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Abstract 
 
 
 The Field of Emotion research has experienced resurgence partially due to the 

interest in Affective Computing, which includes calls for natural emotion to be 

studied in natural type settings. A new generation of commercial mobile EEG 

headsets present the potential for new forms of experimental design that may move 

beyond laboratory settings. Across the Arts and Cultural sectors there are 

longstanding questions of how we may objectively evaluate creative output, and also 

subjective responses to such artefacts. 

 This research adjoins these concerns to ask; How can low-cost, portable EEG 

devices impact on our understanding of cultural experiences in the wild?  

 Using a commercial emotiv Epoch EEG headset, we investigated gauging 

Valence and Arousal levels across the two contrasting experimental settings of a live 

theatre performance, and a controlled laboratory setting. 

 Our results found that only Valence could be reliably detected, and only with a 

good degree of confidence in laboratory settings. This determines that we may only 

be able to gather very general information regarding cultural experiences via the 

enlisted EEG technology and methods, and only in controlled conditions.  
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CHAPTER  1  

 

  Introduction.  
 
 
 

 

Figure 1.1: An iconic promotional image of the film Brainstorm 1983, Directed by 
Douglas Trumbull1 
 

1.1 Introduction  

 

 Douglas Trumbullʼs 1983 classic science fiction work Brainstorm (see Fig 1) 

features the development of a non-invasive neural headset that records subjects 

perceptual sensory experiences onto magnetic tape. Replaying these encodings allows 

others to sensually re-experience these perceptions. Unexpectedly, the developers 

discover that the headset simultaneously encodes felt emotions and emotionally tinged 

thoughts as inherent processes within perception. 

 The title of this research project is, The Neural Detection of Emotion in 

Naturalistic Settings. This project critically investigates the central question; How can 

low-cost, portable EEG devices impact on our understanding of cultural experiences in 

the wild? Thus, in this research we use the emotiv Epoch EEG headset to gauge neural 

                                                
1 Retrieved from : http://www.engadget.com/2004/10/29/movie-gadget-friday-the-
brain-scanner-from-brainstorm/ 
 
2  Retrieved from http://www.audiostream.com/content/download-week-masaki-batoh 
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emotional responses to cultural productions via Arousal and Valence levels. Through 

conducting two main studies in contrasting experimental settings, we demonstrate the 

important differences between lab-based, and ‘in-the-wild’ settings. For the ‘in-the-

wild’ setting a live theatre performance was enlisted, whilst for the laboratory setting 

emotional video-clips were used. 

  At the outset of this project it was hoped that through our experiments we might 

be able to determine the viability of the enlisted portable EEG headset to present 

opportunities for objective insight into subjective cultural experiences. Two speculative 

idealistic applications were envisaged for a successful process, which in real world 

scenarios may serve the creative sector. Firstly, such a process may serve creators in the 

construction, presentation, and evaluation of works. Secondly, such a process may allow 

the emotions to become a new form of creative material in creative endeavours. 

 Through our investigations we may be able to determine a process to meet our 

intentions and potentially and lay a foundation for a fuller framework in future research. 

 

1.2 Neural Detection:  Brain Imaging Technology.  

 
 In recent decades a range of non-invasive Neuro-imaging technologies have 

emerged that allow unprecedented levels of observable access to the working human 

brain. Previously, such observational opportunities were reliant upon chance 

occurrences of injury, post-mortem or the use of proxy species. These new imaging 

technologies allow for the visualization of both brain structure and function.  

 The most prominent structural mapping technologies are Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI). Both take the form of a 

large-scale scanner, into which an individual is horizontally placed.  The CT scanner 

captures an array of Omni-directional x-rays that are combined together to create single 

2d and 3d images. The MRI scanner uses a magnetic field and pulsed radio waves to 

align and then dislodge the protons of hydrogen atoms. The measured movements and 

alignments of the atoms can be computed into highly detailed 3d images that 

differentiate between different tissues and the structures of the brain. Despite their 

effectiveness, both of these scanners are immobile due to their scale, weight, and 

operational speciality. Further their high costs ensure they are only accessible at specific 

locations. 
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 The MRI scanner is also used for functional observation in a technique called 

functional Magnetic Resonance Imaging (fMRI). Here, the fMRI measures changes in 

Blood-Oxygen-Level-Dependent (BOLD) contrasts, by tracking changes in blood flow 

to detect the transitions in magnetisation between oxygen-rich and oxygen-poor blood 

as its basic measure. Whilst this results in very noisy data, the underlying signal can be 

extracted statistically and computed to produce high quality imaging revealing which 

parts of the brain are active or being activated at any given time. Thus, this is s a 

valuable technique for researchers and scientists wanting to investigate task related 

neural responses. 

 The Positron Emission Tomography (PET) scanner, uses low dosages of a 

radioactive material known as a tracer, which is injected into an individuals bloodstream 

and then travels to collects in their tissue and organs.  A ring of detectors are used to 

detect pairs of gamma rays emitted by the tracer at any given time in the area being 

observed. As blood flows through the brain in response to a task or stimulus, the active 

areas produce higher quantities of gamma ray pairings, making them highly visible 

when the data is computed into images. The PET scanner also provides the measure of 

the degree of activity at any site. As with the previously mentioned scanners the PET 

scanner is a large scale, specialist, and immobile technology. 

Magnetoencephalography (MEG) is another non-invasive functional imaging 

technique. It measures the brains magnetic fields as generated by neuronal activity, and 

calculates their spatial distribution to produce high quality 3d images. It has excellent 

spatial and temporal resolution. However, its measuring of magnetic fields requires it to 

be placed within a special shielded room, to prevent its readings being obscured by 

other signals.  

 A more mobile and inexpensive technology for obtaining information of neural 

activity is the Electroencephalograph (EEG). EEG is a technique for detecting brain 

activity as measured by voltage fluctuations on the scalp.  However, the presence of the 

scalp between the point of brain activity and the EEG electrode creates a blurring of the 

signal, which results in a low spatial resolution.  Thus single neuron firing cannot be 

detected; rather it is the simultaneous firing of millions of neighbouring neurons in 

unison. Also as EEG can only detect activity in the cortical regions it is unable to 

provide any detailed topographic data. The EEG has the advantage of a high temporal 

resolution (in the order of milliseconds), which makes it ideal for detecting continuous 

neural responses and changes in activity. Two prominent EEG detection techniques 
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have developed to account for both continuous and discrete timeframes.  Event-related 

Potentials (ERP's) measure voltages in minute discrete time-locked responses to any 

given task. The responses can either be averaged over multiple trails, or taken as a 

single trail for analysis. Spectral Power (SP) is a continuous method that traditionally 

categorizes the SP of measured voltages into frequency bandwidths labelled Alpha, 

Beta, Delta, Theta and Gamma. Each is associated with a key brain state such as; deep 

sleep, light meditation, relaxed, waking consciousness, or high level processing. 

  EEG experiments have traditionally been located in the laboratory type settings. 

This due both to its sensitivity to artefacts incurred by movement and its sensor set-up, 

which are wired to signal amplifiers and other recording peripherals. A new generation 

of low cost, portable, off-the-shelf commercial headsets have began to emerge. These 

offer to potentially remove the constraints of the EEG laboratory set up, and some of the 

issues associated with it; uncomfortable sensors, lengthy set up times, and wiring. The 

new mobile headsets promise new neural detection contexts and forms of experimental 

design. The headsets are increasing being successfully used in formal academic studies 

for example; Liu and Sourina (2012), Liu, Sourina and Hafiyyandi (2013), Badcock et. 

al (2013), Debener et. al (2013). These are validating their usage and confidence as 

formal research tools. (A detailed exploration of EEG and its usage in emotion detection 

are provided in chapter 3) 
 

 

1.3 Arts Evaluation : Subject & Object. 
 

 In the Arts, questions of how we may make objective evaluations of cultural and 

creative output are longstanding. Stretching back to Immanuel Kant’s (1892, trans 

Bernard 1951) Critique of Judgment, questions arose about subjective-objective 

aesthetic relationships when considering Art forms. Firstly, Kant's proposal was to 

differentiate between the conditions of beauty and sublimity, and then to imply two 

further conditions within sublimity of  'The mathematical' and 'The dynamical' 

conditions. His thesis implied forms of objective measurability to his 'Mathematical’ 

definition, and pure subjectivity in regards to his notion of the 'Dynamic'. 

 One approach towards objective evaluation has been based on statistics such as 

attendance figures, linger times, questionnaires, and economic value. However these 

may in turn be linked to marketing strategies, accessibility, cultural capital rather than 
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the 'creative thing' in question. Whilst these may be justifiable within a particular remit 

they provide no heuristic or enhancive value to the creative. 

 Projects such as Neuroaesthetic's aim to make ground into unlocking the nature 

of Aesthetic brain responses, yet largely focus on the neural correlates of viewing 

(beauty), and as such serve as forms of neural topography and mapping (Zeki, 1999). 

 Formal frameworks for the objective evaluation of cultural products have also 

been proposed. Goldman (2004) proposed the notion of the ʻIdeal Criticʼ operating in 

ʻIdeal Conditionsʼ. Here the critic would have an extensive knowledge of the contextual 

envelopes of the work being assessed, and have ideal attributes of undivided attention 

where objectivity reigned, and further be sensitive to golden insights of the works 

affective nature and potential influence on a broad spectrum of viewers.  This view 

expanded beyond classical frameworks of valuing beauty and representation to cater for 

modern and contemporary art forms that often function to oppose, satirize, extend and 

distort their foundational conventions. Any resulting Ideal critic’s assessment would 

provide a benchmark against which all other evaluations could be graded. 

 Frameworks have also emerged in Psychology, which extend creative output to 

include the fields of science, math, business and organisation. Sternberg & Lubert's 

(1996) confluence model contains components of knowledge, thinking styles, 

personality, motivation and environment. Here, creativity is constructed of multiple 

attributes which operate in at least three different forms; processes, domains and styles 

(Sternberg, 2005).  

 Social psychologist Teresa M Amabile's (1996, 2012) presents a similar 

perspective in her Componential theory of creativity.  Her grounding premise for 

creativity is the production of ideas or outcomes towards a goal demonstrative of both 

novelty and appropriateness.  Her model is comprised of 3 components; Expertise 

(Domain relevant Skills), Creative skills (Creativity- relevant process), and Motivation 

(Intrinsic task motivation), all based within a social environment of production. Her 

interlinked modules function within a dual evaluation construct of consensual and 

conceptual definition. The consensual relates to; appropriate observers who are 

knowledgeable or familiar with a products domain of production, who all agree that it is 

creative. This may also be applied to its process of construction. The conceptual relates 

to; any output will be seen as creative if it should demonstrate qualities of appropriate 

novelty to the domain, a useful, correct, or valuable response to the task at hand, and 

that such output be deemed heuristic as opposed to algorithmic. 
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 This progression from prior social psychological formulas of assessing creativity 

through forms of associative thought responses to specific stimuli, is shared by Sandra 

Russ (1993), who points to the role of affect and play in the creative process. As an 

evaluation structure Russ considers output over process, highlighting qualities of 

uniqueness, originality, novelty, adaptability, and aesthetic pleasantness according to 

the standard of a particular discipline.  

  A commonality in all these frameworks is a focus on a distanced evaluation 

inclusive of context as a fulfilment of objective assessment. These do not necessarily 

focus on the experience it generates. In new forms and presentations of media and arts 

this notion of the distance between the audience and a creative object is increasingly 

diffused. In interactive works, the audience may become active participants leading to 

modular or generative encompassing experiences. Jaak Panksepp’s (1988, 2000, 2010) 

theories of emotion indicate the presence of priori behaviours before survivalist 

motivations where there is a sense of simple playfulness and exploration. As these new 

modes of creative practise extend within digital technologies further original 

considerations are being made as to how these experiences may be assessed in terms of 

their effectiveness.  

 Ernest Edmonds & Brigid Costello (2007) have developed a framework within 

which such interactive works can objectively be methodologically designed and 

assessed for affectivity. Their principle is to designate interactive experiences as playful 

behaviour, from which they extract the term ʻPleasureʼ as a prime component of play, 

citing its aspects of joy, delight and amusement. They have produced a 13-category 

survey method alongside a video-recall interview process that they believe allows the 

discernment of the works success. 

 Thus we may sense a movement towards contemporary objective evaluations 

that include considering the subjective experiences of a viewer. Such processes are 

invaluable in formulating new forms of evaluation, and to contribute towards 

accounting for a wider diaspora who engage with cultural output, over an 'expert' who 

may have their own motivations.  
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1.4 Neural Signals as a Creative Material. 
 

 

Figure 1.2: Examples of seminal Artworks that use EEG signals to drive their content. 
(Left), Lucier’s 'Music for a Solo Performance' 1965 2, and Mori's Wave UFO, 2003 3 
(right). 
 

 In Arts practise, Alvin Lucier's seminal 1965 work, 'Music for a solo 

performance' was the first artwork to directly use brain signals. Lucier attached two 

EEG electrodes to his scalp and used the shifting Alpha frequencies to trigger and 

resonate musical instruments to create a cacophonous orchestral sonic composition (see 

Fig 1.2). Works which followed in this tradition include Richard Teitel Bame 1968, 

Nam June Paik's, A Tribute to John Cage 1973, Christoph De Boecks Staalhammer 

2003, and Luciana Hail’s Psi Chic 2007. In all these works the dynamism of the Alpha 

frequency served as a form of narrative, relating to transitional states of relaxation and 

excitation. 

 This approach has also been adopted by audio-visual artists, for example David 

Rosenboon's, Ecology of the Skin 1971, and extended to incorporate varying brainwave 

states of Theta, Alpha, and Beta, in Mariko Mori’s seminal work 'Wave UFO' 2003. In 

this work that attempts to represent the Buddhist principles of inter-subject-connectivity 

associated with the deeper aspects of consciousness, three visitors enter a UFO shaped 

vessel (see Fig 1.2). The changes in their brains states alongside mental activity and 

facial artefacts detected via EEG, transform orb shaped forms projected onto the ships 

ceiling 

 

                                                
2  Retrieved from http://www.audiostream.com/content/download-week-masaki-batoh 
3 Retrieved from http://www.deitch.com/artists/sub.php?artistId=15 
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Figure 1.3. Examples of Contemporary Interactive Artworks which utilise EEG signals; 
(Top left), Smart studio's competitive mediation game, Brain Ball 4, Interaxon's 
Levitation chair controlled by Alpha spectral power levels 5 (Right), and Moura, 
Guimaraes, and Canibal’s, live performance work ‘Camara Neuronal’ 2000 6 (Bottom 
left)    

 
 

 Contemporary Interactive works sharing this intuitive theme include Smart 

Studio's Brain Ball, 1999. Here two audience members compete in a meditative gaming 

situation where the goal is to move a ball into the opponents half (see Fig 1.3). The 

users levels of meditation and calmness as computed from their EEG's ball controls the 

ball, and the more relaxed signals move the ball. Canadian interaction firm Interaxon 

adopt a similar idea in their Levitation Chair (see Fig 1.3). By increasing their alpha 

levels through meditation a user causes the chair to ascend. This is also echoed in 

XXXY’s infinity Simulator 2012, where a user can experience the sensation of flying. 

Here, neural Alpha signals are routed to a trapeze rig and the user can arise and descend 

in the environment based on their levels of alpha activity.  

                                                
4 Retrieved from http://diccan.com/Images/brainball_press.jpg 
5 Retrieved from http://scienceline.org/2012/01/mind-over-matter/ 
6 Retrieved from  http://jmartinho.net/camara-neuronal/ 
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 João Martinho Moura, Miguel Pedro Guimaraes, and Adolfo Lúxuria Canibal’s, 

live performance collaboration ‘Camara Neuronal’ 2000 is another example of how 

creatives are extending the traditions of mediums in their use of EEG signals (see Fig 

1.3) . 

 Artist Eva Lee and Affective Neuroscientist James Coan attempt to build a 

bridge between the Sciences and the Arts in their work 'Discrete Terrain' 2007. This is a 

data visualisation of EEG data harvested in controlled conditions. Here, the signal 

oscillations and their classifications are causal of the changes in the visual elements that 

are reminiscent of bar charts rendered as an abstract terrain.  

 Thus in these few highlights it may be visible that having access to the hidden 

spaces of the brain is an area of great interest for creatives. Whilst many of the above 

works, use simple levels of excitation and calmness to make works, having a protocol 

for accessing the emotions may potentially allow for rich detailed art forms to develop 

where the emotions and emotion data streams may be used as a form of creative 

material. 

 

1.5 Thesis Layout. 
 

 The content of this thesis is arranged as thus; Chapter 2 presents a foundational 

literature review of the field of Emotion Research. It highlights developments of the 

four main frameworks in the field; Discrete, Dimensional, Appraisal and Cognitive. 

Chapter 3 unveils the viability and support for the neural detection of emotion via EEG. 

Chapter 4 highlights issues surrounding the call for emotion studies to move beyond 

laboratory conditions in to real world settings. Included in this chapter are details of a 

number of pilot test's to find the most appropriate setting for this research project. 

Chapter 5 is a transparent rendition of the signal processing techniques used in this 

project. Chapter's 6 and 7 detail the experiments conducted in two settings; natural 

(Theatre) and controlled (Laboratory) conditions. Finally chapter 8 is the conclusive 

text, which surmises this projects findings. 
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 CHAPTER  2  
 

Emotion Theory   
 
 
 
2.1:  Introduction 

 In his publication 'Emotional Intelligence', Daniel Goleman presents an 

intriguing passage of text. This may be read as suggesting that the emotions are a 

central process in the evolution of the biological, the neurological and in turn conscious 

experience; "The most primitive root of our emotional life is the sense of smell...is it 

edible, should I repel it, can I mate with it" (Goleman, 1996). Thus emotion research 

may be seen as investigating the complexity of phenomena that is holistically entwined 

within a body and its historical and temporal interactions within the space of its 

surrounds.  

 As a first movement, this body of research looks to map the wide terrain of 

emotion research to the present day to gain an understanding of the field. Whilst the 

emotions register in Philosophy under the term 'The Passions', formal objective 

scientific inquiry into these phenomena began over 100 years ago. In the duration to our 

present day a vast wealth of ideas, propositions and findings have been published. It 

would be a near impossible task to attempt to give a detailed account of these here, thus 

in this chapter a basic overview highlighting some of the key markers to date are 

presented. For ease of reader access and temporal coherence, this is arranged as two 

strands: Physiological Inquiry (see sections 2.2-2.4), and Neurological Inquiry (see 

section 2.5). Naturally these evolved simultaneously and each informed the other, and it 

is hoped that within this presentation format these can connections can be simply made. 

 Throughout the 20th Century three major theoretical Psychology Frameworks 

have developed around the emotions that serve as the grounding for practical inquiry. 

The most often cited origin of modern emotion research stems from Philosopher and 

Psychologist William James’s 1884 publication 'What is an Emotion' (James, 1884). 

Against his peer’s popular considerations of the emotions being a cerebral process, 

James proposed that emotion was simply the perception of physiological changes in 

response to external stimuli. If one were to encounter a dangerous situation, then the 

bodies’ autonomic responses would present the necessary internal conditions required to 

respond to the stimulus. In the example of danger, a subject may flee and then perceive 
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his or her emotional state as fear. Whilst the Jamesian theory spiked much controversy, 

it laid a formal marker for further hypothesis testing of; what is emotion? , How and 

why it occurs, and importantly how it may be detected through scientific investigation. 

 Following James, two major theoretical investigative strands of thought quickly 

developed. These two contrasting Psychology models were, firstly the division of the 

emotions into discrete states such as; happy, sad, or angry, and secondly the envisaging 

of emotion as a spontaneous continuum. In the latter parts of the century, spearheaded 

by the introduction of digital technology and its possibilities, a third framework 

emerged citing a more holistic view of the human organism. This was an appraisal 

based componential model.  

 
 
2.2 Theoretical Frameworks: Discrete 
 
  
 
 Discrete theories of emotion can be seen to align with the deterministic ideas 

that were prevalent at the time of its formation. Within Determinism, all phenomena are 

considered to be reducible to fundamental discrete units with mechanistic qualities. In 

the same way, discrete theory views the emotions as a form of architecture built upon a 

fundamental core set of emotions. These are widely termed the 'Basic Emotions' or the 

'Peak States', and their varied compositions may lead to instances of further complex 

emotions arising. 

 The view is upheld that these basic emotions are determined by underlying 

physiological signatures and by detecting their variations one may be able to gain an 

objective insight into their nature and occurrence. A range of sensors have been 

proposed and adopted in this approach measuring a wide range of physiological signals, 

for example: pulse, skin conductance, facial expression, blood pressure and blood sugar 

levels, and pupil dilation. Of these, the most prevalent is emotional facial expression 

recognition, thus this text will centre on its development to highlight this theory. It is 

important to state that the detection of the emotions through the above-mentioned 

sensors only provides access to the second order of emotion, its expression, and not of 

its generating point or function. 

 Writing contemporaneously to William James, and as an extension of his 

'Evolution Project', Charles Darwin (1934) published accounts of his natural 

observations of species wide similarity between external gestural expression and its 
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association to internal states and feelings.   

 Darwin developed a protocol of testing these ideas within human populations. A 

series of photographs featuring a number of facial expressions were shown to 

individuals. The repeated successful recognition of these solidified his belief that facial 

expressions were biologically determined in correspondence to internal states. These 

fitted in with his wider theories of evolution and natural selection.  

 Almost half a century later Flloyd Allport echoed these ideas of biological 

hardwiring. In support of the Jamesian model, he suggested a foundational set of 

discrete emotional states that were triggered by current physiological configurations.  In 

the 1920’s Allport published his accounts of a mechanical one-to-one correspondence 

between facial muscles (expressions), and emotional states.  Allport proposed a bipolar 

Valence structure to the Autonomic Nervous System's (ANS) activities, which was only 

able to distinguish between pleasant and unpleasant conditions. Here the Sympathetic 

Nervous System (SNS) was triggered by negative states, and in turn, the 

Parasympathetic Nervous System (PNS) for positive states (Grendon & Barrett, 2009). 

He emphasised that the numerous facial expressions may be distilled to a small set of 

six fundamental emotional states which he saw as; pain-grief, surprise-fear, anger, 

disgust, pleasure and neutrality. Further he pursued the argument for the attachment of 

keyword labels to the emotions for simpler distinguishability. 

 These sentiments of automatically triggered physiological protocols by 

hardwired emotions in response to external stimulus were furthered in Psychologist 

Silvian S Tomkins 'Affect Theory'.  For Tomkins (1982), the emotions are the most 

basic motivational forces of human life. He believed they comprised of a binary nature, 

which he arranged in a polarity pair list: of positive (interest or excitement, enjoyment 

or joy, startle or surprised) and negative (distress or anguish, fear or terror, shame and 

humiliation, contempt, anger or rage). 

 In a reversal of the Jamesian proposal, Carol Izard (1991) veered towards a 

cerebral centre of emotion generation, where each emotion was housed within a 

particular neural network, producing the relevant corresponding response. It was during 

Izard's first-hand subjective experience of parenting where he evidenced a base set of 

emotions in a growing newborn, before full cognitive competence. From his derived 

insights Izard sought to develop an framework of 10 discrete basic emotion categories 

comprising of; Interest, Joy, surprise, distress, contempt, fear, shame, disgust and guilt. 
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Figure 2.1:  Illustration of the six discrete emotions as proposed by Paul Ekman & 
Wallace Friesen. Clockwise from top left; anger, fear, disgust, sadness, happiness, and 
surprise. (Ekman et.al, 1975). 

 

 Working alongside Tomkins, Paul Ekman and Wallace Friesen continued to 

develop their foundational framework for facial emotional expression recognition. This 

evolved to become a comprehensive and prominent form of emotional expression 

detection. Through highlighting the underlying arrangements and possible 

configurations of the 42 facial muscles, they were able to develop a practical taxonomy 

of facial emotional expression. Echoing previous sentiments in similar inquiries, Ekman 

strengthened the proposition that real felt emotions primarily reveal themselves through 

facial expression, and further that body posture revealed how a person may be coping 

with that emotion (Ekman & Friesen, 1975).  

 Ekman's studies across technological and remote cultures upheld his theories 

leading to the general acceptance of their universality. In a method similar to Darwin's, 

Ekman presented photographs of his six prototypical emotions; happiness, sadness, 

surprise, fear, disgust and anger, to gauge participants recognition of these states (see 

Fig 2.1). This successful method received peer wide acceptance, and was developed into 
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a system entitled the ‘Facial Action Coding System (FACS). This is the most widely 

recognised and utilised body of research in the field of emotion recognition. 

 However alongside endorsements, there were a number of criticisms of his 

theory and method. His prototypical emotions were not considered functional in the 

everyday, and were seen as exceptional states rather than the norm. Further that they 

failed to account for the rich variety of emotional experiences. Finally, the ecological 

validity, experimental design, and results were not safe from question and criticism. 

(Russell, 1994, Russell 2009) 

 Ekman's response to these claims of wider emotional experiences, led to the 

extension of his theoretical envelope through introducing the notion of 'Emotional 

Families'. Here emotional blends operated as transitional compensations for emotional 

diversification.  

 

 Figure 2.2:  Robert Plutchik's emotion wheel depicts how complex and subtle emotions 
may emerge from 8 basic emotions 7. 

 

 There are similarities in this to Psycho-Evolutionist Robert Plutchik's model. 

Plutchik  (2001) postulated how a primary set of eight bi-polar discrete emotions; joy-

sadness, anger-fear, surprise-anticipation and trust-disgust, functioned in a form of 

continuous space to compensate for continuous state transitions and secondary 
                                                
7 Retrieved from http://www.6seconds.org/wp-content/uploads/2011/06/Plutchik.gif 
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emotional blends. Reminiscent of Newtonʼs and Goetheʼs colour wheels, Plutchik 

created an metaphoric visual representation through a unfolded two dimension colour 

wheel, which could be reassembled into a three dimensional cone (see Fig 2.2). He used 

colour as a metaphor for the state arrangements, utilising tone to represent intensity 

levels, cross sectional complementary colour for emotion similarity, and contrasting 

colour for bipolar states. Here different locations within the space presented the full 

emotional palette. For example, a location that is a compositional blend of disgust and 

anger, equates to loathing, rage, hatred, and then hostility.  

 This archetypal model of a small set of discrete emotions has been applied in 

many experiments with a range of sensors, with each experiment having to develop 

their own methodological protocols. 

 

2.3 Theoretical Frameworks: Dimensional  
 
 
 The second Psychology Framework to emerge in emotion research opposes 

notions of a basic set of hardwired emotions. Rather it considered the emotions to 

operate within a spontaneous and continuous space. Here, Peak States and a wider set of 

emotions may be metaphorically incorporated as Islands relating to one another in a 

systematic fashion within an all-encompassing space.  Within this theory the emotions 

are constructed through underlying dimensional features such as Valence, Arousal, and 

Dominance. Each dimensional vector can be considered to have iterative steps from a 

negative index to a positive index. The composite of such dimensions are believed to 

contribute to a felt emotion, its expression, and its detection. This model takes into 

consideration the more subtle ranges, spontaneous occurrences, and the temporal 

elements of emotion in natural experiences. 

 In the 1970's Psychologists Albert Mehabrian and James Russell (1974), 

proposed the PAD framework for the continuous measurement of emotional states. The 

acronym PAD signifies its tertiary scalar dimensions of; Pleasure – Arousal – 

Dominance. Each dimension at its outer reaches represents either a positive or negative 

value. The Pleasure dimension measures Pleasing to Unpleasant, Arousal measures 

intensity of Arousal through to Non Arousal, and the Dominance vector ranges from 

feelings of Powerfulness to Submissiveness in regards to the stimuli, which is inclusive 

of environment. It was felt that these factors were the components that mark up the 

emotional experience.  
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Figure 2.3   Russell's 2-dimensional circumplex models; constructed from Valence and 
Arousal vectors 8. 
 

 In the following years, Russell (1976) drawing on the work of Scholsberg (1954) 

further collapsed this model to an easily presentable two-dimensional circumplex 

model. Here, Russell plotted only Valence and Arousal to allow their combination to 

correlate and flexibly pass through a range of Peak States. Around the circumference of 

a circle James plotted the emotional conditions correlative of the variables of these two 

components (see Fig 2.3). Russellʼs circumplex model is widely used in emotion 

research, and both of these dimensional models demonstrate a space where additional 

confirmed vectors may be added, and further proposed states mapped to a location. 

 The strong opposition and criticism of its descriptive lack of any subjective 

appraisal in emotion was somewhat rebuked through the expansion of this model. Lisa 

Fieldman Barrett extends the dimensional model to account for wider neural and 

physiological processes in what she terms the 'conceptual act model' (Barrett, 2009, 

Lindquist et. al. 2012). This Psychological Constructionist approach draws upon the 

assumption that the emotions (or situated conceptualisations) are psychological events 

that emerge from more principle psychological operations, which are not unique or 

specific to emotion, but share a commonality with processes not involved with emotion. 

 The model comprises of three major processes. (i) ' Core Affect' is considered as 

the mental representation of bodily sensations associated with the vectors of Valence 

and Arousal that operate with motivational functions for the organism such as, approach 

                                                
8 Retrieved from http://www.wwu.edu/culture/images/altarriba.jpg 
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or avoid.  (ii) ‘Conceptualisation’, is the comparative processing between previous 

experiences, stored emotional memories and incoming perceptions, from which the 

meaning of a immediate sensation or event may be constructed. This process of making 

meaning out of core affect is assisted by (iii) 'Executive Attention' which functions as a 

form of filter. This control device for the whole process determines the utilization and 

suppression of a plethora of representations that may be made available in the moment 

of making sense of perceptions. 

 Similarly For Russell, Psychological Construction is the progression of the 

dimensional model to counter-act criticisms of the exclusions of subjective decision-

making.  Core affect is the response of the two dimensions of Valence and Arousal as a 

process intertwined within perception as a form of decision-making that is not 

necessarily conscious, it is an underlying neurophysiological state influenced by these 

two vectors. Core Affect operates under the umbrella processes of Psychological 

Construction whose collective processes may lead to emotion regulation, subjective 

emotional experiences, the expression of emotion, and also the association between 

these aspects. (Russell, 2009) 
 
 
2.4 Theoretical Frameworks: Appraisal 
 
 
 A third theoretical Psychology perspective was to emerge in the latter part of the 

20th century. It highlighted the centrality of cognitive processing in a networked 

elicitation of emotion. This approach was structured around the idea of cerebral 

appraisal.  This novel approach is both informed and driven towards the mapping of 

human experience in the construction of artificial machine intelligence through a 

computational approach. In this way further understanding of the emotions may be 

gained by building synthetic emotional representations from the ground up, iteratively 

driven forwards by sensing aspects that are lacking in current synthetic system. 

 Magda Arnold is cited as one the initial proponents of this theory (Plutchik, 

2003). She was amongst the first to formally consider emotional responses as arising 

from a series of cognitive evaluations or appraisals to stimuli.  Whilst Arnold’s 

publications were widely derided for their incompletion and she experienced strong 

undermining due to her gender, this new approach served as a foundational platform for 

subsequent generations to build upon. In the 1980s due to the sophistication, 
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miniaturisation and proliferation of computing technology appraisal theory began to 

become prominent. 

 Psychologist Richard Lazarus (1991) saw the emotions residing in discrete 

categories, which were able to contribute to further states. He cited emotional states as 

arising from a structured appraisal process of ‘cognitive-motivational-adaptive-and 

physiological activity’, in an individual in relation to the environment. Here, the 

appraisals were subconscious or autonomic to the subject’s survival; i.e. either harmful 

or beneficial. In a hierarchical system he saw primary appraisals concerned with the 

relevance of interaction to the achievement of personal goals i.e. ‘thwart – achieve’, and 

secondary appraisal in the accountability of ‘blame or credit’, which heavily affected 

ones coping potential and of future expectation. Further Lazarus highlighted coping 

mechanisms within his theorem. This consisted of direct action and subsequent 

emotional coping. In summary, Lazarus proposed the emotions as a form of responsive 

script-narrative.  

 Nico H Frijda aligned to both Arnold's and Lazarus's propositions. His term 

'action readiness’ condensed the emotions to goal oriented motivations where achieving 

a goal brought a positive emotion, whilst negative emotion arose in instances of a threat 

to the organism or its goals.  His text the 'Laws of Emotion' (Frijda, 1988) emphasises 

this system through hard-wired biological deterministic physiology, which is triggered 

through personal appraisal. This appraisal is dependent on the personal history of the 

organism and as such accounts for why different basic emotions and different secondary 

mixes of emotion may be elicited in different subjects to the same phenomena, as it is 

always in relation to personal relevance and meaning.   Similar to the Jamesian 

consideration they prepare us for action, but through appraisal. His term 'action 

tendency' succinctly states this; the emotions are the tendency for a subject to engage in 

behaviours central to their own concerns and needs. 

Klaus Scherer (1984(a), 1984(b), 2009) further advanced this field through his 

appraisal based componential framework for both recognising and expressing emotions. 

Its consolidating multi-modal approach attempted to account for issues of multiple 

subjects’ variant emotional responses to the same stimulus. Scherer’s appraisals consist 

of several components which are cited as; (i) cognitive appraisal or evaluation of stimuli 

and situations, (ii) physiological activation or arousal (iii) motor expression, (iv) 

motivational intentions, (v) subjective state feeling.  
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Figure 2.4:  The Ortony, Collins, & Clore’s appraisal model caters for Valence model 
focuses on tertiary branches of engagement with; agents, events, and objects 9. 
  

In a similar approach Ortony, Collins, and Clore (1988) present a framework 

where recognition and expression could be united in a reversible system  (see Fig 2.4). 

There basic assumption moved from focusing on emotion per se, to the perceived 

engagement with the world. There Valence based model focused on decisions to tertiary 

branches of engagement with; agents, events, and objects. 

 

 “We define emotional intelligence as the subset of social intelligence that involves 

the ability to monitor one’s own and others’ feelings and emotions, to discriminate 

among them and to use this information to guide one’s thinking and actions.”  

Salovey & Mayer Pp 189. 

 

Figure 2.5:  The Salovey & Mayer definition of Emotional Intelligence. 
 

 As mentioned above many aspects of the appraisal model may be seen as 

particular to the fields of synthetic and constructible intelligences. The regard of 

incorporating emotion as a central element of machine intelligence followed Salovey 
                                                
9  Retrieved from http://www.ruebenstrunk.de/emeocomp/36fa2f7a.jpg 
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and Mayer’s (1990) paper ‘Emotional Intelligence’. They updated themes of social 

intelligence as a requisite for intelligent computing (see Fig 2.6). In there thesis they 

outlined four branches of this; perceiving, reasoning, understanding, and managing. 

 Daniel Golemans (1996) expansion and popularisation of this borrowed term 

‘Emotional Intelligence ‘ re-contextualised the importance of the emotions as a form of 

intelligence within social circles. The popularity of his writings led to these ideas being 

incorporated as an essential skill-sets for echelons of the corporate world. Both Salovey 

& Mayer, and Goleman demonstrate the need to consider emotion as an inherent part of 

any intelligent communication. 

 One of the seminal texts in the consideration of emotion as central to intelligence 

and communication is Rosalind Picard’s thesis 'Affective Computing' (1997). This 

generated a new term for this field of study, and echo’s the sentiment of Salovey’s 

proposal. Picard’s vision pre-empts computing that relates to, arises from, or 

deliberately influences emotions, presenting a form of computing with abilities to 

recognise and express emotions. This is with the aim of more rewarding and engaging 

human-computer-interaction experiences. The scope of Picard's research is far reaching. 

