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Preface to ”Brain Computer Interfaces and Emotional

Involvement: Theory, Research, and Applications”

This reprint is dedicated to the study of brain activity related to emotional and attentional

involvement as measured by Brain–computer interface (BCI) systems designed for different purposes.

A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into

a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a

spelling device or a game). These tools have the advantage of having real-time access to the ongoing

brain activity of the individual, which can provide insight into the user’s emotional and attentional

states by training a classification algorithm to recognize mental states.

Pietro Aricò, Nicolina Sciaraffa and Fabio Babiloni broadly introduced this topic addressing

the potential applicability of BCI in everyday applications. Indeed, the success of BCI systems in

contemporary neuroscientific research relies on the fact that they allow one to “think outside the

lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed

and will allow researchers to envision more and more applications for the future. The clinical and

everyday uses are described with the aim to invite readers to open their minds to imagine potential

further developments.

Abeer Al-Nafjan, Khulud Alharthi and Heba Kurdi investigated the feasibility of building a

lightweight emotion detection system using a small EEG dataset size with no involvement of feature

extraction methods while maintaining decent accuracy. The results showed that by using a spiking

neural network, it’s feasible to detect the valence emotion level using only 60 EEG samples with

84.62% accuracy.

Yasuhisa Maruyama and colleagues, instead, focused their contribution on data analysis,

describing an independent component method to analyze EEG signals. They showed that is possible

to identify neural correlates of emotional states in the source space. The results suggest that

specific cortical areas correlate with low and high emotional valences in accordance with Russell’s

valence–arousal model.

Zhipeng He and colleagues critically reviewed the state of the art of affective BCI application

(aBCI). Starting with the idea that multimodal systems will probably be the standard for future

applications, they described and analyzed three types of multimodal aBCIs (combination of behavior

and brain signals; hybrid neurophysiology modalities and heterogeneous sensory stimuli systems)

reporting the pros and cons of each.

The work conducted by Choong Wen Yean and colleagues offers an interesting perspective. The

authors tried to apply a BCI-based emotion detection system in stroke patients. The possibility to

estimate the patient’s emotional state in a difficult situation could be very important for whoever

takes care of patients and supports their rehabilitation. Using a bispectrum feature method to analyze

EEG signals, they reported promising results about the possibility and efficacy of their system in

clinical settings.

Mihaly Benda and Ivan Volosyak’s contribution covers the relevant issues of artefacts in online
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applications. They provided a system to filter online movement artefacts in order to increase peak

detection. In particular, the authors proved the efficacy of their online filter in determining objective

user fatigue using alpha peak detection. The described artefact-removal methods could be extended

to emotion detection.

Coherent with previous work, Dong-Hwa Jeong and Jaeseung Jeong described a BCI system

aimed at discriminating attentive and resting states. Indeed, attention level is a basic parameter

used to make estimations, which is potentially useful in a variety of contexts, and could also support

emotional estimation thanks to its association with arousal. In particular, the authors described and

tested a portable in-ear EEG device coupled with an Echo State Network model reporting promising

outcomes.

Dong-Her Shih, Kuan-Chu Lu and Po-Yuan Shih used a BCI system to evaluate the attentional

level of people engaged in e-commerce activity. They showed that time pressure limits attention,

suggesting that targeted strategies are needed in order to improve the online shopping experience.

Emotional detection capabilities would offer vital data to marketers.

Mina Kheirkhah and colleagues, finally, researched patients with peripheral facial nerve

paralysis. The authors proved that it is possible to use MEG data and machine learning to provide

a good estimation of emotions even for people with severe problems in encoding and decoding

emotions. Future studies will test the possibility of also using simpler devices in this critical setting.

Claudio Lucchiari

Editor
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Abstract: Recent publications in the Electroencephalogram (EEG)-based brain–computer interface
field suggest that this technology could be ready to go outside the research labs and enter the market as
a new consumer product. This assumption is supported by the recent advantages obtained in terms of
front-end graphical user interfaces, back-end classification algorithms, and technology improvement in
terms of wearable devices and dry EEG sensors. This editorial paper aims at mentioning these aspects,
starting from the review paper “Brain–Computer Interface Spellers: A Review” (Rezeika et al., 2018),
published within the Brain Sciences journal, and citing other relevant review papers that discussed
these points.

Keywords: passive brain–computer interface (pBCI); EEG headsets; daily life applications

A brain–computer interface (BCI) was originally defined as “a communication system in which
messages or commands that an individual sends to the external environment do not pass through
the brain’s normal output pathways of peripheral nerves and muscles”. For example, in an
electroencephalogram (EEG)-based BCI, the messages can be directly decoded by specific EEG
features [1]. In 2012, Wolpaw and Wolpaw [2] widened the meaning of the brain-computer interface,
defining it as “a system that measures Central Nervous System (CNS) activity and converts it into
artificial output that replaces, restores, enhances, supplements, or improves natural CNS output and
thereby changes the ongoing interactions between the CNS and its external or internal environment”,
suggesting the possibility of employing this technology for different applications and targeting different
kind of potential users, starting from completely locked-in people (e.g., amyotrophic lateral sclerosis,
ALS), in which BCI can be used in its original meaning, or in other words in an “active” way (Active
BCI), in which the user voluntary modulates his/her brain activity to generate a specific command on
the surrounding environment (i.e., to replace and/or restore lost or impaired muscular abilities, [3–5]),
coming to healthy users in daily life applications. In particular, BCI for healthy users could be used to
enhance human–surroundings interaction. In this regard, the BCI (i.e., passive BCI, pBCI, [6–13]) is
able to derive its outputs from arbitrary brain activity arising without the purpose of voluntary control
(i.e., implicit information on the user states), for example, workload, attention, emotion, and most in
general task-induced states that can only be detected with weak reliability using conventional methods
such as subjective (e.g., questionnaires) and/or behavioral (e.g., reaction times) measures [14]. Systems
based on pBCIs can directly use in a closed loop this information about the user states to automatically
modify the behavior of the interface that the user is interacting with (i.e., adaptive automation), or just
to inform, even in real-time, the user himself/herself or other people about dangerous human behaviors
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(e.g., overload [15], or loss of vigilance [16,17]) that could increase the human error probability and
consequently induce possible unsafe situations.

Several giant leaps have been made in the BCI field in the last years, from several points of view.
For example, many works have been produced in terms of front-end graphical user interfaces (GUIs),
as deeply reported in the review paper “Brain–Computer Interface Spellers: A Review” recently
published in the Brain Sciences journal. In this regard, “throughout the years, scientists have worked on

spelling systems to make them faster, more accurate, more user-friendly, and, most of all, able to compete with

traditional communication methods” [18].
In this particular regard, a huge effort has been made even in back-end algorithms (i.e., classification

techniques) running under BCI systems [19], allowing for high discrimination accuracy (e.g., target
vs. no-target, low workload vs. high workload) together with high information transfer rates (ITRs)
and by using less and less features (i.e., EEG sensors). In this regard, machine-learning and deep
learning approaches based on the analysis of physiological data went through a rapid expansion in the
last decade since such methodologies are able to provide the means to decode and characterize task
relevant brain states (i.e., reducing from a multidimensionality to one dimensionality problem) and to
distinguish them from non-informative brain signals (i.e., to enhance Signal to Noise Ratio). In this
regard, Aricò and colleagues have published a few review papers demonstrating the maturity and
effectiveness of this kind of technique by testing BCI systems in daily life applications [20,21]. Figure 1
shows BCI concept and related potential fields of application.

Figure 1. The brain–computer interface concept and related applications that could be realized in an
Active, and a Passive meaning.

Last, but not least important, enhancement in technology is related to EEG recording headsets
that could finally allow BCI systems to enter the market, especially for daily life applications. In recent
years, many companies have been moving to develop more wearable and minimally invasive biosignal
acquisition devices. With particular regard to EEG systems, current effort is being made to develop dry
sensors (i.e., not requiring any conductive gel), or to eventually use water-based technology instead of
the classic gel-based technology, allowing high signal quality and higher comfort (e.g., [22]). There
is a common opinion that gel-based electrodes still have to be considered the gold standard [23,24],
however, the gap between wet and dry electrodes is being more and more reduced [25]. Several
attempts are already present in the literature about the comparison and validation of these innovative
dry EEG electrodes. In this regard, recently Di Flumeri and colleagues [25] published a paper aiming to
assess the level of maturity achieved by the EEG dry electrodes industry by comparing three different

2



Brain Sci. 2020, 10, 157

types of dry electrodes with traditional ones (i.e., gel-based). The results of this work highlighted
the high level of quality achieved by dry EEG solutions, since all the tested electrodes were able to
guarantee the same quality levels of the wet electrodes, allowing at the same time significantly reduced
times of montage and improvement in the users’ comfort.

In conclusion, because of the leaps and bounds performed in terms of front-end interfaces and
back-end algorithms of BCIs, and the huge technology improvement in terms of wearable devices and
dry EEG sensors, we can infer that BCIs are not too far from leaving the labs, and entering the market
as a new consumer product.

Acknowledgments: This work was supported by the European Commission by Horizon2020 projects “HOPE:
automatic detection and localization of High frequency Oscillation in Paediatric Epilepsy”(GA n. 823958);
“WORKINGAGE: Smart Working environments for all Ages” (GA n. 826232); “SIMUSAFE”: Simulator Of
Behavioral Aspects For Safer Transport (GA n. 723386); “SAFEMODE: Strengthening synergies between Aviation
and maritime in the area of human Factors toward achieving more Efficient and resilient MODE of transportation”
(GA n. 814961), “BRAINSAFEDRIVE: A Technology to detect Mental States during Drive for improving the Safety
of the road” (Italy–Sweden collaboration) with a grant from the Ministero dell’Istruzione dell’Università e della
Ricerca della Repubblica Italiana.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for
communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [CrossRef]

2. Jonathan Wolpaw and Elizabeth Winter Wolpaw, Brain-Computer Interfaces—Jonathan Wolpaw; Elizabeth Winter
Wolpaw—Oxford University Press: Oxford, UK, 2012; pp. 1–424.

3. Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain-computer
interface paradigms. J. Neural Eng. 2019, 16, 011001. [CrossRef] [PubMed]

4. Aloise, F.; Aricò, P.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F. Asynchronous gaze-independent event-related
potential-based brain-computer interface. Artif. Intell. Med. 2013, 59, 61–69. [CrossRef] [PubMed]

5. Pichiorri, F.; Morone, G.; Petti, M.; Toppi, J.; Pisotta, I.; Molinari, M.; Paolucci, S.; Inghilleri, M.; Astolfi, L.;
Cincotti, F.; et al. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol.

2015, 77, 851–865. [CrossRef]
6. Di Flumeri, G.; Borghini, G.; Aricò, G.; Sciaraffa, P.; Lanzi, N.; Pozzi, P.; Vignali, S.; Lantieri, V.; Bichicchi, C.;

Simone, A.; et al. EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and
Road Conditions in Real Driving Settings. Front. Hum. Neurosci. 2018, 12, 509. [CrossRef]

7. Blankertz, B.; Acqualagna, L.; Dähne, S.; Haufe, S.; Schultze-Kraft, M.; Sturm, I.; Ušćumlic, M.; Wenzel, M.A.;
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Abstract: Brain–computer interface (BCI) technology provides a direct interface between the brain
and an external device. BCIs have facilitated the monitoring of conscious brain electrical activity via
electroencephalogram (EEG) signals and the detection of human emotion. Recently, great progress has
been made in the development of novel paradigms for EEG-based emotion detection. These studies
have also attempted to apply BCI research findings in varied contexts. Interestingly, advances in BCI
technologies have increased the interest of scientists because such technologies’ practical applications
in human–machine relationships seem promising. This emphasizes the need for a building process
for an EEG-based emotion detection system that is lightweight, in terms of a smaller EEG dataset size
and no involvement of feature extraction methods. In this study, we investigated the feasibility of
using a spiking neural network to build an emotion detection system from a smaller version of the
DEAP dataset with no involvement of feature extraction methods while maintaining decent accuracy.
The results showed that by using a NeuCube-based spiking neural network, we could detect the
valence emotion level using only 60 EEG samples with 84.62% accuracy, which is a comparable
accuracy to that of previous studies.

Keywords: brain–computer interface (BCI); electroencephalogram (EEG); EEG-based emotion
detection; spiking neural network; NeuCube

1. Introduction

Brain–computer interfaces (BCIs) are technologies used to provide a direct interface between
sensors and the brain. BCIs have been identified as an emerging technology in many trend reports [1,2],
and the number of BCI devices is expected to grow rapidly [3]. BCIs use responses from brain activities
in humans or animals to activate external devices. The feedback delivered and captured by these
devices bypasses the motor functions of a user or subject, thereby preventing interference. In this
regard, nascent brain activities are objectively translated to this device, which in turn interprets them.

