
electronics

Review

Internet of Things Architectures, Technologies,
Applications, Challenges, and Future Directions for
Enhanced Living Environments and Healthcare
Systems: A Review

Gonçalo Marques 1,2,3 , Rui Pitarma 1,* , Nuno M. Garcia 2,3 and Nuno Pombo 2,3

1 Unit for Inland Development, Polytechnic Institute of Guarda, Avenida Doutor Francisco Sá Carneiro N 50,
6300-559 Guarda, Portugal; goncalosantosmarques@gmail.com

2 Computer Science Department, Faculty of Engineering, Universidade da Beira Interior,
6201-001 Covilhã, Portugal; ngarcia@di.ubi.pt (N.M.G.); ngpombo@ubi.pt (N.P.)

3 Instituto de Telecomunicações, Covilhã 6201-001, Portugal
* Correspondence: rpitarma@ipg.pt; Tel.: +351-2712-20111

Received: 16 August 2019; Accepted: 19 September 2019; Published: 24 September 2019
����������
�������

Abstract: Internet of Things (IoT) is an evolution of the Internet and has been gaining increased
attention from researchers in both academic and industrial environments. Successive technological
enhancements make the development of intelligent systems with a high capacity for communication
and data collection possible, providing several opportunities for numerous IoT applications,
particularly healthcare systems. Despite all the advantages, there are still several open issues
that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information
security, and privacy. IoT provides important characteristics to healthcare systems, such as availability,
mobility, and scalability, that offer an architectural basis for numerous high technological healthcare
applications, such as real-time patient monitoring, environmental and indoor quality monitoring,
and ubiquitous and pervasive information access that benefits health professionals and patients.
The constant scientific innovations make it possible to develop IoT devices through countless services
for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced
living environments (ELEs). This paper reviews the current state of the art on IoT architectures for
ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities,
open-source platforms, and operating systems. Furthermore, this document synthesizes the existing
body of knowledge and identifies common threads and gaps that open up new significant and
challenging future research directions.

Keywords: ambient assisted living; enhanced living environments; healthcare; health monitoring;
internet of things; ubiquitous and pervasive computing

1. Introduction

In order to maintain and improve people’s life quality in all periods of life but particularly for older
adults, ambient assisted living (AAL) remains a multi-disciplinary field that is strictly related to an
ecosystem of different technologies and applications for personal healthcare monitoring and pervasive
and ubiquitous computing [1,2]. The concept of enhanced living environments (ELEs) refers to the AAL
area that is more associated with information and communications technologies (ICTs). ELEs include all
ICT achievements to support AAL. ELEs incorporate several ICT solutions, which require algorithms,
platforms, and systems to design and develop innovative applications and services to maintain an
independent and autonomous living. Moreover, an ELE includes the latest technological achievements
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related to Internet of Things (IoT) to create ICT solutions to improve people’s health and well-being.
A healthcare system can be defined as a set of hardware and software tools designed to provide a
broad range of healthcare services and applications to individuals, such as medical staff and patients,
aiming to promote health and well-being in in an effective and often pervasive manner. Healthcare
systems are closely related to ELE and AAL. AAL systems present an efficient potential to address
several healthcare challenges through ICT. Moreover, ELEs incorporate an ecosystem of healthcare
systems, which include medical sensors, microcontrollers, wireless communication technologies, and
open-source software platforms, for data visualization and analytics. AAL systems provide pervasive
methods and ambient intelligence to design ELE applications that incorporate healthcare systems
able to provide 24/7 continuous monitoring and control of the environment. ELE include healthcare
systems that directly or indirectly help to maintain people within their home environments instead of
being moved into institutionalized environments. Moreover, these systems provide efficient methods
to improve individuals’ independence and facilitate medical treatments. Currently, there are different
healthcare systems that incorporate several technologies to monitor several human physiological status
and environmental parameters using different wireless communications technologies, such as ZigBee,
3G, Bluetooth, Ethernet, and Wi-Fi [3]. On the one hand, human physiological status monitoring
provides medical state perception and is particularly important for at-risk individuals, such as older
adults and newborns, to detect symptoms in useful time. On the other hand, environmental conditions
also play a major role in well-being and can be monitored in real-time to detect and prevent dangerous
situations. Both monitored data (physiological and environmental) can be analyzed by doctors in
order to support clinical diagnostics. In particular, indoor air quality (IAQ) is a significant factor to be
monitored and controlled in real-time for ELEs and occupational health as people typically spend about
90% of their time inside buildings. IAQ assessment supports decision making on possible interventions
to improve productivity and a healthy indoor environment by identifying multiple situations or habits
that affect well-being.

There are several open issues in both the planning and implementation of healthcare systems,
such as usability, user interface, data structure, ubiquitous design, ergonomics, and data access [4].
Although there are a number of social and ethical issues, such as acceptance by the users, the privacy
and confidentiality of information are already recognized by most healthcare systems [5]. It is likewise
imperative to guarantee that technological innovation does not replace human care, and instead it
should be used to support medical decisions and monitoring health/diseases anywhere and anytime [6].
By 2050, 20% of the total population will be 60 years old or more [7], and that will bring an increase of
healthcare systems’ costs and lead to a high dependency on healthcare systems [8]. Likewise, 87% of
the general population prefers to stay in their homes instead of moving to a retirement home so they
can have better quality of life, and therefore, healthcare systems are also expected to support the high
cost of nursing care [9].

IoT architectures refer to the connectivity of physical objects connected to the Internet that
support sense capabilities. These objects can be accessed through unique addressing schemes with
interaction and cooperation features. IoT architectures incorporate numerous types of devices, such as
microcontrollers, sensors, actuators, smartphones, and wearables. Furthermore, open-source platforms,
hardware, and enhanced software solutions for data analytics, consulting, management, and storage
are required to design and develop IoT architectures. IoT architectures involve people who use these
IoT devices and should contribute and cooperate with IoT systems synergistically. Therefore, IoT
architectures must be aware of the human context and consider people as an essential part of the
system. IoT can support healthcare systems and allow people to stay at home and be supervised in
real-time, instead of being sent to nursing homes or clinics [2]. Numerous IoT architectures incorporate
personal healthcare devices (PHDs) for remote patient monitoring. These devices are portable systems
with relevant features for patient biomedical signal sensing and measurement. The number of PHDs
are increasing and must incorporate efficient methods for healthcare servers’ connection [10,11]. PHDs
are used for activity, blood pressure and pulse oximeters monitoring, medication dispensers, and fall
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detection [12,13]. These portable devices are used in IoT environments by healthcare staff and allow
patient monitoring at home. Moreover, healthcare systems cannot be designed and implemented
without the relevant role of PHDs. Moreover, PHDs’ integration in healthcare environments is proposed
by several studies [14–16]. Several monitoring activities, such as measuring cardiac frequency and
blood pressure, that in the past were only available at the hospital, can now be continuously performed
by using wearable sensors incorporated in, e.g., smartwatches. However, hospital measurements
cannot be completely replaced with wearables, such as smartwatches, for several reasons, such as
reliability, accuracy, and the context of the measurement. These wearable sensors should be used as an
important complement and will never replace human integration and the relationship between the
doctor and the patient.