In what may be called her manifesto, she considers all aspects of Affective Computing 

from its inception through to predictive forms of technology and scenarios. Researchers 

and research groups have taken many of these batons on board. One such example is the 

Semaine Project (McKeown et. al, 2012) where artificial emotion coloured characters 

engage in a form of simulated dialogue which is responsive and provocative to the user. 

The system uses facial expression recognition and voice intonation algorithms in a form 

of simulated exchange. 

 

2.5 Theoretical Frameworks: Cognitive  

                                
 The James-Lange (James, 1884) physiological model of emotional is the most 

often cited beginning in all areas of modern emotion research. Here it was envisaged 

that emotion functioned as the cognitive awareness of sensations accompanying 

physiological changes in response to perceived stimuli.  

 Flaws in this outlook were first highlighted by Cannon & Bard (1927,1928), 

who questioned anomalies of the commonality of particular physiological responses 

between variant emotional states. Through a series of feline ablation experiments, they 
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demonstrated that emotional expression could still be perceived despite regional cortical 

damage and removal, as long the hypothalamus remained intact. This summary 

contradicted James’s view of the dependency of the operating perceptive brain (cortex) 

to perceive physiological changes.  They put forward their main proposal, whereby 

bodily changes occurred simultaneously to cognitive processes in emotional experience 

and expression. They cited the thalamic region as playing a major role in the experience 

and expression of emotion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
Figure 2.6: Illustration of James Papez Neuro-anatonomical Circuit. 

 
  James Papez (1937) extended the focus on the thalamic region through his 

Neuro-anatomical circuit (see Fig 2.6). Here sensory perceptions were routed via the 

thalamus along two main streams. One travelled upstream (somatic) to the cortex for 

rationalising feelings and memory encoding, whilst the other was diverted downstream 

(visceral) producing physiological responses.  

 This circuitry included the idea that 'Thought' could drive the circuitry in a top 

down movement, to invoke and regulate physiological feelings and emotions.  Papez 
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cited the Hypothalamus, Cingulate Cortex and Anterior Thalamus, as emotional 

circuitry through his experiments of injecting the rabies virus into feline brains and 

observing their progressive destruction. 
            

                  
 

Figure 2.7: An illustration of Paul Maclean Triune brain. His model is structured from 
three interconnected and inter-communicative evolutionary steps 10. 
 

 

 In the middle of the 20th century Neuroscientist Paul Maclean attempted to 

clarify why sub-cortical regions play such a major role in species-similarity emotional 

behaviours through his Triune brain model (Maclean, 1990).  For Maclean the human 

brain is constructed from three interconnected and intercommunicative evolutionary 

steps, each having its own functional processes and memory capabilities (see Fig 2.7).  

 According to his model, the earliest section of the brain to evolve, which 

includes the brainstem and the cerebellum, is termed the Reptilian Brain. It is seen to 

contribute compulsive behaviours, ritualistic responses and controls autonomic 

functioning of the inner organs.  On top of this, is the intermediate or Palelomammalain 

Brain, which Maclean entitled the Limbic System. This included the hippocampus, 

which he saw as the centre for emotion. The limbic system is shared species wide in 

mammals and is concerned with instinctual motivational drives such as emotion, 

reproduction, feeding, and self-preservation. 

 The final most recent evolutionary step of the brain is the development of the 

neo-cortex or neo-mammalian brain. It is found in most animals but developed to a high 

degree of sophistication in primates and especially humans. It is made up of two 
                                                
10  Retrieved from http://mybrainnotes.com/triune-brain-theory.jpg 
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hemispheres, which are wired for varied processing. Essentially, it allows for higher 

modes of mental activity, such as logic, abstraction, reflection, rationalisation and 

complex communications such as language. Maclean proposed it was the comparative 

signals of physiological changes alongside the context of the perceived world, which 

generated emotional experience. 

 In their 1960's theoretical psychology model, Stanley Schacther and Jerome 

Singer (1962) aligned to Maclean’s view in their presentation of a dual-factor approach 

with emphasis on cognitions role. They outlined the importance of context to emotion, 

whereby a person experiencing unattended physiological cues would search for the 

causality of their generation. This may align to previous cognitions, interpretations of 

experience, or even the surrounding environment. Their behavioural experiments 

comprised of groups of participants being administered with either a stimulant or a 

placebo. Whilst seated in a waiting room, a ‘stooge’ would perform a series of 

provocative actions as they filled in a questionnaire. This asked for increasingly absurd, 

personal, and emotionally provocative information. Schacther & Singer analysed these 

questionnaires assessing the impact of the ‘stooge’ on their levels of emotion and the 

outcome of subsequent moods in their responses. Thus, Schacther and Singer suggested 

visceral responses were a primary factor, whilst the cerebral contextualisation provided 

the secondary factor. 

               
 
Figure 2.8: Joseph Ledoux’s experiments demonstrated the Amygdala’s involvement in 
the emotion of fear, showing how different regions of the brain may contribute to 
different emotions 11. 

 

 Whilst many of the regions outlined in both Papez’s circuit and Maclean’s 

Limbic system have been confirmed, they provide only a partial and broad description 

                                                
11 Retrieved from http://alt-sites.tripod.com/pictures/level05amygdala.jpg 
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of the brains role in emotion. A new detailed understanding of how the different regions 

of the brain correlate to different emotions first emerged in the work of Joseph Ledoux 

(1996). Ledoux combined Pavlovian fear conditioning experiments with rat ablations, to 

isolate the amygdala as the region concerned with the processing of fear and fear 

responses (see Fig 2.8). 

 Reminiscent of Papez’s streams Ledoux discovered that sensory information was 

directed along two roads, which he called the high and low roads. The low road sent 

crude archetypal information to the amygdala, which instigated a series of relevant 

physiological responses to circumstances of survivalist threat. Approximately 12 

milliseconds later, detailed information would arrive at the cortex for a form appraisal 

with the potential to either dampen the response to the perceived threat, or to respond 

accordingly.  The hardwiring of this is seen as a biological survivalist mechanism, as 

sustained procrastination solely via the cortex may render the organism obsolete. What 

this further revealed was that memory is distributed, and functions differently across the 

brain. 

 'Affective Neuroscientist’ Jaak Panksepp (1988, 2000, 2010) explores the 

foundational neural nature of emotion across species with an interest in exploring how 

the emotions are generated. As an advocate of the evolutionary brain theory, he also 

cites emotion as residing within its most ancient subcortical regions. His laboratory 

experiments focus on motivational processes, social emotions, and behaviours in non-

human subjects, which he believes apply across species. Thus, Panksepp cites a very 

different set of base emotions/affective states that all have motivational forms of 

biological programming from which further emotions evolve in relation to the 

complexity of their found environment. He cites seven primary fundamental social 

emotion-affective states, which are; seeking, rage, fear, panic/loss, play, mating, care. 

He views these as essential communicators within communal species. Of particular 

interest are ‘seeking’ and ‘play’, which challenge the notion of solely reward/goal based 

motivation theories and approaches to emotion. Panksepp’s work stands out in emotion 

research as it attempts to go beyond the neuroanatomical mapping of emotion, 

attempting to unveil its underlying function.  

 Modern neuro-imaging techniques such as Magnetic Resonance Imaging (MRI), 

functional Magnetic Resonance Imaging (fMRI), Computed Tomography (CT) , 

Positron Emission Tomography (PET) , Electroencephalography (EEG) and 

Magnetoenchephalography (MEG) have allowed for an unprecedented level of access to 



THE NEURAL DETECTION OF EMOTION 
 

 

25 

brain function and neuroanatomical observation. They have assisted in the progression 

of the cognitive framework whilst also side stepping ethical issues of using laboratory 

mammals and primates.  

 In 2000 Antonio Damasio et. al (2000) used a PET scanner to observe the neural 

networks triggered by different emotions. The enlisted participants were asked to recall 

experiences relating to sadness, happiness, anger or fear, following being injected with a 

form of radioactive dye that attaches itself to glucose in the brain. As brain activity 

commences it draws in the glucose with the attached dye for fuel, which can be traced 

through the PET scanner.  Damasio and colleagues were able to visually reveal that 

different regions of the human brain are involved for variant emotional and affective 

states (2000). 

 Damasio’s (1990) early experiments with cortex damaged patients led to his 

somatic marker hypothesis. This is a proposal for how emotion biases behaviour and 

rational decision-making. Damasio hypothesised that physiological reactions are tagged 

with emotional significance and encoded within memory forms, which then become 

available as influential Valence inclusions in future perceptions and rational appraisals. 

  He engaged groups of participants of whom some had damage to their cortex's 

and others not, in the ‘Iowa’ gambling task where-by low risk turn taking presents 

higher rewards than high risk turns over the same number of turns. Damasio was able to 

demonstrate how cortex damaged participants were unable to learn form previous turns 

and feelings. In contrast participants without damage were able to follow their gut 

instincts and eventually understand that selecting the low risk option would prove more 

fruitful. This highlights both emotion recorded within memory envelopes and how gut 

feelings or emotion play semblance in our decisions which are there not purely rational, 

but influenced by our own Valances. Damasio asserts in the same manner that Ledoux 

does, that pure rationalisation as an appraisal function would impinge on arriving at a 

conclusion. 
 Richard Davidson is one of many pioneers in the neuroscience of emotion 

research. Since the 1980’s Davidson's research focus has been directed towards 

uncovering the relationship between emotion and cerebral activity. Having conducted 

some of the earliest experiments into the detection of emotion through EEG (see chapter 

3, and for a fuller exploration of EEG usage in emotion detection.) Davidson’s focus 

has expanded to consider some of the wider facets of the emotional experience, 

inclusive of accounting for subjective variant responses to specific stimuli. This 
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considers the structure from which emotion and mood arise.  Whilst this has been called 

temperament and personality trait, Davidson’s has named his model ‘Emotional Style’ 

(Davidson, 2012).  

 The model is constructed from six variable axis representing; Resilience, 

Outlook, Social Intuition, Self-awareness, Context, and Attention. Each dimension 

accounts for a construct of an emotional foundation from which a propensity of 

emotional elicitation can be predicted. Further Davidson has demonstrated that this 

foundation is permeable. In the same manner that the brain can rewire itself through 

what is known as neuroplasticity an individuals emotional language can be altered 

through directed learning. This shows that emotion may not hardwired by nature in our 

genetics, but rather as Davidson appeals that nurture is nature! 
 

2.6 Conclusion. 
 
 
 In the above passages of text the progression of the field of emotion research 

from its humble origins have been laconically laid out.  Through formal scientific 

inquiry a number of theoretical windows and access points to the emotions have 

emerged. Whilst these frameworks have attempted to map out a overarching consensual 

theory of emotion; unveiling its underlying facets, origins, locations, processes and 

functions, these attempts have been combated by the complexity of the subject matter. 

This complexity of interlinked near-simultaneous multiple processes, dispersed 

throughout a holistic organism in both linear and non-linear feedback fashions, of which 

some may be regulatory, serve only to make these investigations by reduction 

seemingly more problematic. 

 This is confounded by the inclusion of hidden and private neural spaces. The 

emotions role and involvement in memory, perception, decision making, rationalisation 

and motivation further assist the difficulty in the precise pinpointing of this central 

phenomena.  Pankseep's suggestion of further forms of emotion yet to be considered can 

only add to this. Thus the pioneers making advances in the field however partial, and 

those building upon their foundations should be heralded for their achievements and for 

engaging with this difficult register of knowledge. 

 The aims of this particular project are to explore a process whereby we may be 

able to gain an insight into the subjective experiences of the viewing of cultural art 
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forms via the emotions, and in turn how the emotions may be used as an artists material 

for makers. When we take into consideration an individual viewing an artwork, we may 

state that whilst an initial immediate response may be apparent, this is a part of a 

temporal activity that may be framed within a solitary experience. Thus this may be of 

an unrevealed or less shared nature where emphasis is on internal feelings and cerebral 

experience and not necessarily reflective of outwardly expression in the same way that 

prototypical or social emotions may occur. In consideration of this, the most beneficial 

model to meet our aims is the dimensional model. Whilst this may only present limited 

information, through it we may be able to detect whether a viewer may be experiencing 

positive or negative response sensations, and also the entwined level of Arousal; relaxed 

or excited.  From this we may be able to infer transitional emotional states rather than a 

particular prototypical emotion. However it may also be of use to incorporate the 

discrete model within our annotation methods, and this can be tested in experiments to 

compare the models suitability. 

 Neurologically, we have already defined that EEG is the most desired and viable 

route, both in terms of access, finance and mobility.  Richard Davidson's oeuvre shows 

a potential framework to match the context of this projects aims, and thus in the next 

chapter EEG and its relationship to the emotions will be explored. 

 We began this chapter with a passage from Daniel Goleman citing the emotions 

centrality to our experiences of being in the world. At the outset this may have seemed 

slightly outlandish, yet having mapped the terrain of emotion research his passage 

morphs into a reflection and condensation of all that has been discovered and articulated 

in the past 100 years. 

 This literature review was an essential aspect in this research as it assisted in the 

grounding of the project giving directions to its trajectory. It contextualised its outer 

reaches, its limitations, and also its potentials modes of inquiry. 
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CHAPTER  3  
 

Electroencephalography & Emotion Detection  
 
 
 
3.1 Introduction. 

 
 Prior to the emergence of modern neural imaging technologies, insights into 

neural circuitry and function were obtained solely through Psychology and behavioural 

studies. These heavily relied upon random instances of brain injury and adverse 

neurological dispositions for opportunities of insight. 

 The most often cited example is of railroad foreman Phineas Gage. In a 

accidental on-construction-site explosion, his left frontal cortex was impaled by an iron 

rod. Although Gage survived the accident, his behavioural and emotional disposition 

morphed towards increasingly negative and aggressive tendencies. Posthumous studies 

on Gage showed mass damage and obliteration of this region leading to the general 

theory that linked the frontal cortex to emotional responses and engagement. 

Subsequent studies continue to consistently support this. 

 The first scientific apparatus to provide methodological access to the brains 

inner workings was the Electroencephalogram. Its origins can be intertwined with the 

historical timeline of electromagnetism that stretches back to 1600 AD. In the 18th 

Century whilst experimenting with deceased amphibians, Luigi Galvani noted their 

consistent muscular contractions when exposed to an electrical current. This accidental 

discovery of the electrical basis of nerve impulses, led to supposition of the 'Electrical 

Brain'.  

 Many electrical experiments with mammalian cortex’s continued throughout the 

late 19th Century, namely by Vasili Danilevsky in 1876, Fleischel von Marxow in1883, 

Adolph Beck in 1890 and in the 20th Century; Vladimir Pravdich-Neminsky 1913 

(Swartz and Goldensohn, 1998) and Richard Canton in1924, (Ormerod, 2006) 
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3.2 Invention:  Hans Berger. 
 
 

   
 
 
Figure 3.1:  An image of Hans Berger’s Laboratory (1926-1931) at the University of 
Jena where Electroencephalography was conceived 12. Berger used the double coil 
method normally used in electrocardiography, as the basis for EEG. 
 
 
 Psychiatrist Hans Berger progressed his own 'Electrical Brain' experimentation 

with mammalians to begin incorporating human subjects. Berger sought to develop a 

practical neural equivalent of electrocardiography. In 1929 he succeeded to publish a 

paper that introduced the official term for this process, 'The Electroencephalograph' 

(EEG), which he defined as a technique for detecting and recording the rhythmical 

electrical wave oscillations generated by the brain (translated by Gloor, 1969) 

 Berger’s work was driven by a personal and philosophical interest in unlocking 

“the secret nature of mans nature as a psychophysical being”, a belief that strongly 

contested the deterministic view of human duality.  In over 101 recording sessions with 

38 different patients suffering from either trephine openings or skull deformations, 

Berger was iteratively able to formulate a non-invasive method whereby the brains 

electrical activity was rendered visible.  Berger successfully used lead foil electrodes 

sandwiched between flannels that were held firmly in place on the scalp with rubber 

bandages to obtain the signal. This successful technique formed the basis of modern 

EEG and some of his first documented recordings were conducted on his 16-year-old 

son Klaus.  
                                                
12 Retrieved from http://www.mpiwgberlin.mpg.de/resrep00_01/images/Jahresbericht_ 
img.large/135.jpg 
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 Through his experimentation, Berger consistently noted two spontaneous and 

regular continuous rhythmical currents oscillating in the frequencies regions of 10-11 

Hz and 20-30 Hz, which he labelled 'Alpha' and 'Beta'. Through rigorous elimination, he 

was able to discern that these signal were not arising from physiological artefacts. 

Further experiments led to the finding that these frequencies became animated in 

response to neural activity and that such activity led to a decrease in alpha. These 

demonstrated how mental engagement and could be used in an inverse relationship as a 

measure for cerebral activation.  

 At the time, Berger’s work was largely overlooked, dismissed, halted, and his 

laboratory was disassembled due to both his political beliefs and his peer’s perceptions 

of his training as Psychiatrist rather than a Neurologist. Yet Berger was able to form the 

basis of major non-invasive EEG clinical techniques for detecting epilepsy and 

neurological disorders.  

 

3.3 The Language of the EEG: What’s was Berger detecting? 
 
     

                       
Figure 3.2: An illustration of a single brain neuron. 

 
 
  The human brain is constructed from billions of minute cells known as neurons. 

Each neuron consists of a nucleus surrounded by a cell body from which extend several 

branches called dendrites, and a singular long branch called the axon. Each dendrite 

contains embedded receptors with which it can receive signals from other cells via their 

axon, which has transmitters at it terminus (see Fig 3.2).  

             The signals (nerve impulses) are delivered in the form of chemical particles 
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known as neurotransmitters. These travel in a wave formation called an Ion which 

carriers an electrical charge. The exchange of chemical particles occurs across a 

minuscule gap known as the synaptic cleft, and with sufficient charge is passed along to 

further connected neurons. Although a single charge is too small to be detected, when 

millions of neighbouring neurons fire together they generate a waveform that can be 

detected by an EEG electrode. Whilst the amplitude of the signal is of a high value on 

the cortex, on the scalp it is less pronounced (in millivolts), hence forms of signal 

amplification are a necessity.  

               This issue of amplitude taps into both the major advantages and disadvantages 

of EEG. Its main advantages are in its non-invasive nature and its high temporal 

resolution that allows brain activity to be accessed in timeframes upwards of 20,000 Hz 

(Carter, 2009). Its major disadvantage is its low spatial resolution. The presence of the 

scalp between electrode and cortex creates a blurring of the signal. This low signal to 

noise ratio eliminates the potential of any detailed anatomical study within current EEG 

technological systems. 

 

3.4 Contemporary Standardized Measures: 10-20 International 
System. 
 
 

   ` 
Figure 3.3: The 10-20 International system for   Figure 3.4: Further electrodes  
EEG electrode placement 13.       can be added at 50% ratios 14. 
              
        
 The International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology has endorsed a universally recognized system for electrode placement, 

                                                
13  Retrieved from http://neurologiclabs.com/wp-content/uploads/2013/12/EEG.gif 
14 Retrieved from http://neurologiclabs.com/wp-content/uploads/2013/12/EEG2.gif 
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entitled the 10-20 International system, which fragments the scalp into particular 

sections. 

 The distance between the Nasion and Inion points is divided into percentage 

blocks of 10 and 20 percent. Measuring 10 % from both the Nasion and Inion points is 

where the electrode placements begin and the subsequent electrodes are placed at 20% 

distances (see Fig 3.3). Whilst initially the 10-20 system compensated for the 

arrangement of 21 electrodes, additional electrodes are configurable at 10% intervals 

between the original electrode positions (see Fig 3.4). Further electrodes are often added 

for additional ocular and muscular movement for both multi modal detection, and 

signal-noise elimination (Sansei & Chambers, 2007).  

 

 

Figure 3.5:  The Different label indices    Figure 3.6: The mastoids, (behind the  
in the 10-20 International system relate    ear) are commonly used as a reference 
to their proximity to each of the brains   channel due to the low electrical 
lobes.        activity of this site 15

. 
 
 

 The Label Index for an electrode position relates to the cerebral lobe of their 

placement (see Fig 3.5). Hence, F =Frontal Lobe, P = Parietal Lobe, T= Temporal Lobe, 

O = Occipital Lobe, C = Central, FP = Prefrontal and A, Ear (ground/reference). 

Numerically odd numbers are for the left hemispheres and even numbers for the right 

hemisphere.    

 

 As each EEG electrode yields numerical differences between the electrical 

activities from two electrode locations, there is a need for a common reference channel 

that can be used for all the configured electrodes (Hagemann, Naumann & Thayer, 
                                                
15 Retrieved from http://stimlab.org/wp-content/uploads/2012/05/meg-ecg-refleads.jpg 
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2001). The most commonly used reference positions are;  (i) CZ (see Fig 3.4) which is 

central to both hemispheres and also nansion and inion points, (ii)  a double 

configuration placed either on both ear lobes or linked mastoids (see Fig 3.6). The ears 

and mastoids are considered to be locations where there is the least amount of electrical 

activity, thus offer a clearer reference channel. The double configuration further 

provides a conceptual centralised located reference point, which further eliminates 

hemispheric bias. (iii) Average Referencing (Ar) entails dividing the sum of all channels 

(excluding the electrode concerned) by their quantity. This method would be used for 

each electrode. Ar, can also be used in a configuration called montage where a body site 

such as the wrist or leg is used, in this situation all the head electrodes are averaged as 

mentioned above. 

 Two major trends have emerged in the neural detection of emotion through EEG. 

As with the psychological models of emotion we can see two major temporal factions 

analogous to psychological discrete and dimensional models. Discrete measures often 

relate to Event- Related Potentials (ERP) which mainly follow a technique of averaging 

multiple epochs against the same response for a minute timeframe. Hence ERP can be 

used to gauge responses to a single event type stimulus. The secondary method of 

Asymmetric Hemispheric Difference (AHD) can be seen to be more represented within 

a dimensional model as it can serve continues readings. As this project it is concerned 

with EEG in naturalistic settings, and hence continuous timeframes, the subsequent text 

will focus only on AHD. 
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3.5 Asymmetric Hemispheric Difference.  

 

         

Figure 3.7: An illustration of the two hemispheres of the Human brain. The right side 
relates to the left side of the body and the left side relates the right side of the body. 
 

 Asymmetric Hemispheric Difference (AHD) is the Electroencephalographic 

method of evaluating differences in ‘Activity’ and ‘Activation’ in response to a stimulus 

between the left and right hemispheres of the brain (see Fig 3.7). As Coan and Allen 

(2004) distinguish; ‘activity’ is a measure gauge in hemispheric specialization studies, 

whilst ‘activation’ within hemispheres is utilized in the detection of affective or 

emotional perception responses. 

 Hemispheric specialization refers to the propensities and preparedness of each 

hemisphere to engage in the particular processing of information or task; for example 

speech, which is detected in posterior (rear) regions.  

 Alternatively, affect or emotional responses are shown to register within anterior 

(frontal) locations (Davidson, 1998). In a survey study by Coan & Allen (2003), 

correlative tabling of the first 26 published accounts of EEG studies of emotional 

detection between 1982 and 2000 showed that electrode locations at positions F3/F4 

(anterior location) were always used in reported successful detection. 

 It should be noted that the above two categorizations operate orthogonally, such 

that parietal or anterior activation do not bias the other, nor the whole hemisphere. Of 

further note, ‘specialization studies’ must take into account the handedness of 

individuals, as right-handers process speech in their left hemisphere, whilst the opposite 

is true for left-handers. Hence all EEG studies include in their experimental set-up, 

awareness of participant handedness. 

 Electrical activity detected by EEG technology arrives in the form of sinusoidal 
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wave patterns from which it is notoriously difficult to extract meaningful information. 

However through modern signal processing techniques it is possible to translate the data 

into an interpretable form through the Fast Fourier Transform algorithm. This translates 

temporal or spatial information into its underlying components in the frequency domain. 

 
Name Frequency  Associated state 
Gamma < 30 Hz + High level processing 
Beta 13-30 Hz Waking consciousness 
Alpha 8-13 Hz Relaxed 
Theta 4 – 8 Hz Light meditation 
Delta 0.5 – 4 Hz Deep sleep         

 

Table 3.1: The five major brainwave states and associated spectral frequency ranges.  
 

 Through this the electrical signals emanating from the brain can be housed into 

five sectors each relating to their own particular modes and states of being (Teplan, 

2002) (see table 3.1). 

 In the AHD detection of emotion, EEG focuses on the Alpha brain wave. In 

Berger’s original experiments, he found that mental and cognitive engagement led to the 

decrease in the amounts of detected Alpha. This became known as ‘alpha blocking’ and 

this method is still utilized whereby the alpha power in both anterior lobes is evaluated 

for differences in response to stimuli. Thus, the alpha signal is read inversely, a drop in 

its value is seen as a signature of the associated hemispheres mental engagement or 

activation. 

 A secondary determination for the use of alpha is its distance from the artefact 

frequencies generated by muscular and ocular movements. Whilst they are still 

minimally present their impact is less disruptive of the signal than in higher states such 

beta and gamma and lower states of theta and delta. The algorithm for alpha power 

hemispheric difference detection is as follows; (Davidson, 1988) 

 

Alpha hemispheric difference = (right Alpha-left Alpha /right Alpha+left Alpha) 

 

 Alternatively this can also be calculated on a logarithmic scale, as absolute 

power density values may sometimes be influenced by individual idiosyncrasies, of 

skull thickness or brain volume (Sutton & Davidson , 2000) , Thus : 
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Alpha hemispheric difference = (log [right Alpha]  - log ([left Alpha]) 

 

 The logarithmic calculation presents a uni-dimensional scale where low numbers 

equate to greater right hemisphere activation (avoidance (negative Valence)) and higher 

numbers show greater left hemispheric activation (approach (positive Valence)), whilst 

equal or zero numbers reveal symmetrical activity (Coan & Allen 2004).  

 A sum of the total alpha power in the frontal lobe using electrodes F3/F4 can be 

calculated through the following; (Davidson, 1988) 

 

Sum of alpha power = (right Alpha + left Alpha)  
 

3.6 Support for EEG Valence Detection.  

 
 In the 1980’s Richard Davidson and Nathan Fox conducted a series of seminal 

studies into the detection of human emotion with electroencephalography. The first in 

1982 was one of the first published emotion studies using this method (Davidson & 

Fox, 1982). It utilized archived film clips of an actress facially expressing happiness and 

sadness. Here Fox and Davidson attached EEG electrodes to the scalps of ten-month-old 

babies to observe greater left hemispheric activation in response to smiling faces in two 

studies  [ F(1, 9) = 6.20, P = 0.035] ,(P < .05 , Sceffe test) & studies  [ F(1, 13) =  9.09 , 

P = 0.01] ,(P < .01 , Sceffe test). There was no conclusive correlation for sad faces. 

Their innovative use of infants for their experiment attempt to create a situation where 

innate human behaviour could be gauged before major learned bias had set in. 

 In their second experimental set up Fox and Davidson (1986) replaced visual 

stimuli, for the most primary sense through which a new-born investigates and engages 

with the world; Taste. For their experiments, they plied 2-3 day old new-borns with 

sugar water (positive affect), lemon juice (negative affect), and distilled water (neutral- 

no affect). Fox and Davidson were able to detect left hemispheric activation for positive 

affect, in comparison to other stimuli.  

 The following year a further emotionally motivationally charged experiment was 

conducted which involved 10-month-old babies who experienced a very brief temporary 

separation (60 seconds) from their primary carer. Within this time frame a non-familiar 
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person approached. Again, correlations between affect and hemispheric activation were 

confirmed leading to the formulated basis of relating positive affect with left 

hemispheric activation, and right hemispheric activation with negative affect (Fox & 

Davidson, 1987). 

 In further studies, Davidson working in collaborations inclusive of Paul Ekman 

and Wallace Friesen sought to validate EEG method alongside facial expression 

recognition methodologies. They found that subtleties of the registrations between real 

and feigned smiles were neurally detectable (Ekman, Davidson & Freisen, 1990), 

further through the examination of expressed joy and disgust, they were able to suggest 

that the hemispheric model was representational of approach and withdrawal tendencies 

as opposed to discrete Valence levels (Davidson, Ekman, Saron, Senulis & Freisen, 

1990). Both Fox (1991) and Davidson (1992) write accounts associating negative affect 

with withdrawal tendencies and right anterior activation, and the opposite for positive 

affect, which allows it to be mapped into a dimension model, but not necessarily in a 

one-to-one association as with the keywords defined by Russell. 

 

       
Fig 3.8. An illustration o f Edmund T Rolls approach and avoidance model that allows 
for the charting of key and subtle emotional states (Rolls, 2001). 
 

 Thus, whilst affective Valence within hemispheres can be detected, as suggested 

by Tomarkin, Davidson and Henriques (1990) in line with Russells' circumplex model, 

the approach and avoidance model became a methodological template due to its relation 

to the emotions primal levels and context. Edmund T Rolls (2001) provides a 
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neuroscientist's anatomical based account, which suggests that the emotions are elicited 

in a goal orientated appraisal system of approach or avoidance within a reinforcement 

system of reward or punishment (see Fig 3.8).  

 Similarity of this account to Damasio’s; ‘emotions as homeostatic regulators’ 

within his ‘somatic marker hypothesis’ may be made. A brief historical psychology 

survey of the approach-avoidance model is presented by Elliot and Covington (2001), 

which sites the landmarks in its theoretical development.  

 However, the anomaly, which prevents the universal implementation of the 

approach –avoidance model as an economical detection method for the range of the 

emotional palette, is the state of anger. As Eddie Harmon-Jones & John Allen (1998) 

demonstrate, the emotion anger shows approach tendencies whilst pertaining negative 

valence, thus sharing the same dimensional space as joy which has approach tendencies 

with positive valence. Yet their study confirms the working model of the approach-

avoidance system, and that understanding of further dimensions of detection may be 

required for an all-consuming system. 

 Finally, it should be noted that there are two distinct directions in Asymmetric 

Hemispheric deciphering of emotional Valence levels. As described above one is the 

detection of transitional states between modes of emotional being. This animated 

system is built upon an underlying baseline of hemispheric asymmetry, which in part is 

claimed to account for the propensity of participants to respond in particular manner.   

 Thus Valence reactions to stimulus may be predicted as Tomarkin et. al (1990) 

demonstrate, whereby participants with right hemispheric weighted baseline responded 

with greater intensity to negative film clips than those with a greater left hemispheric 

baseline. In a later study using female participants Robert Wheeler, Davidson, and 

Tomarkin (1993) were able to predict greater valence reactions to film clips for both 

polar baseline resting biases. In a more recent study, Sutton and Davidson (2000) 

performed a similar test to affective words, again being able to gauge the relationship 

between baseline states and the ensuing related reaction.  

 Concurrently Mark Cavazza  et.al (2014a, 2014b) is undertaking a series of 

experiment which utilise simultaneous fMRI scans alongside EEG at electrode position 

F3/F4.  The fMRI scans confirmed pre-frontal BOLD asymmetry to verify the use of 

AHD.  In a novel real-time neuro-feedback interactive system, empathy levels were 

derived via Valence levels to drive an unfolding animation narrative.  The above studies 

demonstrate that AHD electroencephalography has the potential to unveil some of the 



THE NEURAL DETECTION OF EMOTION 
 

 

39 

underlying facets of emotion, or as Coan & Allen state EEG can serve to highlight the 

moderators and mediators of emotion and affect.  

 

3.6 Support for EEG Arousal Detection.  
 

 Above we have mapped out a potential method with peer support for detecting the 

emotional dimension of Valence. Whilst the anomaly of distinguishing between joy and 

anger prevents a universal detection method, it may be that with further dimensions 

such as detection of arousal levels it may be possible to address this anomaly. In terms 

of detecting emotional Arousal via EEG there is not such a defined comparative body of 

work or formulated method. There are however a number of speculative studies, which 

explore potential sites, metrics and methods. 

 Aftanas et. al (2004) report that both anterior and posterior lobes are involved in 

both high and low Arousal signals compared to those of neutral signals in emotional 

activation. Using a 62-electrode channel configuration, they observed an increase of 

right hemispheric activity in posterior regions and increased activity in the left anterior 

hemisphere. They also noted synchronisation changes across all frequency bands of 

Delta, Theta, Alpha, Beta, and Gamma; yet do not distinguish these changes from 

Valence signals. 

 Kroupi, Yazdani, and  Ebrahimi (2011) also  tested how Arousal may register 

within different spectral bands associated with the brain states. They found that Arousal 

may be detected by Theta in the right frontal cortex, that the left dorsolateral prefrontal 

cortex is activated by Arousal in Alpha and Beta, further that the right Central lobe 

region and the left temporal region are positively correlated with Arousal in Beta band. 

Kroupi et. al (2011) state that the complexity of emotion is responsible for this. As 

emotion is influenced by contextual environments, situations and different structures it 

is acceptable to see different neural regions activated in different subjects regardless of 

whether they seem to be experiencing the same emotion. This is quite significant, for it 

implies difficulties in formulating a universal framework of measure. 

 Following Chopin's proposal that arousal excitation presents a higher Beta power 

and coherence in the parietal lobe, with simultaneously lower activity in Alpha,  Bos 

(2006) tested Alpha and Beta power, and Alpha/Beta ratios in the frontal cortex using a 

minimal set up 3 electrodes for Arousal signatures. He reported that in a binary 
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classification structure, F3/F4 Beta power and the singular (Fpz) Beta frequency were 

the most successful methods tested. The study used 5 participants with a very small data 

set, yet no subsequent studies were conducted. The best-obtained single performance 

rate for an individual's Arousal was recorded at 97.4 %. 

 Yoon and Chung (2011) found a preference for high Arousal detection using 

Beta and Gamma bands in a study that enlisted 90 International Affective Picture 

System  (IAPS) images for elicitation. However their claims of a 90% confidence of 

affective arousal detection from feature vector combinations from the temporal, central 

and occipital lobes, are based on a single participant with no follow up studies.  

 Thus we may view; neural measures of Arousal are considerably more elusive 

and are reported to be dispersed across multiple frequency bands and electrode 

locations. As Kroupi et.al (2011) suggest it maybe individual contextual differences that 

account for this. 

 Chanel et. al (2005) undertook what is increasingly becoming a prevalent method, 

of a multimodal speculative approach. They considered the Arousal dimension using 

EEG, GSR Plethysmograph, Respiration, and temperature sensors. Using images with 

predefined emotional keyword tags and value ratings from the IAPS database in a 

binary classification structure, they were only able to achieve rates marginally above 

random. This was for EEG, physiological sensors and their fusion. However, when they 

measured the signals against the participant’s own ratings to the stimulus, they were 

able to obtain one individual instance of a successful classification rate of 72%. The 

other three participants still oscillated around the random level. This reporting of higher 

variability for Arousal responses than for Valence is consistent within EEG studies. It 

may be simpler to report whether one feels more positive or negative, than the level of 

Arousal one feel. This may be due to a relational or individual nature, where variability 

arises from its tight entwinements with previous encounters and perspectives, which 

Kroupi et. al (2011) expand due to the different structures.  Further it may be influenced 

by the experimental design. 
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Figure 3.9. An illustration of Chanel’s electrode configuration and feature vectors used 
to determine Arousal detection (Chanel et. al 2005).  
 
