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Abstract

Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation
Given a static reference string R and a source string S, a relative compression of S with respect
to R is an encoding of S as a sequence of references to substrings of R. Relative compression
schemes are a classic model of compression and have recently proved very successful for compress-
ing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of
relative compression in a dynamic setting where the compressed source string S is subject to edit
operations. The goal is to maintain the compressed representation compactly, while supporting
edits and allowing efficient random access to the (uncompressed) source string. We present new
data structures that achieve optimal time for updates and queries while using space linear in the
size of the optimal relative compression, for nearly all combinations of parameters. We also present
solutions for restricted and extended sets of updates. To achieve these results, we revisit the dy-
namic partial sums problem and the substring concatenation problem. We present new optimal or
near optimal bounds for these problems. Plugging in our new results we also immediately obtain
new bounds for the string indexing for patterns with wildcards problem and the dynamic text and
static pattern matching problem.

Subsequence Automata with Default Transitions Let S be a string of length n with char-
acters from an alphabet of size σ. The subsequence automaton of S (often called the directed
acyclic subsequence graph) is the minimal deterministic finite automaton accepting all subsequences
of S. A straightforward construction shows that the size (number of states and transitions) of the
subsequence automaton is O(nσ) and that this bound is asymptotically optimal.

In this paper, we consider subsequence automata with default transitions, that is, special tran-
sitions to be taken only if none of the regular transitions match the current character, and which
do not consume the current character. We show that with default transitions, much smaller subse-
quence automata are possible, and provide a full trade-off between the size of the automaton and
the delay, i.e., the maximum number of consecutive default transitions followed before consuming
a character.

Specifically, given any integer parameter k, 1 < k ≤ σ, we present a subsequence automaton
with default transitions of size O(nk logk σ) and delay O(logk σ). Hence, with k = 2 we obtain an
automaton of size O(n log σ) and delay O(log σ). At the other extreme, with k = σ, we obtain an
automaton of size O(nσ) and delay O(1), thus matching the bound for the standard subsequence
automaton construction. Finally, we generalize the result to multiple strings. The key component
of our result is a novel hierarchical automata construction of independent interest.
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Deterministic Indexing for Packed Strings Given a string S of length n, the classic string
indexing problem is to preprocess S into a compact data structure that supports efficient subsequent
pattern queries. In the deterministic variant the goal is to solve the string indexing problem without
any randomization (at preprocessing time or query time). In the packed variant the strings are
stored with several character in a single word, giving us the opportunity to read multiple characters
simultaneously. Our main result is a new string index in the deterministic and packed setting.
Given a packed string S of length n over an alphabet σ, we show how to preprocess S in O(n)
(deterministic) time and space O(n) such that given a packed pattern string of length m we can
support queries in (deterministic) time O (m/α+ logm+ log log σ) , where α = w/ log σ is the
number of characters packed in a word of size w = Θ(log n). Our query time is always at least as
good as the previous best known bounds and whenever several characters are packed in a word, i.e.,
log σ � w, the query times are faster.

Dynamic Partial Sums in Constant Time and Succinct Space with the Ultra Wide
Word-RAM Model The dynamic partial sums problem is to dynamically maintain an array of
n integers while supporting efficient access, update and partial sums queries. This classic problem,
and its variations, are very well studied in many different computational models [Fre82,FS89,Fen94,
HSS11,HR03,HRS96,RRR01, PD04]. We solve the partial sums problem in the ultra wide word-
RAM model, recently introduced by Farzan et al. [FLONS15], where we, in constant time, are
allowed to manipulate words of size w2 and access w memory locations. Farzan et al. [FLONS15]
additionally gave a solution to the dynamic partial sums problem by simulating the RAMBO model
to obtain a result by Brodnik et al. [BKMN06]. In this paper we present an improved solution to
the dynamic partial sums problem in the ultra wide word-RAM model that supports all operations
in either constant or O(log log n) time, depending on whether we allow multiplication, and succinct
space. We pose as an open problem whether it is possible in the ultra wide word-RAM model to
additionally support the classic select operation in constant time.
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Danish Abstract

Dynamisk relativ kompression, dynamiske delsummer og delstrengskonkatenering Gi-
vet en statisk referencestreng R og en kildestreng S, er en relativ kompression af S med hensyn til
R en indkodning af S som en sekvens af referencer til delstrenge i R. Relativ kompression er en
klassisk model for kompression der for nyligt har vist sig at være meget egnet til komprimering af
ekstremt store mængder meget repetiv data som f.eks. genomer og webdata. Vi påbegynder studiet
af relativ kompression i en dynamisk kontekst hvor vi tillader at kildestrengen kan ændres løben-
de. Målet er at vedligeholde den komprimerede repræsentation kompakt mens understøttelse for
ændringer og tilfældigt opslag i den ukomprimerede kildestreng er bibeholdt. Vi præsenterer en ny
datastruktur der, for næsten alle parametre, opnår optimal køretid for opdateringer og forespørgsler
mens pladsforbruget er linært i størrelsen af den optimale relative kompression. Vi præsenterer der-
udover løsninger hvor vi begrænser og udvider de typer opdateringer vi understøtter. For at opnå
disse resultater undersøger vi problemerne med at repræsentere dynamiske delsummer og svare på
delstrengskonkatenerings forespørgsler. Vi præsenterer nye optimale og næsten optimale grænser for
disse problemer. Hvis vi benytter disse resultater i streng indeksering for mønstre med jokertegn
problemet og dynamisk tekst og statisk mønster genkendelses problemet opnår vi direkte bedre
grænser for disse problemer.

Delsekvensautomater med standardtransitioner Lad S være en streng med længde n og
tegn taget fra et alfabet med størrelse σ. Delsekvensautomaten bygget over S (ofte kaldet directed
acyclic subsequence graph i litteraturen) er den minimale deterministiske automat der accepterer
alle delsekvenser af S. En simpel konstruktion af automaten viser at størrelsen (antallet af tilstande
og transitioner) af automaten er O(nσ) og at denne grænse er asymptotisk optimal. I denne artikel
undersøger vi delsekvensautomater med standardtransitioner, som er specielle transitioner der kun
følges hvis ingen normale transitioner er identiske med det aktuelle tegn, og som ikke konsumere
det aktuelle tegn. Vi viser at standard transitioner muliggør meget mindre delsekvensautomater,
og giver en fuld afvejning mellem størrelse af automaten og forsinkelsen af automaten, som er det
maksimale antal af på hinanden følgende standardtransitioner som vi kan følge før vi konsumere et
tegn. Mere specifikt, givet en heltals parameter k, 1 < k ≤ σ, giver vi en delsekvensautomat med
standardtransitioner med størrelse O(nk logk σ) og forsinkelse O(logk σ). På denne måde opnår vi
med k = 2 en automat med størrelse O(n log σ) og forsinkelse O(log σ). I det andet yderpunkt,
med k = σ, opnår vi en automat med størrelse O(nσ) og forsinkelse O(1), som er identisk med den
oprindelige delsekvensautomat uden standard transitioner. Derudover generaliserer vi resultatet til
automater over flere strenge. Nøglekomponenten i vores resultat er en original hierarkisk automat
konstruktion der i sig selv er interessant.
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Deterministisk indeks for pakkede strenge Det klassiske strengindekseringsproblem er, givet
en streng S af længde n, at forhåndsprocessere S til en datastruktur der efterfølgende understøtter
effektive forespørgsler efter mønstre. I den deterministiske kontekst er målet at løse strengindek-
seringsproblemet uden brug af randomisering (både ved forhåndsprocessering og forespørgsler). I
den pakkede kontekst er strengene gemt med flere tegn i hvert maskinord så flere tegn kan læses
simultant. Vores primære resultat er et nyt strengindeks i den deterministiske og pakkede kontekst.
Givet en pakket streng S af længde n med tegn fra et alfabet af størrelse σ, viser vi hvordan S kan
forhåndsprocesseres i O(n) deterministisk tid og O(n) plads så vi kan svare på forespørgsler på en
pakket streng af længde m i deterministisk tid O (m/α+ logm+ log log σ) , hvor α = w/ log σ er
antallet af tegn vi kan pakke i et maskinord af størrelse w = Θ(log n). Vores forespørgselstid er altid
mindst lige så god som den bedste tidligere grænse og når adskillige tegn kan pakkes i et maskinord,
dvs. når log σ � w, er vores forespørgsler hurtigere.

Dynamiske delsummer i konstant tid og succinct plads med Ultra Wide Word-RAM
Modellen Det dynamiske delsumsproblem er at vedligeholde en dynamisk tabel med n heltal og
samtidig understøtte effektive opslag, opdateringer og delsums forespørgsler. Dette klassiske pro-
blem, og dets variationer, er velstuderet i mange forskellige beregningsmodeller [Fre82,FS89,Fen94,
HSS11,HR03,HRS96,RRR01,PD04]. Vi løser delsumsproblemet i ultra wide word-RAM modellen,
fornyligt introduceret af Farzan et al. [FLONS15], hvor vi, i konstant tid, kan manipulere ord af stør-
relse w2 og tilgå w hukommelseslokationer. Farzan et al. [FLONS15] gav desuden en løsning til det
dynamiske delsumsproblem ved at simulere RAMBO modellen for at opnå et resultat af Brodnik
et al. [BKMN06]. I denne artikel præsenterer vi en forbedret løsning til det dynamiske delsums-
problem i ultra wide word-RAM modellen hvor alle operationer understøttes i enten konstant tid
eller O(log log n) tid, afhængigt af om vi tillader multiplikation, og succinct plads. Som åbent pro-
blem stiller vi derudover spørgsmålet om hvorvidt det er muligt at understøtte den klassiske select
operation i konstant tid.
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Chapter 1

Introduction

This introduction will summarize the papers that I have coauthored during my studies and elaborate
on some of the topics. The full papers are given in each of the following chapters. The dissertation
consists of this introduction and the following (revised) papers.

Chapter 2 Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation.
Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel
Vildhøj and Søren Vind. In 27th International Symposium on Algorithms and Computation
(ISAAC 2016), Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, 2016,
pages 18:1–18:13.

Chapter 3 Subsequence Automata with Default Transitions. Philip Bille, Inge Li Gørtz and Fred-
erik Rye Skjoldjensen. In 42nd International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2016), Lecture Notes in Computer Science, vol 9587,
2016, pages 208-216.

Chapter 4 Deterministic Indexing for Packed Strings. Philip Bille, Inge Li Gørtz and Frederik
Rye Skjoldjensen. Submitted to 28th Annual Symposium on Combinatorial Pattern Matching
(CPM 2017).

Chapter 5 Dynamic Partial Sum in Constant Time and Succinct Space with the Ultra Wide Word
Model. Philip Bille, Inge Li Gørtz and Frederik Rye Skjoldjensen. Unpublished.

1.1 Dynamic Relative Compression, Dynamic Partial Sums, and
Substring Concatenation

In Chapter 2 we study dynamic relative compression. Given strings S and R, we are interested
in representing S as a sequence of references to substrings in R. We call S the source string and
R the reference string. We define a relative compression of S with respect to R as a sequence
C = (i1, j1), . . . , (i|C|, j|C|) such that S = R[i1, j1] · · ·R[i|C|, j|C|] and call C a substring cover or
just a cover for S. Each element of C is a pair of indices representing a substring in R and when
the substrings are concatenated together, in the order their indices appear in C, we obtain S. We
say that C is an optimal cover of S if no other cover of S exists with fever references to R. The

1



dynamic relative compression problem is to maintain a relative compression of S under the following
operations. Let i be a position in S and α be a character.

access(i): return the character S[i],

replace(i, α): change S[i] to character α,

insert(i, α): insert character α before position i in S,

delete(i): delete the character at position i in S.

In Chapter 2 we also consider two variations of the problem. In the first, we restrict the opera-
tions to access and replace. In the second, we maintain a set of strings S and, besides supporting the
operations listed above on individual strings in S, consider the operations concat and split between
two strings in S.

We assume a standard unit-cost RAM with w-bit words with standard arithmetic and logical
operations on words and obtain the following result:

Theorem 1. Let R and S be a reference and source string of lengths r and N , respectively, and let
n be the length of the optimal substring cover of S by R. Then, we can solve the dynamic relative
compression problem supporting access, replace, insert, and delete

(i) in O(n+ r) space and O
(

logn
log logn + log log r

)
time per operation, or

(ii) in O(n+ r logε r) space and O
(

logn
log logn

)
time per operation, for any constant ε > 0.

The result above is obtained under the assumption that w ≥ log(n+ r).
A critical part in obtaining the space bounds of Theorem 1 is that we are able to maintain a

cover of S that contains no more than twice the number of references to R than an optimal cover
of S. We do this by maintaining a cover C where we guarantee that the string obtained from
concatenating the substrings of R represented by any two consecutive pairs of indices in C will
never give a string that exists as a substring of R. We call a cover with this property for a maximal
cover and in Lemma 1 we prove that a maximal cover is never more than twice the size of any other
cover. Initially, we construct a maximal cover of S with respect to R by constructing the suffix
tree of R and then greedily matching the maximal prefix of the remaining part of S: Assume that
we have constructed the maximal cover C for the prefix S[0..i]. We then extend C by matching
the maximal prefix of S[i + 1..N ] in the suffix tree of R. The next two sections describe the data
structures we use for solving the dynamic relative compression problem. After every operation that
changes S we use a substring concatenation data structure to maintain the maximality of the cover.
When we answer queries on S we need to access the relevant part of R. We employ a dynamic
partial sums data structure on the length of the substrings represented by C to access R fast. The
substring concatenation data structure improves the best known bounds while the partial sums data
structure introduce additional operations while maintaining the best known bounds.

1.1.1 Dynamic Partial Sums

Each operation on S implies an access to C for locating the correct substring of R. We call a pair
of indices of C for a block and the length of a block is the length of the substring that it represents.

2



The block that contains index i of S is the first block of C for which the sum of the previous block
lengths, including its own length, is larger than or equal to i. We store the block lengths of C in
a partial sums data structure such that we can locate the block containing a given index fast. The
partial sums problem is to maintain an integer array Z of length s under the following operations:

sum(i): return
∑i

j=1 Z[j],

update(i,∆): set Z[i] = Z[i] + ∆,

search(t): return 1 ≤ i ≤ s such that sum(i − 1) < t ≤ sum(i). To ensure well-defined answers,
we require that Z[i] ≥ 0 for all i.

insert(i,∆): insert a new entry in Z with value ∆ before Z[i],

delete(i): delete the entry Z[i] of value at most ∆.

merge(i): replace entry Z[i] and Z[i+ 1] with a new entry with value Z[i] + Z[i+ 1].

divide(i, t): , where 0 ≤ t ≤ Z[i]. Replace entry Z[i] by two new consecutive entries with value t
and Z[i]− t, respectively.

We obtain the following result:

Theorem 2. Given an array of length s storing w-bit integers and parameter δ, such that ∆ < 2δ,
we can solve the dynamic partial sums problem supporting sum, update, search, insert, delete, merge,
and divide in linear space and O(log s/ log(w/δ)) time per operation.

We store the cover C as doubly linked list and keep an auxiliary link from each block length
stored in the partial sums data structure to the corresponding block in C. We can now answer
an access(i) query on S by first finding the block number that contains index i by performing a
search(i). We follow the auxiliary reference and obtain the block bl = (il, jl) from C. The local
index in R[il, jl] of the ith character in S is then ` = i − sum(l − 1) such that the answer to the
query is character R[il + `− 1]. For the other queries, we locate bl = (il, jl) and ` as for access, but
since these queries change S we need to update the partial sums data structure and C. The details
of how to perform the remaining operations are given in Section 2.2.2.

Our Solution The following is a brief description of our solution for solving the partial sums
problem. Pătraşcu and Demaine [PD04] present a solution to the partial sums problem that we
extend by introducing support for the operations insert, delete, merge and divide on Z. Our con-
struction follows their ideas but we simplify their construction by taking advantage of a result
by Pătraşcu and Thorup [PT14] for maintaining small sets of integers. The overall idea is to
construct a solution for small sequences of B = Θ(min(w/ logw,w/δ)) elements where all par-
tial sums operations take constant time. This result is summarized in Theorem 6. We then use
this solution for representing nodes in a B-tree that store Z in the leafs. The B-tree has height
O(logB s) = O(max( log s

log(w/ logw) ,
log s

log(w/δ))) = O(log s/ log(w/δ)). A result by Willard [Wil00] enables
us to maintain this tree under all partial sums operations in O(log s/ log(w/δ)) time per operations
which gives us Theorem 2.

In Section 2.3 we give a more elaborate explanation of how we obtain Theorem 2, but neglect
the details of how we maintain the auxiliary links between the block lengths stored in the partial
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sums data structure and the indices of the blocks stored in the cover C. Our data structure for
representing sequences of size B can be augmented with pointers to auxiliary data in the following
way: We maintain an array x of size O(B) where each index store O(logB) bits. We keep this
array aligned with the array C. When we obtain an index i from a search operation we can then
access O(logB) bits of auxiliary data in x. The array x requires O(B logB) bits and can therefore
be stored in a single word, just as with C. To obtain the connection to the cover C we additionally
maintain the dynamic array X that contains an index for each of the elements stored in the partial
sums data structure. In X we store pointers to C. Given the base address of X, we only need
O(logB) additional bits for locating an element in X. Hence, in each index of x we store an index
into X that contains a pointer to an element of C.

1.1.2 Substring Concatenation

Every time we perform a replace, insert, or delete operation we make a change to S and therefore also
need to update the cover. When we update the cover we must maintain the maximality property
by checking that the concatenation of the changed block and either of the neighbor blocks is not
occurring as a substring in R. We use a substring concatenation data structure for performing this
check. The substring concatenation data structure answers the following query on R: Given two
pairs of indices (i, i′) (j, j′), does a third pair (k, k′) exists such that R[k, k′] = R[i, i′]R[j, j′]. The
query returns any pair (k, k′) if it exists.

Before presenting our data structure we will first introduce previous solutions by Amir et
al. [ALLS07] and Gawrychowski et al. [GLN14]. We need the following notation for suffix trees: Let
TS be the suffix tree of string S and let IS(v) denote the indices of the suffixes of S that are repre-
sented by the leafs in the subtree of node v in TS . We additionally define I ′S(v) = {|S| − i+ 2 | i ∈
IS(v)}.

The scheme by Amir et al. Amir et al. [ALLS07] give a data structure for answering substring
concatenation queries that is based on constructing the suffix trees of R and the reversal of R,
Rrev, denoted as TR and TRrev , respectively. They observed that if we can find an index l of R
from where we can match R[i, i′] backwards and R[j, j′] forwards then l − (i′ − i) is an answer
to the substring concatenation query. More exact, we need to find an index l of R such that
R[l−1]R[l−2] . . . R[l− (i′− i)−1] match R[i, i′]rev and R[l]R[l+ 1] . . . R[l+ (j′− j)] match R[j, j′].
They do this by finding the intersection between all indices where we can match R[i,′ i] backwards
and all indices where we can match R[j, j′] forwards. These two sets of indices are exactly I ′Rrev(vb)
and IR(vf ), where vb is the node found by matching R[i, i′]rev in TRrev , and vf is the node found by
matching R[j, j′] in TR. We use I ′Rrev(vb) to transform the indices of forward matches of R[i, i′]rev in
Rrev to indices of backward matches of R[i, i′] in R. This transformation can be performed globally
on the indices stored in the leafs of TRrev when the suffix tree is constructed.