Healthcare solutions that allow real-time monitoring can avoid unplanned hospitalizations
that result in expensive emergency costs. IoT incorporates several advantages for the design and
development of healthcare systems. IoT can provide networks of connected devices, Cloud applications,
and services to facilitate the patient’s monitored data transmission and storage. IoT applications are
closely related to healthcare systems through remote monitoring, smart-homes, wearable devices, and
smart medical equipment. Numerous academic and industry research studies have been conducted
about IoT interoperability and therefore several methods and technologies to address interoperability
challenges are available in the literature. These methods focus on the standardization of communication
protocols to provide interoperability of heterogeneous devices, networks, and data structures. Therefore,
these methods and technologies can also be applied to IoT in order to provide interoperability to
the healthcare domain. Furthermore, numerous applications for healthcare have been developed
based on IoT, which demonstrates the relevant advantages of this architecture to provide efficient and
cost-effective healthcare systems [17]. In order to support high-quality healthcare systems, IoT must
adopt standardization, including efficient wireless protocols, improved mobile and wearable sensors,
and cost-effective and low-power microprocessors [18]. A study presented by [19] demonstrates that
individual approval of IoT advances are broad and growing. The current accessibility of remote
wireless medical systems and the emerging diffusion of electronic healthcare database records can make
the IoT communication framework the fundamental empowering agent for distributed ubiquitous
healthcare applications [20].

This paper aims to provide an introduction to healthcare systems, review the current state of the
art, and focus on the technologies, applications, challenges, opportunities, IoT open-source platforms,
and operating systems. At this stage, a comprehensive understanding of IoT from a healthcare
background is significant in order to support future research. This paper will also present an effective
analysis of the key enabling architectures, main applications, challenges, and opportunities for ELEs
and healthcare systems. While several survey papers regarding IoT for the healthcare domain are
available in the literature and the recent proliferation of IoT platforms is evident, it can also be observed
that these surveys do not focus on the examination of existing IoT platforms and operating systems.
Therefore, the key novelty of this paper is that it performs a comprehensive and comparative study of
the available IoT platforms and operating systems and recommends one of them to specifically address
solutions for the healthcare domain. Furthermore, this document synthesizes the existing body of
knowledge and identifies common threads and gaps that open up new significant and challenging
future research directions for healthcare systems. Taking into account the importance of security,
privacy, and quality of service (QoS) open issues in the healthcare field, the paper highlights various
insights surrounding healthcare systems. The discussion on numerous key future research topics, with
the potential to accelerate the progress and deployment of IoT in healthcare, is expected to provide
an important background for future research initiatives. In conclusion, this review article aims to be
useful by introducing the topic to not only academics or engineers but also o healthcare professionals,
which is essential for the development of future healthcare systems.

The rest of this paper is structured as follows: This paragraph ends Section 1; Section 2 focus
on IoT visions, elements, open-source platforms, smartphones, and wearable applications; Section 3
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refers to IoT applications in healthcare, and Section 4 focuses on important open issues, such as QoS,
security, availability, and interoperability; Section 5 discusses several key future research topics with
the potential to accelerate the progress and deployment of IoT in healthcare systems; and Section 6
concludes the paper.

2. Internet of Things for Healthcare

Healthcare systems are extremely necessary to enhance the global access to healthcare and medical
information. Technological innovations facilitate the access to healthcare in an ageing population
and also provide new opportunities and methods for processing and knowledge of medical data [21].
Despite all the advantages of healthcare systems, a complex and important open issue associated with
the confidentiality and safety of the patients’ data still exists [22,23]. Healthcare systems have several
other main challenges, e.g., normalization, network setup, business models, QoS, and data security as
referred by [24]. Several research fields are relevant to the design and implementation of healthcare
systems, such as mobile and wearable sensors, wireless technologies, and open-source platforms
(Figure 1). Numerous healthcare systems incorporate mobile and wearable sensors for data collection
used for human physiological status monitoring and use wireless communication technologies for
data transmission. Moreover, open-source platforms not only support data storage, visualization, and
analytics but also provide numerous features for device management and security. This section aims
to specify a comprehensive summary of the most important areas of research trends in IoT.
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2.1. Visions

The IoT represents one of the main paradigms in information and communication technologies.
IoT has three different points of views: Things-oriented vision, Internet-oriented vision, and
semantic-oriented vision as referred by [25] (Figure 2). Semantically oriented vision refers to a
universal network of unified objects, which supports storage, searches, and organizes information.
The things-oriented vision refers to intelligent autonomous things applied to our daily lives that are
connected to the Internet. The Internet-oriented vision focuses on systems linked to the network, with
a unique address that supports standard protocols.
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Regarding the healthcare systems and applications, the things-oriented vision concept is related
to the identification of a high diversity of objects, such as sensors and actuators. The Internet-oriented
vision is related to methods and procedures to satisfy the data transmission requirements of healthcare
systems. Healthcare systems incorporate a high number of sensors, which are responsible for the
collection of a massive amount of data. The semantic-oriented vision is related to the methods used to
process this vast amount of data in order to extract knowledge to support medical activities.

2.2. Elements

Identification, sensing, and communication are the main elements of IoT, elements that will be
explained briefly below. Healthcare systems need to be properly identified in order to match services
with their demand. Moreover, not only the identification of the physical “things” but all the interaction
entities also have to be clearly acknowledged in IoT solutions to ensure the correct composition and
operation of the system. Nevertheless, identification has a significant extended scope and is important
for all IoT applications and entities. Identification is a major topic for communication in order to address
the items, services, users, data, and locations. The "identifiers" are applied to provide identification
and can be assumed as a pattern to uniquely identify a single entity in a particular context. Electronic
product codes (EPCs) [26] and ubiquitous code (uCode) [27] are identification methods that currently
exist. Object identification refers to the hostname and IP address for communication on the network.