 
 For their experiments, Chanel et. al (2005), extracted 6 feature vectors, where only 

1 feature covered the Pre-frontal cortex, with the majority measuring parietal regions 

(see Fig 3.9). Nearly all of their feature vectors incorporate the Occipital lobe. Naturally 

signal deviations will occur in this area when any visual stimuli is presented and it may 

be that activity and activation are being somewhat confused. Unfortunately there is no 

reporting for individual feature vectors, which may have given a clearer indication of 

this. If signatures for pupil dilation, and other visual processing (such as light, colour, 

movement) could mapped, and extracted from the EEG signal it may leave a clearer 

indication. Alternatively pupil dilation signatures in the EEG could be extracted as 

feature vectors for classification. Regardless this method does set the trend for modal 

fusions between neural and physiological sensors in attempt to provide more robust 

results. 

 Koelstra et. al (2010) in a multi-modal approach tested Valence and Arousal level 

responses to music videos with a population of 6 participants. For EEG they used 32 

electrodes and their lateralization to report a decrease of right posterior Alpha power for 

higher states of Arousal. In single trails using binary classification, they were able to 

achieve a 55.7% rate average for Arousal with a maximum individual rating of 67%. 

These were on par with their physiological sensor signals of 58.9% successful 

classification accuracy.  It maybe important however to note that with this method their 
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Valence detection levels falls much lower than peer reported levels to only just above 

the average random level. 

 Koelstra (2012), expanded on this in a subsequent study using 32 participants to 

create a database containing their recorded spontaneous emotion signals, for others to 

test potential algorithms and automatic classifiers. Again they were able to support their 

thesis of negative correlations in the theta, alpha, and gamma band, and importantly 

central alpha power decreases for higher arousal matches. Whilst they found high 

variability in subjects Arousal levels and reports, through their multimodal approach 

they were able to procure modest increases for Arousal. 

 Khalili and Moradi's (2008), multi-modal approach was able to achieve higher 

classification rates via EEG, than for physiological signals and the fusion of the two. In 

a 3 state Valance and Arousal classification structure of Positive-Excite/ Negative-

Excite/ Calm, they achieved 51% classification rates, When the same data was 

condensed into binary class system, this rose to 65%. A common statement found in 

papers speculating on EEG Arousal detection is for authors to indicate that there is the 

potential for detecting Arousal in the EEG signal, without a specific determination. 

 Soleymani , Pantic and Pun (2012) used 20 objectively selected films clips and 

associated ground truth emotional keyword tags, and median Valence and Arousal 

scores acquired via a SAM test to establish tertiary classes for Arousal of ; Calm, 

Medium Aroused, and Activated. Using EEG, pupil dilation and Gaze distance, they 

were able to achieve 76.4% successful classification rates for Arousal. When the single 

modality of EEG was considered this fell to 62.1 %. In both results the random indicator 

was 33%, but it should be noted that only selective participants were included in their 

results. They also make a strong case for potentially further improving these results 

through additional modalities such as facial expression. 

 In the creation of their MAHNOB-HCI database Soleymani, Lichtenauer, Pun and 

Pantic (2012) were the first to precisely synchronise the five modalities of eye gaze, 

video, audio, peripheral and Central Nervous System in an emotional response scenario. 

This included 27 participants watching 20 short film clips. In their 3 class Arousal 

structure of; low Arousal, medium Arousal, and Activated, for EEG they were able to 

achieve 52.4% successful classification rates, whilst the fusion between EEG and gaze 

data increased this to 67.7%. In both the above experiments they state that good user 

independent arousal levels can be achieved.  An important aspect they raise which has 

connotations for all emotion experiments, is for further researchers using their database 
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to carefully consider participant recruitment as this can make a big difference in the 

results. A participant motivated by the experiment and the right knowledge for filling in 

the questionnaire is desired, as a participant attracted by monetary compensation may 

not have the desired motivation, communication skills or awareness of articulating their 

emotions in line with the questionnaire. 

 Huang et. al propose a technique entitled Asymmetry Spatial Pattern (ASP) for 

extracting features related to Valence and Arousal. Whilst they claim error rates of only 

17.54%, they clearly state they selectively discarded data that they subjectively felt did 

not match ground truth labels.  In their proposed ASP technique to extract features for 

EEG-based emotion recognition algorithms they employed K-Nearest Neighbour (K-

NN), naive Bayes (NB), and support vector machine (SVM) for emotion classification. 

Whilst the average accuracy rates for Valence and Arousal are reported at 66.05% and 

82.46%, respectively, it would be important to understand the data they selectively 

discarded. Huang et. al, experiment highlights an important issue where the focus is 

removed from the understanding of Arousal per se, to place emphasis on tackling 

emotion experiments as an engineering issue. 

 This is made explicit by AlZoubu, Calvo and Steven (2009), who state that their 

intentions are not to focus on the neuroscience behind affect nor to speculate or its 

implications, rather to focus on building automatic classification systems that may be 

potentially used for EEG emotion detection.   

 Jirayucharoensak, Pan-Ngum., and Israsena (2014), declare an EEG-based 

emotion recognition system "implemented with a deep learning network and then 

enhanced with covariate shift adaptation of the principal components". Through this the 

highest rates were able to achieve 52.05% successful classification on three levels of 

Arousal states. They state that their DLN proposal outperforms SVM and Naive Bayes 

classifier. They site inter-subject differences as one of the main issues to address. 

 Thus whilst this interest and direction of resources to and from the Affective 

Computing field is beneficial, it may be noted that there is currently an over-emphasis 

on tackling emotion research from solely a engineering perspective. This is with a view 

for the creation of automatic classification systems, which does not address or further 

explore unveiling the underlying measures of Arousal. 

 Horlings (2008) presents an acute example of how such proposed systems may 

not function as intended when moving from test data to the real world, and controlled 

condition experiments. Whilst in their system protocols they were able to achieve good 
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binary distinction with training data, when implemented with real data, their 

classification rates fell dramatically to 30-40% correct classification for both Valence 

and Arousal. For Arousal this rose to a single high individual classification of 70 %, and 

further increased to 80% successful classification, where data for classification was 

highly selective; in that only data which was considered at extremely high or 

excessively low readings was selected. 

  In a study exploring the relationship between Arousal and Attention in 

simultaneous fMRI and low frequency EEG (5-9 Hz) recordings, Foucher et.al (2004) 

suggest a positive correlation between them, where higher arousal activates higher 

dorsal- lateral prefrontal and parietal cortex regions. Importantly, Foucher highlights the 

temporality of Arousal levels that need to be given further consideration. They state that 

Arousal may function in smaller time frames than is measured by a single averaging 

over a whole epoch of stimulus. Arousal transitions may occur with high variability, 

both in power and time frames that may be due to personal associations and definitions 

to phenomena out in the world. Thus, if emotion arousals are linked to previous 

episodes, then it may be why this indicator has seemingly more elasticity to phenomena. 

Surveying a scene of multiple objects regardless of the presentation format may elicit 

different Arousal responses and time frames, thus real time systems this may need to 

cater for this is any interface, classification protocol or experimental design. 

 In a study eliciting emotions via memory recall with 10 participants, Chanel et. al 

(2009), assessed Valence and Arousal indicators in short time spans to attempt to 

distinguish between the three states of: negatively excited, positively excited, and calm-

neutral. For Emotion detection for their 3 classes they were able to achieve an average 

of 63% successful classification rate. When this was reduced to 2 classes this increased 

to 73%. When considering single class, of neutral-positive in a binary classification they 

achieved 96% accuracy for Arousal. Thus we can see whilst there are many proposal 

which indicate different methods for obtaining Arousal measures via EGG, there is not 

a definitive or consensually agreed method. 

  

3.6 Conclusion. 
 

 In this chapter we have considered the potential of EEG for the detection of 

emotion using the dimensional framework. Whilst the peer review suggests support for 
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Valence detection using the AHD approach-avoid model, no such consensual method 

could be found to support Arousal Detection via EEG; instead we found a more 

speculative approach, without conclusion.  

 It is important to consider how this bears upon our original intentions of wanting 

to assess emotional responses to cultural artefacts in natural environments. Both the 

theoretical frameworks and supported detection methods for EEG imply, rather than a 

transparent window to the emotions, the type of access we may consider is both limited 

and general. The dimension theoretical framework whilst allowing some form of 

temporal access is limited only to Valence and Arousal levels from which we may infer 

a relative state. For EEG, the review only supports detection for the Valence vector, and 

as such this is using the approach-avoidance model. Within this there is the anomaly of 

not being able to distinguish between Joy and Anger to prevent a complete universal 

method. Whilst we may still map our approach-avoid model on to the Valence 

dimension we can in no way view this one-to-one relationship with Russell’s correlative 

keywords.  

 Thus we may enlist the AHD model for the Valence dimension, but for Arousal 

we will have to use a speculative approach. So it may be important to again consider 

Berger's original thesis that Alpha is a signifier of neural activity, and consider whether 

excited and calm states as discerned by Alpha spectral power may be mapped on to the 

Arousal vector through correlations to the participants self reports. Through a process of 

assessing a single electrode pair site and frequency band we may be able to start a 

systematic approach towards either confirming or eliminating this possibility, and also 

test any differences between real and controlled experimental conditions. 

 We also noted that all EEG studies we reviewed are located within laboratory 

settings and that no studies match the type of contexts in which we hope to conduct our 

studies. If we return to our intentions of wanting to assess responses to cultural output in 

their natural environments, we find we are iteratively having to curtail our expectations 

of making these responses transparent and having to accept that these experiences will 

remain largely opaque, and any inferences we highlight will be of a very general and 

low resolution nature. However the full literature review suggests that the whilst the 

field of emotion research is complex and perhaps problematic it warrants study, and it is 

by engaging with these complexities and new contexts that possible further ground may 

be covered, even if only to eliminate possible directions. 
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             CHAPTER  4  

 

      Experimental settings  
 
 
 
4.1 Introduction. 

 An important task, given the goals of this thesis, is to try to bridge between 

laboratory based studies of emotion using EEG and the 'in the wild' situations of 

emotional responses that we hope they bear on. Natural observation is the study 

methodology of observing phenomena in its natural environment. It is a method 

traditionally used in the behavioural sciences. Aptly, in the context of emotion research, 

Charles Darwin (1934) used this form of methodology for his field studies from which 

emerged his particular theories of natural evolution and species wide similarity of 

emotional expression, to form the foundations for the discrete theory of emotion. 

 Whilst modern emotion research has largely resided within laboratory settings, 

there is an increasing call for observing the natural occurrence of emotions in ‘in the 

wild’ studies which may allow for the field to gain further understanding in its 

investigation.   

 In terms of EEG emotion studies, experiments have traditionally been confined 

to laboratory conditions due to their reliance on clinical technology, and also to procure 

confidence in results that may arrive within the reliability of controlled settings. 

Recently a new generation of commercial EEG technology have become widely 

available. These low-cost, wireless and mobile headsets present the potential for new 

forms of experimental design. Thus in the following passages, in considering this 

movement from laboratory to real world scenarios it is profitable to look widely at the 

field of emotion research beyond EEG for examples and possible access points we can 

bring to this study. 

 

4.2 Calls for Natural Emotion. 
 

 Both Jerome Kagan and Rosalind Picard profess in their writing the need for 

emotion to be considered in its natural state of elicitation. Picard's thesis 'Affective 

Computing' (1997) envisages advanced forms of Human-Computer-Interaction whereby 
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technology interacts with humans in an intelligent manner, through an ability to read 

and respond to human affective states. Picard highlights that the very nature of the 

laboratory setting is not conducive to researching this goal. The laboratory experiment 

is often confined to small time frames and representational conditions that serve to 

affect any response given. Thus, whilst these responses may give us a window to the 

emotions, they may not necessarily align to the natural occurrence of emotions. Picard 

also cites that the artificiality of the laboratory type setting is further compounded by 

the tight demographic of participants that may access such environments.  

 Jerome Kagan (2007) empathically highlights the need for the inclusion of 

‘Origin’ into the experimental design of emotion investigations. Kagan cites Origin as 

being an extensive form of continuity that intertwines local/personal narratives and 

cultural beliefs as inherent within emotion. For Kagan, the issue of subjectivity is 

central, and for knowledge to widen, steps should be taken to exploring emotion in its 

natural states and environments of occurrence. 

 Paul Griffiths & Andrea Scarantino (2009) share this viewpoint, for the true 

complexity of emotion to be unravelled and understood there needs to be consideration 

of its non-reductive factors. In their Situationist perspective on emotion, they adopt a 

stance that links and embeds emotion within its social contexts; which are scaffolded 

within the environment. Importantly Griffiths & Scarantino show that emotion in social 

situations is not a singular phenomena or necessarily a linear process, rather that 

emotions are adaptive negotiations dependent on unfolding actions within the 

environment (others). Thus, emotions do not function in the everyday or within 

interaction as they may be researched in laboratory strategies. 

In experiments by Ian Davies and colleagues (Davies & Robinson, 2011) the 

important distinction is made of differential levels of emotional investment between real 

world and constructed settings. Whilst they find that within laboratory tasks, levels of 

emotional investment can often be found to be lacking, they remain equally sceptical of 

data-gathering techniques in natural settings in regards to repeatability.  
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Figure 4.1: Davies emotional investment experiments explored the impact of settings on 
results. Participants engaged with a computer simulation in a traditional laboratory 
setting (Left and middle), and also within a hybrid setting controlling a remote 
controlled helicopter via a live feed. (Right). (Davies, 2011). 
 

 Their response to this critical position is to consider hybrid ‘Real World-

Laboratory’ conditions. In a comparative study demonstrative of this, participants 

engaged in a virtual racing game, followed by a remote controlled helicopter task, 

whose actions they observed and controlled via screens in the testing laboratory (see Fig 

4.1). They surmised, in the latter task participants were able to engage in a choice and 

real consequence task, which resulted in higher investment levels. Simultaneously, they 

could be monitored in a repeatable method, thus meeting both criteria. Whilst it could 

be argued that the setting would still influence the outcome, it shows how it may be 

possible to move towards meeting both criteria of naturalism and repeatability. 

Thus whilst there is much validity in the calls for widening the contextual and 

practical envelopes for emotion research, due care has to be given so that experiments 

and their results are robust, accountable and reproducible. Whilst it may not be possible 

to immediately address all the expansive calls, an iterative procedure of testing 

scenarios and technological detection methods may pave a way towards it. The single 

modality of EEG for emotion detection that we are focusing on in this project, will 

naturally not unveil the expanse of any emotions, but our findings may contribute to 

insights into one aspect, which can then be built upon. By carefully catering for some 

natural limitations in natural environments we may also be able to conduct experiments 

that meet both our aims of natural responses and also having the assurance that our 

measurements are solely the responses we are hoping to detect. 
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4.3 Natural Settings Limitations: Technological Dependency. 
 

 For emotion studies to be conducted ‘in the wild’, there is a need for an 

appropriate technology that meets a basic criteria. Any data harvesting systems would 

need to be lightweight, robust, portable and unobtrusive. It would need power 

capabilities that allow it to run continuously over large time frames so it could be used 

in longitudinal studies. Finally, it would need to store and make data available flexibly. 

In this way the device would be rendered invisible to the participants through 

habituation and may serve to obtain the truest streams of natural data.  

 Across the field of emotion detection many commercial and medical systems are 

capable of harvesting physiological signals for inferring emotion. Whilst traditionally 

these were designed for stationary recording procedures, a new trend for mobility has 

emerged. 

 
 

Figure 4.2: Healey used mobile multi-modal sensors for her experiments into 
naturalistic emotion recognition and classification. (Top row) The sensors configuration 
for the driving task,  (bottom row) some of the prototype sensors she constructed for the 
task. (Healey, 2005). 
 
 In 2000, as part of her PhD thesis Jennifer Healey (2005) conducted 

investigations into developing an appropriate mobile technology for naturalistic emotion 

recognition and classification. Her experiment entailed participants driving a car 

through variable traffic conditions whilst wearing a number of sensors that recorded 

their stress responses. (see Fig 4.2 top row). 

 As is visible (Fig 4.2 bottom row) with her assembled prototype wearable multi-
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sensor network for gathering the bodies signals, whilst they are adequate for obtaining 

ambulatory style data, they are obtrusive and cumbersome, especially in comparison to 

the standards and expectations we have of sensors in our contemporary moment. 

 

Figure 4.3: Peter’s mobile wearable data glove. (Peter et. al, 2005) 
 
 
 In 2005 Christian Peter and colleges (Peter, Ebert & Beikirch, 2005) also 

developed a prototype technology to meet the needs of sensing physiological data in the 

wild. Their wearable technology consisted of a glove (see Fig 4.3), which collected 

Galvanic Skin Response (GSR) and Heart Rate Variability (HRV) data to be transmitted 

wirelessly to a mobile base unit. Their system was cable of running continuously for a 

week before any battery replacement or recharge. Whilst their data glove presents the 

potential for collecting good data, its bulky, restrictive and visible design must be noted, 

and may potentially interfere with any formal experimental results. 

 
 

 
Figure 4.4: Picards Galvactinator’s progressive transition to the Q sensor (left to right) 

 

The Galvactinator co-produced by Rosalind Picard is a similar product (Picard & 

Scheirer, 2001). Here sensory measures of Electro Dermal activity (EDA) were made 

visible and available through a colourful Led Light in place on a type of data glove. In 
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experiments with a conference audience, Picard was visually able to note en masse, 

audience arousal levels in response to specific activities. The succinctly stepped 

development of this idea led to the realisation of the Q sensor produced by Affectiva 

(see Fig 4.4) (Picard, white paper & Poh, Swenson & Picard, 2010). Here the wearable 

device is in the form of a wristband. The uniqueness in these devices is the relocation of 

the sensing electrodes to a non-intrusive location on the wrist, which aids it invisibility 

and interference.  

 The friendly usability of the Q sensor is an element of its appeal, the sensor 

automatically takes readings of EDA, motion and temperature when worn, which is then 

logged and displayed via its specialised software and in this way eradicates any need for 

base stations or worn smart devices. 

 

    
    

Figure 4.5:  The Autosense multi-sensor system. (Ertin et. al 2011). 
 
 Taking advantage of the omnipresence of current smartphone devices, The 

Autosense system uses multiple sensors of; ECG, RIP & GSR, to obtain HRV, breath 

rate and skin conductance levels. In a philosophy of more sensors means more data 

means more information (see Fig 4.5), the data is transmitted for viewing and recording 

via a Smartphone device (Ertin et. al, 2011). 

 Each of these directions of minimal or maximal sensor data gathering has their 

particular merits and downfalls but together they cater for a range of experiments that 

allow affective data signals to be gathered beyond the laboratory space. It is perhaps by 

looking forward towards emergent technologies we can sense how the protocol and 

popularity of ‘affect in the wild’ experimentation may evolve, and thus the value of 

conducting and exploring research methodologies on this topic in the now. 
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4.4 Beyond the Laboratory: Emerging and future sensor technology. 
 
 Taking into account the wide field of physiological sensors we can begin to 

envisage the potential of how natural observation experiments may function to meet the 

needs of the natural emotion researcher. The health and fitness industry is one 

component of medical research driving the development of miniaturised technology. 

This technology is capable of gathering physiological readings of a users state and then 

feeding that information back to the wearer or the assessor in ways that can be 

meaningful either diagnostically or personally. 

 
 

Figure 4.6: The Basis Smartwatch 16. 
 

  If we consider the prototype technology Healey produced for her thesis, we can 

consider it cumbersomeness against technology of similar capabilities emerging or 

verging to emerge little more that a decade later.  

 Smartphones can be aligned to mini-computers that have proliferated into our 

communication devices. It can also be seen that this continual miniaturisation is leading 

to the development of further devices; Smartwatches. The Basis  Smartwatch (Health 

tracker) available for commercial release in 2013 is one example of such a device being 

engineered to present physiological data to the user (see Fig 4.6). This aspect of the 

device has a number of built in sensors for detecting heart rate, perspiration levels, body 

temperature and motion. Whilst The Basis is reminiscent of previous ‘sports’ 

monitoring technology and Smartwatches configured for communications, this device 

offers continual basic tracking data that classifies activity for up to four days before a 

                                                
16 Retrieved from https://store.mybasis.com/media/catalog/product/p/e/peak_time_ 
black_three-quarter .png 
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battery recharge.  Within the increasing complexity of this technology it is becoming a 

standard to incorporate API's, and Software development kits (SDK), which promise 

accessibility and customisation for any particular need. The ability to link to smartphone 

devices only increases their power to allow data harvesting in an invisible manner. This 

generates the potential for limitless possibilities of configurations of experimental 

design. 

 Importantly, this interest and practicality of the roaming capabilities of sensor 

technology is also paralleled in the field of electroencephalography. Traditionally, EEG 

laboratory setups comprised of a laborious process of gluing and wiring electrodes to a 

participants scalp. This lengthy and sometimes cumbersome process also creates a 

restriction of natural movement for participants and situates the experiment.  

 

 
Figure 4.7: A new generation of low-cost mobile EEG technology have emerged 
marketed at gamers, creative’s, researchers and developers. (Left to right) Imec Hoist 17, 
Emotiv Epoch 18 ,Neurosky Mindwave 19, InteraXon Muse 20. 
 
 A new generation of commercially available EEG headsets now offer wireless 

forms of data transmission that open up the potential for new forms of naturalistic 

experimental design. Interaxon, Neurosky, Imec and Emotiv are amongst a handful of 

organizations that are popularising and leading the field of portable EEG headsets. Each 

of the new EEG headsets is lightweight and simple to fit, they are simply placed on the 

scalp.  Each has its own variation of the standardised 10-20 system electrode 

configuration (see Fig 4.7). These range from a singular, to fourteen sensors arranged 

over key areas of the scalp. Thus, whilst they do offer limitations in comparison to 

clinical EEG in terms of the amount of data sites which can return signals, this may be 

weighted against the freedom they offer as to the range of stimuli and environments 

                                                
17 Retrieved from http://www2.imec.be/content/user/Image/Staalhemel.jpg 
18 Retrieved from https://emotiv.com/bitrix/components/epanel/store.headset 
/templates/.default /images/head.png 
19 Retrieved from http://cdni.wired.co.uk/620x413/g_j/headset.jpg 
20 Retrieved from http://nvate.com/wp-content/uploads/2013/06/1-e1372742855935.png 
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they allow for experiments, especially in less formal conditions. 

 The headset selected for this project is the Emotiv Epoch Education Edition, 

which provides full access to raw EEG data, alongside an accompanying SDK. This 

meets the requirements for our investigation of an economical, robust, portable headset 

where we can explore detecting natural aesthetic-emotional responses. 

 Further generations of these headsets are emerging, which respond to en mass 

usage issues fed back to the organisations.  For example, Emotiv are in the process of 

releasing a crowd-funded 5 sensor set up, which eliminates the requirements of re-

moisturisation of the felt contact pads of the Epoch headset, which is the main issue in 

limiting extended continuous timeframes. 

 As with other technology these reported requirements will drive further 

developments of miniaturisation, optional algorithms (such as automatic artefact 

reduction) and yet to be considered forms of potential brain mapping. 

 

   
Figure 4.8. Imec's thermal powered EEG headset 21. 

 
 At the forefront of such future developments are Imec, an organisation that 

directs its research activities towards the production and development of Nano 

technology. Building on the previous success of their wireless EEG Headset they are 

now exploring how such devices can be constructed to run on thermal means to 

eliminate the need for batteries or other external power sources (Leonov, 2008 ) (see Fig 

4.8). Here the body’s thermal emissions provide the power source for the headset, with 

the consequence of a continuous stream of data that is relative to the users own power 

timeframe. 
                                                
21 Retrieved from https://tomography.files.wordpress.com/2007/11/resized-
wearable_press.jpg?w=460 
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Figure 4.9: MC10 's wearable sensor technology 22. 
 
 This notion of a self powered miniaturized sensor technology is also shared by 

American company MC10, who have developed miniature ‘elastic electronics’ that can 

be applied directly to the skin in a form that is analogous to a medicinal plaster  (see Fig 

4.9) (Kim, Lu, Ghaffar & Rodgers, 2012). This is capable of transmitting self-powered 

continuous data wirelessly and is a glimpse of how invisible non-invasive sensors may 

operate in the near future. It is not difficult to imagine how a miniature EEG sensor 

network placed on the scalp may function within this trajectory. 

 
Figure 4.10: Body area Network are range of physiological sensors 23. 

 
 With such forms of invisible wearable sensors, the projections of Body Area 

Networks, (Brandao, 2012, Chen, Gonzales, Vasilakos, Cao  & Leung, 2012) whereby 

the body holds an array of sensors that continuously transmit variant data becomes more 

plausible (see Fig 4.10). Thus further progression and development towards this 

                                                
22 Retrieved from http://www.mc10inc.com/wpcontent/uploads/2013/12/MC10_   
Biostamp.jpg 
23 Retrieved from http://www.wifinotes.com/computer-networks/body-area-network.jpg 
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network present the likelihood that emotion and EEG research will find it easier to gain 

acceptance for out in the world experimentation.  

 Above we have taken into account a range of mobile sensors, and sensor set-ups, 

which may contribute towards detecting emotion in natural settings. In this research 

project, the particular focus is on a detailed exploration of what we may neurally be able 

to detect about the emotions via EEG as a standalone technology. Through a 

comparison of laboratory and 'in the wild' settings we may be able to gain an 

understanding of the potentials and limitations of this current cutting edge technology. 

Further through this assessment we can consider its validity for use in more complex 

multi-modal sensor arrangements, which may provide further richer possibilities of 

detailing of emotional responses. 

 

4.5   Self Report : Data Labelling and Classification. 
 

 

Figure 4.11: A 2 vector 9-point Self Assessment Manikin (SAM) Test. 
 

 Thus far, this section has considered the technological acquisition of 

physiological data signals in naturalistic settings. Another key issue for this method is 

the consideration of how such acquired data can be made meaningful through its 

quantification and classification.  

 Jennifer Healey (2011) writes that the biggest challenge facing affective 

computing is the accurate labelling of affective data. To date the most viable form of 

understanding and labelling a subject’s emotional state to their signals is through forms 

of self-report. In the controlled laboratory, post experiment surveys, questionnaires, 
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interviews or Self Assessment Manikin (SAM) (see Fig 4.11) tests are normally taken at 

the researchers discretion to ensure that the sensor data and reports are relationally time-

stamped, and reported back meaningfully. For a SAM test the participant simply places 

a marker to signify their feeling in relation to the given dimension. In real world 

situations however, this becomes more problematic.  

 Here the subject or participant is continuously undertaking tasks away from a 

guide or researcher and this creates a higher potential for the mislabelling of data which 

can arise when there is a delay between the experienced emotion and its detailing. 

 Healey notes that labelling is always biased by the current experienced emotion, 

therefore delayed labelling after an event has a larger potential to be affected. As 

information of an emotional experience occurring within a context is translated from 

short to long-term memory it may become considered within a current or different 

context. An emotion labelled as it occurs may be defined within its felt intensity. A 

previous emotion reflected upon, may cause its reporting to be up or downgraded in the 

scale of its intensity and nature due to its comparison to other previous memory’s in the 

subjects history/ consciousness. In a similar manner to the recalling of a dream, its 

intensity and detail is lost with time, and only the peak or immediate definitions made 

post-dreaming stay in memory. 

 Another potential flaw of self-report is the variant levels of emotional awareness 

and emotional intelligence of participants. Within cultures, where the focus is 

traditionally on logic and rationalisation over intuitiveness there may be less awareness, 

or ability to articulate this form of felt intelligence.  In his informal pocketbook on EQ, 

Rob Yeung  (2006) demonstrates that the first stage of becoming emotionally intelligent 

is to become self-aware. The greater the self-awareness the greater the propensity one 

has to note feelings or name and label emotions as they occur. Perhaps for natural 

emotion research some form of pre-experiment familiarity with EQ may be an 

enhancing addition, to receiving more detailed alignment between signals and surveys. 

 Regardless of these factors, self-reporting still remains the best means of 

accessing the private spaces of subjectivity and the labelling of subjective data. In her 

experiment Healey (2011) reconfigured the P-A-D model to produce smaller scalars in 

the range of 1-7 with the central node ‘4’ relating a to normal feeling/state. Her motive 

here was to make the labelling simpler and clearer with a neutral default position for the 

participants. 13 participants took part in her study conducted over a 7-day period. The 

first two days were given over for acclimatisation to the method. Using GSR and ECG 
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sensors, a physical activity monitor, and a mobile journal to mark timelines with the 

beginning and ending of an emotion, Healey concluded that this form of triangulation of 

data leads to better ground truth labelling. 

 

Figure 4.12: Kristina Höök’s eMoto emotional text messaging interface. (Höök, 2009). 

 

 Design is another discipline, which has an interest in researching the natural 

occurrence of emotion. Kristina Höök’s practice engages in a design-centric approach to 

exploring continuous and spontaneous affective experiences ‘ in wild' settings (Höök, 

2009). Höök views emotion as arising within interaction, and clarifies this through her 

focus on the dialectic of embodiment, which she modifies to the term  ‘affective loop 

experience’. Here the interpretation (labelling) is solely with the user rather than the 

system. Her position is a recognition that emotions are co-created and inseparable from 

aspects of life. Höök develops devices which consider 'affect' both through forms of 

communication and potential feedback devices that have affective ‘in the wild’ 

annotation properties. 

 eMoto (see Fig 4.12) is a form of emotional text messaging interface, where 

physical gestures such as shaking the phone allows a choice of colours and animations 

to be constructed in the background of the text message. These variant colours and 

animations are believed to provide the receiver with a sense of the sender’s emotional 

state and tone. Naturally through usage this becomes a consensual learned language of 

communication. 
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Figure 4.13: Höök’s Affective Diary. (Höök, 2009). 
 

 Höök’s affective diary (see Fig 4.13) is a digital journaling format technology, 

which allows users to reflect and annotate their emotional states. An armband sensor 

collects arousal (GSR) and motion data that is then transmitted and logged onto a visual 

timeline. The data is displayed in a simple representational human like form and 

changes in shape and hue in relation to the sensor data. At any time the user may 

digitally scribble annotations onto the timeline linking it to the current image to create a 

reflective platform for their emotional patterns. 

 In a month long study with 4 participants this form of feedback proved useful in 

both the logging and annotating of data, and importantly allowing the user a sense of 

familiarity, and a gauge to their inner emotional world and the variant triggers and 

responses. 

   

Figure 4.14:  Minna Isomursu and colleagues, emoticon annotation interface. (Isomursu 
et. al 2007). 
 
 Another aspect of Design that calls for emotional evaluation is the assessment of 

human interaction with products. Minna Isomursu and colleagues (Isomursu,Tahti, 

Vainamö and Kuutti, 2007) conducted a comparative study of 5 self-reporting methods 
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of emotional responses to mobile apparatus in natural type settings. Alongside SAM and 

emo-card testing they explored three further experimental methods: (i) the drawing of 

representational images following the interaction, (ii) a feedback emoticon program 

included on the device (see Fig 4.14), and (iii) an ‘Experience Clip’ which was a audio-

visual recording device (a phone).  Of their three proposed methods, they deemed the 

Experience clip the most successful for gathering annotated emotional data.  

 This method incorporated the participants exploring the ‘product’ in known 

pairs. Whilst one engaged with the device, the other was able to record ‘up close’ in a 

manner that did not impinge on the activity of the participant as may occur if the 

researcher was present. The researchers surmised for their task this provided the most 

useful information that alongside transcripts of dialogue could then undergo facial 

emotional expression and vocal recognition of the data. 

 These few examples highlight both the necessity and problems of annotation and 

labelling. It is essential that these issues be give due thought in any experimental design 

that attempts to explore emotion in natural settings. As with the above highlights each 

experiment needs to consider its context and it most suitable method, and also how 

meaningful the gathered data is.  

 In her text ‘For the people by the people’ Picard (2010) highlights this issue of 

the meaningfulness of data. She notes that data would be more meaningful if it was fed 

back to participants giving a form of heuristic value. If we consider her vision of 

affective computing and also how HCI devices function, it is mostly aimed at the 

individual rather than group level, and thus gathering and working with a single 

participant may allow a deeper understanding when multiple individual longitudinal 

studies are brought together for comparison. 
 
 
4.6 Natural settings Location Tests 
 
 
 Drawing from the above findings, it became important to find an appropriate 

naturalistic EEG study method. Thus a series of pilot studies in the form of practical 

walk-through’s were conducted without participants to consider appropriate settings, 

stimulus, and annotation methods for EEG purposes. As no formal body of EEG 

research or experimental EEG method that we are aware of could be referenced for this, 

this process enlisted the art and design research method of 'reflection in action' and 



THE NEURAL DETECTION OF EMOTION 
 

 

61 

'reflection on action'. Simply stated, this is the process of undergoing natural activity 

whilst maintaining reflective forms of objectivity.  By conducting the pilot studies in 

this way, the experimental conditions could be experienced first hand. Practical issues 

could be identified and the potential nature and impact of elicited emotional responses 

could be subjectively gauged. The overall goal was to explore a wide range of stimulus 

from which the most suitable could be drawn. Considerations included sculpture, 

painting, animation, film, installation, light art, sound art, and live theatre.  The 

particular stimulus selections detailed below were dependent on current exhibitions and 

also ease of gaining permission to access spaces. The selected cultural works used in 

these 'walk-throughs' were identified through web searches for exhibitions using 

artrabbitt.com, which is devoted to Arts listings. Further web searches were conducted 

for current theatre productions. None of the works in these pilot studies had been 

previously viewed, although there was an awareness of some of the artist oeuvre. 

 Each study iteratively incorporated findings from the previous study, and 

problematic issues addressed with potential solutions tested. The issues of consideration 

identified for the pilot studies were;  (i) A real world setting, (ii) Repeatability of 

stimulus and setting, (iii) A stimulus of sufficient strength to elicit emotional responses, 

(iv) Appropriate annotation method, and (v) Control of variables. In each of the 

following instances these points were considered. 
 

4.6.1 Experimental Setting | Example 1 
 
Venue : The Serpentine Gallery. London 
Artist : Jonas Mekas. 
Format : Projected Artist Film/Video. 
 
 
The Serpentine Galley is a compact popular public Art gallery located in Hyde Park, 

West London. It hosts a roster of international artists working across diverse mediums. 

Jonas Mekas is an artist who works mainly with moving image, making forms of video 

diaries that intend to celebrate joy. His imagery comprises of montaged snippets of 

personal hand held video footage; of places, peoples, and actions. 
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Figure 4.15 :  Topography of the gallery space for pilot study: Example 1. (red dot= 
optimal recording position) 
 
   

 After fitting the headset, and wandering around the gallery, a few members of 

the public, who were curious about the headset, approached the researcher. This was an 

issue that would strongly impact on any formal experiment. Thus the most ideal space 

was sought in view to limiting this. The main gallery was a blackout space, it comprised 

of a full wall projection with a bench in parallel (see Fig 4.15). When attempting a 

recording seated on this provision, whilst there were no oral disturbances the viewing 

was affected by a constant rotation of people sitting down, getting up and walking past.  

