity, Cognitive and Logging). Unfortunately, ArgoUML-SPL has not
been co-evolved with the original ArgoUML system. Although ArgoUML kept evolving,
the ArgoUML-SPL remained in its inital revision. To remedy this, I manually evolved
ArgoUML-SPL by retroactively replaying, i.e., comparing and merging, the revision history
of ArgoUML on the ArgoUML-SPL. In total, 28 commits of ArgoUML were analyzed, with
a total of 32 changed Java les with 619 additions and 407 deletions that were merged
into the ArgoUML-SPL. Successive ArgoUML revisions that aected the same feature
expression were grouped into a single ArgoUML-SPL revision, which ultimately resulted
in nine ArgoUML-SPL revisions. Table 13.1 shows the nine revisions and the respective
expressions comprising features or feature interactions that are aected (i.e., changed

2 https://github.com/argouml-tigris-org/argouml/commit/43d8b97eebec3e9d366744528465b1b253cbf482
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13.2. Case Studies

ArgoUML-SPL

Diagrams

Class

Cognitive Support Logging

State Activity Use Case Collaboration Deployment

Figure 13.1.: Feature model of the ArgoUML-SPL [49, Fig. 2].

Table 13.1.: Internalization expressions of the ArgoUML-SPL data set.
Revision Feature Expression(s)

1 Core
2 Core, Logging
3 Core
4 Cognitive
5 Cognitive, 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 ∧ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔
6 Core
7 Core, Logging
8 Core
9 Core, Logging

within a respective Java preprocessor annotation) per revision. In total, four distinct
feature expressions were aected: 𝐶𝑜𝑟𝑒 , 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 , 𝐿𝑜𝑔𝑔𝑖𝑛𝑔, 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 ∧ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔. In
revision one, three, six, and eight, only the core features are aected by changes. In
revision two, seven, and nine, the Logging feature is additionally changed. In the fourth
revision, only the Cognitive feature is changed, while in the fth revision, both the
Cognitive feature along with the feature interaction 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 ∧ 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 is aected. For
the evaluation, mandatory core features are considered that are part of every product, the
two optional cross-cutting features Cognitive and Logging, and the additional optional
Activity diagram feature. While the data set contains four additional diagram features,
they are omitted from this evaluation, as they were not aected by any of the subsequent
revisions. To establish heterogeneous implementation artifacts for this evaluation, UML
class diagrams are automatically extracted for every product of the ArgoUML-SPL from
its Java source code using functionality provided by Vitruvius (not considering features,
the product line, or variability at all).

13.2.3. MobileMedia

The second case study for the evaluation is MobileMedia3 [71]. MobileMedia is an appli-
cation for mobile devices to manage media, i.e., photos, music, and videos. MobileMedia is
implemented in Java, has approximately 3 KLOC and uses conditional compilation via the

3 https://sourceforge.net/projects/mobilemedia/, last visited on March 10, 2022.
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13. Evaluation of the Unied Approach

Mobile Media

Media

Photo

Sort Copy Media

Create/Delete Label View/Play

Favourites SMS Transfer Media Mngmt.

Figure 13.2.: Simplied feature model of MobileMedia at revision 5. Adapted from [71, Fig. 3].

Table 13.2.: Internalization expressions of the MobileMedia data set.
Revision Feature Expression(s)

1 Core
2 Sort, Label
3 Core, Favourite
4 Core, Sort, Favourite, Sort ∧ Favourite, Copy
5 Core, Copy, SMS

Antenna preprocessor4 as variability mechanism. In contrast to the ArgoUML-SPL, where
the feature model does not evolve, the feature model of MobileMedia changes in every
revision. Figure 13.2 shows a simplied feature model of MobileMedia at revision 5. It
has 7 core features (e.g., the supported media type Photo, and the operations to Label and
View/Playmedia) and four optional features (e.g., Sort, Favourites). Table 13.2 shows the
rst ve revisions (i.e., Git commits) starting from an empty product line and the respective
expressions comprising features or feature interactions that are aected (i.e., changed
within a respective Java preprocessor annotation) per revision. In the rst revision, the
core features are added to MobileMedia, that are grouped by the expression Core. In the
second revision, both features Sort and Label are aected by changes in the implementa-
tion. In the third revision, changes aect the Core and the Favourite feature. The fourth
revision comprises changes to most features. Specically, Core, Sort, Favourite and Copy

change, as well as the feature interaction 𝑆𝑜𝑟𝑡 ∧ 𝐹𝑎𝑣𝑜𝑢𝑟𝑖𝑡𝑒 . Finally, in the fth revision,
the Core, Copy, and SMS features are aected by changes. Analogously to ArgoUML-SPL,
heterogeneous implementation artifacts are created by automatically extracting UML class
diagrams for every product of MobileMedia from its Java source code.

13.3. Feature Model to Product Consistency

This section presents the evaluation for the Inconsistency Type 2 (feature model to product
consistency, as described in Section 8.6.1).

4 http://antenna.sourceforge.net/wtkpreprocess.php, last visited on March 10, 2022.
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13.3. Feature Model to Product Consistency

13.3.1. Questions and Metrics

Following the overall goal of functional suitability, four questions are asked. In case of
adding new features or removing constraints between features, new congurations and
thus new products become viable. The rst question concerns the MobileMedia data set:

Q 3.1.1 How many products became valid after each feature model change?

This question can be answered based on metricM3.1.1:

Let 𝐶𝑟 be the set of valid congurations in the feature model at revision 𝑟 .

Let 𝐶+𝑟 = 𝐶𝑟 \𝐶𝑟−1 be the set of newly valid congurations at revision 𝑟 compared to
the previous revision 𝑟 − 1.

M3.1.1 = |𝐶+𝑟 | is the number of newly valid congurations after the feature model
evolution.
If the implementation of the new feature(s) or feature interaction(s) is missing, this leads
to a problem space–solution space inconsistency (see Section 2.7). Building upon Q 3.1.1,
the second question asks:

Q 3.1.2 Which fraction of the newly valid products is inconsistent?

Moreover, the benecial characteristics of the view-based edit modality of the unied
approach is considered:

Q 3.1.3 What is the proportion of the manually repaired products to restore consistency
in all other aected products?

Both questions can be answered based onM3.1.2 andM3.1.3:

Let 𝑃+𝑟 be the set of newly valid products at revision 𝑟 whose implementation does not
match the implementation of the respective ground truth products.

M3.1.2 =
|𝑃+𝑟 |
|𝑃+𝑟 | is the fraction of newly valid products that are inconsistent.

Let 𝑃+𝑟 be the set of newly valid products that needed to be manually repaired and
internalized via 𝑖𝐶 before all newly valid products 𝑃+𝑟 became consistent with the
ground truth.

M3.1.3 =
|𝑃+𝑟 |
|𝑃+𝑟 | is the fraction of newly valid products that needed to be repaired manually

to restore consistency in all other aected products.

Finally, to check whether the unied approach provides the correct hints, the causing
features or feature interactions of the inconsistencies are considered:

Q 3.1.4 How many of the causing features or feature interactions were hinted at by the
unied approach?
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13. Evaluation of the Unied Approach

This question can be answered based on metricM3.1.4:

Let 𝐻𝑟 be the set of hints computed by the unied approach during 𝑖𝐷 of revision 𝑟 .

Let 𝐻𝑟,𝑔𝑡 be the set of correct hints based on the ground truth, i.e., the set of features
and feature interactions causing the inconsistencies at revision 𝑟 .

M3.1.4 = |𝐻𝑟 ∩ 𝐻𝑟,𝑔𝑡 | is the number of causing features and feature interactions that
were hinted at by the unied approach.

13.3.2. Evaluation Process

Figure 13.3 shows a UML activity diagram of the applied evaluation process. Unied
operations are highlighted in grey. For every revision of MobileMedia, the domain is
externalized via 𝑒𝐷 which provides the feature model at a particular revision. Based on
the ground truth feature model at the succeeding revision, the provided feature model is
evolved and internalized back via 𝑖𝐷 into the unied system. Upon every internalization
operation, a conguration space analysis of the evolved feature model is performed. In
case of added features or the removal of constraints between features, the congurable
space increases. If this is the case, a hint is provided for every new feature and feature
combination whose implementation is missing and may thus lead to an inconsistency
(see Section 2.7). While not all inconsistency-causing expressions have been internalized,
a product is externalized via 𝑒𝑃 and manually repaired based on the ground truth product
at the succeeding revision r+1 and internalized into the system via 𝑖𝑃 , which addresses the
corresponding hint. The complete process is repeated for each revision of MobileMedia.

13.3.3. Results

Table 13.3 shows the results of the evaluation for Inconsistency Type 2. Each cell shows
the results for one particular metric (M.3.1.1–M3.1.4) (columns) per revision (rows).

MetricM3.1.1 indicates that the number of newly valid congurations increases with every
revision. In the rst revision, the feature Root is added to the feature model which leads
to one product only consisting of the Root feature. In the second revision, the mandatory
Label feature and optional Sort feature are added to the feature model, leading to two
new products (i.e., {Label}, {Label,Sort}) while a conguration with only the Root feature is
not possible anymore. In the third revision, the optional feature Favourite is added to the
model, leading to two new products (four in total). In revision four, the optional feature
Copy is added to the feature model, thus leading to four new products and eight products
in total. Finally, in revision ve, the optional feature SMS is added to the feature model,
leading to eigth new products and 16 products in total.

Metric M3.1.2 indicates that newly valid products are always inconsistent (i.e., the im-
plementation of the valid products does not match the implementation of the respective
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Figure 13.3.: UML activity diagram of the evaluation process for feature model to product consistency
(Inconsistency Type 2).

ground truth products). To restore consistency in the respective products, metricM3.1.3

indicates that, in most cases, only one product must be repaired.

Finally, metricM3.1.4 indicates that for all revisions, the approach hinted at at least the
number of actually causing features and feature interactions. While the inconsistency
was caused in most cases by a missing feature implementation and rarely by a missing
feature interaction implementation (compared to the implementation of the respective
ground truth products), the approach additionally provided hints for all newly valid feature
combinations. For instance, in the second revision, the ve hints involved two hints for
the newly added features Label and Sort as well as three hints for the newly possible
feature combinations {Root,Label}, {Root,Sort}, and {Label,Sort}.
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13. Evaluation of the Unied Approach

Table 13.3.:MobileMedia evaluation results for Type 2.

Rev.