Several addressing techniques are present in the literature, such as IPv4, IPv6, and 6LoWPAN,
that apply compression on IPv6 headers [28]. With the colossal address space offered by IPv6, all the
addressing requirements of the IoT are supposed to be met. Sensing is the capture of information from
the environment through a collection of data; this data can be saved in a remote, local, or cloud database.
Communication is a major element of IoT, as for specific applications, such as healthcare systems,
communication is crucial for patients’ data sharing. Currently, there is a vast diversity of communication
protocols with different battery dependability and data range transmissions, such as Wi-Fi, ZigBee,
and mobile networks [29]. Most IoT devices adopt the message queuing telemetry transport (MQTT)
and constrained application protocol (CoAP). These two open standards are designed to provide
mechanisms for asynchronous communication. MQTT is a publish/subscribe messaging protocol
designed for lightweight machine to machine (M2M) communications. CoAP is a web transfer protocol
for use with constrained nodes and constrained networks designed for M2M applications [30,31].
The IEEE 802.15.4e standard was announced by IEEE in 2012 to improve and complement the
previous 802.15.4 standard [32], to address the emergent requirements of manufacturing and industrial
requisites [33]. In particular, the IEEE 802.15.6, is a wireless body area network (WBAN) standard
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developed for enhanced health monitoring, which supports QoS data rates up to 10Mbps, low power,
and high reliability [34,35]. Furthermore, other communication technologies are used for short-range
communications, such as radio frequency identifications (RFIDs) [36], near field communication
(NFC) [37], and Bluetooth low energy (BLE) [38]. A memoryless-based collision window tree plus
protocol for simplified computation on anti-collision RFID was proposed by [39]. Other technologic
enhancements are provided to NFC, such as a flexible and cost-effective NFC tag to allow smart
devices and daily object communication in IoT environments was referred by [40]. Currently, Bluetooth
4.2 provides a suitable power efficient protocol for IoT and is applied in 6LoWPAN networks [41].
The 6LoWPAN has been projected to support WPAN devices with reduced battery specifications to the
Internet and can be used in IoT healthcare systems to facilitate and improve energy efficiency.

The referred IoT elements play an even more important role when applied to the healthcare domain.
In fact, healthcare applications based on IoT can significantly enhance patient care, optimize resource
consumption, and therefore lead to a decrease in healthcare cost. Regarding the healthcare field,
privacy is of principal importance as patients’ data must remain confidential. Therefore, identification,
sensing, and communication elements must incorporate enhanced methods to offer high-quality
medical services, while at the same time ensure privacy.

2.3. IoT Open-Source Platforms and Operating Systems

Currently, there are numerous open-source platforms and operating systems that aim to provide
support for different systems, data confidentially, safety, fusion, and dissemination. This section
presents the most relevant IoT platforms and operating systems (Figure 3), which are recognized by
their significance for the improvement of the state of the art and creative highlights, which can likewise
be utilized to create secure and scalable healthcare systems.
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(1) SiteWhere: An open-source IoT platform. It offers a system that accelerates the storage, handling,
and incorporation of device data. SiteWhere provides an IoT server platform, device management,
and third-party integration frameworks. This IoT platform aims to provide IoT functionalities for
monitoring, automation, and analytics for healthcare systems [42].
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(2) DeviceHive: An open-source IoT data platform that aims to connect devices to the cloud and
device data stream. It also provides creation and customization of IoT/M2M (machine-to-machine)
applications with a secure, scalable, and cloud-ready functionalities [43].

(3) Platformio: An integrated development environment for IoT. It supports cross-platform
build functionality without external dependencies to the operating system software, having
compatibility with 200+ embedded boards, 15+ development platforms, and 10+ frameworks. It
also provides a built-in serial port monitor and configurable build flags/options and automatic
firmware uploading for IoT system development [44].

(4) RIOT: A free, open-source operating system for the majority of the relevant open standards
supporting the IoT. It provides code compatibility for 8,16,32-bit platforms, energy-efficiency,
real-time capability due to an ultra-low interrupt latency, multi-threading with ultra-low threading
overhead but also 6LoWPAN, IPv6, an IPv6 routing protocol for low-power and Lossy networks
(RPL), UDP, CoAP, and concise binary object representation (CBOR) protocols [45].

(5) ARM mbed: An IoT platform that delivers the operating system, cloud facilities, tools, and
designer ecosystem in order to develop scalable systems based on IoT. It implements safety
functionalities, such as transport layer security (TLS) as well CoAP and RESTful API to design
M2M networks [46].

(6) Ubuntu Core (Snappy): A development version of Ubuntu for IoT systems that offers safety
and extensibility of an Ubuntu operating system. It also delivers management systems for safe,
reliable, transactional updates controlled by Canonical’s AppArmor security system [47].

(7) IoTivity: An open-source software framework that provides device-to-device communications to
the IoT systems. The IoTivity project is sponsored by the Open Connectivity Foundation (OCF), a
specification and certification program to address IoT open issues [48].

(8) Distributed Services Architecture (DSA): An open-source IoT platform that aims to join the
heterogeneous hardware and software in IoT and provide a scalable, resilient decentralized
solution. DSA is composed of DSBroker, DSLink, and nodeAPI. DSBroker acts as a router for
incoming and outgoing streams. NodeAPI provides node compatibility and bi-directional control
and monitoring ability between connected things. DSLink is connected to the DSBroker that acts
as the source of the data streams [49].

(9) Calvin-Base: An open-source platform built with a centralized architecture that supports REST
API and it is particularly scalable implementing a variety of plugins for interoperability [50].

(10) Cylon.js: A JavaScript framework for the IoT that uses Node.js. This framework provides code
compatibility between different hardware for IoT. Supports multiple platforms, such as Arduino,
Intel Galileo, Intel Edison, and Raspberry [51].

(11) Brillo: An Android-based operating system, with core services that provide a developer kit and
developer console to build IoT applications. It aims to provide scalability with OTA updates,
metrics, and error reporting. It is supported by the ARM, Intel x86, and MIPS-based hardware
but also provide secure services [52].

(12) Contiki: An open-source operating system for the IoT that provides standard IPv6, IPv4, 6lowpan,
RPL, and CoAP protocols. This OS provides a network simulation environment for agile IoT
development [53].

(13) Netbeast: An open-source IoT platform that aims to connect IoT devices and to provide agile
development for IoT solutions. It is supported by 30 different types of smart home devices and 10
brands, such as Philips Hue, Belkin Wenmo, Google Chromecast, Parrot, etc. [54].

(14) Kaa: A multi-purpose middleware platform that delivers tools for software development for IoT
with enhanced features that decrease related cost, risks, and time-to-market. It is an agnostic
hardware solution that supports an SDK for a diversity of programming languages, such as C,
C++, and JAVA [55].
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(15) ThingsBoard: An open-source IoT platform for data collection, processing, visualization, and
device management. This platform supports device connectivity using standard IoT protocols,
such as MQTT, CoAP, and HTTP. Moreover, ThingsBoard support data processing rule chains and
alarms configuration based on events, attribute updates, device inactivity, and user actions [56].

The achievements of platforms and frameworks are related to different requirements, such as [57]:

1. Providing security and privacy APIs with easy configuration and management in order to be
adopted by third-party systems.

2. Providing interoperability and extendable protocols to be adopted by third-party systems.
3. Providing efficient size bandwidth, energy consumptions, and low processing requirements.
4. Providing easy management and governance of heterogeneous networks of devices

and applications.