As an example let R and Rrev be as follows:

R = c d a b c d a a b a b c d e
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rrev e d c b a b a a d c b a d c
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 14 13 12 11 10 9 8 7 6 5 4 3 2
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We have numbered the suffixes of R and Rrev and for Rrev the values of the indices in I ′Rrev are
also listed. Assume that we want to answer a substring concatenation query on the pair (8, 9)
and (1, 3) that corresponds to substrings ab and cda in R. Then we have that I(vf ) = {1, 5} and
I ′(vb) = {12, 10, 5} and in this case we find that the two sets have the common index 5. This
means that substring abcda starting at index 3 = 5 − |ab| of R is an answer to the substring
concatenation query. Amir et al. [ALLS07] use weighted ancestor queries, introduced by Farach
and Muthukrishnan [FM96], to locate vf and vb fast. A weighted ancestor query generalizes a
predecessor query for trees such that we for each node can answer a predecessor query among its
ancestors. For this we need to associate strictly increasing integer weight to the nodes on the path
from the root to a node. In suffix trees, this weight is simply the string depth of each node. They
improve the solution by Farach and Muthukrishnan, by introducing a deterministic data structure
that uses O(r) construction time and space, and answers queries in O(log log r) time, where r is the
number of nodes in the tree. The solution of Farach and Muthukrishnan have the same complexities
but the construction time and space bound are only given with high probability. Further, they use a
technique by Buchsbaum et al. [BGW00] to construct a data structure in O(r

√
log r) time and space

for deciding if any leafs in the substrees of vf and vb contains a common index in O(log log r) time.
In total, they use O(r

√
log r) space and time to construct a data structure that answers substring

concatenation queries in O(log log r) time.

The Scheme by Gawrychowski et al. Gawrychowski et al. [GLN14] give an improved data
structure for answering weighted ancestor queries on suffix trees in constant time and describe how
it can be used for answering substring concatenation queries faster than the scheme by Amir et
al. [ALLS07]. They observe that a weighted ancestor query is the running time bottleneck for
answering unrooted longest common prefix (LCP) queries in a scheme by Cole et al. [CGL04]. An
unrooted LCP query in a suffix tree TS takes a node v of the suffix tree and an index i of S, and
gives a node v′ that is a descendant of v in TS such that the concatenation of the labels on the
path between v and v′ has the longest common prefix with the suffix i of S over all descendants
of v. A substring concatenation query on the indices (i, i′),(j, j′) can then be answered as follows:
We perform a weighted ancestor query in the suffix tree TR on the leaf that represents suffix i to
find the node v that represents prefix i′ − i of suffix i. This corresponds to matching R[i, i′] in
TR. From node v we perform a unrooted LCP query and obtain node v′. If the string depth of v′

corresponds to the length of R[i, i′]R[j, j′] then the path from v to v′ spells out R[j, j′] and therefore
R[i, i′]R[j, j′] occurs as the prefix of every suffix represented by the leafs in the subtree of v′. The
weighted ancestor data structure by Gawrychowski et al. [GLN14] answers queries in constant time
an O(r) space. The data structure for answering unrooted LCP queries by Cole et al. [CGL04] uses
O(r log r) construction time and space and the query time in suffix trees is improved fromO(log log r)
to O(1) by the fast weighted ancestor data structure. In total, Gawrychowski et al. [GLN14] answer
substring concatenation queries on R in constant time and O(r log r) construction time and space.

Our solution The following is an extended description of our solution that leads to branch (i)
of Theorem 3. As the basis for our solution we use a suffix tree over R, TR, that we augment
with the weighted ancestor data structure of Gawrychowski et al. [GLN14] and a lowest common
ancestor (LCA) data structure by Harel and Tarjan [HT84]. The LCA data structure enables us
to answer longest common prefix queries on any suffix pair of R. We need the following definitions
from Section 2.4: We let x = R[i, i′] and y = R[j, j′] and we let vx and vy be the nodes obtained
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by matching x and y in TR. For a substring x of R, let S(x) denote the suffixes of R that have x
as a prefix, and let S′(x) = {i + |x| | i ∈ S(x) ∧ i + |x| ≤ n}, i.e., S′(x) are the suffixes of R that
are immediately preceded by x. Hence, for two substrings x and y, the suffixes that have xy as
a prefix are exactly S′(x) ∩ S(y). Let rank(i) be the position of suffix R[i..r] in the lexicographic
ordering of all suffixes of R, and let rank(A) = {rank(i) | i ∈ A} for A ⊆ {1, 2, . . . , n}. Then xy is a
substring of R if and only if rank(S′(x))∩ rank(S(y)) 6= ∅. The set of suffixes of R with y as a prefix
will occupy a consecutive range of the lexicographic ordering. This means we can represent the set
rank(S(y)) as a range [ymin, ymax], where ymin = min(rank(S(y))) and ymax = max(rank(S(y))),
and the intersection problem can then be formulated as one dimensional range emptiness query :
Report any element of rank(S′(x)) that is within the range [ymin, ymax]. Ideally, we would like to
store the set rank(S′(x)) in each node vx of TR and answer queries as follows: First, we perform
a weighted ancestor query on x that gives us the node vx. We then find the range [ymin, ymax]
with a weighted ancestor query on y that gives us the node vy. Then the rank of the leftmost and
rightmost leaf of the subtree spanned by vy corresponds to ymin and ymax. We then perform a 1D
range emptiness query by checking if any element of rank(S′(x)) is in the range [ymin, ymax]. We
use a result by Belazzougui et al. [BBPV10] for answering 1D range emptiness queries that stores
a set A ⊆ [1, r], using O(|A| logε r) bits of space, for any constant ε > 0, and answers queries in
constant time. If we use this data structure for every node in TR then the total number of elements
stored is, in the worst case, Ω(r2) such that we use use Ω(r2 logε r) bits of space in total for all
the range emptiness data structures. Instead, we employ a heavy path decomposition [HT84] of TR
and only store a range emptiness data structure in the top node of every heavy path. Each suffix
can then only be present in O(log r) range emptiness data structures and this reduces the space to
O(r log1+ε r) bits equivalent to O(r logε r) words. We need to perform our queries slightly different
when we have less range emptiness data structures. We locate vx as before and if vx is a node at the
top of a heavy path then we locate vy and perform the range emptiness query on the set rank(S′(x))
with the range [ymin, ymax]. Otherwise, we need to decide how far y follows the heavy path from
vx. Let l be the leaf where the heavy path ends and let h be the index of the suffix represented by
l. We can decide how long y follows the heavy path with a longest common prefix query between a
suffix j (remember y = R[j, j′]) and suffix h + |x| of R. If all of y is matched on the heavy path,
then we have reached a node where every leaf in the subtree represents a suffix that is prefixed by
xy and we can report index h to answer the substring concatenation query. Otherwise, y at some
point deviates from the heavy path below vx and we end up in a node vx′ that is the top node of
a new heavy path. Let y′ be the remaining unmatched suffix of y such that xy = x′y′. Finding an
occurrence of x′y′ corresponds to finding an occurrence of xy. We find the range [y′min, y

′
max] with a

weighted ancestor query and perform a range emptiness query on the set rank(S′(x′)) that is stored
in vx′ . We perform a constant number of constant time operations such that we answer substring
concatenation queries in constant time.

1.2 Subsequence Automata with Default Transitions

In Chapter 3 we study automata for recognizing subsequences of strings. Given a string S of length
n, a subsequence of S is any string obtained by deleting zero or more characters from S. Hence,
if S = s1s2 . . . sn then a subsequence of S is any string S′ = si1si2 . . . sik such that ij < ij+1

for all 1 ≤ j < k. An automata based approach for recognizing subsequences was studied by
Baeza-Yates [BY91] and several other researches have subsequently studied the automaton and its
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variations [TS05,CMT03,CT99,Tro01a,HSTA00,FFMR10,BIST03,Tro99]. The autmaton by Baeza-
Yates is in the literature known as the directed acyclic subsequence graph (DASG) but here we will
denote it as the subsequence automaton (SA). The SA is a standard deterministic finite automaton
(DFA) [Huf54,Mea55,Moo56] with n + 1 states that we identify with the integers {0, 1, . . . , n}. It
accepts string P iff P is a subsequence of S. We let Σ(T ) denote the alphabet of the string T . Each
state s in the automaton is accepting and have the following transitions:

• For each character α in Σ(S[s + 1, n]), there is a transition labeled α to the smallest state
s′ > s such that S[s′] = α.

The automaton is constructed such that the state s, representing index s of S, has a transition with
label α to the state that represents the next index of S that contain an occurrence of character α.
The size of the automaton is measured as the number of states and transitions. Each transition of
the SA has at most σ transitions so the size is O(nσ).

For DFAs, with an alphabet of size σ, we require that every state has σ outgoing transitions,
each labeled with distinct characters from the alphabet. This restricts the flexibility of how we
can structure the automaton for recognizing subsequences. Instead, we consider DFAs with default
transitions such that states are allowed to have labeled transitions for only a subset of the alphabet
and a single unlabeled default transition to handle every missing transitions. If the automaton in a
given state is unable to transition on a labeled transition, because no transition is labeled with the
next character of P , it will follow the default transition without consuming the next character of P .
We say that the size of the automaton is the sum of the number of states and transitions and that
the delay of the automaton is the maximum number of default transitions that can be followed in
the automaton before consuming a character of P . In Chapter 3 we introduce subsequence automata
with default transitions (SADs) and investigate what kind trade-offs between size and delay that
are possible. Our main result is given in Theorem 7.

Theorem 7. Let S be a string of n characters from an alphabet of size σ. For any integer parameter
k, 1 < k ≤ σ, we can construct a subsequence automaton with default transitions of size O(nk logk σ)
and delay O(logk σ).

An interesting aspect of the SAD constructions are that they are based on the properties of
the well studied ruler function [Slo]. For an integer s, the ruler function gives the exponent of the
largest power of two that divides s. We use the ruler function for assigning a level to each state but
refer to the ruler function as the level function because the graphical presentation of the SADs, e.g
as given in Figure 3.2, has a nice layout when the states are displaced vertically according to their
level. The level of state s is given as:

level(s) = max({x | s mod 2x = 0})

The number of transitions out of a state is decided based on its level such that a state s has
at most 2level(s) transitions plus a default transition. The overall idea behind the constructions of
the automata are that a default transition always leads to a state with a higher level. This means
that a default transition leads to a state with at least twice the number of transitions such that the
number of states the automaton skips when following a default transition increases exponentially.
This guarantees that the delay is O(log n). We reduce this to O(log σ) by observing that a state
at level log σ will have σ transitions such that the state has a transition for every character of the
alphabet. Hence, a default transition will never be followed from states with level larger than log σ.
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At this point we have a subsequence automaton with default transitions of size O(n log n) and delay
O(log n). We obtain the full trade-off between size and delay by introducing an integer k such that
1 < k ≤ σ, and changing the ruler function to give the exponent of the largest power of k that
divides s. In this way, the number of transitions will increase with a factor k instead of a factor 2
when we follow a default transition.

We further study automata over multiple strings. Crochemore et al. [CT99,CMT03] generalizes
the simple subsequence automaton to accept patterns that are subsequences of multiple strings.
For a set of strings S = {S1, S2, . . . , SN} they define the subsequence automaton for multiple strings
that accepts pattern P if P is a subsequence of at least one string in S and the common subsequence
automaton for multiple strings that accepts pattern P if P is a subsequence of every string in S.
In the same way we generalize the subsequence automaton with default transitions for accepting
subsequences of multiple strings. We only describe the construction of the automaton that accepts
a pattern P if P is a subsequence of every string in S but the construction of the version follows
immediately. The result obtained for subsequence automata with default transitions over multiple
strings is given in Theorem 8 on page 43.

In Section 1.2.1 we use automata with default transitions for solving substring matching but we
take another focus by making the automaton represent the pattern P in order to find occurrences
of P in the text S. Section 1.2.2 briefly describes the known results for matching subsequences in
the word RAM model.

1.2.1 Substring Matching

In Chapter 3 we exclusively considers automata that recognizes subsequences of S. The original
idea of introducing default transitions to subsequence matching automata was inspired by the KMP
algorithm by Knuth et al. [KJHMP77] for substring matching. The KMP algorithm preprocesses a
pattern P to find exact occurrences of P in a text S. Standard textbooks are usually not presenting
the KMP algorithm as an automaton, but the algorithm can be seen as simulating a deterministic
automaton with default transitions: The automaton containsm+1 states where state si of the KMP
automaton represent the prefix i of P such that the automaton will be in state si when a length i
prefix of P has been found. For every 0 ≤ i < m the state si has a transition with label P [i+ 1] to
state si+1 and a default transition to the state si′ such that si′ is the state that represents the longest
prefix of P that is a suffix of the prefix represented by si while at the same time P [i′+1] 6= P [i+1].
The default transition in the KMP automaton corresponds to the next array that Knuth et al. use
in [KJHMP77] for storing the next shift of the pattern when a mismatch occurs. Generally more
known is the standard DFA construction for substring matching. The principle of operation is the
same as for the KMP automaton but on a mismatch, meaning that no progression is made towards
a match of the pattern, the automaton transitions directly to the state that the KMP automaton
would find by following default transitions. This means that each state of the standard string
matching automaton has σ transitions. The size of the standard string matching DFA is O(mσ)
and the delay is O(1). For the KMP automaton the size is O(m) and Knuth et al. [KJHMP77] show
that the delay is O(logm). As in our study of subsequence automata in Chapter 3 it is possible to
construct substring matching automata that compromises between one and σ labeled transitions.
Simon [Sim94,Han93] showed that at most 2m of the edges in the standard DFA does not go to
the initial state. By introducing default transitions to the standard DFA, we can represent the
transitions of each state that go to the initial state as a single default transition. Besides the O(m)
default transitions we only have at most 2m other transitions such that the size of this automaton
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becomes O(m). The delay becomes constant since we can never follow more than a single default
transition before we consume a character from P .

1.2.2 The subsequence problem in the RAM model

A simple approach for solving the subsequence problem in the word RAM model is to traverse
S from left to right while matching characters from P when they are encountered in S. If every
character from P is matched then P is a subsequence of S. This scheme uses O(n) time and constant
space except for storing S and P .

For the data structure version of the problem, where S is preprocessed to get fast subsequent
queries, Bille et al. [BFC08] showed a scheme that combines the subsequence automaton of Baeza-
Yates [BY91] with a successor data structure. Both of these data structures can individually be
used for subsequence searching and Section 1.2 already gave a brief description of the subsequence
automaton. The successor data structure solution works as follows: For each character α, they
store a successor data structure that contains every index with character α. With these successor
structures it is possible to simulate the subsequence automaton such that each transition is simu-
lated with a successor query. With successor data structures such as van Embde boas trees [vE-
BKZ77] or Y-fast tries [Wil83] they obtain a O(m log log n) time solution for subsequence searching
that uses O(n) space. With a combination of the automaton and successor solutions, Bille and
Farach-Colton [BFC08] reduce the log logn factor to log log σ in the following way: A subsequence
automaton is constructed from the string S but only every σ-th state have outgoing transitions,
i.e. only states iσ for 0 ≤ i ≤ bn/σc have outgoing transitions. For each state iσ with outgoing
transitions they build σ successor data structures such that successor structure Dα contains the
indices from iσ + 1 to (i + 1)σ of S that contains character α. We search for subsequences as
follows: Assuming that we have matched prefix P [0..i] and the automaton is in state s, we match
character α = P [i + 1] as follows: If state s has outgoing transitions and specifically an outgoing
transitions with label α, we follow the transition out of s to state s′ and have now matched prefix
P [0..i + 1]. If no such transition exists we conclude that P is not a subsequence of S. If state s
does not have outgoing transition, we query the successor data structure Dα of the largest state
s∗ < s that has outgoing transitions (i.e s∗ = σbs/σc) with value s. If the successor query returns
index s′, we move to state s′ and have now matched prefix P [0..i + 1]. If no index in Dα is larger
than s, we move to the smallest state s∗ > s that have outgoing transitions and continue as in the
first case above. If we are not able to find s∗ > s then we conclude that P is not a subsequence
of S. Bille and Farach-Colton [BFC08] spend O(log log n) time for each character matched such
that they decide if P is a subsequence of S in O(m log log σ) time. For each state with outgoing
transitions they use O(σ) space but because they only have O(n/σ) of these they use O(n) space in
total. In total Bille and Farach-Colton [BFC08] spend O(n) time constructing all states and O(n)
time constructing all successor data structures.

1.3 Deterministic Indexing for Packed Strings

In Chapter 4 we study substring matching in word packed strings. Given a string S = s1s2 . . . sn,
a substring of S is any string S′ = sisi+1 . . . si+k such that 1 ≤ i ≤ i + k ≤ n. We are interested
in preprocessing S into a data structure such that we afterwards can decide fast if a string P
is a substring of S. The two classic solutions to this problem are suffix trees [Wei73] and suffix

9



arrays [MM93]. The suffix tree of S is a compacted trie over all suffixes of S and the suffix array
is an array over the indices of S sorted according to the lexicographic ordering of the suffixes they
represent. Section 4.2 of Chapter 4 defines suffix trees and suffix arrays in more detail.

In their basic form, both suffix trees and suffix arrays of S are able answer the following queries
on P :

Count(P ): Return the number of occurrence of P in S.

Locate(P ): Report all occurrences of P in S.

Predecessor(P ): Returns the predecessor of P in S, i.e., the lexicographic largest suffix in S
that is smaller than P .

In Chapter 4 we are interested in constructing a data structure for answering the above queries
in a setting where all strings are word packed, all construction times; query times and space bounds
are deterministic and where we only use O(n) space. On a standard unit-cost word RAM with word
size w = Θ(log n) we obtain the following result:

Theorem 9. Let S be a string of length n over an alphabet of size σ and let α = w/ log σ be the
number of characters packed in a word. Given S we can build an index in O(n) deterministic time
and space such that given a packed pattern string of length m we can support Count and Predecessor
in time O(mα + logm+ log log σ) and Locate in time O(mα + logm+ log log σ + occ) time.

Theorem 9 hold under the assumption that the alphabet size σ is polynomial in n. Otherwise,
we need additional time for sorting the alphabet [FCFM00].

Our result work on word packed strings that we define in the next section. We then explain how
our result is related to previous results by Cole et al. [CKL06] and Fischer and Gawrychowski [FG15].
Lastly, we explain how we solve the lexicographic predecessor problem for short strings.

1.3.1 Word Packed Strings

For a string we usually store each character in a word of memory, but if the characters are taken
from an alphabet of size σ, then we only need dlog σe bits for representing each character. When we
process a string S of length n in the word RAM model, we assume that each memory word consist
of w ≥ log n bits such that we can address every index of S in constant time. In cases where σ is
much smaller than n, such that w > dlog σe, we are wasting w − dlog σe bits of memory for each
character we store. With word packed strings we store α = bw/dlog σec characters in a single word
by concatenating together the bits that represents α consecutive characters of S. Let S′ be the
array that stores the word packed version of S. Then we have S[i] = (S′[bi/αc] << u) >> d, where
u = dlog σe(α − (i mod α) − 1), d = dlog σe(α − 1) when S and S′ are zero indexed. The integer
division in the index finds the correct word of S′ and the shifts are masking the irrelevant part of
the word. In Chapter 4 we implicit use this indexing scheme for word packed strings.