Metrics
M3.1.1 M3.1.2 M3.1.3 M3.1.4

1 +1 = 1 (+Root) 1/1 (100%) 1/1 (100%) 1/1
2 +2 − 1 = 2 (+Label, +Sort) 2/2 (100%) 2/2 (100%) 5/2
3 +2 = 4 (+Favourite) 2/2 (100%) 1/2 (50%) 4/1*
4 +4 = 8 (+Copy) 4/4 (100%) 1/4 (25%) 5/1
5 +8 = 16 (+SMS) 8/8 (100%) 1/8 (12,5%) 6/1

* Favourite ∧ Sort combination was hinted at but internalized later in revision 4.

13.3.4. Discussion

From the computed metrics for the MobileMedia case study, several insights can be derived
to answer the questions and discuss the evaluation results.

Q 3.1.1: How many products become valid after each feature model change?

The feature model evolves incrementally and constantly in every revision. Per revision,
one optional feature is added to the feature model, doubling the number of valid product
from the previous revision. Additionally, in the second revision, also a mandatory feature
is added as a child of the Root feature, which is therefore also a core feature (i.e., selected in
every valid conguration). While this does not aect the number of valid congurations,
it aects all valid congurations such that all previously valid congurations must now
additionally contain the new core feature Label.

Q 3.1.2: Which fraction of the newly valid products is inconsistent?

The fraction of the newly valid products that are inconsistent is always at 100%. Specically,
all newly valid congurations are missing the implementation of the newly added optional
feature. Consequently, every new product has become inconsistent when compared to the
ground truth implementation of the respective product. Note that, in every revision, also
other changes were performed that were not related to a change in the feature model and
thus were not relevant for this type of inconsistency.

Q 3.1.3: What is the proportion of the manually repaired products to restore consistency in
all other aected products?

The evaluation results indicate a synergy between view-based development and developing
variable systems based on products as supported by the unied approach. Since all
inconsistent products have the same cause (i.e., the newly added feature) and the new
features are optional and independent of the other features (i.e., no dependencies or
interactions), they can be implemented in one product and propagated as is to other
products. For instance, adding the implementation for the feature SMS only requires to
change one product and internalize the changes via 𝑖𝐶 once, to let all other products with
that feature benet from it. This eect increases with the number of products.
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Q 3.1.4: How many of the causing features or feature interactions were hinted at by the
unied approach?

The approach always correctly provides a hint for the newly added feature(s) and new
pair-wise feature combinations that needed to be implemented in the respective revision.
Additionally, it also provides surplus hints at new feature combinations that did not need
to be implemented. Interestingly, a case occurred when a feature interaction was hinted
at whose implementation was delayed to a later revision. For instance, the combination
Favourite and Sort became valid in the third revision, while its implementation was added
later in the fourth revision. Thus, their combination either led to an (undesired) feature
interaction or a desired interaction was missing, which was realized by the developers in
the following revision.

To summarize, the congurable space of MobileMedia increased constantly by means of
added optional features. Inmost cases, themissing implementation of the respective feature
led to an inconsistency. The approach provides hints of all newly added features and new
valid pair-wise feature combinations to make the user aware of possible inconsistencies
caused by a missing feature implementation or potentially undesired feature interactions.

13.4. Product to Feature Model Consistency

This section presents the evaluation for the Inconsistency Type 5 (product to feature model
consistency, as described in Section 8.6.2).

13.4.1. Questions and Metrics

Following the overall goal of functional suitability, three questions are asked. The rst
question concerns the MobileMedia data set:

Q 3.2.1 How many constraints are added to the feature model per revision?

This question can be answered based on metricM3.2.1:

Let 𝐶𝑇 +𝑟 = (𝑇𝐶𝑟 \𝑇𝐶𝑟−1) ∪ (𝐶𝑇𝐶𝑟 \𝐶𝑇𝐶𝑟−1) be the set of newly added tree constraints
and cross-tree constraints at revision 𝑟 .

M3.2.1 = |𝐶𝑇 +𝑟 | is the number of tree constraints and cross-tree constraints that were
added at revision 𝑟 .
To understand whether constraints added in the problem space also exist in the implemen-
tation, the second question asks:

Q 3.2.2 How many of these constraints are reected in the implementation?
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This question can be answered based on metricM3.2.2:

Let 𝐶𝑇 +
𝐼 ,𝑟

= 𝐶𝑇 +𝑟 ∩𝐶𝑇𝐼 ,𝑟 be the set of newly added tree and cross-tree constraints that
are reected in the implementation of the products at revision 𝑟 .

M3.2.2 = |𝐶𝑇 +
𝐼 ,𝑟
| is the number of newly added tree and cross-tree constraints that are

reected in the implementation at revision 𝑟 .

Finally, the functional suitability of the unied approach is examined:

Q 3.2.3 How many of these constraints can be automatically suggested?

This question can be answered based on metricM3.2.3:

Let𝐶𝑇𝐴,𝑟 be the set of constraints that are suggested by the approach after all executions
of 𝑖𝐶 at revision 𝑟 .

M3.2.3 = |𝐶𝑇 +
𝐼 ,𝑟
∩𝐶𝑇𝐴,𝑟 | is the number of newly added constraints that are reected in

the implementation (𝐶𝑇 +
𝐼 ,𝑟
) and automatically suggested by the approach (𝐶𝑇𝐴,𝑟 ).

13.4.2. Evaluation Process

Figure 13.4 shows a UML activity diagram of the applied evaluation process. For every
revision of MobileMedia, a product is externalized via 𝑒𝑃 which provides a product at a
selected system revision along with a selected feature revision per feature. Based on the
ground truth product at the succeeding system revision, the externalized product is evolved
and changes are internalized back via 𝑖𝐶 into the unied system, providing the expression
that was manually identied from the evolution history of the MobileMedia data set.
After every internalization operation of changes, the approach performs a dependency
analysis of the solution space. In case constraints are identied that are not reected on
the problem space between features, the domain is externalized via 𝑒𝐷 at the succeeding
system revision and repair the feature model by adding the missing constraints to it.
Finally, the changed feature model is internalized via 𝑖𝐷 and the repaired feature model is
compared with the ground truth feature model of the succeeding system revision. The
complete process is performed for each revision of MobileMedia.

13.4.3. Results

Table 13.4 shows the results of the evaluation for Inconsistency Type 5. Each cell shows
the results for one particular metric (M.3.2.1–M3.2.3) (columns) per revision (rows).

Metric M3.2.1 indicates that at least one constraint is added in every revision. In the rst
revision, the Root feature is added to the feature model that must always be selected in
any valid conguration. In the second revision, two constraints are added to the feature
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Figure 13.4.: UML activity diagram of the evaluation process for product to feature model consistency
(Inconsistency Type 5).

model: Label is added as mandatory feature and Sort is added as optional feature. In the
following three revisions, every added feature (i.e., Favourite, Copy, SMS) is optional.

Out of the added constraints to the feature model (i.e., the problem space), metric M3.2.2

answers how many of these are actually reected in the implementation (i.e., the solution
space). Therefore, the annotated implementation of the data set was manually inspected
at every revision. Note that dependencies of the data set are not exhaustively analyzed
manually, but instead a dependency between features is considered present if at least one
dependency between their implementing artifacts could be detected.

In the rst revision, the Root feature has been added. As it is the only feature at this revision,
there are no dependencies to other features yet. In the second revision, the features Label
and Sort are added as children of the Root feature and thus depend on it. This dependencies
are reected in the implementation, since several elements of the Sort and Label features
are contained in, or refer to elements of the Root feature. The Sort feature is added as
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Table 13.4.:MobileMedia evaluation results for Type 5.

Rev.

Metrics
M3.2.1 M3.2.2 M3.2.3

1 1 (+Root) 1/1 1/1 (100%)
2 2 (+mand. Label, +opt. Sort) 1.5/2 1.5/1.5 (100%)
3 1 (+optional Favourite) 1.5/1* 1.5/1.5 (100%)
4 1 (+optional Copy) 1/1 1/1 (100%)
5 1 (+optional SMS) 2/1** 2/2 (100%)

* Core⇒ Label (Label becomes mandatory in solution space one revision later wrt. the problem space)
** SMS⇒ Copy (solution space dependency is not reected in ground truth problem space)

optional in the feature model which could be conrmed in the implementation as no
element of any other feature is contained in, or referring to any element of the Sort

feature. Although the Label feature was documented as mandatory child of Root in the
feature model, no dependency was found of the Root feature’s implementation to the
implementation of the Label feature in this revision. Since an optional child feature
represents a dependency of the child to the parent feature (instead of additionally a
dependency of the parent feature to the child feature, which would represent a mandatory
child feature), this case was counted as 1.5 out of 2 reected constraints. Interestingly, in
the following third revision, elements of the Root feature indeed referred to elements that
were added when the Label feature was added, which thereby also become mandatory
in the implementation. However, this is a special case: the implementation of the Label
feature could not be distinguished from the Root feature’s implementation in subsequent
revisions as it is not annotated in the implementation of MobileMedia. In the fourth
revision, the Copy feature can be conrmed to be an optional child of the Root feature. In
the fth revision, the SMS feature is added as optional child of Root. However, additionally,
the SMS feature also requires the Copy feature, since a statement in the SMS implementation
calls a method in the Copy implementation.

Finally, metric M3.2.3 shows that the unied approach could automatically and correctly
identify and add all dependencies among features to the feature model that also exist in
the implementation.

13.4.4. Discussion

From the computed metrics for the MobileMedia case study, several insights can be derived
to answer the questions and discuss the evaluation results.

Q 3.2.1: How many constraints are added to the feature model per revision?

Per revision, at least one new feature and corresponding constraint is added to the feature
model. All new features are children of either the Root feature or another core feature.
Moreover, all features except for Label are optional, and there are no constraints between
any of the features other than their dependency to the Root feature. Thus, the implemen-
tations of the optional features must also be independent of each other. Furthermore,
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elements in their implementation may only be contained in, or refer to elements of the im-
plementation of the Root feature or the mandatory Label feature. Otherwise, products with
an invalid implementation could be externalized. An exception is the Label feature. Since
it is also a core feature, all other features, including the Root feature, may depend on it.

Q 3.2.2: How many of these constraints are reected in the implementation?

Interestingly, the actual implementation does not always correspond to the documentation
of the evolved feature model. For instance, in revision two, the Label feature is initially
optional in the solution space and becomesmandatory one revision after it was documented
as mandatory in the problem space. While this does not cause an inconsistency, it might
be unnecessarily restrictive. Moreover, in revision ve, the implementation of the optional
SMS feature requires the implementation of the optional Copy feature. This is interesting,
as it is not reected in the ground truth feature model which is therefore inconsistent with
the ground truth implementation. Thus, it is possible to externalize four products with
compilation errors, since they comprise the SMS feature but not the Copy feature.