Comparison of the IoT Platform Architectures

An IoT platform is a software designed and developed for specific application domains. It can
support several domains, such as device management support, security, data collection, integration,
analytics, visualization, and storage. On the one hand, an IoT platform can provide enhanced features
to decrease the development time of IoT applications as it can provide scalability and heterogeneous
device compatibility. One the other hand, an IoT platform can connect IoT devices to user applications
and provide interaction management between the hardware and application layers. Regarding the
extensive number of IoT platform and operating systems available in the literature is not possible to
discuss all related IoT platforms and operating systems. The IoT platforms and operating systems
researched in this study were selected according to the criteria used by the authors of [58] and [59].
Therefore, 15 IoT platforms and operating systems were chosen and analyzed in this paper. In this
section, the authors compare the presented open-source IoT platforms and operating systems. Table 1
presents the comparison results referring to device management support, security, data collection,
integration, analytics, visualization, and storage features.

After the review of the presented platforms, the authors conclude that the majority of IoT platforms
support device management. Considering not only the increase of IoT device numbers but also the need
to store the atomic attributes of each device, the device management feature is extremely important
for IoT architectures. These attributes could be the serial number, mac address, location, and device
firmware version. Is important to note that these attributes can include complex, structured objects,
such as a list of connected peripherals and their properties. In addiction, is also important to create
groups of IoT devices that are in a specific location and communicate with other devices of the same
group. Another important feature related to device management is the authorization mechanism to
allow or disable access remotely. With the exception of RIOT and DSA, all the presented platforms
support device management.

Regarding security protocols, RIOT, Calvin-Base, Cylon.js, Brillo, and Contiki do not support
native security features. Although, there are third-party plugins to manage the security issues of these
platforms. In general, all the platforms use MQTT and REST APIs to provide data collection and
integration features support, with the exception of Calvin-Base that uses a specific language syntax
script for device configuration and Platformio that use CI (continuous integration). CI is the practice,
in software engineering, of merging all developer working copies with a shared mainline several times
a day. The data analysis and visualization are extremely important features as IoT devices generate a
lot of data. Platformio, RIOT, ARM mbed, Ubuntu Core, and Cylon.js platforms do not have analytics
support. The raw and unstructured data collected by IoT devices must be processed in order to create
structured data for analytics, pattern analysis, visualization, and charting. Consequentially, these
platforms are not recommended by the authors for healthcare applications as the analytics feature is
significant for clinical analysis and diagnosis. Platformio, RIOT, ARM mbed, IoTivity, Calvin-Base,
Cylon.js, and Contiki platforms do not provide storage features.
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Table 1. IoT platforms and operating systems comparison (
√

: apply; ×: not apply).

IoT Platform Device
Management Security Open-Source Data Collection Integration Analytics Visualization Storage

SiteWhere
√

SSL, Spring Security
√ MQTT, JSON, AMQP,

WebSockets REST API
√

×
√

DeviceHive
√

JSON Web Tokens
√

REST API, MQTT REST API, MQTT
√ √ √

Platformio
√

SSL
√

REST API, MQTT Continuous
Integration Software × × ×

RIOT × ×
√

COAP, MQTT REST API × × ×

ARM mbed
√ SSL/TLS, X.509

Certificate
√

REST API, MQTT REST API × × ×

Ubuntu Core
√

RSA, SSH
√

MQTT, AMQP REST API × ×
√

IoTivity
√

DTLS/TLS
√

Message Queue REST API
√

× ×

DSA × Basic Authentication
√

HTTP REST API
√

×
√

Calvin-Base
√

×
√

REST API, HTTP Calvin Script
√

× ×

Cylon.js
√

×
√

REST API, MQTT REST API × × ×

Brillo
√

×
√

REST API REST API
√ √ √

Contiki
√

×
√

REST API REST API
√

× ×

Netbeast
√

TLS/SSL
√

HTTP, MQTT REST API
√ √ √

Kaa
√

TLS/DTLS
√

MQTT, CoAP REST API
√ √ √

ThingsBoard
√

TLS
√

MQTT, CoAP, HTTP REST API
√ √ √
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For healthcare applications, the authors recommend the Kaa platform. This platform supports
open protocols, encryption channels for data security, and provides data analytics, visualization, and
storage. This platform has important third-party integrations based on microservice architecture;
is scalable; supports open IoT protocols, such as MQTT, CoAP, and JSON encoding; has gateway
support; the communication with devices is secured with TLS or datagram transport layer security
(DTLS); features flexible credentials lifecycle management; supports flexible application versioning;
and incorporates well-tested open-source components. IoT architectures have been extensively applied
in the healthcare domain to implement effective healthcare systems for older adults and patient
monitoring. Moreover, these healthcare systems have been incorporated in ELE to improve users’
health and well-being. IoT platforms can provide an efficient functional basis to develop enhanced
healthcare systems. These platforms have relevant embedded features for device management, security,
data collection, visualization, and analytics. Furthermore, IoT platforms implement important features
that considerably accelerate healthcare systems’ development and incorporate embedded scalability
and interoperability methods. IoT platforms offer standardization methods for data collection from
heterogeneous devices through distinct network protocols. Additionally, some of these platforms
support not only remote device configuration and control but also over-the-air firmware updates.

2.4. Smartphones

Currently, smartphones provide considerable processing capabilities and a great diversity of
sensors that can be used to develop mobile healthcare systems. A survey of healthcare software for
smartphones was presented by [60] and concludes that the use of smartphones in healthcare systems is
increasing and are useful applications for patient training, sickness self-administration, and remote
supervising. Mobile applications support symptom evaluation, psychoeducation, source position,
tracking of treatment development, and mental tele-health. Consequently, it is necessary to define and
delineate the difference between mobile applications that support healthcare decisions and those with
the goal of intervening in clinical decisions [61]. Commercial smartphone applications for healthcare
allow patient participation in effective disease prevention and management, which leads to significant
cost savings in personalized healthcare [62]. Smartphones provide activity recognition through the
detection of physical activities, such as walking and running, climbing stairs, travelling, and sedentary
behavior, without the need for extra devices that can be used for patients’ activity monitoring for
personalized healthcare [63,64]. A distributed particle filter simultaneous localization and mapping
(DPSLAM) process that offers restrictions towards a simple recent mounted inertial measurement unit
combined into the mobile phone and specifies the core information on the movement of the user was
presented by [65], which can be used to monitor a patient’s activity at home after medical intervention.
An intelligent communication approach for AAL that uses information collected by sensors, data traffic
patterns, and the behavior of a person for providing decisions, and sends notifications via smartphone
applications was proposed by [66] and demonstrates the importance of smartphones in personalized
healthcare. The accelerometer, gyroscope, or light sensor incorporated in a smartphone can be used for
activity recognition and monitoring. The camera and microphone can be used as multimedia sensors
for personalized healthcare systems [67]. Smartphones are equipped with short-range communication
technologies, such as Bluetooth and Wi-Fi, but also long-range technologies, such as GPRS, UMTS, and
3G/4G, that can be used for monitoring co-morbid patients remotely using short-range communication
inside hospitals and long-range communication inside patients’ home [68]. The NFC and RFID
identification technologies can accelerate healthcare and medicine care procedures, and develop
enhanced identification protocols that can lead to a reduction of errors in medical diagnostics [69,70].
The preceding paragraphs are intended to provide facts that support the importance of smartphones in
healthcare systems. Smartphones incorporate sensors, communication technologies, and processing
power that can be used to complement healthcare systems, enabling better data accessibility and
notifications to the patient but also to collect data from the environment.
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2.5. Wearables

