81 research outputs found

    A review of rapid serial visual presentation-based brain-computer interfaces

    Get PDF
    International audienceRapid serial visual presentation (RSVP) combined with the detection of event related brain responses facilitates the selection of relevant information contained in a stream of images presented rapidly to a human. Event related potentials (ERPs) measured non-invasively with electroencephalography (EEG) can be associated with infrequent targets amongst a stream of images. Human-machine symbiosis may be augmented by enabling human interaction with a computer, without overt movement, and/or enable optimization of image/information sorting processes involving humans. Features of the human visual system impact on the success of the RSVP paradigm, but pre-attentive processing supports the identification of target information post presentation of the information by assessing the co-occurrence or time-locked EEG potentials. This paper presents a comprehensive review and evaluation of the limited but significant literature on research in RSVP-based brain-computer interfaces (BCIs). Applications that use RSVP-based BCIs are categorized based on display mode and protocol design, whilst a range of factors influencing ERP evocation and detection are analyzed. Guidelines for using the RSVP-based BCI paradigms are recommended, with a view to further standardizing methods and enhancing the inter-relatability of experimental design to support future research and the use of RSVP-based BCIs in practice

    Rapid P300 brain-computer interface communication with a head-mounted display

    Get PDF
    Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 x 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 x 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely paralyzed persons

    Detecting the neural correlates of episodic memory with mobile EEG: Recollecting objects in the real world

    Get PDF
    Episodic memory supports recognition of the details of complex real world experiences, providing a continuous record of events embedded within spatial and temporal context. Despite the inherently dynamic nature of real events, the bulk of neuroscientific research to date examines recognition in absence of the detailed contextual information that is known to be a defining characteristic. Given the importance of environmental context for episodic memory, examining ERP correlates of memory in more naturalistic settings is vital for progress in understanding how retrieval operates in daily life. The current study capitalized on recent advances in mobile EEG technology to address this issue and is the first to investigate ERP correlates of episodic retrieval in real world contexts. Participants were guided around a pre-defined route inside a building on campus, while performing a recognition memory task, which paired images of objects with actual physical locations in the building to provide context. Importantly, the findings clearly demonstrate that it is possible to observe reliable neural correlates of memory in real world contexts. Replicating two well established ERP correlates of episodic retrieval reported in prior laboratory based studies, we detected FN400 old/new effects traditionally associated with familiarity between 300 and 500 ms, and a late posterior negativity (LPN) often linked to reconstructive processing or evaluation of retrieval outcomes between 500 and 800 ms. Moreover, the FN400 effect was found to be sensitive to retrieval of context, with more sustained effects for objects encountered in a different context at study and test. Overall, the current work highlights the power of mobile EEG technology for examining complex cognitive functions in more naturalistic real world settings

    Standardization of Protocol Design for User Training in EEG-based Brain-Computer Interface

    Get PDF
    International audienceBrain-computer interfaces (BCIs) are systems that enable a personto interact with a machine using only neural activity. Such interaction canbe non-intuitive for the user hence training methods are developed to increaseone’s understanding, confidence and motivation, which would in parallel increasesystem performance. To clearly address the current issues in the BCI usertraining protocol design, here it is divided intointroductoryperiod and BCIinteractionperiod. First, theintroductoryperiod (before BCI interaction) mustbe considered as equally important as the BCI interaction for user training. Tosupport this claim, a review of papers show that BCI performance can dependon the methodologies presented in such introductory period. To standardize itsdesign, the literature from human-computer interaction (HCI) is adjusted to theBCI context. Second, during the user-BCI interaction, the interface can takea large spectrum of forms (2D, 3D, size, color etc.) and modalities (visual,auditory or haptic etc.) without following any design standard or guidelines.Namely, studies that explore perceptual affordance on neural activity show thatmotor neurons can be triggered from a simple observation of certain objects, anddepending on objects’ properties (size, location etc.) neural reactions can varygreatly. Surprisingly, the effects of perceptual affordance were not investigatedin the BCI context. Both inconsistent introductions to BCI as well as variableinterface designs make it difficult to reproduce experiments, predict their outcomesand compare results between them. To address these issues, a protocol designstandardization for user training is proposed

    EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy

    Get PDF
    https://academic.oup.com/gigascience/article/8/5/giz002/5304369Background Electroencephalography (EEG)-based brain-computer interface (BCI) systems are mainly divided into three major paradigms: motor imagery (MI), event-related potential (ERP), and steady-state visually evoked potential (SSVEP). Here, we present a BCI dataset that includes the three major BCI paradigms with a large number of subjects over multiple sessions. In addition, information about the psychological and physiological conditions of BCI users was obtained using a questionnaire, and task-unrelated parameters such as resting state, artifacts, and electromyography of both arms were also recorded. We evaluated the decoding accuracies for the individual paradigms and determined performance variations across both subjects and sessions. Furthermore, we looked for more general, severe cases of BCI illiteracy than have been previously reported in the literature. Results Average decoding accuracies across all subjects and sessions were 71.1% (± 0.15), 96.7% (± 0.05), and 95.1% (± 0.09), and rates of BCI illiteracy were 53.7%, 11.1%, and 10.2% for MI, ERP, and SSVEP, respectively. Compared to the ERP and SSVEP paradigms, the MI paradigm exhibited large performance variations between both subjects and sessions. Furthermore, we found that 27.8% (15 out of 54) of users were universally BCI literate, i.e., they were able to proficiently perform all three paradigms. Interestingly, we found no universally illiterate BCI user, i.e., all participants were able to control at least one type of BCI system. Conclusions Our EEG dataset can be utilized for a wide range of BCI-related research questions. All methods for the data analysis in this study are supported with fully open-source scripts that can aid in every step of BCI technology. Furthermore, our results support previous but disjointed findings on the phenomenon of BCI illiteracy

    Psychologie und Gehirn 2007

    Get PDF
    Die Fachtagung "Psychologie und Gehirn" ist eine traditionelle Tagung aus dem Bereich psychophysiologischer Grundlagenforschung. 2007 fand diese Veranstaltung, die 33. Jahrestagung der „Deutschen Gesellschaft für Psychophysiologie und ihre Anwendungen (DGPA)“, in Dortmund unter der Schirmherrschaft des Instituts für Arbeitsphysiologie (IfADo) statt. Neben der Grundlagenforschung ist auch die Umsetzung in die Anwendung erklärtes Ziel der DGPA und dieser Tradition folgend wurden Beiträge aus vielen Bereichen moderner Neurowissenschaft (Elektrophysiologie, bildgebende Verfahren, Peripherphysiologie, Neuroendokrinologie, Verhaltensgenetik, u.a.) präsentiert und liegen hier in Kurzform vor

    Breakthrough Percepts of Famous Faces

    Get PDF
    Recently, we showed that presenting salient names (i.e. a participant’s first name) on the fringe of awareness (in Rapid Serial Visual Presentation) breaks through into awareness, resulting in the generation of a P3, which (if concealed information is presented) could be used to differentiate between deceivers and non-deceivers (Bowman et al., 2013; Bowman, Filetti, Alsufyani, Janssen, & Su, 2014). The aim of the present study was to explore whether face stimuli can be used in an ERP-based RSVP paradigm to infer recognition of broadly familiar faces. To do this, we explored whether famous faces differentially break into awareness when presented in RSVP and, importantly, whether ERPs can be used to detect these ‘breakthrough’ events on an individual basis. Our findings provide evidence that famous faces are differentially perceived and processed by participants’ brains as compared to novel (or unfamiliar) faces. EEG data revealed large differences in brain responses between these conditions

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    Understanding minds in real-world environments : toward a mobile cognition approach

    Get PDF
    This work is supported by a scholarship from the University of Stirling and a research grant from SINAPSE (Scottish Imaging Network: A Platform for Scientific Excellence).There is a growing body of evidence that important aspects of human cognition have been marginalized, or overlooked, by traditional cognitive science. In particular, the use of laboratory-based experiments in which stimuli are artificial, and response options are fixed, inevitably results in findings that are less ecologically valid in relation to real-world behavior. In the present review we highlight the opportunities provided by a range of new mobile technologies that allow traditionally lab-bound measurements to now be collected during natural interactions with the world. We begin by outlining the theoretical support that mobile approaches receive from the development of embodied accounts of cognition, and we review the widening evidence that illustrates the importance of examining cognitive processes in their context. As we acknowledge, in practice, the development of mobile approaches brings with it fresh challenges, and will undoubtedly require innovation in paradigm design and analysis. If successful, however, the mobile cognition approach will offer novel insights in a range of areas, including understanding the cognitive processes underlying navigation through space and the role of attention during natural behavior. We argue that the development of real-world mobile cognition offers both increased ecological validity, and the opportunity to examine the interactions between perception, cognition and action—rather than examining each in isolation.Publisher PDFPeer reviewe
    corecore