1.3.2 Combining Suffix Trees and Suffix Arrays

As mentioned earlier, we are interested in the setting where construction times, query times and
space bounds are deterministic and where we only use O(n) space. For the suffix tree, this rule out
the use of randomized hashing schemes for navigation where either construction time or query is
expected.
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A simple and deterministic solution for navigating a node in a suffix tree is to store an array
with pointers to each child. Let c be number of children of the node. We can then either have
c-sized array that can be navigated in O(log c) time or a σ-sized array that can be navigated in
constant time. Globally, with n nodes in the suffix tree, the first solution uses O(n) space and the
second uses O(n log σ) space. The queries listed above can be answered in O(m log σ) time and
O(m) time, respectively, where m is the length of P .

Queries in a suffix array over S corresponds to a binary search over the lexicographically ordered
suffixes of S. This takes O(m log n) time because we might read O(m) characters of P each time
we half the search range. This can be reduced to O(m + log n) with the help of precomputed
information on the longest common prefix between a selected number of suffixes of S.

The Suffix Tray by Cole et al. Our result is based on the suffix tray of Cole et al. [CKL06]
that combine a suffix tree and a suffix array. Instead of settling for either the tree or the array, they
construct a combination where a search in the top nodes of the suffix tree is used to reduce the range
of the suffix array where matches can reside. With this technique they only need a small number of
nodes from the suffix tree that can each have a σ-sized navigation array without using more than
O(n) space in total. They define σ-nodes to be the nodes of the suffix tree that span at least σ of
the leafs. We will call σ-nodes for heavy nodes. Heavy nodes are further divided into branching,
non-branching and leafs: A heavy branching node has at least two heavy nodes among its children,
a heavy non-branching node has exactly one heavy child among its children and a heavy leafs have
no heavy nodes among its children.

They use a σ-sized navigation array for the heavy branching nodes and a c-sized navigation
array for both heavy non-branching and leaf nodes, but the non-branching nodes additionally have
a pointer to its single heavy child. For every other node v that has a heavy node as its parent,
they store two indices that indicate the range in the suffix array that contains the same suffixes as
the subtree below v. We navigate the suffix tray as follows: From the root we consume characters
of P as long as only heavy branching, non-branching nodes and leafs are encountered. Branching
nodes are navigated with a constant time lookup in the navigation array. Non-branching nodes are
navigated by first checking if we should follow the single pointer to the heavy child and if not, by
performing a binary search on the c-sized array to find the correct child. Leafs are navigated by a
binary search on the c-sized array. When we encounter any other node we search the suffix array
in the range indicated by the two indices stored in the node. In the suffix tree we spend O(m) time
on the heavy branching and non-branching nodes and possibly O(log σ) time for the single binary
search that leaves the heavy node. For the suffix array search we spend O(m+ log σ) time because
the range we search contains at most σ suffixes. In total we spend O(m + log σ + occ) answering
queries with the suffix tray. Each heavy leaf spans at least σ leafs of the suffix tree and all heavy
leafs spans disjoint subtrees such that we have at most n/σ heavy leafs. Since we have at most
one heavy branching node per heavy leaf we also have at most n/σ heavy branching nodes. Each
heavy branching node uses O(σ) space such that we in total, for all heavy branching nodes, use
O(n) space. All other nodes use space proportional to its number of children such that we in total
uses O(n) space for the suffix tree. The suffix array uses O(n) space and in total we use O(n) space
for the suffix tray.

The Suffix Tray with Deterministic Hashing Fischer and Gawrychowski [FG15] realized that
they could improve the query times to O(m+ log log σ+occ) by using deterministic perfect hashing
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for navigating the heavy branching nodes. They use the same idea as Cole et al. but instead of
using a σ-sized array for the heavy branching nodes they use a deterministic hashing scheme by
Ružić [Ruž08, Theorem 3]. They increase the number of heavy branching nodes by allowing each to
span only log2 log σ leafs while still obtaining constant time navigation and O(n) total space for the
suffix tree. In Chapter 4 we extend the result by Fischer and Gawrychowski [FG15] to efficiently
work with word packed strings. We do this by using deterministic hashing for navigating the suffix
tree in chunks of α characters and extending the standard suffix array matching algorithm to run
in O(m/α+ log n) time for word packed strings.

1.3.3 The Lexicographic Predecessor Problem for Short Strings

Given a pattern P and a set of strings S, the lexicographic predecessor problem is to find the
lexicographically largest string in S that is also lexicographically smaller than P . In Chapter 4 we
specifically solve the lexicographic predecessor problem for small strings of at most α characters
that each fit in a word of memory. We claim that we can use a standard predecessor data structure
over the integers for solving the lexicographic predecessor problem by treating each string as an
integer. Here we rigorously show why this work. We assume that each short string is stored in a
word such that the dlog σe most significant bits represent the first character of the string and that
the lexicographic order of the characters in the alphabet corresponds to the order of the numeric
value of the bits used for representing the characters. If a string is less than α characters long we
extend it with the special character $ such that every string is of length α, where character $ is
a special character that is lexicographically smaller than any other character from the alphabet.
We insert every string from S into a predecessor data structure D. Given a string P of length α,
stored in a word, we show that a predecessor query on P in D gives the lexicographic predecessor of
P . Assume that the query returns the value P ′ < P and let k be the most significant bit position
of the words where P ′ and P has a 0 and 1, respectively. Let bit position k be part of the bits
that represent character position i of both P ′ and P . This means P ′[i] is lexicographically smaller
than P [i] and since the values agree on every bit with higher significance than the bit at position
k, we conclude that P ′ is lexicographically smaller than P . We still need to show that P ′ is the
lexicographically largest string that is smaller than P . For contradiction, assume that a string P ′′

exists in S such that P ′ <lex P ′′ <lex P and let k′ be the most significant bit position where P ′ and
P ′′ disagree. Since P ′ <lex P ′′ this means that the bits at position k′ of P ′ and P ′′ are 0 and 1,
respectively, which makes P ′ < P ′′ and contradict the fact that the predecessor query of P returned
P ′. From this we conclude that P ′ is the lexicographic predecessor of P .

1.4 Dynamic Partial Sums in Constant Time and Succinct Space
with the Ultra Wide Word RAM Model

In Chapter 5 we study dynamic partial sums in the ultra wide word RAM model. The dynamic partial
sums problem is to maintain an integer array A of n elements under the following operations:

Access(i): Return A[i].

Sum(i): Returns the sum of every index smaller than or equal to i, i.e.
∑i

j=1A[i].

Update(i, v): Increment index i of A with value v, i.e A[i] := A[i] + v, where v is any value
representable in two’s compliment representation with w-bits.
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In this chapter we consider a different variation of the dynamic partial sums problem than the
one we discuss in Chapter 2. Specifically, we do not support the search(i) operation and any of
the operations that change the length of A. We solve the problem on the ultra wide word RAM
model (UW-RAM) that was recently introduced by Farzan et al. [FLONS15]. The UW-RAM is
a standard unit-cost word RAM with a word size w ≥ log n and a standard instruction set but it
extends the model by enabling instructions that work on wide words and parallel access to memory.
More specifically, every arithmetic and logical instruction can work on wide words containing w2

bits in constant time. This makes word-level parallelism very attractive in this model. The model
also supports reading w words from memory in constant time. This can either be w consecutive
words or w scattered words, where the addresses of each word is given as w consecutive bits of a
wide word.

Farzan et al. [FLONS15] show that the UW-RAM can simulate the RAMBO model with a space
overhead and in this way obtain a result for the dynamic partial sums problem directly from a result
by Brodnik et al. [BKMN06]. The RAMBO model was suggested by Fredman and Saks [FS89] and
introduced by Brodnik [Bro95]. The general idea is to overcome lower bounds by constructing a
memory model where bits of memory can be shared between memory words.

We use the fenwick tree [Fen94] as data structure for representing the array A. The fenwick
tree supports Access, Sum and Update operations in O(log n) time on the standard unit-cost word
RAM and can be constructed in O(n) time. We use the same memory layout in the UW-RAM but
show how the operations can be sped up with the use of the strong primitives for parallel memory
access and manipulation of w2-bit words. The O(log n) time bound in the word RAM model comes
from accessing O(log n) location. We show how to calculate and access these memory locations in
constant time on the UW-RAM and obtain the following result:

Theorem 10. Let A be an array of n positive w-bit integers. In the ultra wide word-RAM model
with multiplication we can build a data structure in O(n) time and n+O(log n) words of space that
support Access, Sum and Update operations in O(1) time.

We also consider the problem in a UW-RAM without support for multiplication and show the
following result:

Lemma 9. Let A be an array of n positive w-bit integers. In the ultra wide word-RAM model
without multiplication we can build a data structure in O(n) time and n + O(log n) words of space
that support Access, Sum and Update operations in O(log log n) time.

The O(log n) words of space comes from storing constants of size O(log2 n) bits which we use
for implementing word-level parallelism. In the unit-cost word RAM model the fenwick tree also
support the search operation (often called select in the literature) in O(log n) time. The search(v)
operation returns index i of A where Sum(i − 1) < v ≤ Sum(i). It seems difficult to speed up this
operation in UW-RAM. We pose as an open problem whether it is possible to maintain an array of
n w-bit integers on the UW-RAM while supporting Access, Sum, Update and Select operations in
constant time.
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Abstract

Given a static reference string R and a source string S, a relative compression of S with respect
to R is an encoding of S as a sequence of references to substrings of R. Relative compression
schemes are a classic model of compression and have recently proved very successful for com-
pressing highly-repetitive massive data sets such as genomes and web-data. We initiate the
study of relative compression in a dynamic setting where the compressed source string S is sub-
ject to edit operations. The goal is to maintain the compressed representation compactly, while
supporting edits and allowing efficient random access to the (uncompressed) source string. We
present new data structures that achieve optimal time for updates and queries while using space
linear in the size of the optimal relative compression, for nearly all combinations of parameters.
We also present solutions for restricted and extended sets of updates. To achieve these results,
we revisit the dynamic partial sums problem and the substring concatenation problem. We
present new optimal or near optimal bounds for these problems. Plugging in our new results we
also immediately obtain new bounds for the string indexing for patterns with wildcards problem
and the dynamic text and static pattern matching problem.

2.1 Introduction

Given a static reference string R and a source string S, a relative compression of S with respect
to R is an encoding of S as a sequence of references to substrings of R. Relative compression
(or external macro compression) is a classic model of compression defined by Storer and Szy-
manski [SS78, SS82] in 1978 and has since been used in a wide range of compression scenar-
ios [LDK99, LDK+98, KPZ10, KPZ11, COM+12, DJSS14, HPZ11]. To compress massive highly-
repetitive data sets, such as biological sequences and web collections, relative compression has
been shown to be very practical [KPZ10,KPZ11,HPZ11].

Relative compression is often applied to compress multiple similar source strings. In such settings
relative compression is superior to compressing the source strings individually. For instance, human
genomes are 99% similar and hence relative compression might be used to compress a large collec-
tion of sequenced genomes using, e.g., the human reference genome as the static reference string.
We focus on the case of compressing a single source string, but our results trivially generalize to
compressing multiple source strings.

In this paper we initiate the study of relative compression in a dynamic setting, where the
compressed source string S is subject to edit operations (insertions, deletions, and replacements
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of single characters). The goal is to maintain the compressed representation compactly, while
supporting edits and allowing efficient random access to the (uncompressed) source string. Efficient
data structures supporting these operations allow us to avoid costly recompression of massive data
sets after updates.

We provide the first non-trivial bounds for this problem. We present new data structures that
achieve optimal time for updates and queries while using space linear in the size of the optimal
relative compression, for nearly all combinations of parameters. We also present solutions for
restricted and extended sets of updates.

To achieve these results, we revisit the dynamic partial sums problem and the substring con-
catenation problem. We present new optimal or near optimal bounds for both of these problems
(see detailed discussion below). Furthermore, plugging in our new results immediately leads to new
bounds for the string indexing for patterns with wildcards problem [LNV14,BGVV14] and the the
dynamic text and static pattern matching problem [ALLS07].

2.1.1 Dynamic Relative Compression

Given a reference string R and a source string S, a relative compression of S with respect to R is
a sequence C = (i1, j1), ..., (i|C|, j|C|) such that S = R[i1, j1] · · ·R[i|C|, j|C|]. We call C a substring
cover for S. The substring cover is optimal if |C| is minimum over all relative compressions of S
with respect to R. The dynamic relative compression problem is to maintain a relative compression
of S under the following operations. Let i be a position in S and α be a character.

access(i): return the character S[i],

replace(i, α): change S[i] to character α,

insert(i, α): insert character α before position i in S,

delete(i): delete the character at position i in S.

Note that operations insert and delete change the length of S by a single character. In all bounds
below, the access(i) operation extends to decompressing an arbitrary substring of length ` using
only O(`) additional time.

Our Results Throughout the paper, let r be the length of the reference string R, N be the length
of the (uncompressed) string S, and n be the size of an optimal relative compression of S with regards
to R. All of the bounds mentioned below and presented in this paper hold for a standard unit-cost
RAM with w-bit words with standard arithmetic and logical operations on a word. This means
that the algorithms can be implemented directly in standard imperative programming languages
such as C [KR78] or C++ [Str00]. An index into R or S can be stored in a single word and hence
w ≥ log(n+ r).

Theorem 1. Let R and S be a reference and source string of lengths r and N , respectively, and let
n be the length of the optimal substring cover of S by R. Then, we can solve the dynamic relative
compression problem supporting access, replace, insert, and delete

(i) in O(n+ r) space and O
(

logn
log logn + log log r

)
time per operation, or
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(ii) in O(n+ r logε r) space and O
(

logn
log logn

)
time per operation, for any constant ε > 0.

These are the first non-trivial bounds for the problem. Together, the bounds are optimal for
most natural parameter combinations. In particular, any data structure for a string of length
N supporting access, insert, and delete must use Ω(logN/ log logN) time in the worst-case re-
gardless of the space [FS89] (this is called the list representation problem). Since n ≤ N , we
can view O(log n/ log log n) as a compressed version of the optimal time bound that is always
O(logN/ log logN) and better when S is compressible. Hence, Theorem 1(i) provides a linear-
space solution that achieves the compressed time bound except for an O(log log r) additive term.
Note that whenever n ≥ (log r)logε log r, for any ε > 0, the log n/ log log n term dominates the query
time and we match the compressed time bound. Hence, Theorem 1(i) is only suboptimal in the
special case when n is almost exponentially smaller than r. In this case, we can use Theorem 1(ii)
which always provides a solution achieving the compressed time bound at the cost of increasing the
space to O(n+ r logε r).

We note that dynamic compression under different models of compression has been studied
extensively [GGV03,FMMN04,FM05, SG06,FV07, JSS12,NN13]. However, all of these results re-
quire space dependent on the size of the original string and hence cannot take full advantage of
highly-repetitive data.

2.1.2 Dynamic Partial Sums

The partial sums problem is to maintain an array Z[1..s] under the following operations.

sum(i): return
∑i

j=1 Z[j],

update(i,∆): set Z[i] = Z[i] + ∆,

search(t): return 1 ≤ i ≤ s such that sum(i − 1) < t ≤ sum(i). To ensure well-defined answers,
we require that Z[i] ≥ 0 for all i.

The partial sums problem is a classic and well-studied problem [Die89,RRR01,HR03,FS89,HSS11,
HRS96,Fen94,PD04]. In our context, we consider the problem in the word RAM model, where each
array entry stores a w-bit integer and the element of the array can be changed by δ-bit integers,
i.e., the argument ∆ can be stored in δ bits. In this setting, Pătraşcu and Demaine [PD04] gave a
linear-space data structure with Θ(log s/ log(w/δ)) time per operation. They also gave a matching
lower bound.

We consider the following generalization supporting dynamic changes to the array. The dynamic
partial sums problems is to additionally support the following operations.

insert(i,∆): insert a new entry in Z with value ∆ before Z[i],

delete(i): delete the entry Z[i] of value at most ∆.

merge(i): replace entry Z[i] and Z[i+ 1] with a new entry with value Z[i] + Z[i+ 1].

divide(i, t): , where 0 ≤ t ≤ Z[i]. Replace entry Z[i] by two new consecutive entries with value t
and Z[i]− t, respectively.

Hon et al. [HSS11] and Navarro and Sadakane [NS14] presented optimal solutions for this problem
in the case where the entries in Z are at most polylogarithmic in s (they did not explicitly consider
the merge and divide operation).
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Our Results We show the following improved result.

Theorem 2. Given an array of length s storing w-bit integers and parameter δ, such that ∆ < 2δ,
we can solve the dynamic partial sums problem supporting sum, update, search, insert, delete, merge,
and divide in linear space and O(log s/ log(w/δ)) time per operation.

Note that this bound simultaneously matches the optimal time bound for the standard partial sums
problem and supports storing arbitrary w-bit values in the entries of the array, i.e., the values we
can handle in optimal time are exponentially larger than in the previous results.

To achieve our bounds we extend the static solution by Pătraşcu and Demaine [PD04]. Their
solution is based on storing a sampled subset of representative elements of the array and difference
encode the remaining elements. They pack multiple difference encoded elements in words and then
apply word-level parallelism to speedup the operations. To support insert and delete the main
challenge is to maintain the representative elements that now dynamically move within the array.
We show how to efficiently do this by combining a new representation of representative elements
with a recent result by Pătraşcu and Thorup [PT14]. Along the way we also slightly simplify the
original construction by Pătraşcu and Demaine [PD04].

2.1.3 Substring Concatenation

Let R be a string of length r. A substring concatenation query on R takes two pairs of indices (i, j)
and (i′, j′) and returns the start position in R of an occurrence of R[i, j]R[i′, j′], or NO if the string is
not a substring of R. The substring concatenation problem is to preprocess R into a data structure
that supports substring concatenation queries.

Amir et al. [ALLS07] gave a solution using O(r
√

log r) space with query time O(log log r), and
recently Gawrychowski et al. [GLN14] showed how to solve the problem in O(r log r) space and
O(1) time.

Our Results We give the following improved bounds.

Theorem 3. Given a string R of length r, the substring concatenation problem can be solved in
either

(i) O(r logε r) space and O(1) time, for any constant ε > 0, or

(ii) O(r) space and O(log log r) time.

Hence, Theorem 3(i) matches the previous O(1) time bound while reducing the space from O(r log r)
to O(r logε r) and Theorem 3(ii) achieves linear space while using O(log log r) time. Plugging in
the two solutions into our solution for dynamic relative compression leads to the two branches of
Theorem 1.

To achieve the bound in (i), the main idea is a new construction that efficiently combines com-
pact data structure for 1D range reporting [BBPV10] with the recent constant time weighted level
ancestor data structure for suffix trees [GLN14]. The bound in (ii) follows as a simple implica-
tion of another recent result for unrooted LCP queries [BGVV14] by some of the authors. The
substring concatenation problem is a key component in several solutions to the string indexing for
patterns with wildcards problem [BGVV14,CGL04,LNV14], where the goal is to preprocess a string
T to support pattern matching queries for patterns with wildcards. Plugging in Theorem 3(i) we
immediately obtain the following new bound for the problem.
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Corollary 1. Let T be a string of length t. For any pattern string P of length p with k wildcards,
we can support pattern matching queries on T using O(t logε t) space and O(p + σk) time for any
constant ε > 0.