Wearable sensors are used on a large scale for healthcare systems, such as diagnostic procedures and
visualization software, to measure and define living environments and real-time personal activity [3].
Wearables have a remarkable diversity of applications in healthcare, such as real-time monitoring of
pediatric patients with cardio-metabolic problems [71], headband for electroencephalogram (EEG) feeling
recognition aiming to estimate the life quality of individuals [72], and to detect situations of behavioral
anomaly in smart AAL through the collection of movement data combined with the local context [73].
Wearable technologies can be used to reduce the costs of personalized healthcare by providing patient
monitoring in their own homes [74]. Wearables are also used for blood pressure monitoring, ring-type
heart rate monitoring, and Bluetooth-based electrocardiogram (ECG) monitoring. A tele-home medical
solution that incorporates wearables, wireless technologies, and sensor data fusion techniques was
presented by [75]. Healthcare systems can be very important to provide ubiquitous healthcare services
because they allow continuous access to patient information [76]. Healthcare systems for symbiotic and
bio-inspired architectures may enhance the health circumstances and living expectation of an enormous
number of individuals [77]. A wearable pervasive medical supervising solution that utilizes unified
ECG, accelerometer, and oxygen (SpO2) sensors that provide biological records to be communicated in
wireless sensor network using IEEE 802.15.4 to a PC where the data can be displayed and stored was
presented by [78]. Non-invasive sensors incorporated in wristbands are used to measure and supervise
several biological parameters, such as ECG, EEG, electrodermal (EDA), breathing, and biochemical
procedures [79]. These wearable sensors can offer cost-effective answers for remote supervision of ageing
individuals at domestic or nursing homes but also increase patient monitoring and care [80]. Wearable
computing devices with an embedded camera can determine the user position and orientation by using
visual odometry and SLAM (simultaneous localization and mapping) techniques to design assisted
living systems capable of offering such guidance with on-site augmented reality, without introducing
changes in the environment and using off-the-shelf equipment [81].

A system that aims to provide an active and healthy routine for individuals and to advise
them with recommendations and important life behavior information that incorporates wearable
bio-signals sensors and artificial intelligence algorithms was presented by [82]. HealthMon is a
mobile healthcare framework towards access that proposes an affordable, retail wristband for clinical
monitoring of scenarios, e.g., dementia, Parkinson’s, or ageing, and it is used to provide health
monitoring and contextualized alerts in real-time, as presented by [83]. Wearable sensors are used
to predict and monitor patients by combining clinical observations, resulting in identification of
“abnormal” biological information resulting from patient deterioration [84]. Wearable sensors are
used for monitoring academic, sleep, and mental behavior using mobile phones with classification
accuracies ranging from 67% to 92% [85] (Figure 4).
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3. Internet of Things Applications for Healthcare Systems

Smart homes should have cyber-physical content permanently linked to the Internet to provide
data collection from environment that can be correlated and to produce effective knowledge that is used
to improve the quality of life of occupants. The MIT Media Lab was responsible for the development
of the first smart home project [86]. Smart homes can be classified into different categories depending
on their main purpose. On the one hand, several smart homes aim to identify and distinguish the
movements of its occupants to improve their health. On the other hand, some smart homes aim to store
and retrieve multi-media captured data in the indoor environment and other activities are centered
on surveillance, and are processed in order to obtain information to create real-time notifications and
alarms to safeguard the family and house. Moreover, another group of smart homes is classified based
on energy efficiency concerns by providing energy consumption supervising and gadget control [87].
A smart home intends to deliver an ELE to its occupants through the incorporation of numerous
sensors to monitor indoor environmental conditions and the inhabitants’ activities. Furthermore, smart
homes aim to add intelligent functionalities to a home in order to incorporate healthcare systems to
assist and improve occupants’ health and well-being.

As referred by [88], several visions of smart homes are proposed, such as a social view, an
instrumental view, and a functional view. Smart homes can be seen as an enhanced method to improve
the life quality of occupants; this is referred to as the functional view. Another point of view is the smart
home prospective for supervising and decreasing energy consumption and consequently lowering
carbon dioxide emission; this is referred to as the instrumental view. Likewise, smart homes can be
seen as a way to improve and enhance the digitalization of our daily routine; this is referred to as the
socio-technical view.

An example of a smart house that provides breathing and heart rate supervision is presented
by [89]. This smart home offers occupants breathing and heart rate supervision with a typical accuracy
of 99%. Several projects based on smart homes are available in Europe, such as iDorm [90], Gloucester
Smart Home [91], and CareLab [92], which remains notable through its significance for the enhanced
state of the art and advanced qualities. A unified architecture for supervision and management of
smart houses that recurs to ZigBee is recommended by [93].

The SPHERE Project [94] provides environment, video, and wearable data collection to offer an
architecture that uses sensor data fusion to provide identification and administration of several
healthcare conditions. An IoT architecture that provides management of the integration and
behavior-aware orchestration of devices as services and is cloud based was proposed by [95].

Home Health Hub IoT (H3IoT) provides an architecture for health supervision of ageing home
occupants that is cost-effective, easy to use, incorporates a simple layered design, and is delay
tolerant [96]. A healthcare system for diabetes therapy was proposed by [97]. This system provide
connectivity between the developed patient’s device based on 6LoWPAN and the medical team’s
desktop software to process individual health conditions and a glycemic index information system.
Several projects for remote healthcare based on IoT that can improve the process and intelligence of
information collection in the medical industry are reported in the literature. One has been proposed
by [98]. IoT allows the correct tracking of devices and their identification, patient and clinical team
validation, and data collection that produces important information for personalized healthcare [25].
IoT platforms are able to support pervasive healthcare by adopting wearable devices for data collection
and mobile devices to upload the data to servers, for communication and interfacing with sensors that
allow measurement of physiological parameters [99]. Healthcare systems based in IoT architectures
provide an effective way to monitor and store health and well-being continuously [2] but further offer
protocols to be ubiquitous and fully modified for personalized healthcare [100,101]. UT-GATE offers
native capabilities for well-being supervision software, such as the local repository, compression, signal
processing, data standardization, web services, protocol translation and tunneling, firewall, data mining,
and notifications, being proposed by [102]. The Health-IoT (in-home healthcare IoT architecture)
delivers a business technology with co-design organization for cross-boundary incorporation for
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in-home medical systems based in IoT but has a deficiency of interoperability [103]. The correlation of
a diversity of healthcare systems and sensors could provide earlier medical interventions rather than a
detection of advanced stage diseases and provide preventive care [100].

