8 research outputs found

    Anger-based BCI Using fNIRS Neurofeedback

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) holds increasing potential for Brain-Computer Interfaces (BCI) due to its portability, ease of application, robustness to movement artifacts, and relatively low cost. The use of fNIRS to support the development of affective BCI has received comparatively less attention, despite the role played by the prefrontal cortex in affective control, and the appropriateness of fNIRS to measure prefrontal activity. We present an active, fNIRS-based neurofeedback (NF) interface, which uses differential changes in oxygenation between the left and right sides of the dorsolateral prefrontal cortex to operationalize BCI input. The system is activated by users generating a state of anger, which has been previously linked to increased left prefrontal asymmetry. We have incorporated this NF interface into an experimental platform adapted from a virtual 3D narrative, in which users can express anger at a virtual character perceived as evil, causing the character to disappear progressively. Eleven subjects used the system and were able to successfully perform NF despite minimal training. Extensive analysis confirms that success was associated with the intent to express anger. This has positive implications for the design of affective BCI based on prefrontal asymmetry

    Multi-modal virtual scenario enhances neurofeedback learning

    Get PDF
    In the past decade neurofeedback (NF) has become the focus of a growing body of research. With real-time functional magnetic resonance imaging (fMRI) enabling online monitoring of emotion-related areas, such as the amygdala, many have begun testing its therapeutic benefits. However, most existing NF procedures still use monotonic uni-modal interfaces, thus possibly limiting user engagement and weakening learning efficiency. The current study tested a novel multi-sensory NF animated scenario (AS) aimed at enhancing user experience and improving learning. We examined whether relative to a simple uni-modal 2D interface, learning via an interface of complex multi-modal 3D scenario will result in improved NF learning. As a neural-probe, we used the recently developed fMRI-inspired EEG model of amygdala activity (“amygdala-EEG finger print”; amygdala-EFP), enabling low-cost and mobile limbic NF training. Amygdala-EFP was reflected in the AS by the unrest level of a hospital waiting room in which virtual characters become impatient, approach the admission desk and complain loudly. Successful downregulation was reflected as an ease in the room unrest level. We tested whether relative to a standard uni-modal 2D graphic thermometer (TM) interface, this AS could facilitate more effective learning and improve the training experience. Thirty participants underwent two separated NF sessions (1 week apart) practicing downregulation of the amygdala-EFP signal. In the first session, half trained via the AS and half via a TM interface. Learning efficiency was tested by three parameters: (a) effect size of the change in amygdala-EFP following training, (b) sustainability of the learned downregulation in the absence of online feedback, and (c) transferability to an unfamiliar context. Comparing amygdala-EFP signal amplitude between the last and the first NF trials revealed that the AS produced a higher effect size. In addition, NF via the AS showed better sustainability, as indicated by a no-feedback trial conducted in session 2 and better transferability to a new unfamiliar interface. Lastly, participants reported that the AS was more engaging and more motivating than the TM. Together, these results demonstrate the promising potential of integrating realistic virtual environments in NF to enhance learning and improve user’s experience

    Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience

    Get PDF
    Real-time functional magnetic resonance imaging (rt-fMRI) has revived the translational perspective of neurofeedback (NF)1. Particularly for stress management, targeting deeply located limbic areas involved in stress processing2 has paved new paths for brain-guided interventions. However, the high cost and immobility of fMRI constitute a challenging drawback for the scalability (accessibility and cost-effectiveness) of the approach, particularly for clinical purposes3. The current study aimed to overcome the limited applicability of rt-fMRI by using an electroencephalography (EEG) model endowed with improved spatial resolution, derived from simultaneous EEG–fMRI, to target amygdala activity (termed amygdala electrical fingerprint (Amyg-EFP))4,5,6. Healthy individuals (n = 180) undergoing a stressful military training programme were randomly assigned to six Amyg-EFP-NF sessions or one of two controls (control-EEG-NF or NoNF), taking place at the military training base. The results demonstrated specificity of NF learning to the targeted Amyg-EFP signal, which led to reduced alexithymia and faster emotional Stroop, indicating better stress coping following Amyg-EFP-NF relative to controls. Neural target engagement was demonstrated in a follow-up fMRI-NF, showing greater amygdala blood-oxygen-level-dependent downregulation and amygdala–ventromedial prefrontal cortex functional connectivity following Amyg-EFP-NF relative to NoNF. Together, these results demonstrate limbic specificity and efficacy of Amyg-EFP-NF during a stressful period, pointing to a scalable non-pharmacological yet neuroscience-based training to prevent stress-induced psychopathology

    The Neural Detection of Emotion In Naturalistic Settings.

    Get PDF
    PhDThe Field of Emotion research has experienced resurgence partially due to the interest in Affective Computing, which includes calls for natural emotion to be studied in natural type settings. A new generation of commercial mobile EEG headsets present the potential for new forms of experimental design that may move beyond laboratory settings. Across the Arts and Cultural sectors there are longstanding questions of how we may objectively evaluate creative output, and also subjective responses to such artefacts. This research adjoins these concerns to ask; How can low-cost, portable EEG devices impact on our understanding of cultural experiences in the wild? Using a commercial emotiv Epoch EEG headset, we investigated gauging Valence and Arousal levels across the two contrasting experimental settings of a live theatre performance, and a controlled laboratory setting. Our results found that only Valence could be reliably detected, and only with a good degree of confidence in laboratory settings. This determines that we may only be able to gather very general information regarding cultural experiences via the enlisted EEG technology and methods, and only in controlled conditionsEPSR
    corecore