Many BCI systems and platforms have been developed and deployed over the past decade.
However, most platforms were implemented based on proprietary solutions or developed to solve
specific domain problems. In an interdisciplinary field of research, BCI studies have sought to leverage
recent advances in its interdisciplinary relationship with other fields and foster a range of applications
in various fields, such as signal processing, neuroscience, machine learning, and information technology.
Figure 1 illustrates the basic components of a BCI system.
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Figure 1. Basic components of a brain–computer interface.

BCI systems are designed to translate brain activities into control commands using a device
that stimulates brain activity, thereafter providing an assessment of neurological function or sensory
feedback. Sensory feedback is recorded, decoded, and eventually translated into a measurable
neurophysiological signal, effector action, or behavior. Basically, any BCI system can be described by
traditional processing pipelines, which include the following processing stages [1]:

1. Signal acquisition: This step deals with the measurement of brain signals using a particular type
of sensor device. Furthermore, it involves different noninvasive neuroimaging methods that have
been employed in BCI studies. These noninvasive techniques include electroencephalography
(EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI),
functional near infrared (fNIR), and positron emission tomography (PET). All these methods
have been reported as accepted. and safe imaging procedures used in research facilities and
hospitals in clinical and nonclinical contexts. However, EEG is used most often in BCI research
experimentation because the process is noninvasive to the research subject and minimal risk
is involved. Moreover, the devices’ usability, reliability, and cost-effectiveness, along with the
relative convenience of conducting studies and recruiting participants afforded by portability,
have been cited as factors influencing the increased adoption of this method in applied research
contexts. Yet, these advantages are often accompanied by challenges such as low spatial resolution
and difficulty in managing signal-to-noise ratios.

2. Signal processing and translation: This BCI process includes the following steps:

– Signal preprocessing: This step deals with the filtering of acquired signals and removal of
noise. Basically, signals are amplified, filtered, digitized, and transmitted to a computer.

– Feature extraction/selection: This step deals with the analysis of digital signals to discriminate
relevant signal characteristics. The signals are then represented in a compact form suitable for
translation into output commands through selecting a subset and reducing the dimensionality
of features.

– Feature classification: The subsequent signal features are fed into the feature translation
algorithm, which translates the features into a control signal for the output device or into
commands that accomplish the user’s intent.

3. Application/ feedback: The control signal from the signal processing and translation stage causes
changes in the environment, device, or feedback mechanism of the EEG system. Many EEG-based
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BCI systems have been developed that have targeted different applications and shared the same
goal of translating users’ intent into actions without using peripheral nerve impulses and muscles.

Recently, EEG-based emotion detection has garnered increased attention in both research and
applied settings. It cuts across several application areas, including medical and nonmedical, and several
disciplines such as clinical neurology, rehabilitative therapy, neurobiology, electronic engineering,
psychology, computer science, medical physics, and biomedical engineering [3]. Most of these studies
have proposed building an EEG-based emotion detection system with an EEG dataset larger than
300 samples, which has involved several feature extraction methods; by contrast, in the present study,
we aim to propose a building process for an EEG-based emotion detection system that is lightweight
in terms of a smaller EEG dataset size and with no involvement of feature extraction methods—all
without compromising accuracy.

EEG-based emotion detection has promising potential applicability in numerous fields, where the
ability to build such applications requires a sufficient size of EEG dataset and different feature extraction
methods. This emphasizes the demand for a lightweight building process for an EEG-based emotion
detection system with a smaller EEG dataset size and no feature extraction methods involved. Thus,
investigations on the feasibility of promising tools and algorithms to maintain the high accuracy of
EEG-based emotion detection systems—while learning from a smaller-sized preprocessed EEG dataset
with no feature extraction methods involved—are highly encouraged.

Spiking neural networks (SNN) is the third generation of neural networks. It more closely mimics
natural neural networks than artificial neural networks (ANN), as a neuron in SNN will fire when the
accumulated stimuli reach above a threshold value, which makes SNNs more biologically realistic
than ANNs [4].

Inspired by the fast information processing of spiking neural networks (SNNs) [5] as well as the
results of studies that have used a NeuCube-based SNN as a classifier, which is an SNN architecture
for spatio- and spectro-temporal brain data proposed in [6,7], we proposed an EEG-based emotion
detection system that uses a NeuCube-based SNN as a classifier, with an EEG dataset of fewer than
100 samples [5,7,8]. The method was applied to address the following objectives: (i) to investigate how
the SNN architecture NeuCube’s connectivity, learning algorithms, and visualization of the learning
processes inside the SNN helped in classification and analysis of functional changes in brain activity
when using EEG technique to recognize emotion states; (ii) to build an EEG-based emotion detection
system using an EEG dataset of fewer than 100 samples and no feature extraction methods, with a
NeuCube-based SNN as a classifier, and without compromising accuracy. Overall, our proof-of-concept
work towards emotion detection and classification using NeuCube-based SNN shows promise and
will provide the basis for continued research in this direction.

The remainder of this paper is organized as follows: Section 2 introduces the main concepts
of this study with background details; Section 3 explores and reviews related studies in the field of
EEG-based emotion detection and SNN-based EEG classification; Section 4 illustrates our proposed
system, the acquisition of EEG data, the experiments, and the evaluation design; Section 5 reports the
experimental results; and Section 6 presents the conclusion.

2. Background

In this section, we introduce an overview of EEG-based emotion detection systems and applications,
SNNs, and NeuCube-based SNNs.

2.1. EEG Correlates of Emotion

Emotions play a critical role in human interactions with the outer world and are considered
an important factor in human actions and behaviors. Therefore, the detection and recognition of
emotion-related information have become attractive research topics, such as in human–computer
interaction (HCI) and affective computing studies and have opened a wide space for multiple
applications. Such applications range from visualizing a user’s emotional state to initializing a
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computer action based on this emotion, e.g., verbal feedback, or stimulating mini-games to initialize an
application-dependent action, e.g., an e-learning application that can adjust the course to the current
emotional state of the student [3,9].

Emotions can be measured objectively using various approaches, such as speech, gesture,
body posture, or facial feature analyses, and also through physiological measurements that take
advantage of sensors in direct contact with the user’s body, such as heart rate, skin temperature,
skin conductivity, and brain activity. One advantage of using physiological measurements to indicate
the emotional state of users is that users lack the ability to manipulate their emotional state, which is
hidden in these measurements, as they can do with other approaches [9].

EEG largely captures electrical activity by means of electrodes placed at specific locations on the
scalp [10], following the international 10–20 system depicted in Figure 2. The emotional state that
EEG-based emotion detection systems are intended to recognize is usually defined according to the 2-D
arousal–valence emotional model; this model, proposed by Russell (1980), can map discrete emotion
labels into the arousal–valence coordinate system [3], as shown in Figure 3.

 

Figure 2. 10–20 system of electrode placement.

 

Figure 3. Arousal–valence emotional model.
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2.2. EEG-Based Emotion Detection Applications

EEG-based emotion detection has been applied in numerous medical and non-medical fields.
Consequently, numerous EEG-based BCI emotion detection systems and application have been
developed that target different application areas. These applications are employed for both healthy
individuals and unhealthy study participants. They all share the same research approach of using
objective methods to determine affective emotional states.

In the following, we provide an overview and recent examples of applications that have been
developed and studied for EEG-based emotion detection systems, categorizing them into five main
areas including Medical and healthcare, Recreation, leisure and entertainment, Marketing, BCI aid and
assistance, and Cognitive load estimation.

Medical and healthcare: This category includes research work that studies participants with
medical conditions by comparing their affective state with the control group and experiments are
conducted in clinical settings. These studies have suggested novel approaches for assisting, enhancing,
mentoring, and diagnosing debilitative conditions of the study participants by using an EEG-based
emotion detection technique. Medically related studies have detailed how EEG-based emotion
detection systems are used to understand, diagnosis, and assess medical conditions. They have
explored the relationship between symptoms and affective states in medical conditions such as disorder
of consciousness [11], schizophrenia [12], Parkinson’s disease [13], and autism [14,15].

Recreation, leisure and entertainment: This category included studies that proposed EEG-based
emotion detection in gaming and other associated entertainment domains. For example, they were
used for observing the relationship between multimedia data (music/video) and human emotions.
The results were then used to explore the effects of these multimedia data on emotional affective
states for different gender and age groups. In gaming research, some work sought to detect gamers’
affective states in order to adapt to specific game’s features such as level of difficulty, punishment,
and encouragement. All of these were investigated using an EEG-based emotion detection system.
Research groups in the HCI community have started pushing boundaries by trying to determine the
extent of their ability to peer into a user’s brain, if even roughly. Considering the minimally invasive
nature of these devices and how they barely interfere with the day-to-day activities of a physically
challenged person, researchers decided to further push the boundaries to ascertain the advantages that
may accrue following what insight they may get in different application areas. Studies have explored
BCI controlled recreational applications, such as games [16], virtual reality [17], brain-controlled art
and music [18,19], and multimedia data tagging system [20,21].

Marketing: This category included studies that sought to understand consumer responses to
market stimuli. During sales, a customer’s emotions can be strongly influenced by the perception
of his/her surroundings. Recognition of emotional responses reveal true consumer preferences and
can improve and assist the (buying) process. An EEG-based emotion detection system helps in the
marketing of products to potential buyers by offering personalized information to the user through an
understanding of individual preferences. These individualized preferences can then be extrapolated to
other customers with a view to making tailored advertising preferences [22,23].

BCI aid and assistance: These research studies aimed to explore how assistive technologies become
more effective by recognizing the affective states of persons. Assistive research studies were used to
identify skills, user experience, and limitations of potential users. They were also used to improve
behavior, cognition, and emotion regulation. BCI studies began as a move towards incorporating
assistive technological solutions for persons with significant physical disabilities. It further drew
research enthusiasts when it became apparent that persons with physical disabilities wanted to
communicate with others, as well as have some level of control over their environment. The answer
was to create computer-based recreational activities. Integrated emotion recognition systems with
assistive technologies make them more efficient by recognizing affective state. BCIs were further used
to identify users’ skills, experience, or limitations. Conversely, they were used to improve behavior,
cognition, and emotion regulation [24,25].
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Cognitive load estimation: This research work investigated how emotional states support learning
processes. They assess an individual’s degree of engagement, attention, and cognitive load under
different conditions. They also determined how emotions affect the way users consume information
in school by assessing their levels of engagement and learning. These studies sought to monitor the
alertness of individuals in job performance, security-critical tasks, measuring and estimating alert levels
of cognitive load during task performance. Emotion is one of the key elements involved in learning and
education; it also affects decision-making, communication, and the ability to learn. Research studies
found that an emotional state has the potential to influence one’s thinking. Hence, measuring and
estimating alertness levels and cognitive load during task performance can be applied in education
and learning. This is done so as to assess the degree of engagement, attention, and cognitive load of a
user under different conditions. Such cognitive tasks as listening to a lecture, solving logical problems,
or workload assessments can benefit from BCI technologies [26,27].

2.3. NeuCube-Based Spiking Neural Networks

SNNs are considered the third generation of neural networks. The main difference between this
generation and previous generations is the timing of potential spike firing of a neuron, which mainly
depends on the spikes of other neurons. Depending on the input of the spiking neuron, it fires a spike or
action potential at certain points in time, which could induce the postsynaptic potential of other spiking
neurons according to an impulse response function; thus, information in an SNN is propagated by the
timing of individual spikes. The input of the SNN must first be coded into sequences of neuronal spikes
(spike trains) [28]. SNNs require a special learning rule, such as spike-timing-dependent plasticity
(STDP), which adjusts the strength of a weight in response to the time difference between the pre- and
postsynaptic spikes [29]. A significant number of researchers have used SNNs for different EEG-based
pattern recognition problems and related them to the nature of information propagation in the SNN,
which depends on the firing time of the spike and is close in nature to EEG data [30,31]. This makes
SNNs an interesting method because they represent time and space compactly, process information
rapidly, and can provide both time- and frequency-based information representation.

SNNs only accept data in forms of spike trains, thus input data should be first encoded into this
form using special coding methods. Neurons in SNNs have the ability to generate action potentials or
spikes when the pre-synaptic neurons exceed a threshold. Different neurons models have attempted to
emulate this semi-biological behavior of SNN such as the spike response model (SRM), the Izhikevich
neuron model, and the leaky integrated-and-fire (LIF) neuron. This behavior allows the weights of the
SNN to increase if action potentials generated by the neurons decrease, otherwise based on the spike
trains which induce the learning process of the SNN [4].

