
© 2013. K Butchi Raju & Dr. S. Viswanadha Raju. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 12 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Parallel Computational Approach for String Matching- A Novel
Structure with Omega Model

By K Butchi Raju
& Dr. S. Viswanadha Raju

Abstract- In recent day’s parallel string matching problem catch the attention of so many researchers because
of the importance in different applications like IRS, Genome sequence, data cleaning etc.,. While it is very
easily stated and many of the simple algorithms perform very well in practice, numerous works have been
published on the subject and research is still very active. In this paper we propose a omega parallel
computing model for parallel string matching. The algorithm is designed to work on omega model parallel
architecture where text is divided for parallel processing and special searching at division point is required for
consistent and complete searching. This algorithm reduces the number of comparisons and parallelization
improves the time efficiency. Experimental results show that, on a multi-processor system, the omega model
implementation of the proposed parallel string matching algorithm can reduce string matching time.

Keywords: string matching; parallel string matching; computing model; omega model.

GJCST-C Classification : C.1.4

AParallelComputationalApproachforStringMatching-ANovelStructurewithOmegaModel

 Strictly as per the compliance and regulations of:

IndiaGriet Aff to Jntuh,

A Parallel Computational Approach for String
Matching- A Novel Structure with Omega Model

K Butchi Raju α & Dr. S. Viswanadha Raju σ

Abstract- In recent day’s parallel string matching problem
catch the attention of so many researchers because of the
importance in different applications like IRS, Genome
sequence, data cleaning etc.,. While it is very easily stated and
many of the simple algorithms perform very well in practice,
numerous works have been published on the subject and
research is still very active. In this paper we propose a omega
parallel computing model for parallel string matching. The
algorithm is designed to work on omega model parallel
architecture where text is divided for parallel processing and
special searching at division point is required for consistent
and complete searching. This algorithm reduces the number
of comparisons and parallelization improves the time
efficiency. Experimental results show that, on a multi-
processor system, the omega model implementation of the
proposed parallel string matching algorithm can reduce string
matching time.
Keywords: string matching; parallel string matching;
computing model; omega model.

I. Introduction

tring matching has been extensively studied in the
past 30 years. A string C of length n is a sequence
of characters C1C2…Cn. Let Σ={Y1, Y2, … YN}

be a finite set of strings called patterns, and let I be an
arbitrary string. The string matching problem is to
identify and locate all substrings of I which are patterns
in Σ. It performs important tasks in many applications
including information retrieval; library systems, artificial
intelligence, pattern recognition, molecular biology, and
text search and edit systems. The challenge is that for
the string matching to be accurate, it needs to be able
to search every byte of every input data streaming for a
potential match from a large set of strings. So, normal
software solutions are not enough, for this we need the
hardware computing models [1-7].

The main contributions of this work are
summarized as follows. This work offers a
comprehensive study as well as the results of typical
parallel string matching algorithms at various aspects
and their application on computing models. This work
suggests the most efficient algorithmic models and
demonstrates the performance gain for both synthetic
and real data. The rest of this work is organized as,
review typical algorit- hms, algorithmic models and
finally conclude the study.

Author

α: Associate Professor, Department of CSE, GRIET,
Hyderabad, AP, India.

Author

σ:

Professor & HOD, Department of CSE, JNTU College of

Engineering, JNTUH, Jagithyal, A.P., India.

II. Parallel Computing Models

Parallelism takes many forms and appears in
many areas. It is exhibited at the CPU level when
microinstructions are executed simultaneously. It is also
present when an arithmetic or logic operation is realized
by a circuit of small depth, as with carry-save addition.
And it is present when multiple computers are
connected together in a network. Parallelism can be
available but go unused, either because an application
was not designed to exploit parallelism or because a
problem is inherently serial [8-11].

A parallel computer is any computer that can
perform more than one operation at time. By this
dentition almost every computer is a parallel computer.
For example, in the pursuit of speed, computer
architects regularly perform multiple operations in each
CPU cycle: they execute several microinstructions per
cycle and overlap input and output operations (I/O) with
arithmetic and logical operations. Architects also design
parallel computers that are either several CPU and
memory units attached to a common bus or a collection
of computers connected together via a network. Clearly
parallelism is common in computer science today
[8-11].

A parallel programming model is a concept that
enables the expression of parallel programs which can
be compiled and executed. The value of a programming
model is usually judged on its generality: how well a
range of different problems can be expressed and how
well they execute on a range of different architectures.
The implementation of a programming model can take
several forms such as libraries invoked from traditional
sequential languages, language extensions, or complete
new execution models [8-11].

III. Literature

Hundreds of articles, literally, have been
published about string matching with computing
models, exploring the multitude of theoretical and
practical facets of this fascinating fundamental problem.
For an n-character text T and an m-character pattern x,
the classical algorithm by Knuth, Morris and Pratt takes
O(n+m) time and uses O(m) auxiliary space to find all
pattern occurrences in the text, namely, all text positions
i, such that x = T[i … i + m-1]. Many other algorithms
have been published; some are faster on the average,

S

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

11

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

use only constant auxiliary space, operate in real-time,

or have other interesting benefits. This work categorizes
the algorithms into some categories to emphasize the
data structure that drives the matching. These
categories are discussed here.

a)

Intrusion Detection Systems (Ids)

 Tuck et al. proposed modifications to the well-
known Aho-Corasick string matching algorithm to
reduce the amount of memory required to store known
malicious strings and improve worst-case timing [12].
They achieve results

in both of these areas, while slightly

degrading average-case performance. The proposed
data storage methods for string matching are bitmap
compression and path compression. Their experiments
consider both an ASIC and a programmable router
design. The ASIC design is tailored to only string
matching, while the programmable design assumes an
implementation that can be used for many different
types of router applications. Experiment results show
that the proposed compression optimizations resulted in
a 50 times reduction in database size over the Aho-
Corasick implementation.

 Dharmapurikar et al.[13] proposed a hardware
architecture based on parallel Bloom filters for network
packet inspection. A Bloom filter is a space-efficient
probabilistic data structure that is used to test whether
or not an element is a member of a set. It stores a set of
signatures compactly by computing multiple hash
functions on each member of the set. The answer to
querying a database of strings to check for the
membership of a particular string can be “false
positive”, but never “false negative”. False positive
means a condition exists when in fact it does not. False
negative means a condition does not exist when in fact it
does. The computation time involved in performing the
query is

independent of the number of strings in the

database, provided the memory used by the data
structure scales linearly with the number of strings
stored in it.

 J.Nandhini et al.,

[14] provide a systematic virus

detection software solution for network security for
computer systems. Instead of placing entire matching
patterns on a chip, proposed solution is based on an
antivirus processor that works as much of the filtering
information as possible onto a reference memory. The
infrequently accessing off-reference data to make the
matching mechanism scalable to large pattern sets.
Dual port BITCAM processing program is used along
with the Exact Matching Engine and Bloom Filter
process. This Dual port BITCAM processes next to the
exact matching engine and bloom filter process. This
Dual port BITCAM process is placed exclusively for
obtaining higher throughput.

Performance Evaluation

:

From the above
papers, it is possible to improve Snort’s efficiency using
distributed environment and testability of Snort has been
enhanced.

 b)

Dfa Based Approaches

Dharmapurikar et al. presented a scheme[16]

that can process multiple characters per clock cycle and
attain average throughput up to multi-gigabit with
moderate memory consumption. But in the worst case
they must access the relatively slow off-chip SRAMs
frequently for exact string comparisons. Nan et al [17].