Table 2 aims to analyze a number of studies of the current state of the art, which are categorized
by application, sensing, configuration setting, connectivity, access to data, results, and limitations.
Furthermore, Table 2 presents a comparison summary, which will be analyzed afterwards in order to
extract lessons and common threads on the enhanced healthcare systems research.

Table 3 presents a review summary on the communication technologies used for the design of
healthcare systems. The Wi-Fi communication is commonly used to provide Internet connection;
however, due to energy consumption concerns, it is not used in battery-powered systems.
The GPRS/3G/HSDPA and 4G are incorporated in the majority of smartphones and are significant to
provide Internet connection when Wi-Fi networks are not available. Several healthcare systems are
designed to use the smartphone as a gateway, where the data is collected using wearable sensors and is
transferred to the smartphone. In these scenarios, the interface commonly used is Bluetooth since this
is a low-consumption communication technology. Furthermore, RFID and NFC are used to provide
identification of the patients or the devices and rarely serve the purpose of transmitting data from one
device to the other.

From the analysis of Table 3, it is possible to conclude that the least-used technology for data
communication in these scenarios is cabled Ethernet, followed by ZigBee, this being used in three
studies. The most used technologies, used in six studies, are the Bluetooth protocol and the GPRS/ 3G /

HDSPA / 4G, with Wi-Fi in second place. The conclusions are aligned with the requirements for low
power consumption, portability, and lightweight of data communication technologies.
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Table 2. Comparison summary on the presented healthcare systems (×: no support).

Application Sensing Configuration
Setting Connectivity Access to Data Results Limitations Ref.

Smartphone-centric
AAL platform to
monitor patients
suffering from
co-morbidities

Smartphone
sensors
(accelerometer,
GPS, microphone)
and external
medical devices

Smartphones and
others external
devices

Wi-Fi, 3G/4G,
GPRS and
Bluetooth

Mobile application

Smartphone simultaneously used
for data collection using built-in
sensors and external medical
devices but also as processing
unit to extract information of
interest.

The study does not
address the issue
related with power
consumption and
smartphone
autonomy.

[68]

Wearable for EEG
based detection of
emotions

EEG Head band ZigBee ×

Wearable headband prototype
can harvest sufficient energy to
supply power consumption. The
proposed study can achieve a
classification accuracy of 90%.

Wearable protype size
and data accessibility. [104]

Anomaly
detection in
human daily
activities using
wearable sensors

Accelerometer and
passive infrared
sensors

Mobile robot, fixed
sensors and
wearable sensors
positioned on
hand, foot, and
belt

ZigBee ×

Coherent detection of four
different types of daily activity
anomalies, such as falling to the
ground, not following the normal
schedule, working overtime, and
sleepwalking.

The study needs
further tests on more
human subjects and in
more realistic
environments.

[73]

Wearable
ubiquitous
healthcare
monitoring

ECG,
accelerometer and
oxygen saturation
sensors

Sensor belt and
wrist oximeter ZigBee Desktop

application

The proposed system allows
physiological data to be
transmitted in wireless and have
low power consumption. The
collected data can be consulted
and stored in real-time.

The study needs
further experimental
validation. The
proposed systems do
not have remote data
access.

[78]

A system for
promoting an
active and healthy
lifestyle using
wearable
bio-signals sensors

Blood pressure
sensor and
accelerometer

Wearable sensors
positioned on
wrist and
smartphone used
as a gateway

Wi-Fi, 3G
/HSDPA and
Bluetooth

Mobile application

This study uses a smartphone to
receive data from the wearable
sensors but also for data sharing
with the backend cloud-based
infrastructure for data storage.
The proposed system
incorporates a website for patient
data sharing with both, medical
personnel and family caregivers.

No obvious
disadvantages [82]
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Table 2. Cont.

Application Sensing Configuration
Setting Connectivity Access to Data Results Limitations Ref.

Mobile health
real-time
monitoring
framework using
wearables

Accelerometer,
gyroscope, skin
temperature, GPS,
contact sensor,
ultraviolet light
and LED-based
heart rate sensor

Wearable sensors
positioned on
wrist and
smartphone used
as a gateway

Bluetooth,
Wi-Fi and 3G Mobile application

This study proposes a low-cost
mobile monitoring wristband for
real-time monitoring of physical
activity levels, posture detection
and heart rate measurements.
This solution incorporates instant
notification alerts on critical
situations and user evaluation
tests ensure high acceptability.

Further validation
should be done to
reliably posture
detection for fall
detection. The remote
notifications should be
enhanced in order to
provide more
intrusive, urgent
notifications for family
and doctors.

[83]

Personal diabetes
management
device

Glucometer

Mobile
glucometers for
data collection and
RFID and NFC
cards for patient
identification

Ethernet,
GPRS,
Bluetooth,
RFID and
NFC

Web and Desktop
application

This personalized system allows
that the measurements and
interactions with the patient are
done at home. This architecture
provides a web portal, and the
management desktop application
for data consulting.

This study doesn’t
include a context
management
framework in order to
get additional
information about the
physical activity, and
communication with
electronic health
record from the
hospital information
system.

[97]

Intelligent
medicine box for
in-home
healthcare

GPS, compass
sensor,
accelerometer,
video camera,
microphone and
ECG

Fixed sensors
installed in the
medicine box and
ECG sensor
positioned on
chest

RFID, NFC,
Bluetooth,
Wi-Fi and
3G/4G

Web and mobile
application

This intelligent medicine box can
effectively integrate the in-home
health care devices and services.
It incorporates a tablet for sensing
and connecting.

The proposed
methodology needs to
be validated in
business practices and
also to improve the
detection speed and
accuracy of
medication activities.

[105]
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Table 3. Communication technologies used for the design of healthcare systems.