Q 3.2.3: How many of these constraints can be automatically suggested?

Based on the dependency analysis between features in the solution space, the unied
approach is able to detect all dependencies, lift them to the problem space, and automatically
add them to the feature model in case they are not reected in the problem space. This
was not only sucient to automatically add all constraints present in the ground truth
feature model, but also to add an additional constraint that was wrongfully missing in
the ground truth feature model. The results indicate that the approach is able to reduce
manual eort for developers and also to reduce the chance of human error. Please note
that, in most cases, more than one valid repair exists and that the approach chooses one
such valid repair. Which repair is suggested and applied automatically depends on the
order in which mappings are processed and can thus vary.

13.5. Product Consistency

This section presents the evaluation for the Inconsistency Type 6 (product consistency, as
described in Section 8.6.3).

13.5.1. Questions and Metrics

Following the overall goal of functional suitability, several questions are asked. Since this
inconsistency type particularly addresses inconsistencies that can occur between dierent
types of artifacts, the rst question asks:

Q 3.3.1 How many products become inconsistent after evolving one artifact type of a vari-
able system via unied view-based operations (a) without consistency preservation
and (b) with consistency preservation?
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The question Q 3.3.1a can be answered based on metricM3.3.1a:

𝐷𝑟,𝑐 is the set of dierences between the original ground truth UML model of the product
with conguration 𝑐 at revision 𝑟 and the product with conguration 𝑐 at revision 𝑟 − 1.

M3.3.1a = |{𝑃𝑐 | 𝐷𝑟,𝑐 > 0}| is the number of products for which there is at least one
dierence after evolution without consistency preservation (i.e., only considering the
ground truth products).

The question Q 3.3.1b can be answered based on metricM3.3.1b:

�̂�𝑟,𝑐 is the set of dierences between the original ground truth UML model of the product
with conguration 𝑐 and the product generated by the unied approach via the 𝑒𝑃

operation with conguration 𝑐 at revision 𝑟 .

M3.3.1b = |{𝑃𝑐 | �̂�𝑟,𝑐 > 0}| is the number of products for which there is at least one
remaining dierence to the ground truth product after evolution with consistency preser-
vation.
The second question is concerned with the eort for repairing inconsistent products and
how much of it can be reduced by the unied approach.

Q 3.3.2 How many of the necessary changes to repair an inconsistent product could be
performed automatically?

The question Q 3.3.2 can be answered based on metricM3.3.2a andM3.3.2b:

M3.3.2a = |𝐷𝑟,𝑐 \ �̂�𝑟,𝑐 | is the number of necessary changes that could be performed
automatically.

M3.3.2b = |𝐷𝑟,𝑐 | is the number of necessary changes.

13.5.2. Evaluation Process

Figure 13.5 shows a UML activity diagram of the applied evaluation process. In every
revision of ArgoUML-SPL and MobileMedia, both product lines are gradually constructed,
starting from a single product only consisting of the core features. The product space is
iteratively increased by applying 𝑒𝑃 and adding each new feature and respective feature
interaction based on the ground truth product at the succeeding system revision only to a
single artifact model (Java) of a single product each. After every change, the consequential
changes of Vitruvius are executed to preserve consistency in the UML model. Finally,
changes that have been applied based on the ground truth product are integrated into the
unied system via 𝑖𝐶 . For each revision 𝑟 , the set of dierences �̂�𝑟,𝑐 is computed between
the original ground truth UML model of each respective product with conguration 𝑐 ,
extracted by Vitruvius directly from the Java source code generated from the ArgoUML-
SPL and MobileMedia at revision 𝑟 , and the UML model constructed by the externalization
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Figure 13.5.:UML activity diagram of the evaluation process for product consistency (Inconsistency Type 6).

operation 𝑒𝑃 of the unied approach. To put the results into perspective, also the set
of dierences 𝐷𝑟,𝑐 is computed between the original UML model of each product with
conguration 𝑐 at revision 𝑟 − 1 and 𝑟 . This reects the eort that would be needed to
manually evolve each UML model from revision 𝑟 − 1 to revision 𝑟 .
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Table 13.5.:ArgoUML-SPL evaluation results for Type 6.

Conguration

Revision

0 1 2 3 4 5 6 7 8 9

{ Core, Class } 0/0 26/26 0/0 18/18 0/0 0/0 4/4 0/0 3/3 0/0
{ Core, Class, Cognitive } 0/0 26/26 0/0 18/18 5/5 3/3 4/4 0/0 3/3 0/0
{ Core, Class, Logging } 0/0 26/26 0/0 18/18 0/0 0/0 4/4 0/0 3/3 4/4
{ Core, Class, Activity } 0/0 26/26 0/0 18/18 0/0 0/0 4/4 0/0 3/3 0/0

M
3
.
3
.
2
a
/
M
3
.
3
.
2
b

{ All } 0/0 26/26 0/0 18/18 5/5 3/3 4/4 0/0 3/3 4/4

M3.3.1a/M3.3.1b 0/0 5/0 0/0 5/0 2/0 2/0 5/0 0/0 5/0 2/0

Table 13.6.:MobileMedia evaluation results for Type 6.

Conguration

Revision

0 1 2 3 4 5

∅ 0/0 - - - - -
{ Core } - 630/630 - - - -
{ Core, Label } - - 150/150 12/12 306/306 0/0
{ Core, Label, Sort } - - 171/171 12/12 326/326 0/0
{ Core, Label, Fav. } - - - 25/25 306/306 0/0
{ Core, Label, Sort, Fav. } - - - 25/25 326/326 0/0
{ Core, Label, Copy } - - - - 341/341 7/7
{ Core, Label, Sort, Copy } - - - - 361/361 7/7
{ Core, Label, Fav., Copy } - - - - 341/341 7/7
{ Core, Label, Sort, Fav., Copy } - - - - 361/361 7/7
{ Core, Label, Copy, SMS } - - - - - 230/230
{ Core, Label, Fav., Copy, SMS } - - - - - 230/230
{ Core, Label, Sort, Fav., Copy, SMS } - - - - - 230/230

M
3
.
3
.
2
a
/
M
3
.
3
.
2
b

{ Core, Label, Sort, Copy, SMS } - - - - - 230/230

M3.3.1a/M3.3.1b 0/0 1/0 2/0 4/0 8/0 8/0

13.5.3. Results

Table 13.5 shows the evaluation results for the ArgoUML-SPL, and Table 13.6 shows the
evaluation results for MobileMedia. Each cell shows the number of automatically per-
formed changes (M3.3.2a) out of the total number of changes (M3.3.2b) per conguration
(rows) and revision (columns) in the form 𝑀3.3.2𝑎/𝑀3.3.2𝑏. The last row shows the
number of inconsistent products without consistency preservation (M3.3.1a) and with
consistency preservation (M3.3.1b) in the form𝑀3.3.1𝑎/𝑀3.3.1𝑏. Congurations that ei-
ther have not existed yet or do not exist anymore in the respective revision are represented
by an empty cell with a dash.
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Metric𝑀3.3.1𝑎 shows that, without automated consistency preservation, in seven of nine
revisions of ArgoUML-SPL and in all ve revisions of MobileMedia, the UML model of at
least one product became inconsistent with its Java model. With automated consistency
preservation, the Java and UML models of all products in all revisions of both case study
systems could always be kept consistent.

For all products in all revisions of both case study systems, it holds thatM3.3.2a = M3.3.2b,
indicating that all changes were successfully propagated to all aected products during
view-based development and that the UML model was kept consistent with the Java model
fully automatically. The value of 𝑀3.3.2𝑏 indicates how many changes were needed to
automatically propagate changes during externalization. For example, in ArgoUML-SPL,
the product with conguration {𝐶𝑜𝑟𝑒,𝐶𝑙𝑎𝑠𝑠, 𝐿𝑜𝑔𝑔𝑖𝑛𝑔} in revision three yielded a total
of 18 changes, such as the addition of a method, the change of the visibility or input
parameters of a method, to the previous revision of the UML model of the same product.
None of them remained after the automated change propagation, i.e., all 18 changes could
be propagated fully automatically to the UML model after editing the Java model. In
contrast to ArgoUML-SPL, MobileMedia is developed from scratch and evolves in larger
increments as new features are still added in every revision. Consequently, the number
of products increases per revision while in ArgoUML it remains identical. Notably in
ArgoUML-SPL, changes whose expression involved more than one feature, i.e., a feature
interaction, were always very ne-grained and, thus, did not aect the UML models.

13.5.4. Discussion

The evaluation shows promising results for the functional suitability of the unied ap-
proach. It provides initial evidence for the synergy between view-based development of
variable systems and automated view-based consistency preservation. From the computed
metrics for the real-world case studies ArgoUML-SPL and MobileMedia, several insights
can be derived to answer the questions and discuss the evaluation results.

Q 3.3.1a: How many products become inconsistent after evolving one artifact type of a
variable system via unied view-based operations without consistency preservation?

Without automated consistency preservation, over all nine revisions with ve products
each in ArgoUML-SPL, the UML models of 26 products became inconsistent with the Java
model and required to be xed manually. For MobileMedia, over all ve revisions and
27 products, the UML models of 23 products became inconsistent with the Java model.
Thus, roughly half of the products of ArgoUML-SPL and almost all of the products of
MobileMedia became inconsistent.

Q 3.3.1b: How many products become inconsistent after evolving one artifact type of a
variable system via unied view-based operations with consistency preservation?

With automated consistency preservation, none of inconsistent products required manual
repair. All changes in the Java models could automatically and correctly be propagated to
the UML models of all aected products.
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Q 3.3.2: How many of the necessary changes to repair an inconsistent product could be
performed automatically?

Any change performed in one artifact model of a specic product is automatically propa-
gated to other depending models and products. The proportion of the number of automati-
cally performed repair operations𝑀3.3.2𝑎 to the number of overall operations𝑀3.3.2𝑏 nec-
essary to repair a product is in all cases 100%. The developer neither needs to maintain map-
pings nor manage dependencies and redundancies across dierent types of artifacts man-
ually, which is highly error-prone [180]. Finally, the results indicate that the approach is
suitable for dealing with changes of variability in space, e.g., the addition of new features or
feature interactions, variability in time, e.g., modications of existing features and the addi-
tion of new feature revisions and system revisions, and heterogeneous types of artifacts.