 Thus a recording was made sitting on the floor, which whilst uncomfortable, 

presented an unimpeded view of the moving images. Here considerations were made of 

how to annotate one's sensations to the stimulus, a paper and pen were not possible due 

to the light levels in the space, and interruptions of the viewing, and the potential 

artefacts this may introduce into the signal. A possibility considered was how an 

inventory of facial artefacts such as blink signals, could be constructed as an annotation 

syntax, which could be read in the EEG signal. Whilst this may have potential in certain 

instances, it was felt that this would distract the viewer from their experience, to focus 

on the annotation protocol. Whilst such a setting and format of work had potential, the 

elicitation of strong emotions to the Artworks content was highly questionable. 
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4.6.2 Experimental Setting | Example 2 
 

Venue : Tate Modern.  London 
Artist : Oskar Fischinger. 
Format : Projected Abstract Animation 
 
 
 
 
 
 
 
      
      
 
 
 
 
 
 
Figure 4.16: Topography of the gallery space for pilot study: Example 2 (red dot= 
optimal recording position) 
 
 
 After Permission was granted for the recording by the Tate office, all staff were 

made aware of the recording, and to offer any required assistance. This gave a feeling of 

safety to the researcher for wandering freely through the large building. A post-

recording reflection on the Jonas Mekas exhibition concluded that a simple voice 

recorder would allow real time annotations to be taken, without disturbing the 

experience. This was implemented in this test recording.  

 The Tate Modern, is the most visited public modern art gallery in London, it 

houses both permanent and visiting exhibitions in a number of rooms arranged over 

numerous floors. Firstly, different works including hung paintings, free standing 

sculptures, prints, and moving images works were considered as potential future 

stimulus. As with the Serpentine the Tate is an extremely busy gallery. There was a 

consistent transit of the public throughout the spaces, such that when one attempts to 

view a work, it is often a shared experience with rotating others. Amidst the constant 

cacophony of random noise, there were a number of pleasant and polite inquiries as to 

my activities by others in the space. This again raised questions of repeatability of 

experiments and disturbances of this setting. 

 In spite of this a work by animator Oskar Fischinger's stood out as a potential 
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setting. It is situated in a designated blackout space. Opposite a large wall projection of 

the work there is a bench for the audience to sit (see Fig 4.16). It is a work on 

permanent display and the short piece is looped. However, again whilst trying to 

attempt to make a clean signal recording a consistent level of movement and noise, 

served only to distract from the work, and hinder a clear recording. Further the nature of 

abstract visual works and their ability to illicit strong or prototypical emotions was 

questioned for this stage of the research. 

 In terms of the annotation method, a voice recorder was excellent. It allowed for 

a commentary on the work and feelings without distracting from the stimulus. It was 

concluded that for such works (inclusive of Jonas Mekas) it might be appropriate to 

only make comparative pre and post experience recordings, against a simple SAM test. 

 
 

4.6.3 Experimental Setting | Example 3 
 
Venue :The Hayward Gallery.  London 
Artist : The Light Show (Various artist) 
Format : Light Installation works. 
 

 

 
Figure  4.17:  Works featured in The Light Show Exhibition included: Ollafur Ellisan 
(left), James Turrel (middle) , and Anthony Mcall (right ) 24. 
  

The light show was a survey exhibition held at the Hayward Gallery. It brought 

together a seminal collection of artworks that engage with the medium of light. This 

comprised of highly regarded International artists, including Anthony Mcall, James 

Turrel, Ollafur Ellisan, Jenny Holzer, Dan Flavin and Carlos Cruz-Diez amongst others 

(see Fig 4.17). 

 An EEG baseline was recorded in the Hayward Foyer. Once complete, both 
                                                
24 Retrieved from http://www.haywardlightshow.co.uk/ 
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EEG and audio recorders were time-synced and started, and the researcher entered the 

exhibition. The arrangement of the exhibition was for the designation of either a single 

room or a large space for each work so that it may be viewed in a form of isolation. In 

turn, the researcher approached each work and spent a few minutes experiencing it.  An 

annotation was made via voice recording, and then the next piece was visited. By using 

the audio recorder in this way it also became possible to locate in the continuous signal 

exactly where the viewing of any work began and ended, eliminating the need to 

continually start, stop, or place a marker in the Testbench recording interface.  

 Immediately noticeable was the quiet atmosphere and the availability of private 

space. At the Tate, Serpentine and other public gallery spaces visited it seemed chaotic, 

whilst here in a paying exhibition, firstly it was less crowded, and secondly everybody 

seemed to be more engaged in their own experiences. The only time the researcher 

engaged in any communication with others was when resting on a bench. 

  The headset was worn continuously for 1 hour 30 min’s without too much 

discomfort. It was felt that this situation would be an appropriate setting for an 

experiment. It was an engaging stimulus, evoking contrasting experiences, and by 

association emotions. It was felt there was a reasonable potential for repeatability across 

participants, the annotation method was rich, informative and immediate, and the factor 

of different people in the space was nominal. Any disturbances of this kind could be 

further reduced through the careful selection of the experiment’s timing. 
   

Artwork Stimulus 
(in order of viewing) 

Sequential 
Signal Movement 

Movement from baseline 
mean 

Baseline    ==  n/a 
Leo Villareal   +    + 
Ceal foyer    -    - 
Anthony Mcall    +    + 
Doug wheeler   +    + 
James Turrell   -    + 
C Cruz-Diez   -    - 
Conrad    +    + 
Anne Veronica   +    + 
Jenny Holzer   -    - 
Olaffur Elliason   +    + 
Baseline after     - 

 
Table 4.1:  This table show the Valence classification results for pilot study: Example 3. 
Column 1 lists the name of the artists work experienced in order of viewing, column 2 
lists the sequential increase-decrease of the signal (mean value for whole stimulus) for 
each work viewed in order. Column 3 shows the signal (mean value for whole stimulus) 
in comparison to the baseline (mean). N.B (+) equals an increase, (-) equals a decrease. 
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 The recorded data from this experiment was used to explore potential protocols 

for signal processing, classification and data handling. When comparing signal and 

annotation, simple relationships were noted; the most enjoyed work, gave the highest 

mean Valence value, whilst the least enjoyed gave the lowest mean Valence value (see 

Table 4.1). This assigning of the most and least and enjoyed work labels were based on 

my own subjective emotional responses to the works. Those which triggered positive 

pleasurable responses were annotated as being enjoyed, whilst the works which seemed 

to provide little or no response, or whose viewing I found no pleasure or interest in I 

annotated as not enjoyed. This is similar to how it was envisaged that the formal 

experiments would function.  

  It was felt that such a particular form of presentation with thoughtful planning, 

and the development of an on-person data capture (i.e. smartphone) would make an 

ideal experimental set up. 

 

4.6.4 Experimental Setting | Example 4 
 
Venue: Soho Theatre.  London 
Performance: Bitch Boxer by Chloe Jackson 
Format: Solo Theatre Performance. 
 
 
 
 
 
 
 
      
 
 
 
 
 
 

 
Figure 4.18:  Topography of the Theatre space for pilot study: Example 4 (red dot= 
researchers recording position) 
  

 Bitch boxer is a solo theatrical performance written and performed by Chloe 

Jackson. It tells a story of a East London girl with a passion for boxing, who trains to 

fight and goes on to win a gold medal at the 2012 London Olympics. Through the 
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narrative several personal relationships and themes in her life are explored. The Soho 

Theatre is an Independent theatre based in Soho, central London. It has a variety of 

performance spaces. Bitch boxer was performed in the upper theatre. Arranged around 3 

sides of a demarcated square stage were approximately 100 seats organised in rows. The 

researcher sat at the end of an aisle parallel to the stage, one row from the back in a seat 

that was selected before the doors opened (see Fig 4.18), 

 Before the performance started the researcher recorded a short baseline. Due to 

the building being so busy and a lack of quiet spaces, it was recorded directly outside 

the performance space. Upon entering the theatre studio the EEG and audio recording 

devices were started. Post performance another short baseline was recorded. 

 Regarding the performance, it was immediately deemed highly appropriate for a 

participant study. Firstly as a mode of emotion elicitation; the performance was very 

engaging, it moved at a fast pace, through a variety of characters and situations, and 

through them, evoked a whole range of emotions. A talented single performer who held 

the audiences attention for its duration enhanced this. Due to the intimacy of the setting, 

the performer is in close proximity. Thus, the synchronised exaggerations of facial 

expression, vocal tone, gesture, and story telling which were further synchronised with 

the lighting, sound, and props, converge as modalities to fully heighten and exaggerate 

the intended expressed emotion.  This increased the potential for variant clear 

elicitation.  

 Considering that all these aspect are repeated with as near precision as possible 

for every performance, it may be regarded as an excellent meeting point between 'real 

world' and laboratory conditions. One feels emotionally invested throughout the 

performance, and through this investment alongside engagement, is led on an emotional 

journey.  The audience being seated also assists the recording process. This aids the 

experiment by reducing any potential movement artefacts that may distort or disguise 

the signal. 

 Post performance, walking through the area of Soho, the researcher listened back 

to an audio recording of performance whilst it was still fresh in mind, and noted it 

brought back much of the experience; feelings, memories of feelings, and further 

reminders of sections that had flashed past. Thus it was felt that despite a short duration 

had lapsed, the experience of the performance was fresh enough against which to 

provide some form of annotation. This could be further tested in the formal participant 

experiments. From this test recording it was confirmed that the theatre was the most 
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suitable type of venue and stimulus for conducting a participant study in the context of 

this research projects aims.  

 
Figure 4.19: Speculative classification patterns were explored in the continuous data 
signal for pilot study: Experiment 4. 
 
 The recorded data from this experiment was used to explore potential protocols 

for signal processing, classification and data handling.  A 20-minute section was 

transcribed and plotted, and patterns were noted with in the signal for potential methods 

of interpreting emotional movements within a temporal signal. This same section was 

also used to test Ocular Artefact (OA) removal, whereby the blinks were algorithmically 

removed from the signal (see chapter 5). 

 
4.6.5 Experimental Setting | Example 5 

Venue : The Lisson Gallery. London 

Artist : Harron Mirza 

Format : Audio-Visual Sculpture. 

 

Two test recordings of temporal Contemporary Artworks were conducted at the Lisson 

Gallery on separate occasions. The Lisson Gallery is a highly regarded International 

private Art Gallery located in Central-North-West London, The gallery has a number of 

spaces arranged over two floors, which due to its private status are mostly quiet and free 

from others for the majority of the time. 

 The first test was conducted to Haroon Mirza's installation Pre-occupied 

waveform (2011) presented in the lower gallery. Mirza creates an assortment of audio-

visual-sculptural type assemblages. These have various components that contribute 
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towards a conjoined composition. The exhibited work can be experienced in different 

ways. One can statically survey the whole space, or circumnavigate individual aspects 

of the whole. The audio-visual elements can taken as a singularity, or individual units, 

further the audio topography can be isolated with eyes-closed. All propositions were 

tested.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.20: Topography of the gallery space for pilot study: Example 5 (red dot= 
optimal recording position) 
 
 

 In regards to these different forms of viewing potentials and the recorded signal; 

footsteps generate easily detectable artefacts in the signals, whilst head movements are 

recorded via the headsets in inbuilt accelerometer, thus such sections can be identified 

and extracted. Whilst the work may not bring to mind a strong sense of prototypical 

emotions, the works are surprising, moving, delightful and interior experiential 

transitions are apparent.  Thus it made sense to think about annotated responses in terms 

of evoked Valence and Arousal levels rather than discrete emotions.  

 For such works simple instruction protocols could be developed for participants, 

for example; (i) stand still and look around, (ii). Visit each piece in a specified order, (ii) 

sit in the centre of the space with eyes closed.  
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4.6.6 Experimental Setting |Example 6 

Venue : The Lisson Gallery. London 

Artist : Tatsuo Miyajima 

Format : Electronic Sculpture. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.21:  Topography of the gallery space for pilot study: Example 6. (red dot= 
optimal recording position) 
 
 

On a separate occasion a test response recording was taken to Tatsuo Miyajima's 

solo show this time presented in the upper ground floor Lisson galleries (see Fig 4.21). 

In his works Miyajima uses the metaphor of cascading number series’ comprised of 

variables 1-9, as representations of forms. In the exhibited works, with the aid of an 

Artificial Intelligence expert a series of panels with 'numerical communities' were 

presented. The works have a conceptual aesthetic, in that they provide a very cerebral 

process of analysis from which an emotional encounter may arise. However, it was very 

difficult to describe ones emotional responses to such a body of works, as subjectively 

one focuses on trying to interpret some form of meaning or associative comprehension. 

The emotional word that eventually arose was the term ‘Cold’; this may have been due 

to the intellectualisation process, which leads to an emotional distance one feels to the 

work. After processing and classification, the recorded signal indicated higher levels of 

withdrawal or negative valence. This may in some way reflect the withdrawal process 

Sculptures 

Sculptures 
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from the stimulus through forms of cerebral analysis rather than a negative experience.  

In such an instance the sensation of 'cold', can be a highly enjoyable experience.  

 Upon leaving the gallery a heightened emotional response was felt, which was 

very positive and arousing. It was considered that particular types of works might not 

present a strong immediate emotional response, but still produce a response that can be 

measured after a short delay. This again led to considerations of pre-post recordings, 

and also interval recordings & surveys that could be incorporated to gauge the 

emotional responses as the experience settles into memory over time.  

 Thus, as such a stimulus seemed to be affective in a different manner of 

emotional engagement to traditional emotional studies, it was felt that such a work, 

alongside a series of other works may operate best in forms of longitudinal studies 

where processes such as pre-post recordings, temporal reflections, alongside continuous 

recordings could be incorporated. In this way studies centred on predictive possibilities 

may also be explored. 

 

4.6.7 Experimental Setting | Example 7 

Venue: The Pace Gallery. London 

Artist: James Turrell 

Format: Light Installation. 

 

A final test recording was made at the Pace Gallery, with another form of temporal 

stimulus. The Pace Gallery is a prestigious International Art Gallery that represents 

some of the worlds most highly established artists. Thus in this instance negotiations for 

requesting a recording were understandably lengthier than others and only permitted 

when the gallery was closed. This was to prevent any infringement on the experiences 

of members of the public and customers viewings. 

 James Turrel is an artist who uses 'light and indeterminate space to extend and 

enhance perception'. In this presentation an expansive gallery space was partitioned into 

three smaller rectangular spaces. At one end of each space was a cutaway recess in the 

wall. From a distance these looked like old television screens. Within these recesses a 

series of colour frequency and temperature transitions occur which perceptually distort 

the solidity and characteristics of the space, and at moments induce hallucinatory optical 

effects. 
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Figure 4.22 . Topography of the gallery space for pilot study: Example 7. (red dot= 

optimal recording position) 

  

 The work viewed was a newly constructed work Kermandec 2014. After starting 

the EEG and audio-recorder, the researcher explored the screen up close, and then 

backed away in stages to finally settle in front of the work at a distance of approx. 5 

metres (see Fig 4.22). An effort was made to ensure that at each viewing location a 

static recording was made and also an oral annotation. 

 Subjectively, Kermandec has the ability to induce a real change in mood and 

emotion. It is increasingly relaxing, enthralling, and awe inspiring. One feels refreshed, 

quiet, invigorated and at times startled as apparitions begin to appear. It was felt that 

this would make a really good work for an experiment, especially due to the transition 

in pronounced feeling from the exterior public world to the impact of the work. 

Unfortunately the logistics and permission required to hold a group study here counter 

its potential.  
 
4.7 Conclusion. 
 
 From this series of test recordings, an evaluation was made as to which form of 

cultural artefact and natural setting offered the most potential for conducting an 

experiment to meet the context and requirements of this foundational research project. 
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This consideration was in terms of (i) a real world setting, (ii) repeatability of stimulus 

and setting, (iii) a stimulus of sufficient strength to elicit strong and varied emotional 

responses, (iv) appropriate annotation method and (v) control of variables. 

 The range of works experienced highlighted a variety of complex rich aesthetic-

emotional elicited experiences that were unique for each type of work, and also for each 

artist. Each artist communicated different sensibilities and modes of information 

transfer. Thus attempting to reduce these rich and complex experiences to simple 

information of valence and arousal levels through the single modality of EEG can in no 

way transparently fully describe these responses. Yet through our experiments by 

exploring one general facet of these experiences it may be possible to lay a foundation, 

upon which we may be able to iteratively explore with further scope and complexity.  

 Whilst it was felt that each offered a unique instance of investigation and insight 

into natural emotional responses, the Theatre setting was deemed most appropriate. It 

offered an excellent form of strong emotion elicitation, the natural minimization of a 

participant’s movement, and a stimulus that was as exact for each participant as may be 

possible in a real world scenario. There was the factor of each performance having a 

unique audience who may respond with difference, yet again it was felt that these are 

reflective of a true naturalistic setting. Also whilst each participant may respond 

uniquely to the conveyed emotion by the performer, the presentation of stimulus was 

clear and intentional, and far less ambiguous than in the other works viewed. It was that 

felt for annotation purposes a post- experience survey and SAM test could be used to 

effectively label the recordings. 

 Regarding the potential of recording responses to Artworks in gallery spaces, it 

was felt that with group shows, such as the Light show at the Hayward, protocols of 

movements and timings could be inserted into the experiment, or if naturalistic 

randomness was required the participants left to wander freely. The annotation method 

of audio recording to gather immediate responses was highly effective.  

For presentations of individual Artists works, it was felt that these might 

function best in a form of longitudinal study for single participants with considerations 

of working towards potential predicative systems. Here evaluations may be conducted 

for continuous, pre-post comparisons and temporally reflectivity.  

 Thus with sufficient consideration given to the context and nature of the work, 

effective strategies of investigation and experimental design can be constructed for 

gathering appropriate and meaningful data and annotation.  
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          CHAPTER  5  
 

        Signal Processing  
 
 
 
5.1 Introduction. 

 Primarily Brain Computer Interfaces (BCI) investigated assistive technological 

solutions for less-abled groups with particular emphases for sufferers of locked in 

syndrome (Cecotti 2010). The popularisation of this method of procuring a 

communication pathway between brainwaves and external devices has led to its wider 

adoption in applications beyond healthcare inclusive of marketing, creative fields, and 

also emotion research.  There is a traditional BCI pipeline that is as follows; 

 

(i)Signal Acquisition 
(ii) Pre-processing. 

(iii) Feature Extraction 
(iv) Classification 

(v) Application 
 

 Each context and project that uses this BCI pipeline configures each node of the 

methodology to suit its ends.  In this chapter a transparency of the methods will be 

detailed and also the process by which such determinations were made. 

 

5.2 Signal Acquisition. 
 

For Signal Acquisition, we are using the Emotiv Epoch EEG headset. It has 14 bio-

potential sensors with gold plated connectors, which conform to 10-20 International 

standard at sites AF3 (Fp1), AF4 (Fp2), F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, 

O2. It uses saline soaked felt pads that are placed in contact with the scalp. There are 2 

electrode reference sensors for placement at both left and right mastoids. The Headset 

has a 2048 Hz internal sample rate, which is down sampled to 128 Hz.  Its proprietary 

2.4GHz wireless connection is via a custom USB receiver, and has specialized software 

Testbench for both viewing the live signal and recording live raw EEG data in the edf 

format.  The Headset has a 2-axis gyroscope from which head movements can be 

detected. A Li-poly battery, 680 mAh, powers it and allows it to run continuously for 12 
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hours.  

There are a number of different purchase options available, which include 

options for including their facial expression and affective state suites. The Education 

package we will be using for this project provides access to Raw EEG data. 

 

5.3 Pre-Processing: Artefact Reduction Overview. 

 
 Within an EEG signal there is the potential for a variety of significant artefacts 

to manifest that can disguise its true readings. Artefacts may be introduced by the 

recorded subject, the recording device, or exterior electrical interferences. The most 

problematic of these in a still subject, are Ocular Artefacts (OA) that arise through 

blinking and eye movements. Endeavours have been made to realise processes that may 

reduce their potential distortion of the signal content. Following is a brief overview of 

the most popular methods used in artefact reduction (AR). This is followed by a 

practical testing of the most favourable methods, so that a process may be defined of 

use within this project. 

        
 

 

Figure 5.1: Illustration of the impact of blinking on a EEG signal recorded in the 
Testbench interface. 

 

In figure (5.1) we can see an example of the residue that a eye-blink (artefact) 

leaves on a EEG Signal recorded in the emotiv Testbench Interface (circled). As is 

visible within this image, we can note that as the distance increases from the ocular 

Fp1 F3 

Fp2 
F4 
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region, the artefact becomes relatively reduced. Whilst the artefacts can be viewed as 

prominent in electrodes Fp1/Fp2 (above the brow) they are less distinct in electrodes 

F6/F7 (temple Lobe region), and further reduced in electrodes F3/F4 (frontal cortex 

region).  As discussed else where in this study, for the context of this research, we are 

interested in detecting the emotional vectors of Valence and Arousal via electrode 

pairing F3/F4 in the Frontal lobe. So within this selection of electrodes, at the point of 

recording we have already managed to reduce some of the potential Ocular Artefacts 

(OA). However it is important to examine methods that have been developed and 

widely used, to see if any of these may be profitable for inclusion in this study.  

 

Avoidance: 

 Avoidance is the process of attempting to eliminate artefacts generated by the 

subject at the initial point of the signal recording. This limiting is applied through 

instructing participants to remain still and not blink throughout the duration of the signal 

recording. Naturally, this is best implemented in very short recordings and in laboratory 

settings where such controls are easier to apply.  

  

Rejection: 

 Rejection of Artefacts can occur in two ways. Firstly, any EEG Epoch (discrete 

recording) that can be identified as containing artefacts may be rejected outright from 

the study.  The second approach is to identify and isolate artefact-ridden portions of the 

signal, and to extract only these from the signal. The signal minus artefacts may then be 

concatenated. Whilst this rejection technique is a solution, its discards valuable data and 

is not viable for studies using continuous recordings with a dynamic stimulus, as the 

timeframe is considerably altered.  

 

Subtraction: 

 Subtraction is an artefact elimination method that uses further designated sensors 

to record a separate channel to capture the artefacts at their point of generation. This 

signal can then be used to subtract a weighted sum from each sensor relative to their 

location in the 10-20 international system.  
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Figure 5.2:  Traditional EOG electrode placements. 

 The Electro-oculogram (EOG) is a device/method which places sensors around 

the eyes at specific locations to record and measure the electrical potential/charge that is 

generated through eye movements and blinking (see figure 5.2).  This technique may 

also be adapted for EMG, and ECG. As mentioned above, when their occurrence is 

noted, a subtraction assessment can be made for all electrodes. However this is not an 

effective technique for OA elimination in all contexts due to the overlap between brain 

data and OA signals in the EEG sensors placed over the Pre-frontal-Cortex (PFC) and 

Frontal-lobe (FL). Thus when weighted subtraction is applied, it inevitability extracts 

elements of the desired brain signal from the recording, changing the data at its first 

point. 

Linear Filtering :  

 

 OA (Ocular Artefacts)  < 4Hz 

ECG ( Heart Beat)  == 1.2Hz (in the region of) 

EMG (Muscles)  > 30Hz 

Electrical Interference  > 50Hz      

 

Figure 5.3:  The Frequency ranges of physiological artefacts that may impact on the 

EEG signal. 

 

If we take into consideration the known neural bandwidth ranges of the signal which the 

EEG detects 0 - upper 60 Hz and also consider the ranges that specific artefacts register 

in EEG signals (see Fig 5.3) we may assess that by filtering the signal within the range 
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of 5-30 Hz we can potentially operate within a safe upper and lower oscillatory range of 

less prominent artefact registrations (Bos 2006, Mikhail,El-Ayat, Coan and Allen 2013). 

It is important to note that the frequency ranges of the signal we are interested in 

for potential emotional detection are Alpha (8-13Hz) and of interest is Beta (13-30 Hz). 

Both lay in this 'Safe' region. Thus linear filtering holds great potential as a viable 

process for this research project. 

 

Spatial Filtering :Independent Component Analysis (ICA) 

 

 Independent Component Analysis (ICA) is a form of Blind Source Separation 

(BSS) that attempts to locate independent signals within a mixed signal, to their points 

of generation. The most lucid explanation of this process is often presented as the 

cocktail party problem, where multiple microphones record a mixture of voices within a 

room, and the issue being to separate each voice. Applied to the context of Artefact 

Removal (AR), if all signals can be separated in this way, then there is the potential that 

one or more channels will hold all the artefacts that are desired for removal. Whilst this 

process calls for manual expert identifiers, specialised Matlab libraries such as 

EEGLAB, partially include this process within their interface. Yet again within this, the 

experimenter is required to manually select an ICA channel associated with OA for 

removal. 

 Thus whilst this technique has great potential for reducing artefacts, its major 

flaw is the manual identification of an artefact channel. Whilst in short time frames this 

maybe a justifiable pursuit, when we are dealing with lengthy or continuous signals this 

may not be viable. However, ICA has gained popularity over an earlier BSS algorithm 

Principle Component Analysis (PCA) as PCA assumes the extracted components to 

have orthogonal spatial topographies, where as ICA assumes statistical independence, 

which is more appropriate for EEG recordings (LeVan, Urrestarazu and Gotman, 2006). 
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5.3.1 Overview Summary 

 

 For this particular project that uses EEG to detect continuous emotions in 

naturalistic settings it is necessary to test applicable methods for their viability. 

Avoidance and rejection are not appropriate due to the real world setting within a 

continuous timeframe. Subtraction in terms of EoG is not desired as a process due to 

both its potential distraction in the experiment and its potential distortion of the signal 

(PFC & FL locations) at the first point of recording. However Linear Filtering and 

Independent Component Analysis both hold promise and as such it is important to test 

their viability on both a 'Test signal' and a 'real world' signal.  

 

5.3.2 DC Offset Removal 

                 

Figure 5.4:  A Bandpass filter allows chosen spectral frequency values within a selected 

range to be retained whilst all others are discarded 

 

               The first step in this process is the removal of the dc offset inherent to the 

headset. This can be achieved through a high pass filter at 0.16 Hz, as stated in the 

manufactures headset instructions. This step can also be incorporated into a bandpass 

filter when extracting desired frequency ranges (see Fig 5.4). For this project Alpha (8-

13 Hz) is the frequency range of interest, and Beta (13-30Hz) as a signal range of 

potential interest. Thus when required, the signals were passed through separate 

bandpass filter for each. To ensure a steep cut off slope and eliminate unwanted 

frequencies a 1000 order cut-off was used (see Fig 5.5). 
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5.3.3: Artefact Reduction Test 1: Linear Filtering 

The researcher made a one-minute test EEG recording via the Testbench Interface. This 

was in natural conditions, sitting relaxed in front of a laptop, with no stimulus. This 

setting was at the researchers home that was noiseless and distraction free. During the 

one minute recording the researcher sat still and blinked intermittently. The researchers 

aim was to capture a signal recording where there may be a clear distinction between 

OA and non-OA parts of the recording. 

 

Figure 5.5:  OA can be viewed in the EEG after a 0.16 Hz HighPass Filter (Dc Offset) 

 

After filtering the DC offset, within the wild oscillation of the signal we are still able to 

visually discern and identify the majority of the Blink artefacts as circled in red  (see 

Fig 5.5). 

 In order to test accounts that through filtering we may be able to remove many 

of the artefacts which operate at the lower frequency ranges, for example; OA < 4Hz, 

ECG == 1.2Hz , we can  iteratively raise the lower floor level of our bandpass filter to 

discard specific frequency ranges.   
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 (1 - 30 Hz Bandpass filter)(Blinks circled)                                (2 -30 Hz Bandpass filter) 

    (3 -30 Hz Bandpass filter)    (4-30 Hz Bandpass filter) 
     

      (5-30 Hz Bandpass filter)    (6-30 Hz Bandpass filter) 

    
    (7-30 Hz Bandpass filter)       (8-30 Hz Bandpass filter) 
 
 

Figure 5.6: The OA become less prominent through linear filtering, as shown here by 
iterative raising the high-pass bandpass floor successively by 1 unit.   
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 The preceding figure (see Fig 5.6) shows a series of bandpass filters for all 

electrodes. In each successive image the lower floor level of the bandpass filter is raised 

by 1Hz. In comparing the results between the 1-30Hz and 5-30Hz bandpass filters, we 

can see a vast reduction in the signal of the blink artefact. As a reminder it is important 

to note that the identified frequency ranges we are interested are Alpha, and of potential 

interest is Beta whose combined activity functions is the oscillatory region of 8-30 Hz. 

 In the above sequence we have demonstrated artefact reduction through the 

heightening of the lower floor element of a bandpass filter, which as peer research 

proposes reduces OA (Bos, 2006,  Mikhail et. al., 2013). We may also raise the ceiling 

of the bandpass filter beyond 30Hz, to see the extend of potential noisy artefacts of 

EMG (Muscles)  > 30Hz ) and Electrical Interference (> 50Hz) being introduced into 

our signal. 

(8-30 Hz Bandpass Filter)       (8-40 Hz Bandpass Filter)     

  (8-50 Hz Bandpass Filter)       (8-50 Hz Bandpass Filter)     
 
 
Figure 5.7: Iterative heightening of the bandpass ceiling by 10 units beyond 30 Hz does 
not show any dramatic changes in the EEG signal. 
 
 
 In figure 5.7, whilst on careful viewing we may be able to view differences, we 

cannot note a similar impact of raising the ceiling of the bandpass filter successively by 
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10 units, as we did with raising the floor value. If we attempt to raise this ceiling value 

beyond 63Hz we go beyond the measurable threshold of our acquired data signal. 
  

  Figure 5.8: 2-8Hz Bandpass Filter                 Figure 5.9 ; 2-8Hz Bandpass Filter  
  (all electrodes)                     (Fp1(blue),Fp2(black,F3(red),F4(pink))
   
 
 In the above figures we can view a 2-8Hz bandpass filter for all electrodes (see 

Fig 5.8), and for only the electrodes in the regions of interest (see Fig 5.9), which 

confirm that the majority of the OA artefacts are contained within this oscillatory region 

of the signal. 

 Thus in the above test, we are able to see that by narrowing the bandwidth of our 

recorded signal to the bandwidths of interest (Alpha 8-13Hz, Beta 13-30Hz) we are 

managing to significantly reduce the more severe disturbances of our signals as reported 

in peer reviewed research. Whilst elements may still remain, we can potentially further 

reduce these through electrode selection, as Figure 5.9 shows, the artefacts are much 

more invasive to the signal in electrode pairing Fp1/Fp2 than in F3/F4. 
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5.3.4 Artefact Reduction Test 2: ICA test signal 
 

 
Figure 5.10:  The blink test EEG signal. All electrodes (Bandpass filtered 8-13HZ) 
 
 
 For this test exploring the potential of Independent Component Analysis to 

further reduce OA, we are using the same signal used above in the linear filtering test 

(see 5.3.3). This has been bandpass filtered to extract the Alpha frequency (8-13Hz). 

Post filtering, we can note that there is still a residue of the blink artefact in our signal 

(see Fig 5.10). On closely inspection, despite eliminating a major factor of their impact 

in electrodes (Fp1/Fp2) there is still a residue albeit at a much lower rate. We can 

examine the extent of the artefact remaining in the signal through the visualisation of 

one hemispheres electrodes; Fp1, F7 and F3. (see Fig 5.11, below). 

    FP1     F7 

    F3     A Zoomed blink (F3). 
 
Figure 5.11:  A closer view of post-linear filtering blink signal residue from electrodes, 
Fp1 (top left), F7 (top right), F3 (bottom left), and a close up of OA in electrode F3, 
(bottom right). 

 
 Figure 5.11, also allows us to confirm that the increased distance from the point 
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of artefact generation reduces the artefacts interruption. In Fp1, the spikes are more 

significant than in F3 (paired with F4 ) which is the location we are interested in. In the 

bottom right corner of the image, we can see a detailed view of an OA from electrode 

F3. Here the blink can be seen to affect the signal for approximately 40 samples, which 

at a sample rate of 128 Hz translates as approximately 1/3 of a second. 

  Reviewing popular peer choices of ICA (Xiaowei et. al, 2010, Koelstra and 

Patras, 2013), the FastICA algorithm was selected and was available as a Matlab 

Library plugin for the apple mac OS. This was used in the following test to examine 

whether this smaller residue of OA could be further eliminated.  

 

 
Figure 5.12:  The original 14 electrode signals as viewed in the fastICA interface. 

 
Firstly, within the FastICA interface we can plot the original signal to view the 

oscillations of each electrode channel. In figure 5.12, the blinks have been circled in red 

for visibility in channels Fp1/Fp2 (row 1,14). We can also visually detect their falloff 

rate in subsequent electrodes F6/F7 (row 2,13) and F3/F4 (row 3,12). 
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Figure 5.13: The calculated independent Components (by fastICA) 
 
 
 The FastICA algorithm was implemented on the whole signal.  Figure 5.13, 

shows the independent components of the previously mixed signal after the FastICA 

algorithm had been applied. We can see that row 1 (blinks highlighted in red) contains 

the component signal that corresponds to the blink artefacts. However making such a 

decision with this scale of image may be problematic for even the more experienced 

identifier. Thus Matlab's plotting tools can be enlisted to assist in this identification, by 

providing a process that allows a closer inspection to ensure we locate the correct 

component of the signal to extract.  

 Using the Independent Component data generated by the algorithm, we can 

create 14 instances of the separated component matrix (we have 14 components due to 

the headset having 14 electrodes.). For each successive instance of the matrix, we can 

zero out one component, before remixing the individual component matrices to output 

14 different post-ICA signals. Here in each remix matrix we have eliminated one 

component. Thus we are able to produce 14 post-ICA plots that we can now visually 
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scale for closer viewing inspection. (see Fig 5.14, below) 

  Remixed Matrices with components removed (-1,-2,-3) (l-r) 

  Remixed Matrices with components removed (-4,-5,-6)(l-r) 

  Remixed Matrices with components removed (-7,-8,-9(l-r) 

  Remixed Matrices with components removed (-10,-11,-12)(l-r) 

Remixed Matrices with components removed (-13,-14),Original signal (pre-ICA)(l-r) 
 
 

Figure 5.14: This figure show the 14 different remix matrices, each with one component 
removed. In this way we can clearly determine which ICA component holds the OA. 
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 In consideration of figure 5.14 we can clearly detect that of the 14 components 

the first image (top row, top left) is the independent component which holds the blink 

signals, and corresponds to the visual image as displayed within the FastICA interface 

(see Fig 5.13). 

 Using this visualisation technique we can examine the impact of removing the 

undesirable component has on our signal in further detail, and also for any electrode we 

feel is necessary. However, whilst we may agree that the FastICA algorithm can 

potentially remove artefacts from the signal, it is also important to ensure that we are 

not inadvertently compromising the integrity of our data signal. 
 

 

 
Figure 5.15: (left) pre-ICA, (right) post-ICA signals for all electrodes. 

 
 
 
 Figure 5.15, above, shows the pre-ICA signal & the post-ICA signal for the 

collective 14 electrodes. Whilst we can note that the OA's seem to have disappeared, we 

cannot detect whether the signal integrity has remained intact. 
 
 

 
Figure 5.16:  (left) pre-ICA, (right) post-ICA signals for electrodes Fp1 & Fp2. 

 
 In the above image (see Fig 5.16) we can view a dramatic reduction in the OA 

spikes relating to the electrodes at locations Fp1 & Fp2. 
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Figure 5.17: (left) pre-ICA, (right) post-ICA signals for electrodes F3 & F4. 
 

 In figure 5.17, we may note, a lowering of the OA spikes in electrodes located at 

position F3/F4. As this is our electrode location of interest, we can look even closer at a 

smaller portion of our signal.  

 
 

Figure 5.18; pre-ICA (blue) and post-ICA (red) signals for electrode F3 (detail). 
 