NeuCube is an SNN architecture for spatio- and spectro-temporal brain data, shown in Figure 4.
The NeuCube architecture was first proposed by Nikola Kasabov for brain data modelling in [6] and
was further developed as a multi-modular software/hardware system for large scale applications [5].
Basically, NeuCube-based SNN classification can be conducted in four steps:

1 Data encoding, in which EEG samples are converted into spike trains using encoding methods
such as threshold-based representation (TBR), which generates a spike train whenever changes in
the EEG data exceed a specific threshold.

2 SNN cube initialization, in which each neuron in the SNN cube is connected to its nearby neurons,
which are within a specific distance threshold.

3 Training the cube using unsupervised learning, in which EEG data in the forms of spike trains are
used to modify the initially set connection weights; thus, the same groups of spiking neurons in
the SNN cube will be activated when similar input stimuli are presented.

4 Classification, in which the same dataset used for the unsupervised training phase is propagated to
the SNN cube to train neurons in the output layer classifier. For each sample, a new neuron in the
classifier is generated, and the state of the SNN cube is measured to establish a connection between
this new neuron and a specific group of spiking neurons in the SNN cube. The state of the SNN
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cube is measured to establish a connection between this new neuron and a specific group of spiking
NeuCube parameters, such as the SNN learning rule rate, the encoding method threshold, and the
spike firing rate, which can affect the classification accuracy; therefore, an optimization module is
proposed in this architecture to obtain the values of some of these parameters, which could lead
to enhanced accuracy. The weight of this connection adapts according to the datasets used to link
each sample, represented as a neuron in the output layer to specific emotional stimuli (emotion
class), represented as a specific group of spiking neurons in the SNN cube.

 

Figure 4. NeuCube model (Source: Kasabov 2012 [6]).

3. Related Works

Several studies have investigated the contribution of various feature selection and extraction
methods as well as classification algorithms to the overall performance of EEG-based emotion
detection systems. Although the number of research studies on EEG-based emotion recognition
has been increasing in recent years, EEG-based emotion recognition still faces challenges, including
low signal-to-noise ratios (SNRs), nonstationary signals, and high inter-subject variability that limits
effective analysis and processing [32].

In [33], the researchers conducted an experimental study in which they applied EEG-based emotion
detection in clinical settings. A total of 26 subjects participated in a music-listening experiment where
their EEG was recorded using 32 electrodes while they listened to 16 music clips (30 s each) as stimuli.
A total of 416 samples were each labeled with one of the following four emotion classes: joy (positive
valence and high arousal), anger (negative valence and high arousal), sadness (negative valence and
low arousal), or pleasure (positive valence and low arousal), which followed the 2-D valence–arousal
emotion model. The EEG samples were classified using two learning models, namely multilayer
perceptron (MLP) and support vector machine (SVM), with four feature types: the power spectrum
density of all 30 channels (PSD30), power spectrum density of 24 channels (PSD24), differential
asymmetry of 12 electrode pairs (DASM12), and rational asymmetry of 12 electrode pairs (RASM12),
computed on each one of the five frequency ranges of the EEG signals. The experimental results
showed that SVM obtained the best averaged classification accuracy of 82.29%.

In [10], the researchers developed four learning models, and power spectral features and power
spectral asymmetry were extracted from the DEAP dataset. These features fed into all four learning
models, which had a deep learning network (DLN) as their main component. The proposed DLN
consisted of three hidden layers, an input layer, and three neuron output layers where the three neurons
corresponded to the three levels of arousal or valence that had been classified separately in the study.
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The first and second learning models consisted of a DLN with 100 and 50 hidden nodes in each layer,
respectively, whereas the third learning model used principal component analysis (PCA) to reduce
the number of features before feeding them into the DLN with 50 hidden nodes. The last model had
the same structure as the third learning model except for its use of the covariate shift adaptation
of principal components (CSA) to normalize each input feature, with the average of the previous
feature values within a specific rectangular window, before applying PCA. The last model achieved
the best classification accuracies for classifying the three levels of valence and arousal of 53.42% and
52.05%, respectively.

In [34], the researcher proposed a real-time emotion classification system. Four emotional
classes—low arousal/low valence (LALV), low arousal/high valence (LAHV), high arousal/low valence
(HALV), and high arousal/high valence (HAHV)—were classified with accuracies of 84.05% for arousal
levels and 86.75% for valence levels using k-nearest neighbors (KNN) (k = 3). The features used with
the classifier were extracted from the DEAP dataset by dividing EEG samples into several overlapping
windows with widths between 2 s and 4 s, each of which was subsequently decomposed into five
frequency bands using discrete wavelet transforms. Finally, entropy and energy were computed from
each of these frequency bands and served as a feature vectors.

In [35], the researchers proposed an EEG-based emotion recognition method based on empirical
mode decomposition (EMD), which is a data-driven signal processing analysis technique. Their method
was used to decompose each EEG signal acquired from the DEAP dataset into eight or nine oscillations
on various frequency scales called intrinsic mode functions (IMFs). The first four IMFs of each
signal were selected to construct feature vectors according to their contribution to emotion detection
determined, using a cumulative variance contribution rate test. Feature vectors were constructed
by computing the sample of each one of the IMFs for each EEG signal and then used along with
SVM to perform four binary class classifications, namely HAHV/LAHV, LAHV/LALV, LALV/HALV,
and HALV/HAHV. This model obtained an average classification accuracy equal to 94.98%.

In [36], the researchers used a deep neural network (DNN) to identify human emotions using
the DEAP dataset. Power spectral density (PSD) and frontal asymmetry features were extracted and
then fed into the DNN to classify two classes by emotion dimension (arousal and valence), achieving
accuracies of 82.0%. and 48.5%, respectively. Moreover, the DNN results were compared with those of
a traditional EEG signal classification method, namely random forest (RF) classification, achieving a
48.5% classification accuracy.

In [37], PSD features were extracted in both time and frequency domains. Then, authors proposed
the application of a deep convolutional neural network (deep CNN model) in emotion recognition and
obtained accuracy of 88.76% and 85.75% on valence and arousal dimension, respectively.

Table 1 presents a comparison of the abovementioned studies with respect to the EEG dataset
they acquired, the number and types of extracted features they computed, the number and types of
classifiers they used, and the optimal accuracies they obtained.

A considerable number of researchers have taken a further step beyond conventional machine
learning techniques to find promising concepts and methods for enhancing the performance of
EEG-based emotion detection systems.

In [38], the researchers built an EEG ontology using a specific set of features, and then performed
feature reduction by choosing the features most relevant to the emotional state using Spearman
correlation coefficients. These coefficients were calculated between the EEG features and two emotional
dimensions (arousal and valence). An analysis of variance (ANOVA) test was used to search for
differences in activation on different arousal–valence levels. These two tests were computed on the
EEG ontology, and then the most relevant features were selected to finalize the classification process
with the C4.5 algorithm.

In [39], the authors proposed a special structure for an emotion detection system that builds and
trains a separate classifier (SVM) for each EEG channel feature vector, as opposed to building one
classifier and training it through the combination of all the channels’ feature vectors. A weighted fusion
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of all these classifiers was used to detect the desired emotional label. This structure was suggested
based on several studies that proved that the intensity at which emotional information is processed
differs according to different brain areas.

Table 1. Comparison of different conventional studies on electroencephalogram (EEG)-based
emotion detection.

Ref. Dataset Feature Extraction Classifier Accuracy

[33] Own dataset 4
Multilayer perceptron (MLP)

Support Vector Machine (SVM)
82.29%.

[10] DEAP dataset 2

Deep learning network (DLN)-100
DLN-50

DLN-50 + PCA
DLN-50 + PCA + covariate shift

adaptation (CSA)

53.42% (valence)
52.05% (arousal)

[34] DEAP dataset 2 k-nearest neighbors (KNN)
86.75% (valence)

84.05 %

[35] DEAP dataset 1 SVM 94.98%

[36] DEAP dataset 2
Deep neural network (DNN),

Random forest (RF)
82.0%, 48.5%

[37] DEAP dataset 1
Deep convolutional neural

network (CNN)
88.76% (valence)
85.75% (arousal)

Because of SNNs’ fast processing of information [5], they have been used in studies as a classifier,
trained using an EEG dataset for various purposes. For example, in [40], an accuracy of 93.28%
was achieved using an SNN and delta content extracted by wavelet transform from an EEG dataset,
which was collected using the P3 Speller paradigm to classify P300 signals. These results showed that
the SNN outperformed other algorithms used on the same dataset. In a recent study [41], the authors
proposed using a spiking neural model (SNM) to discriminate EEG signals from motor imagery
movements when it is necessary to avoid a long calibration session.

The use of NeuCube, which is an SNN architecture developed for spatio- and spectro-temporal
brain data and proposed in [7], encouraged the researchers in [5] to conduct classification experiments
based on different EEG datasets. A NeuCube-based SNN classifier was used in [8] to investigate the
attention bias of consumers when a specific marketing stimulus was presented by classifying each EEG
sample in a dataset of 90 total samples into five classes: alcoholic, nonalcoholic, design, drink color,
and brand name. The classifier obtained an accuracy of 90%, which is superior to that obtained by
MLP, MLR, and SVM. GO/NOGO cognitive patterns were measured in [42] based on EEG and using a
NeuCube-based SNN as a classifier trained on 42 EEG samples. The classifier achieved an accuracy of
90.91%, which was superior compared with other traditional classifiers.

In recent literature, unsupervised novelty detection using SNN approach is proven to have high
effectiveness [31,43]. Researchers reported that the SNN approach has a high potential to be explored
and used to detect and recognize human cognitive and affective states. In [43], the SNN approach
has been used on EEG signals processing and classification, They developed a model to use EEG
data in order to provide insight into brain function in depression and to study the neurobiological
characteristics of depressed individuals who respond to mindfulness.

In another recent publication [31], researchers built a SNN model for recognizing EEG data and
classifying emotional states. Their experimental results showed that the SNN achieved the highest
accuracy compared to other conventional approaches due to its processing capability for spatial and
temporal data. In their experiments, they used two datasets, DEAP and SEED datasets. With the
DEAP dataset, their model achieved accuracies of 74% on arousal, 78% on valence, 80% on dominance,
and 86.27% on liking. With the SEED dataset, their model achieved an overall accuracy is 96.67%.
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From the above-mentioned review, we concluded as follows. (i) The size of the datasets used
in most of these studies was no smaller than 300 EEG samples. For example, in the DEAP dataset,
32 subjects participated in the EEG-recording experiments, in which each had an EEG sample recorded
for each 40-s music clip stimulus. (ii) Feature extraction in most of these studies was not a minor task in
terms of the number of features as well as the processes underlying their extraction, which emphasizes
the need for a sufficient EEG dataset and effective feature extraction method for the accurate classification
of emotions from EEG. (iii) EEG-based emotion detection is one of the EEG-based pattern recognition
problems. These problems have been solved by several useful machine learning algorithms, and one
promising algorithm that has yet to be investigated is SNN. (iv) SNN models have been developed
effectively to enhance the analysis and understanding of spatio-temporal brain data and recognize
cognitive and affective states. These reasons encouraged us to build an EEG-based emotion detection
system with a smaller version of the DEAP dataset using a NeuCube-based SNN as a classifier.

4. Proposed System

In this section, we illustrate our methodology along with implementation details of our proposed
solution. It consists of three stages: the construction of smaller versions of the DEAP dataset,
classification with the NeuCube-based SNN classifier, and evaluation of the trained classifier’s accuracy.
Figure 5 shows the structure of the proposed solution model. Using this model, we performed four
experiments, each of which used different sample sizes.

 

(

Figure 5. The proposed solution.

4.1. Dataset

The DEAP dataset is a multimodal benchmark dataset for the analysis of human affective states [44].
The EEG and peripheral physiological signals of 32 participants were recorded as each watched 40 1-min
excerpts of music videos. Participants rated each video in terms of the levels of arousal, valence,
like/dislike, dominance, and familiarity.

The sampling rate of the original recorded EEG data of 512 Hz was down-sampled to a sampling
rate of 128 Hz with a bandpass frequency filter that ranged from 4.0–45.0 Hz, and the electrooculogram
(EOG) artifacts were eliminated from the signals using a blind source separation method, namely
independent component analysis (ICA).

In this study, we injected the preprocessed data directly into the learning model without being
subjected to any feature extraction or selection process. The two EEG channels of FP1 and FP2 obtained
good accuracy in [34], as did F3 and C4 in [35]; thus, we only used FP1, F3, C4 and C3 channels as
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the raw features of the dataset. We selected the EEG data points according to the accuracy achieved
in [35] by selecting 1152 EEG data points from 34 s to 42 s, and related this selection to the participants’
emotional stability in this segment of the 1-min music video stimuli.