Wi-Fi GPRS/3G/
HDSPA /4G ZigBee Bluetooth RFID NFC Standard

Ethernet

EEG - - [104] - - - -

ECG - - [78] - [105] [105] -

Smartphone [68], [82] [68], [82] - [68], [82] [105] [105] -

Wrist [82], [83] [82], [83] [78], [73] [82], [83] - - -

Medicine box [105] [105] - [105] [105] [105] [105]

Glucometer - [97] - [97] [97] [97] -

4. Internet of Things Challenges and Open Issues for Healthcare Systems

Healthcare-based applications should incorporate improved mechanisms in order to provide
privacy of the patient’s information. Several safety weaknesses persist in an M2M communication of
IoT architecture because the majority of M2M and IoT systems do not require specifications to perform
encryption techniques [106]. There is also a need to ensure correct access to the right individuals
at the right time and support safe architectures. Several challenges are related to security, privacy,
and legal aspects [107,108]. Healthcare systems are normally wireless and presented to people in
general; the responsibility of the collected data must be protected and provided only with correct
authentication and availability. For that, healthcare systems based in IoT should incorporate hardware
and software encryption methods and support privacy policies. The data handled by a PHDs is very
sensitive in terms of patient privacy, therefore there is a significant need to provide secure storage
methods to prevent its exposure to unauthorized individuals. In this study, two security schemes
are proposed. Furthermore, the protocol conversion methods must provide efficient authentication
procedures. The protocol conversion proposed by KeeHyun Park et al. [109] implements two security
schemes for patient privacy. The biomedical data obtained are not stored as a single unit but stored
in parts in the IoT server. Furthermore, the divided data is saved in the IoT authentication server.
Therefore, in order to access the data, it is necessary to violate both servers. Moreover, the proposed
protocol conversion method incorporates an authentication scheme named the Buddy-ACK. This
authentication scheme ensures that a specific part of biomedical data can only be accessed if a patient
and the medical staff are authorized.

Individuals will remain the essential parts of the IoT architecture and consequently will touch all
characteristics of our lives. Specifically, medical systems, and due to the enormous scale of devices,
some safety and privacy challenges will subsist, so therefore teamwork between research communities
is indispensable [110]. IoT has several QoS challenges, such as availability, reliability, mobility,
performance, scalability, and interoperability, as presented by [25,100,111,112], and are representative
challenges for healthcare systems (Figure 5).

On the one hand, availability in IoT platforms intends to present everyplace and anytime services
to clients. IoT requires interoperability, therefore, it must follow protocols, such as IPv6 and 6LoWPA,
which is preponderant for healthcare systems where availability must always be provided. On the
other hand, reliability aims to aggregate the achievement rate of IoT service distribution and is essential
to be applied in software and hardware through every part of the IoT layers, which are of particular
importance for monitoring patients. In addition, mobility intends to relate users with their desired
services uninterruptedly, while on the move. Interruption for mobile devices can happen when, for
example, these devices change from one gateway to another. It is essential to develop pervasive and
ubiquitous healthcare systems. An IoT-based platform that is compatible with mobility and safety
in hospitals was presented by [113]. Performance is a relevant challenge for the implementation of
healthcare systems. These systems incorporate a high diversity of heterogeneous devices that collect
personal health and medical data. Therefore, healthcare systems must incorporate enhanced methods
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to provide data security and privacy but must also ensure high-performance metrics. Interoperability
and scalability play a major role in healthcare systems’ performance. Furthermore, these systems
need to continually improve and increase the performance of healthcare services and meet relevant
pervasive and ubiquitous requirements. Scalability signifies the capability to insert new systems
and functionality keeping or increasing the QoS as it is extremely important to develop large-scale
healthcare systems. In medical environments that assume a huge diversity of hardware platforms and
communication protocols, scalability assumes an interesting challenge to develop healthcare systems.
Interoperability is a relevant challenge investigated by academia and industry. The industry approach
to address interoperability issues has been conducted through standardization [114]. Several methods
have been designed to provide interoperability between IoT devices, services, platforms, and data
structures. Interoperability plays a major role in IoT development and is particularly relevant in the
healthcare domain. Healthcare systems incorporate heterogeneous IoT devices, which generate high
amounts of data in heterogeneous formats [115]. Therefore, extracting data from different healthcare
systems is a complex challenge and interoperability must be ensured to enable heterogeneous systems’
interaction and is a relevant requirement to solve data heterogeneity issues [116]. Thus, interoperability
should be considered by IoT developers and constructors to develop healthcare systems. PHDs and
IoT systems use different standard communication protocols for healthcare applications. Several
IoT systems use the oneM2M communication protocol as an international standard for IoT systems
while the PHDs use the ISO/IEEE 11073 protocol. Consequently, communication protocol conversion
methods are needed to provide interoperability for healthcare services in ubiquitous environments.
Regarding the great number of PHDs used in IoT environments designed using oneM2M protocol,
a protocol conversion process between ISO/IEEE 11073 protocol and oneM2M protocol is required.
Thus, some protocol conversion studies are presented in the literature. An IoT approach for a remote
monitoring system for patients at home which incorporates a protocol conversion scheme between
ISO/IEEE 11073 protocol and oneM2M protocol and a Multiclass Q-learning scheduling algorithm
based on the urgency of biomedical data delivery to medical staff was proposed by [117]. Protocol
conversion between ISO/IEEE 11073 protocol messages and oneM2M protocol messages performed
in gateways located between PHDs and the healthcare management server was constructed, and
evaluated in various experiments by [109].

Healthcare systems are an appropriate method to deal with medical service frameworks, in
light of new research that allows characterization of new propelled strategies for the treatment of
numerous sicknesses, e.g., by checking chronic infections to help the medical team to decide the
best medications [118]. Regardless of the capability of the IoT view and innovations for medicinal
services, there are many difficulties to be settled as shown before, in spite of the fact that IoT presents
an enormous effect on the economy and it is not yet certain if there are limitations to the early and
pervasive adoption of IoT frameworks [119].

Security is also an incredible challenge for IoT applications for healthcare environments that are
extremely sensible. Healthcare systems based in IoT architecture must be studied on the effect of packet
fragmentation and DoS (denial of service) attacks [120]. The development of healthcare systems should
address technical problems, planning, infrastructure, management, and security problems. At the
network layer, medical service frameworks should join encryption and avert DoS attacks. IoT has
specialized issues as well as arranging, foundation, administration, and security issues [121]. In 2008,
the ISO/IEC 29192 standards were made so as to contribute light-weight cryptography to devices with
reduced specifications, including block and stream cyphers and asymmetric mechanisms. Lightweight
cryptography adds to the security of smart devices due to its efficiency and smaller footprint and should
be used in healthcare systems that incorporate smart objects with limited processing capabilities [122].
Healthcare systems attacks can be defined as physical, side channel, cryptanalysis, software, and
network attacks [123] (Figure 6). Physical attacks consist of attacking physical hardware and are the
most difficult to achieve. Side channel attacks consist of using data information in order to find the key
that the target device is using. Cryptanalysis attacks are based on the ciphertext with the objective of
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breaking the encryption. Software attacks search for vulnerabilities in system software through its
own communication interface. Network communications are exposed against network security attacks
because of the broadcast nature of the transmission medium. Most medical IoT-based frameworks
combine a few wireless technology enhancements and are susceptible to numerous security challenges,
for example, attacks on secrecy and authentication, silent attacks on service integrity, and attacks
on network availability. Network availability attacks can be classified as DoS attacks that appear at
multiple layers, such as physical layer, data-link layer, network layer, transport layer, and application
layer [124].Electronics 2019, 8, x FOR PEER REVIEW 17 of 28 
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represent important examples [125]. However, there are also many studies that demonstrate the
concern in solving these problems that are presented in the literature [126–132].