 In the above figure (see Fig 5.18) we can clearly see that the signal is reduced at 

the points where OA are clearly situated (marked by red rectangle). However we can 

also note that there is also a change in the signal at all points, which serves to change 

our data. This can be made more explicit by looking at a OA free section in more detail. 
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Figure 5.19 : OA free section detail for electrode F3, pre-ICA (blue), post-ICA (red) 

 
Figure 5.19, shows the impact of the FastICA algorithm on a OA free section of our 

signal. Whilst the impact seems nominal we can clearly see that at each point, the signal 

has changed. Thus we are losing the signal's integrity, and abstracting from our original 

signal. Naturally with any such removal process there maybe a playoff between 

removing artefacts in a signal and retaining the original signal. Thus in making a 

decision whether it is beneficial to use ICA we can statistically examine the changes in 

the signal for the electrodes we are interested in. 

  
Figure 5.20 :  pre-ICA(left), F3 post-ICA (right) for electrode F3. 

 

Electrode	  F3	   Statistic	   Before	  ICA	   After	  ICA	   Difference	  
Min	   -‐18.47	   -‐15.38	   -‐3.09	  

Max	   3.5	   0.92	   2.57	  

Mean	   -‐7.25	   -‐7.33	   0.07	  

Std	   2.06	   1.65	   0.53	  
Variance	   4.23	   2.71	   1.53	  
Sum	   -‐5.07E+004	   	   -‐5.13E+004	   563	  

 
Table 5.1:  The Statistical summary for electrode F3, pre/post ICA. 
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Figure 5.21:  F4 pre-ICA(left), F4 post-ICA (right). 

 
 
 

Electrode F4 Statistic Before ICA After ICA Difference 
Min -19.02 -17.14 -1.88 
Max 6.88 3.17 3.7 
Mean -6.4 -6.5 0.09 
Std 2.6 2.23 0.38 
Var 6.78 4.96 1.82 
Sum -4.4840e+04  -4.55E+004 651 

 
Table 5.2:  The Statistical summary for electrode F4, pre/post ICA. 

 
 
 In the above tables 5.1, and 5.2, and in figures 5.20 and 5.21, we can note that 

there is a difference in all values. We can note that for the mean of the signal (which is 

the measure we will be using in further analysis throughout this project), there is a 

difference of 0.0748 for electrode F3 before and after ICA, and a difference of 0.0929 in 

the mean value before and after ICA for electrode F4. 

  We may select an OA free portion of the signal and inspect it numerically to 

assess the impact that ICA has on our recorded signal. 
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Figure 5.22:  This figure shows a section of the signal, which is known to be OA free, 

for electrode F3 pre-ICA (left),  post-ICA (right)  
 
 
 
 

Electrode	  F3	  
(OA	  free)	  

Statistic	   Before	  ICA	   After	  ICA	   Difference	  
Min	   -‐14.03	   -‐12.56	   -‐1.46	  

Max	   -‐0.76	   -‐2.37	   1.61	  

Mean	   -‐7.25	   -‐7.34	   0.09	  
Std	   1.72	   1.51	   0.21	  
Var	   2.95	   2.28	   0.67	  
Sum	   -‐1.2187e+04	   	   -‐1.23E+004	   	   148	  

 
Table 5.3: The Statistical summary for electrode F3, pre/post ICA (OA free region). 

 
 

Electrode F4 
(OA free) 

Statistic Before ICA After ICA Difference 
Min -15.05 -12.82 -2.24 
Max 2.23 -0.02 -2.24 
Mean -6.4 -6.49 0.1 
Std 2.31 2.17 0.14 
Var 5.34 2.17 0.63 
Sum -1.0753e+04  -1.09E+004  161 

 
Table 5.4: The Statistical summary for electrode F4 pre/post ICA (OA free region). 

    
 
We can gather the mean values obtained in tables 5.1, 5.2, 5.3 and 5.4, to clearly 
examine the extent of the impact of FastICA algorithm on our signal 
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Electrode F3 mean difference value prior and post ICA 
whole signal including OA 0.07 
OA free signal portion 0.09  

  
Table 5.5:  The mean value comparison for electrode F3, which reveal the extent of 
change to the whole signal and the OA free region.  
 
 

Electrode F4 mean difference value prior and post ICA 
whole signal including OA 0.09 
OA free signal portion 0.1 

  
Table 5.6:  The mean value comparison for electrode F4, which reveal the extent of 
change to the whole signal and the OA free region. 
 

Tables 5.5 and 5.6 confirm that we are changing the integrity of our signal, 
especially in the regions of the signal that contain no OA's. 
 
 
5.3.5 Artefact Reduction Test 3: ICA Real world signal. 
 
 
 The above ICA process test was performed on a test signal, and thus it is 

important to also test this on a signal that parallels the experimental set up to be used in 

this research project. A 'real data' signal was captured in the chosen experimental set up 

of a live theatre performance audience. The experimenter replaced the participant for 

this recording. The chosen venue was the Soho Theatre, Soho. London, and the 

performance viewed was Bitch Boxer by Chloe Jackson (see chapter 4).  

 
 
Figure 5.23: This figure shows a section of the signal (as described above), that contains 
a series of OA's (circled in black/Fp1, red/F3, magenta/F4, and blue/Fp2)   
 
 The Original signal was recorded in emotiv's specialized EEG recording 

interface testbench. The signal was replayed within this interface and the timings of 

clustered and single OA's noted. The signal was segmented in to artefact and non-

artefact regions by these notes. For this analysis a section (length 3200 sample, 25 
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seconds) containing OA was chosen  

 

 
Figure 5.24:  The extracted signal with dc offset (0.16) removal.( black/Fp1, red/F3, 
magenta/F4, and blue/Fp2)  (blink position are highlighted by the red arrows.) 
 
 
The same procedure as outlined for the test signal was used. Further the visualisation of 

the ICA data was also enlisted for easier viewing and selection in Matlab as outlined 

above (see section 5.3.4). 
 
 

Electrode F3 
 

Statistic Before ICA After ICA Difference 
Min -20.55 -18.8197 -1.7323 
Max 4.2615 2.9808 1.2807 
Mean -7.2806 -7.1312  -0.1494 
Std 3.0088 2.9666 0.0422 
Var 9.0526 8.8010 0.2516 
Sum -2.3298e+04 -2.2820e+04 -478 

 
Table 5.7:  The statistical summary for electrode F3, pre/post ICA. 

 
 

 
Electrode F4 

 
Statistic Before ICA After ICA Difference 
Min -16.82 -15.29 -1.53 
Max 3.82 3.18 0.64 
Mean -6.33 -6 -0.33 
Std 2.86 2.64 0.22 
Var 8.2 6.98 1.23 
Sum -2.03E+004 -1.92E+004 -1056 

 
Table 5.8:  The statistical summary for electrode F4, pre/post ICA. 

 
 

 In the returned results as with our test signal, we noted that artefacts were 

heavily reduced in electrodes pairing Fp1/Fp2, and importantly that we were also losing 
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and degrading the signal in our electrode pairing of focus, F3/F4 (see tables 5.7 & 5.8). 

Whilst for Fp1/Fp2 the mean value for our signal changed by a factor of -0.7805/-

1.4146 respectively, in our electrode signal of interest F3/F4 it has changed by -0.1494/-

0.3299. 

 
 

Electrode F3 
( 0A FREE) 

Statistic Before ICA After ICA Difference 
Min -11.3906 -13.0613 -0.9087 
Max 0.0090 0.6232 0.6142 
Mean -7.1484 -6.4304 -0.7180 
Std 2.6051 2.6122 -0.0071 
Var 6.784 6.8237 -0.0373 
Sum -2.5091e+03 -2.2571e+03 -252 

 

Table 5.9:  The Statistical summary for electrode F3 pre/post ICA (OA free section). 
 
 

Electrode F4 
( 0A FREE) 

Statistic Before ICA After ICA Difference 
Min -11.3906 -11.6809 0.2903 
Max -1.6713 -0.2686 -1.4027 
Mean -6.3910 -5.7721 -0.6189 
Std 2.1216 2.2151 -0.0935 
Var 4.5012 4.9066 -0.4054 
Sum -2.2433e+03 -2.0260e+03 -217.3 

 
Table 5.10:  The Statistical summary for electrode F4 pre/post ICA (OA free section). 

 
 
 Tables 5.9 and 5.10, show the same test performed on a known artefact free 

region whose length comprised of 351 samples for electrodes F3/F4. As with the test 

sample we can also see that in the real world signal we are changing our signal at all 

points. For F3 the difference of the mean value for this section before and after ICA is -

0.7180, whilst for electrode F4 the difference is  -0.6189. These differences for 

electrodes F3/F4 are gathered below (see tables 5.11 and 5.12). 

 

Electrode F3  mean difference value prior and post ICA 
whole signal including OA -0.1494 
OA free signal portion -0.7180 

  
 Table 5.11: The mean value comparison for electrode F3, which reveal the extent of 
change to the whole signal and the OA free region.  
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Electrode F4 mean difference value prior and post ICA 
whole signal including OA -0.33 
OA free signal portion -0.6189 

 
  
Table 5.12: The mean value comparison for electrode F4, which reveal the extent of 
change to the whole signal and the OA free region. 
 
 
This same procedure was also tested for the extracted Beta (13-30) signal. When 

attempting to follow the same process with the same signal portion restricted to Beta 

oscillations (13-30 Hz) we found that the lower cut off of the bandpass filter, shows that 

the OA were not outstanding within the signal. As determined within the above filtering 

test (see section 5.3.3) we can denote that many of the OA appear to operate at lower 

frequencies, which we determined by examining the whole signal and the electrodes of 

interest  (Fp1,Fp2, and in particular F3,F4). 
 

 Figure 5.25:  This figure shows that OA’s are not visible in the test segment for Beta 
(13-30 Hz).  
    
 
 We found that it is not possible to clearly delineate OA as separate from any 

region of the signal for all electrodes (see figure 5.25). We can look in turn at the 

electrodes of interest that are closest to the ocular region that may register more clear 

prominence. 
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Figure 5.26: The sample Beta signal (13-30 Hz) , for electrodes Fp1/Fp2 pairing (left), 
F3/F4 pairing (right) 
 
 

In figure 5.26, we find that for electrode pairings Fp1/Fp2 and F3/F4 at the beta 
band frequency, we are still unable to differentiate OA's from any region of the signal  
 

 
Figure 5.27: This figures show electrodes Fp1 (black), Fp2(Blue), F3(red), F4(pink) for 
the Beta frequency(13-30 Hz) for a region of the signal known to contain OA. 
 
 
 If we closely examine a region of the signal where a known OA is present we 

may view any OA impact on the beta frequency band of the signal. Further we may also 

note whether the signals from each paring of electrodes affect the other. As we can see 

from the above image (see figure 5.27) there is independence between them. The higher 

spikes of Fp1/Fp2 positions do not lead the F3/F4 paired positions signals, thus 

concluding that by using electrode pairing F3/F4 in the beta band range we do not have 

any major contamination of the signal by OA's.  Whilst Beta was included in the above 

considerations as a frequency of interest, moving forwards we concentrated solely on 

the Alpha frequency due to the support we found in our literature review (see Chapter 

3). 
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5.3.6 Potential Solution: Time Stamping. 
 

Thus whilst the FastICA algorithm may be effective in reducing OA's, if it is 

used on a whole signal then there is a risk of the signal being transformed which may 

lead to miss-classifications. One option is to find the precise location and duration of 

OA's and to export them from the signal for ICA OA component extraction, before re-

concatenating the signal.  Kumar, Arumuganathan, Sivakumar and Vimal (2008), 

propose such a solution enlisting Discrete Wavelet Transform (DWT) to plot the timing 

of blink, which can then be reduced by "adaptive thresholding". Whilst to implement an 

arbitrary threshold may not be of value in this instance, we can briefly examine any 

potential in this method.  
 

 
Figure 5.28:  The  blink test signal (+ 1000, preceding samples) for electrode F3. 
 
 

 
Figure 5.29:  A screenshot of the DWT processing at level 6 approximation and detail, 
for electrode F3. 
 
 
 In principle DWT is a process of down sampling a signal, In figure 5.28, we can 

view the signal used in this test, which is the signal used in the above blink test  (see 
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section 5.3.3), with 1000 preceding samples included. Figure 5.29, shows the signal at 

the 6th level of approximation and detail (DWT). Here we can view the potential of 

being able to timestamp OA's through their breech of a given threshold in comparison to 

OA free regions. By exporting this time stamping to our initial signal, we may then 

precisely extract each OA occurrence within our signal, for individual ICA 

implementation. However we then have to manually perform the fastICA extraction 

process (as described above section 5.3.4), for each OA. When we consider the 

practicality of this as a process for a noisy signal in continuous timeframes of up to 1 

hour, we may surmise that it is not affective or economical for this particular project. As 

we have determined, through filtering and electrode selection we have reduced OA’s to 

an acceptable level for the requirements of this research. 

 It should however be noted that proposals for automating ICA are an area of 

interest for the EEG community and as such, Viola et. al. (2009) present CORRMAP an 

semi automated IC identifier plugin for EEGLAB, which clusters ICA through 

thresholding.  Winkler, Haufe and Tangermann (2011) envisage linear classification 

techniques to automate the selection of the ICA components to be extracted based on 

multiple statistical features. A similar approach is the usage of Bayesian Classifiers to 

separate decomposed ICA EEG epochs by LeVan et. al (2006) whereby signals are 

determined as EEG as opposed to Artefact through their registration under certain 

thresholds, which also accounts for both EoG and EMG. 
 

 

5.3.7 Artefact Reduction: Conclusion and Discussion. 
 

Firstly it is important to state our intentions. We desire to obtain EEG signals in natural 

settings from which we aim to decipher emotional responses to cultural artefacts. This is 

in order to gain some insight into these subjective emotional experiences. The EEG 

signal is sensitive to distortion from a variety of artefacts introduced by either the 

participant, the recording device or exterior electrical interference. 

 Above we have considered potential peer tactics for their removal, and tested 

those most suitable for this projects context, namely linear filtering, Independent 

Component Analysis, and also electrode selection. 

 Firstly above we have seen: through linear filtering of the signal to the 

oscillatory range we are interested in Alpha (8-13 Hz) and also of curiosity Beta (13-
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30Hz) we are able to reduce the main body of artefacts of OA, ECG, EMG and 

electrical interference. Through electrode selection of F3/F4 we are further reducing any 

residual registration of OA's on our signal. Further we have explored the potential of 

performing the FastICA algorithm on our signal to further remove any impact of OA. 

We have found that unless we perform this algorithm solely on the OA region, we are 

compromising the integrity of our signal. Whilst a possible solution has been 

demonstrated using DWT, to timestamp their occurrences within our signal, this would 

still result in the manual performance of selecting the OA component for each selection. 

 For this project this is not deemed as efficient or affective as a process, as it is 

envisages that these signals will be lengthy and look towards real-time solutions. 

Further it is felt by the researcher that through the above mentioned process any 

potential artefacts will have already been reduced to an acceptable nominal level.  Thus 

moving forward Linear Filtering to Alpha 8-13 Hz, and electrode pairing F3/F4, will be 

the most effective and efficient forms of reducing the presence of artefacts in our signal. 

 

5.4  DFT: Window Length  
 

 Figure: 5.30: Alpha FFT 8-13 Hz   Figure 5.31: Beta FFT 13-30Hz 

 

As previously mentioned, for this project Alpha (8-13 Hz) is  the frequency 

range of interest, with an interest for  Beta (13-30Hz). Thus as required, the signals 

were passed through separate bandpass filters for each. To ensure a steep cut off slope 

and eliminate unwanted frequencies a 1000 order cut-off was used. The temporal data 

signals can be made meaningful for analysis by translating them into the spectral 

frequency domain through two types of Fourier transform. A Fast Fourier Transform 

(FFT) can be applied to the whole signal to return intensity values for each of its 

frequency steps (see figs 5.30 and 5.31). 
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Fig 5.32:  A spectrograph allows the spectral power to be viewed in discrete time units. 

  

 Secondly using a Discrete Fourier Transform (DFT), we can segment the signal 

into discrete window bins of any chosen length. The DFT window length selected for 

this project is a ; hanning window of 1024 samples (8 seconds) with 50% overlap to 

produce a spectral frequency representation of the signal for every sequential 4 second 

segment.  In figure 5.32 we can see an example of a resulting spectrograph as plotted in 

MATLAB 2012b, This displays both time (X axis) and, frequency (Y axis), and 

magnitude (colour). 
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Figure 5.33. A visualisation of binary classification for Valence shows the correlations 
between 3 different DFT window lengths for nine separate stimuli responses for a single 
participant. Here each column represents the Valence response for a single stimulus. 
Within this 3 further columns represent the different window lengths of (left to right): 8 
seconds, (16s|50%|128Hz), 4 seconds (8s|50%|128Hz) and 2 seconds (4s|50%|128Hz). 
 

 Tests were conducted into the selection of a meaningful window length. In figure 

5.33 (below) we may view a representation of a resulting Valence classification; Red for 

(+), Blue for (-) , for participant (NI) in experiment 1 (see chapter 6). Each of the nine 

columns represents a stream of data for a single stimulus clip trail. Each column is 

further segmented verticality to represent the 3 window lengths tested; (left to right) 8 

seconds (16s|50%|128Hz), 4 seconds (8s|50%|128Hz) and 2 seconds (4s|50%|128Hz). 

Horizontally we can see their temporal correlation for the trails duration. Visually, we 

may be able to detect slight differences in their classifications due to the averaging of 

different quantities of data, yet the majority of the class patterns integrity is kept intact. 

Naturally larger windows give a more generalised interpretation, whilst smaller window 

lengths present a more detailed view, accounting for these slight differences. It was felt 

that a 4 second value was appropriate in that it gave a good level of detail, and also a 

timescale that may prove valuable and meaningful in noting any changes in emotional 

dimensions 
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5.5 Data Labelling & Classification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.34. The Accurate labelling of data is vital for classification purposes. 
 
 
5.5.1 Introduction. 

 
 As pointed out by Healey (2011) accurate data labelling is the biggest challenge 

facing affective computing, in the understanding of a data signal, and in turn then 

potentially being able to understand further incoming data.  As per design of the 

experiment 1 (see chapter 6, and Appendix A; A.4), for part of the study survey, 

participants were asked to give a short annotative written description of any changes in 

their felt emotions over the course of the sound clip. This was to test whether 

meaningful temporal relationships may be observed in the analysis between the signal 

and their written annotations. 

? ? 
? 

? 
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Figure 5.35: An illustration of speculative temporal correlations between participants 
written annotations and their stream of signal classification, which were computed 
every 4 seconds. 
 
 In the above example (see figure 5.35) we can infer a movement in the signal’s 

temporal classification results which occur every 4 seconds, that matches the felt 

emotional movement suggested in the annotation. The participant annotated their 

experience as an inconsistent feeling, " Arising unpleasantness. Rising in nerves in 

anticipation of violence. Then a more melancholy sadness". At the beginning of the 

signal classification results, clusters amounting to 28 seconds for a sustained positive 

Valence, with low Arousal were noted. Towards the end of the signal, this transitions to 

a sustained 32 second clustering of negative Valence with high Arousal levels. Whilst 

this may infer a relationship between annotation and signal, it is important to consider 

that the annotation may not be of sufficient detail to have confidence in this example. 

This form of analysis considered these forms of relationships over the whole groups 

responses between signals and surveys. Whilst the number of correlations noted by the 

researcher exceeds a random occurrence, this form of analysis does not present the form 

of formal objectivity required. Whilst this may be overcome by having groups of 

independent identifiers note their own correlations, it was felt that this process would 

need further consideration, to be implemented as a justified objective classification 
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method. 

 Thus, various classification methods were explored. Algorithms such as Support 

Vector Machine (SVM), K-Nearest Neighbour (K-NN) were considered and tested for 

suitability using Fishers iris data, looking at 'multi-class', in a one versus all operation 

and also 'binary' classification. When considering these as potential classification 

methods for this research projects data, the issue arose of a non-stationary temporal data 

signal against proposed singular ground truth values, where no complete relational 

confidence could be stated. Further for the two types of settings and stimulus used in the 

research, a definitive ground truth may not be procured, which again does not provide 

the required confidence. 

 Thus rule base EEG classification methods such as Baseline Correction 

classification were also explored for potential appropriateness in this project  

 

5.5.2 Baseline Correction. 

 

 Baseline correction is a procedure that is ubiquitously used in EEG-ERP 

experiments. The principle of the process is to extract all elements of a signal that are 

not considered to solely be the response to an experiential stimulus, so that the only the 

response remains as the measure. This is achieved through recording a pre-stimulus 

baseline, whose mean value is then extracted from the signal, leaving only the 

measurable stimulus response (Woodman, 2010). Alternatively a baseline may be 

constructed from the mean of all related data signals, and then subtracted from each data 

point in the time series. Again this leaves only the response signal in relation to the 

baseline condition. 

 Whilst ERP studies are conducted in minute time frames, we can take the 

principle of baseline correction and apply it to our study in order to configure a suitable 

classification procedure that may be used within the context of this project. 

 Recording a pre-stimulus EEG baseline and subtracting its mean value from 

every data point in our experiment signal, we are left with a temporal signal of data 

points. Each data points then represents a dynamic positive or negative movement away 

from a zero point (the baseline mean).  Further, it may also be possible to consider the 

distance from zero at each point as a signifier of the strength of the response for any 

given data point. By conducting this process for all participants in a study, it may also 

be possible to clearly plot and gauge their comparative responses at any given time 
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across the participant group.  

 Thus through this method we may firstly arrive at sequential positive/ negative 

values for each vector of Valence and Arousal or a single averaged value for each 

epoch. Secondly we may composite their sequential or averaged values onto a 2 

dimensional circumplex model, whereby they can be assigned class labels. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.36. An illustration of the classification space and model. 

 
 Figure 5.36, presents the visualisation of this method (space). We can see that 

the baseline mean operates as a zero axis on both vectors of Valence and Arousal, which 

serve to categorise a two- dimensional space into four categories.  

  

4   V- A+ 1  V+ A+ 
3    V- A- 2 V+ A- 

 
 Table 5.13: The correlation table between Valence and Arousal values and Class 
Labels. 
 

Thus each data point can be labelled as residing in one the four sectors dependent on the 

 Each data point is 
viewed as a departing 
trajectory from 0,0 

0,0 

1. 

2. 3. 

4. 
A + V + A + V - 

A - V - A - V + 

Baseline Means 
operates as Zero on 
both axis 

Arousal + 

Arousal - 

Valence - Valence + 
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its composite Valence and Arousal value, as detailed in the table 5.13. 

  
Figure 5.37: The sequential data points after the baseline mean has been subtracted for 
the Valence vector 

 

 
Figure 5.38: The sequential data points after the baseline mean has been subtracted for 
the Arousal vector 

 

Figures 5.37 & 5.38, clarify this process for each vector, to show the results of baseline 

correction on a temporal signal. For this purpose, a participant’s data from the 

experiment detailed in chapter 6 (see Chapter 6), has been used. Figure 5.37 represents 

the Valence vector, which is constructed through the AHD algorithm. Thus values less 

than zero represent negative Valence and a negative movement from the baseline, whilst 

greater than zero values represent positive Valence. For Arousal this is inversed where 

movements to lower regions indicate increased excitation, and higher regions represent 

Distance from 
 zero 

Distance from  
zero 
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increased relaxation (see Fig 5.38). As the above figures demonstrate, we can view the 

location of each temporal data point as a response, against the zero axes.   

 

5.5.3 Cross Participant Charting 

 
Within this method there is the potential for temporal cross-participant evaluation. 

Above in figures 5.37 & 5.38, the temporal vectors are shown for a single participant. 

By subtracting each participant's particular baseline from their particular signal in the 

same manner, it becomes possible to chart responses across a group of participants. In 

this way it becomes possible to find correlative responses at any particular given time, 

which potentially in terms of evaluating responses to a cultural artefact, may be of value  

 

Figure 5.39: Multiple participants plotting for the Valence vector. 

Figure 5.40: Multiple participants plotting for the Arousal vector. 
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CLIP 8 Valence 
SAM 

signal + 
registration 

signal - 
registration 

dominant       
category 

Arousal 
SAM 

signal + 
registration 

signal - 
registration 

dominant       
category 

P1(SN) 3(-/+) (+)7 (-)7 (-/+)  3(-/+) (+)2 (-)12 (+) 
P2(SM) 5(+) (+)5 (-)8 (-) 4 (+) (+)1 (-)12 (+) 
P3(SA) 4(+) (+)9 (5) (+) 2 (-) (+)7 (-)7 (-/+) 
P4(ST) 4(+) (+)10 (-)6 (+) 4 (+) (+)7 (-)9 (+) 
P5(SO) 5(+) (+)6 (-)8 (-) 4 (+) (+)5 (-)9 (+) 
 
Table 5.14:  Shows the correlations between SAM rating, and the dominant signal 
registration category for Valence and Arousal over time. 
 

 Figures 5.39 and 5.40 alongside table 5.14 demonstrate how through this 

process, we may be able to both visually and numerically extract data patterns from our 

signal across participants at any given time Further we may also potentially classify data 

streams as being skewed towards either positive or negative dominance by summing up 

the data points registrations for each binary condition on either vector.  

 

 

 Figure 5.41:  The classification space, created in the Processing environment 
 

 Through the above process the individual vectors, either as absolute values or 

reduced signifiers, could then be combined or composited as (x) and (y) values for 

classification within a 4 category, 2 dimensional circumplex space dependent on their 

location.   

 For test purposes the researcher chose to export the vectors to the Processing-

programming environment where they were automatically given class labels, plotted in 

a visual representation (see figure 5.41) and made available for creative data 

visualisation purposes. 

Whilst this process hold much promise for creative and artistic purposes, in this 
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particular project, we are trying to validate a formal process, to compare the signal 

versus annotations. Thus as stated above, we do not have the level of annotation 

description available to attempt to validate the process, and this issue of temporal 

annotation requires further consideration. Thus as an concrete process, we may take a 

mean value for any designated region, or response clip as a whole, and compare this to a 

single SAM test variable. In both cases signal and survey may be reduced to binary 

signifiers, of either positive (+) or negative (-) value.  

 

5.6 Conclusions. 
 

Above we have attempted to give a transparent rendition of the processes by 

which we arrived at our methodological selection of signal processing; signal 

acquisition, pre-processing, feature extraction and classification, which will be used in 

our formal experiments.  

 For signal acquisition, we will be using the emotiv epoch headset, as this enables 

mobile raw EEG recordings to be taken.  For pre-processing and AR removal, we 

explored a range of processes and found the best option for this project to be linear 

filtering. This was the most efficient and allowed for us to be able to extract the 

frequencies in the region of interest (Alpha, F3/F4), and simultaneously to eliminate the 

majority of artefacts without compromising or abstracting our signal. 

 For feature extraction we will be using AHD for valence, and ASP for arousal 

(see chapter 3). A single continuous feature vector will be extracted for each dimension. 

From these, the particular regions relating to each stimulus will be isolated.  

For classification, there is the issue of comparing labels to signals.  Regarding 

annotation labels, the subject’s self- reports will produce a single SAM test value for 

each vector of Valence ad Arousal for each stimulus. Whilst it would be highly 

desirable to have a more detailed temporal annotation method, this becomes problematic 

in terms of accuracy. As the participants may apply these labels after the event, asking 

for detailed annotations might present a higher probability of mislabelling.  

As stated above, using the Baseline Correction method we can extract only the 

stimulus response data that we require, and then average the EEG epoch relating to the 

each stimulus. This may be considered as an absolute value, or reduced to either a 

positive or negative signifier for binary classification. These averaged values will be 
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compared to the SAM values for each stimulus. 

 It may be visible that throughout this thesis we have continuously seen the gap 

widen between our original propositions of gauging emotional responses to artworks, 

and what is attainable both in terms of method and technology. Naturally we have 

reconfigured our scope within these found limitations.  

The methodological processes outlined above may be seen as part of a 

foundational testing to discern whether we may obtain on par results between laboratory 

and natural settings.  If this is the case, then it may be possible to return to developing 

these methods into a more detailed temporal format. This would allow us to explore 

some of the different forms of potential aesthetic-emotional responses we highlighted in 

our pilot studies (see section 4.6), which may contribute to expanding our goals. Thus 

the following two chapters detail two experiments conducted in contrasting setting, 

where we may determine the feasibility of such goals. 
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          CHAPTER  6  
 

   Experiment 1: Naturalistic Settings  
 
 

6.1 Introduction. 

 
  This first study considers the neural detection of emotion via EEG in 

naturalistic, real world settings. The overarching principle of this experiment is to 

determine the possibility of using the chosen commercial wireless EEG headset to 

detect and classify emotions for this purpose, whilst enlisting the AHD method. This 

research tests the usage of only 2 electrodes cited at position F3/F4 for Valence, and a 

montage of these electrodes to gauge the feasibility of detecting Arousal levels.  As this 

is the first experiment many questions surface over the whole process, which can only 

be resolved through its conduction. However the key questions have been articulated 

and are listed as follows. 

 

(i) Latency. Will a lapse in time between the viewing of a 

stimulus and the completion of a self -report survey, affect the 

participants response? 

(ii) Technology. Is the enlisted technology appropriate, stable 

and robust for use in such an experiment? 

(iii) Algorithms.  Are the algorithms we have determined, for 

Valence and Arousal classification competent and able to return 

successful classification rates? 

(iv) Baseline. Is the baseline correction method suitable for 

producing competent and successful classification results? 

Further which is the most suitable baseline correction method? 

(v) Settings. Is the specific natural setting conducive for such an 

experiment, and does it allow issue free data harvesting to 

produce competent classification rates? 

(vi) Emotional model. Is the dimensional model appropriate as 

appropriate form of classification for such an experiment? 
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 Whilst some of the above issues may be answered through a questionnaire, other 

answers will arrive though processing and analysing the correlations between the self-

reports and signals. Within this analysis the participants will be treated in 2 ways (i) as 

individuals, and secondly, (ii) as a group, by averaging their data. This has the intention 

of trying to determine the most successful route. 

 

6.2.  The Performance  
6.2.1 The Performance: Stimulus 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: The publicity poster for Josephine & I 25. 

 

 As outlined earlier, a theatre performance was selected as the best potential site 

for conducting the first natural settings experiment (see chapter 4). It offered a real 

world situation, with a near perfect repeatability of a real world stimulus. Within the 

stimulus, we have a performer making exaggerated facial, vocal, and bodily gestures to 

both convey and elicit heightened emotional responses. These are enhanced by props, 

lighting and sound effects that operate in a precise schedule. Thus, we may consider this 

real world situation to be on par with a controlled laboratory type setting and stimulus. 

                                                
25  Retrieved from http://www.thebritishblacklist.com/wp-content/uploads/2013 
/06/cush_ jumbo_josephine.jpg 
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Following is the related information regarding the performance. 

 

Title : Josephine & I 

written and performed by Cush Jumbo (Olivier nominated) 

Directed by Phyllida Lloyd.(dir: The Iron Lady, Mamma Mia) 

Bush Theatre. 7 Uxbridge Road, London. W12 8LJ  (13th August- 17th August 2013) 

 

Perfomance Synopsis : 

 Josephine Baker: Jazz sensation, political activist and international icon from the 

ragtime rhythms of St Louis and the intoxicating sounds of 1920s Paris, to present day 

London, Josephine and I intertwines the story of a modern day girl with that of one of 

the greatest, yet forgotten, stars of the 20th century. 

 Olivier nominated Cush Jumbo stars in her debut play, with live music and 

dance bringing to life the contemporary legacy of “...the most sensational woman 

anyone ever saw” (Hemingway). The award-winning Phyllida Lloyd directs (The Iron 

Lady, Mamma Mia!) 

 

6.2.2 Performance selection: 
 

 This particular performance was selected from a choice of several potentials that 

were resourced via Internet searches. The selection criteria was for; a solo performance 

by a performer of high calibre, a reputable mid sized theatre, a continuous run of 

performances, and emotionally provocative content.  

 Being aware of Josephine Baker's story, and having read reviews of both the 

performance and the theatre, a dialogue ensued with the theatre, whereby permission 

was granted to make five recordings and one preview test recording. Further, the theatre 

offered assistance to ensure the experiment would run smoothly without any issues, and 

simultaneously not impact in anyway on either the performer or the enjoyment of a 

paying public audience. 

 

6.2.3 Participant selection: 
 

 An email inviting responses to an open call for five right handed participants of 
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both genders was sent to the residents of EECS, MAT students, and Drama researchers 

based at Queen Mary, University of London. In order for there to be no bias in the 

selection, the first five respondents were selected for the study. The study group 

consisted of three females and two males whose ages ranged from 25 to 34 with a mean 

age of 30.8 years. Four of the group comprised of PhD students based at Queen Mary, 

University of London, whilst the final participant was the partner of a PhD student also 

based at this University. 

 All participants had attended the theatre during the previous year. Three of the 

group cited they were 'occasional' visitors of Theatre performances, one cited an 'often' 

attendance, whilst the final participant expressed a 'rare' visitation. 

 

6.2.4 Stimulus Clip selection:  

 

Clip Ref                           Clip Description 
Clip 2 A section of dialogue, describing Josephine hanging out with her 

father a drummer in a bar, where she get's positive attention for 
her dancing. 

Clip 3 An argument between her parents. 
Clip 4  Her boyfriend Willy, proposes. 
Clip 5 Josephine gets married, becomes pregnant, then experiences a 

still birth. 
Clip 6 Cush talking about an audition for a show in New York. 
Clip 8 Cush talks of filming in New York. 
Clip 9 Josephine moves to New York. 
Clip 12 Josephine leaves America and sings 'Im Sorry'. 
Clip 13 Cush takes a pregnancy test, transforms into Josephine and Sings 

a song. 
 

Table 6.1: A brief description of the selected clips for playback to participants in the 
post performance SAM test. 
 

 

The researcher experienced the performance a week before the experiment. Here 

an audio recording and a test EEG signal were taken. The audio recording was 

transcribed. Careful consideration was given for the selection of 'clips' to be replayed to 

the participants against which they would give post-performance SAM test ratings. A 

range of different moods, scenarios, and actions were included in the selection, with the 

intention of eliciting a variant series of emotional responses. 
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In Josephine & I, the performer weaves through time, place, situations and 

characters. It was felt that coherence was key; so 'enclosed' sections of dialogue were 

chosen to make up the clips, which also defined their length. As it would have been 

subjective of the researcher to tag these clips as eliciting an expected emotion, no tags 

were applied and the clips were left open to interpretation by participants.  Due to 

previous experiences of the EEG recording interface crashing during recordings in 

excess of 1 hour, all of the selected clips were chosen from within the first 55 minutes 

of the performance. Above is a brief description of the selected clips (see Table 6.1). 

 Whilst it was considered that the clips to be replayed to participants for the SAM 

test might be taken from the audio recorders they were to carry on person throughout 

the performance, it was felt that editing these clips 'on site' would create a large latency 

between the performance and the interview. Thus, the replayed clips were extracted 

from the initial recordings made by the researcher for all experiments. The 

appropriateness of this was questioned in the post-performance interview, in order to 

ascertain whether the recording allowed the participants to rein-visage the performance, 

and importantly re-experience the emotion they had experienced 
 

6.3 Experimental Structure: Procedure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
     

Figure 6.2 : A diagram of the experimental procedure. 
 
 The Bush Theatre provided a designated space called The Attik, as the base for 

EEG Recording 

Baseline Recording 
: the Attik 

Performance 
: Auditorium 

Sam Test 
: the Attik 

Sound Recording 2 
Sound Recording 1 

Time + 
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the experiment. The Attik, is a large, empty, clean rehearsal space located on the top 

floor of the Theatre. Whilst being in direct proximity to a busy west London high street, 

its elevated position reduces external noise to a low amplitude therefore providing little 

or no distraction. Further, as the space was allocated for this projects purposes, there 

were no physical disturbances throughout any of the experiments. Regarding the space; 

the floor is of natural wood, the walls are painted white, thus there was little in the form 

of visual stimulation or possible distraction. 