Introduced

a variable-stride method to deal with string
matching ruleset without inciting the byte alignment
problem. While enhancing the throughput, this method
is sensitive to both ruleset and input string causing
greatly reduced throughput in worst cases. Lu et al. [18]
introduced parallel DFAs with overlapping input
windows to achieve the goal of processing multiple
characters in each clock cycle. By slight modification to
the straightforward representation of the transition rules,
the complexity of each DFA is distinctively reduced.
Brodie et al.[19] increased the throughput of regex
matching by expanding the alphabet set, resulting in an
exponentially increased memory requirement in the
worst case. A recent method D. Ficara et.al [20]
introduced the sampling techniques to accelerate regex
matching, but not all kinds of regex are supported.

WANG Xiaofei et.

al[21] proposed a parallel
Length-based matching (LBM) architecture to increase
the throughput without extra memory cost. The basic
idea is to process multiple characters between some
specific tags in parallel. For this they use multiple hash
functions solution to reduce the possibility of false
positive. The evaluation shows that parallel architecture
can reduce nearly 55% processing time with less
memory consumption than the traditional DFA.
According to proposed statistics, there are 99.41% of
the input stream has been filtered by architecture which
means only 0.58% (263.5M) need to be sent to StriD2FA
to match instead of sending to the matching engine byte
by byte. Besides the different type of traces, in this
paper the other kind of trace that was collected from the
World Wide Web should also be used to test the
performance and stability.

HyunJin Kim and Seung-Woo Lee [22]

proposed a memory-based parallel string matching
engine using the compressed state transitions. In the
finite-state machines of each string matcher, the
pointers for representing the existence of state
transitions are compressed. In addition, the bit fields for

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

12

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

Safaa O. Al-Mamory et al.,[15] suggest
distributed environment in order to enhance the
problems of Snort IDS, one of the problems is the
efficiency problem. They achieved this goal by
enhancing the Snort’s string matching engine through

using a LAN of computers, where each computer in the
LAN matching a subset of the monitored attacks. Snort
is an open source IDS which enable us to detect the
previously known intrusion.

storing state transitions can be shared. Therefore, the
total memory requirement can be minimized by reducing
the memory size for storing state transitions. In this, four

large rule sets were extracted from Snort v2.8 rules.
Several parameters were swept to find their optimal
values. The maximum number of states S was 128 after
considering the maximum length of Snort rules. When S
was 128, the number of bits in a PMV P was either 16,
24, 32, or 40; when the number of states S was 256, P
was either 32, 48, 64, or 80; the maximum number of
entries in the LSB transition existence table, K, and the
maximum number of shared state transitions, T, were
double S, respectively. In Table 1, the total memory
requirements were shown by varying P. For the rule sets,
the total memory requirements were minimized when S
and P were 128 and 24, respectively.

Performance Evolution

:

The memory
requirements were not minimized by only increasing P
over 24; therefore, there was a threshold point of P for
minimizing memory requirements. In the evaluations in
which S was 256, because the required K and P
increased rapidly, the required number of string
matchers was not decreased. Then, by fixing S and P as
128 and 24, K was varied to find the optimal value; K
was either 192, 256, 320, or 384 because K should be
greater than S. Each state can have one or more than
one state transition. In these evaluations, T was fixed as
256. As a result, when K was 256, the total memory
requirements were greatly reduced for all rule sets. This
was mainly due to the limited number of state transitions
toward noninitial states in each string matcher. With the
optimal K of 256, T was varied, that is, T was either 128,
192, 256, or 320. The obtained optimal T was 256. In
these evaluations, because state pointers can be

shared
in the transition table, the required T was small.
Considering the optimal values of K and T, it is
concluded that many state pointers can be shared in the
transition table in the proposed string matcher.

c)

Parallel Processing Based Approaches

Akhtar

Rasool and Nilay Khare[23] proposed an
approach, which is designed to work on SIMD parallel
architecture where text is divided for parallel processing
and special searching at division point is required for
consistent and complete searching. This algorithm
reduces the number of comparisons and parallelization
improves the time efficiency. This algorithm achieves a
better result as compared to the multithreaded version
of the algorithm where again by text dividing, the
parallelization is achieved.

cheng zhong and guo-liang chen[24] presented
a perfect hash function for processing string is
constructed by applying the Chinese Remainder
Theorem, and a fast string matching algorithm, which is
suited to process the successive sequences like the
network traffic data. The determinate match results and
fast execution for the string matching algorithm are very
important to the network intrusion detection systems.
This paper constructs a perfect hash function for
processing string by applying the Chinese Remainder
Theorem, transforms uniquely a pattern of length m and

each substring of text of length m into a pair of integer
values respectively, and presents a fast string matching
algorithm which is suited to process the successive
sequences like the network traffic data. The presented
algorithm not only obtains the determinate match
results, but also holds a linear time complexity in the
worst case. The experiment results for matching a
sequence database in the network intrusion detection
systems also shows that the presented algorithm is
efficient.

Panwei Cao and Suping Wu[25] proposed a
Parallel KMP algorithm based on MPI to get higher
efficiency. The tradition pattern matching algorithm need
backtrack and compare repeatedly, so that affects
efficiency of algorithm. Knuth and others put forward
KMP algorithm in order to promote efficiency of the
pattern matching. They combine MPI and KMP
algorithm using MPI's Multi process to parallel KMP
algorithm. By reducing the time waiting for matching,
improve the string matching efficiency.

d)

Aho Corasick Based Approaches

Wei Lin, Bin Liu[26] presented a pipelined
parallel approach for hardware implementation of Aho-
Corasick (AC) algorithm for multiple strings matching
called P2-AC. P2-AC organizes the transition rules in
multiple

stages and processes in pipeline manner,
which significantly simplifies the DFA state transition
graph into a character tree that only contains forwarding
edges. In each stage, parallel SRAMs are used to store
and access transition rules of DFA in memory.

Transition
rules can be efficiently stored and accessed in one
cycle. The memory cost is less than 47% of the best
known AC-based methods. P2-AC supports incremental
update and scales well with the increasing number of
strings. By employing two-port SRAMs, the throughput
of P2-AC is doubled with little control overhead.

Chuanpeng Chen and Zhongping Qin[27]
proposed a high throughput configurable string
matching architecture based on Aho-Corasick
algorithm. The architecture can be realized by random-
access memory (RAM) and basic logic elements instead
of designing new dedicated chips. The bit-split
technique is used to reduce the RAM size, and the byte-
parallel technique is used to boost the throughput of the
architecture. By the particular design and
comprehensive experiments with 100MHz RAM chips,
one piece of the architecture can achieve a throughput
of up to 1.6Gbps by 2-byte-parallel input, and we can

further boost the throughput by using multiple parallel
architectures.

Hyun Jin Kim et.al [28] proposed an Aho-
Corasick algorithm based parallel string matching. In

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

13

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

order to balance memory usage between homogeneous
finite-state machine (FSM) tiles for each string matcher,
an optimal set of bit position groups is determined.
Target patterns are sorted by binary-reflected gray code
(BRGC), which reduces bit transitions in patterns

mapped onto a string matcher. In the evaluations of
Snort rules, the proposed string matching outperforms
the existing bit-split string matching.

