3,916 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Health 4.0: Applications, Management, Technologies and Review

    Get PDF
    The Industry 4.0 Standard (I4S) employs technologies for automation and data exchange through cloud computing, Big Data (BD), Internet of Things (IoT), forms of wireless Internet, 5G technologies, cryptography, the use of semantic database (DB) design, Augmented Reality (AR) and Content-Based Image Retrieval (CBIR). Its healthcare extension is the so-called Health 4.0. This study informs about Health 4.0 and its potential to extend, virtualize and enable new healthcare-related processes (e.g., home care, finitude medicine, and personalized/remotely triggered pharmaceutical treatments) and transform them into services. In the future, these services will be able to virtualize multiple levels of care, connect devices and move to Personalized Medicine (PM). The Health 4.0 Cyber-Physical System (HCPS) contains several types of computers, communications, storage, interfaces, biosensors, and bioactuators. The HCPS paradigm permits observing processes from the real world, as well as monitoring patients before, during and after surgical procedures using biosensors. Besides, HCPSs contain bioactuators that accomplish the intended interventions along with other novel strategies to deploy PM. A biosensor detects some critical outer and inner patient conditions and sends these signals to a Decision-Making Unit (DMU). Mobile devices and wearables are present examples of gadgets containing biosensors. Once the DMU receives signals, they can be compared to the patient’s medical history and, depending on the protocols, a set of measures to handle a given situation will follow. The part responsible for the implementation of the automated mitigation actions are the bioactuators, which can vary from a buzzer to the remote-controlled release of some elements in a capsule inside the patient’s body.             Decentralizing health services is a challenge for the creation of health-related applications. Together, CBIR systems can enable access to information from multimedia and multimodality images, which can aid in patient diagnosis and medical decision-making. Currently, the National Health Service addresses the application of communication tools to patients and medical teams to intensify the transfer of treatments from the hospital to the home, without disruption in outpatient services. HCPS technologies share tools with remote servers, allowing data embedding and BD analysis and permit easy integration of healthcare professionals expertise with intelligent devices.  However, it is undeniable the need for improvements, multidisciplinary discussions, strong laws/protocols, inventories about the impact of novel techniques on patients/caregivers as well as rigorous tests of accuracy until reaching the level of automating any medical care technological initiative

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    The Internet of Things: the future or the end of mechatronics.

    Get PDF
    The advent and increasing implementation of user configured and user oriented systems structured around the use of cloud configured information and the Internet of Things is presenting a new range and class of challenges to the underlying concepts of integration and transfer of functionality around which mechatronics is structured. It is suggested that the ways in which system designers and educators in particular respond to and manage these changes and challenges is going to have a significant impact on the way in which both the Internet of Things and mechatronics develop over time. The paper places the relationship between the Internet of Things and mechatronics into perspective and considers the issues and challenges facing systems designers and implementers in relation to managing the dynamics of the changes required

    Internet of Things: A Review of Surveys Based on Context Aware Intelligent Services

    Get PDF
    The Internet of Things (IoT) has made it possible for devices around the world to acquire information and store it, in order to be able to use it at a later stage. However, this potential opportunity is often not exploited because of the excessively big interval between the data collection and the capability to process and analyse it. In this paper, we review the current IoT technologies, approaches and models in order to discover what challenges need to be met to make more sense of data. The main goal of this paper is to review the surveys related to IoT in order to provide well integrated and context aware intelligent services for IoT. Moreover, we present a state-of-the-art of IoT from the context aware perspective that allows the integration of IoT and social networks in the emerging Social Internet of Things (SIoT) term.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER) under the granted Project SEQUOIA-UA (Management requirements and methodology for Big Data analytics) TIN2015-63502-C3-3-R, by the University of Alicante, within the program of support for research, under project GRE14-10, and by the Conselleria de Educación, Investigación, Cultura y Deporte, Comunidad Valenciana, Spain, within the program of support for research, under project GV/2016/087. This work has also been partially funded by projects from the Spanish Ministry of Education and Competitivity TIN2015-65100-R and DIIM2.0 (PROMETEOII/2014/001)

    Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management

    Get PDF
    Biosensors are emerging as efficient (sensitive and selective) and affordable analytical diagnostic tools for early-stage disease detection, as required for personalized health wellness management. Low-level detection of a targeted disease biomarker (pM level) has emerged extremely useful to evaluate the progression of disease under therapy. Such collected bioinformatics and its multi-aspects-oriented analytics is in demand to explore the effectiveness of a prescribed treatment, optimize therapy, and correlate biomarker level with disease pathogenesis. Owing to nanotechnology-enabled advancements in sensing unit fabrication, device integration, interfacing, packaging, and sensing performance at point-of-care (POC) has rendered diagnostics according to the requirements of disease management and patient disease profile i.e. in a personalized manner. Efforts are continuously being made to promote the state of art biosensing technology as a next-generation non-invasive disease diagnostics methodology. Keeping this in view, this progressive opinion article describes personalized health care management related analytical tools which can provide access to better health for everyone, with overreaching aim to manage healthy tomorrow timely. Considering accomplishments and predictions, such affordable intelligent diagnostics tools are urgently required to manage COVID-19 pandemic, a life-threatening respiratory infectious disease, where a rapid, selective and sensitive detection of human beta severe acute respiratory system coronavirus (SARS-COoV-2) protein is the key factor

    Networking Architecture and Key Technologies for Human Digital Twin in Personalized Healthcare: A Comprehensive Survey

    Full text link
    Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio
    corecore