We constructed four datasets with two different sizes, 60 and 40 samples, and we performed two
binary classifications, one for valence levels and one for arousal levels, for each of these datasets to
enable us to measure the classification accuracy corresponding to the dataset size. We performed four
experiments, each of which was performed using one of the smaller-version datasets constructed from
the DEAP dataset.

Experiment 1 (60-Exp1) used a 60-sample dataset constructed by selecting the first 10 trial samples
of the first six participants, whereas Experiment 2 (40-Exp2) used a 40-sample dataset constructed
by selecting the first 10 trial samples of the first four participants. Experiment 3 (60-Exp3) used a
60-sample dataset constructed by selecting 10 trial samples, from the eleventh trial to the twentieth
trial, of six participants, starting from the seventh participant to the twelfth participant, whereas
Experiment 4 (40-Exp4) used a 40-sample dataset constructed by selecting the first 40 samples of the
second 60-sample dataset.

The EEG-based emotion classification proposed in this study was conducted according to the
valence and arousal dimensions, with each dimension divided into high (ratings of 5–9) and low
(ratings of 1–5) classes; thus, two binary classifications of valence and arousal were included in each of
the four experiments.

Table 2 summarizes the description of the original DEAP dataset and this study’s datasets,
which were constructed from the original DEAP dataset.

Table 2. Description of the DEAP dataset and our smaller versions of DEAP.

Dataset
/Dimension

Participants
Samples for Each Participant

(Trial × Channel × Data)
Labels

Original DEAP 32 40 × 32 × 8064 1280 × 4
60-samples-Exp1 6 40 × 32 × 8064 60 × 2
40-samples-Exp2 4 40 × 32 × 8064 40 × 2
60-samples-Exp3 6 40 × 32 × 8064 60 × 2
40-samples-Exp4 4 40 × 32 × 8064 40 × 2

4.2. NeuCube-Based SNN Classifier

We performed our experiments using NeuCube v1.3 software implemented in Matlab.
The NeuCube is a modular development system for SNN applications on spatio- and spectro-
temporal data. It was developed by the Knowledge Engineering and Discovery Research Institute
(KEDRI, www.kedri.aut.ac.nz). NeuCube is based on the evolving connectionist system (ECOS)
principles and neuromorphic computations. It facilitates building spatiotemporal data machines
(STDM) for problem solving such as classification, prediction, pattern recognition, data analysis and
data understanding.

NeuCube includes modules for data encoding, unsupervised learning, supervised classification
and regression, visualization, pattern discovery, and model optimization. NeuCube facilitates the
building of SSN applications, using the following steps: input data transformation into spike sequences;
mapping input variables into spiking neurons; deep unsupervised learning spatio-temporal spike
sequences in a scalable 3D SNN reservoir; on-going learning and classification of data over time;
dynamic parameter optimization; evaluating the time for predictive modelling; adaptation on new data,
possibly in an on-line/real time mode; model visualization and interpretation for a better understanding
of the data and the processes that generated it; implementation of a SNN model: von Neumann vs
neuromorphic hardware systems.

The NeuCube-based classifier was built using the following four steps:
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1. Data were encoded into spikes using the threshold-based representation (TBR) method with a
0.5 threshold.

2. The SNN cube was initialized with 1000 spiking neurons and a 2.5 small-world radius,
which defined the distance that constrained the number of each neuron’s initial connections to its
neighboring neurons.

3. Unsupervised training of the cube was performed using a threshold for neuron firing = 0.5 and
unsupervised STDP learning rate = 0.01.

4. The output layer classifier was classified with a modulation factor = 0.8 and drift value = 0.005.
An architecture of the SNN cube trained using 60 samples is shown in Figure 6a, with the output
layer when colored by true labels shown in Figure 6b, and when colored by predicted labels
shown in Figure 6c.

 

 

 

 

Figure 6. Architecture of the Spiking neural networks (SNN) cube trained using 60 samples (a), with the
output layer colored by the true (b) and predicted (c) labels of the samples.

We assigned the NeuCube parameters as the values of the original NeuCube model, but further
parameter optimization could lead to better accuracy.

For all the experiments, we divided the dataset into 80% training set and 20% testing set. The 20%
of the dataset represent a testing set that has not been used during the training phase and the results are
based on these new unseen samples which shows that the model could be generalized to a new subject.
We evaluated our system performance by the accuracy of the classification in terms of the number of
correctly classified emotions based on the EEG sample over all EEG samples in the testing set.

5. Results and Discussion

We evaluated the proposed system accuracy using four smaller versions of the DEAP dataset
by performing a binary classification according to the valence dimension and a binary classification
according to the arousal dimension for each version of the dataset. The results of the four experiments
are listed below:

60-Exp1: A 60-sample EEG dataset was used to train and test the proposed system, obtaining
an accuracy of 66.67% for valence classification and 69.23% for arousal classification. The accuracy
of the low valence class was 0%, whereas that of the high valence class was 88.89%. Furthermore,
the accuracy of the low arousal class was 100%, whereas that of the high arousal class was 33.33%.

40-Exp2: A 40-sample EEG dataset was used to train and test the proposed system, obtaining
an accuracy of 55.56% for valence classification and 66.67% for arousal classification. The accuracy

16



Brain Sci. 2020, 10, 781

of the low valence class was 0%, whereas that of the high valence class was 83.33%. Furthermore,
the accuracy of the low arousal class was 83.33%, whereas that of the high arousal class was 33.33%.

60-Exp3: A 60-sample EEG dataset was used to train and test the proposed system, obtaining an
accuracy of 84.62% for valence classification and 61.54% for arousal classification. The accuracy of the
low valence class was 0%, whereas that of the high valence class was 100%. Furthermore, the accuracy
of the low arousal class was 57.14%, whereas that of the high arousal class was 66.67%.

40-Exp4: A 40-sample EEG dataset was used to train and test the proposed system, obtaining
an accuracy of 66.67% for valence classification and 55.56% for arousal classification. The accuracy
of the low valence class was 0%, whereas that of the high valence class was 85.71%. Furthermore,
the accuracy of the low arousal class was 60%, whereas that of the high arousal class was 50%. Figure 7
presents a comparison of the valence experiments’ results; Figure 8 presents a comparison of the arousal
experiments’ results; and Table 3 presents a comparison of all the experiments in both dimensions.
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Figure 7. Comparison of the valence experiments’ results.
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Figure 8. Comparison of the arousal experiments’ results.
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The classification accuracy obtained in all experiments ranged between 56% and 85%, as shown in
Figures 7 and 8, which is comparable to that obtained in previous studies that used the same dataset
for EEG-based emotion detection.

Table 3. Comparison of all experiments’ results.

Sample Size/Emotion Dimension Valence Arousal

60-samples-Exp1 66.67% 69.23%
40-samples-Exp2 55.56% 66.67%
60-samples-Exp3 84.62% 61.54%
40-samples-Exp4 66.67% 55.56%

We used two EEG dataset sizes (60, 40), which were smaller than the datasets used in previous
studies, as shown in in Table 3; however, we were able to obtain an accuracy comparable to those
studies that used large versions of the same dataset.

These results demonstrate the potential ability of NeuCube-based SNNs as well as SNNs in
general to learn to detect emotion from EEGs with a small EEG dataset and to learn relevant patterns
in raw EEG datasets without any need to extract the features manually. Using a NeuCube-based
SNN in an EEG-based emotion detection system may not improve classification accuracy significantly,
but it provides an option for a building process for an EEG-based emotion detection system that is
lightweight in terms of a small EEG sample size and with no feature extraction processes involved.

In previous studies, the extraction of relevant features from the EEG dataset involved several
complex methods. By contrast, in this study, we did not include any feature extraction method and
fed the classifier directly with the EEG dataset; however, we still obtained an accuracy comparable to
other studies that used several feature extraction methods on the same dataset, as shown in Table 4
and Figure 9.

Table 4. Comparison with other studies that used the DEAP dataset.

Study
Dataset

Subjects (Trial × Channel × Data)
Feature Extraction

Methods

Accuracy
Valence Arousal

Jirayucharoensak
et al. [10]

32 (40 × 32 × 8064) 2 53.42% 52.05%

Luo et al. [31] 32 (40 × 32 × 8064) 1 78% 74%
Mohammadi et

al. [34]
32 (40 × 10 × 8064) 2 86.75 % 84.05 %

Chen et al. [37] 32 (40 × 32 × 128) 5 88.76% 85.75%

P
ro

p
os

ed
m

et
ho

d 60-Exp1 6 (10 × 4 × 1152) 0 66.67% 69.67%
40-Exp2 4 (10 × 4 × 1152) 0 55.56% 66.67%
60-Exp3 6 (10 × 4 × 1152) 0 84.62% 61.54%
40-Exp4 4 (10 × 4 × 1152) 0 66.67% 55.56%

 

 

Figure 9. Comparison with other studies that used the DEAP dataset.
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We also tested some state-of-the-art traditional machine learning classifiers which included Naïve
Bayes, Bayesian Network, Logistics Regression, Decision Tree, Support Vector Machine (SVM)and
k-nearest neighbors (KNN). The average classification accuracy obtained in all experiments showed
that SVM obtained the highest average accuracy of 62.71% followed by Bayesian network and KNN
which achieved average accuracy of 61.88% and 61.46%, respectively.

6. Conclusions

BCI research studies were initially focused on applications for persons with some degree of
impaired motor disability. Over the years, many EEG-based BCI emotion detection systems have been
developed that targeted different application areas. They all shared the same research approach of using
objective methods to determine affective emotional states. In recent times, alternative applications
in healthy human study participants have increased. This later research in able-bodied humans has
gained popularity for EEG-based BCI investigative research purposes.

In this study, we proposed a lightweight building process for an EEG-based emotion detection
system, in terms of small EEG sample size and no feature extraction methods, using a NeuCube-based
SNN. We constructed four small versions of the DEAP dataset with 40 and 60 EEG samples to perform
two binary classifications according to the valence and arousal emotional dimensions. The results
showed that the proposed system obtained a comparable accuracy with that of other studies that used
the larger version of the same dataset with the involvement of feature extraction processes.

Although good experimental results have been achieved with our proposed NeuCube-based
SNN model, further research and investigation is still needed on how to select, construct and optimize
learning models to obtain a higher classification accuracy and robustness model for EEG-based emotion
recognition. Therefore, we encourage the investigation of NeuCube-based SNN classifiers and other
architectures of SNNs in an EEG-based emotion detection system with respect to: (i) different EEG
sample sizes, (ii) different parameters, (iii) with and without a feature extraction method, and (iv)
performance of multiclass classification and regression according to the different emotional dimensions.
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Abstract: Among brain-computer interface studies, electroencephalography (EEG)-based emotion
recognition is receiving attention and some studies have performed regression analyses to recognize
small-scale emotional changes; however, effective brain regions in emotion regression analyses have
not been identified yet. Accordingly, this study sought to identify neural activities correlating with
emotional states in the source space. We employed independent component analysis, followed by a
source localization method, to obtain distinct neural activities from EEG signals. After the identification
of seven independent component (IC) clusters in a k-means clustering analysis, group-level regression
analyses using frequency band power of the ICs were performed based on Russell’s valence–arousal
model. As a result, in the regression of the valence level, an IC cluster located in the cuneus predicted
both high- and low-valence states and two other IC clusters located in the left precentral gyrus and the
precuneus predicted the low-valence state. In the regression of the arousal level, the IC cluster located
in the cuneus predicted both high- and low-arousal states and two posterior IC clusters located in the
cingulate gyrus and the precuneus predicted the high-arousal state. In this proof-of-concept study,
we revealed neural activities correlating with specific emotional states across participants, despite
individual differences in emotional processing.

Keywords: brain-computer interface (BCI); electroencephalography (EEG); emotion recognition;
independent component analysis (ICA); regression

1. Introduction

Emotion plays an important role in daily life, because it enriches communication. To achieve
emotional interaction between human beings and computers, electroencephalography (EEG)-based
emotion recognition is gaining attention in brain-computer interface (BCI) studies. For engineering
purposes, many studies have performed emotion classification using various types of EEG features [1–3].
In [4], emotion classification based on Russell’s valence–arousal model was performed using event-
related potentials (ERPs) and event-related oscillations calculated from EEG recorded during affective
picture viewing. Russell’s valence–arousal model is a widely-recognized model of emotion, and in this
model, emotions are represented in the space of two axes: valence (ranging from pleasant to unpleasant
state) and arousal (ranging from excited to calm state), as illustrated in Figure 1a [5]. Among many
emotion classification studies based on EEG, some studies estimated source activities in the brain
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and performed classification using only emotion-related source signals [6–9]. Padilla-Buritica and
colleagues reconstructed source-level signals from scalp EEG and classified emotions using signals
extracted from the selected brain regions [6]. Their results showed improvement of prediction accuracy
by estimation of source signals combined with the appropriate selection of brain regions from which
features used in the classification analysis were computed. Additionally, in EEG-based emotion
recognition studies, identification of common EEG features across individuals is required to create
models that can be generalized to various people, although there are large individual differences in
emotional processing and many studies tested participant-dependent models [10].