Alicherry et al. [29] proposed an architecture
consisting of TCAM and SRAM to implement the AC
algorithm that utilizes the property of ternary matching of
TCAM to achieve the matching of characters expressed
in negation expressions. As a result, the space required
for the transitions can be reduced. Pao et al. [30] and
W. Lin and B. Liu [31] proposed pipeline architectures to
implement the partial trie that only contains goto
functions of the AC-trie so that it can reduce the space
induced by failure functions. N. Hua et al. [32] proposed
another approach based on a block-oriented scheme
instead of usually byte-oriented processing of patterns
to reduce the memory usage. D. P. Scarpazza et al. [33]
proposed an optimized software approach for a multi-
core processor that splits keywords to fit in

the local
memories of the processing cores such that it can reach
very high overall throughput. Y. Sugawara et al. [34]
proposed a string matching method called suffix based
traversing (SBT) that is an extension of the AC-algorithm
to process multiple input characters in parallel and to
reduce the size of the lookup table.

e)

Finite Automata Based Approaches

HyunJin Kim et al.,[35] proposes a memory-
efficient parallel string matching scheme. In order to
reduce the number of state transitions, the finite state
machine tiles in a string matcher adopt bit-level input
symbols. Long target patterns are divided into
subpatterns with a fixed length and deterministic finite
automata are built with the sub patterns. Using the
pattern dividing, the variety of target pattern lengths can
be mitigated, so that memory usage in homogeneous
string matchers can be efficient. In order to identify each
original long pattern being divided, a two stage
sequential matching scheme is proposed for the
successive matches with sub patterns. Experimental
results show that total memory requirements decrease
on average by 47.8%-62.8% for Snort and ClamAV rule
sets, in comparison with several existing bit-split string
matching methods.

Yi-Hua E. Yang and Viktor K. Prasanna [36]
proposed a head-body finite automaton (HBFA) which
implements SPM in two parts: a head DFA (H-DFA) and
a body NFA (B-NFA). The H-DFA matches the dictionary
up to a predefined prefix length in the same way as AC-
DFA, but with a much smaller memory footprint. The B-
NFA extends the matching to full dictionary lengths in a
compact variable-stride branch data structure,
accelerated by single-instruction multiple-data (SIMD)
operations. A branch grafting mechanism is proposed to
opportunistically advance the state of the H-DFA with
the matching progress in the BNFA. Compared with a
fully-populated AC-DFA, proposed HBFA prototype has
< 1/5 construction time, requires < 1/20 run-time
memory, and achieves 3x to 8x throughput when

matching reallife large dictionaries against inputs with
high match ratios. The throughput scales up 27x to over
34 Gbps on a 32-core Intel Manycore Testing Lab
machine based on the Intel Xeon X7560 processors.

Yi Tang et al.,

[37] proposed a paper that
extends the classic longest prefix principle from single-
character to multi-character string matching and
proposes a multi-string matching acceleration scheme
named Independent Parallel Compact Finite Automata
(PC-FA). In this scheme, DFA is divided into k PC-FAs,
each of which can process one character from the input
stream, achieving a speedup up to k with reduced
memory occupation. They introduce their observation
against the prefix based automata algorithms and
propose a new conception of inclusion-equivalence
principle. Compared with traditional DFA approach and
other improved work, PC-FA achieves a high speed-up
with a lower memory cost.

Performance Evolution

:

Experimental evalua-
tions

show that seven times of speedup can be
practically achieved with a reduced memory size than
up-to-date DFA-based compression approaches. They
further propose a memory-

efficient multi-string
matching acceleration scheme named PC-FA Match
Engine.

f)

Hardware Related Based Approaches

KSMV Kumar et.al [38] compared string
matching on single processor with multi-processors in
parallel environment on hypercube network. The total
time taken by search pattern is going to reduces as the
No. of processors increases in network. This application
developed for text documents of size only MB. It may
extend to any size i.e GB to TB also and any other
format likes image and video files etc. There is lot of
scope to develop new trends in this area by evolving
modern methods

and models for increasing search
speed and accuracy. To fulfill here considered both KV-
KMP and KV-boyer-moore string matching algorithms
for pattern matching in large text data bases using three
data sets and graph's drawn for different patterns.
Actual

test is conducted separately for single processor,
two processors, three processors and four processors.
Every time, while the test is conducted the program
gives elapse time for each processor separately.
Therefore the average time is calculated from output
result based on the maximum time taken by the
individual processor among the processors involved for
the particular test. The results shows that the search
time taken by single processor is more when compared
with multiple processors. It is also observed that as the

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

14

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

pattern size increases the search time decreases
further. For bigger pattern sizes string matching is more
easier for Boyer moore algorithm because of less
number of mismatches.

Yao Xin et al [39] presented a hardware
architecture for the BWT-based inexact sequence
mapping algorithm using the Field Programmable Gate

Array(FPGA). The proposed design can handle up to
two errors, including mismatches and gaps. The original
recursive algorithm implementation is dealt with using
hierarchical tables, and is then parallelized to a large
extension through a dual-base extension method.
Extensive performance evaluations for the proposed
architecture have been conducted using both Virtex6
and Virtex7 FPGAs. This design is considerably faster
than a direct implementation. When compared with the
popular software evaluation tool BWA, their architecture
can achieve the same match quality tolerating up to two
errors.

Performance Evaluation

:

Their major contrib-

utions

include: (1) improving the original inefficient
recursive algorithm using hierarchical tables,

(2)parallelizing the inexact search process and
constructing a parallel architecture by using the
consecutive dual-base extension method (3)evaluating
the architectures with a different number of stack arrays
and processing elements(PEs). Extensive evaluation
experiments are performed using both simulation
datasets and real datasets. With the same inexact
search options with in two errors for their architecture
and BWA software, the hardware architecture can realize
the same search quality as BWA. Compared with
different CPU platforms running the BWA aln process,
their architecture is also capable of better performance
in execution speed: the Virtex6 FPGA with 2PEs
implemented exceeds all software platforms except for
the multithread Xeon CPU; the Virtex7 FPGA
implementing 6PEs, however, can reach up to 2 times
faster than the Xeon CPU with 6 threads[39].

Hoang Le, and Viktor K. Prasanna

[40]
proposed an algorithm called “leaf-attaching” to
preprocess a given dictionary without increasing the
number of patterns. The resulting set of post processed
patterns can be searched using any tree search data
structure. It also present a scalable, high-throughput,
Memory-efficient Architecture for large-scale String
Matching (MASM) based on a pipelined binary search
tree. The proposed algorithm and architecture achieve a
memory efficiency of 0.56 (for the Rogets dictionary)
and 1.32 (for the Snort dictionary). As a result, our
design scales well to support larger dictionaries.
Implementations on 45 nm ASIC and a state-of-the-art
FPGA device (for latest Rogets and Snort dictionaries)
show that proposed architecture achieves 24 and 3.2
Gbps, respectively. The MASM module can simply be
duplicated to accept multiple characters per cycle,
leading to scalable throughput with respect to the
number of characters processed in each cycle.
Dictionary update involves simply rewriting the content
of the memory, which can be done quickly without
reconfiguring the chip.

TAN Jianlong et al.,

[41] proposes a novel
method to extract the partial strings from each pattern
which maximizes search speed. More specifically, with

this method they can compute all the corresponding
searching time cost by theoretical derivation, and
choose the location which yields an approximately
minimal search time.. String matching plays a key role in
web content monitoring systems. Suffix matching
algorithms have good time efficiency, and thus are
widely used. These algorithms require that all patterns in
a set have the same length. When the patterns cannot
satisfy this requirement, the leftmost m-characters, m
being the length of the shortest pattern, are extracted to
construct the data structure. They call such m-character
strings as partial strings. However, a simple extraction
from the left does not address the impact of partial
string locations on search speed. They evaluate their
method on two rule sets: Snort and ClamAV.
Experiments show that in most cases, their method
achieves the fastest searching speed in all possible
locations of partial string extraction, and is about 5%-
20% faster than the alternative methods.