5. Discussion and Future Directions

IoT must be assumed as an important and feasible architecture for enhanced healthcare systems.
However, several challenges still exist, and research efforts should be made to address usability and
user interface; ubiquitous design and ergonomics; data access and data structure; social and ethical
issues; and security, privacy, and QoS for enhanced pervasive and personalized healthcare systems.

Currently, IoT is responsible for an enormous quantity of personal data that is transferred across
the Internet without the guarantee of data privacy. Therefore, several ethical and social questions
can be raised about transparency at the expense of our privacy. This is an important challenge to
be analyzed particularly on healthcare systems in order to provide protection against observation
from non-authorized sources [133]. Pervasive monitoring deals with ultra-sensible data about patient
well-being and daily routine, therefore the healthcare systems should incorporate strong security
methods to guarantee the reliability of the data. Important legislation and regulations should be made in
order to guarantee the user’s rights, particularly in the development of healthcare systems. The design
of the referred systems should consider ethics as a major factor by adopting policies to ensure that
different developers use safe and trustable infrastructures [134]. The healthcare systems data should
be protected and implemented in encryption schemes, key management, appropriate cryptographic,
and security measures to avoid privacy leakages. Moreover, IoT devices in the healthcare context must
be regularly verified to not expose vulnerabilities to security attacks [135].

The proliferation of healthcare services has led to an increase in the amount of data generated,
which causes design issues on data access and data structure. Therefore, an extra effort must be made
to address the complexity and diversity of the data generated by healthcare systems. Furthermore, the
diversity of data sources requires a uniform standard of heterogeneous data management; the diversity
of data content requires a unified programming interface for multiple data analysis modules, and the
diversity of service objects require a uniform standard service platform interface as was proposed
by [136].

The QoS also play a major role in healthcare systems. Efficient and effective cooperation between
the physical and digital domains must be guaranteed in order to provide reliable healthcare systems.
The state-of-the art technologies, such as 5G, offer several opportunities for the IoT, in general,
and to healthcare systems, in particular, especially in real-time applications that involve video on
demand [137].

The main application of the enhanced healthcare systems is to develop intelligent and ubiquitous
systems for several purposes, such as patient health and well-being monitoring, activity and emotion
recognition, anomaly detection in daily routine behavior, and specific diseases supervision for ELEs
and to improve occupational health. Additionally, these systems aim to be used on a large scale, which
leads to a proliferation of application domains, including the development of platforms on healthcare
data sharing, visualization, and analytics.

The development of enhanced healthcare sensors is closely related to the design and configuration
setting of several sensing technologies for efficient and effective data acquisition. Particularly, wearable
sensors, such as EGG, ECG, accelerometers, and heart rate sensors, are a common trend in the design
of enhanced healthcare systems. These sensors are commonly positioned on the wrist, belt, hand,
and/or chest in order to provide ubiquitous sensing. Mobile devices, such as smartphones, tablets,
and smartwatches, are simultaneously used for data collection using built-in sensors, such as GPS,
camera, and microphone, but also as a bridge to interface external medical devices. Moreover, the
mobile devices have also been used as processing units to transform the collected data into knowledge.
Furthermore, assistive robots are also used combined with ambient sensors for activity recognition
and monitoring.
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The connectivity is extremely relevant as it is responsible to provide data transmission and
sharing among the sensing devices and the rest of the equipment in the framework. The majority
of healthcare systems are based in wireless communications technologies [138]. The Bluetooth and
Zigbee protocols are usually used for device-to-device communication, as well as Wi-Fi and mobile
networks technologies, such as 3G/4G, have been used recurrently to provide Internet access [139].

The access to monitored data is provided using several approaches. On the one hand, the majority
of the healthcare systems provides mobile access to data collected using a web interface. On the other
hand, some healthcare systems do not provide remote data access. However, there is a clear tendency
to develop systems that can be ubiquitously accessed anywhere, anytime [140,141].

The results of the research on healthcare is promising as it provides real-time patient monitoring
solutions as well as it often incorporates off-the-shelf mobile devices as sensing and processing units. It
also offers activity and anomaly behavior recognition, real-time notifications, and alerts to the medical
team and caregivers and a relevant acceptation rate by the users. Particularly, the IAQ monitoring
solutions can provide a relevant dataset of the occupant’s environmental quality and be correlated
with their health status and living environment to support medical diagnostics. Moreover, real-time
monitoring data can be used to generate alerts to advise the occupants to act in a useful time to promote
health and well-being. Therefore, there is a relevant need to design and develop cost-effective IAQ
solutions based on open-source technologies for ELEs and occupational health. However, there are
also several limitations, such as energy consumption, validation and calibration in real scenarios,
modularity and scalability, and more effective and ubiquitous notifications to act in useful time for
ELE and well-being [142,143].

6. Conclusions

IoT offers new methods, architectures, and solutions for enhanced healthcare systems and can be
faced with an opportunity to improve medical treatments for personalized healthcare. Open-source
platforms and operating systems could improve the quality, security, and availability of healthcare
systems. Moreover, existing open-source solutions may improve the evolution and efficiency of
healthcare systems by also enabling devices, applications, and systems to securely expose APIs to
external systems. Thus, this will improve interoperability and thus decrease the cost of management
and governance of heterogeneous device networks. Currently, there is a large set of very diverse
open-source tools that provide secure and cost-effective platforms to develop and prototype new
healthcare systems. These can be based in IoT and should provide smartphone and smartwatch
compatibility, as these devices are seen today as an essential part of daily life and are perceived as
extremely important and effective instruments to provide notifications and active coaching in order
to improve their users’ health and consequently, public health. Today, mobile devices incorporate a
diversity of sensors that can be used to provide real-time monitoring solutions and data collection to
support medical treatments.

Despite all the advantages of healthcare systems, several open issues continue to exist, such as
availability, reliability, mobility, performance, scalability, and interoperability, among others, and as the
evolution of the society will not stop, these will be ongoing open issues because the use case scenarios
will not remain static. It is extremely important to note that this kind of healthcare systems should
exist to support medical treatments and as an important complement of medical supervision.

This paper has presented relevant aspects of IoT for healthcare systems, such as open-source
platforms, operating systems, and open issues. It is hoped that a thematic overview has been provided,
to introduce not only health and IT professionals but also engineers and students to a paradigm that is
essential for the near future in healthcare.
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