13.6. Implementation

The unied approach was implemented in Java using the Eclipse Modeling Framework
(EMF) [225]. Thus, the concrete metamodel is realized as an Ecore model. To parse Java
source code and represent it as Ecore model, the Java Model Parser and Printer (JaMoPP)
was employed [92].5 Minor non-intrusive adaptions to the ArgoUML-SPL source code were
necessary to be able to successfully parse it with JaMoPP, e.g., adding imports of static elds
or methods to ensure that Ecore proxy objects could be resolved. Since the unied approach
relies on deltas as variability mechanism, EMFCompare6 was used to di successive revi-
sions of Java model instances of products and compute edit scripts between them. Addition-
ally, EMFCompare was employed to compute the dierences between UMLmodel instances
of products, and thus, determining the evaluation metrics. Finally, the unied approach is
integrated with Vitruvius [116], as described in Section 8.2.2. Specically, its incremental
consistency preservation capabilities are utilized for propagating changes between dierent
artifact models of a product, i.e., Java and UML as well as between dierent products.

13.7. Threats to Validity

This section describes threats to the validity and how they were mitigated.

Internal Validity. Threats to internal validity target the real-world case study ArgoUML-
SPL. While ArgoUML kept evolving, the ArgoUML-SPL has not been co-evolved and
remained in its inital revision. Tomake reliable claims about the approach and its suitability
to support the evolution of a variable system, ArgoUML-SPL was manually evolved by
retroactively replaying, i.e., comparing and merging, the revision history of ArgoUML on

5 https://github.com/DevBoost/JaMoPP
6 https://www.eclipse.org/emf/compare/
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the ArgoUML-SPL. This threat was mitigated by closely inspecting the merged changes
and careful documentation, providing an artifact to be further validated and applied.7

Construct Validity. In contrast to ArgoUML-SPL, a documentation of the feature model
evolution is provided [71]. To increase construct validity, I veried dependencies between
features (documented in the feature model’s evolution) by additionally analyzing the
provided implementation of MobileMedia, which is reected by MetricM3.2.2. A threat
to construct validity is that the dependency analysis was performed manually, which was,
however, inevitable since state of the art does not provide techniques to extract a feature
model fully automatically from arbitrary implementation artifacts [123]. Closest work is
provided by Nadi et al. [165] to extract conguration constraints from C code. Moreover,
Mendonça et al. [158] present an approach for reverse engineering feature models based
on a multi-objective optimization algorithm, which however assumes solution space
dependencies between features as input for the optimization.

External Validity. Since the unied approach was applied to a single case study for
inconsistency Type 2 and 5 and to two case studies for inconsistency Type 6 involving Java
and UML, the results may be not easily generalizable to other data sets and artifact models,
which threatens the external validity. Therefore, I am currently applying the approach
to other real-world case studies, e.g., in the automotive domain. Moreover, one might
question whether the used data set is representative, as it only contains a relatively small
number of features. Since the ArgoUML-SPL is a real-world system that has been widely
adopted by the SPL community and is commonly applied as benchmark system, this case
study strengthens the comparability of this work.

13.8. Limitations and Future Work

This section comprises a discussion of the limitations of the unied approach as well as
future work to address these.

The unied conceptual model was rened to support feature modeling, which is a de-facto
standard for variability modeling in research and industry [117, 194, 50, 107]. Although
other types of variability models are not explicitly supported, feature models can be
automatically transformed into other forms of variability models [66]. However, this
would require an additional transformation step. As another limitation of the approach, it
currently does not support extensions to feature modeling such as cardinalities to specify
the number of clones for a given feature [193, 52], or attributes to include more information
about features [107, 29, 32]. Future work could address these shortcomings by extending
the concrete metamodel of the unied approach shown in Figure 8.2 accordingly.

The unied conceptual model (C1) and unied operations (C2) were conceived to support
distributed development. In case of the unied conceptual model, this is represented by the

7 https://github.com/SofiaAnanieva/argouml-spl-evolved
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relation of a unied system to multiple other unied systems. In case of the unied oper-
ations, the operations 𝑒𝑈𝑆 and 𝑖𝑈𝑆 allow for cloning of a unied system and internalizing
changes back into the original unied system. However, the unied approach (C5) is lim-
ited to local operations and, thus, does currently not support distributed development. This
is considered a limitation of the implementation and not of the conceptual basis of the ap-
proach as it builds on prior contributions that explicitly support distributed development.

As explained in Section 6.2.1, operations could be classied according to the edit modality
(i.e., direct or view-based editing) and development paradigm (i.e., product-oriented or
platform-oriented development). The unied approach employs view-based editing and
supports platform-oriented development. While they have their distinct advantages, this
choice also comes with limitations of the approach that are discussed in the following.
The unied approach is limited to unied operations that support view-based editing and
platform-oriented development (i.e., 𝑒𝑃 , 𝑖𝐶 , 𝑒𝐷 , 𝑖𝐷). Thus, it promotes the evolution of
a variable system via views that represent a particular product of the variable system
hiding the variability mechanism from the user as proposed by the upcoming research
area of VarCS (see Denition 2.2). This enables a high degree of automation for evolving
variable systems (e.g., the automated creation of feature revisions and system revisions,
the computation of mappings, and automated consistency preservation), which provides
great aid for developers as it reduces cognitive complexity [214, 141]. However, the unied
approach inherits the limitation of view-based development via product views by which
it is challenging to arbitrarily modify mappings between fragments and features without
modifying the fragments, since they are computed fully automatically and cannot be
edited directly. An idea and future work to address this limitation is to combine both
edit modalities to leverage benets of both, as described in Section 12.7. However, the
challenge would be to provide an editable view that includes mappings, since they require
to be displayed dierently for every type of artifact.

Moreover, the unied approach is limited to unied operations that support platform-
oriented development. Consequently, changes cannot be integrated conveniently by simply
providing the changed product, but requires the solution space engineer to manually pro-
vide a Boolean expression which comprises the features and feature interactions that are
aected by the changes upon the operation 𝑖𝐶 . An idea and future work to address this limi-
tation is to support an arbitrary alternation between both paradigms to leverage benets of
both. However, product-oriented edits do not provide ne-grainedmappings that are neces-
sary for platform-oriented editing. Thus, the unied approachwould require to additionally
employ further techniques such as feature trace recording [39] or feature location [199, 20]
to automatically extract ne-grained mappings during product-oriented development.

A debatable limitation of the unied approach is its application to legacy systems, such
as the Linux kernel [233]. The approach is applicable in a greeneld scenario where the
underlying data structure is populated with constructs, i.e., features, mappings, fragments,
feature revisions and system revisions, incrementally as the system evolves. As described
in Section 1.1, legacy systems using current tool support require sophisticated approaches
to retroactively extract or mine information, such as the evolution of features (that is
explicitly modeled by the unied approach). To apply the unied approach to an existing
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variable system (e.g., using a preprocessor in combination with Git as is the case for the
Linux kernel), several possibilities can be considered as future work: the migration of
legacy systems could, on the one hand, be performed by automatically replaying annotated
version histories to automatically compute feature-to-fragments mappings [195], or, on
the other hand, by reverse engineering a product line from a set of products [155, 128].

Moreover, the evaluation considers the propagation of changes from models of lower
abstraction (Java) to models of higher abstraction (UML). Thus, the consistency preserva-
tion mechanisms of Vitruvius can restore consistency fully automatically. The opposite
direction is more challenging and requires user interaction in cases where multiple valid
repair options exist. As Vitruvius already supports semi-automatic repairs, such scenarios
open up potential for future work. Specically, the user decisions should also be stored
and mapped to features so that they can be replayed during product externalization.

A current limitation of the unied approach in this regard is, that it is not possible to
freely change the direction of consistency preservation. Once an artifact has been chosen
for applying original changes to (e.g., Java) further original changes cannot be applied
to another artifact type created by change propagation (e.g., UML). This is caused by
the fact that consequential changes may dier across products, and elements created by
consequential changes cannot be guaranteed to receive the same unique identiers in
every product as, in contrast to original changes, consequential changes are not stored in
the unied system. Thus, it is not easily possible to have original changes refer to elements
created by consequential changes.

Another conceptual limitation of the unied approach and important future work is
the ability to better deal with varying insertion positions of elements that depend on
the context in which they are inserted, as other features may have added or removed
surrounding elements: deltas that are recorded in a product view and applied in another
product may insert the elements not at the right position, as the insertion position of
elements depends on the conguration of the product in which they are inserted. As a
consequence, the insertion position used by delta operations cannot be determined by a
constant index. Instead, a (partial) order relation among them and all their surrounding
elements is needed to determine the appropriate insertion position in each conguration.
This is a special case of feature interaction where not new elements must be inserted into
a product’s implementation to address it, but where the order among existing elements
that map to the interacting features must be determined.

Regarding the consistency preservation of Type 2, the current implementation only con-
siders feature combinations where all features in a combination are positive (i.e., selected).
However, albeit much less common, there can also be feature combinations where one or
more features are negative (i.e., deselected), as also the absence of a feature (i.e., a feature
being deselected in a conguration) can cause an interaction with other features. Note
that such a case did not occur in the data sets used in the case studies.

Finally, the evaluation of the unied approach is a preliminary proof of concept. It requires
further evidence to be gathered by additional real-world case studies comprising artifact
types from engineering disciplines other than software engineering.
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Figure 13.6.:Contribution of Chapter 13 of the thesis.

13.9. Summary and Conclusion

This chapter presented an evaluation of the functional suitability of the unied approach.
First, two real-world case studies were presented, the well-known ArgoUML-SPL [49] and
the MobileMedia [71]. Since the ArgoUML-SPL has not been co-evolved and remained in
its inital revision while the origin ArgoUML kept evolving, the ArgoUML-SPL was evolved
by replaying the original changes from the ArgoUML. Thus, a data set is provided that also
represents the nal contribution of this thesis (C6). For every considered inconsistency
type (i.e., Inconsistency Type 2 (feature model to product consistency, see Section 8.6.1), Type
5 (product to feature model consistency, see Section 8.6.2), and Type 6 (product consistency,
see Section 8.6.3), an evaluation was presented following the GQMmethod [27]. The results
showed that all three inconsistency types occur during the evolution of the real-world
case study systems and that the unied approach is capable of detecting and repairing
these, ranging from hints to the developer to fully automated consistency preservation.
Nonetheless, there are several limitations of the unied approach, such as the arbitrary
modication of mappings or its application to legacy systems. To sum up, the evaluation
showed promising results for the functional suitability of the unied approach and provides
initial evidence for the synergy between view-based development of variable systems
and automated view-based consistency preservation for variability-related inconsistencies
caused or repaired in the solution space.