Prasad et.al.,[42] propose two new bit-parallel
algorithms to solve the same problem. These new
algorithms requires no verification and can handle
patterns of length > w. These two techniques also use
the same BPA of approximate matching and
concatenation to form a single pattern from the set of r
patterns. It compares the performance of new
algorithms with existing algorithms and found that
proposed algorithms MASM1 and MASM2 have better
running time than the existing algorithms: MASM and
BPA (running r times). Mosleh M. Abu-Alhaj et al.,[43]
proposes a general platform for improving the existing
Exact String-Matching algorithms executing time, called
the PXSMAlg platform. The function of this platform is to
parallelize the Exact String-Matching algorithms using
the MPI model over the Master/Slaves paradigms. The
PXSMAlg platform parallelization process is done by
dividing the Text into several parts and working on these
parts simultaneously. This improves the executing time
of the Exact-String-

Matching algorithms. They have
simulated the PXSMAlg platform in order to show its
competence, through applying

the Quick Search
algorithm on the PXSMAlg platform. The simulation
result showed significant improvement in the Quick
Search executing time, and therefore extreme
competence in the PXSMAlg platform.

PXSMAlg Platform Performance Analysis:

They
have built a

simulation to demonstrate the feasibility of
the PXSMAlg platform and its compatibility with the
Exact-String-Matching algorithms. The simulation is
done to compare the performance of the PXSMAlg

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

15

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

platform with the conventional method, that is, the
sequential method. The simulation built is based on
three main factors: executing time, speedup, and
efficiency. Their simulation runs under the Aurora server,
which consists of 14 nodes, with each node having 2
CPUs, a speed of 1300MHz and a 1GB memory; all
nodes run the Linux OS. The results showed high

performance of the PXSMAlg platform over the
sequential methods

g)

Gpu’s Based Approaches

Benedikt Forchhammeret.al [44] presented a
complete duplicate detection workflow that utilizes the
capabilities of modern graphics processing units
(GPUs) to increase the efficiency of finding duplicates in
very large datasets. Proposed solution covers several
well-known algorithms for pair selection, attribute-wise
similarity comparison, record-wise

similarity
aggregation, and

clustering. Here redesigned these
algorithms to run memory-efficiently and in parallel on
the GPU. Proposed experiments demonstrate that the
GPU-based workflow is able to outperform a CPU-
based implementation on large, real-world datasets. For
instance, the GPU-based algorithm deduplicates a
dataset with 1.8m entities 10 times faster than a
common CPU-based algorithm using comparably
priced hardware.

Antonino Tumeo et al.,[45] focus on the
matching of unknown inputs streamed from a single
source, typical of security applications and difficult to
manage since the input cannot be preprocessed to
obtain locality. They consider shared-memory
architectures (Niagara 2, x86 multiprocessors and Cray
XMT) and distributed memory architectures with
homogeneous (InfiniBand cluster of x86 multicores) or
heterogeneous processing elements (InfiniBand cluster
of x86 multicores with NVIDIA Tesla C1060 GPUs).

Performance Evolution:

They have presented
several software implementations of the Aho-Corasick
pattern matching algorithm for high performance
systems, and carefully analyzed their performance. They
presented optimized designs for the various
architectures, discussing several algorithmic strategies,
for shared memory solutions, GPU-accelerated systems
and distributed memory systems. They describe how
each solution achieves the objectives of supporting
large dictionaries, sustaining high performance, and
enabling customization and flexibility using various data
sets. They found that the absolute performance
obtained on the

Cray XMT is one of the highest reported
in literature, at ≈ 28 Gbps (using 128 processors) for a
software solution with very large dictionaries. This work
compares several software-based implementations of
the Aho-Corasick algorithm for high performance
systems.

Antonino Tumeo et.al [46] presented several
software implementations of the Aho-Corasick pattern
matching algorithm for high performance systems, and
carefully analyzed their performance. It considered the
various tradeoffs in terms of peak performance,
performance variability, and data set size. It presented
optimized designs for the various architectures,
discussing several algorithmic strategies, for shared-
memory solutions, GPU-accelerated systems, and
distributed-memory systems. Finally from this paper

found that the absolute performance obtained on the
Cray XMT is one of the highest reported in the literature,
at 28 Gbps (using 128 processors) for a software
solution with very large dictionaries. Through
multithreading and memory hashing the XMT is able to
maintain stable performance across very different sets
of dictionaries and input streams. A dual Niagara 2
obtains stable performance only in low and medium
matching conditions, while a dual Xeon 5560 has more
varied results, obtaining high peak rates for light
matching conditions, but progressively reducing its
performance as the number of matches’ increases.

h)

Ram Based Approaches

Vinod.O et.al [47] proposes an alternative
algorithm using a Hash Function which uses a SRAM
that creates fingerprints of the packet payload which are
then compared with the patterns signatures. The
proposed hash based system consumes around 0.56
times or 56 percent less memory than the memory
consumed by the RTCAM method. It can also be
observed from the results that

as the TCAM width
doubles the initial width the memory consumption
increases around 1000kb the initial memory
consumption value in RTCAM method. But in the case
of hash based method as the block size is doubled the
memory consumption increases by a small value around
200kb only from the initial memory consumption value.
Hence the proposed hash based method is efficient
than the RTCAM method in terms of memory
consumption.

Oren Ben-Kiki et al.,[48] proposed macro-level
algorithm only uses the standard AC instructions of the
word-RAM model (i.e. no integer multiplication) plus two
specialized micro-level AC 0 word-size packed-string
instructions. The main word-size string matching
instruction wssm

is available in contemporary
commodity processors. The other word-size maximum-
suffix instruction wslm is only required during the pattern
pre-processing.

Performance avolution:

They demonstrated how
to employ word-size string matching instructions to
design optimal packed string matching algorithms in the
word-RAM, which are fast both in theory and in practice
They also consider the complexity of the packed string
matching problem in the classical word-RAM model in
the absence of the specialized micro-level instructions
wssm and wslm.They propose micro-level algorithms for
the theoretically efficient emulation using parallel

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

16

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

algorithms techniques to emulate wssm and using the
Four-Russians technique to emulate wslm. Surprisingly,
bit-parallel emulation of wssm also leads to a new
simplified parallel random access machine string
matching algorithm. As a byproduct to facilitate their
results they develop a new algorithm for finding the
leftmost (most significant) 1 bit in consecutive non-
overlapping blocks of uniform size inside a word.

i)

Approaches For Genome Sequences

More approaches have been developed for the
k differences problem in fields including molecular
biology. Some of them are briefly mentioned in this part.

Cheng and Fu [49] proposed VLSI architecture of two
dimensional arrangements of n*m processing elements.
P-NAC (Princeton Nucleic Acid Comparator) [50] was
built using linear systolic array architecture for
comparing DNA sequences.