 On arrival to the theatre, the participant was escorted to the Attik. Here, they 

were provided with the information sheet and a consent form to sign. The procedure of 

the experiment was explained (see Fig 6.2), and the participant was encouraged to ask 

questions on any factor that was not clear. 

 The participant was shown how to fit and remove the headset, should they wish 

to terminate the experiment at any time. Once they were comfortable with this process, 

the headset was put in place and the researcher made any required adjustments to ensure 

a clear signal was being received. The participant sat in a chair facing the blank wall at a 

distance of approx. 10ft. Having been made aware of the function of a baseline 

recording s/he was told to simply relax. The recording was started and the participant 

was left alone in the space for a maximum of 10 minutes. This process was followed for 

all baseline recordings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Figure 6.3:  A bird’s eye view of the Theatre auditorium. 
 
 The participant was then led to the auditorium. Two audio recorders were used 

in this process. An apple i-pod, was the audio recorder designated for the participants 

sonic space. This was time-synched with the researchers apple Macbook pro that was 

Stage 

Participant 
Curtain 
Researcher 

Auditorium 
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used throughout all the experiments. The researcher used an Edirol Hdr as a second 

recorder for his sound space. This was mainly used to narrate the performance timings 

and any unexpected occurrences in the EEG signal. Once these were started in turn with 

audio commentary, they were left to record continuously until an arranged post-

performance meet up. 

 As arranged by the Theatre, The Front of House manager then guided the 

participant to their seat; the same seat was used for all participants. From this juncture 

the researcher and participant would not have any interaction until after the 

performance. The Front of House manager then led the researcher, around the exterior 

of the building, through the backstage area to a provided seat and desk in the 

auditorium. The researcher sat directly behind the participant, separated by a curtain that 

enclosed the performance and audience area  (see Fig 6.3). In this way, whilst the 

participant had been informed where the researcher was located, there was no visual, or 

any other form of communication throughout the performance. This served to extract 

the physical influence of the researcher on either the experience, or the data. 

 All participants wore the headset for the whole performance, which lasted for 

approximately 1 hour 40 min. Post performance the researcher re-established contact 

with the participant, In all cases the headset was removed by the participant after the 

performance. The participant was then escorted back to the Attik to perform the post 

stimulus interview and questionnaire. All participants sat at the same table in the same 

location for the interviews. 

 The nature of a SAM test and an explanation of each vector; Valence, Arousal, 

Dominance and their relationship to the measuring of emotion were provided. Further 

prompts for any required clarification were presented. 

 The nine selected clips, as outlined above, were placed in order on the Macbook 

pro screen in separate QuickTime players. Nine copies of the SAM test were provided. 

Firstly, a test clip was played through the headphones provided for the participants, to 

ensure that a comfortable sound level was achieved. Once it had been confirmed that the 

participants were able to cycle through the clips in the correct order, the researcher left 

the room for up to 20 minutes, returning only to check they were managing. 

 Once the participants had let it be known that this process was complete, the 

researcher then provided a questionnaire to be filled out (see Appendix A), and finally a 

receipt for their financial compensation. Each participant was given a manuscript of the 

performance and with this the experimental procedure was complete. 
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6.4 Data Processing and Feature Extraction.  
 
 
 Firstly for each participant, the EEG signal for each individual clip was 

extracted. For space saving and efficient processing, only the signals for the electrodes 

of interest F3/F4 were retained and exported to Matlab 2012b. 

 Here, the signals were passed through a bandpass filter to extract only the Alpha 

frequency range (8-13 Hz). This also served to eliminate/ limit the majority of potential 

artefacts that may affect the signals, as detailed in chapter 5 (see chapter 5).  A Sliding 

Fast Fourier Transform (DFT) was applied at a sample rate of 1024 Hz, with a 50% 

overlap, giving frequency representational values of the signal every four seconds.  

 The Asymmetric Hemispheric Difference algorithm for Valence, and the 

prospective algorithm for Arousal tested throughout this research, were applied. These 

are as follows (see Table 6.2). 

 

Valence algorithm  log(Alpha, Right Hemisphere) -log(Alpha Left Hemisphere) 

Arousal algorithm (Alpha Right Hemisphere  + Alpha Left Hemisphere) /2 

 

Table 6.2: The Valence and Arousal algorithms used for this experiment.  

  

 Two baseline correction values were created. A baseline (B) mean was 

calculated from the participant’s baseline recording, and a second baseline (ACB) mean 

was generated through the concatenation of all a participants EEG data for the clips, and 

an averaged value calculated. This was conducted for each participant for both of the 

Valence and Arousal vectors.  

 For each clip and vector, the baselines (B) and (ACB) were extracted from each 

data point in the signal. A mean value was then calculated from the resulting series of 

values for each clip and vector. Finally this value was reduced to either a positive (+) or 

negative (-) signifier, dependent on whether the value was positive or negative. 

Naturally, as Alpha is seen as an inverse signal of attention, for Arousal this signifier 

was inverted. This process was conducted for all participants and respective signals. In 

turn, the survey results were also reduced to a positive (+) , Neutral (N), or negative (-), 

signifier dependent on their value ; >3 = (+). ==3 =(N), <3 = (-). The same procedure 
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has been followed throughout this research (see Fig 6.4, below). 

 
 

   EEG signal 
 
 

Bandpass filter 
 
 

     Valence       Arousal 
 
 
 

Valence - (B) valence-(ABC) Arousal - (B) Arousal -(ABC) 
 
 

 mean Value    mean Value   mean Value    mean Value 
 
Figure 6.4: A diagram of the method from signal acquisition to output value for 
classification  
 
 
6.5 Survey Results   
 
6.5.1 SAM test results 
 
 

 
   
   Figure 6.5:  The SAM test given to all participants 
 
 Here, a summary of the SAM test responses will be presented, highlighting the 

most important factors. Figure 6.5, displays the SAM test used throughout this 

experiment. The SAM test consisted of three componential vectors which are 
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consensually used to assess emotion dimensions of; Valence, Arousal, and Dominance. 

These were given on a 5-point scale of 1-5 for each. The participant was told to mark a 

scalar on each vector that reflected their felt emotions. Following are three tables (see 

tables 6.3, 6.4, 6.5) that chart the responses of all participants for each vector. 
 

All	  Participant	  Responses	  for	  Valence	  
Clip	   P1	   P2	   P3	   P4	   P5	   Mean	   STD	  
2	   2	   4	   3	   4	   5	   3.6	   1.14	  
3	   1	   4	   2	   1	   3	   2.2	   1.3	  
4	   2	   4	   3	   3	   4	   3.2	   0.84	  
5	   1	   4	   2	   4	  >>>1	   2	   2.6	  /	  2	   1.34	  /	  1.22	  
6	   5	   5	   5	   5	   5	   5	   0	  
8	   3	   5	   4	   4	   5	   4.2	   0.84	  
9	   4	   5	   4	   5>>>3	   5	   4.6	  /	  4.2	   0.55	  /	  0.84	  
12	   3	   4	   3	   4	  >>>2	   4	   3.6	  /	  3.2	   0.55	  /	  0.84	  
13	   2	   2>>4	   2	   2>>>3	   1	   1.8	  /2.4	   0.45	  /	  1.14	  
 
Table 6.3: The participants SAM test responses for the Valence Vector. (1= unpleasant, 
5 = pleasant, >> indicates a reported double value). 
 
 

All	  Participant	  Responses	  for	  Arousal	  
Clip	   P1	   P2	   P3	   P4	   P5	   Mean	   STD	  
2	   4	   3	   2	   3	   2	   2.8	   0.84	  
3	   3	   3	   4	   5	   3	   3.6	   0.89	  
4	   3	   4	   3	   2	   1	   2.6	   1.14	  
5	   3	   4	   4	   2	   1	   2.8	   1.3	  
6	   5	   4	   2	   3	   4	   3.6	   1.14	  
8	   3	   4	   2	   4	   4	   3.4	   0.89	  
9	   4	   4	   2	   4>>>2	   4	   3.6	  /	  3.2	   0.89/	  1.1	  
12	   1	   4	   1	   2	   4	   2.4	   1.52	  
13	   5	   4	   4	   4	   1	   3.6	   1.52	  
 
Table 6.4:  The participants SAM test responses for the Arousal Vector. (1= calm, 5 = 
excited, >> indicates a reported double value). 
 
 

	  All	  Participant	  Responses	  for	  Dominance	  
Clip	   P1	   P2	   P3	   P4	   P5	   Mean	   STD	  
2	   2	   3	   4	   2	   4	   3	   1	  
3	   2	   2	   3	   1	   3	   2.2	   0.84	  
4	   4	   4	   5	   5	   5	   4.6	   0.55	  
5	   5	   2	   3	   3	   4	   3.4	   1.14	  
6	   5	   5	   5	   4	   3	   4.4	   0.89	  
8	   3	   4	   5	   3	   4	   3.8	   0.84	  
9	   1	   4	   4	   3	   4	   3.2	   1.3	  
12	   5	   4	   4	   4	   4	   4.2	   0.45	  
13	   3	   3	   1	   2	   4	   2.6	   1.14	  
 
Table 6.5: The participants SAM test response for the Dominance Vector. (1= 
overwhelmed, 5 = in control) 
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The	  Ranges	  for	  Each	  Vector	  Between	  Participants	  
Clip	   Arousal	  range	   Valence	  range	   Dominance	  range	  
2	   2-‐4	   2-‐4	   2-‐4	  
3	   3-‐5	   1-‐4	   1-‐3	  
4	   1-‐4	   2-‐4	   4-‐5	  
5	   1-‐4	   1-‐4	   2-‐5	  
6	   2-‐5	   5	   3-‐5	  
8	   2-‐4	   3-‐5	   3-‐5	  
9	   2-‐4	   3-‐5	   1-‐4	  
12	   1-‐4	   3-‐5	   4-‐5	  
13	   1-‐5	   1-‐4	   1-‐4	  

 
Table 6.6: Circled in red are the only instances where there is a consensual agreement 
across the groups SAM test of whether a clip was either negative (1-2), or positive (4-5) 
value. 
 
 
 In Table 6.6, the response range across all participants for each clip and 

dimensional vectors are set out. It is striking to note that there is literally no overall 

consensus between the participant responses for all clips. Out of 27 separate fields, there 

are only three fields (as circled in red) of overall agreeability as to whether the vector 

for the clip is of either a negative (1-2), or postive value (4-5).  Further, two of the three 

agreements are for the Dominance category, which at this stage is not a vector we are 

focusing on. From this we may infer that subsequent individual signal processing of the 

groups EEG may reflect this non-con-sensuality. 

 As the response range crosses the neutral point in nearly all cases it cannot be 

determined that the clips are neutral either. For example for clip 13 we have a Valence 

range of 1-4, an Arousal range of 1-5, and a Dominance range of 1-4. This almost 

covers the whole range of all scales.  

 

6.5.2 Questionnaire Results. 

The provided questionnaire was divided in to three subsections (see appendix 

A.5, for full questionnaire). The first part focused on the EEG headset technology used 

in the experiment and was designed to understand whether this mobile headset was 

appropriate for such a study. 

 In their responses 100% of participants agreed that the headset was both easy to 

fit, and comfortable to wear. Whilst all were aware of wearing the headset, none of them 

felt that it distracted from the performance. However all the participants agreed that 
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towards the end of the performance it did start to become slightly uncomfortable. All 

the participants wore the headset for 1 hour 40 minutes. The researcher previously 

found that wearing the headset for more than an hour gave an uncomfortable tightness, 

especially in the mastoid region from the reference electrodes, and also in the temporal 

lobe region.  

 Wearing the headset in public does bring attention, and four out of five of the 

group were either asked questions by the public in regards to the headset, or became 

aware of others attention directed to them pre-performance, but not during. 

 The second section of the questionnaire, focused on the suitability of the sound 

clips used in the post-performance survey, and most importantly whether they were able 

to bring back the emotions experienced during the performance. 

 

 
    (Question) did the sound clips (a) bring back emotions you felt when you watched the 
     performance. (b) give new emotions. (c) other 
 

 A B C 

PARTICIPANT 1 X   
PARTICIPANT2 X   
PARTICIPANT3 X (but not so strong 2nd 

time) 
  

PARTICIPANT4 X   
PARTICIPANT5 X X emotions from the 

memory of emotions. 
  

 
Table 6.7: Participant Responses to the question of latent felt emotions 

 
 
 The whole group found the clips to be clear and audible, and importantly diluted 

any concerns of a time delay between performance and survey affecting their responses. 

There was a 100% consensus that upon hearing the survey sound clips they were able to 

both locate where in the performance this 'scene' occurred and also re-experience the 

same emotions they felt during the performance. One participant highlighted two 

answers, stating that they also gave new emotions in the form of "emotions from the 

memory of emotions". Their precise responses to this important question are shown in 

table 6.7. 
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        (Question) did you find it easier to fill in the SAM test or to write the emotion in words? 

  
 SAM  WRITE COMMENTS 

PARTICIPANT 1 X   
PARTICIPANT2 X   
PARTICIPANT3  X   
PARTICIPANT4 X   I couldn't think of descriptive words 
PARTICIPANT5 X X both hard to gauge/ hard to word emotions 

 
Table 6.8: Participant Responses to the question of the most suitable annotation method 
 

 In Table 6.8, the majority of participants demonstrate a preference for filling in 

variable responses in a SAM test against filling in a keyword response. 

 In summary of the findings from the questionnaire; whilst this was a small test 

group, the most important factor was that all participants felt that performing a test in 

such a way allowed them to re-conjure the emotions that they had felt. Whilst it has 

been stated (Healey, 2007) that the delay may change and alter the emotions, in this 

instance we found unanimous reporting that by conducting a SAM test whilst the 

performance is still fresh in mind and memory, we are able to extract faithful self-

reports at this level of detail in relation to the stimulus, post-performance. 
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6.6 Results Experiment 1 

6.6.1 Evaluation (i): Individual Survey to Individual Signal. 
 

 
Figure 6.6: Successful classification         Figure 6.7: Successful classification             

rates Valence (B)    rates Valence (ACB) 
 

 If we look at the resultant table for correct classification rates in a binary system 

of (+) and (-), when comparing the individual participants signal to their own individual 

self reports for the vectors of Valence and Arousal, with the two forms of baseline 

correction, (B) and (ACB), we can note: For Valence utilizing baseline (B), we find no 

consistent relationship between the groups individual Valence signals and self reports. 

Whilst one participant (ST) scored highly this is not apparent for the group where we 

find only 2 of the 4 participants clear the level of randomness that is 50%. A further 

participant is in-situ on this boundary. The highest successful classification rate is 87.5 

% followed by 55.5%. There is one classification result far below random at 28.5 %. 

This result is for participant (SO) for whom the majority of the baseline recording was 

affected by unexplained interference, hence only a very small portion of this could be 

retained for calculating this measure. Rather than exclude this participant from the 

experiment, we can still use their signals for our baseline (ACB) evaluations. For 

participant (NI) no pre-performance baseline was taken due to time constraints so no 

values for baseline (B) could be incorporated. As this was the first recording the theatre 

wanted to ensure the participant was seated in the auditorium long before the majority 
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of audience members arrived, and as a new set of electrodes were used the set up time 

took slightly longer than usual. 

 When we assess the classification rates for baseline (ACB) we can see that 4 of 

the 5 participants score higher than the random level (50%), with the remaining 

participant on its border, with 3 of the participants achieving above 60%. Whilst it may 

be tempting to state this as a significant result, this is only within population of 5 

participants, and their correct classification percentage rates are not all substantially 

above random to provide full confidence in these results However, If a larger population 

was tested and achieved a consistency of above random rates, then we could be more 

confident. 

 
Figure 6.8 Successful classification     Figure 6.9 Successful classification: 

rates: Arousal (B)      rates: Arousal (ACB) 
 
 In turn, for Arousal classification results, we find 3 of the 4 participants for 

baseline (B) register above 60%. Again it should be highlighted that participant (SO) is 

the participant who falls below the random level with a successful classification rate of 

33.3%.  These successful rates fall slightly when using the baseline method (ABC). We 

can view only 2 participants registering above 59.9 % successful classification, with 2 

on the 50% boundary, and one below. These results display little difference from chance 

results, although to be sure a larger sample population would be needed. It may be of 

note that the highest classification rate for baseline (B) becomes the lowest for baseline 

(ACB). The classification rates for both Valence and Arousal are gathered in table 6.9 
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Classification	  %	  :	  Individual	  Signal	  versus	  Individual	  	  Survey	  
	  
Participant	  

	  
Valence	  (B)	  

	  
Valence	  (ACB)	  

	  
Arousal	  (B)	  

	  
Arousal	  (ACB)	  

SA	   50%	   50%	   62.5%	   75%	  
ST	   87.5%	   62.5%	   62.5%	   50%	  
MA	   55.5%	   55.6%	   71.4%	   28.5%	  
NI	   -‐	   62.5%	   -‐	   60%	  
SO	   28.5%	   71.4%	   	  33.3%	   50	  %	  

 
Table 6.9: Successful Valence and Arousal classification % rates for all participants 

 
 

	  	  	  	  r-‐Correlation:	  Individual	  Signal	  means	  and	  Individual	  Surveys	  
	   Valence	  (B)	   Valence	  (ACB)	   Arousal	  (B)	   Arousal	  (ACB)	  
Participant	   R	   P-‐Value	   R	   P-‐Value	   R	   P-‐Value	   R	   P-‐

Value	  
SA	   -‐0.09	   0.81	   -‐0.09	   0.81	   -‐0.67	   0.05	   -‐0.67	   0.05	  
ST	   0.41	   0.28	   0.41	   0.28	   -‐0.15	   0.69	   -‐0.15	   0.69	  
SO	   0.37	   0.36	   0.37	   0.36	   0.48	   0.23	   0.48	   0.23	  
MA	   0.05	   0.89	   	  0.05	   0.89	   0.1	   0.81	   0.1	   0.81	  
NI	   	   	   -‐0.01	   0.97	   	   	   0.17	   0.67	  

 

Table 6.10:  Individual participants Correlation Coefficient r, was calculated between 
their Individual Signal (mean) and  Individual Surveys for all clips. Each analysis used 
9 datapoints. 
 

A consideration was made as to whether there may be some form of direct linear 

relationship between participants SAM test ratings and their averaged signal values. We 

evaluated the means of the data signals, against the SAM ratings, which gave 9 data 

points for each participant for the 9 clips.  In table 6.10 we have calculated the 

Correlation Coefficient r, on  case-by-case basis, from which we can clearly view that 

there is a very weak linear relationship between them.  The only marginal relationship 

can be seen for Participant SA, Arousal (B) & (ACB), (r = -67, n = 9, p = 0.05). 
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6.6.2 Evaluation (ii): Group Survey to Individual Signal  
 

 
Figure 6.10 Successful classification   Figure 6.11 Successful classification 

rates: Valence (B)            rates: Valence (ACB)  
 
 

 For the second in the series of evaluating correspondences between Survey and 

Signal, we have taken a mean value of the groups SAM responses for each clip and 

compared this against the signals of the individual participants. In this way we can 

assess whether by further averaging their results we may be able to increase successful 

classification to a given stimulus, and whether this is a more appropriate method.  

 As revealed in figure 6.10, for baseline (B) we have the same pattern of the 3 

same participants achieving above the random level. These results are a slight 

improvement on the previous results (individual survey to individual signal baseline 

(B), see Fig 6.6) with respective results of; 55%, 66.7% and 66.7 %. We also again find 

that participant (SO) scores well below the random indication level, and the rest of the 

group with a classification rate of just 22.2%.  

 In figure 6.11, we can see the same comparison results for baseline (ACB). Here 

we can view a reduction in successful detection rates, compared to our previous (ACB) 

comparison (see Fig 6.7). Here only 3 of 5 participants score above 55% with the 

highest individual participant correct classification percentage of 66.7%.   
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Figure 6.12 Successful classification          Figure 6.13 Successful classification 

rates: Arousal (B)     rates: Arousal (ACB) 
 

 

 For Arousal we can note a greater successful classification rate using this 

analysis combination. 3 of the group of 4, score more than 65% for baseline (B), again 

participant (SO) scores the lowest. For baseline (ACB) we can see the highest single 

correlation for successful Arousal correlation at 87.5%, with another participant at 75%, 

and 2 further participants on the random boundary with 50%, and 1 below (SO). Whilst 

the results have improved for Arousal detection, the inverse is true for Valence. Table 

6.11 presents the classification results numerically. 

 

Classification	  %	  :	  Individual	  Signal	  versus	  Group	  Survey	  (mean)	  
	  
Participant	  

	  
Valence	  (B)	  

	  
Valence	  (ACB)	  

	  
Arousal	  (B)	  

	  
Arousal	  (ACB)	  

SA	   66.7%	   66.7%	   66.7%	   50%	  
ST	   66.7%	   44.4%	   66.7%	   87.5%	  
MA	   55.65	   55.6%	   77.8%	   75%	  
NI	   	   33.3%	   	   50%	  
SO	   22.2%	   55.6%	   	  37.5%	   37.5	  %	  

 

Table 6.11  Successful Valence and Arousal classification % rates for all participants 
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6.6.3 Evaluation (iii): Group Survey to Group Signal. 
 
 

 Figure 6.14 Successful group classification rate: group survey versus group signal 

 
 In a final consideration, both the participants EEG signals and surveys, were 

reduced to a single entity by taking a mean representational value for both. In terms of 

Valence, for baseline (B), we have a result that falls below the random level of 50%, 

with a successful classification rate of just 33.3 %. This rises slightly above random 

when using baseline (ACB) to 55.6%. 

 For Arousal we do find more successful results. Baseline (B) produces a success 

rate above 55%, whilst with baseline (ACB) we arrive at the most successful measure of 

this comparison combination of 62.5%. 

 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  r-‐Correlation	  :	  Group	  Signal	  (abs	  mean)	  	  and	  Group	  Survey	  
	   Valence	  (B)	   Valence	  (ACB)	   Arousal	  (B)	   Arousal	  (ACB)	  
r	  Value	   0.08	   0.25	   -‐0.32	   -‐0.35	  
p-‐Value	   0.83	   0.51	   0.39	   -‐0.35	  

 
Table 6.12:  Group Correlation Coefficient r, between the group signal (mean) and 
survey (mean) for each clip, the 9 clips provided 9 data-points in each evaluation. 
 
 As with previous considerations, in this form evaluation no evidence of a liner 

relationship between the signals and survey result could be determined (see table 6.12). 

Here the nine mean values of the participant’s signal value for each clip were 
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considered alongside the groups nine mean survey values for the corresponding clip.  

 

6.6.4 Results Summary  
 

 Thus, when considering the 3 types of evaluation combinations we have 

performed, we may state that the best results when considering the groups EEG signals 

individually for Valence were; using baseline (ACB), evaluation (i) which contrasted 

Individual signals to their Individual surveys. Here, 4 of the 5 participants scored above 

55%, with the final participant on the random level indicator of 50 %. For baseline (B) 

the best Valence results were achieved for evaluation (ii), when comparing the 

individual signals to the averaged groups surveys. Here, if we were to discard 

participant (SO) due to the issues of a problematic baseline, we would find a 100% rate 

of individuals having classification results higher the 55%. Yet with a population of 

only 3 participants, this may not be deemed significant, as such a statement would 

require a larger participant group. In both of these best results, had all the percentages 

resulted as significantly high, for example close to 75% then we may have reported with 

more confidence. 

 When both Valence EEG signals and SAM test survey were averaged to 

function as group reading in evaluation (iii), of the two baselines, baseline (ACB) was 

the only one to register above random levels at 55.6%. 

 For Arousal the best classification results were achieved for baseline (B) in both 

evaluations combinations between Individual signal to Individual survey, and Individual 

signal to Group survey. If we discard participant (SO) from our results, we find the 

whole population score above 62% successful classification rates in both instances. This 

outperforms Arousal results for baseline (ACB) where we find only 2 participants 

scoring above 59.9%, and 2 further participants on the random level of 50% for both 

evaluations. Of the two instances, the second evaluation (ii) combination was best. 

 For the averaged Arousal signals in our third evaluation we achieved success 

rates above 55.6% in both instances with baseline (ACB) the best performer at 62.5%.  

 From all our assessments of a linear relationship between the signal and survey 

values we were only able to determine a very weak correlation.  
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6.7 Conclusions and Discussion. 
 

In this primary study we have conducted an experiment into whether it is 

possible to determine emotion experiences via EEG in naturalistic type settings. 

Naturally with a first study, the whole process and its methods are under review. 

However a few prominent questions were highlighted at the outset of the experiment. 

These are again listed below: 

 

(i) Latency, Will a lapse in time between the viewing of a 

stimulus and the completion of a  self -report survey, affect the 

participants response? 

(ii) Technology, is the enlisted technology appropriate, stable 

and robust for use in such an experiment? 

(iii) Algorithms.  Are the algorithms we have determined, for 

Valence and Arousal classification competent and able to return 

successful classification rates? 

(iv) Baseline. Is the baseline correction method suitable for 

producing competent and successful classification results? 

Further which is the most suitable correction method (B) or 

(ACB)? 

(v) Settings. Is the natural setting conducive for such a 

experiment, and does it allow issue free data harvesting to 

produce competent classification rates? 

(vi) Emotional model. Is the dimensional model appropriate as 

appropriate form of classification for such an experiment? 

 

 In regards to the question of latency between experience and report, the 

participants experienced a continuous performance lasting approximately 1 hour 40 

minutes. Following this the participants were led to a designated space where they 

listened to nine short audio clip extracts of the performance, and completed a SAM test 

survey for each. In the questionnaire they were asked whether they could remember the 

sequential occurrence of the clip in the performance, and most importantly whether this 

brought back the emotions they had experienced. There was a unanimous agreement 
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that they were able to locate the clips juncture in the performance, and significantly that 

they were able to re-experience the same emotions they felt during the performance.  

 This suggests the suitability of this framework, and opens up the potential for 

such studies to be conducted 'in the wild'. This is without the need for an interruption of 

stimulus to fill in forms of self-report. Further this suggests that such a stimulus need 

not be limited in time and scale, and can be part of a larger context. This also directs 

that it may be possible to cautiously move beyond a theatre setting into further diverse 

settings. Naturally for group studies, there is the formal question of repeatability, but as 

shown above with careful consideration this may be achieved to a good degree. This 

finding also presents the grounding for longitudinal studies (without repeatability) for a 

single participant over many carefully considered diverse stimulus settings. 

 This study also asked, whether the enlisted portable technology was robust and 

appropriate for such an experiment. All participant reports objectively confirmed that 

the EEG headset was suitable. It was comfortable to wear, unobtrusive, with a simple 

and minimal set up time. The technology was also deemed robust by the experimenter, 

the EEG signal was maintained throughout the recordings, and the specialized 

recording interface Testbench was stable throughout. 

 In this experiment the two emotional dimensions of Valence and Arousal, were 

explored. For Valence the repeated peer reviewed method, of Asymmetric Hemispheric 

Difference was tested.  This incorporated using a minimal portable set up, of only 2 

electrodes F3/F4 for Valence detection. Their montage into a single electrode was used 

to measure Arousal in a speculative approach, to consider whether Alpha Spectral 

Power may be a measure of this. 

 The classification results for Valence when comparing an Individuals EEG 

signal to their self-report for this measure are indicative of a marginal relationship. 

Utilizing the baseline correction method (ACB) (evaluation (i)), 4 of 5 participants had 

classification percentages of 55%, which are above the level of randomness of 50%. 

The groups respective scores of; 50%, 55.6%, 62.5, 62.5%, 71.4%, which produce an 

average of 60.4% are reflective of this marginal relationship. This was the most 

successful method tested. When we treated both signal and self-report value as single 

groups, by averaging both to respective single variables we were only able to achieve a 

classification rate of 55.6%. In future studies it would be beneficial to continue to 

consider the population in both ways.  

 In terms of Arousal, as mentioned prior there is no successful peer reviewed 
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method. Hans Berger the inventor of EEG demonstrated through rigorous experiment 

that the Alpha frequency (8-13 Hz) is an inverse signature of attention. In this study we 

attempted to decipher whether there may be any correlation of neural activity levels 

measured by Alpha (8-13 Hz) in the frontal cortex region and self-reports of Arousal in 

a SAM test. Arousal was calculated as the averaged sum of Alpha derived from 

electrodes F3/F4. This was to gauge whether we may in some way be able to map this 

EEG measure to Arousal in a dimensional model of emotion. 

 For Arousal the best classification results were achieved for baseline (B) in 

instances of both individual signal to individual survey, and individual signal to group 

survey (mean). This is the case when we discard participant (SO) from the study due to 

the issues mentioned with baseline (B). In evaluation (ii) All 3 of the 3 participants 

scored in excess of 65%; with 66.7%, 66.7%, and 77.8% which produces an average 

score of 70.4%. For evaluation (i) success rates were 62.5%, 62.5%, 71.4%. These rates 

may be considered as having some marginal significance, but would require a larger 

participant test group, with consistent further higher successful rates to provide the 

necessary confidence in this measure. 

  The best Arousal results achieved for all 5 participants were in evaluation (ii) 

when comparing the Individual signals against the averaging of the groups self-report 

using baseline (ACB). The results returned classification rates of; 37.5%, 50%, 50%, 

75%, and 87.5%. Arousal outperformed Valence classification when both signal and 

survey were treated as a singular entity, with 62.5% against 55.6%.  

 Whilst it may be tempting to use these statistics (baseline B) to present an 

argument for the Arousal measure, the small population incorporated in this study leave 

the sense that this relationship would require further investigation, and thus should be 

regarded as inconclusive.  

It may be stated that the level of Arousal one may sense is different and 

notoriously more difficult to gauge than Valence. Whilst Valence may easily be 

deciphered in a binary consideration, Arousal may be more individualised and 

contextualised to immediately prior sensations, and further to a more personalised sense 

of history, than Valence. This was reflected in the surveys. 

 Two baseline correction methods were tested where firstly (B); a mean 

correction value calculated from the participant’s baseline recording, and secondly 

(ACB); a mean correction value calculated from all the data for the relevant clips. 

Whilst baseline (ACB) outperformed baseline (B) for Valence, we found the inverse for 
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Arousal. Thus it is felt important to continue to include both baseline methods in any 

subsequent studies. As we may have noted with participants (SO) and (NI) where 

problems arose with their baseline recordings, we were still able to include them in this 

study through the second baseline correction method. It may be that for particular 

experimental contexts, one of the different correction methods may be more suitable 

than the other. 

 Regarding the important aspect of settings. We can confirm that there were no 

issues in data harvesting, and further that such a setting is very conducive for our 

intentions. The participants were highly engaged with the stimulus, and all reported 

back how involved they felt with the stimulus, which is suggestive of high levels of 

emotional investment and elicitation. Yet, it remains unclear whether the setting has 

impacted on our signals, and whether the freedom of natural movement in conjunction 

with a complex stimulus may have affected our classification rates. 

 The final pre-experiment outlined question centred on the appropriateness of the 

dimension model as a basis for classification. It was confirmed through the 

questionnaire that the participants found it easier to give dimensional values than single 

keywords to articulate their felt experiences.  

 Questions that emerged through the processing of data, considered how best to 

treat the participant population; either as a group or as individuals. Through the analysis 

we arrived at variant results. In the case of Valence the best results pointed towards the 

individual, whilst for Arousal these were skewed towards a group treatment, thus it may 

be profitable to consider both configurations in any subsequent studies.  Due to 

economical and logistical constraints only a small population was used in this study, 

and this may play also play a factor in the indeterminacy of the results. As can be seen 

with participant (SO), in small populations, a single participant has the potential to 

considerably affect results. Whilst above this was for a insufficient baseline, this can 

also be true for other factors such as the unawareness or difficultly of articulation of 

labelling emotion, or simple non-engagement. All of these may affect the filling in of 

surveys.  Thus the necessity for larger groups in future studies was noted. In the 

instance of longitudinal studies, a larger number of studies may serve as a resolution. 

 Regarding the SAM test surveys, for this study a 5-point scalar was used for 

each dimension. It was felt that a neutral value occurred more often than anticipated in 

the responses. To negate this, a larger 9-point scalar could be used to present a greater 

freedom of response for the participants around the neutral registration. 
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 Whilst it is important to acknowledge some marginal degree of success with our 

detection results a secondary experiment needs be conducted in laboratory conditions 

with a larger population. Here, any questions of ambiguity towards the results may be 

addressed.  By reducing the complexity of stimulus to controlled settings, we may be 

able to further understand the results of this study, and whether measuring EEG in 

natural setting becomes more problematic due to the possible introduction of further 

artefacts which may disguise the signal. This is especially pertinent due to our set up 

which only uses two electrodes to gather data, and further the use of a low-cost mobile 

commercial headset, whereas traditional EEG set-ups use clinical technology with 

larger electrode configurations. 
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          CHAPTER  7  
 

   Experiment 2: Laboratory Settings  
 
 

7.1 Introduction. 

 Following Experiment 1, which was conducted in natural settings, it became 

important to conduct a second contrasting experiment under controlled laboratory 

conditions. This would allow a better understanding of the limitations of the 'in the wild 

study’, and whether it is because of difficult recording conditions or because of more 

fundamental difficulties in linking EEG to fine-grained emotional responses to complex 

time-based artistic materials.  Here any unknowns which may arise in a real world 

setting and have some influence on the EEG signal and the participants responses can 

be eliminated or minimised, and factors thought to be important to the outcome can be 

isolated. Therefore this management of conditions may present an enhanced confidence 

in the reliability of the received data and results. Thus for this experiment all variables 

except the presentation order of films clips were as precise as possible for all 

participants.  Finally the tight structure of the experiment also aids its potential 

duplication and repeatability. The key questions asked in this for experiment are as 

follows 

  

 (i) Valence, is the AHD method for detection reliable? 

 (ii) Arousal is the ASP method for detection reliable? Is there any basis for  

power levels in the alpha region being indicative of Arousal? 

 (iii) Will having a larger experimental population allow successful classification  

rates for both individuals and as a group? 

 (iv) Is the technology robust and reliable for this form of experiment?   

 

 

 It should also be highlighted at the outset of this experiment that it is questioned 

whether such a setting may have an impact on the Arousal classification results. As 

detailed in the literature review, experiments conducted in laboratory settings may 

decrease participant’s levels of emotional investments and engagement. This is 
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particularly relevant when using film clips. Film has a natural structure for increasing 

emotional investment over time, as relationships are built to the protagonists. When the 

clips are removed from this natural structure we may lose the power of this device. This 

may also be amplified with the start-stop nature of the experiment, where the participant 

is reminded of being in experimental conditions.  

 This experiment was conducted in 2 stages. Stage 1 comprised of a group of 10 

participants, who would define and tag a set of 16 film clips with both an emotional 

keyword, and a numerical value for both Valence and Arousal vectors via a SAM test. 

Stage 2 comprised of a second group who under laboratory conditions would view the 

objectively selected clips whilst wearing a commercial EEG headset. They would also 

complete the same SAM test.  

 It may be possible that the result from both experiments can be used to support 

or destabilise the findings of the others validity.  