 

‒

‒

Figure 1. Experimental settings. (a) Schema of Russell’s valence–arousal model [5]. (b) The distribution of
the International Affective Picture System normative ratings of the 160 pictures used in the current study.
On the valence axis, values of 9, 5, and 1 represent pleasant, neutral, and unpleasant states, respectively.
On the arousal axis, values of 9, 5, and 1 represent excited, neutral, and calm states, respectively. HVHA,
high valence and high arousal; HVLA, high valence and low arousal; LVHA, low valence and high
arousal; LVLA, low valence and low arousal. (c) Trial flow. Each trial consisted of 4 s of rest, 2 s of fixation
cross presentation, 6 s of picture stimulus presentation, and 4–30 s of reporting of the felt valence and
arousal levels. Valence and arousal levels were reported using a computerized visual analog scale with
a self-assessment manikin (SAM; [11]). In the valence and arousal reporting scales, the emotions were
written in English and Japanese at both ends of the scales.

In addition to emotion classification studies which are based on a limited number of pre-defined
emotional categories, several studies have performed EEG-based or electrocorticography (ECoG)-based
emotion or mood state regression/correlation analyses to recognize small-scale emotional changes [12–30].
McFarland and colleagues performed canonical correlation analysis (CCA) to predict participants’
emotional states from the sensor-level features of EEG recorded during affective picture viewing [22].
Their results showed difficulty in attaining good prediction accuracy in the test set. Similar to the
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classification analyses, the use of source-level signals might improve the prediction accuracy in
regression analysis. However, to the best of our knowledge, no study has identified effective brain
regions in EEG-based emotion regression.

To estimate source-level neural activities, independent component analysis (ICA) with subsequent
dipole fitting has often been used. ICA is a signal separation method that linearly decomposes multi-
channel data into independent signals [31]. The application of ICA to EEG data enables extraction of
distinct neural activities that are free from any type of noise and whose activities are independent of
each other. Localization of the sources of independent components (ICs) can be performed based on
their projections onto the scalp, which allows investigation at the source level. ICA with subsequent
source estimation methods has often been applied in EEG studies investigating emotional processing
in the brain [32–38], suggesting the suitability of this method for the identification of effective brain
regions in EEG-based emotion regression.

Accordingly, this proof-of-concept study elucidated brain regions that recognize small-scale emotional
changes by using regression analysis. We applied ICA to EEG data captured during affective picture
viewing and then grouped the obtained ICs into IC clusters by a k-means clustering method. In the
regression analyses, valence and arousal levels were predicted from theta, alpha, beta, and gamma band
power of ICs, since frequency band power has been one of the most popular features in EEG-based
emotion classification studies [2]. A leave-one-participant-out approach was used to identify effective
features that are common across participants, and emotional state-specific regression analyses were
introduced with the aim of improving regression performance based on functional magnetic resonance
imaging (fMRI) studies suggesting difference of the neural activities between high- and low-valence
states and between high- and low-arousal states [39,40].

2. Materials and Methods

2.1. Participants

Twenty-six healthy human participants (10 females; mean age [standard deviation (S.D.)]: 25.2
[4.1] years) with normal or corrected-to-normal vision participated in this study. All participants were
right-handed and had no history of psychiatric or neurological disorders. Data obtained from 1 male
participant were excluded from the analysis because of an unacceptably noisy signal. The experimental
protocol was approved by the ethics committee of the Tokyo Institute of Technology (Approval No.
A17011) and conducted in accordance with the Declaration of Helsinki. The procedures were explained
to each participant and written informed consent was obtained prior to the experiment.

2.2. Stimuli

Pictures selected from the International Affective Picture System (IAPS; [41]) were used as stimuli
to induce emotion. The IAPS is commonly used in research on emotion. It provides general information
on the emotion induced by each picture stimulus, since all IAPS pictures have normative ratings of
valence, arousal, and dominance (ranging from controlled to in-control) levels. These ratings are
mean values of multiple participants’ ratings obtained in previous research. Figure 1b illustrates the
distribution of normative ratings of IAPS pictures used in this study in the valence–arousal plane.
Both valence and arousal axes ranged from 1 to 9 (9 = pleasant in the valence axis and excited in the
arousal axis, 1 = unpleasant in the valence axis and calm in the arousal axis). A value of 5 represented
a neutral level in both axes. For this study, pictures covering a wide area of the valence–arousal plane
were selected. Hereafter, we refer to values higher or lower than 5 in valence or arousal ratings as
belonging to a high or low emotional state, respectively. We selected 160 pictures distributed equally
in each of the four quadrants (40 pictures per quadrant: high valence and high arousal [HVHA], high
valence and low arousal [HVLA], low valence and high arousal [LVHA], and low valence and low
arousal [LVLA]).

25



Brain Sci. 2020, 10, 669

2.3. Experimental Task

Participants were positioned sitting in a reclining chair in a sound-attenuated chamber and instructed
to look at a monitor positioned approximately 1 m away from their eyes during the experiment. Each
trial consisted of 4 s of rest, 2 s of fixation cross presentation, 6 s of picture stimulus presentation, and 2
reporting periods (Figure 1c). During the reporting periods, participants were asked to report the valence
and arousal levels they felt during the presentation of the picture stimulus by using a computerized visual
analog scale ranging from 1 to 9 (in 0.1-point steps) and a touch pad, within 30 s. The minimum reporting
time was set to 4 s to ensure that the participants were reporting accurately, and not perfunctorily.
A self-assessment manikin (SAM; [11]) was placed below the visual analog scales to assist the participants
in reporting. We instructed the participants not to think about the reporting periods during picture
stimulus presentation in order to avoid such thoughts influencing EEG signals during picture stimulus
viewing. The experiment consisted of eight sessions, with each session comprising 20 trials. The picture
stimuli were presented in a pseudo-random order, so that each of the 4 quadrants (HVHA, HVLA, LVHA,
and LVLA) consisted of 5 pictures presented in 1 session, thereby, equalizing the emotions induced by
the stimuli across the sessions. Participants were allowed to take breaks of unlimited duration between
sessions. Before the experiment, we explained the meanings of the valence and arousal axes to the
participants and allowed them to rehearse using three practice picture stimuli that were not used in the
subsequent experiment. All images were presented using a 24-inch monitor connected to a computer,
and MATLAB R2018b (The MathWorks, Inc., Natick, MA, USA) and Psychophysics toolbox [42–44] were
used to control the experimental program.

2.4. EEG Data Acquisition

EEG signals were recorded from 64 channels using a Biosemi Active Two amplifier system with
active sensors (Biosemi, Amsterdam, Netherlands) at a sampling rate of 2048 Hz. All EEG channels
were attached to the participant’s scalp using electrically conductive gel, according to the International
10–20 system, with two reference channels attached to their earlobes.

2.5. EEG Data Processing

EEG data were processed using MATLAB R2018b and EEGLAB 14.1.2 software [45] (Figure 2).
First, we set the reference signal as the average of the signals at both earlobes. We applied a high-pass
finite impulse response (FIR) filter at 0.5 Hz and a low-pass FIR filter at 45 Hz to the raw continuous
64-channel data to attenuate the noise, and subsequently down-sampled the signal to 512 Hz to reduce
the computational cost. To clean the data, we rejected and interpolated noisy channels based on visual
inspection after extracting the 6-s epochs of picture stimulus presentation. Then, we removed epochs
containing artefacts, such as muscle activities, by visual inspection, and concatenated all the remaining
epochs. On average, 1.04 channels were rejected and 5.2% of epochs were removed. Following this
preprocessing, we applied adaptive mixture ICA (AMICA, https://sccn.ucsd.edu/~jason/amica_web.
html; [46]) to the data after changing the reference to the average of all 64-channel signals and reducing
the data dimensions to their rank by principal component analysis. Subsequently, we used the DIPFIT3
function (https://sccn.ucsd.edu/wiki/A08:_DIPFIT) of the FieldTrip toolbox [47] to locate the equivalent
current source dipole of each IC, based on boundary element model (BEM) of the Montreal Neurological
Institute (MNI) standard brain. To perform the analysis using only ICs originating from brain activity,
we identified and extracted the brain ICs. In this evaluation, we excluded ICs whose residual variances
in the dipole fitting procedure exceeded 15% [31], those with dipole locations that were localized outside
the brain, or those whose characteristics such as power spectral densities (PSDs) and time series activities
across epochs (ERP images) did not appear to be brain activities by visual inspection. In total, 212 ICs
(between 3 and 14 ICs per participant, mean 8.48) were selected as brain ICs.
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Figure 2. Flow of data processing and analysis. In the regression analysis, valence and arousal levels
were predicted by inter-participant regression from logarithms of theta (4–7 Hz), alpha (8–13 Hz), beta
(14–30 Hz), and gamma (31–45 Hz) band power of independent components (ICs).

Finally, we conducted a cluster analysis to identify common ICs across participants by using a
k-means clustering method in EEGLAB. All brain ICs were clustered by their characteristics, such as
scalp topographies, dipole locations, and ERPs in 0–500 milliseconds. To reduce the total number of
the dimension, principal component analysis was performed on each of the scalp topography and
ERP data, and top 10 and 5 principal components were included in the cluster analysis, respectively.
Accordingly, the k-means clustering analysis was performed in the 18-dimensional space (3 dimensions
for the dipole locations, 10 for the scalp topography, and 5 for the ERP). The number of clusters (k)
was set to a value that we considered to yield plausible clustering results in terms of consistency
of characteristics across ICs within the same cluster and distinctness of characteristics between
different IC clusters, after several changes in k. The threshold level for outliers was set to 3 S.D.,
and only IC clusters with ICs present in more than half of all participants (i.e., 13) were reported.
IC clusters were labeled using automated anatomical labeling (AAL; [48]) in MRIcron software
(http://people.cas.sc.edu/rorden/mricron/index.html; [49]), based on the MNI coordinates of centroids
of IC clusters. If the coordinates were judged to be in the white matter by AAL, the nearest labels in
the MNI space were reported.

2.6. Regression Analyses

The regression analysis was performed in a leave-one-participant-out manner and per emotional
state: high-valence, low-valence, high-arousal, or low-arousal state. We predicted the valence and
arousal levels by multiple linear regression with the ordinary least-squares method from logarithms of
theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma (31–45 Hz) band power of ICs included in
the IC clusters. PSDs of 6-s epochs of each IC were calculated by 512-point (1-s) fast Fourier transform
(FFT) with a 128-point (0.25-s) overlap, and the Hann window was applied as the window function.
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When more than 2 ICs from 1 participant were included in an IC cluster, their PSDs were averaged
before logarithmic transformation.

Based on fMRI studies suggesting that some brain regions are differently activated in high- and
low-valence (pleasant and unpleasant) states or in high- and low-arousal (excited and calm) states
during affective picture processing [39,40], we performed four separate regression analyses for each IC
cluster. Specifically, (1) regression of the valence level in a high-valence state (using HVHA and HVLA
pictures in Figure 1b, (2) regression of the valence level in a low-valence state (using LVHA and LVLA
pictures), (3) regression of the arousal level in a high-arousal state (using HVHA and LVHA pictures),
and (4) regression of the arousal level in a low-arousal state (using HVLA and LVLA pictures) were
performed. For dependent variables, we used the IAPS normative ratings of each picture stimulus
rather than the participants’ reports, because some participants’ reports were biased to either high-
or low- valence/arousal state. In these participants, only a few pictures were included in the other
emotional state, based on the participants’ reports. In order to ensure adequate sample sizes for the
regression analyses and to equalize sample sizes across participants and across emotional states, we
determined to use IAPS normative ratings as the dependent variable. The prediction accuracy was
evaluated using Pearson’s correlation coefficient between predicted variables and IAPS normative
ratings. We conducted a leave-one-participant-out cross validation and reported the mean values of
Pearson’s correlation coefficients obtained with all participants whose ICs were included in the IC
cluster. Before regression analyses, all independent and dependent variables for each participant were
standardized to mean values of 0 and variances of 1.

