10 research outputs found

    Towards optimal packed string matching

    Get PDF
    a r t i c l e i n f o a b s t r a c t Dedicated to Professor Gad M. Landau, on the occasion of his 60th birthday Keywords: String matching Word-RAM Packed strings In the packed string matching problem, it is assumed that each machine word can accommodate up to α characters, thus an n-character string occupies n/α memory words. The main word-size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string matching work. (b) We also consider the complexity of the packed string matching problem in the classical word-RAM model in the absence of the specialized micro-level instructions wssm and wslm. We propose micro-level algorithms for the theoretically efficient emulation using parallel algorithms techniques to emulate wssm and using the Four-Russians technique to emulate wslm. Surprisingly, our bit-parallel emulation of wssm also leads to a new simplified parallel random access machine string-matching algorithm. As a byproduct to facilitate our results we develop a new algorithm for finding the leftmost (most significant) 1 bits in consecutive non-overlapping blocks of uniform size inside a word. This latter problem is not known to be reducible to finding the rightmost 1, which can be easily solved, since we do not know how to reverse the bits of a word in O (1) time

    Deterministic indexing for packed strings

    Get PDF
    Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet s, we show how to preprocess S in O(n) (deterministic) time and space O(n) such that given a packed pattern string of length m we can support queries in (deterministic) time O(m/a + log m + log log s), where a = w /log s is the number of characters packed in a word of size w = log n. Our query time is always at least as good as the previous best known bounds and whenever several characters are packed in a word, i.e., log s << w, the query times are faster

    String Synchronizing Sets: Sublinear-Time BWT Construction and Optimal LCE Data Structure

    Full text link
    Burrows-Wheeler transform (BWT) is an invertible text transformation that, given a text TT of length nn, permutes its symbols according to the lexicographic order of suffixes of TT. BWT is one of the most heavily studied algorithms in data compression with numerous applications in indexing, sequence analysis, and bioinformatics. Its construction is a bottleneck in many scenarios, and settling the complexity of this task is one of the most important unsolved problems in sequence analysis that has remained open for 25 years. Given a binary string of length nn, occupying O(n/logn)O(n/\log n) machine words, the BWT construction algorithm due to Hon et al. (SIAM J. Comput., 2009) runs in O(n)O(n) time and O(n/logn)O(n/\log n) space. Recent advancements (Belazzougui, STOC 2014, and Munro et al., SODA 2017) focus on removing the alphabet-size dependency in the time complexity, but they still require Ω(n)\Omega(n) time. In this paper, we propose the first algorithm that breaks the O(n)O(n)-time barrier for BWT construction. Given a binary string of length nn, our procedure builds the Burrows-Wheeler transform in O(n/logn)O(n/\sqrt{\log n}) time and O(n/logn)O(n/\log n) space. We complement this result with a conditional lower bound proving that any further progress in the time complexity of BWT construction would yield faster algorithms for the very well studied problem of counting inversions: it would improve the state-of-the-art O(mlogm)O(m\sqrt{\log m})-time solution by Chan and P\v{a}tra\c{s}cu (SODA 2010). Our algorithm is based on a novel concept of string synchronizing sets, which is of independent interest. As one of the applications, we show that this technique lets us design a data structure of the optimal size O(n/logn)O(n/\log n) that answers Longest Common Extension queries (LCE queries) in O(1)O(1) time and, furthermore, can be deterministically constructed in the optimal O(n/logn)O(n/\log n) time.Comment: Full version of a paper accepted to STOC 201

    A Parallel Computational Approach for String Matching- A Novel Structure with Omega Model

    Get PDF
    In r e cent day2019;s parallel string matching problem catch the attention of so many researchers because of the importance in different applications like IRS, Genome sequence, data cleaning etc.,. While it is very easily stated and many of the simple algorithms perform very well in practice, numerous works have been published on the subject and research is still very active. In this paper we propose a omega parallel computing model for parallel string matching. The algorithm is designed to work on omega model pa rallel architecture where text is divided for parallel processing and special searching at division point is required for consistent and complete searching. This algorithm reduces the number of comparisons and parallelization improves the time efficiency. Experimental results show that, on a multi - processor system, the omega model implementation of the proposed parallel string matching algorithm can reduce string matching time