 

7.2 Participant Selection. 
 
 An open email invitation was sent to all EECS & MAT residents, based at 

Queen Mary University of London. This open call requested for 10 participants (right 

handed) to take part in study which gauged emotional responses to film clips. The call 

made no exclusive distinctions between race, gender, age, position, or nationality for 

inclusion. To eliminate any form of bias the first 10 responses were selected as the 

experiments participant Group 1 (G1). Due to the volume of responses the next 10 

responses were selected to take part in the second stage of the experiment to comprise 

Group 2 (G2). 

 G1's demographics were as follows; 4 Males, 6 Female, Age ranges were 24-48, 

with a mean age 32.4 (std = 7.8). Participating Nationalities were:  1 Irish, 3 British, 2 

Central European, 3 Southeast Asia, and 1 America.  9 of the group were QMUL 

students, and 1 a QMUL staff member. 

 G2 comprised of 4 males, and 5 females, with an age range between 22 & 28, 

with a mean age of  25.4 years. Group 2's participating nationalities consisted of 1 

British, 2 Indian,1 Irish, 2 Eastern European, 2 Chinese, and 1 South American . The 

group comprised solely of PhD candidates based at QMUL. Two original participants 

were excluded from the study due to the volume and quality of their hair, which 

prevented electrode contact with the scalp and the detection of the EEG signal. These 
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two participants were replaced with one other to create a group of 9 participants instead 

of the intended 10. 

 In the above demographics, whilst we are selecting within the narrow population 

of students from a single university, we can note that we have a great diversity in terms 

of participating nationalities. 
 
 
7.3 Experiment 2 : Stage 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1, The Valence and Arousal dimensional vectors as binary conditions (positive 
and negative) in a circumplex space. 

 
 The intention of Experiment 2: Stage 1, was to create an objective set of variant 

film clips tagged with a dominant emotional keyword, and Valence and Arousal values 

through the means of a survey, by Group 1 (G1).  Once obtained, the objectively 

Tagged videos would then become a stimulus set for Group 2 (G2), who would observe 

the chosen video clips whilst wearing EEG headsets, and also produce a second set of 

survey data. The analysis of the results would compare the EEG signals against both 

sets of surveys. 

 In the design of this experiment, a method published by Soleymani, Pantic, & 

Pun (2012) was used as a reference for constructing such a set of stimulus videos. In 

their experiment they used EEG detection as part of a multi-modal approach of 

assessing emotional responses to film clips, and for their purposes segmented the 

vectors of Valence and Arousal into 3 discrete sections (calm, neutral, positive). In this 

experiment where we are using only the single modality of EEG, both vectors; Valence 
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and Arousal, are being divided in to 2 discrete categories Positive (+) and Negative (+) 

as is shown in figure (7.1). 

 
7.3.1 Preparatory Film Clip selection 

 

 More than 100 short film clips were extracted from 60 commercial films 

available in the QMUL library catalogue. This assortment was edited down to a 

selection of 38 clips that ranged in length between 1 and 5 minutes. These clips covered 

a range of moods, tones, imagery, situations and actions. It was hoped that between 

them they would be able to elicit a variant range of emotions, from which a smaller 

group of objectively tagged film clips could be obtained. 

 The criterion for each clip was for a 'closed' segment or scene that would present 

a clear and cohesive situation.  Adobe Final cut pro was used to edit and prepare these. 

The 38 film Clips were then randomised and placed on 10 DVDs.  

 

7.3.2 Procedure. 

 

 Each Participant of G1 was offered the option of either conducting the 

experiment within a designated space (MAT Computer Suite, QMUL) or alternatively, 

to 'take-away' the experiment to be completed at their own convenience.  

 The 'take-away' stipulations were; that they were to watch the clips alone in a 

distraction free space, to wear headphones if applicable, and to watch the films in any 

order in time chunks of no less than 15 minutes. This is reflective of Soleymani et. al 

(2012) methods whereby film clips were presented through an online portal, with no 

designated singular point of access. 
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Figure 7.2: The SAM test for experiment 2 comprised of a 9-point scale on each 

dimension of Valence and Arousal. 

  

Upon arrival, to the laboratory space, each participant (G1) was provided with 

an information sheet and verbally informed of the nature and conduct of the experiment 

(see appendix B; B1-B7, for all information sheets, questionnaires, and SAM tests 

relating to Experiment 2). An explanation of the SAM test and its variables of Valence 

and Arousal were provided (see Fig 7.2). The function of the keyword responses to be 

reported as felt emotions, and considered emotions were also relayed. This 

segmentation between felt and considered emotions was provided to minimise any 

confusion of response, and to ensure that a felt emotion was reported in each instance. 

Once the participants verified they understood all aspects, they signed the consent form 

and took the experiment package away. This consisted of a DVD containing 38 

QuickTime movies, 38 SAM tests, and a written account of the verbal instructions. 

 From group 1 (G1), only 1 participant chose to conduct the experiment 'Live'. 

This experiment took place in a continuous 2-hour time block inclusive of breaks, at the 

MAT computer suite. 1 participant’s DVD failed to operate, thus the clips were then 

made available for download online via Dropbox. 

 Upon the return of the completed experiment participants were given a 

compensation payment for their time. 
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7.3.3 Results 
 

Clip Emotional Tags  Valence  (Mean/STD) Arousal (Mean/STD) 
001 CON 4, JOY 3 7.2 / 1.50 2.7 / 1.68 
002 JOY 4, CON 3 6.9 / 1.29 4.5/ 1.65 
003 JOY 6, AMU 3 7.8 / 1.5 5.9 / 2.8 
004 ANX 5, DIS 3 1.8 / 0.6 6.4 / 1.8 
005 HAPPY 7, JOY 3 7.6 / 1.2 6.4 / 1.0 
007 AMU 8, NEU 2 5.8 / 1.8 4.4 / 1.6 
008 ANX 5, AFR 2 3.9 / 2.0 6.4 / 1.5 
009 ANX 5, AFR 2 2.9 / 1.8 8.0/ 0.9 
011 DIS 6, AFR 1 1.4 / 0.7 6.5 / 1.5 
012 SAD 5, NEU 3 5.0 / 1.5 3.5 / 1.2 
013 AMU 4, NEU 3 6.8 / 1.2 2.9 / 2.0 
016 HAP 5, NEU 3 6.8 / 1.5  3.1 / 1.7 
017 ANX 6, NEU 3 3.6 / 1.3 6.9 / 2.7 
018 ANX 6, AFR 1 4.2 / 1.5 6.9 / 2.2 
019 ANX 5, AFR 2 3.9 / 1.4 6.6/ 2.5 
020 ANX 5, HAP 1 4.6 / 2.5 6.9 / 1.5 
021  SAD 5, ANX 3 2.6 / 0.7 5.8 / 1.3 
023 ANX 3, HAP/SAD/AFR 2 3.9 / 1.9 6.1 / 1.6 
024 ANX 4, AFR 3 3.4/ 1.1 6.4 / 1.2 
025 NEU 6, AMU 3 6.0/ 1.3 3.5/ 1.2 
026 CON 5, HAP 3 7.0 / 1.3 2.1 / 1.0 
027 HAP 3, JOY 2, NEU 2 7.6 / 1.5 3.4 / 2.5 
029 AMU 8, HAP/NUE 1 7.7/ 1.3 4.6 / 2.0 
031 HAP 4, CON/ NEU 2 6.7 / 0.9 3.4 / 1.8 
034 JOY 5, NEU 3 6.4 / 1.2 4.5 / 2.1 
036 SAD 4 , NEU 3 3.6 / 1.1 3.4 / 1.7  
038 SAD 4, AMU 3 5.3 / 1.4 3.3 / 2.0 
042 AMU 5, HAP 2 8.0 / 1.2 6.3/ 1.4 
043 SAD 3, AFR 3 1.8 / 1.0 6.7 / 1.4 
050 ANX 4, AMU 2 3.8 / 1.0 6 / 1 
055 ANX 4 / NEU 4 4.5 / 4.4 4.4 / 2.2 
056 AMU 4, JOY 3 7.3 / 1.2 6.6 / 1.3 
057 AMU 7, CON 1 7/ 1.3 4.7 / 2.3 
058 NEUT 4, HAP 2 5.7 / 0.9 3 / 1.1 
059 AMU 9, JOY 1  7.3 / 1.3 4.5 / 2.5 
060 AFR 4, ANX 3, SAD 3 2.3/ 0.9 6.6/ 1.6 
061 AMU 5  6.0/ 2.2 3.5 / 1.7 

 

Table 7.1: Group 1's survey responses: Column 1 is the clip reference. Column 2 shows 
the collated keyword responses, columns 3 & 4; Valence and Arousal mean/std values 
for the group. The abbreviations are afraid (AFR), amused (AMU), anxious (ANX), 
content (CON), disgust (DIS), happy (HAP), joy (JOY), neutral (NEU), sad (SAD). 

 

 The returned surveys were examined in a number of ways. Firstly the data was 

collated into a single table for the group against each film clip (see table 7.1). For each 

clip the keywords for felt emotions were counted, and the mean/standard deviation (std) 

values for Valence and Arousal across participants calculated. It is notable that there is 

no occurrence of a single reported felt emotion keyword for any clip across the group. 

Following Soleymani et. al (2012) the keyword with the highest number of registrations 

was attached to the film clip. 
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Figure 7.3: The range of responses  Figure  7.4: The range of responses  for 
each emotion for Participant NI                     for each emotion for Participant SA 

 
 
 Secondly the individual responses of the participants were considered. For each 

participant the mean and standard deviation values were calculated for each reported felt 

emotion across all 38 clips. These were visually plotted for each individual. Figures 7.3 

and 7.4, provide examples from participants (NI) and (SA). Here, each felt emotional 

keyword is presented next to its mean value, which is represented by a dot of the same 

colour. The coloured circle which extends from this represents the extent of the standard 

deviation, the horizontal stretch represents Valence, whilst the vertical represents 

Arousal. From these 2 examples, we can view the pattern of difference that was 

consistent throughout the group; there was not a single static value on either axis 

associated with any form of felt emotion, rather these are seemingly dynamic variables. 
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Figure 7.5: All participant responses range        Figure  7.6: All Participant response  
for Joy                      ranges for Disgust. 
 
N.B In both figures, on each vector >5 = (+), == 5 =(N), <5 = (-) 
 

 In a secondary consideration, the individual participant responses for each felt 

emotion were visually composited together.  In this way it becomes possible to clearly 

see the inter-participant correlations for each felt emotion.  Figures 7.5, and 7.6, present 

examples for Joy and Disgust. Whilst there was a consistent strong correlation for 

Valence responses, which resided within either a positive or negative space for all 

emotions, for Arousal there was a wider dispersion across the division between positive 

and negative registration. However, this was not the case for the felt emotions of 

Disgust, Anxious, and Afraid that do share the same Arousal space. Figure 7.5 shows 

the example for Joy where we have a correspondence of (+) Valence, whilst a dispersal 

across both (+) and (-) sections for arousal. Figure 7.6, presents the example of disgust, 

which again has a correspondence for valence, but also this time for Arousal. This leads 

to an expectation that through this study there maybe a likelihood of greater success rate 

in classifying Valence than Arousal. 

 

7.3.4 Final Selection of Film Clips. 

 

 As outlined above, the prominent keyword for each clip was attached to it. Thus 

a selection of 16 film clips was made based on this objective data. 2 clips were chosen 

for each of the following emotions: Afraid, Amused, Anxious, Content, Disgust, Happy, 
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Joy, Sad. The final list of selected films is as follows. (see Table 7.2, below). 

 

Clip	  
Code	  	  

Emotional	  Labels	   Dominant	  
Emotion	  Tag	  

Video	  Clips	  Sources	  
Valence	   Arousal	  

001	   +	  	   	  -‐	   Content	   The	  Tree	  of	  Life	  (Start)	  
003	   +	  	   +	   Joy	   The	  Holiday	  (House)	  
004	   -‐	  	   	  -‐	   Disgust	   Zero	  Dark	  Thirty	  (Water	  Torture)	  
005	   +	  	   -‐	   Happy	   Blindness	  (See	  again)	  
009	   -‐	   +	   Anxious	   Black	  Swan	  (Dressing	  Room)	  
011	   -‐	   +	   Disgust	   Anti	  Christ	  (Leg	  Drill)	  
012	   N	   -‐	   Sad	   Eternal	  Sunshine	  of	  the	  Spotless	  

Mind	  (Waking	  Up)	  
017	   -‐	   +	   Anxious	   Taken	  (Boat	  Fight)	  
021	   -‐	   +	   Sad	   Artificial	  Intelligence	  (Abandoning	  

the	  Android)	  
026	   +	   -‐	   Content	   Crash	  (Invisible	  Cloak	  Story)	  
029	   +	   -‐	   Amused	   Inbetweeners	  (Nightclub	  Dance)	  
031	   +	   -‐	   Happy	   Slumdog	  Millionaire	  (I	  Found	  You)	  
034	   +	   -‐	   Joy	   Blindness	  (Street	  Rain)	  
043	   N	   +	   Afraid	   The	  Brave	  One	  (Tunnel	  Attack)	  
059	   +	   -‐	   Amused	   The	  Holiday	  	  (Phone)	  
060	   N	   +	   Afraid	   The	  Tree	  of	  Life	  (Dinner	  Table	  Fight)	  

 

Table 7.2: The Labels are for Valence: Pleasant (+), Unpleasant (-), Neutral (N).  For 
Arousal:  Calm (-), Excited (+), Neutral (N) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 7.7: Participant (G1) SAM test Valence and Arousal ranges (mean/std) for the 16 
selected clips 
 

Figure 7.7 above gathers the across-participant responses for the 16 clips 

selected for the second stage of the experiment. We have found a mean value from all 
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participants; a dot highlights this value, beside this is the named emotion and also the 

clip reference number. The standard deviation encircles this on two axes.  As Neutral is 

not being used within this study due to it ambiguous nature, if a variable resides as 

neutral it will be excluded from the analysis.  Above we can clearly denote, that there is 

an overlap between the certain named emotions, there are no precise single x, y 

variables or single zone result, and that each felt emotion has more variability for 

Arousal than for Valence in regards to its locational with the dimensional space.  

 
7.4 Experiment 2: Stage 2 
 

As detailed above participant Group G2, were selected without bias from the initial call 

out.  For the second stage of the experiment this second group (G2), would watch the 

independently tagged video clips defined by G1, whilst wearing EEG headsets and 

complete the same SAM test survey in controlled laboratory conditions. 

 
 
7.4.1 Experiment Procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.8: the configuration of the experimental space into 3 designated zones 
 

Upon arrival, each participant was led to the experiment space. This was sited in 

the performance Lab, engineering Building, Queen Mary University of London.  The 

space was sealed off from external noise, interruption, and the lighting was configured 

to ensure consistent conditions across participants. The space was divided into 3 

Baseline Chair 
Fitting 
Table 

Screen Dividers 

Participant 
Experiment 
Zone  

Experimenter 
Experiment 
Zone  



THE NEURAL DETECTION OF EMOTION 
 

 

147 

subsections using screen dividers to meet the experiments needs; a fitting table, a 

baseline chair, and the experiment zone (see figure 7.8)  . 

 At the fitting table, an information sheet was provided. Here the nature of the 

experiment and a explanation of the SAM test and its variables were given. Upon 

signing consent form the participant was fitted with an Emotiv EEG headset. When a 

clear signal for all of the headsets 14 channels was received, the participant was led to 

the baseline chair. The baseline chair faced a blank black wall, and the participants were 

instructed to relax, look ahead, and to minimise movement. No physically restraining or 

restrictive devices were used, as it was the aim of the experiment to have a natural and 

relaxed recording. The experimenter then started the 10-minute baseline recording, and 

sat silently out of view behind a screen divider, providing no distractions. Once the 

baselines were recorded, the participant was then led to the experiment zone. 

 
 

Trail 1   Trail 3  Trail 5 
 
 

    
(Beep at start) 
Normalisation Clip: 
10 sec. 

Cross Hairs: 5 seconds The Clip :1-5 min.  Survey Time: 30 secs 

 
 

Figure 7.9: The experimental procedure used for all experiments. 
  

Once the participant was seated, the headset was again checked to ensure all 

electrode contact was intact. The stimulus was show on a 42-inch apple mac screen, 

connected to a 13 inch MacBook pro laptop from which the experimenter controlled the 

playback of the content. It was ensured that there was enough space on the table in front 

of the stimulus monitor for the SAM test to be filled in. 16 SAM tests and writing 

implements were provided. The researcher who sat opposite, behind a screen divider 

used a MacBook pro 15-inch to record the live EEG signal in Emotiv's specialized 

Testbench software. The experimenter applied live markers in Testbench to denote each 

clips start time, and silently made notes where applicable. 

Time 

Time 
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Each trail was formatted as can be seen in the above figure (see Fig 7.9). The 

experiment operated as such; first a Beep would sound to signify the starting of the trail 

and to indicate to the participant to watch the screen. A 10 second normalization clip 

was show in order to remove any bias from the previous stimulus. This was followed by 

cross hairs for 5 seconds; so the participant may fixate on the central zone of the screen, 

after which the emotion film clip would be shown. This clip lasted between 1-5 

minutes.  Finally, text would appear on-screen showing the film clips reference code 

and instruct the participant to fill in the survey. The time for completing the survey was 

30 seconds.  

 The series of clips were divided into three, approximately 15-minute segments. 

The rational for this was to allow for any breaks should the participant experience any 

form of discomfort, and also to allow for any electrode failure to be addressed to 

prevent loses of large quantities of data.  

 This procedure was consistent for all participants. The experimenter sat silently 

behind the screen-divider marking the EEG recording. The participant’s welfare was 

verified between the start of each section of clips. Once completed, the participants 

were led back to the fitting table, the headset was removed and they were compensated 

for their time. The whole process including fitting the headset took approximately 2 

hours.  For the experiments a new set of EEG electrodes and electrodes pads were used. 

All parts of the headset were cleared between experiments for any oxidation that may 

have occurred. 

 

7.4.2 Pre-processing & Feature extraction. 
 
 The same procedure has been followed throughout this research. Firstly for each 

participant, the EEG signals for each individual film clip were extracted. For space 

saving and efficient processing, only the signals for the electrodes of interest F3/F4 

were retained and exported to Matlab 2012b. 

 Here the signals were passed through a bandpass filter to extract only the Alpha 

Frequency Range (8-13 Hz). This also served to limit the majority of potential artefacts 

affecting the signals (see section 5). A Sliding Fast Fourier Transform (DFT) was 

applied at a sample rate of 1024 Hz, with a 50% overlap, giving a frequency 

representational value of the signal every four seconds.  

 The Asymmetric Hemispheric Difference algorithm for Valence, and also the 
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prospective Alpha Spectral Power algorithm for Arousal that are both tested throughout 

this research were applied. (see Table 7.3) 

 

Valence algorithm  log(Alpha, Right Hemisphere) -log(Alpha Left Hemisphere) 

Arousal algorithm (Alpha Right Hemisphere  + Alpha Left Hemisphere ) /2 

 

Table  7.3: The Algorithms tested  for Valence and Arousal detection 

  

 Two baseline mean values were created. Firstly, a baseline mean (B) was 

calculated from the participant’s baseline recording. A second baseline mean (ACB) 

was generated through the concatenation of all EEG clips data for a participant, and a 

single mean value calculated. This was conducted for each participant for both of the 

Valence and Arousal vectors.  
  

 
   EEG signal 

 
 

Bandpass filter 
 
 

     Valence       Arousal 
 
 
 

Valence - (B) valence-(ABC) Arousal - (B) Arousal -(ABC) 
 
 

 mean Value    mean Value   mean Value    mean Value 
 
Figure 7.10:  A diagram of the method from signal acquisition to output value for 
classification  
 
 

For each clip and vector, the baselines (B) and (ACB) were then extracted from 

each data point in the signal. This served to leave only the variable difference for each 

clip against baseline (B) and baseline (ACB). A mean value was calculated from the 

series of values for each clip. Finally this value was reduced to either a positive (+) or 

negative (-) signifier dependent on whether its value was positive or negative. Naturally, 
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as Alpha is seen as an inverse signal of attention, for Arousal this signifier was inverted. 

This process was conducted for all participants and respective signals.  In turn, the 

survey results were also reduced to a positive (+) , Neutral (N), or negative(-), signifier 

dependent on their value ; >5 = (+). ==5 =(N), <5 = (-) (see Fig 7.10). The same 

procedure has been followed throughout this research. 

 
7.4.3 Survey Results   
 
Two types of data were made available from the experiment, survey data and signal 

data. From Group 1 (G1) this was in the form of survey data. From Group 2 (G2) both 

survey and signal data were acquired. In order to make some conclusions, the data was 

examined in variant ways. 

 Firstly the survey data across the 2 participant groups was assessed. As we are 

using only binary conditions on each vector; positive (+) or negative (-), if a mean score 

for the group ranged <5   the negative signifier (-)  was attached, and if  >5 a positive 

signifier  (+) was attached. If the value was ==5 then it was considered neutral given a 

(N) signifier and discarded from the analysis.  

 
7.4.3.1 SAM Test Results 
 
 

                     Survey Correlations Between Groups. 
 
Clip 

         Group 1        Group 2   
Valence Arousal Valence Arousal 

001 + - + - 
003 + + +         - 
004 - + - + 
005 + + + N 
009 - + - + 
011 - + - + 
012 N - + - Valence Match =93.7% 
017 - + + + Arousal Match = 76.9% 
021 - + - - Both variable Match = 66.7% 
026 + - + -  
029 + - + N 
031 + - + - 
034 + - + - 
043 - + - + 
059 + - + + 
060 - + - N 

 
Table 7.4: Survey correlations between groups 1& 2. The Labels are for Valence: 
Pleasant (+), Unpleasant (-), Neutral (N). For Arousal Calm (-),Excited (+), Neutral (N). 
 
 As a first consideration, we can establish whether there is a correlation between 

the two groups in terms of the returned self-reports by comparing their responses. In 
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Table 7.4, we can see the results between the mean Valence and Arousal scores for the 2 

groups. As indicated above these have been reduced to either a positive or negative 

value on each vector. For Valence we can note a strong agreement between the 2 groups 

with a 93.7% correlation. For Arousal this correlation falls to 76%. In both of these 

instances a random response level is 50%. Thus whilst there is not a complete one to 

one correspondence between the groups, we do have a good matching rate for Valence, 

and a reasonable-to-good for Arousal. 
 
 
7.4.3.2 Emotional Keyword Results. 
 
 
 

           Keyword Tag Correlations Between Groups 
 
Clip 

 
Group 1 (G1) 

 
Group 2 (G2) 

 
Correlation Y/N 

  
001 

 
Content 

 
Happy 

 
N 

003 Joy Happy N 
004 Anxious Disgust N 
005 Happy Happy Y 
009 Anxious Anxious Y 
011 Disgust Disgust Y 
012 Sad Sad - 
017 Anxious Anxious Y 
021 Sad Afraid/Sad N 
026 Content  Content Y 
029 Amused Happy N 
031 Happy Content N 
034 Joy  Neutral N 
043 Afraid  Disgust N 
059 Amused Amused Y 
060 Afraid Disgust/Anxious/ 

Afraid  
N 

   6 of 15  = 40 % 
random is   11.1% 

 
 
Table 7.5 Tabling of the dominant keyword correlations between the two participant 
groups. 

 
 

 In a second comparison we can compare the two sets of emotional keywords 

attached to each film clip. To clarify; following Soleymani et. al (2007), the highest 

number of emotion keyword registrations for each clip was attached to it. We can note 

only a one-to-one correlation in 6 of 15 instances (40%), where the random response 

level is 11.1%. 

 Contrasting the above two tables (7.4 & 7.5), we can note a clearer correlation 

rate between the two groups when using the dimensional approach of tagging the clips 
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with Valence and Arousal values, than with the attachment of a keyword. It may be that 

the wide cultural diaspora of our participant group influences this, as different cultures 

and nationalities may articulate and associate different names to the same feelings. 

 
7.4.3.3 Survey Correlations  
 
 Finally we can also examine the individual scores for the G2 surveys, to 

consider the level of consensus there is within this group in terms of Valence and 

Arousal values attached to the selected film clips. 

 
            SAM test correlations: Group 2 (G2) 
 Valence Arousal 
Clip % Value  % Value 
001 87.5 + 77.8 - 
003 100 + 62.5 + 
004 100 - 71.4 + 
005 100  + 55.6 + 
009 100  - 71.4 + 
011 100 - 50 N 
012 55.6  + 75 - 
017 75 + 75 + 
021 87.5 - 50 N 
026 100 + 87.5 - 
029 100 + 66.7 + 
031 100 + 87.5 - 
034 71.4 + 87.5 - 
043 100 - 87.5 + 
059 100 + 57.1 + 
060 100 - 60 + 

 
Table 7.6: Percentages of agreed correlations between dominant (+) or (-) values for 
Group 2 (G2) 
  
 
 In table 7.6 a stronger agreement across participants for reported Valence 

responses than for Arousal responses is apparent amongst this group. For Valence we 

have 11 of 16 (68.8%) instances of 100% agreement, whilst there is no 100% agreement 

for Arousal. There are only 2 clips (012 & 043) where we have a higher matching rate 

for Arousal over Valence. It should be noted that the random response level is 50%. 

There are 4 of 16 instances where Arousal correlation between participants is below 

59%, inclusive of 2 instances where we reside on the randomness boundary.  There is 

only one instance for Valence where the match rate is lower than 70% and none below 

55%. This again contributes to the sense, that Valence may have better classification 

rates than Arousal, as there seems to be a stronger consensus as to what Valence 



THE NEURAL DETECTION OF EMOTION 
 

 

153 

represents. 

 

7.4.4 Experiment 2: Stage 2 Results 
 
 In the following presentation of results, the focus in on the correct classification 

percentage rates between the EEG signals and SAM test surveys. As mentioned prior, 

from the EEG data two mean values for each film clip along each dimensional vector of 

Valence and Arousal have been calculated. Each of these two values is for a different 

baseline correction method (baseline (B) and baseline (ACB). In turn, these will be 

evaluated against the survey results in the following formats. 

 

  (i) Individual Survey (G2) to Individual Signal (G2) 

  (ii) Group 1 Survey (G1) to Individual Signal (G2) 

  (iii) Group 2 Survey (G2) to Individual Signal (G2) 

  (iv) Group 1 Survey (G1) to  Group 2 Signal (G2) 

  (v) Group 2 Survey (G2) to  Group 2 Signal (G2)  

 

 Through this series of assessments, we may be able to evaluate the robustness 

and appropriateness of the algorithms we are using. Successful classification rates under 

these controlled conditions may give us further confidence in our measures and support 

our results from experiment 1. Further they may also endorse the use of these methods 

in further research.  
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7.4.4.1 Evaluation (i): Individual Survey (G2) to Individual Signal (G2) 
    
 

 
Figure 7.11: Successful classification      Figure 7.12 Successful classification: 

rates: Valence (B)             rates: Valence (ACB)    
 
 
 Figures 7.11 and 7.12 show the results of the comparison between the Individual 

Surveys (G2) and Individual Signals (G2) for Valence. Here we can denote a higher 

correct classification rate when using the (ACB) baseline than for baseline (B). For 

baseline (ACB), 7 of the 9 participants (77.8%), have a higher than random level of 

correlation (50%), all of which are either equal to or above 60%. There are 3 

participants who share the highest classification rate of 75% (see Fig 7.12). 

 For baseline (B) (Fig 7.11) we see a significant reduction in correct classification 

percentages, which are suggestive of chance levels. Only 4 of the 9 participants are 

above the random rate. Further 1 of these 4 occurrences is marginally above the random 

level with a rating of 56.3%. The highest individual success score is again 75%, but this 

is only for 1 individual. 
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Figure 7.13: Successful classification    Figure 7.14 Successful classification: 

rates: Arousal (B)             rates: Arousal (ACB)    
 
 
 In terms of Arousal classification between an Individual’s signal and survey, we 

find a lower success rate than the rates we found for Valence. For both baseline 

methods (B), and (ACB) we find only 4 of 9 instances where participants achieve above 

the random level of 50%. In both cases 1 of these 4 instances are nominally above the 

random level. For baseline (B) two further participants reside on the randomness 

boundary, whilst for baseline (ACB) only one. The highest individual success rate is for 

1 individual for baseline (B) at 80%. For baseline (ACB), the highest individual rate is 

shared by 2 individuals at 66.7%. 
 

       r-Correlation:  Individual Self report (G2 ) and individual Signal (G2) 
Participant Valence (B) Valence (ACB) Arousal  (B) Arousal (ACB) 
 R P-Value R P-Value R P-Value R P-Value 
AI -0.27 0.43 -0.08 0.81 0.18 0.6 0.18 0.6 
DR 0.56 0.12 0.56 0.12 -0.47 0.2 -0.42 0.26 
DV 0.02 0.99 -0.03 0.99 0.03 0.93 0.03 0.93 
JA 0.54 0.03 0.52 0.04 0.15 0.57 0.15 0.57 
JU 0.53 0.04 0.58 0.02 0.14 0.6 0.05 0.86 
MA 0.46 0.07 0.41 0.12 -0.46 0.07 -0.46 0.07 
NI -0.15 0.66 -0.05 0.88 -0.57 0.07 -0.57 0.07 
SI -0.08 0.84 -0.08 0.84 -0.46 0.18 -0.48 0.2 
YA -0.39 0.13 -0.3 0.26 -0.16 0.54 -0.16 0.54 
 

 Table 7.7: Participants Correlation Coefficient r : between individual Signal (abs mean) 
and Survey for Evaluation (i): Individual Survey (G2) to Individual Signal (G2). 
    
 In table 7.7 (above) we consider the linear relationship between the participants 
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signals and SAM test ratings. We created 16 data points for each participant comprised 

of the mean signal against the SAM value for each clip. We did this for both baselines 

and both dimensions. We calculated the Correlation Coefficient r, and tabling the results 

we may surmise that there is not a strong linear one-to-one correlation between them. 

Of all 9 participants only JU  (Valence (ACB), r = 0.58, n = 16, p = 0.02),  JA  (Valence 

(B), r = 0.54, n =16, p = 0.03) show a marginal linear relationship for Valence. As a 

totality for the whole group, this is not so surprising as we have already seen that there 

is variability between the group in terms of keyword annotation and SAM markers. 

This may be due for a number of reasons, the gap between an neural experience 

and attempts to articulate how one is feeling, or even that each emotion does not have a 

static reading that can be applied to it. 

 

7.4.4.2 Evaluation (ii) Group 1 Survey (G1) to Individual Signal (G2) 
 

  

Figure 7.15: Successful classification      Figure 7.16 Successful classification: 
rates: Valence (B)             rates: Valence (ACB)    

 
 

In this second comparison we will compare the individual signals of G2 against group 

G1's mean survey results.  Again a more successful classification rate for Valence over 

Arousal is found. For Valence, using baseline (B) we can view 6 of the 9 participants 

above the random indication level, although 2 of these operate marginally above this 

marker (see Fig 7.15). Again the baseline method (ACB) outperforms this, with a 
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significant 8 of 9 participants above the random level with only 1 participant marginally 

close to this marker with a rate of 53.4%. The remaining participant falls just below the 

random marker with 46.7% (see Fig 7.16). 5 of G2's participants for baseline (ACB) 

score above 66%, with the highest individual successful classification rate being 77.8%. 

 

 

Figure 7.17: Successful classification      Figure 7.18 Successful classification: 
rates: Arousal (B)             rates: Arousal (ACB)    

 
 

The correct Arousal classification results are again much lower than for Valence. For 

baseline method (B), only 3 participants are above the random level, of which 2 are 

close to its vicinity with rates of 54.5% and 56.3%, with a further 2 participants on this 

boundary (see Fig 7.17). For baseline  (ACB), 6 participants clear the random border 

with, with 3 having rates in excess of 62%, whilst 3 remain close to it location with 

rates of 53.8%, 56.3% and 56.3% (see Fig 7.18) 
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	  Correlation	  Coefficient	  r	  ,Table	  for	  group	  Survey	  (G1)	  and	  Individual	  Signal	  (G2)	  
	   Valence	  (B)	   Valence	  (ACB)	   Arousal	  	  (B)	   Arousal	  (ACB)	  
Participant	   R	   P-‐Value	   R	   P-‐Value	   R	   P-‐Value	   R	   P-‐Value	  
AI	   -‐0.16	   0.86	   0.05	   0.88	   -‐0.13	   0.69	   -‐0.13	   0.69	  
DR	   0.5	   0.17	   0.5	   0.17	   -‐0.42	   0.26	   -‐0.18	   0.64	  
DV	   0.19	   0.54	   0.19	   0.54	   -‐0.04	   0.91	   -‐0.04	   0.91	  
JA	   0.35	   0.18	   0.33	   0.2	   -‐0.18	   0.5	   -‐0.18	   0.5	  
JU	   0.51	   0.04	   0.53	   0.04	   -‐0.11	   0.68	   -‐0.21	   0.42	  
MA	   0.52	   0.04	   0.49	   0.05	   -‐0.23	   0.4	   -‐0.23	   0.4	  
NI	   -‐0.06	   0.86	   0.05	   0.88	   -‐0.13	   0.69	   -‐0.13	   0.69	  
SI	   -‐0.21	   0.56	   -‐0.21	   0.56	   -‐0.07	   0.84	   -‐0.71	   0.03	  
YA	   -‐0.45	   0.08	   -‐0.36	   0.17	   -‐0.34	   0.2	   -‐0.34	   0.2	  
 

7.8 : Participants Correlation Coefficient r : between individual Signal (abs mean) and 

Survey (G1) 

 

In considering the linear relationship between each participants SAM rating and 

mean signal value for each clip, we found an overall weak correlation.  Only one 

participant (SI) achieved a r-value close to a good correlation with -0.71 for the Arousal 

(ACB) measure (r = -7.1, n =10, p = 0.03 ) (see table 7.8). This reporting of a weak 

correlation between the survey and signal data has been consistent throughout our 

results. 
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7.4.4.3 Evaluation (iii) Group 2 Survey (G2) to Individual Signal (G2) 
 

 

 
Figure 7.19: Successful classification      Figure 7.20 Successful classification: 

rates: Valence (B)             rates: Valence (ACB)    
 
 

 
 

Figure 7.21: Successful classification      Figure 7.22 Successful classification: 
rates: Arousal (B)             rates: Arousal (ACB)    

 
 

 The pattern that emerged from the previous evaluations is repeated when we 

compare the individual EEG signals from the participants of (G2) with the mean value 
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of surveys from (G2). In terms of Valence using baseline method (B), only 3 of 9 

participants score above a random rate although these are all in excess of 62% (see Fig 

7.19). This is outperformed by baseline (ACB) where we find 7 of 9 participants with 

classification rates all in excess of 62% (see Fig 7.20).  

For Arousal, with baseline (B), 5 of 9 participants score higher than random 

rates, with 4 of these edging towards it boundary with scores of 55.6%, 571.%,57.1% 

and 57.1%. A further 2 participant rest on the 50% boundary (see Fig 7.21). With 

baseline method (ACB) again 5 of 9 instances are above random, this time with only 1 

close to this border with 57.1% and a further 2 participants achieve scores equal to 50%. 

(see Fig 7.22). 