This improves the running time of fastest linear space solution by a factor log log t at the cost of
increasing the space slightly by a factor logε t. See [LNV14] for detailed overview of the known
results.

2.1.4 Extensions

Finally, we present two extensions of the dynamic relative compression problem.

2.1.4.1 Dynamic Relative Compression with Access and Replace

If we restrict the operations to access and replace we obtain the following improved bound.

Theorem 4. Let R and S be a reference and source string of lengths r and N , respectively, and let
n be the length of the optimal substring cover of S by R. Then, we can solve the dynamic relative
compression problem supporting access and replace in O(n+r) space and O(log logN) expected time.

This version of dynamic relative compression is a key component in the dynamic text and static
pattern matching problem, where the goal is to efficiently maintain a set of occurrences of a pattern
P in a text T that is dynamically updated by changing individual characters. Let p and t denote the
lengths of P and T , respectively. Amir et al. [ALLS07] gave a data structure using O(t+ p

√
log p)

space which supports updates in O(log log p) time. The computational bottleneck in the update
operation is to update a substring cover of size O(p). Plugging in the bounds from Theorem 4, we
immediately obtain the following improved bound.

Corollary 2. Given a pattern P and text T of lengths p and t, respectively, we can solve the dynamic
text and static pattern matching problem in O(t+p) space and O(log log p) expected time per update.

Hence, we match the previous time bound while improving the space to linear.

2.1.4.2 Dynamic Relative Compression with Split and Concatenate

We also consider maintaining a set of compressed strings under split and concatenate operations
(as in Alstrup et al. [ABR00]). Let R be a reference string and let S = {S1, . . . , Sk} be a set of
strings compressed relative to R. In addition to access, replace, insert and delete we also define the
following operations.

concat(i, j): Add string Si · Sj to S and remove Si and Sj .

split(i, j): Remove Si from S and add Si[1, j − 1] and Si[j, |Si|].

We obtain the following bounds.

Theorem 5. Let R be a reference string of length r, let S = {S1, . . . , Sk} be a set of source strings
of total length N , and let n be the total length of the optimal substring covers of the strings in
S. Then, we can solve the dynamic relative compression problem supporting access, replace, insert,
delete, split, and concat,
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(i) in space O(n+ r) and time O(log n) for access and time O(log n+log log r) for replace, insert,
delete, split, and concat, or

(ii) in space O(n+ r logε r) and time O(log n) for all operations.

Hence, compared to the bounds in Theorem 1 we only increase the time bounds by an additional
log logn factor.

2.2 Dynamic Relative Compression

In this section we show how Theorems 2 and 3 lead to Theorem 1. The proofs of Theorems 2 and
3 appear in Section 2.3 and Section 2.4, respectively.

Let C = ((i1, j1), ..., (i|C|, j|C|)) be the compressed representation of S. From now on, we refer
to C as the cover of S, and call each element (il, jl) in C a block. Recall that a block (il, jl) refers
to a substring R[il, jl] of R. A cover C is maximal if concatenating any two consecutive blocks
(il, jl), (il+1, jl+1) in C yields a string that does not occur in R, i.e., the string R[il, jl]R[il+1, jl+1]
is not a substring of R. We need the following lemma.

Lemma 1. If Cmax is a maximal cover and C is an arbitrary cover of S, then |Cmax| ≤ 2|C| − 1.

Proof. In each block b of C there can start at most two blocks in Cmax, because otherwise two
adjacent blocks in Cmax would be entirely contained in the block b, contradicting the maximality
of Cmax. Since the last block of both C and Cmax end at the last position of S, a contradiction of
the maximality is already obtained when more than one block of Cmax start in the last block of C.
Hence, |Cmax| ≤ 2|C| − 1.

Recall that n is the size of an optimal cover of S with regards to R. The lemma implies that we can
maintain a compression of size at most 2n−1 by maintaining a maximal cover of S. The remainder
of this section describes our data structure for maintaining and accessing such a cover.

Initially, we can use the suffix tree of R to construct a maximal cover of S in O(N + r) time
by greedily matching the maximal prefix of the remaining part of S with any suffix of R. This
guarantees that the blocks constitute a maximal cover of S.

2.2.1 Data Structure

The high level idea for supporting the operations on S is to store the sequence of block lengths
j1− i1 + 1, . . . , j|C|− i|C|+ 1 in a dynamic partial sums data structure. This allows us, for example,
to identify the block that encodes the kth character in S by performing a search(k) query.

Updates to S are implemented by splitting a block in C. This may break the maximality
property so we use substring concatenation queries on R to detect if blocks can be merged. We only
need a constant number of substring concatenation queries to restore maximality. To maintain the
correct sequence of block lengths we use update, divide and merge operations on the dynamic partial
sums data structure.

Our data structure consist of the string R, a substring concatenation data structure of Theorem 3
for R, a maximal cover C for S stored in a doubly linked list, and the dynamic partial sums data
structure of Theorem 2 storing the block lengths of C. We also store auxiliary links between a block
in the doubly linked list and the corresponding block length in the partial sums data structure, and
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a list of alphabet symbols in R with the location of an occurrence for each symbol. By Lemma 1
and since C is maximal we have |C| ≤ 2n− 1 = O(n). Hence, the total space for C and the partial
sums data structure is O(n). The space for R is O(r) and the space for substring concatenation
data structure is either O(r) or O(r logε r) depending on the choice in Lemma 3. Hence, in total we
use either O(n+ r) or O(n+ r logε r) space.

2.2.2 Answering Queries

To answer access(i) queries we first compute search(i) in the dynamic partial sums structure to
identify the block bl = (il, jl) containing position i in S. The local index in R[il, jl] of the ith

character in S is ` = i− sum(l− 1), and thus the answer to the query is the character R[il + `− 1].
We perform replace and delete by first identifying bl = (il, jl) and ` as above. Then we partition

bl into three new blocks b1l = (il, il + ` − 2), b2l = (il + ` − 1, il + ` − 1), b3l = (il + `, jl) where
b2l is the single character block for index i in S that we must change. In replace we change b2l to
an index of an occurrence in R of the new character (which we can find from the list of alphabet
symbols), while we remove b2l in delete. The new blocks and their neighbors, that is, bl−1, b1l , b

2
l ,

b3l , and bl+1 may now be non-maximal. To restore maximality we perform substring concatenation
queries on each consecutive pair of these 5 blocks, and replace non-maximal blocks with merged
maximal blocks. All other blocks are still maximal, since the strings obtained by concatenating bl′
with bl′+1, for all l′ < l− 1 and all l′ > l, was not present in R before the change and is not present
afterwards. A similar idea is used by Amir et al. [ALLS07]. We perform update, divide and merge
operations to maintain the corresponding lengths in the dynamic partial sums data structure. The
insert operation is similar, but inserts a new single character block between two parts of bl before
restoring maximality. Observe that using δ = O(1) bits in update is sufficient to maintain the
correct block lengths.

In total, each operation requires a constant number of substring concatenation queries and dy-
namic partial sums operations; the latter having time complexityO(log n/ log(w/δ)) = O(log n/ log log n)
as w ≥ log n and δ = O(1). Hence, the total time for each access, replace, insert, and delete operation
is either O(log n/ log logn+log log r) or O(log n/ log logn) depending on the substring concatenation
data structure used. In summary, this proves Theorem 1.

2.3 Dynamic Partial Sums

In this section we prove Theorem 2. We support the operations insert(i,∆) and delete(i) on a
sequence of w-bit integer keys by implementing them using update and a divide or merge operation,
respectively. This means that we support inserting or deleting keys with value at most 2δ.

We first solve the problem for small sequences. The general solution uses a standard reduction,
storing Z at the leaves of a B-tree of large outdegree. We use the solution for small sequences to
navigate in the internal nodes of the B-tree.

Dynamic Integer Sets We need the following recent result due to Pătraşcu and Thorup [PT14]
on maintaining a set of integer keys X under insertions and deletions. The queries are as follows,
where q is an integer. The membership query member(q) returns true if q ∈ X, predecessor predX(q)
returns the largest key x ∈ X where x < q, and successor succX(q) returns the smallest key x ∈ X
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where x ≥ q. The rank rankX(q) returns the number of keys in X smaller than q, and select(i)
returns the ith smallest key in X.

Lemma 2 (Pătraşcu and Thorup [PT14]). There is a data structure for maintaining a dynamic set
of wO(1) w-bit integers that supports insert, delete, membership, predecessor, successor, rank and
select in constant time per operation.

2.3.1 Dynamic Partial Sums for Small Sequences

Let Z be a sequence of at most B ≤ wO(1) integer keys. We will show how to store Z in linear space
such that all dynamic partial sums operations can be performed in constant time. We let Y be the
sequence of prefix sums of Z, defined such that each key Y [i] is the sum of the first i keys in Z, i.e.,
Y [i] =

∑i
j=1 Z[j]. Observe that sum(i) = Y [i] and search(t) is the index of the successor of t in Y .

Our goal is to store and maintain a representation of Y subject to the dynamic operations update,
divide and merge in constant time per operation.

2.3.1.1 The Scheme by Pătraşcu and Demaine

We first review the solution to the static partial sums problem by Pătraşcu and Demaine [PD04],
slightly simplified due to Lemma 2. Our dynamic solution builds on this.

The entire data structure is rebuilt every B operations as follows. We first partition Y greedily
into runs. Two adjacent elements in Y are in the same run if their difference is at most B2δ, and we
call the first element of each run a representative for all elements in the run. We use R to denote the
sequence of representative values in Y and rep(i) to be the index of the representative for element
Y [i] among the elements in R.

We store Y by splitting representatives and other elements into separate data structures: I
and R store the representatives at the time of the last rebuild, while U stores each element in
Y as an offset to its representative value as well as updates since the last rebuild. We ensure
Y [i] = R[rep(i)] + U [i] for any i and can thus reconstruct the values of Y .

The representatives are stored as follows. I is the sequence of indices in Y of the representatives
andR is the sequence of representative values in Y . Both I andR are stored using the data structure
of Lemma 2. We can then define rep(i) = rankI(predI(i)) as the index of the representative for i
among all representatives, and use R[rep(i)] = selectR(rep(i)) to get the value of the representative
for i.

We store in U the current difference from each element to its representative, U [i] = Y [i] −
R[rep(i)] (i.e. updates between rebuilds are applied to U). The idea is to pack U into a single word
of B elements. Observe that update(i,∆) adds value ∆ to all elements in Y with index at least i.
We can support this operation in constant time by adding to U a word that encodes ∆ for those
elements. Since each difference between adjacent elements in a run is at most B2δ and |Y | = O(B),
the maximum value in U after a rebuild is O(B22δ). As B updates of size 2δ may be applied before a
rebuild, the changed value at each element due to updates is O(B2δ). So each element in U requires
O(logB+ δ) bits (including an overflow bit per element). Thus, U requires O(B(logB + δ)) bits in
total and can be packed in a single word for B = O(min{w/ logw,w/δ}).

Between rebuilds the stored representatives are potentially outdated because updates may have
changed their values. However, observe that the values of two consecutive representatives differ by
more than B2δ at the time of a rebuild, so the gap between two representatives cannot be closed
by B updates of δ bits each (before the structure is rebuilt again). Hence, an answer to search(t)
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cannot drift much from the values stored by the representatives; it can only be in a constant number
of runs, namely those with a representative value succR(t) and its two neighboring runs. In a run
with representative value v, we find the smallest j (inside the run) such that U [j] + v − t > 0.
The smallest j found in all three runs is the answer to the search(t) query. Thus, by rebuilding
periodically, we only need to check a constant number of runs when answering a search(t) query.

On this structure, Pătraşcu and Demaine [PD04] show that the operations sum, search and
update can be supported in constant time each as follows:

sum(i): return the sum of R[rep(i)] and U [i]. This takes constant time as U [i] is a field in a word
and representatives are stored using Lemma 2.

search(t): let r0 = rankR(succR(t)). We must find the smallest j such that U [j] + R[r] − t > 0
for r ∈ {r0 − 1, r0, r0 + 1}, where j is in run r. We do this for each r using standard word
operations in constant time by adding R[r]− t to all elements in U , masking elements not in
the run (outside indices selectI(r) to selectI(r + 1)− 1, and counting the number of negative
elements.

update(i,∆): we do this in constant time by copying ∆ to all fields j ≥ i by a multiplication and
adding the result to U .

To count the number of negative elements or find the least significant bit in a word in constant
time, we use the technique by Fredman and Willard [FW93].

Notice that rebuilding the data structure every B operations takes O(B) time, resulting in
amortized constant time per operation. We can instead do this incrementally by a standard approach
by Dietz [Die89], reducing the time per operation to worst case constant. The idea is to construct
the new replacement data structure incrementally while using the old and complete data structure.

2.3.1.2 Efficient Support for divide and merge

We now show how to maintain the structure described above while supporting operations divide(i, t)
and merge(i). An example supporting the following explanation is provided in Figure 2.1.

Observe that the operations are only local: Splitting Z[i] into two parts or merging Z[i] and
Z[i + 1] does not influence the precomputed values in Y (besides adding/removing values for the
divided/merged elements). We must update I, R and U to reflect these local changes accordingly.
Because a divide or merge operation may create new representatives between rebuilds with values
that do not fit in U , we change I, R and U to reflect these new representatives by rebuilding the
data structure locally. This is done as follows.

Consider the run representatives. Both divide(i, t) and merge(i) may require us to create a
new run, combine two existing runs or remove a run. In any case, we can find a replacement
representative for each run affected. As the operations are only local, the replacement is either
a divided or merged element, or one of the neighbors of the replaced representative. Replacing
representatives may cause both indices and values for the stored representatives to change. We use
insertions and deletions on R to update representative values.

Since the new operations change the indices of the elements, these changes must also be reflected
in I. For example, a merge(i) operation decrements the indices of all elements with index larger
than i compared to the indices stored at the time of the last rebuild We should in principle adjust
the O(B) changed indices stored in I. The cost of adjusting the indices accordingly when using
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 5 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 30, 45, 55, 60, 70}
U 0 1 5 0 1 2 0 0 1 2 4 6 7 10 0 0 0 0 2

B 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 4 4 4 4 4 4 4 5 6 7 8 8
a) The initial data structure constructed from Z.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Z 5 1 4 7 1 1 6 3 2 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}
U 0 1 5 0 1 2 0 3 5 6 7 9 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 4 5 6 7 7

New index 9 Old index 9

b) The result of divide(8, 3) on the structure of a). Represen-
tative value 30 was removed from R. We shifted and updated
U , B and C to remove the old representative and accommo-
date for a new element with value 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 3 2 1 1 4 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}
U 0 1 5 0 1 2 0 3 5 6 7 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 4 5 6 7 7

Index containing the sum of the merged indices.

c) The result of merge(12) on the structure of c).

Figure 2.1: Illustrating operations on the data structure with B2δ = 4. a) shows the data structure
immediately after a rebuild, b) shows the result of performing divide(8, 3) on the structure of a),
and c) shows the result of performing merge(12) on the structure of b).
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Lemma 2 to store I is O(B). Instead, to get our desired constant time bounds, we represent I
using a resizable data structure with the same number of elements as Y that supports this kind
of update. We must support selectI(i), rankI(q), and predI(q) as well as inserting and deleting
elements in constant time. Because I has few and small elements, we can support the operations in
constant time by representing it using a bitstring B and a structure C which is the prefix sum over
B as follows.

Let B be a bitstring of length |Y | ≤ B, where B[i] = 1 iff there is a representative at index i. C
has |Y | elements, where C[i] is the prefix sum of B including element i. Since C requires O(B logB)
bits in total we can pack it in a single word. We answer queries as follows: rankI(q) equals C[q− 1],
we answer selectI(i) by subtracting i from all elements in C and return one plus the number of
elements smaller than 0 (as done in U when answering search), and we find predI(q) as the index of
the least significant bit in B after having masked all indices larger than q. Updates are performed as
follows. Using mask, shift and concatenate operations, we can ensure that B and C have the same
size as Y at all times (we extend and shrink them when performing divide and merge operations).
Inserting or deleting a representative is to set a bit in B, and to keep C up to date, we employ the
same ±1 update operation as used in U .

We finally need to adjust the relative offsets of all elements with a changed representative in U
(since they now belong to a representative with a different value). In particular, if the representative
for U [j] changed value from v to v′, we must subtract v′ − v from U [j]. This can be done for all
affected elements belonging to a single representative simultaneously in U by a single addition with
an appropriate bitmask (update a range of U). Note that we know the range of elements to update
from the representative indices. Finally, we may need to insert or delete an element in U , which can
be done easily by mask, shift and concatenate operations on the word U . This leads to Theorem 6.

Theorem 6. There is a linear space data structure for dynamic partial sums supporting each opera-
tion search, sum, update, insert, delete, divide, and merge on a sequence of length O(min{w/ logw,w/δ})
in worst-case constant time.

2.3.2 Dynamic Partial Sums for Large Sequences

Willard [Wil00] (and implicitly Dietz [Die89]) showed that a leaf-oriented B-tree with out-degree B
of height h can be maintained in O(h) worst-case time if: 1) searches, insertions and deletions take
O(1) time per node when no splits or merges occur, and 2) merging or splitting a node of size B
requires O(B) time.

We use this as follows, where Z is our integer sequence of length s. Create a leaf-oriented B-
tree of degree B = Θ(min{w/ logw,w/δ}) storing Z in the leaves, with height h = O(logB n) =
O(log n/ log(w/δ)). Each node v uses Theorem 6 to store the O(B) sums of leaves in each of the
subtrees of its children. Searching for t in a node corresponds to finding the successor Y [i] of t
among these sums. Dividing or merging elements in Z corresponds to inserting or deleting a leaf.
This concludes the proof of Theorem 2.

2.4 Substring Concatenation

In this section we prove Theorem 3. Recall that we must store a string R subject to substring
concatenation queries: given two strings x and y return the location of an occurrence of xy in R or
NO if no such occurrence exist.
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To prove (i) we need the following definitions. For a substring x of R, let S(x) denote the suffixes
of R that have x as a prefix, and let S′(x) = {i + |x| | i ∈ S(x) ∧ i + |x| ≤ n}, i.e., S′(x) are the
suffixes of R that are immediately preceded by x. Hence for two substrings x and y, the suffixes
that have xy as a prefix are exactly S′(x) ∩ S(y). We can reduce this intersection problem to a 1D
range emptiness problem as follows.

Let rank(i) be the position of suffix R[i..r] in the lexicographic ordering of all suffixes of R, and
let rank(A) = {rank(i) | i ∈ A} for A ⊆ {1, 2, . . . , n}. Then xy is a substring of R if and only if
rank(S′(x))∩ rank(S(y)) 6= ∅. Note that rank(S(y)) is a range [a, b] ⊆ [1, n], and we can determine
this range in constant time for any substring y using a constant-time weighted ancestor query on
the suffix tree of R [GLN14]. Consequently, we can decide if xy is a substring of R by a 1D range
emptiness query on the set rank(S′(x)).