Figure 13.6 shows an overview of the contributions of the thesis and highlights the contri-
bution of this chapter (C6) in grey.
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14. RelatedWork

This chapter builds on publications at VaMoS [6], VariVolution [9], SPLC [3, 7], and Empirical
Software Engineering [5].

This chapter presents related work for each of the major contributions of this thesis: the
unied conceptual model (see Chapter 5), the unied operations (see Chapter 6), and the
unied approach (see Chapter 8).

Section 14.1 comprises related work to the unied conceptual model. Section 14.2 encom-
passes a discussion of work related to the unied operations. Related work to the unied
approach in Section 14.3 closes this chapter.

14.1. Unified Conceptual Model

Conceptual models were initially proposed in several areas of computer science to model
conceptualizations of a domain used for purposes of understanding, communication and
problem solving [42, 88]. Conceptual models represent mental representations comprised
of concepts and relationships between them, while clarifying the meaning of various, usu-
ally ambiguous terms. In both the SPLE and SCM community, much research has focused
on concepts and terminology, resulting in various conceptualizations of the respective
research area. In this section, conceptual models of both communities as well as related
surveys of variability in space and time are discussed, and related with this research.

Conceptual Models for Variability in Space. Research in software product-line engi-
neering (SPLE) proposes several modeling concepts and taxonomies to describe and specify
concepts of variability in space, such as variation points or variants [69, 191, 12, 178]. De-
spite these eorts, varying terminologies have evolved. For instance, the term variant can
constitute a product (e.g., in the tool ECCO (see Table 11.1)), a conguration (e.g., in the tool
FeatureIDE (see Table 11.1)), or an option of a variation point in the orthogonal variability
model [191]. In SPLE, a prominent way of specifying terminology and providing conceptual
models for the domain is variability modeling [191, 12, 51, 206, 167]. Although several types
of variability models exist, concepts of variability in space along with its varying terminol-
ogy have never been unied. Further limitations of existingmodels are that they are specic
to certain tools or that they only consider concepts from the solution space or the problem
space. The presented unied conceptual model tackles these problems from a wider per-
spective by considering the unication of concepts and relations from both the SPLE and
SCM research areas. The unied conceptual model describes systems with variability in
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space and time in both the problem space and solution space while employing names that
are neither associated with SPLE nor SCM terminology nor have ambiguous denitions.

Conceptual Models for Variability in Time. Likewise to SPLE, research in software
conguration management (SCM) proposes conceptual models, taxonomies and terminol-
ogy to describe and specify concepts of variability in time, such as revisions or changes
[109, 201, 145, 190, 151]. Prominent conceptual models in SCM are arguably version models
for managing changes within directories or les that describe several concepts for version
control, such as the supported graph topology or the objects to be versioned. Conradi
and Westfechtel [48] study several approaches from SCM and show that dierent version
models, versioning paradigms and concepts are employed with a varying terminology,
conceptual dierences and whether they stem from the product space (i.e., the solution
space in SPLE [7]) or the version space (i.e., the problem space in SPLE [7]). The authors
propose an overview of version models while dening and relating fundamental concepts.
An obvious conceptual dierence compared to SPLE is the semantics of the term version.
While in SPLE it is commonly used to describe the state of a system that supersedes the
previous state, in SCM a version describes an abstract concept that is specialized by either
a revision (i.e., a version that is intended to supersede its predecessor) or a variant (i.e.,
versions that are intended to coexist). While this pioneer work already relates terms and
concepts, both research areas were not far developed and some of the modern concepts
(such as Feature Revisions) could not be considered.

Related Surveys of Variability in Space and Time. As described above, Conradi and
Westfechtel [48] classify multiple approaches used for version control and relate funda-
mental concepts and terminology. Consecutively, Westfechtel et al. [241, 47] propose
the Uniform Version Model (UVM) along with its underlying layered architecture which
is considered the closest research to the unied conceptual model. Likewise to the con-
ceptual model which does not prescribe a particular variability model but basic concepts
for any variability model (i.e., Options and Constraints), the UVM is also independent
from particular version models as it employs a common base consisting of version rules
(i.e., Constraints) to allow for realizing dierent version models. Also, both models are
designed to support dierent dimensions of evolution (i.e., variability in space and time)
and any structure of Fragments (i.e., tree-based or graph-based). In contrast to the unied
conceptual model, the authors describe the UVM to be built only on a small number of
selected concepts while employing implementation specics like deltas or propositional
logic to manage variability.

Schwägerl [212] builds upon the UVM and contributes an extension that constitutes a
conceptual framework for the integration of SPLE and SCM based on MDSD. In contrast
to the unied conceptual model, several design decisions are made while developing the
conceptual framework, such as employing symmetric deltas and, in case of concurrent
modications, a three-way merge support for model-driven software product lines. Based
on the conceptual framework, Schwägerl proposes the tool SuperMod, which was part of
the study to derive the unied conceptual model that is independent of realization by
abstracting from implementation details of a certain tool. Linsbauer et al. [141] classify and
compare several VarCS (see Denition 2.2) and present core concepts, such as Revisions
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or variable Entities (i.e., Features). Several variation control systems of the study were
also included in the unication. Thus, tools were analyzed that have been published more
recently (i.e., VTS, SuperMod, and ECCO).

Mahmood et al. [152] propose the virtual platform, a method for incrementally transitioning
from clone-and-own to software conguration with an integrated platform. The proposed
method builds on earlier work that introduces governance levels ranging from clone-and-
own [61] to a fully integrated platform [11]. In this work, the authors propose conceptual
structures and operators that relate to the unication eort. Similar to the process for
conceiving the unied conceptual model and its concepts and relations, the authors survey
the literature and propose concepts and relations to support both strategies. While some
concepts for variability in space and/or time overlap (e.g., Features and Revisions), others
are less generic by specifying i) feature modeling (whereas the conceptual model employs
the concepts Feature Option and Constraint to allow for arbitrary types of variability
models), ii) a tree structure (whereas the Fragments in the unied conceptual model can be
organized as a graph that is a generalization of a tree structure), and iii) presence conditions
to be used for Mappings (whereas the form of a Mapping is not specied in the unied con-
ceptual model). While this research aimed for appropriate unication based on the elicited
tools, the concepts of the virtual platform were selected by the authors to support develop-
ment activities targeting clone management and the transition to an integrated platform.

Finally, there is research that analyzes and compares approaches and tools for SPLE or
SCM [189, 185, 26, 201, 77]. In contrast to the unied conceptual model, these works do
not focus on unifying the concepts and relations of the identied tools, but on classifying
and comparing them.

14.2. Unified Operations

Rubin et al.[198, 200] analyze three industrial case studies following the clone-and-own
practice. The authors propose a cloned product line management framework that comprises
seven conceptual operators to i) support the transition from cloned products to a product
line and ii) maintain the existing clones in a more ecient manner. For instance, the
authors propose an operator nd Features that returns a set of features of a particular
product, the operator interact? that determines interactions between an arbitrary number
of feature implementations based on features while specifying the form of interactions
to be checked, and the operator merge that combines several systems into a single system
based on artifacts that are considered similar and a specication for resolving interactions
between input functionalities. While this work relates to the unied operations by means
of the high abstraction level of the operators and discussing sequences of their application,
the pragmatics of the operations dier, leading to a dierent set of operations. The authors
propose operators for managing cloned variants whereas unied operations target the
wider perspective of supporting the evolution of a system that copes with variability in
space and time based on a reusable platform (i.e., the Unified System). Moreover, sources
of data dier. While the unied operations are conceived based on an expert survey starting
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from concrete individual tool operations, the proposed conceptual operators were derived
from observing three industrial organizations and subsequently applying the conceptual
operators to concrete development activities. Finally, the cloned product line management
framework does neither explicitly consider pre and post-conditions of operations nor
view-based operations and their degree of automation.

As described in Section 14.1, Mahmood et al. [152] propose the virtual platform, a method
for continuously recording meta-data (e.g., mappings between features and their locations
or clone traces among artifacts) during clone-and-own [61] to incrementally transition
to software conguration with a reusable platform. The proposed work builds on earlier
work that introduces governance levels representing a spectrum between ad hoc clone-
and-own and a fully integrated platform [11]. In this work, the authors propose conceptual
structures that form the basis of operators for the virtual platform that relates to the
unication eort. Besides similarities and dierences of the employed concepts to those
of the unied conceptual model (see Section 14.1), the authors propose two categories of
operators: traditional asset-oriented such as Add Asset or Map Asset To Feature to manage
assets (i.e., Fragments) and feature-oriented such as Add Feature or Propagate To Feature
devoted to features and their locations in assets. Since the proposed operators build on the
conceptual operators proposed by Rubin et al. [200], again the purpose of the operations is
signicantly dierent from the purpose of the unied operations to support the evolution
of a variable system presuming a reusable platform. Nonetheless, it can be argued that the
unied operations are also capable of supporting clone traces as the virtual platform via
the unied operation externalize Unified System that is mapped to the clone operation
of Git. Indeed, it would be interesting to include the virtual platform as another tool in the
set of studied tools for the unied conceptual model and the unied operations to consider
an even broader set of evolution purposes.

Further related work is conducted by Hinterreiter et al. [99, 98]. The authors propose local
and distributed operations for feature-oriented development [99]. Local operations only
aect one platform such as Commit Features while distributed operations involve multiple
platforms, such as Clone Features. Since this work is based on the tool ECCO that was part of
the considered set of tools for conceiving the unied operations, the operations proposed
by the authors are covered by the unication. The authors also compare approaches deal-
ing with temporal feature modeling (TFM) for capturing the evolution of a feature model
by its change history or the planning of future releases, and propose common operations
for temporal feature modeling (i.e., the TFM API ) [98]. Such operations comprise, for
instance, the creation of a feature or the modication of a feature group type. Highly
similar to the process of devising the unied operations, the authors conceive the API by
analyzing a set of tools while aiming for, as the authors call it, harmonization. While the
purpose of harmonization can be considered similar to the purpose of unication, it only
takes into account the coverage (i.e., whether the TFM API covers all operations of the
respective tools, yet does not provide more operations than that) and not the granularity
(i.e., whether a harmonized operation targets one particular concern). While this work
partially considers the same tools (i.e., DarwinSPL, DeltaEcore and FeatureIDE), it particularly
targets feature modeling.
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Further research is closely related with the unied operations: Projectional editing [240]
is proposed for SPLE to reduce the complexity when developing a variable system by
introducing (partial) views on variable systems which is essentially the same as view-
based editing. Since projectional editing is the foundation of VTS, this edit modality is
incorporated in the unication, specically the operation Externalize Unied System that
provides a partial view on the Unified System. Also closely related is the study of variation
control systems performed by Linsbauer et al. [141]. The authors identify two general
types of operations, namely Internalization operations to modify a variable system and
Externalization operations that create output from it. While these general types were
used to scope the unied operations and align terminology, they were also considerably
extended. For example, by explicitly specifying the input and output of the operations and
distinguishing between dierent internalization operations such as Internalize Changes,
Internalize Product or Internalize Domain.