2.7. Identification of IC Clusters Correlating with Emotional State

We identified IC clusters that exhibited Pearson’s correlation coefficients significantly higher than
0 in each emotional state for each dependent variable (valence or arousal level) using a one-tailed
one-sample t-test. For each combination of the dependent variable and the emotional state, the obtained
p-values were corrected with the Holm–Bonferroni method to compensate for multiple comparisons
across the seven identified IC clusters [50]. As identification of significant IC clusters was performed
in two emotional states per dependent variable, the significance level was set to 0.025 (=0.05/2).
Furthermore, we calculated the coefficients of the regression model in which successful prediction
was obtained to determine the degree of contribution of each frequency band. Statistical tests and
calculation of mean correlation coefficients were performed after transformation to Fisher’s z values.

3. Results

3.1. IC Clusters Obtained by ICA and Cluster Analysis

ICA and cluster analysis by a k-means clustering method resulted in seven IC clusters. The MNI
coordinates of their centroids and their labels are presented in Table 1. The average projections of the
ICs onto the scalp, their dipole locations in the MNI standard brain, ERPs during 0–500 milliseconds,
and PSDs in 1–45 Hz are illustrated in Figure 3. Two anterior IC clusters (IC clusters 1 and 2) were
located in the anterior cingulate gyrus and middle cingulate gyrus. Two additional lateral IC clusters
(IC clusters 3 and 4) were located in the right and left precentral gyrus. Both of these lateral IC clusters
showed prominent alpha peaks in their PSDs. The other 3 IC clusters, clusters 5, 6, and 7, were located
in the posterior part of the brain, middle cingulate gyrus, right precuneus, and cuneus, respectively. IC
clusters 6 and 7 had specific ERPs, and IC clusters 5 and 6 exhibited alpha peaks in their PSDs.
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Table 1. Montreal Neurological Institute (MNI) coordinates and labels of the centroids of independent
component (IC) clusters.

Cluster Index Location of Centroid 1 MNI Coordinates
(X, Y, Z)

Number of
Participants

Number of ICs

1 Right anterior cingulate gyrus (2, 39, −2) 14 21
2 Right middle cingulate gyrus (1, −5, 32) 14 21
3 Right precentral gyrus (39, −6, 36) 16 18
4 Left precentral gyrus (−28, −13, 43) 16 19
5 Left middle cingulate gyrus (−3, −40, 44) 16 24
6 Right precuneus (20, −45, 4) 18 19
7 Right cuneus (6, −84, 16) 19 19

1 Labels were determined using automated anatomical labeling (AAL; [48]).

‒
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‒
‒

 

‒ ‒

Figure 3. Average projections onto the scalp, dipole locations in the Montreal Neurological Institute
(MNI) brain (blue points: each dipole, red points: centroid of dipoles), event-related potentials (ERPs)
during 0–500 milliseconds, and power spectral densities (PSDs) in 1–45 Hz of each IC cluster obtained
from independent component analysis and cluster analysis by a k-means clustering method in EEGLAB.
The numbers from 1 to 7 represent cluster indices shown in Table 1. In the scalp topography maps,
the left and right sides represent left and right hemispheres, respectively. The upper and lower sides
represent anterior and posterior sides of the scalp, respectively. The red color represents positive weight
and the blue color represents negative weight. In plots of ERPs and PSDs, thin gray lines represent
data from each IC and thick black lines represent averaged values.

3.2. IC Clusters Correlating with Emotional State

Prediction accuracy (Pearson’s correlation coefficient between predicted values and IAPS normative
ratings and mean squared error (MSE)) of all IC clusters in the inter-participant regression analysis is
shown in Figure 4. Among the 7 IC clusters, 1, 3, 3, and 1 IC clusters reached significance in the regression
of the high-valence, low-valence, high-arousal, and low-arousal states, respectively.

In the regression analysis of the high-valence state, IC cluster 7 (with the centroid located in the
cuneus) exhibited a correlation coefficient significantly higher than 0 (mean correlation coefficient:
0.095, p < 0.0005 in a one-tailed t-test with Holm–Bonferroni correction; MSE: 0.980). Mean (S.D.)
regression coefficients of the theta, alpha, beta, and gamma bands were −0.12 (0.01), 0.10 (0.01), 0.03
(0.01), and −0.01 (0.01), respectively (Figure 5a).
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Figure 4. Prediction accuracy of the seven identified IC clusters in the inter-participant regression.
Error bars represent standard deviations. (a) Regression of the high-valence state. (b) Regression of
the low-valence state. (c) Regression of the high-arousal state. (d) Regression of the low-arousal state.
(Left column) Pearson’s correlation coefficient between predicted values and International Affective
Picture System normative ratings. (Right column) mean squared error (MSE). * p < 0.025, ** p < 0.005,
*** p < 0.0005 in one-tailed one-sample t-tests with Holm–Bonferroni correction.

In the regression analysis of the low-valence state, IC clusters 4 (with the centroid located in
the left precentral gyrus), 6 (with the centroid located in the precuneus), and 7 exhibited correlation
coefficients significantly higher than 0. Mean correlation coefficients were 0.088 (p < 0.025), 0.093
(p < 0.025), and 0.121 (p < 0.005), respectively, and MSEs were 0.981, 0.980, and 0.974, respectively.
The mean (S.D.) regression coefficients of the theta, alpha, beta, and gamma bands were 0.03 (0.01), 0.07
(0.01), −0.04 (0.01), and −0.08 (0.01), respectively, in IC cluster 4 (Figure 5b), −0.10 (0.01), 0.11 (0.01),
0.00 (0.01), and −0.07 (0.01), respectively, in IC cluster 6 (Figure 5c), and −0.10 (0.01), −0.04 (0.01), −0.02
(0.01), and −0.02 (0.01), respectively, in IC cluster 7 (Figure 5d).

30



Brain Sci. 2020, 10, 669

 

− − −
− − − −

−

− − − −
− − −
− − −

−

Figure 5. Mean coefficients of the theta, alpha, beta, and gamma bands in the regression model. Larger
absolute value of the regression coefficient indicates larger degree of contribution of the frequency
band to the regression model. Positive (negative) regression coefficient indicates positive (negative)
relationship between the frequency band power and IAPS normative ratings. Error bars represent
standard deviations. (a) Regression of the high-valence state of IC cluster 7. (b) Low-valence state of IC
cluster 4. (c) Low-valence state of IC cluster 6. (d) Low-valence state of IC cluster 7. (e) High-arousal
state of IC cluster 5. (f) High-arousal state of IC cluster 6. (g) High-arousal state of IC cluster 7.
(h) Low-arousal state of IC cluster 7.

In the regression analysis of the high-arousal state, IC clusters 5 (with the centroid located in the
middle cingulate gyrus), 6, and 7 exhibited correlation coefficients significantly higher than 0. Mean
correlation coefficients were 0.079 (p < 0.025), 0.152 (p < 0.005), and 0.074 (p < 0.005), respectively,
and MSEs were 0.982, 0.967, and 0.983, respectively. The mean (S.D.) regression coefficients of the theta,
alpha, beta, and gamma bands were −0.03 (0.01), −0.08 (0.01), −0.01 (0.01), and −0.02 (0.01), respectively,
in IC cluster 5 (Figure 5e), −0.05 (0.01), −0.11 (0.01), −0.04 (0.01), and 0.05 (0.01), respectively, in IC
cluster 6 (Figure 5f), and −0.06 (0.01), −0.01 (0.01), −0.04 (0.01), and 0.06 (0.01), respectively, in IC cluster
7 (Figure 5g).

In the regression of the low-arousal state, IC cluster 7 exhibited a correlation coefficient significantly
higher than 0 (mean correlation coefficient: 0.114, p < 0.0005; MSE: 0.975). Mean (S.D.) regression
coefficients of the theta, alpha, beta, and gamma bands were 0.09 (0.01), 0.07 (0.01), −0.04 (0.01), and 0.02
(0.01), respectively (Figure 5h). The other 3 IC clusters (IC clusters 1, 2, and 3) did not exhibit correlation
coefficients significantly higher than 0 for either dependent variable (valence or arousal level).

4. Discussion

In this study, we investigated neural activities that can be recorded from scalp EEG and correlate
with emotional states, by using ICA with dipole fitting and regression analysis. We first identified
seven IC clusters in the frontal, parietal, and occipital regions in the group analysis. These clusters
were distinct from each other in terms of scalp topography, MNI coordinates, and ERPs. Subsequently,
inter-participant emotion regression was performed using frequency band power of the ICs included
in the seven IC clusters. As a result, the relationship between specific emotional states and four IC
clusters was identified in spite of individual differences in emotional processing [51]. In the regression
of the valence level, we found that an IC cluster located in the cuneus (IC cluster 7) predicted both high-
and low-valence states and two other IC clusters located in the left precentral gyrus and the precuneus
(IC clusters 4 and 6) predicted the low-valence state. In the regression of the arousal level, IC cluster 7
was found to also predict both high- and low-arousal states and 2 posterior IC clusters located in the
cingulate gyrus and the precuneus (IC clusters 5 and 6) were found to predict the high-arousal state.
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Thus, the results suggest that these brain regions are good candidates for effective brain regions in
EEG-based emotion regression.

In the regression of the valence level, IC cluster 7 (located in the cuneus) showed significant
regression performance in both high- and low-valence states. The cuneus is located in the occipital lobe
and is thought to be strongly related to visual function. This IC cluster also exhibited specific ERPs,
comprising P1, N1, and P2 in the 100–250 milliseconds range. Based on the ERP and the location, this
IC cluster may reflect the activity related to early visual processing. The activity of the visual cortex has
been found to be affected by emotion [52]. The regression coefficients of the frequency bands suggest
a strong influence of the theta band power. In human EEG studies, increased theta band response
to affective picture stimuli than to neutral ones has been reported at the posterior electrodes [53,54],
and these theta band modulations were suggested to reflect top-down and bottom-up attentional
mechanisms [55,56]. Attention-mediated theta band power change in the visual cortex was also shown
in a macaque ECoG study [57]. Thus, the regression model in our study might decode attention-related
neural activity. However, our results showed that the direction of the theta band-power influence
differed between high- and low-valence states. While theta band power decreased as the pleasantness
increased in the high-valence state, theta band power increased as the unpleasantness increased in the
low-valence state. (In the valence axis, a value of 1 represents an unpleasant state, and a value of 5
represents a neutral state in the regression model; thus, the negative coefficient indicates a positive
correlation with unpleasantness in the low-valence state.) This may indicate different mechanisms
of emotional processing in the cuneus between these two emotional states. In addition, IC cluster 6
(located in the right precuneus) significantly contributed to the regression, but only for the low-valence
state. The precuneus is located in the parietal lobe and is thought to be involved in visuo-spatial
imagery, episodic memory retrieval, and self-processing [58]. In our study, IC cluster 6 had specific
ERPs, comprising P300 and the subsequent late positive potential (LPP). Therefore, this IC cluster
may represent neural activation related to attention and memory processing, since P300 and LPP are
thought to be associated with these processes [59–62]. In particular, a larger LPP amplitude is thought
to be associated with increased motivated attention and memory. In a study using simultaneous EEG
and fMRI measurements, Liu and colleagues demonstrated that the amplitude of LPP significantly
positively correlated with blood-oxygenation-level-dependent (BOLD) signals in the precuneus only in
the presentation of high-arousal (“pleasant” and “unpleasant” in their study) pictures [63]. However, we
observed significant results in regression analysis of the low-valence state, but not of the high-valence
state. This result may be partly due to the “negativity bias”; it has been suggested that unpleasant stimuli
induce stronger emotional responses in the brain than pleasant stimuli [64]. Accordingly, although both
pleasant and unpleasant stimuli induced emotional responses in the brain, the unpleasant stimuli might
induce attention and memory processing more strongly; thus, the activity could be strongly represented
in the EEG. In addition, Liu et al. found that the LPP correlated with the BOLD signal in the ventral
part of the precuneus in the “unpleasant” condition and in the more dorsal part of the precuneus in the
“pleasant” condition. The location of IC cluster 6 in our study is in the ventral part of the precuneus,
near the posterior cingulate cortex. Taken together, activity in the ventral part of the precuneus may
correlate with the low-valence state. Moreover, IC cluster 4 (located in the left precentral gyrus) also
significantly contributed to the regression of the low-valence state. The precentral gyrus is mainly
associated with motor function; thus, this IC cluster may be related to motor activity caused by the
emotional content of the picture stimuli. One type of the motor activity may be induced through
facial muscles, because negative emotions, such as fear, anger, sadness, and disgust, are accompanied
by unique facial expressions [65]. Involvement of the precentral gyrus in the low-valence state is in
accordance with an fMRI study using affective pictures [39]. The regression coefficients of the frequency
bands support the contribution of motor activity to the regression performance. In the regression model,
the alpha and gamma bands contributed most significantly; as unpleasantness increased, alpha band
power decreased and gamma band power increased. Movement accompanies a decrease in alpha band
power in the central area, in a process called event-related desynchronization [66]. A previous human
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ECoG study has reported the relationship between gamma band power and movement execution [67].
Accordingly, movement-related activity of IC cluster 4 might correlate with the level of unpleasantness.