Similarly, Sastry et al [51] presented a VLSI chip
for computing similarity between two strings. Two
generations of the Splash processors, which are based
on systolic arrays of FPGAs (field-programmable gate
arrays) have been designed [52]. As Foster and Kung
[53] mentioned, the good algorithms for VLSI
implementation are not necessarily those requiring
minimal computation. Computation is cheap in VLSI and
the communication determines the performance. This
matter is also applicable to the dataflow environment. As
used in most high performance software string matching
algorithms, trial of skipping operations will degrade the
overall performance of the dataflow algorithm. Thus we
start from the naïve algorithm which requires n-m+1
attempts and each attempt takes m comparisons.

Carla Correa Tavares dos Reis and Oswaldo
Cruz[54] presented the development of algorithms for
approximate string matching using parallel methods. It
intends to do the maximum of molecular sequences
comparisons per unity of time. The parallel program
implementation has carried out in C on an available
twenty processing nodes clustering architecture using a
model of parallel programming systems, the MPI
(Message-Passing Interface), which is as library of
subroutines. In this paper also concerned with reporting
the speedup and efficiency measures. More precisely,
present a parallel algorithm for approximate sequence
matching, showing its implementation and reporting its
measures in comparison to its sequential version. It use
one of the possible approaches to reduce the time
spent on comparisons of molecular database
sequences by distributing the data among processors,
which achieves a linear speedup (time) and requires
constant space memory per processor. It also
compares between the serial processing and the
parallel processing (under the operation conditions
offered by MPI ambient), the parallel version always
gave the best results (execution and data distribution
times).

Muhammad Zubair et al.,[55] propose a new
concept to solve the problem of exact string matching
by scanning text string for the rightmost character of the
pattern in preprocessing phase. In matching phase
TSPRC (Test Scanning for Pattern Rightmost Character)
compares the pattern with text window from both
directions simultaneously. They proposed a new
algorithm TSPRC,in addition to proposed algorithm
Naive, Not So Naive, quick Search, Boyer Moor Bad

Character and Berry Ravindran algorithms are
experimented with TSPRC. In the experiment they took a
text string T of the size of sixty thousand characters and
pattern P of lengths {6, 12, 18, 24, 30, 36, 42, 48, 54,
60}. Text String is consisted of the four characters L=
{A, C, G, T} these are the characters occurred in DNA
pattern. Pattern is also of L={A, C, G, and T}. Several
experiments have been conducted and the obtained
results are compared with Naive, Not So Naive, Quick
Search and Berry Ravndrn algorithms. Comparison
made on two bases; total number of characters
compared by each algorithm and the number attempts
taken by each algorithm for finding all possible
occurrence of the pattern in the text.

Performance Evolution

:

Comparison of
proposed algorithm is made with existing algorithms on
the bases of the number of characters compared and
the attempts made by experimented algorithms to
complete the task. In preprocessing phase of TSPRC;
rightmost character of pattern is searched in the text
string. Index of the character in the text string is used to
calculate the shift's length and align the pattern with next
text window. The analysis and the experimental results
illustrate that the TSPRC algorithm is better than the
number of existing algorithms.

Tomohiro I et al.,[56] presented a linear-time
algorithm to solve the palindrome pattern matching
problem. The first algorithm is a Morris–Pratt type
algorithm, and the second one is a suffix-tree type
algorithm. The palindrome pattern matching problem is
to compute all positions i of t such that Pals(p) = Pals(t[i
: i + m − 1]), given a text t of length n and a pattern p of
length m. Palindromes in strings have widely been
studied both in theoretical and practical contexts, such
as in word combinatorics and in bioinformatics In
practical applications such as DNA and RNA sequence
analysis, it is desired to cope with gapped palindromes
which have a space between the left and right arms of
the palindromes.

IV.

Scattered Computing and Scattered
Algorithms

The new technologies of networking and the
dramatic evolution of the internet and intranet impacts
the way that we use computers and changes the way
we create applications for them. Distributed applications
are becoming the natural way to build software.

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

17

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

“Distributed computing” is all about designing and
building applications as a set of processes that are
distributed across a network of machines and work
together as an ensemble to solve a common problem[8-
11]. Distributed algorithms are algorithms designed to
run on a distributed system; where many processes
cooperate by solving parts of a given problem in
parallel. For this purpose, the processes have to
exchange data and synchronize their actions. In contrast
to so called parallel algorithms, communication and

synchronization is solely done by message passing -
there are no shared variables-

and usually the
processes do not even have access to a common clock.
Since message transmission time cannot be ignored, no
process has immediate access to the global state.
Hence, control decisions must be made on a partial and
often outdated view of the global state which is
assembled from information gathered gradually from
other processes. Distributing computing requires a tool
by which the distributed machines can communicate.
Many tools are available such as Remote Method
Invocation (RMI), CORBA and Java Space. Each tool
has its own specifications; the application designer
chooses the appropriate one for his application
requirement[8-11].

In this,

paper we examine a number of explicitly
parallel models of computation for string matching,

including shared and distributed memory models
proposed by different researchers and proposed a
computing model with omega architecture.

V.

Proposed System Architecture

a)

System Architecture

System Architecture describes “the overall
structure of the system and the ways in which the
structure provides conceptual integrity”. Architecture is
the hierarchical structure of a program components
(modules), the manner in which these components
interact and the structure of data that are used by that
components. The existing string matching system
architecture is as shown in Fig 1 and in this the
efficiency is not good.

Figure 1

:

Existing System

In the existing string matching architecture we
search the required pattern sequentially at first we pass
the required that is to be searched and this pattern is
searched by using the three algorithms Brute force,
KMP, Boyer Moore the entire string is passed through all
the algorithms and the output match and the running
time is calculate for the required pattern from all the
algorithms and the algorithm with the least running time
is selected, all this is done sequentially which takes
more time to execute to improve the efficiency and the
performance in this we use the parallel string matching
algorithms with multicores processors as shown in Fig2.

The proposed system Architecture of
Comparison of parallel String Matching Algorithms is as

follows in the below diagram. In this search the pattern
parallel. in this at first we take the input as a string or

BM Algorithm

BF Algorithm

Output match
positions and
running time

Output match
positions and
running time

Browse file and enter
pattern

Comparison

KMP
Algorithm

Output match
positions and
running time

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

18

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

text. The required text that is to be searched is further
divided into further small patterns and all this patterns
are passed on the different parallel algorithms like KMP
boyar Moore, brute force and at all the output position
match and running time of all the patterns is calculated
and the all the patterns of same algorithm are added
and all the resulted running time are compared with
other algorithms resulting time and from them the best
one is taken as the efficient algorithm for the string
matching.

Figure

2

:

Proposed Systems

b)

Proposed Approach

In now a day as the current free textual
database is growing vast there is a problem of finding
the pattern by string matching the efficiency is
decreased and takes more time. In our paper, we use
parallel algorithms to increase the efficiency on
multicore processor we pass the same string to all the
three algorithms and we select the best based on the
running time. Here we have to implement the proposed
system with JAVA 1.7 multi threading; initially we have to
implement the proposed algorithm with threading on
Multicore processor. Here we discuss some of them.