Belazzougui et al. [BBPV10] (see also [GGLP15]) recently gave a 1D range emptiness data
structure for a set A ⊆ [1, r] using O(|A| logε r) bits of space, for any constant ε > 0, and answering
queries in constant time. We will build this data structure for rank(S′(x)), but doing so for all
substrings would require space Ω̃(r2).

To arrive at the space bound of O(r logε r) (words), we employ a heavy path decomposi-
tion [HT84] on the suffix tree of R, and only build the data structure for substrings of R that
correspond to the top of a heavy path. In this way, each suffix will appear in at most log r such
data structures, leading to the claimed O(r logε r) space bound (in words). In addition, we build a
O(r)-space nearest common ancestor data structure [HT84] for the suffix tree of R. Constant-time
nearest common ancestor queries will allow us to also answer longest common prefix queries on R
in constant time.

To answer a substring concatenation query with substrings x and y, we first determine how far y
follows the heavy path in the suffix tree from the location where x stops. This can be done in O(1)
time by a constant-time longest common prefix query between two suffixes of R. We then proceeed
to the top of the next heavy path, where we query the 1D range reporting data structure with the
range rank(S(y′)) where y′ is the remaining unmatched suffix of y. This completes the query, and
the proof of (i).

The second solution (ii) is an implication of a result by Bille et al. [BGVV14]. Given the suffix
tree STR of R, an unrooted longest common prefix query [CGL04] takes a suffix y and a location ` in
STR (either a node or a position on an edge) and returns the location in STS that is reached after
matching y starting from location `. A substring concatenation query is straightforward to imple-
ment using two unrooted longest common prefix queries, the first one starting at the root, and the
second starting from the location returned by the first query. It follows from Bille et al. [BGVV14]
that we can build a linear space data structure that supports unrooted longest common prefix
queries in time O(log log r) thus completing the proof of (ii).

2.5 Extensions

In this section we show how to solve two other variants of the dynamic relative compression problem.
We first prove Theorem 4, showing how to improve the query time if only supporting operations
access and replace. We then show Theorem 5, generalising the problem to support multiple strings.
These data structures use the same substring concatenation data structure of Theorem 3 as before
but replaces the dynamic partial sums data structure.
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2.5.1 Dynamic Relative Compression with Access and Replace

In this setting we constrain the operations on S to access(i) and replace(i, α). Then, instead of
maintaining a dynamic partial sums data structure over the lengths of the substrings in C, we only
need a dynamic predecessor data structure over the prefix sums. The operations are implemented
as before, except that for access(i) we obtain block bj by computing the predecessor of i in the
predecessor data structure, which also immediately gives us access to the local index in bj . For
replace(i, α), a constant number of updates to the predecessor data structure is needed to reflect the
changes. We use substring concatenation queries to restore maximality as described in Section 2.2.
The prefix sums of the subsequent blocks in C are preserved since |bj | = |b1j |+ |b2j |+ |b3j |.

With a linear space implementation of the van Emde Boas data structure [vEB77, vEBKZ77,
MN90] we can support the predecessor queries and updates in O(log logN) expected time. For
substring concatenation we apply Theorem 3(ii) using O(r) space and O(log log r). Since the length
of source string does not change, we can always assume that r > N , and the total time becomes
O(log logN + log log r) = O(log logN). In summary, this proves Theorem 4.

2.5.2 Dynamic Relative Compression with Split and Concatenate

Consider the variant of the dynamic relative compression problem where we want to maintain a
relative compression of a set of strings S1, . . . , Sk. Each string Si has a cover Ci and all strings
are compressed relative to the same string R. In this setting n =

∑k
i=1 |Ci|. In addition to the

operations access, replace, insert, and delete, we also want to support split and concatenation of
strings. Note that the semantics of the operations change to indicate the string(s) to perform a
given operation on.

We build a leaf-oriented height-balanced binary tree Ti (e.g. an AVL tree or red-black tree)
over the blocks Ci[1], . . . , Ci[|Ci|] for each string Si. In each internal node v, we store the sum of
the block sizes represented by its leaves. Since the total number of blocks is n, the trees use O(n)
space. All operations rely on the standard procedures for searching, inserting, deleting, splitting
and joining height-balanced binary trees. All of these run in O(log n) time for a tree of size n. See
for example [CLRS01] for details on how red-black trees achieve this.

The answer to an access(i, j) query is found by doing a top-down search in Ti using the sums
of block sizes to navigate. Since the tree is balanced and the size of the cover is at most n, this
takes O(log n) time. The operations replace(i, j, α), insert(i, j, α), and delete(i, j) all initially require
that we use access(i, j) to locate the block containing the j-th character of Si. To reflect possible
changes to the blocks of the cover, we need to modify the corresponding tree to contain more leaves
and restore the balancing property. Since the number of nodes added to the tree is constant these
operations each take O(log n) time. The concat(i, j) operation requires that we join two trees in the
standard way and restore the balancing property of the resulting tree. For the split(i, j) operation
we first split the block that contains position j such that the j-th character is the trailing character
of a block. We then split the tree into two trees separated by the new block. This takes O(log n)
time for a height-balanced tree.

To finalize the implementation of the operations, we must restore the maximality property of the
affected covers as described in Section 2.2. At most a constant number of blocks are non-maximal
as a result of any of the operations. If two blocks can be combined to one, we delete the leaf that
represents the rightmost block, update the leftmost block to reflect the change, and restore the
property that the tree is balanced. If the tree subsequently contains an internal node with only one
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child, we delete it and restore the balancing. Again, this takes O(log n) time for balanced trees,
which concludes the proof of Theorem 5.

2.6 Conclusion

We have shown how to compress a text relatively to a reference string while supporting access to
the text and a range of dynamic operations under some strong guarantees for the space usage and
the query times. There are, however, room for improvement.

Our solution to DRC is built on data structures for the partial sums problem and the substring
concatenation problem. Our partial sums-solution is optimal, but in order to get the desired constant
query time for substring concatenation, our data structure uses O(r logε r) space. As opposed to
this, our linear space solution leads to O(log log r) query time. We leave as an open problem if it
is possible to get O(1) time substring concatenation queries using O(r) space, which will also carry
over to a stronger result for the DRC problem.

Moreover, the size of the cover that is maintained by our DRC data structure is also an interesting
parameter. Currently we maintain a 2-approximation of the optimal cover. It would be useful to
know if a better approximation ratio can be maintained under the same (or better) time and space
bounds that we give.
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Abstract

Let S be a string of length n with characters from an alphabet of size σ. The subsequence
automaton of S (often called the directed acyclic subsequence graph) is the minimal deterministic
finite automaton accepting all subsequences of S. A straightforward construction shows that
the size (number of states and transitions) of the subsequence automaton is O(nσ) and that
this bound is asymptotically optimal.

In this paper, we consider subsequence automata with default transitions, that is, special
transitions to be taken only if none of the regular transitions match the current character, and
which do not consume the current character. We show that with default transitions, much
smaller subsequence automata are possible, and provide a full trade-off between the size of the
automaton and the delay, i.e., the maximum number of consecutive default transitions followed
before consuming a character.

Specifically, given any integer parameter k, 1 < k ≤ σ, we present a subsequence automaton
with default transitions of size O(nk logk σ) and delay O(logk σ). Hence, with k = 2 we obtain
an automaton of size O(n log σ) and delay O(log σ). At the other extreme, with k = σ, we obtain
an automaton of size O(nσ) and delay O(1), thus matching the bound for the standard subse-
quence automaton construction. Finally, we generalize the result to multiple strings. The key
component of our result is a novel hierarchical automata construction of independent interest.

3.1 Introduction

Let S be a string of length n with characters from an alphabet of size σ. A subsequence of S
is any string obtained by deleting zero or more characters from S. The subsequence automaton
(often called the directed acyclic subsequence graph) is the minimal deterministic finite automaton
accepting all subsequences of S. Baeza-Yates [BY91] initiated the study of subsequence automata.
They presented a simple construction using O(nσ) size (size denotes the total number of states
and transitions) and showed that this bound is optimal in the sense that there are subsequence
automata of size at least Ω(nσ). They also considered variations with encoded input strings and
multiple strings. Subsequently, several researchers have further studied subsequence automata (and
its variants) [TS05,CMT03,CT99,Tro01a,HSTA00,FFMR10,BIST03,Tro99]. See also the surveys
by Troníček [Tro01b,Tro03]. The general problem of subsequence indexing, not limited to automata
based solutions, is investigated by Bille et al. [BFC08].

In this paper, we consider subsequence automata in the context of default transitions, that is,
special transitions to be taken only if none of the regular transitions match the current character,
and which do not consume the current character. Each state has at most one default transition
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and hence the automaton remains deterministic. The key point of default transitions is to reduce
the size of standard automata at the cost of introducing a delay, i.e., the maximum number of
consecutive default transition followed before consuming a character. For instance, given a pattern
string of length m the classic Knuth-Morris-Pratt (KMP) [KJHMP77] string matching algorithm
may be viewed as an automaton with default transitions (typically referred to as failure transi-
tions). This automaton has size O(m), whereas the standard automaton with no default transitions
would need Θ(mσ) space. The delay of the automaton in the KMP algorithm is either O(m) or
O(logm) depending on the version. Similarly, the Aho-Corasick string matching algorithm for mul-
tiple strings may also be viewed as an automaton with default transitions [AC75]. More recently,
default transitions have also been used extensively to significantly reduce sizes of deterministic au-
tomata for regular expression [KDY+06,HL07]. The main idea is to effectively enable states with
large overlapping identical sets of outgoing transitions to "share" outgoing transitions using default
transitions.

Surprisingly, no non-trivial bounds for subsequence automata with default transitions are known.
Naively, we can immediately obtain an O(nσ) size solution with O(1) delay by using the standard
subsequence automaton (without default transitions). At the other extreme, we can build an au-
tomaton with n + 1 states (each corresponding to a prefix of S) with a standard and a default
transition from the state corresponding to the ith prefix to the state corresponding to the i + 1st
prefix (the standard transition is labeled S[i+1]). It is straightforward to show that this leads to an
O(n) size solution with O(n) delay. Our main result is a substantially improved trade-off between
the size and delay of the subsequence automaton:

Theorem 7. Let S be a string of n characters from an alphabet of size σ. For any integer parameter
k, 1 < k ≤ σ, we can construct a subsequence automaton with default transitions of size O(nk logk σ)
and delay O(logk σ).

Hence, with k = 2 we obtain an automaton of size O(n log σ) and delay O(log σ). At the other
extreme, with k = σ, we obtain an automaton of size O(nσ) and delay O(1), thus matching the
bound for the standard subsequence automaton construction.

To obtain our result, we first introduce the level automaton. Intuitively, this automaton uses
the same states as the standard solution, but hierarchically orders them in a tree-like structure
and samples a selection of their original transitions based on their position in the tree, and adds a
default transition to the next state on a higher level. We show how to do this efficiently leading
to a solution with O(n log n) size and O(log n) delay. To achieve our full trade-off from Theorem 1
we show how to augment the construction with additional ideas for small alphabets and generalize
the level automaton with parameter k, 1 < k ≤ σ, where large k reduces the height of the tree but
increases the number of transitions. In the final section we generalize the result to multiple strings.

3.2 Preliminaries

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F ) where Q is a set of nodes
called states, δ is a set of labeled directed edges between states, called transitions, where each label
is a character from the alphabet Σ, q0 ∈ Q is the initial state and F ⊆ Q is a set of accepting states.
No two outgoing transitions from the same state have the same label. The DFA is incomplete in
the sense that every state does not contain transitions for every character in Σ. The size of A is
the sum of the number of states and transitions.
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Figure 3.1: An example of an SA constructed from the string abadca.

We can think of A as an edge-labeled directed graph. Given a string P and a path p in A we say
that p and P match if the concatenation of the labels on the transitions in p is P . We say that A
accepts a string P if there is a path in A, from q0 to any state in F , that matches P . Otherwise A
rejects P .

A deterministic finite automaton with default transitions is a deterministic finite automaton AD
where each state can have a single unlabeled default transition. Given a string P and a path p in
AD we define a match between P and p as before, with the exception that for any default transition
t in p the corresponding character in P cannot match any standard transition out of the source state
of t. Definition of accepted and rejected strings are as before. The delay of AD is the maximum
length of any path matching a single character, i.e., if the delay of AD is d then we follow at most
d− 1 default transitions for every character that is matched in P .

A subsequence of S is a string P , obtained by removing zero or more occurrences of characters
from S. The alphabet of the string S is denoted by Σ(S). A subsequence automaton constructed
from S, is a deterministic finite automaton that accepts string P iff P is a subsequence of S. A
subsequence automaton construction is presented in [BY91]. This construction is often called the
directed acyclic subsequence graph or DASG, but here we denote it SA. The SA has n+ 1 states, all
accepting, that we identify with the integers {0, 1, . . . , n}. For each state s, 0 ≤ s ≤ n, we have the
following transitions:

• For each character α in Σ(S[s + 1, n]), there is a transition labeled α to the smallest state
s′ > s such that S[s′] = α.

The SA has size O(nσ) since every state can have at most σ transitions. An example of an SA is
given in Figure 3.1.

A subsequence automaton with default transitions constructed from S, denoted SAD, is a deter-
ministic finite automaton with default transitions that accepts string P iff P is a subsequence of
S.

The next section explores different configurations of transitions and default transitions in SADs.

3.3 New Trade-Offs for Subsequence Automata.

We now present a new trade-off for subsequence automata, with default transitions. We will grad-
ually refine our construction until we obtain an automaton that gives the result presented in The-
orem 1. In each construction we have n + 1 states that we identify with the integers {0, 1, . . . , n}.
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Each of these states represents a prefix of the string S and are all accepting states. We first present
the level automaton that gives the first non-trivial trade-off that exploits default transitions. The
general idea is to construct a hierarchy of states, such that every path that only uses default tran-
sitions is guaranteed to go through states where the outdegree increases at least exponentially. The
level automaton is a SAD of size O(n log n) and delay O(log n). By arguing that any path going
through a state with outdegree σ will do so by taking a regular transition, we are able to improve
both the size and delay of the level automaton. This results in the alphabet-aware level automaton
which is a SAD of size O(n log σ) and delay O(log σ). Finally we present a generalized construction
that gives a trade-off between size and delay by letting parameter k, 1 < k ≤ σ, be the base of
the exponential increase in outdegree on paths with only default transitions. This SAD has size
O(nk logk σ) and delay O(logk σ). With k = 2 we get an automaton of size O(n log σ) and delay
O(log σ). At the other extreme, for k = σ we get an automaton of size O(nσ) and delay O(1).

3.3.1 Level Automaton

The level automaton is a SAD with n+ 1 states that we identify with the integers {0, 1, . . . , n}. All
states are accepting. For each state i > 0, we associate a level, level(i), given by:

level(i) = max({x | i mod 2x = 0})

Hence, level(i) is the exponent of the largest power of two that divides i. The level function is
in the literature known as the ruler function. We do not associate any level with state 0. Note that
the maximum level of any state is log2 n. For a nonnegative integer s, we define s to be the smallest
integer s > s such that level(s) ≥ level(s) + 1.

The transitions in the level automaton are as follows: From state 0 we have a default transition
to state 1 and a regular transition to state 1 with label S[1]. For every other state s, 1 ≤ s ≤ n, we
have the following transitions:

• A default transition to state s. If no such state exist, the state s does not have a default
transition.

• For each character α in Σ(S[s + 1,min(s, n)]), there is a transition labeled α to the smallest
state s′ > s such that S[s′] = α.

An example of the level automaton constructed from the string abacbabcabad and alphabet {a, b, c, d}
is given in Figure 3.2. The dashed arrows denote default transitions and the vertical position of the
states denotes their level.

We first show that the level automaton is a SAD for S, i.e., the level automaton accepts a string
iff the string is a subsequence of S. To do so suppose that P is a string of length m accepted by the
level automaton and let s1, s2, . . . , sm be the sequence of states visited with regular transitions on
the path that accepts P . From the definition of the transition function, we know that if a transition
with label α leads to state s′, then S[s′] = α. This means that S[s1]S[s2] . . . S[sm] spells out a
subsequence of S if the sequence s1, s2, . . . , sm is strictly increasing. From the definition of the
transitions, a state s only have transitions to states s′ if s′ > s. Hence, the sequence is strictly
increasing.

For the other direction, we show that the level automaton simulates the SA. At each state s,
trying to match character α, we find the smallest state s′ > s such that s′ has an incoming transition
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Figure 3.2: The level automaton constructed from the string abacbabcabad.

with label α: By the construction, either s has an outgoing transition leading directly to s′ or we
follow default transitions until reaching the first state with a transition to s′. This means that the
states visited with standard transitions in the level automaton are the same states that are visited
in the SA. Since the SA accepts all subsequences of S this must also hold for the level automaton.

3.3.1.1 Analysis

The following shows that the number of outgoing transitions increase with a factor two when the
level increase by one. For all s > 0, we have the following property of s and level(s):

s− s = 2level(s) (3.1)

By definition, 2level(s) divides s. This means that we can write s as c · 2level(s), where c is a uneven
positive integer. We know that c is uneven because 2level(s) is the largest power of two that divides
s. The next integer, larger than s, that 2level(s) divides is s′ = s+ 2level(s). This means that s ≥ s′.
We can rewrite s′ as follows: s′ = s + 2level(s) = c · 2level(s) + 2level(s) = (c + 1) · 2level(s). Since c is
uneven we know that c + 1 is even so we can rewrite s′ further: s′ = (c+1)

2 · 2level(s)+1. This shows
that 2level(s)+1 divides s′ which means that s′ = s and we conclude that s− s = 2level(s).

Since the maximal level of any state is log2 n and the level increase every time we follow a default
transition, the delay of the level automaton is O(log n).

At each level l we have O(n/2l+1) states, since every 2lth state is divided by 2l, and 2l is the
largest divisor in every second of these cases. Since s− s = 2level(s) each state at level l has at most
2l+1 outgoing transitions. Therefore, each level contribute with size at most n/2l+1 ·(2l+1) = O(n).
Since we have at most O(log n) levels, the total size becomes O(n log n).

In summary, we have shown the following result.

Lemma 3. Let S be a string of n characters. We can construct a subsequence automaton with
default transitions of size O(n log n) and delay O(log n).

3.3.2 Alphabet-aware level automaton

We introduce the Alphabet-aware level automaton. When the level automaton reaches a state s
where s− s ≥ σ, then s can have up to σ outgoing transitions without violating the space analysis
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Figure 3.3: The alphabet-aware level automaton constructed from the string abacbabcabad.

from the previous section. The level automaton only has a transition for each character in Σ(S[s+
1,min(s, n)]). Hence, for all states s in the alphabet-aware level automaton where s − s ≥ σ, we
let s have a transition for each symbol α in Σ, to the smallest state s′ > s such that S[s′] = α. No
matching path can take a default transition from a state with σ outgoing transitions. Hence, states
with σ outgoing transitions do not need default transitions.

We change the level function to reflect this. For each state 1 ≤ i ≤ n we have that:

level(i) = min(dlog2 σe,max({x | i mod 2x = 0}))

The transitions in the alphabet-aware level automaton is as follows: From state 0 we have a
default transition to state 1 and a regular transition to state 1 with label S[1]. For every other state
s, 1 ≤ s ≤ n, we have the following transitions:

• A default transition to state s. If no such state exist, the state s does not have a default
transition.