In the regression of the arousal level, IC cluster 5 (located in the middle cingulate gyrus; Brodmann
area [BA] 31) significantly predicted the high-arousal state. This IC cluster was located in the posterior
part of the brain, and the posterior cingulate cortex, including BA31, has been associated with controlling
attentional focus [68]. IC cluster 6 located in the right precuneus also significantly contributed to the
regression, but only for the high-arousal states. As mentioned above, a study using simultaneous EEG
and fMRI measurements demonstrated the contribution of the precuneus to the high-arousal state [63].
In accordance with the results of the current study, they observed no such correlation in the presentation
of low-arousal (“neutral” in their study) pictures. Their results suggest that the degree of activation
in the precuneus during affective picture viewing correlates with the electrophysiological index of
motivated attention and memory, but only in the high-arousal state. The regression coefficients of the
frequency bands also supported a contribution of visual attention in IC clusters 5 and 6 to the regression
performance. In the regression analysis of the high-arousal state in IC clusters 5 and 6, the alpha band
power contributed most significantly. The result suggested that, as arousal level increased, alpha
band power decreased. It has been suggested that alpha band power in the parietal–occipital region is
associated with visual attention [69]. Taken together, these findings suggest that attention and memory
processing are key factors that correlate with the high-arousal states in these two posterior IC clusters.
Additionally, IC cluster 7 showed significant regression performance in both high- and low-arousal
states. However, as with the valence axis, mechanisms of emotional processing may be different
between high- and low-arousal states in the cuneus. Specifically, theta band power decreased as the
arousal level increased in the high-arousal state and theta band power increased as the arousal level
increased in the low-arousal state.

Among the 3 posterior IC clusters (IC clusters 5, 6, and 7), IC cluster 7 exhibited activity correlating
with both high- and low-valence and high- and low-arousal states, while IC clusters 5 and 6 predicted
only either half of the valence and/or arousal axes. This may indicate that neural activity responsible for
early visual processing correlated with valence and arousal levels regardless of emotional states, while
those that process more higher-level information showed emotional state-specific activities. Based on
our current results suggesting the existence of neural activities involved in emotion regression only
in specific emotional states and fMRI studies showing different neural activities between high- and
low-valence states and between high- and low-arousal states [39,40], applying separate regression
models to high- and low- valence/arousal states would result in higher prediction accuracy in EEG-based
emotion regression analysis. Additionally, although posterior IC clusters correlated with emotional
states, 2 anterior IC clusters (IC clusters 1 and 2) did not predict either valence or arousal level. This
may be because frontal regions are responsible for more complicated functions than simple visual
processing. Frontal regions are thought to have a general role in emotional processing [70] and to
be a place of higher cognitive function [71]. Accordingly, in contrast to the posterior IC clusters that
seem to be responsible for rather simple functions, anterior IC clusters did not exhibit correlation with
emotional states.

Though we identified neural activities correlating with specific emotional states by applying
separate regression models per emotional state, there are some potential limitations in this study.
The first limitation is the low prediction accuracy. The correlation coefficients were 0.15 at the most in
this study. However, this value is higher than that of the previous study performed by McFarland
and colleagues, where sensor-level features and whole-axis analyses were used and the correlation
coefficients were at most around 0.08 in the test data [22]. Since experimental and analytical procedures
were totally different in many respects, it is not possible to directly compare our results with those of
the previous study. Nevertheless, our results may suggest the effectiveness of the use of source-level
signals in EEG-based emotion regression and/or the existence of neural activities correlating with
only specific emotional states. These findings would be useful for establishing regression models that
can achieve high prediction accuracy in future research. Moreover, to further increase the prediction
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accuracy for the real-life application of EEG-based emotion regression, non-linear regression methods
may be effective. Specifically, deep neural networks would result in significant improvement of the
regression performance [30]. Additionally, use of connectivity and causality measures between brain
regions rather than focusing on single brain region would also be beneficial. The second limitation
is the dependent variables used in this study. We did not use the participants’ reports, but rather
utilized IAPS normative ratings to maintain the large sample sizes and to equalize the sample sizes
across participants and across emotional states. Though IAPS normative ratings highly correlated
with the participants’ reports in this study (mean Spearman’s rank correlation coefficients across the
participants were 0.72 in the valence axis and 0.53 in the arousal axis), IAPS normative ratings may
differ from the participants’ actual emotion to some extent. Thus, regression performance would be
higher if we could use a larger sample and utilize the participants’ reports as the dependent variable,
though Petrantonakis and Hadjileontiadis reported that using participants’ reports instead of IAPS
normative ratings did not increase the prediction accuracy in emotion classification [72,73]. The third
limitation is the possible effects of visual features of the affective pictures on the regression performance.
We found that occipital IC cluster (IC cluster 7) predicted the emotional states; however, the visual
cortex processes various visual features. Though the visual cortex has been reported to be involved in
emotional processing [52], this IC cluster might respond to physical properties of the pictures rather
than the emotional content.

5. Conclusions

In order to identify neural activities that can predict valence and arousal levels, we used ICA
followed by the source localization method and inter-participant regression analyses. As a result, 4 IC
clusters correlated with certain emotional states in spite of individual differences in emotional processing.
The results were physiologically plausible and in line with those of previous studies. Specifically, attention
and memory processing might contribute to the significant regression results in three posterior IC clusters.
Finally, this study suggested that applying separate regression models based on the target emotional
states would help to attain good prediction accuracy in EEG-based emotion regression research.
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Abstract: With the continuous development of portable noninvasive human sensor technologies
such as brain–computer interfaces (BCI), multimodal emotion recognition has attracted increasing
attention in the area of affective computing. This paper primarily discusses the progress of research
into multimodal emotion recognition based on BCI and reviews three types of multimodal affective
BCI (aBCI): aBCI based on a combination of behavior and brain signals, aBCI based on various hybrid
neurophysiology modalities and aBCI based on heterogeneous sensory stimuli. For each type of aBCI,
we further review several representative multimodal aBCI systems, including their design principles,
paradigms, algorithms, experimental results and corresponding advantages. Finally, we identify
several important issues and research directions for multimodal emotion recognition based on BCI.

Keywords: emotion recognition; multimodal fusion; brain–computer interface (BCI);
affective computing

1. Introduction

Emotion is a general term for a series of subjective cognitive experiences. Emotions consist of
a set of psychological states generated by various feelings, thoughts and behaviors. People convey
emotional information constantly during the process of communication; emotion recognition plays
an important role in interpersonal communication and many aspects of daily life. For example,
recognizing the emotional states of patients with emotional expression disorders would be helpful
in supplying better treatments and care. Emotion recognition is also an indispensable aspect of
humanization in human-computer interaction. The advent and development of portable noninvasive
sensor technologies such as brain–computer interfaces (BCI) provide effective methods for achieving
humanization in human-computer interactions.

A BCI consists of technology that converts signals generated by brain activity into control signals
for external devices without the participation of peripheral nerves and muscles [1]. Affective BCI
(aBCI) [2] originated from a research project in the general communication field that attempted to create
neurophysiological devices to detect emotional state signals and then to use the detected information
to promote human-computer interaction. aBCI uses techniques from psychological theories and
methods (concepts and protocols), neuroscience (brain function and signal processing) and computer
science (machine learning and human-computer interaction) to induce, measure and detect emotional
states and apply the resulting information to improve interaction with machines [3]. Research in the
aBCI field focuses on perceiving emotional states, modeling of emotional processes, synthesizing
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emotional expression and behavior and improving interactions between humans and machines based
on emotional background [4]. In this study, we focus primarily on emotion recognition in aBCI systems.

In emotion-recognition research, one of the most important problems is to describe the emotional
state scientifically and construct an emotional description model. Emotional modeling involves
establishing a mathematical model to describe an emotional state, which can then be classified
or quantified by an aBCI system. Establishing an emotion model is an important aspect of
emotional measurement because it allows us to make more accurate assessments of emotional
states. Many researchers have proposed emotional representation methods; these can be divided into
discrete emotional models and dimensional emotional models.

For discrete emotion model, emotional states are composed of several basic discrete emotions,
(e.g., the traditional concept of “joys and sorrows”). Ekman [5] suggested that emotions include sadness,
fear, disgust, surprise, joy and anger and that these six basic emotions can form more complex emotional
categories via combined patterns. However, this description neither describes the connotation of
emotion scientifically nor enables a computer to analyze emotional state from a computational point
of view. The dimensional emotional model maps emotional states to points in a certain space.
Different emotional states are distributed in different positions in space according to their different
dimensions; the distances between locations reflect the differences between the different emotional
states. In the previous research, the valence-arousal, two-dimensional emotion model proposed by
Russell [6] in 1980 is the most widely used. The model divides emotion into two dimensions: a valence
dimension and an arousal dimension. The negative half of the valence dimension axis indicates
negative emotion, while the positive half indicates positive emotion. The largest difference between
this model and the discrete emotion model is that the dimensional emotion model is continuous; thus,
it has the advantage of being able to express emotion within a wide range and can be used to describe
the process of emotion evolution.

The aBCI system has achieved great progress in paradigm design, brain signal processing
algorithms and applications. However, these BCI systems still face some challenges. On one hand, it is
difficult to fully reflect emotional state based on a single modality because emotion information is easily
affected by various noises. On the other hand, some modality is easy to disguise, and it is difficult
to reflect the true emotional state, e.g., detecting an accurate expression does not always represent
a person’s true emotional state, because a person can disguise an expression. Automated emotion
recognition is still impractical in many applications, especially for patients with affective disorders.

From a human performance perspective, emotional expression is mainly divided into the
neurophysiological level and the external behavior level. By collecting and analyzing behavioral
data and brain image data, we can reveal the relationship between behavior and neural activity and
construct theoretical models that map emotion, behavior, and the brain. Therefore, emotion recognition
can be based on images, voice, text and other easily collected physiological signals (e.g., skin impedance,
heart rate and blood pressure). Nonetheless, it is difficult to use these signals to accurately identify
complex emotional states. Among all the types of signals that can be useful in identifying emotional
states, electroencephalogram (EEG) data have been widely used because they provide a noninvasive
and intuitive method for measuring emotion. EEGs data are the preferred approach for studying
the brain’s response to emotional stimuli [7]. EEGs can record neurophysiological signals and they
objectively reflect the activity of the cerebral cortex to a certain extent. Studies have shown that different
brain regions participate in different perceptual and cognitive activities; for example, the frontal lobe is
related to thinking and consciousness, while the temporal lobe is associated with processing complex
stimulus information, such as faces, scenes, smells and sounds. The parietal lobe is associated with the
integration of a variety of sensory information and the operational control of objects, and the occipital
lobe is related to vision [8].

We assume that multimodal emotion recognition based on EEG should integrate not only EEG
signals, an objective method of emotion measurement, but also a variety of peripheral physiological
signals or behaviors. Compared to single patterns, multimodal emotion processing can achieve more
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reliable results by extracting additional information; consequently, it has attracted increasing attention.
Li et al. [9] proposed that in addition to combining different input signals, emotion recognition
should include a variety of heterogeneous sensory stimuli (such as audio-visual stimulation) to induce
emotions. Many studies [10,11] have shown that integrating heterogeneous sensory stimuli can
enhance brain patterns and further improve brain–computer interface performance.

To date, a considerable number of studies on aBCI have been published, especially on emotion
recognition based on EEG signals. In particular, with the development of modality fusion theory and
portable EEG devices, many new technologies and applications of emotion recognition have emerged.
However, there are few comprehensive summaries and discussions of multimodal EEG-based emotion
recognition systems. With this problem in mind, this paper presents the concepts and applications of
multimodal emotion recognition to the aBCI community. The main contributions of this paper are
as follows:

Therefore, in this study, we present the concepts and applications of multimodal emotion
recognition to the aBCI community clearly. The main contributions of this study are as follows:

(1) We update and extend the definition of multimodal aBCI. Three main types of multimodal aBCI
were devised: aBCI based on a combination of behavior and brain signals, aBCI based on various
hybrid neurophysiology modalities and aBCI based on heterogeneous sensory stimuli;

(2) For each type of aBCI, we have reviewed several representative multimodal aBCI systems and
analyze the main components of each system, including design principles, stimuli paradigms,
fusion methods, experimental results and relative advantages. We find that emotion-recognition
models based on multimodal BCI achieve better performances than do models based on
single-modality BCI;

(3) Finally, we identify the current challenges in the academic research and engineering application
of emotion recognition and provide some potential solutions.