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

19

(
DD DD DDDD

)
Y
e
a
r

01
3

2
C

1. Choose the TEXT file and Open the file in read mode
2. Read a line from TEXTFILE into variable ProcessLine (text of size n)
3. Read the pattern of size m and number of processors
4. Distribute the pattern to all the processors in the omega model structure
5. Each Processor searches the pattern in the ProcessLine with proposed approach and returns the

result
Proposed approach
Begin

5.1. If ProcessLine equals to NULL GOTO Step 5.7
5.2. It compares the last character of the pattern with the rightmost text character of the

ProcessLine, then
5.3. if found it compares the first character of the pattern with the leftmost text character of the

window, then
5.4. if found it compares the middle character of the pattern with the middle text character of the

window. And finally
5.5. if found it actually compares the other characters from the second to the last but one.

else
5.6. If a mismatch occurs, it will shift according to the value in pre-processing stage.
5.7. Increment the counter in TEXTFILE and GOTO Step 5.1. Repeat the steps from 5.1 to 5.6 until

the end of the file.
End
Pre-Processing Stage

Computing model consists of the good suffix and bad-character shift function. The bad character
shift means to shift the pattern so that the text character of the mismatch is aligned to the last occurrence
of that character in the initial part of the pattern (pattern minus last pattern character), if there is such an
occurrence, or one position before the pattern if the mismatched character doesn't appear in the initial part
of the pattern at all.

The other shift, the good suffix shift, aligns the matched part of the text, m, with the rightmost
occurrence of that character sequence in the pattern that is preceded by a different character (including
none, if the matched suffix is also a prefix of the pattern) than the matched suffix m of the pattern.

6. Each processor stores the MATCH results and RETURNS to the main program.
7. The main program collect the return results from all the processors and summing them
8. STOP.

c) Claims
Implementation is the stage where the

theoretical design is turned into a working system. The
most crucial stage in achieving a new successful system
and in giving confidence on the system for the users
that will work efficiently and effectively. The system will
be implemented only after thorough testing and if it is
found to work according to the specification. For testing
our proposed system we will take the gene sequence
data set, consists of the four nucleotides a, c, g and t
(standing for adenine, cytosine, guanine, and thymine,
respectively) used to encode DNA. Therefore, the
alphabet is O={A, C, G, T}. The text is consisted of
7,50,000 records. Our test tested with different
processors like i3, i5 etc., here we put some
achievements what we develop and observe, finally our
system shows that parallel approach is much better than
sequential approach with multi core processor. The Fig
3 shows

(Graph) Execution time vs File size on
sequential search with intel i3 processor using Brute
force algorithm. From the graph we clearly observe that
sequential is better compared to parallel approach. The
Fig 4 shows

(Graph) Execution time vs File size on

sequential search with intel i5 processor using Brute
force algorithm. From the graph we clearly observe that
sequential is better compared to parallel approach.

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

20

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 3 : Sequential VS Parallel(i3)-BF

Figure

4

:

Sequential VS Parallel(i5)-BF

The Fig 5 shows(Graph) Execution time vs

File

size on sequential search with intel i3 processor using
KMP algorithm. From the graph we clearly observe that
sequential is better compared to parallel approach. The
Fig 6 shows(Graph) Execution time vs File size on
sequential search with intel i5 processor using KMP
algorithm. From the graph we clearly observe that
sequential is better compared to parallel approach.

6 12 18 24 30 36
0

200

400

600

800

1000

1200

File Size(MB)

P
ro

ce
ss

in
g

Ti
m

e(
M

ill
i S

ec
on

ds
)

Sequential vs Parallel(i3)-BF

Sequential Parallel

6 12 18 24 30 36
0

100

200

300

400

500

600

700

800

900

1000

File Size(MB)

P
ro

ce
ss

in
g

Ti
m

e(
M

ill
i S

ec
on

ds
)

Sequential vs Parallel(i5)-BF

Sequential Parallel

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

21

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 5 : Sequential VS Parallel(i3)-KMP

Figure 6 : Sequential VS Parallel(i5)-KMP

The Fig 7 shows (Graph) Execution time vs File
size on sequential search with intel i3 processor using
BM algorithm. From the graph we clearly observe that
sequential is better compared to parallel approach. The
Fig 8shows(Graph) Execution time vs File size on
sequential search with intel i5 processor using BM
algorithm. From the graph we clearly observe that
sequential is better compared to parallel approach.

6 12 18 24 30 36
0

200

400

600

800

1000

1200

File Size(MB)

P
ro

ce
ss

in
g

Ti
m

e(
M

ill
i S

ec
on

ds
)

Sequential vs Parallel(i3)-KMP

Sequential Parallel

6 12 18 24 30 36
0

100

200

300

400

500

600

700

800

900

1000

File Size(MB)

Pr
oc

es
si

ng
 T

im
e(

M
ill

i S
ec

on
ds

)

Sequential vs Parallel(i5)-KMP

Sequential Parallel

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

22

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 7 : Sequential VS Parallel(i5)-BM

Figure

8

:

Sequential VS Parallel(i3)-BM

The Fig 9 shows (Graph) Execution time vs File

size on sequential search with intel i3 processor using
Proposed algorithm. From the graph we clearly observe
that sequential is better compared to parallel approach.
The Fig 10 shows(Graph) Execution time vs File size on
sequential search with intel

i5 processor using Proposed
algorithm. From the graph we clearly observe that
sequential is better compared to parallel approach.

6 12 18 24 30 36
0

100

200

300

400

500

600

700

800

900

File Size(MB)

Pr
oc

es
si

ng
 T

im
e(

M
ill

i S
ec

on
ds

)

Sequential vs Parallel(i5)-BM

Sequential Parallel

6 12 18 24 30 36
0

100

200

300

400

500

600

700

800

900

1000

File Size(MB)

Pr
oc

es
si

ng
 T

im
e(

M
ill

i S
ec

on
ds

)

Sequential vs Parallel(i3)-BM

Sequential Parallel

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

23

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 9 : Sequential VS Parallel(i3)-Proposed

Figure 10 : Sequential VS Parallel(i5)-Proposed

The Fig 11 shows (Graph) Execution time vs
File size on sequential search with intel i3 processor
using Boyer Moore, Brute force, KMP and proposed
Algorithm. This graph shows the performance difference
between Boyer Moore, Knuth Morris Pratt and Brute
force algorithms. From the graph clearly observe that
proposed is better compared to other approaches.

6 12 18 24 30 36
0

100

200

300

400

500

600

700

800

900

File Size(MB)

Pr
oc

es
si

ng
 T

im
e(

M
ill

i S
ec

on
ds

)

Sequential vs Parallel(i3)-Proposed

Sequential Parallel

6 12 18 24 30 36
0

100

200

300

400

500

600

700

800

900

File Size(MB)

P
ro

ce
ss

in
g

Ti
m

e(
M

ill
i S

ec
on

ds
)

Sequential vs Parallel(i5)-Proposed

Sequential Parallel

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

24

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 11 : Sequential approaches BF,BM,KMP and Proposed (i3)

Figure 12

:

parallel approaches BF,BM,KMP and Proposed (i3)

The Fig 12 shows (Graph) Execution time vs File size on parallel search with intel i3 processor using

Boyer Moore, Brute force, KMP and proposed
Algorithm. This graph shows the performance difference
between Boyer Moore, Knuth Morris Pratt and Brute
force algorithms. From the graph clearly observe that
proposed is better compared to other approaches, as
well as this parallel approach is much better compared
to sequential approaches.

The Fig 13 shows

(Graph)

Execution time vs
File size on sequential search with intel i5 processor
using Boyer Moore, Brute force, KMP and proposed

Algorithm. This graph shows the performance difference
between Boyer Moore, Knuth Morris Pratt and Brute
force algorithms. From the graph clearly observe that
proposed is better compared to other approaches.