Finally, Westfechtel et al. [241] introduce the uniform version management. As described
in Section 14.1, the uniform version model (UVM) comprises and relates concepts of vari-
ability in space and time and proposes view-based operations as common for SCM. While
the operations are not specied thoroughly, the rather recent tool SuperMod builds on the
UVM and is part of the set of tools studied in this thesis. As a consequence, the proposed
operations are considered for the unication.

14.3. Unified Approach

The unied approach supports the consistent, view-based development and evolution of
variable systems composed of heterogeneous artifacts which is a relevant and challenging
problem. In the following, related work to the unied approach is presented.

Consistency-Aware Variability Management

One of the closest research is conducted by Nieke et al. [169, 174, 175, 100, 171, 173, 176,
170]. The authors present several contributions to support the consistent evolution of an
SPL. First, by supporting the creation and re-planning of feature model evolution plans [100,
176]. As a starting point, the authors propose a temporal feature model (TFM) that describes
the evolution of a feature model at dierent points in time. A central concept of a TFM is
the temporal element that constitutes the basis for storing a feature model timeline along
with a temporal validity that denes a time interval in which a temporal element is valid.
Each element of the feature model specializes the temporal element and thus allows for
specifying its temporal validity. Based on the literature, the authors propose a set of basic
user-level operators for feature models, such as Create Feature or Change Group Type of
features. The re-planning of a feature model evolution plan and thus an application of re-
spective operators may lead to violations of its structural consistency, specied by means of
well-formedness rules of the TFM (e.g., a feature group must consist of at least two features
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or feature names must be unique at each point in time). To preserve the consistency, the au-
thors reason on the impact of evolution operations andmodel these as structural operational
semantics (SOS) rules that describe pre-conditions along with a transition from one state to
another if and only if all pre-conditions are satised. By analyzing the entire evolution time-
line of a TFM, the proposed approach additionally detects semantical inconsistencies (e.g.,
dead or false optional features) and provides an explanation for the time the inconsistency
was introduced while also identifying the causing evolution operators [173]. To enable
evolution planning for artifacts other than feature models, the authors propose to augment
existing metamodels with the concept of temporal elements to store and plan evolution
similar to a TFM [171]. Finally, changes in the feature model or mappings between features
and their realization may invalidate previously valid congurations. To this end, the au-
thors propose an approach for guiding the evolution of congurations while preserving the
behavior of a product [174, 175]. For example, in cases where features are merged, a cong-
uration is computed that maintains the product behavior by automatically transitioning it
to a conguration with the same set of artifacts based onmappings. The authors formalize a
set of conguration update operations, such as the Replace operation to update the mapping
between a feature and its artifacts. Domain engineers can use these operations to dene
guidance uponwhich application engineers are able to automatically update congurations.
All described concepts and methods are implemented in the tool suite DarwinSPL [170].
The research is closely related to the unied approach. A signicant similarity is the sup-
port for the consistent evolution of variable systems by means of automated consistency
preservation. Contrary, inconsistencies are handled that are caused or repaired in the
problem space (i.e., TFM and congurations), while the unied approach addresses incon-
sistencies that are caused or repaired in the solution space (i.e., between heterogeneous
artifacts of a product as well as between dierent products). Thus, this research can be
considered as complementary to ours. Considering concepts and operations dealing with
variability in space and time, the unied approach builds on the described research since
the tool DarwinSPL is considered in the unication. For example, a temporal validity

represents a System Revision while the operation get Copy Of Valid Model of DarwinSPL
represents the Externalize Domain operation. To this end, the described research provides
feature model specic concepts and operations whereas the unied approach builds on
a unied basis consisting of both System Revisions and Feature Revisions.

Research by Feichtinger et al. [65] relates to the handling of variability-related Inconsis-
tency Type 5 (product to feature model consistency). Based on a static code analysis and
feature-to-artifact mappings, the proposed approach lifts dependencies to feature level.
The computed feature dependencies are aggregated to create a dependency evolution
matrix that summarizes the relationships between features. Represented as links between
features in the feature model, dependencies are visualized to developers to support xing
potential inconsistencies. The approach proposed by the authors and the unied approach
share the same pragmatics of lifting dependencies between features found on implementa-
tion level to the domain abstraction level of the SPL for supporting a consistent evolution
of the solution space and the problem space. In contrast, the unied approach analyzes
dependencies between deltas (representing the entire product line) instead of performing
a static code analysis of individual products. Moreover, the unied approach also analyzes
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dependencies between features in the feature model (using SAT) and thus gains knowledge
about existing dependencies in the problem space which allows for automatically repairing
inconsistencies by adding the missing constraints, respectively. However, the unied
approach only performs a dependency analysis between deltas based on references to
determine requiring or excluding deltas, while the static code analysis also considers
control and data dependencies. The combination of such analyses of the solution space
with the analysis of the unied approach of the problem space along with automated
repair can be considered as complementary.

Unified Variability Management

Seidl et al. [220, 216] research integrated management of variability in space and time based
on delta modeling. To be able to apply their approach to dierent types of artifacts, support
for automatically deriving delta languages for metamodels is provided. The authors point
out that, while delta modeling can be used to realize both variability in space and time
by adding, modifying or removing fragments, the purpose of delta modules can dier. A
conguration delta module changes functionality of a product by enabling or disabling
functionality associated with a feature while maintaining the identity of modied artifacts.
An evolution delta module updates a feature in order to meet new requirements or x
defects. Modifying identiers or refactorings (that are explicitly not supposed to change
the functionality) are thus considered evolution operations. Furthermore, the authors
propose Hyper Feature Models (HFMs) [218] that extend regular feature models by Feature

Revisions as an explicit construct. DeltaEcore [219] realizes the described integrated
management and can be used in conjunction with HFMs. Since this tool was considered in
the unication, the unied approach builds on its concepts and additionally employs System
Revisions and the respective enables relation between Feature Revisions and System

Revisions. Identically to DeltaEcore, Constraints in the unied conceptual model can
be dened on Feature Options (i.e., Features and Feature Revisions). As the authors
state, a new Feature Revision should only be created in case the solution space of the
respective feature changes (e.g., due to bug xes) while in case there are no eects on
possible combinations with revisions of other features, changes to one feature do not
necessarily have to yield a new Feature Revision. Changes of a feature in the problem
space, such as the modication of an optional feature to a mandatory one, is explicitly not
considered a Feature Revision but an evolution of the feature model (i.e., to be captured
by a System Revision). This consideration is very similar to the semantics of both revision
types in this thesis. Likewise, changes in the problem space only yield a new System

Revision that represents a new revision of the domain. If changes are performed on the
solution space and internalized via Internalizes Changes, only the feature(s) specied in the
manually provided input expression (comprising feature or feature interactions aected
by the performed changes) obtain a new Feature Revision. However, a new Feature

Revision is always created without considering the semantics of a change. While the
approach proposed by the authors expects the user to directly edit the Unified System

(e.g., manually create Delta Modules, Feature Revisions and Mappings between them),
the unied approach is fully view-based and supports the evolution of a variable system
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exclusively via the modication of a particular product (see Section 8.3). This is an essential
dierence to this related work. Since the user is not supposed to provide delta modules
and mappings manually but instead performs changes on a product which are recorded
and mappings are computed fully automatically, no delta languages are needed. This
also makes the use of application conditions between delta modules and a topological
sorting, as performed in DeltaEcore during product externalization, superuous, since
the internalization order of changes (and thus the created mappings) reects the order
in which they must be applied during externalization. Thus, externalizing a product is
achieved with less eort, demonstrating the synergy between variability management
and view-based development. While the unied approach currently does not dierentiate
between evolution and conguration delta modules, this could be enabled by further
rening Delta Modules as Fragments into both delta module types and providing more
sophisticated ding techniques and heuristics to determine the pragmatics of changes.

Lity et al. [143, 142] propose higher-order delta modeling, a formalism and extension to delta
modeling for supporting the evolution of a delta-oriented SPL. Just as deltas transformmod-
els, higher-order deltas transform deltas. Thereby, a deltamodel (that species an entire SPL
at one point in time) can be evolved to its new revision. Thus, higher-order deltas represent
evolution steps describing the dierences between system revisions of the SPL. A higher-
order delta model encompasses higher-order deltas and represents the entire evolution
history of an SPL. As a consequence, higher-order deltas enable a change impact analysis of
the evolution of products. Both the unied approach and higher-order delta modeling sup-
port the integrated and explicit modeling of variability in space and time. Also, the unied
approach employs delta modeling for evolving and deriving products and thus managing
both variability dimensions by the same means. In contrast, higher-order deltas are used
to evolve an SPL (thus capturing the dierences between System Revisions) and not its
individual features (and its Feature Revisions). Therefore, the authors mention as future
work the integration of higher-order deltas with hyper feature modeling [218] (which is
essentially the problem space of DeltaEcore and thus supports Feature Revisions). Since
DeltaEcore was considered in the unication, the unied conceptual model would also
be well suited for combination with higher-order deltas by using them as renement of
the Fragment concept. Consequently, an option of the unied approach is to not only use
deltas as Fragments but also in addition higher-order deltas as Fragments.