• If s− s < σ then for each character α in Σ(S[s+ 1,min(s, n)]), there is a transition labeled α
to the smallest state s′ > s such that S[s′] = α.

• If s− s ≥ σ then for each character α in Σ(S[s+ 1, n]), there is a transition labeled α to the
smallest state s′ > s such that S[s′] = α.

An example of the alphabet-aware level automaton constructed from the string abacbabcabad
and alphabet {a, b, c, d} is given in Figure 3.3. The level automaton in Figure 3.2 is constructed from
the same string and the same alphabet. For comparison, in Figure 3.3 state 4 now has outdegree σ
and has transitions to the first succeeding occurrence of any unique character and state 8 has been
constrained to level dlog2 σe.

The alphabet-aware level automaton is a SAD by the same arguments that led to Lemma 3.
The delay is now bounded by O(log σ) since no state is assigned a level higher than dlog2 σe.

The size of each level is still O(n). Hence, the total size becomes O(n log σ)
In summary, we have shown the following result.

Lemma 4. Let S be a string of n characters. We can construct a SAD of S with size O(n log σ)
and delay O(log σ).
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3.3.3 Full trade-off

We can generalize the construction above by introducing parameter k, 1 < k ≤ σ, which is the base
of the exponential increase in outdegree of states on every path that only uses default transitions.
Now, when we follow a default transition from s to s, the number of outgoing transitions increase
with a factor k instead of a factor 2. This gives a trade-off between size and delay in the SAD
determined by k. Increasing k gives a shorter delay of the SAD but increases the size and vice
versa.

Each state, except state 0, is still associated with a level, but we need to generalize the level
function to account for the parameter k. For every k and i we have that:

level(i, k) = min(dlogk σe,max({x | i mod kx = 0}))

Now, the level function gives the largest power of k that divides i.
The transitions in the generalized alphabet-aware level automaton is as follows: From state 0

we have a default transition to state 1 and a regular transition to state 1 with label S[1]. For every
other state s, 1 ≤ s ≤ n, we have the following transitions:

• A default transition to state s. If no such state exist, the state s does not have a default
transition.

• If s− s < σ then for each character α in Σ(S[s+ 1,min(s, n)]), there is a transition labeled α
to the smallest state s′ > s such that S[s′] = α.

• If s− s ≥ σ then for each character α in Σ(S[s+ 1, n]), there is a transition labeled α to the
smallest state s′ > s such that S[s′] = α.

We can show that the generalized alphabet-aware level automaton is a SAD by the same argu-
ments that led to Lemma 4.

3.3.3.1 Analysis

The delay is bounded by O(logk σ) because no state is assigned a level higher than dlogk σe.
With the new definition of the level function we have that

s− s ≤ klevel(s,k)+1

for all s > 0. This expression bounds the number of outgoing transitions from state s.
At level l we have O(n(k−1)/(kl+1)) states each with O(kl+1) outgoing transitions such that each

level has size O(nk). The size of the automaton becomes O(nk logk σ) because we have O(logk σ)
levels.

In summary, we have shown Theorem 1.

3.4 Subsequence automata for multiple strings

Crochemore et al. [CMT03] generalizes the simple subsequence automaton to multiple strings. Given
a set of strings S = {S1, S2, . . . .SN} of length n1, n2, . . . , nN , two types of automata are presented:
The subsequence automaton accepts a pattern P iff P is a subsequence of some string in S and
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the common subsequence automaton accepts P iff P is a subsequence of every string in S. When
S = {S1, S2, . . . , Sn} and n1 = n2 = . . . = nN = n, a Ω(nN/(N + 1)NN !)) lower bound on
the number of states is shown for the subsequence automaton [TS05]. For both automata, the
number of states is trivially upper bounded by O(n1 · n2 · . . . · nN ) such that the total size becomes
O(σ · n1 · n2 · . . . · nN ). We can reduce the size of these automata by augmenting them with default
transitions. The following generalization is in the same spirit as the naive generalization of the
single string automaton in section 3.1: We introduce default transitions and save a factor σ in
the space but also introduce a delay. Consider the naive common subsequence automaton with
default transitions: For two strings S1, S2 we have n1 ·n2 + 1 states that we identify with the points
{1, . . . , n1} × {1, . . . , n2} ∪ {(0, 0)}. For each state (s1, s2) we have the following transitions:

• A default transition to state (s1 + 1, s2 + 1). If no such state exist, the state (s1, s2) does not
have a default transition.

• If character S1[s1 + 1] is in Σ(S2[s2 + 1, n2]), there is a transition labeled S1[s1 + 1] to the
state (s1 + 1, s′2) such that s′2 > s2 is the minimal index where S2[s′2] = S1[s1 + 1].

• If character S2[s2 + 1] is in Σ(S1[s1 + 1, n1]), there is a transition labeled S2[s2 + 1] to the
state (s′1, s2 + 1) such that s′1 > s1 is the minimal index where S1[s′1] = S2[s2 + 1].

The states of the automaton represents the progression in S1 and S2, such that state (s1, s2)
represents that subsequences of the prefixes S1[1, s1] and S2[1, s2] have been used to match a prefix
of P . Each state (s1, s2) considers the symbols S1[s1 + 1] and S2[s2 + 1] for matching with the next
symbol in P . If this is not possible, a default transition is followed to state (s1 + 1, s2 + 1).

For this automaton the size is O(n1 · n2) and the delay is O(min(n1, n2)). Hence, we save a
factor σ in the size, but introduce a significant delay. As we did for the subsequence automaton for
a single string, we introduce a level automaton that associates a level with each state. In this way
we are able to reduce the delay significantly with only a small increase in size. For simplicity we
only present our construction for the common subsequence automaton, but it follows immediately
that the a similar construction is also applicable to the subsequence automaton.

3.4.1 The alphabet-aware level automaton for two strings

The alphabet-aware level automaton for two strings S1, S2 have n1 · n2 + 1 states that we identify
with the points {1, . . . , n1}×{1, . . . , n2}∪{(0, 0)}. We define the diagonal of a state (i, j), as the set
of states {(i+k, j+k) | 0 < i+k ≤ n1 and 0 < j+k ≤ n2}. We say that states belong to the same
diagonal if the diagonals of the states defines identical sets of states. For states (s1, s2), (s′1, s

′
2) in

the same diagonal we define an ordering: (s1, s2) < (s′1, s
′
2) if s1 < s′1. This ordering defines a unique

position for each state in its diagonal. For each state (s1, s2) we associates the integer min(s1, s2),
such that (s1, s2)−(s′1, s

′
2) = min(s1, s2)−min(s′1, s

′
2) and (s1, s2) mod x = min(s1, s2) mod x. With

each diagonal of states, we associate a level structure identical to the one used in the alphabet-aware
level automaton for a single string. For each state (i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, we again associate
a level:

level((i, j)) = min(dlog2 σe ,max({x | (i, j) mod 2x = 0}))

For a state (i, j), we define (i, j) to be the smallest state in the diagonal of (i, j) such that
(i, j) > (i, j) and level((i, j)) > level((i, j)). The state (i, j) is not guaranteed to exist.
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The alphabet-aware level automaton for two strings S1, S2 has the following transitions: State
(0, 0) has a transition labeled S1[1] to state (1, s2) where s2 is the minimal index such that S2[s2] =
S1[1], a transition labeled S2[1] to state (s1, 1) where s1 is the minimal index such that S1[s1] = S2[1]
and a default transition to state (1, 1). The regular transitions only exists if the states (1, s2) and
(s1, 1) exists. Every other state (s1, s2), where (s1, s2) = (s1, s2), have the following transitions:

• A default transition to state (s1, s2). If no such state exist, the state (s1, s2) does not have a
default transition.

• If (s1, s2) − (s1, s2) < σ then for each character α in (Σ(S1[s1 + 1,min(s1, n1)]) ∪ Σ(S2[s2 +
1,min(s2, n2)])) ∩ Σ(S1[s1 + 1, n1]) ∩ Σ(S2[s2 + 1, n2]), there is a transition labeled α to the
state (s′1, s

′
2), where s′1 > s1 and s′2 > s2 are the minimal indices such that S1[s′1] = S2[s′2] = α.

• If (s1, s2)− (s1, s2) ≥ σ then for each character α in Σ(S1[s1 + 1, n1])∩Σ(S2[s2 + 1, n2]), there
is a transition labeled α to the state (s′1, s

′
2), where s′1 > s1 and s′2 > s2 are the minimal

indices such that S1[s′1] = S2[s′2] = α.

The intuition behind the expression (Σ(S1[s1 + 1,min(s1, n1)]) ∪ Σ(S2[s2 + 1,min(s2, n2)])) ∩
Σ(S1[s1 + 1, n1]) ∩Σ(S2[s2 + 1, n2]) is as follows: The union gives the set of unique characters that
exists in the interval of the strings that the default transition will skip. But only the characters
that exists in the suffix of both strings needs a transition.

An example of an incomplete common subsequence automaton for two strings is given in Fig-
ure 3.4.

3.4.1.1 Analysis

For a state (i, j), if (i, j) exists, we have the following property:

(i, j)− (i, j) = 2level((i,j))

This property follows from the same argument that led to equation (3.1). The number of transitions
out of every state s, is now bounded by 2 · 2level(s) since both S1 and S2 can contribute with up to
2level(s) transitions.

We can calculate the size of the alphabet-aware level automaton for two strings by summing up
the space contribution from each diagonal of states. Let d be a diagonal consisting of |d| states. Then
the size of d is O(|d| log σ), since each diagonal has the size of an alphabet-aware level automaton
for one string. If D is the set of all diagonals, then the total size of the automaton becomes

O

(∑
d∈D
|d| log σ

)
= O

(
log σ ·

∑
d∈D
|d|

)
= O(log σ · n1 · n2)

The last step exploits that the sum of the states in all diagonals is exactly the number of states in
the automaton. In summary we have shown the following result:

Lemma 5. Let S1, S2 be strings of length n1 and n2 over an alphabet of size σ. We can construct
a subsequence automaton and a common subsequence automaton with default transitions of size
O(n1n2 log σ) and delay O(log σ).
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Figure 3.4: An incomplete common subsequence automaton for two strings S1, S2, laid out in a two-
dimensional grid(S1 horizontally and S2 vertically). State (0, 0) has a transition labeled a = S2[1]
to state (i1, 1) and a transition labeled b = S1[1] to state (1, j1). State (i1, j1) is at level 1 and has
a transition for each unique character in Σ(S1[i1 + 1, i1 + 2])∪Σ(S2[j1 + 1, j1 + 2]) = {a, c, d}. This
figure depicts a situation where {a, c, d} ⊆ (Σ(S1[i1 + 1, n1])∩Σ(S2[j1 + 1, n2])). Transitions out of
the remaining states are missing from the illustration.
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3.4.2 The alphabet-aware level automaton for multiple strings

The alphabet-aware level automaton for the set of strings S = {S1, S2, . . . , SN} have 1 +
∏N
i=1 Si

states that we identify with the set of integer points {1, . . . , n1}× {1, . . . , n2}× . . .×{1, . . . , nN} ∪
{(0, 0, . . . , 0)}. Hence, a state in the automaton corresponds to a tuple withN elements (s1, s2, . . . , sN ).
We generalize the definition of diagonals for dimension N as follows. The diagonal of a state
(s1, s2, . . . , sN ) is the set of states:

{(s1 + k, s2 + k, . . . , sN + k) |
N∧
i=1

0 < si + k ≤ ni}

Again, states belong to the same diagonal if the diagonal of each state defines identical sets of
states. For states (s1, s2, . . . , sN ), (s′1, s

′
2, . . . , s

′
N ) in the same diagonal we define an ordering:

(s1, s2, . . . , sN ) < (s′1, s
′
2, . . . , s

′
N ) if s1 < s′1. This ordering defines a unique position for each

state in its diagonal. For each state (s1, s2, . . . , sN ) we associate the integer min(s1, s2, . . . , sN ) and
define subtraction and modulo operations on states, in the same diagonal, as in the previous section.

With each state we again associate the level:

level((s1, s2, . . . , sN )) = min(dlog2 σe ,max({x | (s1, s2, . . . , sN ) mod 2x = 0}))

For a state (s1, s2, . . . , sN ), we define (s1, s2, . . . , sN ) to be the smallest state in the same diagonal
such that (s1, s2, . . . , sN ) > (s1, s2, . . . , sN ) and level((s1, s2, . . . , sN )) > level((s1, s2, . . . , sN )). The
state level((s1, s2, . . . , sN )) is not guaranteed to exist.

The alphabet-aware level automaton for multiple strings, S1, S2, . . . , SN , has the following tran-
sitions: State (0, 0, . . . , 0) has a transition labeled Si[1] to state (s1, s2, . . . , sN ) where si = 1 and sj is
the minimal index where Sj [sj ] = Si[1], for every i = {1, 2, . . . , N} and j 6= i. These transitions only
exists if index sj exists. State (0, 0, . . . , 0) also have a default transition to state (1, 1, . . . , 1). Every
other state (s1, s2, . . . , sN ), where (s1, s2, . . . , sN ) = (s1, s2, . . . , sN ), has the following transitions:

• A default transition to state (s1, s2, . . . , sN ). If no such state exist, the state (s1, s2, . . . , sN )
does not have a default transition.

• If (s1, s2, . . . , sN )−(s1, s2, . . . , sN ) < σ then for each character α in (
⋃N
i=1 Σ(Si[si+1,min(si, ni)]))∩

(
⋂N
i=1 Σ(Si[si+1, ni])) there is a transition labeled α to the state (s′1, s

′
2, . . . , s

′
N ), where, s′i > si

is the minimal index such that Si[s′i] = α, for all 1 ≤ i ≤ N

• If (s1, s2, . . . , sN ) − (s1, s2, . . . , sN ) ≥ σ then for each character α in
⋂N
i=1 Σ(Si[si + 1, ni])

there is a transition labeled α to the state (s′1, s
′
2, . . . , s

′
N ), where s′i > si is the minimal index

such that Si[s′i] = α, for all 1 ≤ i ≤ N .

3.4.2.1 Analysis

For each state (s1, s2, . . . , sN ) we have that

(s1, s2, . . . , sN )− (s1, s2, . . . , sN ) = 2level((s1,s2,...,sN ))

This property follows from the same argument that led to equation (3.1).
The number of transitions out of every state s, is now bounded by N · 2level(s) because each of

the N strings can contribute with up to 2level(s) transitions.
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We can calculate the size of the alphabet-aware level automaton for N strings by summing up
the space contribution from each diagonal of states. Let d be a diagonal consisting of |d| states.
Then the size of d is O(N |d| log σ). If D is the set of all diagonals, then the total size of the
automaton becomes

O

(∑
d∈D

N |d| log σ

)
= O

(
N log σ ·

∑
d∈D
|d|

)
= O

(
N log σ ·

N∏
i=1

ni

)

The last step is possible since the sum over the states in all diagonals is the number of states in the
automaton. In summary we have shown the following result:

Theorem 8. Let S1, S2, . . . SN be a set of strings of length n1, n2, . . . , nN over an alphabet of size
σ. We can construct a subsequence automaton and a common subsequence automaton with default
transitions of size O(N log σ ·

∏N
i=1 ni) and delay O(log σ).
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Abstract

Given a string S of length n, the classic string indexing problem is to preprocess S into a
compact data structure that supports efficient subsequent pattern queries. In the deterministic
variant the goal is to solve the string indexing problem without any randomization (at prepro-
cessing time or query time). In the packed variant the strings are stored with several character
in a single word, giving us the opportunity to read multiple characters simultaneously. Our
main result is a new string index in the deterministic and packed setting. Given a packed string
S of length n over an alphabet σ, we show how to preprocess S in O(n) (deterministic) time and
space O(n) such that given a packed pattern string of length m we can support queries in (de-
terministic) time O (m/α+ logm+ log log σ) , where α = w/ log σ is the number of characters
packed in a word of size w = Θ(log n). Our query time is always at least as good as the previous
best known bounds and whenever several characters are packed in a word, i.e., log σ � w, the
query times are faster.

4.1 Introduction

Let S be a string of length n over an alphabet of size σ. The string indexing problem is to prepro-
cess S into a compact data structure that supports efficient subsequent pattern queries. Typical
queries include existential queries (decide if the pattern occurs in S), reporting queries (return all
positions where the pattern occurs), and counting queries (returning the number of occurrences of
the pattern).

The string indexing problem is a classic well-studied problem in combinatorial pattern matching
and the standard textbook solutions are the suffix tree and the suffix array (see e.g., [Gus97,MM93,
McC76,Wei73]). A straightforward implementation of suffix trees leads to an O(n) preprocessing
time and space solution that given a pattern of length m supports existential and counting queries
in time O(m log σ) and reporting queries in time O(m log σ+occ), where occ is the number of occur-
rences of the pattern. The suffix array implemented with additional arrays storing longest common
prefixes leads to a solution that also uses O(n) preprocessing time and space while supporting exis-
tential and counting queries in time O(m+log n) and reporting queries in time O(m+log n+occ). If

∗Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178) and the Advanced Technology
Foundation
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46



we instead combine suffix trees with perfect hashing [FKS84] we obtain O(n) expected preprocessing
time and O(n) space, while supporting existential and counting queries in time O(m) and reporting
queries in time O(m+occ). The above bounds hold assuming that the alphabet size σ is polynomial
in n. If this is not the case, additional time for sorting the alphabet is required [FCFM00]. For
simplicity, we adopt this convention in all of the bounds throughout the paper.

In the deterministic variant the goal is to solve the string indexing problem without any ran-
domization. In particular, we cannot combine suffix trees with perfect hashing to obtain O(m) or
O(m+ occ) query times. In this setting Cole et al. [CKL06] showed how to combine suffix trees and
suffix array into the suffix tray that uses O(n) preprocessing time and space and supports existen-
tial and counting queries in O(m + log σ) time and reporting queries in O(m + log σ + occ) time.
Recently, the query times were improved by Fischer and Gawrychowski [FG15] to O(m+ log log σ)
and O(m+ log log σ + occ), respectively.

In the packed variant the strings are given in a packed representation, with several characters
in a single word [Bil11,BKBB+14,Bel12,TISA16]. For instance, DNA-sequences have an alphabet
of size 4 and are therefore typically stored using 2 bits per character with 32 characters in a 64-bit
word. On packed strings we can read multiple characters in constant time and hence potentially
do better than the immediate Ω(m) or Ω(m + occ) lower bound for existential/counting queries
and reporting queries, respectively. In this setting Takagi et al. [TISA16] recently introduced the
packed compact trie that stores packed strings succinctly and also supports dynamic insertion and
deletions of strings. In a static and deterministic setting their data structure implies a linear space
and superlinear time preprocessing solution that uses O(mα log logn) and O(mα log logn+occ) query
time, respectively.

In this paper, we consider the string indexing problem in the deterministic and packed setting
simultaneously, and present a solution that improves all of the above bounds.