    Faster algorithms for longest common substring

    Get PDF
    In the classic longest common substring (LCS) problem, we are given two strings S and T, each of length at most n, over an alphabet of size σ, and we are asked to find a longest string occurring as a fragment of both S and T. Weiner, in his seminal paper that introduced the suffix tree, presented an (n log σ)-time algorithm for this problem [SWAT 1973]. For polynomially-bounded integer alphabets, the linear-time construction of suffix trees by Farach yielded an (n)-time algorithm for the LCS problem [FOCS 1997]. However, for small alphabets, this is not necessarily optimal for the LCS problem in the word RAM model of computation, in which the strings can be stored in (n log σ/log n) space and read in (n log σ/log n) time. We show that, in this model, we can compute an LCS in time (n log σ / √{log n}), which is sublinear in n if σ = 2^{o(√{log n})} (in particular, if σ = (1)), using optimal space (n log σ/log n). We then lift our ideas to the problem of computing a k-mismatch LCS, which has received considerable attention in recent years. In this problem, the aim is to compute a longest substring of S that occurs in T with at most k mismatches. Flouri et al. showed how to compute a 1-mismatch LCS in (n log n) time [IPL 2015]. Thankachan et al. extended this result to computing a k-mismatch LCS in (n log^k n) time for k = (1) [J. Comput. Biol. 2016]. We show an (n log^{k-1/2} n)-time algorithm, for any constant integer k > 0 and irrespective of the alphabet size, using (n) space as the previous approaches. We thus notably break through the well-known n log^k n barrier, which stems from a recursive heavy-path decomposition technique that was first introduced in the seminal paper of Cole et al. [STOC 2004] for string indexing with k errors. </p

    Faster Algorithms for Longest Common Substring

    Get PDF
    International audienceIn the classic longest common substring (LCS) problem, we are given two strings S and T , each of length at most n, over an alphabet of size σ, and we are asked to find a longest string occurring as a fragment of both S and T. Weiner, in his seminal paper that introduced the suffix tree, presented an O(n log σ)-time algorithm for this problem [SWAT 1973]. For polynomially-bounded integer alphabets, the linear-time construction of suffix trees by Farach yielded an O(n)-time algorithm for the LCS problem [FOCS 1997]. However, for small alphabets, this is not necessarily optimal for the LCS problem in the word RAM model of computation, in which the strings can be stored in O(n log σ/ log n) space and read in O(n log σ/ log n) time. We show that, in this model, we can compute an LCS in time O(n log σ/ √ log n), which is sublinear in n if σ = 2 o(√ log n) (in particular, if σ = O(1)), using optimal space O(n log σ/ log n). We then lift our ideas to the problem of computing a k-mismatch LCS, which has received considerable attention in recent years. In this problem, the aim is to compute a longest substring of S that occurs in T with at most k mismatches. Flouri et al. showed how to compute a 1-mismatch LCS in O(n log n) time [IPL 2015]. Thankachan et al. extended this result to computing a k-mismatch LCS in O(n log k n) time for k = O(1) [J. Comput. Biol. 2016]. We show an O(n log k−1/2 n)-time algorithm, for any constant k > 0 and irrespective of the alphabet size, using O(n) space as the previous approaches. We thus notably break through the well-known n log k n barrier, which stems from a recursive heavy-path decomposition technique that was first introduced in the seminal paper of Cole et al. [STOC 2004] for string indexing with k errors

    Efficient string algorithmics across alphabet realms

    Get PDF
    Stringology is a subfield of computer science dedicated to analyzing and processing sequences of symbols. It plays a crucial role in various applications, including lossless compression, information retrieval, natural language processing, and bioinformatics. Recent algorithms often assume that the strings to be processed are over polynomial integer alphabet, i.e., each symbol is an integer that is at most polynomial in the lengths of the strings. In contrast to that, the earlier days of stringology were shaped by the weaker comparison model, in which strings can only be accessed by mere equality comparisons of symbols, or (if the symbols are totally ordered) order comparisons of symbols. Nowadays, these flavors of the comparison model are respectively referred to as general unordered alphabet and general ordered alphabet. In this dissertation, we dive into the realm of both integer alphabets and general alphabets. We present new algorithms and lower bounds for classic problems, including Lempel-Ziv compression, computing the Lyndon array, and the detection of squares and runs. Our results show that, instead of only assuming the standard model of computation, it is important to also consider both weaker and stronger models. Particularly, we should not discard the older and weaker comparison-based models too quickly, as they are not only powerful theoretical tools, but also lead to fast and elegant practical solutions, even by today's standards

    28th Annual Symposium on Combinatorial Pattern Matching : CPM 2017, July 4-6, 2017, Warsaw, Poland

    Get PDF
    Peer reviewe
    corecore