Schulze [210] proposes an approach for automatically transitioning from variants of
software components (created via clone-and-own) to a reusable software platform. The ap-
proach is tailored to the automotive domain and supports compliance with norms such as
CMMI [184] and ISO26262 [97]. The performed research proposes sophisticated similarity
analyses to identify dierent types of clones (e.g., exact clones that comprise identical frag-
ments or semantic clones that behave identically but dier with respect to their structure).
Similarity analyses are performed on the architecture, interfaces, test cases and behavior
specication for extracting a software product line, and are part of the proposed Similarity
Analysis (SimA) framework. The research integrates into an existing tool landscape and
employs an industrial tool for variability management. While this research is similar to
work proposed by Rubin et al. [200, 198] and Mahmood et al. [152] as described above,
it also comprises several commonalities to the unied approach. The main commonality
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of both approaches constitutes the development paradigm: both approaches promote
reactive development based on product views. Thus, evolving a variable system benets
from the convenience of clone-and-own while employing a reusable platform common for
SPLE to systematically manage products. The main dierence of both approaches lies in
their dierent pragmatics (i.e., transition from clone-and-own to a reusable platform vs.
consistent evolution support for a system already employing a reusable platform) and thus
in the dierent supported operations, processes and analyses. For example, this concerns
the semantics of integrating changes into the variable system. While the unied approach
supports the integration of changes via Internalize Changes, the approach proposed by
Schulze follows an incremental reactive paradigm to enable an automated migration to a
software product line. This essentially conforms to the product-oriented unied operation
Internalize Product combined with feature localization. Moreover, the author utilizes an
industrial tool for variability management that supports Feature Revisions, and addi-
tionally references an SVN repository that provides System Revisions for solution space
artifacts such as Simulink models or code. Consequently, both approaches support vari-
ability in space and time while only the unied approach provides explicit constructs to
relate instances of both revision types within a single tool.

View-Based Management and Heterogeneous Artifacts

Atkinson et al. [22] propose Orthographic Software Modeling (OSM), an approach for view-
based software development (see Section 2.6.1). OSM lays the foundation for several prin-
ciples of the Vitruvius approach that is integrated with the unied approach to preserve
consistency between heterogeneous artifacts (see Section 2.6.2). Among other concepts,
the OSM approach proposes a dimension-based view navigation, a scheme for navigating
along dierent perspectives of the system. A dimension represents a property of a system’s
description, such as its composition (e.g., the (de)composition of components into sub-
components) or its abstraction level (e.g., the platform independent model (PIM) or imple-
mentation (e.g., Java)). The number of dimensions induce a multi-dimensional cube, while
every dimension exposes several options. As a consequence, a cell in the multi-dimensional
cube represents a view on the system. Moreover, and thus related to the research of this the-
sis, variants of the system are proposed as a further dimension. However, it can be argued
that, to represent variability in space, a dimension for variants would not scale well and a
dimension for features should be used. Furthermore, the authors do not consider variability
in time. I propose to consider system revisions as an additional dimension and feature revi-
sions as yet another dimension. It should also be considered that a dimension in the cube for
revisions would not be able to express branches and merges (i.e., a revision graph) but only
a linear sequence of revisions. Finally, the authors propose a projective approach for the
creation and management of views that are created on demand from the system, and that a
developer might be allowed to add, rename, or delete elements from the system via views,
for instance, to create new variants. This could be considered as pioneer work towards pro-
jectional editing [240] of product lines as performed by VarCS [141] (see Denition 2.2).
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Finally, a plethora of work and research is performed outside the SPLE community in
the area of checking and preserving consistency between heterogeneous artifacts of the
solution space (not considering variability at all) [24, 55, 118, 150, 122, 242, 227, 226, 96].
Meanwhile, numerous approaches have been proposed for variability-related inconsistency
detection and repair as describe in Chapter 7, also targeting consistency preservation of the
solution space by propagating changes across products. However, existing approaches to
preserve consistency between dierent types of artifacts are not utilized in SPLE research
yet. With the research presented in this thesis, the gap between existing approaches
explicitly proposed for consistency preservation between heterogeneous artifacts and
variability-related inconsistencies that can occur in the solution space is bridged by em-
bedding the consistency preserving mechanisms of Vitruvius in the evolution process
of a variable system. Specically, consistency preservation is performed i) during the
externalization of a product such that all its artifact types are constructed consistently,
and ii) whenever an artifact type of the product is modied by the developer, changes are
propagated to other dependent artifact types of that product.
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This thesis presented contributions to enable consistent management of systems that are
subject to variability in space and time and composed of heterogeneous artifacts. This
chapter concludes the thesis starting with presenting the contributions and reecting
the insights. Section 15.1 comprises a summarized answer to every research question.
Section 15.2 presents the relevance of the contributions for practitioners. Finally, future
work that builds upon the contributions closes the chapter in Section 15.3.

15.1. Summary

In the following, results are summarized with respect to the questions (see Section 1.2).

The rst research question focused on the unication of existing approaches that cope
with variability in space, time, and both to provide a common foundation. Based on the
sub-questions, the results are summarized.

RQ 1.1: Unied Concepts of Variability in Space and Time

Systems evolve rapidly and exist in many variations to address dierent requirements,
leading to subsequent revisions (variability in time) and concurrent product variants
(variability in space). During the last years, the unication of variability in space and time
has gained momentum. While managing both variability dimensions has been considered
in both SPLE and SCM research areas, the isolation of both engineering disciplines has
led to a plethora of research, approaches and tools [220, 219, 214, 170, 141, 126, 140, 172].
Thus, various concepts exist to deal with variability in space and time, hampering the
understanding of concepts and impeding the design of novel approaches to unify variability
in space and time. Starting from discussions at a dedicated Dagstuhl seminar [34], the
initial conceptual model was conceived that documented concepts of both variability
dimensions from both disciplines, yet did not unify them [9]. Thus, the initial conceptual
model was systematically rened based on ten elicited tools into the unied conceptual
model that appropriately unies existing research while closing identied gaps in state
of the art [7, 5]. The unied conceptual model is the rst contribution of this thesis
(see Chapter 5). Additionally, ten well-formedness rules are proposed that specify the
static semantics of the conceptual model. In the evaluation, the model’s granularity and
coverage of concepts and relations were evaluated with respect to the selected tools, and
two renement processes of the unied conceptual model were demonstrated to show
its applicability. The evaluation results showed that the model appropriately covers all
concepts and relations of the considered tools. It can play a descriptive role by describing
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state of the art concepts and relations for dealing with variability in space, time and both,
and can also be used to build novel approaches to cope with variability in space and
time, specically for explicitly dealing with Feature Revisions and System Revisions

simultaneously (as none of the considered tools currently support). In sum, the conceptual
model lls a gap that has been the focus of recent research. It increases the understanding
of concepts for variability in space and time, enables scoping and comparing research, and
provides guidance to design novel approaches for managing both variability dimensions.

RQ 1.2: Unied Operations for Variability in Space and Time

Providing a conceptual base for coping with both variability dimensions does not suce to
support the evolution of a variable system. Tools for coping with variability in space, time,
or both employ operations following dierent paradigms, modalities and even propose
opposing pre-conditions. Thus, a common understanding of operations is still missing for
establishing a body of knowledge on unied management of variability in space and time.
Following the same unication process as for the unied conceptual model, a diverse set
of contemporary tools was analyzed while expert surveys were conducted to ensure that
current, detailed, and reliable information on a tool’s functionality was obtained. The goal
was to understand the respective tools’ operations, their inputs, outputs, pre and post-
conditions and semantics for supporting either or both variability dimensions, and conceive
operations for coping with variability in space and time based on the abstract concepts
of the unied conceptual model. Edit modalities (i.e., editing the Unified System directly
or via views) and development paradigms (i.e., platform-oriented or product-oriented) were
identied as useful means to compare tools. Based on the insights and following the design
principle of separation of concerns (i.e., one operation per concern) unied operations were
conceived that constitute the second contribution of this thesis (see Chapter 6) [6]. The uni-
ed operations comprise 21 direct editing operations (one add, update, delete operation per
concept of the unied conceptual model), seven view-based operations and four predicates
used as pre and post-conditions of the view-based operations. Analogously to the evalua-
tion of the unied conceptual model, the granularity and coverage of the unied operations
was evaluated. Specically, whether an operation addresses more than one concern or one
concern only partially (aecting the granularity of the unied operation regarding the
studied tools), and whether the operations do not address concerns of considered tools or
addressed concerns are not covered by any tool (aecting the coverage of the unied opera-
tions). Additionally, their application was demonstrated based on variability scenarios from
literature. The evaluation results showed that the unied operations cover all concerns of
the considered tools and can also be used to realize the scenarios while explicitly support-
ing the management of Feature Revisions and System Revisions simultaneously. None
of the considered tools employ all of the unied operations nor support both revision types.
The advantages and shortcomings of the unied view-based operations, such as the high
degree of automation and their limited capabilities for editing Mappings, were discussed.
Finally, open challenges were identied that encompass the combination of i) edit modal-
ities and ii) development paradigms. Building on the unied conceptual model, the unied
operations provide further means to support researchers and practitioners in managing
both variability dimensions, to scope and compare their work as well as to analyze the
compatibility of tools based on the inputs, outputs, and semantics of operations.

192



15.1. Summary

RQ 1.3: Quantication of Unication

Evaluating the appropriateness of an abstraction for a diverse set of tools is dicult as the
abstraction is supposed to describe a common mental model that suits the mental model
encoded in each analyzed tool. In this research, the appropriateness of a unication is
quantied based on the granularity and coverage of the elements of an abstraction with
respect to the elements of the considered tools. Specically, elements of the abstraction
should i) neither be unnecessarily ne-grained (i.e., too specic) nor unnecessarily coarse-
grained (i.e., too generic), and ii) cover all elements of considered tools while not comprising
unnecessary elements (i.e., not employed by any tool). Guizzardi et al. [90] research means
to assess the granularity and coverage of an abstraction. The authors introduce the
properties laconic, lucid, complete, and sound to evaluate the appropriateness of modeling
languages. Although the same properties are used in this work, their framework is
augmented in several ways and metrics for quantifying the appropriateness of a unication
are proposed. The metrics for unication constitute the third contribution of this thesis
(see Section 10.2) [7, 5]. They were applied to quantify the appropriateness of the unied
conceptual model and the unied operations with respect to the selected set of tools.
Additionally, their application is explained and illustrated in Section 11.5 by computing the
metrics for two exemplary tools that rene the unied conceptual model. The proposed
metrics for unication are envisioned to be useful in dierent application areas, such as
for evaluating taxonomies in software engineering [108] or for the assessment of data
integration and consolidation approaches [106].