4.1.1 Setup and result

We assume a standard unit-cost word RAM with word length w = Θ(log n), and a standard in-
struction set including arithmetic operations, bitwise boolean operations, and shifts. All strings in
this paper are over an alphabet Σ of size σ. The packed representation of a string A is obtained by
storing α = w/ log σ characters per word thus representing A in O(|A| log σ/w) words. If A is given
in the packed representation we simply say that A is a packed string.

Throughout the paper let S be a string of length n. Our goal is to preprocess S into a compact
data structure that given a packed pattern string P supports the following queries.

Count(P ): Return the number of occurrence of P in S.

Locate(P ): Report all occurrences of P in S.

Predecessor(P ): Returns the predecessor of P in S, i.e., the lexicographic largest suffix in S
that is smaller than P .

We show the following main result.

Theorem 9. Let S be a string of length n over an alphabet of size σ and let α = w/ log σ be the
number of characters packed in a word. Given S we can build an index in O(n) deterministic time
and space such that given a packed pattern string of length m we can support Count and Predecessor
in time O(mα + logm+ log log σ) and Locate in time O(mα + logm+ log log σ + occ) time.
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Compared to the result of Fischer and Gawrychowski [FG15], Thm 9 is always at least as good
and whenever several characters are packed in a word, i.e., log σ � w, the query times are faster.
Compared to the result of Takagi et al. [TISA16], our query time is a factor log logn faster.

Technically, our results are obtained by a novel combination of previous techniques. Our general
tree decomposition closely follows Fischer and Gawrychowski [FG15], but different ideas are needed
to handle packed strings efficiently. We also show how to extend the classic suffix array search
algorithm to handle packed strings efficiently.

4.2 Preliminaries

Deterministic hashing and predecessor We use the following results on deterministic hashing
and predecessor data structures.

Lemma 6 (Ružić [Ruž08, Theorem 3]). A static linear space dictionary on a set of k keys can be
deterministically constructed in time O(k(log log k)2), so that lookups to the dictionary take time
O(1).

Fischer and Gawrychowski [FG15] use the same result for hashing characters. In our context we
will apply it for hashing words of packed characters.

Lemma 7 (Fischer and Gawrychowski [FG15, Proposition 7]). A static linear space predecessor
data structure on a set of k keys from a universe of size u can be constructed deterministically in
O(k) time and O(k) space such that predecessor queries can be answered deterministically in time
O(log log u).

Suffix tree The suffix tree TS of S is the compacted trie over the n suffixes from the string S.
We assume that the special character $ 6∈ Σ is appended to every suffix of S such that each string
is ending in a leaf of the tree. The edges are sorted lexicographic from left to right. We say that
a leaf represents the suffix that is spelled out by concatenating the labels of the edges on the path
from the root to the leaf. In the same way an internal node represents a string that is a prefix of
at least one of the suffixes. For a node v in TS , we say that the subtree of v is the tree induced
by v and all proper descendants of v. We distinguish between implicit and explicit nodes: implicit
nodes are conceptual and refer to the original non branching nodes from the trie without compacted
paths. Explicit nodes are the branching nodes in the original trie. When we refer to nodes that
are not specified as either explicit or implicit, then we are always referring to explicit nodes. The
lexicographic ordering of the suffixes represented by the leafs corresponds to the ordering of the
leafs from left to right in the compacted trie. For navigating from node to child, each node has
a predecessor data structure over the first characters of every edge going to a child. With the
predecessor data structure from Lemma 7 navigation from node to child takes O(log log σ) time and
both the space and the construction time of the predecessor data structure is linear in the number
of children.

Suffix array Let S1, S2, . . . , Sn be the n suffixes of S from left to right. The suffix array SAS of
S gives the lexicographic ordering of the suffixes such that SSAS [i] refers to the ith lexicographic
greatest suffix of S. This means that for every 1 < i ≤ n we have that SSAS [i−1] is lexicographic
smaller than SSAS [i]. For simplicity we let SAS [i] refer to the suffix SSAS [i] and we say that SAS [i]
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represents the suffix SSAS [i]. Every suffix from S with pattern P as a prefix will be located in a
consecutive range of SAS . This range corresponds to the range of consecutive leafs in the subtree
spanned by the explicit or implicit node that represents P in TS . We can find the range of SAS
where P prefix every suffix by performing binary search twice over SAS . A naïve binary search
takes O(m log n) time: We maintain the boundaries, L and R, of the current search interval and in
each iteration we compare the median string from the range L to R in SAS , with P , and update
L and R accordingly. This can be improved to O(m + log n) time if we have access to additional
arrays storing the value of the longest common prefixes between a selection of strings from SAS .
We construct the suffix array from the suffix tree in O(n) time.

4.3 Deterministic index for packed strings

In this section we describe how to construct and query our deterministic index for packed strings.
This structure is the basis for our result in Thm 9. For short patterns where m < logσ(n) − 1 we
store tabulated data that enables us to answer queries fast. We construct the tables in O(n) time
and space and answer queries in O(log log σ + occ) time. For long patterns where m ≥ logσ(n)− 1
we use a combination of a suffix tree and a suffix array that we construct in O(n) time and space
such that queries take O(m/α+ log log n+ occ) time. For m ≥ logσ(n)− 1 we have that log log n =
log( logn

log σ log σ) = log logσ n+ log log σ ≤ log(logσ n− 1) + 1 + log log σ ≤ logm+ 1 + log log σ. This
gives us a query time of O(m/α + logm + log log σ + occ) for the deterministic packed index. We
need the following connections between TS and SAS : For each explicit node t in TS we store a
reference to the range of SAS that corresponds to the leafs spanned by the subtree of t and for each
index in SAS we store a reference to the corresponding leaf in TS that represents the same string.

We first describe our word accelerated algorithm for matching patterns in SAS that we need for
answering queries on long patterns. Then we describe how to build and use the data structures for
answering queries on short and long patterns.

4.3.1 Packed matching in SAS

We now show how to word accelerate the suffix array matching algorithm by Manber and My-
ers [MM93]. They spend O(m) time reading P but by reading α characters in constant time we can
reduce this to O(m/α). We let LCP(i, j) denote the length of the longest common prefix between
the suffixes SAS [i] and SAS [j] and obtain the result in Lemma 8.

Lemma 8. Given the suffix array SAS over the packed string S and a data structure for answering
the relevant LCP queries, we can find the lexicographic predecessor of a packed pattern P of length
m in SAS in O(m/α+ log n) time where α is the number of characters we can pack in a word.

In the algorithm by Manber and Myers we maintain the left and right boundaries of the current
search interval of SAS denoted by L and R and the longest common prefix between SAS [L] and P ,
and between SAS [R] and P , that we denote by l and r, respectively. Initially the search interval is
the whole range of SAS such that L = 1 and R = n. In an iteration we do as follows: If l = r we
start comparing SAS [M ] with P from index l+ 1 until we find a mismatch and update either L and
l, or R and r, depending on whether SAS [M ] is lexicographic larger or smaller than P . Otherwise,
when l 6= r, we perform an LCP query that enable us to either half the range of SAS without
reading from P or start comparing SAS [M ] with P from index l + 1 as in the l = r case. When
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i + c′ . . . i − 1 i . . . i + c 000 i+ c+1 . . . i+α−1 i + α . . . i+c+α 000

i . . . i + c 000..000 . . . 000..000 000 000..000 . . . 000..000 i+ c+1 . . . i+α−1 101

w1 w2

s1 s2 g

Figure 4.1: Alignment of α characters that extends over a word boundary where c′ = c+1−α. The
relevant part of the lower word w1 and upper word w2 is combined with bitwise shifts, a bitwise or
and the g bits on the right is set to 0.

l > r there are three cases: If LCP(L,M) > l then P is lexicographic larger than SAS [M ] and we
set L to M and continue with the next iteration. If LCP (L,M) < l then P is lexicographic smaller
than SAS [M ] and we set R to M and set r to LCP(L,M) and continue with the next iteration. If
LCP (L,M) = l then we compare SAS [M ] and P from index l + 1 until we find a mismatch. Let
that mismatch be at index l+i. If the mismatch means that P is lexicographic smaller than SAS [M ]
then we set R to M and set r to l + i − 1 and continue with the next iteration. If the mismatch
means that P is lexicographic larger than SAS [M ] then we set L to M and set l to l + i − 1 and
continue with the next iteration. Three symmetrical cases exists when r > l.

We generalize their algorithm to work on word packed strings such that we can compare α
characters in constant time. In each iteration where we need to read from P we align the next α
characters from P and SAS [M ] such that we can compare them in constant time: Assume that we
need to read the range from i to i+α− 1 in P . If this range of characters is contained in one word
we do not need to align. Otherwise, we extract the relevant parts of the words that contain the
range with bitwise shifts and combine them in walign with a bitwise or. See Figure 4.1. We align
the α characters from SAS [M ] in the same way and store them in w′align.

We use a bitwise exclusive or operation between walign and w′align to construct a word where the
most significant set bit is at a bit position that belong to the mismatching character with the lowest
index. We obtain the position of the most significant set bit in constant time with the technique of
Fredman and Willard [FW93]. From this we know exactly how many of the next α characters that
match and we can increase i accordingly. Since every mismatch encountered result in a halving of
the search range of SAS we can never read more than O(log n) incomplete chunks. The number
of complete chunks we read is bounded by O(m/α). Overall we obtain a O(m/α + log n) time
algorithm for matching in SAS . This result is summarized in Lemma 8.

4.3.2 Handling short patterns

Now we show how to answer count, locate and lexicographic predecessor queries on short patterns.
We store an array containing an index for every possible pattern P wherem < logσ(n)−1 and at the
index we store a pointer to the deepest node in TS that prefix P . We call this node dP . We use dP
as the basis for answering every query on short patterns. We assume that the range in SAS spanned
by dP goes from l to r. We answer predecessor queries as follows: If P is lexicographic smaller
than SAS [0] then P has no predecessor in SAS . Otherwise, we find the predecessor as follows: If
dP is representing P then the predecessor of P is located at index l − 1 of SAS . Otherwise, we
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assume that dP prefix P with i characters and need to decide whether P continues on an edge out
of dP or P deviates from TS in dP . We do this by querying the predecessor data structure over the
children of dP with character i + 1 of P . If this query does not return an edge, then P [i + 1] is
lexicographic smaller than the first character of every edge out of dP , and the predecessor of P is
the string located at index l−1 of SAS . If this query returns an edge epred then there are two cases.

Case 1: The first character of epred is not identical to P [i+ 1]. Then the predecessor of P is the
lexicographic largest string in the subtree under epred.

Case 2: The first character on epred is identical to P [i+ 1]. In this case, if there exists an edge
e′pred out of dP on the left side of epred, then the predecessor of P is the lexicographic largest string
in the subtree under e′pred and otherwise the predecessor is the string at index l − 1 of SAS . We
report the node in TS that represents the predecessor of P .

We let epred be defined as above and answer count queries as follows: If dP represents P we
return the number of leafs spanned by dP in TS . If P instead continues and ends on epred we report
the number of leafs spanned by the subtree below epred. We answer locate queries in the same way
but instead of reporting the range we report the strings in the range.

We find dP in O(1) time and epred in O(log log σ) time. In total we answer predecessor and
count queries in O(log log σ) time and locate queries in O(log log σ + occ) time

Since m < logσ(n) − 1 there exists σ + σ2 + . . . + σblogσ(n)−1c ≤ σblogσ(n)c ≤ σlogσ n = n short
patterns and we compute them in O(n) time by performing a preorder traversal of TS bounded to
depth logσ(n)− 1. Let dP be the node we are currently visiting and let dnext be the node we visit
next. When we visit dP we fill the tabulation array for every string that is lexicographic larger or
equal to the string represented by dP and lexicographic smaller than the string represented by dnext.
We fill each of these indices with a pointer to dP since dP is the deepest node in TS that represents
a string that prefix these strings. We can store the tabulation array in O(n) space.

4.3.3 Handling long patterns

Now we show how to answer count, locate and lexicographic predecessor queries on long patterns.
We first give an overview of our solution followed by a detailed description of the individual parts.
In TS we distinguish between light and heavy nodes. If a subtree under a node spans at least
log2 log n leafs, we call the node heavy, otherwise we call it light. A node is a heavy branching node
if it has at least two heavy children and all the heavy nodes constitutes a subtree that we call the
heavy tree. We decompose the heavy tree into micro trees of height α and we augment every micro
tree with a data structure that enables navigation from root to leaf in constant time. For micro
trees containing a heavy branching node we do this with deterministic hashing and for micro trees
without a heavy branching node we just compare the relevant part of P with the one unique path
of the heavy tree that goes through the micro tree. To avoid navigating the light nodes we in each
light node store a pointer to the range of SAS that the node spans. We construct two predecessor
data structures for each micro tree: The light predecessor structure over the strings represented by
the light nodes that are connected to the heavy nodes in the micro tree and the heavy predecessor
structure over the heavy nodes in the micro tree. We answer queries on P as follows: We traverse
the heavy tree in chunks of α characters until we are unable to traverse a complete micro tree. This
means that P either continues in a light node, ends in the micro tree or deviates from TS in the
micro tree. We can decide if P continues in a light node with the light predecessor structure and
if this is the case we answer the query with the packed matching algorithm on the range of SAS
spanned by the light node. Otherwise, we use the heavy predecessor structure for finding dP in the
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Figure 4.2: The decomposition of HTS in micro trees of height α. One micro tree is shown with the
root at string depth α and the boundary nodes at string depth 2α

micro tree and use dP for answering the query as in section 4.3.2. The following sections describes
in more detail how we build our data structure and answer queries and gives a time and space .

4.3.3.1 Data structure

This section describes our data structure in details. If a subtree under a node in TS spans at least
log2 log n leafs, we call the node heavy. The heavy tree HTS is the induced subgraph of all the the
heavy nodes in TS . We decompose HTS into micro trees of string depth α. A node, explicit or
implicit, is a boundary node if its string depth is a multiple of α. Except for the original root and
leafs of HTS , each boundary node belongs in two micro trees i.e., a boundary node at depth dα is
root in a micro tree that starts at string depth dα and is a leaf in a micro tree that starts at string
depth (d− 1)α. Figure 4.2 shows the decomposition of HTS into micro trees of string depth α.

We augment every micro tree with information that enables us to navigate from root to leaf
in constant time. To avoid using too much space we promote only some of the implicit boundary
nodes to explicit nodes. We distinguish between three kinds of micro trees:

• Type 1. At least one heavy branching node exists in the micro tree: We promote the root
and leafs to explicit nodes and use deterministic hashing to navigate the micro tree from root
to leaf. Because the micro tree is of height α, each of the strings represented by the leafs in
the micro tree fits in a word and can be used as a key for hashing. We say that the root is a
hashing node and the leafs are hashed nodes. We will postpone the analysis of time and space
used by the micro trees that use hashing for navigation.

• Type 2. No heavy branching node exists in the micro tree: When the micro tree does not
contain a heavy branching node, the micro tree is simply a path from root to leaf. Here we
distinguish between two cases:

– Type 2a. The micro tree contains a non branching heavy node:
We promote the root and leaf to explicit nodes. Navigating from root to leaf takes
constant time by comparing the string represented by the leaf with the appropriate part
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of P . We charge the space increase from the promotion of the root and leaf to the non
branching heavy node. Since there are at most n non branching heavy nodes we never
promote more than 2n implicit nodes from type 2a micro trees.

– Type 2b. The micro tree does not contain a heavy node: If the root is a boundary node
where the micro tree above contains a heavy node we promote the root to an explicit
node and store a pointer to the root of the nearest micro tree below that contains a heavy
node. The path from root to root corresponds to a substring in S and we navigate by
comparing this string to the appropriate part of P . We charge the space increase from
the promotion of the root to the heavy node descendant. Since we have at most n heavy
nodes we promote no more than n implicit nodes from type 2b micro trees. We ignore
every micro tree where the micro tree above does not contain a heavy node.

We say that a node in TS is a heavy leaf if it is a heavy node with no heavy children. We want
to bound the number of heavy branching nodes and heavy leafs. Every heavy leaf spans at least
log2 log n leafs of TS . This means we can have at most n/ log2 log n heavy leafs in TS . Since we
have at most one branching heavy node per heavy leafs the number of heavy branching nodes is at
most n/ log2 log n.

We want to bound the number of implicit nodes that are promoted to explicit hashed nodes.
This number is critical for constructing all hash functions in O(n) time. We bound the number
of promoted hashed nodes by associating each with the nearest descendant that is either a heavy
branching node or a heavy leaf: Let l be a promoted hashed node in a micro tree that contain a
heavy branching node h. Then every promoted hashed node above l is associated with h or a node
above h in the tree. Hence, no other promoted node can be associated with the first encountered
heavy branching or leaf node below l. Since we have at most O(n/ log2 log n) heavy branching and
heavy leaf nodes we also have at most O(n/ log2 log n) implicit nodes that are promoted to explicit
hashed nodes.

With deterministic hashing from Lemma 6 the total time for constructing the explicit hashing
nodes are:

O

(∑
h∈H
|h| log2 log |h|

)
= O

(∑
h∈H
|h| log2 log(n/ log2 log n)

)

= O

(
log2 log(n/ log2 log n) ·

∑
h∈H
|h|

)
= O

(
log2 log(n/ log2 log n)

n

log2 log n

)
= O(n)

Here H is the set of all the hash functions and we bound the elements in every hash function h to
n/ log2 log n. Summing the elements of every hash function is bounded by the maximum number
of promoted nodes, i.e. O(n/ log2 log n). To conclude, we spend linear time constructing the hash
functions in the micro trees that contain a heavy branching node.

We associate two predecessor data structures with each micro tree that contains a heavy node:
The first predecessor structure contains every light node that is a child of a heavy node in the micro
tree. We call this predecessor data structure for the light predecessor structure of the micro tree.
The key for each light node is the string on the path from the root of the micro tree to the node itself
padded with character $ such that every string has length α. These keys are ordered lexicographic
in the predecessor data structure and a successful query yields a pointer to the node. The second
predecessor structure is similar to the first but contains every heavy node in the micro tree. We call
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this predecessor structure for the heavy predecessor structure. We use Lemma 7 for the predecessor
structures. The total size of every light and heavy predecessor structures is O(n) and a query in
both take O(log log n) because the universe is of size (σ + 1)α.

For each light node that are a child of a heavy node we additionally store pointers to the range
of SAS that corresponds to the leafs in TS that the light node spans.

4.3.3.2 Answering queries

We answer queries on long patterns as follows. First we search for the deepest micro tree in HTS
where the root prefix P . We do this by navigating the heavy tree in chunks of α characters starting
from the root. Assuming that we have already matched a prefix of P consisting of i chunks of α
characters we need to show how to match the (i + 1)th chunk: If the micro tree is of type 1 and
P has length at least (i + 1)α, we try to hash the substring P [iα, (i + 1)α]. If we obtain a node v
from the hash function we continue matching chunk P [(i+ 1)α, (i+ 2)α] from v. If the micro tree
is of type 2 we compare α sized chunks of P with the string on the unique path from root to the
first micro tree with an explicit root and continue matching from here. We have found the deepest
micro tree where the root prefix P when we are unable to match a complete chunk of α characters
or are unable reach a micro tree with an explicit root. From this micro tree we need to decide
whether the query is answered by searching SAS from a light node or answered by finding dP in the
micro tree, where dP is defined as in Section 4.3.2, i.e. the deepest node in TS that prefix P . We
check if P continues in a light node by querying the light predecessor structure of the micro tree
with the next unmatched α characters from P and pad with character $ if less than α characters
remain unmatched in P . If the light node returned by the query represents a string that prefix
P we answer the query by searching the range of SAS spanned by the light node with the packed
matching algorithm.