6 12 18 24 30 36
100

200

300

400

500

600

700

800

900

1000

1100

File size(MB)

P
ro

ce
ss

in
g

Ti
m

e(
m

ill
i s

ec
on

ds
)

Sequential (BF,KMP,BF,Proposed)-i3

BF

KMP

BM

Proposed

6 12 18 24 30 36
100

200

300

400

500

600

700

800

900

1000

File size(MB)

Pr
oc

es
si

ng
 T

im
e(

m
illi

 s
ec

on
ds

)

Parallel (BF,KMP,BF,Proposed)-i3

BF

KMP

BM

Proposed

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

25

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

Figure 13 : sequential approaches BF, BM, KMP and Proposed (i5)

The Fig 14 shows (Graph) Execution time vs
File size on parallel search with intel i5 processor using
Boyer Moore, Brute force, KMP and proposed
Algorithm. This graph shows the performance difference
between Boyer Moore, Knuth Morris Pratt and Brute

force algorithms. From the graph clearly observe that
proposed is better compared to other approaches, as
well as this parallel approach is much better compared
to sequential approaches.

Figure 13 : Parallel approaches BF,BM,KMP and Proposed (i5)

VI. Conclusions

In this study, we widely investigate the problem
of parallel string matching in the context of Parallel
Computing with omega model. This Parallelization
greatly improves the matching efficiency if the text size
is very large and a sufficient numbers of processors are
available. The most important characteristic of the

proposed algorithm is that reduces the number of
comparisons by making better use of next bit
characters. Further parallelization of proposed algorithm
provides parallel computing of pattern searching on the
text in omega architecture. Experimental results shows
that proposed algorithm much more better than other
approaches both sequential and parallel.

6 12 18 24 30 36
100

200

300

400

500

600

700

800

900

1000

File size(MB)

Pr
oc

es
si

ng
 T

im
e(

m
illi

 s
ec

on
ds

)

Sequential (BF,KMP,BF,Proposed)-i5

BF

KMP

BM

Proposed

6 12 18 24 30 36
100

200

300

400

500

600

700

800

900

File size(MB)

Pr
oc

es
si

ng
 T

im
e(

m
illi

 s
ec

on
ds

)

Parallel (BF,KMP,BF,Proposed)-i5

BF

KMP

BM

Proposed

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

26

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

References Références Referencias

1. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Recent Advancement is Parallel
Algorithms for String matching on computing
models - A survey and experimental results”, LNCS,
Springer,pp.270-278, ISBN: 978-3-642-29279-8
,2011.

2. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “PDM data classification from
STEP- an object oriented String matching
approach”, IEEE conference on Application of
Information and Communication Technologies,
pp.1-9, ISBN: 978-1-61284-831-0, 2011.

3. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Recent Advancement is Parallel
Algorithms for String matching - A survey and
experimental results”, IJAC, Vol 4 issue 4, pp-91-97,
2012.

4. Simon Y. and Inayatullah M., “Improving
Approximate Matching Capabilities for Meta Map
Transfer Applications,” Proceedings of Symposium
on Principles and Practice of Programming in Java,
pp.143-147, 2004.

5. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Parallel Algorithms for String
Matching Problem based on Butterfly Model”,
pp.41-56, IJCST, Vol. 3, Issue 3, July – Sept, ISSN
2229-4333, 2012.

6. Chinta Someswararao, K Butchiraju, S
ViswanadhaRaju, “Recent Advancement is String
matching algorithms- A survey and experimental
results”, IJCIS,Vol 6 No 3, pp.56-61, 2013.

7. S. viswanadha raju,”parallel string matching
algorithm using grid”, “international journal of
distributed and parallel systems” (ijdps) vol.3, no.3,
2012.

8. Leslie G. Valiant, A bridging model for parallel
computation, Commun. ACM, volume 33, issue 8,
August, 1990, pages 103—111

9. I. Foster. Designing and Building Paral lel Programs.
Addison Wesley, 1996.

10. I. Foster and S. Tuecke. Parallel Programming with
PCN. Technical Report ANL-91/32, Argonne
National Laboratory, Argonne, December 1991.

11. J. Darlinton, M. Ghanem, H. W. To
(1993), "Structured Parallel Programming", In
Programming Models for Massively Parallel
Computers. IEEE Computer Society Press. 1993

12. N. Tuck, T. Sherwood, B. Calder, and G. Varghese.
Deterministic Memory-Efficient String Matching
Algorithms for Intrusion Detection. In Proceedings of
IEEE Infocom, Hong Kong, March 2004.

13. S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull,
and J. W. Lockwood. Deep Packet Inspection using
Parallel Bloom Filters. IEEE Micro, 24(1):52–61,
2004.

14. J.Nandhini, Dr.M. Nithya, Dr.S.Prabhakaran
“Advance virus detection using combined
techniques of pattern matching and dynamic
instruction sequences”, International Journal of
Communication and Computer Technologies,
Volume 01 – No.45, pp.156-161 2013

15. Safaa O. Al-Mamory et al.,” String Matching
Enhancement for Snort IDS” , pp.1020-1023.

16. S. Dharmapurikar and J.W. Lockwood, “Fast and
scalable pattern matching for network intrusion
detection system”, IEEE JSAC, Vol.24, No.10,
pp.1781–1792, 2006.

17. N. Hua, H. Song and T.V. Lakshman, “Variable-
stride multipattern matching for scalable deep
packet inspection”, in Proc. of INFOCOM, Rio de
Janeiro, Brazil, pp.415–423, 2009.

18. H. Lu, K. Zheng, B. Liu, X. Zhang and Y. Liu, “A
memoryefficient parallel string matching architecture
for high-speed intrusion detection”, IEEE JSAC,
Vol.24, No.10, pp.1793–1804, 2006.

19. B.C. Brodie, D.E. Taylor and R.K. Cytron, “A
scalable architecture for high-througshput regular-
expression pattern matching”, in Proc. Of ACM/IEEE
International Symposium on Computer Architecture
(ISCA), Boston, MA, USA, pp.191–202, 2006.

20. D. Ficara, G. Antichi, A.D. Pietro, S. Giordano, G.
Procissi and F. Vitucci, “Sampling techniques to
accelerate pattern matching in network intrusion
detection systems”, in Proc. of IEEE ICC, Cape
Town, South Africa, pp.1–5, 2010.

21. WANG Xiaofei, HU Chengchen, TANG Yi, ZHANG
Ting, WU Chunming, LIU Bin and WANG Xiaojun,
“Parallel Length-based Matching Architecture for
High Throughput Multi-Pattern Matching”, Chinese
Journal of Electronics, Vol.21, No.3, pp.489-
494,2012.

22. HyunJin Kim and Seung-Woo Lee, “A Hardware-
Based String Matching Using State Transition
Compression for Deep Packet Inspection”, ETRI
Journal, Volume 35, Number 1,pp.154-157 ,2013.

23. Akhtar Rasool and Nilay Khare, “Parallelization of
KMP String Matching Algorithm on Different SIMD
architectures-Multi-Core and GPGPU”, International
Journal of Computer Applications, pp.26-28, 2012.

24. cheng zhong

and guo-liang chen, “ a fast
determinate string matching algorithm for the
network intrusion detection systems”, Proceedings
of the Sixth International Conference on Machine
Learning and Cybernetics, Hong Kong, pp.,3173-
3177, 2007.

25. Panwei Cao and Suping Wu , “Parallel Research on
KMP Algorithm”, pp.4252-4255, IEEE, 2011.

26. Wei Lin, Bin Liu , “Pipelined Parallel AC-based
Approach for Multi-String Matching”, 14th IEEE
International Conference on Parallel and Distributed
Systems, pp. 665- 672,2008.