   

  Correlation Coefficient r: for group Survey (G2) & Individual Signal (G2) 
 Valence (B) Valence (ACB) Arousal  (B) Arousal (ACB) 
Participant R P-Value R P-Value R P-Value R P-Value 
AI -0.16 0.63 -0.04 0.9 -0.19 0.58 -0.16 0.67 
DR 0.72 0.03 0.72 0.03 -0.68 0.05 -0.32 0.41 
DV 0.17 0.58 0.17 0.59 0.06 0.85 0.08 0.8 
JA 0.38 0.15 0.36 0.17 -0.16 0.56 -0.16 0.56 
JU 0.47 0.06 0.49 0.05 -0.11 0.7 -0.22 0.42 
MA 0.53 0.04 0.49 0.06 -0.3 0.26 -0.3 0.26 
NI -0.16 0.63 -0.04 0.9 -0.19 0.58 -0.19 0.58 
SI -0.06 0.86 -0.06 0.86 -0.68 0.03 -0.76 0.02 
YA -0.46 0.07 -0.51 0.04 -0.31 0.25 -0.26 0.34 
 
Table 7.9  Participants Correlation Coefficient r : between individual Signal (abs mean) 
and group survey (G2). 

 
As with the previous 2 evaluations, an over all weak value for correlation coefficient r,  

can be found across participants (see table 7.9). Only participants; DR: (Valence (B) & 

(ACB) r = 0.72, n = 9 , p= 0.03), and  (Arousal (B), r = -68 , n = 9, p = 0.05) , and SI, 

(Arousal (B), r = -0.68, n =10, p = 0.03)  and ( Arousal (ACB), r = -0.76, n =  10, p = 

0.02 )  demonstrate forms of a liner relationships between their surveys and signals. 
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7.4.4.4 Evaluation (iv) Group 1 Survey (G1) to Group 2 Signal (G2) 
 
 

 

 

Figure 7.23: Successful group classification rate: Group 1 (G1) survey Vs. Group 2 

(G2) signal 
 

 Having seen the rates of successful classification when assessing group 2's (G2) 

signal data as individuals, we may also average the group’s population signals and treat 

them as a single entity. Here, when we treat the individuals as a group by producing a 

mean value for signals and surveys across the whole group, we can begin to see a clear 

differentiation between the classification rates of correct Valence and Arousal detection. 

In the instances of both baselines methods (B) and (ACB), we have good binary 

classification rates of, 73.3% for (B), and 86.7% for (ACB). For Arousal classification, 

we find poorer results, with figures 43.8% and 56.3% that are nominally around the 

level of randomness. 
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7.4.4.5 Evaluation (v) Group 2 Survey (G2) to Group 2 Signal (G2) 
 

 

Figure 7.24: Successful group classification rate: Group 2 (G2) survey against Group 2 

(G2) signal 
 

 Echoing the comparative findings of evaluation (vi) we have similar yet slightly 

improved results when classifying G2  (as a group) signal against G2 (as a group) 

survey. For baseline (B) we have a Valence classification score of 75 %, whilst for 

baseline (ACB) we have the highest evaluated correlation of 87.5 %. Here, the correct 

derived Arousal classification rate is 53.8% for both baselines, which is only marginally 

above the random level. In both of these group analyses, we can clearly see better 

results for Valence detection over Arousal detection. 

Thus, when we consider treating (G2), as a single entity we can note a similar 

pattern to when we treat G2 as individuals. There is a marginal-to-good correlation 

between signal and survey for Valence, and in particular with baseline (ACB).  

Simultaneously for Arousal using this format of experiment we find less confident 

results, and the results operate at chance levels.  It may be questioned whether the 

conditions of the experiment may have an impact on the levels of emotion investment, 

and in turn the Arousal results, this is an aspect which would require further detailed 

investigation.  
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Table 7.10: Summary Table of group Correlation Coefficient r : between Group  
Signal (abs mean) and Group survey (means) (G1) and (G2) 
 

Finally, as with all other evaluations questioning a linear relationship between 

signals and surveys, we again find a weak correlation between them (see Table 7.10). 

This supports the notion that there is not a strict one-to-one linear relationship, where 

specific annotated variables are consistent with a discreet value in the signal. As we 

have seen above in all forms of this analysis we cannot consolidate such a relationship. 

 

7.4.4.6 Results Summary. 

 

 As outlined above in the results, for Valence we have consistently scored 

marginal-to-good successful classification rates across a number of different formats of 

evaluation. This is regardless of whether the participant populations were treated as 

individuals or as a group. For the evaluation (i), where participants were treated as 

individuals in both signal and survey, using baseline (ACB) we found that 7 of the 

group of 9 participants scored above 59% successful classification rates, with 3 

individuals scoring 75%, and another 71.4%. 

 Again for baseline (ACB), in evaluation (ii), where the surveys were represented 

by the averaging of (G1) SAM test responses, 8 of 9 participants scored above a 53% 

success rate, with 6 of these scoring in excess of 59% .The remaining 1 participant had 

results just below random with 46.7%. For the same baseline (ACB) in evaluation (iii) 

where individual signals (G2), were compared to an averaging of SAM test scores (G2) 

we found 7 of the group had success rates above 62%. Evaluation (iii) may be seen as 

the most consistent method amongst individual participants for higher success rates 

r-‐Correlation	  Summary	  :	  Group	  Surveys	  and	  Group	  Signals	  
	   Valence	  (B)	   Valence	  (ACB)	   Arousal	  (B)	   Arousal	  (ACB)	  

R	   P-‐value	   R	   P-‐value	   R	   P-‐value	   R	   P-‐value	  
	  
Group	  1	  Survey:	  
Group	  2	  Signal	  	  

	  
0.39	  

	  
0.14	  

	  
0.54	  

	  
0.03	  

	  
-‐0.26	  

	  
0.34	  

	  
-‐0.22	  

	  
0.4	  

	  
Group	  2	  Survey:	  
Group	  2	  Signal	  	  

	  
0.37	  

	  
0.16	  

	  
0.49	  

	  
0.06	  

	  
-‐0.26	  

	  
0.33	  

	  
-‐0.36	  

	  
0.17	  
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followed closely by evaluation (i). Thus, we may state through our results that Valence 

(ACB) consistently returns marginal-to-good successful classification rates for 

individual signals against survey, and provides some sense of confidence that this 

measure has some validity for gauging this form of response via EEG, and with the 

headset we are using. These confidence levels may be tested for further increase by 

using a larger participant group, and also with further consideration given to creating 

more distinct polar Valenced (pleasant -unpleasant) stimuli. 

 With Valence levels for baseline (B), we found a drop in these success rates. The 

best classification rates were achieved with evaluation (ii): individual Signals against 

G1 surveys. Here, 6 of 9 participants achieved success rates higher than 53%. For 

evaluation (i) only 4 participants achieved rates in excess of 56.3%, and for evaluation 

(iii) only 3 participants achieved above random scores. This may have been due to the 

larger difference in conditions between the baseline recording and watching an onscreen 

stimulus. 

 However, the Valence results for both baselines where the evaluations treated 

the populations as group signals against both of the groups surveys, demonstrate a good 

classification result of over 73% in both baseline instances (see table 7.23). 

 For Arousal, the success rates were much lower than for Valence. However for 

baseline (B) evaluation (iii) of individual signals (G2) against the averaging of the G2 

surveys, resulted in 5 participants exceeding a 55% classification rate with a further 2 

on the 50% boundary. This was the best performer, followed by the evaluation (i); 

individual signals to individual survey, with 4 participants achieving success rates in 

excess of 54% and a further 2 participants on the 50% random level. 

 These success rates were improved for baseline (ACB).  Using evaluation (ii) 

where individuals signals were compared to the averaged SAM test score of group (G1), 

6 of 9 participants rates were in excess of 53%. This best performer was followed by 

evaluation (iii) this time comparing individual signals against group (G2) averaged 

SAM test scores, where 5 participants scored above 57% with a further 2 participants on 

the 50% boundary. 
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            Averaged Results for Individual Signals in Evaluations (i) - (iii) 
 Valence (B) Valence (ACB) Arousal (B) Arousal (ACB) 
Evaluation mean std mean std mean std mean std 
(i) 49.11 18.10 63.98 13.67  52.04 15.74 47.06 17.26 

(ii) 53.90 10.14 64.09 10.08 49.43 7.77 54.71 11.64 

(iii) 50.72 17.53  62.88 12.95 54.22 9.67 54.14 11.34 

 
 Table 7.11: Averaged participants classification %, success for evaluations (i) - (iii), 
where individual's signals were assessed.  
 
 For simplicity of viewing of we may average the success rates for each 

evaluation across the group, to clearly see the difference between the two baseline 

measures. As table 7.11 shows, there is a greater consistency for Valence, baseline 

(ACB) across the evaluations, and baseline (ACB) for Arousal. This is different than the 

results for experiment 1 (see Chapter 6) where baseline (B) was the best performer for 

Arousal. From all the evaluations, where individual signals were used (i)-(iii) we can 

see the baseline (ACB) in evaluation (ii) group 1 (G1) surveys to individual signals 

(G2) was the best method performed. 
 

Number	  of	  Participants	  with	  	  Higher	  than	  Random	  Classification	  
Rates	  in	  Evaluations	  (i)	  -‐	  (iii)	  

	   Valence	  (B)	   Valence	  (ACB)	   Arousal	  (B)	   Arousal	  (ACB)	  
Evaluation	   >51%	   >51%	   >51%	   >51%	  
(i)	   4	  of	  	  9	   7	  of	  	  9	   4	  of	  	  9	   4	  of	  	  9	  
(ii)	   6	  of	  	  9	   8	  of	  	  9	   3	  of	  	  9	   6	  of	  	  9	  
(iii)	   3	  of	  	  9	   7	  of	  	  9	   5	  of	  	  9	   5	  of	  	  9	  

 

Table 7.12: The number of individual participants achieving higher then random 
successful classification rates in evaluations (i) - (iii).  
 

 Table 7.12, shows the number of individual participants achieving higher than 

random classification rates in each evaluation. In evaluation (ii) for baseline (ACB) 

88% of participants had higher rates than 51% for valence, and 66.7% had higher rates 

than 51 % for Arousal.  
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Summary	  of	  Successful	  Classification	  rates	  for	  
Group	  survey	  and	  Group	  signals.	  

	   Valence	  B	   Valence	  ACB	   Arousal	  B	   Arousal	  ACB	  
Evaluation	   %	   %	   %	   %	  
(iv)	   73.3	   86.7	   43.8	   56.3	  
(v)	   75	   87.5	   53.8	   53.8	  

 

Table 7.13. A summary table of successful classification results, for group comparisons, 
evaluation (iv) Group 1 (G1) surveys against Group2 (G2) signals, and evaluation (v) 
Group 2 (G2) surveys against Group2 (G2). 
 
 
 As a final table, When the group (G2) signals were averaged and compared 

against the averaged group surveys, in both instances of Valence and Arousal baseline 

(ACB) outperformed or matched baseline (B) for successful classification. The best 

performance achieved was evaluation (v) for Valence 87.5% and evaluation (iv) 56.3% 

for Arousal (see Table 7.13). 
 
 

7.5 Conclusion and Discussion 

 

 Here we conducted an experiment comprised of two stages. In the first stage a 

group of 10 participants watched 38 film clips and provided SAM test ratings and a 

keyword tag for each. From these responses 16 films clips were selected based on 

predominant keywords, with 2 clips representing each of the eight emotions; Afraid, 

Amused, Anxious, Content, Disgust, Happy, Joy, and Sad. 

 A second group of 9 participants, wearing EEG headsets, in controlled 

conditions watched these objectively selected clips, and gave their own set of survey 

data. Evaluations were then conducted between signal and survey in a number of 

evaluations. The key Questions asked were.  

 

 (i) Valence, is the AHD method for detection reliable? 

 (ii) Arousal is the ASP method for detection reliable? is there any basis for  

neural power  levels in the alpha region being indicative of Arousal? 

 (ii) Will having a larger experimental population allow for successful 

classification rates for both individuals and as a group? 
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 (iv) Is the technology robust and reliable for this form of experiment?  

 (v) Which baseline correction method is most appropriate for this setting? 

 

 In laboratory conditions we were able to confirm some degree of reliability of 

Valence detection via our methods. This variable was consistent in achieving marginal-

to-good classification rates for baseline (ACB) across all individual signal evaluations, 

where a minimum of 7 of the 9 participants had successful classification rates higher 

than 51%.  As a group this measure was always above 87%.  This consistent 

performance is in line with peer publications and results. Thus we can state a level of 

confidence in the use of this measure, and it may be by expanding our use of electrodes 

to further electrode pairings over the frontal lobe that we may be able to have increased 

success. 

 For Arousal our findings are not so clear. Whilst for one evaluation (evaluation 

ii) with baseline (ACB) 6 of the 9 participants had successful classification results 

higher than 53%, this level is not achieved consistently across the various evaluations in 

the same way as it did for Valence, thus it does provide some uncertainty, and Arousal 

may be considered as operating close to chance levels in this situation. 

 As has been expressed throughout this thesis, Arousal detection seems more 

problematic than for Valence detection, this may arise from a number of reasons 

associated with this dimension that have been outlined. In the context of this particular 

experiment we may further consider the causal impact of our laboratory setting on our 

data. Film and Cinema have structures and devices that intend to increasingly involve a 

viewer in the representational reality they are depicting. A short film clip extracted from 

its larger context and structural function of additive involvement may prevent a 

participant from building any from of relationship or emotional investment to the 

characters and the action. When this is combined with the stop - start nature of the 

experiment, it may generate a situation whereby the participant is unable or unwilling to 

become sufficiently emotionally invested or aroused by the stimulus. The impact of 

being reminded that one is under experimental conditions may further be preventative 

of the subtleties of Arousal levels registering which would affect our results. 

  In future experiments of the same method, it may be necessary to include 

enhanced polar extremities of stimulus to gain clearer insights. Alternatively, it may be 

more appropriate to show a whole film and then take annotations by replaying audio-

clips from the film, as was the procedure for experiment 1(see chapter 6). The genre of 
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short film, where productions can last anything from 1-30 minutes may also offer 

another possible solution for consideration. 

 The reports of Arousal as a more personally contextualised vector is also 

reflected in the differences between participants self-reports, and this may lead to lower 

classification rates when evaluations are considered as group. Thus whilst in this setting 

some success has been achieved for Valence using the AHD model, where we found a 

marginal-to-good results, for Arousal we found only indeterminacy with results close to 

random. Thus it is felt that the nature of the relationship between the level of neural 

activity recorded as a montage of electrodes F3/F4 and any resultant relationship 

represented as Arousal levels needs further inquiry, and perhaps in both settings. 

 We again questioned the robustness and reliability of the chosen technology, and 

again this was affirmative, the only issue arising from having to re-moisten the felt pads 

of the electrodes during experiments. It also should be noted that we are using the 

minimal amount of electrodes possible (F3/F4) and it may be by using more of the 

headsets electrode pairings such as Fp1/Fp2, and F6/F7 that are also positioned over the 

frontal area might lead to enhanced results. 

 Our final question re-visited the issue of the correct baseline procedure (B) or 

(ACB). We found that (ACB) out performed (B) in all instances. This may be due to the 

difference between the baseline state and the in-stimulus state. It may be that watching a 

screen (which flickers at specific rates) may have some form of brain entrainment 

through sympathetic resonance, which would always affect the results. It is felt by the 

researcher that this in-determined aspect may require further detailed study. Whilst 

baseline (B) could be enhanced by taking a third baseline after the stimulus for 

comparison to attempt to counter any potential brain entrainment from such a stimulus, 

it is considered that a default position should be to consider taking all 3 baselines, 

before, during, and after the stimulus. In future research it may be important to further 

carefully consider the difference between baseline recording conditions and the stimulus 

in the experimental design. 

Thus from this experiment we may state some validity of being able to 

determine emotional Valence indicators using the AHD method in laboratory 

conditions, yet with little confidence in the consistency of Arousal indicators using ASP 

values. 
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           CHAPTER  8  

  
           Conclusion  

8.1 Conclusion. 

 

 Over the prior seven chapters we have detailed the progression of a broad idea 

into a formal research project. Our intentions were to assess whether it was possible to 

neurally detect emotional responses to creative and cultural art forms via EEG. This was 

with a view to attempt to find some form of objectivity to these highly subjective 

experiences, which may allow some degree of transparency into these aesthetic 

responses. We aimed to define a process for this. Thus within this context of assessing 

whether low-cost, portable EEG devices can impact our understanding of cultural 

experiences in the wild?, we found the following.  

 We found our results to be consistent with peer literature. It seems that only 

Valence can be reliably measured, and only with a good degree of confidence in 

laboratory based studies. When moving into complex settings with complex stimulus 

we increase the number of unknowns that may disguise our true signal. This is reflected 

in our comparative experiments where we found less successful Valance results for the 

experiments in natural settings than for the controlled laboratory settings.  

 Given that even simple dimensional models of emotion depend on being able to 

measure both Valence and Arousal, this undermines the value of EEG techniques for 

assessing emotional responses to Artworks as a standalone technology. It may be more 

profitable to incorporate EEG within a multi-modal set up where it may contribute to a 

wide range of measured readings. Whilst this would operate best in controlled 

conditions, adding further sensors may potentially be able to provide the necessary 

support for moving beyond the laboratory. 

 We have also shown through our experiments that in controlled circumstances 

people do agree quite highly on self-reported measures of Valence and Arousal so this 

seems like a better singular method than the single modality of EEG for assessing these 

dimensions.  Despite this, our first studies and discussion of responses to a range of 

artworks highlight the limitations of these rather simplistic models of emotional 

response for doing this kind of analysis.   

 Also the later studies show that even where people agree on the Valence and 
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Arousal dimensions they still assign different descriptive labels to stimulus clips.  So, to 

make significant progress in this area we rather need techniques that can make much 

more subtle differentiations of response.  This would require much more sophisticated 

techniques that are truly capable of use in the normal circumstances under which people 

typically encounter artistic works.  

 Our second interlinked intention was to consider whether through our EEG 

detection methods we might be able to make the emotions available as a form of 

creative material for practitioners.  In the context of making, having access to the 

singular dimension of Valence is highly valuable. As noted in our Introduction (see 

chapter 1.2), artists have made highly innovative and exciting works using simple 

interpretations of the EEG signal, such as Alpha Spectral Power to drive aesthetic 

works. Thus in a similar way the Valence level indicator provides the starting point to 

begin making innovative works in creative contexts. 

 Throughout the latter stages of this research project the obtained EEG signals and 

Valence and Arousal classifications were explored through many creative works to 

consider such usability and functionality.  

 
Figure 8.1:  A still image from Relentless 2014. (11 mins 24 secs) ; a creative 
visualisation of neural emotional response signals to James Turrell's light installation 
Kermandec. 2014, recorded at the Pace  Gallery. London. 
 

 Figure 8.1 shows just one example of such a work created from the pilot study 

recording to James Turrells Kermandec exhibited at the Pace Gallery (see section 4.6.7).  

Valence and Arousal classifications were extracted at four-second intervals and then 

composited in a 2-dimensional space. A primitive shape represented each of the 

combined classifications. ; Sphere = class 1 (V+, A+), Pyramid = class 2 (V+, A-), 
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Octagon = class 3 (V-, A-), Cube = class 4 (V-, A+). Every four seconds a new 

classification shape drops into the viewing frame to disrupt the scene. The work is 

intentionally relentlessly repetitive, and tries to metaphorically convey how neural 

'instructions' may be continuous ‘dripping’ through the body to shape our worlds. The 

fallen classes remain in view representing the storage of emotional memories for future 

access. This restrained example points to the endless and exciting possibilities of work 

that may be generated from such data. 

 

 

8.2 Future Research. 

 

There are a number of possible avenues for further EEG research whilst working 

within the limitations of the dimensional framework; (i) Increasing the number of 

electrodes in the frontal lobe region, (ii) Exploring the further frequency bands of Beta, 

Theta, Delta and Gamma, (iii) Incorporation of EEG within a multimodal set up. All of 

these may serve to increase classification accuracy and success rates for Valence and 

allow for the exploration of Arousal signatures.  

In terms of experimental settings, by focusing on one aspect of cultural 

production, such as short Moving Image works, experiments could be configured in 

both controlled and natural settings with on par repeatability. This could also 

incorporate the development of online real time automatic classification system. Finally 

the further excavation of theoretical frameworks may allow an advancement beyond the 

dimensional model. 
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Appendix  A  

 

          Experiment 1: Paperwork. 
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A.1 Information Sheet. 

 
 
 
     Information sheet 
 

Research study [title]: Generating Affective ‘Avant-Garde Animation’ through 
Neurological and Physiological interaction relationships 
 
 
We would like to invite you without any obligation to be part of the research project 
described below. You should only agree to take part if you would like to. No 
disadvantages will arise should you decline to be involved. 
 
Before making your decision, please read the following information carefully. This 
will inform you of the reasons for the research and inform you of what you will be 
asked to do if you decide to take part. Please do not hesitate to ask if there is 
anything that is not clear to you, or if you would like further information. 
 
If you decide to take part, you will be asked to sign the attached form as proof of 
your agreement. Please note that you are still free to withdraw from the research 
study at any time and without giving a reason. 
 
 
Details of study 
 
This Study is designed to investigate the neural correlations of dynamic emotional 
states through Electroencephalographic (EEG) and physiological (q-sensor) 
readings, in order to determine control measures for driving Affective Interactive 
Animations. 
 
The study will take place at a central London Theatre. Upon entering the Theatre, 
you will be guided to an quiet area, where you will remain for up to a maximum of 
10 minutes, in order to relax and be clear minded. The experimenter will then fit 
you with an EEG wireless headset, to your head, which measures real-time 
electrical activity in the brain, a Biosensor to your wrist, which measures skin 
conductivity levels, and a small microphone in order to record the ambient sound of 
the performance. The experimenter will take a short baseline recording and ensure 
that all the sensors are working correctly. Once complete you will be guided to your 
seat in the Theatre auditorium.  
 
The experiment requires you to relax and simply enjoy the live theatrical 
performance. The performance will last for approximately 1.5 hours. Upon 
completion, you will be guided to a quiet space where you will be asked to recall 
some of your thoughts, emotions and feelings in response to the performance. A 
script of the performance may be provided to assist you in this. Finally a short 
questionnaire will be presented which will conclude the experiment. The 
experiment will last approximately 3 hours. If you do decide to take part, you will be 
given this information sheet to keep and be asked to sign a consent form. 
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A.2 Consent Form. 
 
 

 
     Consent form 

 
Please complete this form after you have read the Information Sheet and/or 
listened 
to an explanation about the research. 
 
Title of Study: Generating Affective ‘Avant-Garde Animation’ through Neurological 
and Physiological interaction relationships 
 
Queen Mary Research Ethics Committee Ref: ________________ 
 
•  Thank you for considering taking part in this research. The person organizing 
the research must explain the project to you before you agree to take part. 
 
•  If you have any questions arising from the Information Sheet or explanation 
already given to you, please ask the researcher before you decide whether to join in. 
You will be given a copy of this Consent Form to keep and refer to at any time. 
 
•  I understand that if I decide at any other time during the research that I no 
longer wish to participate in this project, I can notify the researchers involved and be 
withdrawn from it immediately. 
 
• I consent to the processing of my personal information for the purposes of 
this research study. I understand that such information will be treated as strictly 
confidential and handled in accordance with the provisions of the Data Protection Act 
1998. 
 
•  I consent to the use of images taken during the experiment to be used only in 
publications relating to this research (optional please tick the appropriate box, 
below) 
 
 
  I agree to images of my interaction being used in publications related to this 
  study. 
 
  I do not agree to images of my interaction being used in publications related 
  to this study. 
 
Participant’s Statement: 
 
I ___________________________________________ agree that the research 
project named above has been explained to me to my satisfaction and I agree to 
take part in the study. I have read both the notes written above and the Information 
Sheet about the project, and understand what the research study involves. 
 
Signed:     Date: 
 
Investigator’s Statement: 
 
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
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A.3 Pre-Performance Questionnaire 

 
 

PRE PERFORMANCE Questionnaire. 
 Josephine & I , The Bush Theatre. London 

 
  
 
AGE  
 
 
GENDER    MALE / FEMALE      *  please circle 
 
 
CURRENT OCCUPATION  
 
 
HANDEDNESS        LEFT |  RIGHT |  AMBIDEXTROUS     *  please circle 
 
 
 
HOW WOULD YOU DESCRIBE YOU ETHNIC BACKGROUND ? * please 
circle. 
 

(a) Black or Black British                           b) White 
Caribbean         British 
African         Irish 
Any other Black background.      Any other White 
background 
 

(c) Asian or Asian British      (d) Mixed 
Indian         White and Black 
Caribbean 
Pakistani        White and Black 
African 
Bangladeshi        White and Asian
  
Any other Asian background within      Black and Asian 
         Any other Mixed 
 
(e) Chinese or other Ethnic Group     (f) Rather Not Say 
Chinese        Rather not say. 
Any other Ethnic Group 
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DO YOU REGULARLY ATTEND ANY OF THE FOLLOWING CULTURAL 
EVENTS ? 
*please tick the appropriate boxes. 
 
 
 
 

 NEVER RARELY OCCASIONALLY OFTEN 

ART GALLERIES  Y/N     

ART FESTIVALS Y/N     

MUSIC 
PERFORMANCES 

Y/N     

MUSIC FESTIVALS Y/N     

MUSEUMS Y/N     

COMEDY Y/N     

CINEMA Y/N     

DANCE 
PERFORMANCES 

Y/N     

THEATRE 
PERFORMANCES 

Y/N     

 
 
HAVE YOU ATTENDED ANY THEATRE PERFORMANCES IN THE LAST 
YEAR  Y  | N 
 
                         
HOW MANY?   
 
 
 
WHAT WAS THE LAST THEATRE PERFORMANCE YOU SAW + YEAR (* 
enter below) 
 
 
 
 
 
HOW LONG DID THE PERFORMANCE STAY WITH YOU  (*approx ) 
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A.4 SAM Test 

 
Sound clip : 
 
Length :  
 
Description :  
 
 
 
  Section A:  
 

 
 
 
Section B:  Was the feeling consistent throughout the clip.  (* please briefly describe )  
 
 
 
 
 
 
Section C:  Are there any words  (emotional expression) you could use to describe 
how you felt.  
 
 
 
 
Section D : Any Other comments. 
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A.5 Post Experiment Questionnaire 

 
 

Post Experiment Questionnaire 
 
 
 
Section A : Headset  
 
(i) Was the fitting of the EEG headset easy ? 
 
 
 
 
 
(ii) Was the EEG headset comfortable to wear ? 
 
 
 
 
 
(iii) Were you always aware that you were wearing the headset ? 
 
 
 
 
 
(iv) Did the headset distract from the performance at any time ? 
 
 
 
 
 
(v) Did the headset become uncomfortable at any point ? 
 
 
 
 
 
 
(vi) Did anyone notice / comment / ask questions about you wearing the headset ? 
  
 
 
 
(vii)  Did wearing the headset make you feel self-conscious at all ?  
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Section B : Sound Clips 
 
 
(i)  Were the replayed sound clips clearly audible 
 
 
 
(ii) Upon Hearing them, were you able to remember the point in the performance they 
occurred 
 
 
 
(iii)  Did  the sound clips ....... 
 
   (a)  bring back the emotions you felt when you watched the live performance 
   (b)  give new emotions  
   (c) other (* please briefly explain ) 
 
 
 
 
 
(iv) Did you feel the sound clips  were ..... 
 
 (a) too short for the SAM test 
 (b) just right for the SAM test 
 (c) too long for the SAM test 
 
 
 
 
 
(v) did you feel that  there were ; 
 
 (a) too few sound clips 
 (b) about the right amount of sound clips 
 (c) too many sound clips 
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Section C : questionnaire 
 
 
(i) was the explanation of the SAM TEST  clear and easy to understand ? 
 
 
 
 
 
(ii) did you find it easier to fill in the SAM test or to write the emotion in words ? 
 
 
 
 
 
 
(iii) would you have preferred to have been informed of the SAM method before the 
show ? 
 
 
 
 
 
(iv)  if you answered yes to the above question (iii), do you think this would have made 
a difference to how you filled out the SAM test ? 
 
 
 
 
 
(v) Did you find any of the questions on the test difficult ? (* please explain) 
 
 
 
 
 
(vi) Did you find any of the questions on the test too open ended ? (* please explain) 
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Appendix B  

 

     Experiment 2: Paperwork 
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B.1 Stage 1 Information Sheet. 

 
 
 
     Information sheet 
 

Research study [title]: Generating Affective ‘Avant-Garde Animation’ through 
Neurological and Physiological interaction relationships  (QMREC2012/45	  ) 
 
 
We would like to invite you without any obligation to be part of the research project 
described below. You should only agree to take part if you would like to. No 
disadvantages will arise should you decline to be involved. 
 
Before making your decision, please read the following information carefully. This 
will inform you of the reasons for the research and inform you of what you will be 
asked to do if you decide to take part. Please do not hesitate to ask if there is 
anything that is not clear to you, or if you would like further information. 
 
If you decide to take part, you will be asked to sign the attached form as proof of 
your agreement. Please note that you are still free to withdraw from the research 
study at any time and without giving a reason. 
 
 
Details of study 
 
The larger aims of this Research are to investigate the neural correlations of 
dynamic emotional states through Electroencephalographic (EEG) readings, in 
order to determine control measures for driving Affective Interactive Animations. 
 
This particular experiment involves the tagging of Film and Movies clips with 
emotional labels. For the experiment you will be asked to watch a number of clips 
and fill in a provided questionnaire for each. The experiment can be conducted on 
a designated computer in G2, MAT Computer Lab, Engineering Building , Queen 
Mary, University of London on either Friday 14th February and Wednesday 19th 
February between 10am - 4pm.. 
 
Alternatively the experiment can be provided on a DVD with experiment 
instructions which can collect on Wednesday 12th February or Friday 14th, to do 
be done in an quiet environment and time chosen by yourself. The experiment 
should last no longer than 2.5 hours, and can be conducted  in one session or 
shorter sessions as desire. It is recommended that no shorter session be less than 
20 mins. If you do decide to take part, you will be given this information sheet to 
keep and be asked to sign a consent form. 
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B.2 Stage 1 Consent Form 
 

 
     Consent form 

 
Please complete this form after you have read the Information Sheet and/or 
listened 
to an explanation about the research. 
 
Title of Study: Generating Affective ‘Avant-Garde Animation’ through Neurological 
and Physiological interaction relationships 
 
Queen Mary Research Ethics Committee Ref: ________________ 
 
•  Thank you for considering taking part in this research. The person organizing 
the research must explain the project to you before you agree to take part. 
 
•  If you have any questions arising from the Information Sheet or explanation 
already given to you, please ask the researcher before you decide whether to join in. 
You will be given a copy of this Consent Form to keep and refer to at any time. 
 
•  I understand that if I decide at any other time during the research that I no 
longer wish to participate in this project, I can notify the researchers involved and be 
withdrawn from it immediately. 
 
• I consent to the processing of my personal information for the purposes of 
this research study. I understand that such information will be treated as strictly 
confidential and handled in accordance with the provisions of the Data Protection Act 
1998. 
 
•  I consent to the use of images taken during the experiment to be used only in 
publications relating to this research (optional please tick the appropriate box, 
below) 
 
 
  I agree to images of my interaction being used in publications related to this 
  study. 
 
  I do not agree to images of my interaction being used in publications related 
  to this study. 
 
Participant’s Statement: 
 
I ___________________________________________ agree that the research 
project named above has been explained to me to my satisfaction and I agree to 
take part in the study. I have read both the notes written above and the Information 
Sheet about the project, and understand what the research study involves. 
 
Signed:     Date: 
 
Investigator’s Statement: 
 
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
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B.3 Stage 1 SAM Test 

 
Emotional Responses to Film & Video Clips (Part 1). 

 
Name: 

 
Film Clip Number: 

 
Section A: 

 

 
Section B: 
 

(i) Please circle the emotion that most describes what you felt. 
 

Afraid Amused Anxious Disgusted Joyful Sad Happy Content Neutral 
 
Other……………….. 
 
(ii) Was the feeling consistent throughout the clip?  Y / N (Please describe) 
 
 

Section C: 
 
(iii) Did you like the Film clip?  Y  / N (please circle) 
 
(iv) What emotional feeling do you think this film clip might have tried to evoke? (please 
circle) 
 

Afraid Amused Anxious Disgusted Joyful Sad Happy Content Neutral 
 
Other……………….. 
 

 
(v) Have you seen the movie this clip was taken from?    Y  / N (please circle) 

 



THE NEURAL DETECTION OF EMOTION 
 

 

185 

B.4 Stage 2 Information Sheet. 
 

 
 
 
     Information sheet 
 

Research study [title]: Generating Affective ‘Avant-Garde Animation’ through 
Neurological and Physiological interaction relationships  (QMREC2012/45	  ) 
 
 
We would like to invite you without any obligation to be part of the research project 
described below. You should only agree to take part if you would like to. No 
disadvantages will arise should you decline to be involved. 
 
Before making your decision, please read the following information carefully. This 
will inform you of the reasons for the research and inform you of what you will be 
asked to do if you decide to take part. Please do not hesitate to ask if there is 
anything that is not clear to you, or if you would like further information. 
 
If you decide to take part, you will be asked to sign the attached form as proof of 
your agreement. Please note that you are still free to withdraw from the research 
study at any time and without giving a reason. 
 
 
Details of study 
 
The larger aims of this Research are to investigate the neural correlations of 
dynamic emotional states through Electroencephalographic (EEG) readings, in 
order to determine control measures for driving Affective Interactive Animations,  
 
This particular experiment will take place in the Performance Lab at Queen Mary 
University, London. You will be guided to a quiet area, where the experimenter will 
fit an EEG wireless headset to your head, which measures real-time electrical 
activity in the brain. The experimenter will take a short baseline recording. Once 
complete you will be guided to a a designated desktop computer for the 
experiment.  
 
A series of short film clips will be shown, and after each you will be prompted to fill 
in a short questionnaire. The experiment will last no more than 2 hours, If you do 
decide to take part you will be given this information sheet and be asked to sign a 
consent form. 
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B.5 Stage 2 Consent Sheet. 
 
 

 
     Consent form 

 
Please complete this form after you have read the Information Sheet and/or 
listened 
to an explanation about the research. 
 
Title of Study: Generating Affective ‘Avant-Garde Animation’ through Neurological 
and Physiological interaction relationships 
 
Queen Mary Research Ethics Committee Ref: ________________ 
 
•  Thank you for considering taking part in this research. The person organizing 
the research must explain the project to you before you agree to take part. 
 
•  If you have any questions arising from the Information Sheet or explanation 
already given to you, please ask the researcher before you decide whether to join in. 
You will be given a copy of this Consent Form to keep and refer to at any time. 
 
•  I understand that if I decide at any other time during the research that I no 
longer wish to participate in this project, I can notify the researchers involved and be 
withdrawn from it immediately. 
 
• I consent to the processing of my personal information for the purposes of 
this research study. I understand that such information will be treated as strictly 
confidential and handled in accordance with the provisions of the Data Protection Act 
1998. 
 
•  I consent to the use of images taken during the experiment to be used only in 
publications relating to this research (optional please tick the appropriate box, 
below) 
 
 
  I agree to images of my interaction being used in publications related to this 
  study. 
 
  I do not agree to images of my interaction being used in publications related 
  to this study. 
 
Participant’s Statement: 
 
I ___________________________________________ agree that the research 
project named above has been explained to me to my satisfaction and I agree to 
take part in the study. I have read both the notes written above and the Information 
Sheet about the project, and understand what the research study involves. 
 
Signed:     Date: 
 
Investigator’s Statement: 
 
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
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B.6 Stage 2 Pre-Experiment Questionnaire. 
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B.7 Stage 2 SAM Test. 
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