When P does not continue in a light node we instead find and use dP for answering the query:
If the micro tree is of type 2b or the root of the micro tree represents P then dP is the root of the
micro tree. Otherwise, we find dP with a technique, very similar to a technique used by Fredman
and Willard [FW93], that query the heavy predecessor structure three times as follows: We call the
remaining part of P , padded to length α with character $, for p0. We first query the predecessor
structure with p0 which yields a node that represents a string n0. We then construct a string, p1,
that consists of the longest common prefix of p0 and n0, and as above, padded to length α. We
query the predecessor structure with p1 which yield a new node that represents a string n1. We
then construct a string, p2, that consists of the longest common prefix of p0 and n1, again padded
to length α. At last, we query the predecessor structure with p2 which returns dP . Given dP , we
answer count, locate and lexicographic predecessor queries exactly as we did in section 4.3.2.

Now we prove the correctness of our queries. First we prove that if P continues in a light
node then the query in the light predecessor structure returns that light node: Assume that P
goes through the light node lP that has a heavy parent in the micro tree Tp and that we query
the light predecessor structure with the string Qα. Let Lpred be the string that represents lP in
the light predecessor structure. Since P goes through lP then Lpred is identical or lexicographic
smaller than Qα. Let L′pred be the successor of Lpred in the light predecessor structure. Since Lpred
is lexicographic smaller than L′pred and has a longer common prefix with Qα than L′pred has with
Qα, then L′pred must be lexicographic larger than Qα. Since Qα is identical or lexicographic larger
than Lpred and lexicographic smaller than L′pred, a query on Qα in the light predecessor structure
will return lP .
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Figure 4.3: Searching for a prefix of P in HTS

We now prove that the queries in the heavy predecessor structure always returns dP : Because
P is not prefixed by a leaf of the micro tree or a light node from the light predecessor structure
we know that dP is a heavy node in the micro trie. In Figure 4.3, dP is depicted and P either
ends on or deviates from the edge e that leads to the tree T2. The trees T1, T2 and T3 combined
with dP and the edge e constitutes the subtree of dP . If P deviates to the left or ends on e then
P is lexicographic smaller than every string represented in T2. If P deviates to the right then P is
lexicographic larger than every string represented in T2. Assume that P deviates to the right on e.
Then the query to the heavy predecessor structure with pattern p0 will yield n0 that represents the
lexicographic largest string in T2. The pattern p1 will then be represented by the implicit node from
where P deviates from e. The pattern p1 is lexicographic smaller than every string represented in
T2 and a query will yield n2 as the lexicographic largest node in T1 or, if T1 is empty, the node dP .
Either way, the query on p2 will yield the node dP . We can make similar arguments for the other
cases where P ends on e, deviates left from e, ends at dP or goes through dP without following e.

The following gives an analysis of the running time of our queries. We spend at most O(m/α)
time traversing the heavy tree. Both predecessor structures contains strings over a universe of size n
such that a query takes O(log log n) time using Lemma 7. Each light node spans at most log2 log n
leafs which corresponds to an interval of length log2 log n in SAS that we search in O(m/α +
log log log n) time with the word accelerated algorithm for matching in SAS . Overall, we spend
O(m/α + log log n) time for answering count and lexicographic predecessor queries and O(m/α +
log logn + occ) time for answering locate queries. Since we only query this data structure for
patterns where m ≥ logσ(n)−1 we have that log log n = log( logn

log σ log σ) = log logσ(n)+ log log(σ) ≤
log(logσ(n)−1)+1+log log(σ) ≤ log(m)+1+log log(σ), such that we answer count and lexicographic
predecessor queries in O(m/α + logm + log log σ) time and locate queries in O(m/α + logm +
log log σ+ occ) time. Combined with our solution for patterns where m < logσ(n)− 1, that answer
the queries in O(log log σ) and O(log log σ + occ) time, respectively, we can for patterns of any
length answer count and lexicographic predecessor queries in O(m/α+ logm+ log log σ) time and
locate queries in O(m/α+logm+log log σ+occ) time. This is our main result which is summarized
in Thm 9.
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Abstract

The dynamic partial sums problem is to dynamically maintain an array of n integers while
supporting efficient access, update and partial sums queries. This classic problem, and its varia-
tions, are very well studied in many different computational models [Fre82,FS89,Fen94,HSS11,
HR03,HRS96,RRR01,PD04]. We solve the partial sums problem in the ultra wide word-RAM
model, recently introduced by Farzan et al. [FLONS15], where we, in constant time, are allowed
to manipulate words of size w2 and access w memory locations. Farzan et al. [FLONS15] addi-
tionally gave a solution to the dynamic partial sums problem by simulating the RAMBO model
to obtain a result by Brodnik et al. [BKMN06]. In this paper we present an improved solution to
the dynamic partial sums problem in the ultra wide word-RAM model that supports all opera-
tions in either constant or O(log log n) time, depending on whether we allow multiplication, and
succinct space. We pose as an open problem whether it is possible in the ultra wide word-RAM
model to additionally support the classic select operation in constant time.

5.1 Introduction

The dynamic partial sums problem is to maintain an integer array A of length n while efficiently
supporting Access queries (return integer at specific index), Update queries (increment or decrement a
specific index) and Sum queries (return the sum of every integer up to a given index). The problem
is very well studied in many different computational models. Initially, two different versions of
the problem was studied by Fredman [Fre82]: An algebraic version, where the elements in A are
elements from a group and the complexity is measured as the number of composed operations
needed to answer the query, and a version where only integers modulo 2 is considered and time
complexity is measured as the number of memory accesses and memory changes. Dietz [Die89]
solves the dynamic partial sums problem in the RAM-model with a word size of O(log n)-bits
and O(log n/ log log n) time complexity for all operations under the assumption that Update are
constrained to values representable with O(log log n) bits. The problem was further studied by many
authors [FS89,Fen94,HSS11,HR03,HRS96,RRR01] and in particular, Demaine and Pătraşcu [PD04]
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shows a matching upper and lower bound for the partial sums problem with the additional query
Select. Demaine and Pătraşcu further gives an elaborate exposition of previous work. Fredman
and Saks [FS89] claimed that solution where each operation takes constant time is possible in the
RAM model with bit overlap(RAMBO). In this model, memory words can overlap on a subset of
their bits. This claim was investigated by Brodnik et al. [BKMN06] that gave a constant time
solution in the RAMBO model with the restriction that lg n lgU < w, where U is the size of
the universe and w is the word size. Farzan et al. [FLONS15] introduced the ultra wide word-
RAM model and showed that it can simulate any algorithm of the RAMBO model with a space
overhead. By this simulation they transfer the result by Brodnik et al. [BKMN06] to the ultra wide
word-RAM model. The ultra wide word-RAM model extends the standard unit cost word-RAM
model with strong capabilities for manipulating wide bitstrings and parallel addressing. Farzan et
al. [FLONS15] supports all operations of the dynamic partial sums problem in O(τ + 1) time an
O(log(U) · U log(n)/2τ + n log(u) log(n)w) space, where U is the size of the universe of the elements
that can be stored in A and τ is a trade-off parameter such that 1 ≤ τ ≤ log(n). This is still under
the constrain that lg n lgU < w. The additive term on the left stems from the space overhead of
the simulation of the RAMBO model. They do not present any solution specifically designed for
the ultra wide word-ram model.

Both Brodnik et al. [BKMN06] and Farzan et al. [FLONS15] obtain their results without using
word level parallelism for summing integers that are packed in a single word and instead use a
precomputed table.

In this paper we present a solution to the dynamic partial sums problem in the ultra wide word-
RAM model that supports all operations in constant time and succinct space. Additionally, for the
ultra wide word-RAM model without multiplication, we support all operations in O(log log n) time
and succinct space.

5.1.1 Setup and Result

As computational model we work the ultra wide word-RAM model (UW-RAM) that was recently
proposed by Farzan et al. [FLONS15]. The UW-RAM is a unit-cost word RAM with extended
capabilities for bit manipulation and addressing.

Throughout the paper let A be an array of n w-bit integers. Our goal is to maintain A under
the following operations:

Access(i): Return A[i].

Sum(i): Returns the sum of every index smaller than or equal to i, i.e.
∑i

j=1A[i].

Update(i, v): Increment index i of A with value v, i.e A[i] := A[i] + v, where v is any value
representable in two’s complement representation with w-bits.

We show the following result:

Theorem 10. Let A be an array of n positive w-bit integers. In the ultra wide word-RAM model
with multiplication we can build a data structure in O(n) time and n+O(log n) words of space that
support Access, Sum and Update operations in O(1) time.

For a UW-RAM without support for multiplication we show the following result:
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Lemma 9. Let A be an array of n positive w-bit integers. In the ultra wide word-RAM model
without multiplication we can build a data structure in O(n) time and n + O(log n) words of space
that support Access, Sum and Update operations in O(log log n) time.

5.2 The Ultra Wide Word-RAM Model

The UW-RAM is a standard unit-cost RAM with extended capabilities for working with wide words
and parallel addressing. The UW-RAM has a word length of w ≥ log n and a standard instruction
set including uarithmetic operations, bitwise boolean operations and shifts that operate on w-bit
words. Additionally, every instruction can also manipulate wide words of w2-bits and load w2 bits
from memory, both in constant time. We distinguish between standard words of w bits and wide
words of w2 bits. We will also consider a variation of the model where we exclude multiplication
from the instruction set.

We use the notation by Farzan et al. [FLONS15] for indexing words: Let W be a wide word
of w2 bits and let W [i] denote the i-th bit of W . We let W [0] denote the least significant bit
of W and let W [i . . . j] denote the contigous subword of w bits that corresponds to the bitstring
W [i]W [i + 1] . . .W [j]. Let Wj denote the j-th contiguous subword of W that consists of subword
W [jw . . . (j + 1)w − 1] for 0 ≤ j < w and let Wj [i] denote the i-th bit of Wj . The UW-RAM only
makes a distinction between wide words and standard words when addressing memory. For all other
operations, a wide word is treated exactly as a standard word.

The UW-RAM supports the standard addressing modes of the unit-cost word RAM but extends
it capabilities with the following constant time addressing modes. Let M denote the addressable
memory. A simple read takes an index i ofM and loads a wide wordW such thatWj = M [i+j] for
0 ≤ j ≤ w− 1, i.e, a simple read loads w consecutive standard words into a wide word. A scattered
read takes a wide wordW a and loads a wide wordW l such thatW l

j = M [W a
j ] for 0 ≤ j ≤ w−1, i.e,

a scattered read loads w standard words from w different addresses given by W a
0 ,W

a
1 , . . . ,W

a
w−1.

We define simple and scattered writes similarly. Farzan et al. [FLONS15] further defines extends the
UW-RAM with a spread and compress operation. These are not standard word RAM operations
but can be implemented in a constant depth circuit model such as AC0. The compress operations
on a wide word W , copies bit W [0]j into W ′[j]0 for all 0 ≤ j < w. The spread operation is the
inverse, and copies bit W [j]0 into W ′[0]j .

5.3 Preliminaries

We use the Fenwick tree introduced by Fenwick [Fen94] as the data structure for representing the
array A.

Fenwick tree The Fenwick tree by Fenwick [Fen94] is a data structure for maintaining an array A
of n w-bit integers that supports Access, Sum and Update queries in O(log n) time on the standard
word-RAM. The data structure is stored implicitly in an array A′ of n words. Index i of A′ stores
the value

∑i
j=i−∆(i)+1A[j] where ∆(i) is the largest power of two that divides i. This value, ∆(i),

is also the value represented by the least significant set bit of i.
We define the functions addLSB(i) to be i+∆(i) and subLSB(i) to be i−∆(i), such that the func-

tions return i incremented and decremented with the value of the least significant bit of i. For conve-
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nience we define repeated application of the functions such that addLSBk(i) = addLSB
k−1(addLSB(i))

and addLSB
1(i) = addLSB(i) and similar for subLSBk(i).

We answer Sum(i) by summing A′[i], A′[subLSB(i)], A′[subLSB2(i)], . . . , A′[subLSB
s−1(i)], where s

is the number of set bits in the binary representation of i. As an example, if n = 32 and for Sum(13)
we sum A′[001101b], A′[001100b] and A′[001000b].

We perform an Update(i, v) by adding the value v to A′[i], A′[addLSB(i)], A′[addLSB2(i)], . . .,
A′[addLSB

s−1(i)], where s is the number of non set bits in the binary representation of i that repre-
sents a value greater than the least significant set bit in i. As an example, if n = 32 and we need
to perform an Update(18, v) we add v to A′[010010b], A′[010100b], A′[011000b] and A′[100000b]. An
Access(i) operation is simply answered by Sum(i)− Sum(i− 1).

We calculate the indices produced by addLSB(i) and subLSB(i) by finding the least significant set
bit of i. Let i− be the two’s complement representation of −i. Performing a bitwise and operation
between i and i− will produce a bitstring i∆ with a single set bit at the position that corresponds
to ∆(i). To produce addLSB(i) and subLSB(i) we then either add or subtract the value i∆. Given
an index i, we can make no more than O(log n) repeated applications since every index of A′ can
be represented with O(log n) bits. This means that the Fenwick tree can support the operations
Access, Sum and Update in O(log n) time.

Word Parallel Summing and Summing in the UW-RAM LetW be a wide word containing
w-bit integers in the subwords W0,W1, . . . ,Ww−1. To speed up the queries on the Fenwick tree in
the UW-RAM, we need methods for efficiently summing the integers of W and a method for adding
a w-bit value v to each integer ofW . We describe two methods for doing this depending on whether
multiplication is allowed in the model.

Without multiplication For summing the integers, let W u be the upper half of the bits of
W shifted down w2/2 positions, and let W l be the lower half of the bits of W . Adding together W u

and W l gives us a wide word W ′ where W ′j contains the sum of Wj+w/2 and Wj , for 1 ≤ j ≤ w/2.
We continue recursively for logw steps until the sum of every integer is contained in the lowest
subword. With this approach we use O(logw) time for summing the w integers.

For adding v to the integers, let W k be the wide word where W k
j = v for all 1 ≤ j ≤ k.

We construct W k in constant time by shifting W k/2 up k/2 positions and then adding W k/2, i.e
(W k/2 << k/2) +W k/2. In this way we construct Ww in O(logw) time.

With multiplication For summing the integer, we multiplyW with the bit patternW ′ where
W ′j [1] = 1 for every 0 ≤ j < w such that the value of the sum is located in subword w of the resulting
wide word. This takes constant time.

For adding v to the integers, we multiply W ′ with W ′′ where W ′′1 = v. This puts the value of v
in every subword of the result that we add to W . This also takes constant time.

5.4 Dynamic Partial Sums in UW-RAM

We speed up the operations of the Fenwick tree in the UW-RAM such that all operations take O(1)
time. The Fenwick tree is laid out in memory exactly as before and we speed up the queries solely
by taking advantage of the wide word size and the parallel addressing capabilities of the UW-RAM.
The general idea for performing both the Access and Update query is to calculate, with word level
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parallelism, all indices of A′ that is needed for the query and then either read or update the indices
with parallel addressing.

To perform a Sum(i) we need to add togetherA′[i], A′[subLSB(i)], A′[subLSB2(i)], . . ., A′[subLSBs−1(i)].
For this we need to calculate all the indices in parallel: In the wide word W 0 we have the w-bit
representation of i at every subword W 0

j for 0 ≤ j < w and M0 is a wide word mask pattern where
M0
j has the j − 1 least significant bits set to 0 and the w − (j − 1) most significant bits set to 1.

We compute W 1 := W 0 &M0 such that each W 1
j contains an index of A′ that is part of the sum.

Some of the indices in W 1 might be duplicates so we need to sum only a subset that we select with
a bit mask. We select the index contained in W 1

j if bit j of the bit representation of i is set to 1.
We let M1 be this mask pattern where every bit of M1

j is set to 1 if bit j of i is 1 and set to 0 if bit
j of i is 0. We mask out the correct indices of W 1 by computing W 2 := W 1 &M1 and dereference
W 2 such that we obtain a wide word W 3 where W 3

j contains the value of A′[W 2
j ]. The result of the

Sum(i) query is then the result of a parallel sum operation of W 3.
To perform an Update(i, v) we need to add the value v to A′[i], A′[addLSB(i)], A′[addLSB2(i)],

. . ., A′[addLSBs−1(i)]. We do as for the Sum query but make the following changes: We calculate
W 1 := (W 0 &M0) + P+ such that we now also add the wide word P+ where P+

j [j] := 1 and all
other bits are set to 0. Let l be the the bit position of the least significant set bit of i. Before
using M1 to calculate W 2 we set all bits in M1

j to 0, for 0 ≤ j < l, and negate every bit in M1
k ,

for l ≤ k < w. Instead of performing a parallel sum on W 3 we parallel add v to W 3 and with the
addresses stored in W 2, write the result back to the right indices of A′.

We assume that M0 and P+ are constructed beforehand an if we allow multiplication we can
construct W 0 and M1 in constant time and sum every value of W 3 in constant time. We construct
W 0 with a parallel add and M1 with a spread operation and a parallel add operation. This gives
Theorem 10. Without multiplication we need O(log log n) time for constructing W 0, M1 and
summing W 3. This gives Lemma 9.

As an example, consider the Sum(5) query on the following Fenwick tree:

i 1 2 3 4 5 6 7 8
A = 12 8 2 7 9 4 3 6
A′ = 12 20 2 29 9 13 3 51

We need to calculate the indices to access and we start with calculating W 1 := W 0 &M0:

i 1 2 3 4 5 6 7 8
W 0 = 0000101 0000101 0000101 0000101 0000101 0000101 0000101 0000101
M0 = 1111111 1111110 1111100 1111000 1110000 1100000 1000000 0000000
W 1 = 0000101 0000100 0000100 0000000 0000000 0000000 0000000 0000000

We then need to select the correct indicies with the operation W 2 := W 1 &M1

i 1 2 3 4 5 6 7 8
W 1 = 0000101 0000100 0000100 0000000 0000000 0000000 0000000 0000000
M1 = 1111111 0000000 1111111 0000000 0000000 0000000 0000000 0000000
W 2 = 0000101 0000000 0000100 0000000 0000000 0000000 0000000 0000000

We access these indices with a parallel address and parallel sum the values to get 38.
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5.4.1 Discussion and open problems

It is natural to extend the dynamic partial sums problem to also support the operation Select(v),
that returns index i of A where Sum(i − 1) < v ≤ Sum(i). For Fenwick trees on the standard
unit-cost word RAM we can support the Select operation in O(log n) time with a binary search
over the indices of A′. When answering Access(i), Sum(i) and Update(i, v) operations for Fenwick
trees on UW-RAM we can calculate every index of A′ that we need to access directly from the
index i. This is not the case for the Select operation. Here parallel calculation of the indices is
prevented because each index accessed is dependent on previously accessed indices. We pose as an
open problem whether it is possible to maintain an array of n w-bit integers on the UW-RAM while
supporting Access, Sum, Update and Select operations in constant time.
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