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

27

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

27. Chuanpeng Chen and Zhongping Qin A Bit-split
Byte-parallel String Matching Architecture, IEEE
,pp.214- 217, 2009.

28. HyunJin Kim, Hyejeong Hong, Hong-Sik Kim, and
Sungho Kang, “A Memory-Efficient Parallel String
Matching for Intrusion Detection Systems”, IEEE
COMMUNICATIONS LETTERS, VOL. 13, NO. 12,
pp. 1004-1006, 2009.

29. M. Alicherry, M. Muthuprasanna and V. Kumar, High
speed pattern matching for network IDS/IPS, IEEE
ICNP, pp.187-196, 2006.

30. D. Pao, W. Lin and B. Liu, A memory-efficient
pipelined implementation of the Aho-Corasick
string- matching algorithm, ACM Trans. on Archit.
Code Optim., vol.7, pp.1-27, 2010.

31. W. Lin and B. Liu, Pipelined parallel AC-based
approach for multi-string matching, IEEE ICPADS,
pp.665-672, 2008.

32. N. Hua, H. Song and T. V. Lakshman, Variable-
stride multi-pattern matching for scalable deep
packet inspection, IEEE INFOCOM, pp.415-423,
2009.

33. D. P. Scarpazza, O. Villa and F. Petrini, Exact multi-
pattern string matching on the cell/b.e. processor,
ACM CF, 2008.

34. Y. Sugawara, M. Inaba and K. Hiraki, Over 10Gbps
string matching mechanism for multi-stream packet
scanning systems, Field Programmable Logic and
Application, vol.3203, pp.484-493, 2004.

35. HyunJin Kim et al.,” A Memory-Efficient Bit-Split
Parallel String Matching using Pattern Dividing for
Intrusion Detection Systems”, IEEE Transactions On
Parallel And Distributed Systems, Third Draft,
September 2010, pp.1-8,2011.

36. Yi-Hua E. Yang and Viktor K. Prasanna, “Robust and
Scalable String Pattern Matching for Deep Packet
Inspection on Multi-core Processors”, IEEE
TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, pp.1-11,2012.

37. Yi Tang et al.,” Independent Parallel Compact Finite
Automatons for Accelerating Multi-String Matching”,
IEEE Globecom 2010 proceedings, 2010.

38. KSMV Kumar, S. Viswanadha Raju and A.
Govardhan, “Overlapped Text Partition Algorithm for
Pattern Matching on Hypercube Networked Model”,
GJCST, pp. 1-8,2013.

39. Yao Xin , Benben Liu, Biao Min, WillX.Y.Li, Ray C.C.
Cheung, Anthony S.Fong, Ting Fung Chan” Parallel
architecture for DNA sequence inexact matching
with Burrows-Wheeler Transform”, Microelectronics
Journal, pp. 670-682,Elsevier,2013.

40. Hoang Le, and Viktor K. Prasanna, “A Memory-
Efficient and Modular Approach for Large-Scale
String Pattern Matching”, IEEE Transactions on
Computers, VOL. 62, NO. 5, pp. 844-857, 2013.

41. TAN Jianlong et al.,” Speeding up Pattern Matching
by Optimal Partial String Extraction”, the first

international workshop on security in computers,
networking and communications, pp.1030-1035,
IEEE, 2011.

42. Rajesh Prasad, Anuj Kumar Sharma, Alok Singh,
Suneeta Agarwal1 and Sanjay Misra, “Efficient bit-
parallel multi-patterns approximate string matching
algorithms”, Scientific Research and Essays Vol.
6(4), pp. 876-881, 18 February, 2011.

43. Mosleh M. Abu-Alhaj et al.,” An Innovative Platform
To Improve The Performance Of Exact-String
Matching ALGORITHMS”,2010, (IJCSIS)
International Journal of Computer Science and
Information Security,pp.280-283, Vol. 7, No. 1, 2010

44. Benedikt Forchhammer, Thorsten Papenbrock,
Thomas Stening, Sven Viehmeier, Uwe Draisbach,
Felix Naumann, “Duplicate Detection on GPUs”,
pp.165-188,2013

45. Antonino Tumeo and G et al.,” Aho-Corasick String
Matching on Shared and Sistributed Memory
Parallel Architectures”, IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, pp. 1-9,
IEEE, 2011.

46. Antonino Tumeo, Oreste Villa, and Daniel G.
Chavarrı´a-Miranda, “Aho-Corasick String Matching
on Shared and Distributed-Memory Parallel
Architectures”, IEEE Transactions on Parallel and
Distributed Systems, VOL. 23, NO. 3, PP.436-443,
2012.

47. Vinod.O, B.M.Sagar, “Hash-Based String Matching
Algorithm For Network Intrusion Prevention systems
(NIPS)”, International Journal of Advanced
Computer Theory and Engineering, Volume-2,
Issue-2, pp.31-35, 2013.

48. Oren Ben-Kiki, Philip Bille, Dany Breslauer, Leszek
Gasieniec, Roberto Grossi, Oren Weimann
“Towards Optimal Packed String Matching”, pp. 1-
33, ---July 10, 2013.

49. H. D. Cheng and K. S. Fu, “VLSI Architecture for
String Matching and Pattern Matching,” Pattern
Recognition, Vol.20, pp. 125-141, 1987.

50. Daniel P. Lopresti, “P-NAC : A Systolic Array for
Comparing Nucleic Acid Sequences,” Computer,
pp. 98- 99, July 1987.

51. Amar Mukhopadhyay, “Hardware Algorithms for
Nonnumeric Computation,” IEEE trans. on
Computers, Vol. C-28, No. 6, pp. 384-394, June
1979.

52. Bradly Fawcett, “Reconfiguring a Computing
Pattern,” Electronic Engineering Times, Manhasset,
pp. 64- , April. 1995.

53. M. J. Foster and H. T. Kung, “The Design of
Special- Purpose VLSI Chips,” Computer, pp. 26-38,
Jan. 1980.

54. Carla Correa Tavares dos Reis and Oswaldo Cruz,
“Approximate String Matching Algorithm Using
Parallel Methods for Molecular Sequence
Camparisons”, IEEE, pp.140-143,2005.

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

28

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

55. Muhammad Zubair et al.,” Text Scanning approach
for Exact String Matching”, International Conference
on Networking and Information Technology,pp.118-
121,2010.

56. Tomohiro I , Shunsuke Inenaga, Masayuki Takeda
“Palindrome pattern matching” Theoretical
Computer Science, pp. 162-170,Elsevier,2013.

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

29

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

This page is intentionally left blank

A parallel computational approach for string matching- a novel structure with omega model

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 X
II

V
er
sio

n
I

30

(
D DDD DDDD

)
Y
e
a
r

01
3

2
C

	A Parallel Computational Approach for String Matching- A Novel Structure with Omega Model
	Authors
	Keywords
	I. Introduction
	II. Parallel Computing Models
	III. Literature
	a) Intrusion Detection Systems (Ids)
	b) Dfa Based
 Approaches
	c) Parallel Processing Based Approaches
	d) Aho Corasick Based Approaches
	e) Finite Automata Based Approaches
	f) Hardware Related Based Approaches
	g) Gpu’s Based Approaches
	h) Ram Based Approaches
	i) Approaches For Genome Sequences

	IV. Scattered Computing and Scattered Algorithms
	V. Proposed System Architecture
	a) System Architecture
	b) Proposed Approach
	c) Claims

	VI. Conclusions
	References Références Referencias