RQ 2.1: Variability-Related Inconsistency Types

Providing concepts and operations based on state of the art for coping with both variability
dimensions does not suce to holistically support the evolution of a variable system.
During development and maintenance of a variable system composed of heterogeneous
artifacts, inconsistencies can easily be introduced. In contrast to single-product systems,
variable systems are subject to a plethora of inconsistencies that vary for the problem
space, the solution space, and when both spaces are involved. Thus, notions of consistency
in SPLE are manifold. To obtain a body of knowledge regarding variability-related incon-
sistency types, their causes, eects and possible repair options and organize the research
landscape in this eld, the results of a literature survey have been generalized, mapped
to a classication schema, and gaps in the schema have been lled. A classication of
variability-related inconsistency types is proposed according to the problem space and
the solution space, and whether the cause or repair of an inconsistency is performed in a
product or in the variable system. In total, six product-level inconsistency types (i.e., caused
or repaired in a product), six system-level inconsistency types (i.e., caused or repaired in the
variable system), and two cross-system inconsistency types were identied, constituting the
fourth contribution of this thesis (see Chapter 7). The main observations revealed a varying
amount of research regarding the problem space and the solution space. While several
approaches propose explanations of inconsistencies or even fully-automated repair options,
this particularly addresses the problem space. Consistency preservation involving the
solution space is addressed signicantly less, especially when it comes to heterogeneous
artifacts and distributed development.
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RQ 2.2: Augmentation of Unied Operations with Consistency

Building on the gained knowledge of concepts and operations coping with variability in
space and time along with variability-related inconsistency types identied in state of the
art, the unied approach was devised that constitutes the fth contribution [3] (see Chap-
ter 8). The unied conceptual model and unied operations were rened by means of
supporting feature modeling and employing deltas as variability mechanism. The unied
approach represents a VarCS (see Denition 2.2) and thus encourages specic modalities for
evolving a variable system. Specically, the employed variability mechanism is used inter-
nally and is hidden from the developer, eliminating the need to directly edit Mappingswhich
is cognitively highly demanding [214, 141]. Thus, the unied approach allows to evolve the
variable system based on product views that lter irrelevant details such as variable artifacts.
As a consequence, it provides (unied) view-based operations that allow for a high degree
of automation such as computing Mappings or creating System Revisions and Feature

Revisions upon the internalization of changes. As a consequence, the unied approach
encourages the development of a variable system conveniently by means of a clone-and-
own strategy by evolving products, while it internally employs a reusable platform and a
variability mechanism that is hidden from the developer. Moreover, for each product-level
inconsistency type, the causing operation, the aected artifact, respective repair operations
and the artifact in which the repair should be performed were identied. In addition to
narrowing the eld of focus to inconsistencies caused or repaired in a product, the unied
approach oers consistency preservation to deal with a selected subset of inconsistencies
that are caused or repaired in the solution space of a product. This comprised three inconsis-
tency types: i) feature model to product consistency (i.e., in case the feature model is changed
such that it allows for new products, the approach provides hints to the developer about
new features or new valid feature combinations whose implementation might be missing
upon the externalization of an aected product), ii) product to feature model consistency (i.e.,
in case a product’s implementation is changed, the unied approach lifts new dependencies
from the solution space to the feature model in the problem space by automatically adding
the missing constraints), and iii) product consistency (the propagation of changes across
heterogeneous artifacts in the solution space, such as Java or UMLmodels, as well as across
dierent products). Enabling product consistency leverages the consistency preserving
mechanisms of the Vitruvius approach, leading to the nal research question.

RQ 2.3: Vitruvius for Variability-Aware Consistency Preservation

A plethora of work and research is performed outside the SPLE community in the area of
checking and preserving consistency between heterogeneous artifacts of the solution space
(not considering variability at all) while numerous approaches have been proposed for
variability-related inconsistency detection and repair (see Chapter 7). However, existing
approaches to preserve consistency between dierent types of solution space artifacts are
hardly considered in SPLE research yet. To this end, Vitruvius is an approach for view-
based development that supports (semi-) automated consistency preservation between
heterogeneous types of artifacts based on manually predened consistency preserva-
tion rules between two metamodels [116]. With this research, the gap between consis-
tency preservation across heterogeneous artifacts and variability-related inconsistencies
is bridged that can occur in the solution space: Consistency preserving mechanisms of
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Vitruvius are embedded in the unied approach, enabling product consistency: during
the externalization of a product, its solution space artifacts (e.g., Java and UML models)
are constructed consistently by propagating changes across the dependent artifact models,
and ii) whenever an artifact model of the product is modied by a developer, changes are
propagated to other dependent artifact models of that product and added to the unied
system to allow for propagation to other products. In turn, the unied approach extends
Vitruvius with concepts of the problem space to enable unied variability management.
The unied approach was implemented as VaVe 2.0 tool and evaluated based on two
real-world case study systems ArgoUML-SPL und MobileMedia to gather evidence on
its functional suitability (see Chapter 13). Since the ArgoUML-SPL has not been co-
evolved and remained in its inital revision, while the original ArgoUML kept evolving, the
ArgoUML-SPL was retroactively evolved by manually replaying the original changes from
the ArgoUML. The publicly provided data set constitutes the sixth contribution of this
thesis. The evaluation results showed that the unied approach is capable of detecting and
repairing variability-related solution space inconsistency types. As a consequence, the
evaluation provides evidence for the synergy between view-based development of variable
systems, as encouraged by VarCS, and automated view-based consistency preservation
of variability-related inconsistencies. To sum up, the unied approach oers consistency
preservation to deal with inconsistency types that are either caused or repaired in the
solution space during view-based evolution of systems comprised of heterogeneous ar-
tifact types while uniformly coping with variability in space and time. Thus, it supports
consistent unied management of variable systems, which was the goal of this thesis.

15.2. Relevance for Industrial Applications

The research presented in this thesis has relevance for many application areas and practices
of software engineering, considering software is becoming continuously prevalent in
almost all areas of life.

Areas of Application. Besides its relevance for variable software systems, consistency-
aware view-based management of systems coping with variability in space and time com-
posed of heterogeneous artifacts is considered in several areas of application in industry.
In the following, selected application areas are presented. On the one hand, it can be highly
useful in automotive systems engineering that has to deal with a high diversity of possible
car variants that, in addition, exist in various generations and comprise heterogeneous arti-
fact types describing dierent domains (i.e., mechanical engineering, electrical engineering
and software engineering). The complexity of automotive systems is rapidly increasing,
revealing a growing need for reusability and traceability of existing functionality across the
entire product landscape [38, 180]. On the other hand, the presented research is also rele-
vant in industrial plant engineering that customizes and constructs a plant’s software from
reusable modules such as standard machines and automation components including hetero-
geneous artifact types describing dierent domains [8, 4, 68, 222, 67]. Finally, the conducted
research has relevance in machine manufacturing for conguration of machinery [74].
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Software Over The Air Updates. The digital twin is a term frequently used in the context
of digitization and represents a research area that is becoming increasingly important [166].
It was initially introduced as an “integrated multi-physics, multi-scale, probabilistic simu-
lation of a vehicle or system that uses the best available physical models, sensor updates, eet
history, etc., to mirror the life of its ying twin” [221, p. 11]. Such a virtual environment that
allows for realistic simulations is often used in the context of production and automotive
industry [36]. For instance, a digital twin can describe a congured variant of an individual
car before it is being built. Particularly in the context of Software Over The Air (SOTA)
updates in the automotive industry [89], a digital twin could be used to assess the compat-
ibility of a new feature revision (e.g., to eliminate a bug) to products comprising dierent
revisions of features. Moreover, with the introduced regulations of UNECE1, providing evi-
dence that a car can perform software updates safely and securely while keeping a revision
history of all software components will be mandatory for all manufacturers. The unied
conceptual model can be considered a potential starting point for the software update man-
agement by explicitly modeling system revisions, feature revisions and their relations.

Feature-Oriented Agile Software Development. Agile software development consti-
tutes a software engineering practice based on iterative and incremental development.
Practices commonly employed during agile development are, for example, DevOps, con-
tinuous integration, or continuous deployment. Augmenting changes performed on a
product variant with the information which feature or feature interaction is aected allows
for new future possibilities during agile development. For example, it could be used for
access control such that developers can only modify features they are allowed to change,
or to reject changes if they aect features that were not intended to be modied by the
developer (i.e., the specied expression in the Internalize Changes operation deviates from
the actually changed features).

15.3. Future Work

This thesis proposed an approach for unied consistent management of variable systems
composed of heterogeneous artifacts. Beyond the scope of the thesis and based on the
presented contributions, it opens up potential for future work that is summarized in this
section for each main contribution.

Unied Conceptual Model. The unied conceptual model (see Chapter 5) has been
designed based on a diverse set of tools from the SPLE and SCM engineering disciplines.
As described in Section 11.9, potential future work on the unied conceptual model
encompasses its application to a set of real-world case studies from engineering disciplines
other than SPLE and SCM to identify limitations or shortcomings of the model. This would
expand the application area of the unied conceptual model beyond the current state of
the art in SPLE and SCM.

1 https://wiki.unece.org/pages/viewpage.action?pageId=60362218
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Unied Operations. Gained insights during the construction of the unied operations
(see Chapter 6) allowed to identify open challenges in state of the art that open up future re-
search avenues, as described in Section 12.7. On the one hand, this constitutes the combina-
tion of development paradigms (i.e., platform-oriented and product-oriented development).
While the goal would be to allow for arbitrary alternation between both paradigms to
leverage benets of both (which is currently not supported by any tool), product-oriented
edits do not provide ne-grained mappings that are necessary for platform-oriented edit-
ing. Thus, additional techniques such as feature location would be required. Further future
work constitutes the combination of edit modalities (i.e., direct and view-based editing).
While the goal would be to combine both edit modalities to leverage benets of both, the
challenge is to provide an editable view that includes mappings, which need to be displayed
dierently for every type of artifact. While the combination of both edit paradigms is
supported by VTS, it only supports text as artifact type.

Unied Approach. The unied approach (see Chapter 8) paves the way for future
works as discussed in Section 13.8. Since it builds on the unied view-based operations,
it inherits the limitation for editing mappings. As a consequence, the combination of
edit modalities, as described above, also represents future work for the unied approach.
Moreover, the unied approach is currently only applicable in a greeneld scenario where
the underlying data structure is populated incrementally as the system evolves. Thus, it
would be interesting to consider an automated migration of legacy systems for applying the
approach to existing variable systems. Possible migration options comprise the replay of
annotated version histories to automatically compute feature-to-fragment mappings [195],
or reverse engineering a product line from a set of products [155, 128]. Moreover, in this
research, the consistency preservation mechanisms of Vitruvius are used to preserve
consistency fully automatically. However, user decisions may be necessary in case several
valid repair options exist. Thus, future work comprises the consideration of user decisions
to replay them during product externalization. Last but not least, the evaluation can be
extended by applying the unied approach to additional real-world case studies comprising
artifact types from other engineering disciplines.
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