The remainder of this paper is organized as follows: Section 2 briefly introduces the research basis
of emotion recognition and the overall situation of related academic research. Section 3 focuses on data
analysis and fusion methods used for EEG and behavior modalities, while Section 4 describes the data
analysis and fusion methods used for EEG and neurophysiology modalities. Section 5 summarizes the
aBCI based on heterogeneous sensory stimuli. Finally, we present concluding remarks in Section 6 and
provide several challenges and opportunities for the design of multimodal aBCI techniques.

2. Overview of Multimodal Emotion Recognition Based on BCI

2.1. Multimodal Affective BCI

Single modality information is easily affected by various types of noise, which makes it difficult
to capture emotional states. D’mello [12] used statistical methods to compare the accuracy of
single-modality and multimodal emotion recognition using a variety of algorithms and different
datasets. The best multimodal emotion-recognition system reached an accuracy of 85% and was
considerably more accurate than the optimal single-modality correspondence system, with an average
improvement of 9.83% (the median was 6.60%). A comprehensive analysis of multiple signals and
their interdependence can be used to construct a model that more accurately reflects the potential
nature of human emotional expression. Different from D’mello [12], Poria [13] conducted a horizontal
comparison between multimodal fusion emotion recognition and single-modality emotion recognition
on the same dataset with regard to accuracy based on a full discussion of the current situation of
single-modality recognition methods. This study also strongly indicated that efficient modality fusion
greatly improves the robustness of emotion-recognition systems.

The aBCI system provides an effective method for researching emotional intelligence and emotional
robots. Brain signals are highly correlated with emotions and emotional states. Among the many
brain measurement techniques (including EEG and functional magnetic resonance imaging (fMRI)),
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we believe that multimodal aBCI systems based on EEG signals can greatly improve the results of
emotion recognition [14,15].

The signal flow in a multimodal aBCI system is depicted in Figure 1. The workflow generally
includes three stages: multimodal signal acquisition, signal processing (including basic modality
data processing, signal fusion and decision-making) and emotion reflection control. These stages are
described in detail below.

Figure 1. Flowchart of multimodal emotional involvement for electroencephalogram (EEG)-based
affective brain–computer interfaces (BCI).

(1) In the signal acquisition and input stage, modality data from combined brain signals and behavior
modalities (such as expression and eye movement) or various hybrid neurophysiology modalities
(such as functional Near-infrared spectroscopy (fNIRS) and fMRI) induced by heterogeneous
sensory stimuli (such as audio-visual stimulation) during interaction with other groups or by
certain events are captured by the system’s signal acquisition devices. At this stage, multimodal
aBCI can be divided into three main categories: aBCI based on a combination of behavior and
brain signals, aBCI based on various hybrid neurophysiology modalities and aBCI based on
heterogeneous sensory stimuli. For each type of multimodal aBCI, the principles are further
summarized, and several representative aBCI systems are highlighted in Sections 3–5.

(2) In signal processing, obtaining pure EEG signals containing emotional signals is critical.
For neurophysiological signals, the preprocessing process is to denoise and remove artifacts from
the collected original signals. For image signals such as expressions, irrelevant information in
images is eliminated and information representing emotional state is restored and enhanced.
In the stage of modalities fusion, we can use different fusion strategies, including data fusion,
feature fusion and decision fusion. In decision-making, emotional state decision output can select
spatial tensors [16,17], machine learning [18,19], or deep learning methods [20,21], as the final
classification decision-maker.

(3) Multimodal aBCI systems output relevant emotional states. If the task involves only emotional
recognition, it does not require emotional feedback control; the feedback occurs through a relevant
interface (such as diagnosis). However, if the task involves social effects (such as wheelchair
control), the user’s state information needs to be included directly in the closed-loop system to
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automatically modify the behavior of the interface with which the user is interacting. Many aBCI
studies are based on investigating and recognizing user’ emotional states. The applied domains
for these studies are varied and include such fields as medicine, education, driverless vehicle
and entertainment.

2.2. The Foundations of Multimodal Emotion Recognition

2.2.1. Multimodal Fusion Method

With the development of multisource heterogeneous information fusion, fusing features from
multiple classes of emotional states may be important in emotion recognition. Using different types of
signals to support each other and fusing complementary information can effectively improve the final
recognition effect [22]. The current mainstream fusion modalities include data-level fusion (sensor-layer
fusion), feature-level fusion and decision-level fusion.

Data-level fusion [23]—also known as sensor layer fusion—refers to the direct combination of
the most primitive and unprocessed data collected by each sensor to construct a new set of data.
Data-level fusion processing primarily involves numeric processing and parameter estimation methods.
It includes estimation techniques (linear and nonlinear) and uses various statistical operations to
process the data from multiple data sources.

Feature-level fusion [24,25] involves extracting a variety of modality data, constructing the
corresponding modality features and splicing the extracted features into a larger feature set that
integrates the various modality features. The most common fusion strategy cascades all the modality
feature data into feature vectors and then inputs them into an emotion classifier.

Decision-level fusion [26,27] involves determining the credibility of each modality to the target
and then coordinating and making joint decisions. Compared with feature-level fusion, decision-level
fusion is easier to carry out, but the key is to gauge the importance of each modality to emotion
recognition. Fusion strategies adopted at the decision level are based on statistical rules [28]
(e.g., sum rules, product rules and maximum-minimum-median rules), enumerated weights [29,30],
adaptive enhancement [31,32], Bayesian inference and its generalization theory (Dempster–Shafer
theory [33], dynamic Bayesian networks [34]) and fuzzy integrals [35].

2.2.2. The Multimodal Open Database and Its Research on Representativeness

The open database is convenient for objective comparison of algorithms; for this reason,
much research has focused on the emotion database. To enhance an intuitive understanding of
the EEG-based multimodal emotion data sets, we summarize the characteristics of the popular
databases in Table 1.

Current research on EEG-based multimodal emotion recognition uses different induction materials
and acquisition equipment and lacks objective evaluation of the algorithms. Therefore, to objectively
evaluate the performances of different algorithms, the related studies were compared on the same
open databases. Table 2 lists the representative multimodal emotion recognition research based on
open datasets. However, to provide readers with a more comprehensive understanding of multimodal
emotion research, the case studies in Sections 3 and 4 are no longer limited to open datasets.
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3. Combination of Behavior and Brain Signals

The core challenge of multimodal emotion recognition is to model the internal working of
modalities and their interactions. Emotion is usually expressed through the interaction between
neurophysiology and behavior; thus, it is crucial to capture the relationship between them accurately
and make full use of the related information.

Basic emotion theory has shown that when emotions are aroused, a variety of human
neurophysiological and external behavioral response systems are activated [47]. Therefore, theoretically,
the combination of a subject’s internal cognitive state and external subconscious behavior should
greatly improve the recognition performance. Concomitantly, the development and promotion of
neurophysiological and behavioral signal acquisition equipment has made emotion recognition using
mixed multimodalities of human neurophysiological and behavioral performances a research hotspot
in international emotional computing. Therefore, mixed modalities involving physiological and
external behavior modalities have attracted more attention from emotion recognition researchers.

Among the major modalities of behavior, eye movement tracking signals and facial expressions
are two modalities with content-aware information. Facial expression is the most direct method of
emotional representation. By analyzing information from facial expressions and combining the results
with a priori knowledge of emotional information (Figure 2a), we can infer a person’s emotional
state from facial information. Eye movement tracking signals can provide a variety of eye movement
indicators and eye movement tracking signals can reflect user subconscious behaviors and provide
important clues to the context of the subjects’ current activity [48].

Figure 2. (a) Flowchart of emotion recognition based on expression. The facial expression recognition
process includes three stages: face location recognition, feature extraction and expression classification.
In the face location and recognition part, two technologies are usually adopted: feature-based and
image-based [49]. The most commonly used emotion recognition methods for facial expressions
are geometric and texture feature recognition and facial action unit recognition. Expressions are
usually classified into seven basic expressions—fear, disgust, joy, anger, sadness, surprise and
contempt—but people’s emotional states are complex and can be further divided into a series of
combined emotions, including complex expressions, abnormal expressions and microexpressions;
(b) Overview of emotionally relevant features of eye movement (AOI 1: The first area of interest, AOI 2:
The second area of interest). By collecting data regarding pupil diameter, gaze fixation and saccade,
which are three basic eye movement characteristics, their characteristics can be analyzed and counted,
including frequency events and special values of frequency event information (e.g., observing fixed
frequency and collecting fixed dispersion total/maximum values).

3.1. EEG and Eye Movement

Eye-movement signals allow us to determine what is attracting a user’s attention and observe their
subconscious behaviors. Eye movements form important cues for a context-aware environment that
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contains complementary information for emotion recognition. Eye movement signals can provide a rich
signal that reflects emotional characteristics, including three common basic features, pupil diameter,
gaze information and saccade signals—as well as extended statistical features, including statistical
frequency events and statistical deviation events. As shown in Figure 2b, the pupil refers to a resizable
opening in the iris of the eye. Related studies [50,51] have shown that pupil size is related to cognition.
When we are stimulated from a resting state to an emotional state, our pupils will change size
accordingly. Fixation refers to a relatively stable position of the eyeball within a certain range of time
and space offset thresholds. Saccade refers to rapid eye movement between two points of interest
(or attention). Using these basic characteristics of eye movement signals, we can detect people’s arousal
and valence from the statistical values of fixation information and scan signals and then use them to
evaluate people’s inner activity states.

Soleymani [19] used two modalities, EEG signals and eye movement data. For EEG data,
the unwanted artifacts, trend and noise were reduced prior to extracting the features from EEG data
by preprocessing the signals. Drift and noise reduction were done by applying a 4–45 Hz band-pass
filter. For eye movement data, a linear interpolation was used to replace the missing pupil diameter
samples due to eye blinking. After removing the linear trend, the power spectrum of the pupil diameter
variation was computed. In terms of modalities fusion, they applied two fusion strategies: feature-level
fusion and decision-level fusion. Feature-level fusion did not improve the best experimental results of
EEG and eye gaze data. However, the channel fusion strategy using decision-level fusion increased
the optimal classification rates of arousal and valence to 76.4% and 68.5%, respectively. In feature
level fusion, feature vectors from different modalities are combined to form a larger feature vector.
Then, feature selection and classification methods are applied to the new feature set. Compared with
feature-level fusion, the decision-level fusion strategy is more adaptive and scalable, and it allows
modalities to be removed or added to the system without using decision-level fusion to retrain the
classifier. A support vector machine (SVM) classifier with an RBF kernel is used in both modalities,
and the classification results are fused to obtain multimodal fusion results. The authors drew lessons
from the confidence and fusion mentioned in the study [8] to complete the fusion of the two modality
classification results. The probability output of the classifier is used as a measure of confidence. For a
given experiment, the sum rule is defined as follows:

ga =

∑

q∈Q
Pq(ωa|xi)

K
∑

a=1

∑

q∈Q
Pq(ωa|xi)

=
∑

q∈Q

1
|Q|

Pq(ωa|xi) (1)

where ga is the summed confidence interval for an affected classωa. Q is the classifier ensemble selected
for fusion, |Q| is the number of classifiers, Pq(ωa|xi) is the posterior probability of having class ωa and
the sample is xi according to classifier q. To obtain Pq(ωa|xi), the authors used the MATLAB libSVM
implementation [52] of the Platt and Wu algorithms. The final choice was made by selecting the class
ωa with the highest ga. Note that ga can also be viewed as a confidence assessment on the class ωa

provided by the fusion of classifiers.
In [37], a multimodal framework called EmotionMeter was proposed to recognize human

emotions using six EEG electrodes and eye-tracking glasses. The experiments in this study revealed the
complementarity of EEG and eye movement in emotion recognition and a multimodal depth neural
network was used to improve the recognition performance. For EEG data, in the preprocessing stage,
a band-pass filter between 1 and 75 Hz was applied to filter the unrelated artifacts. Then they used the
short-time Fourier transform without overlap in 4 s time window to extract the characteristic power
spectral density (PSD) and differential entropy (DE) of five frequency bands of each channel. For eye
movements, they extracted various features from different detailed parameters used in the literature,
such as pupil diameter, fixation, saccade and blink. Among all the characteristics of eye movements,
the pupil diameter is most directly related to the emotional state, but it is easily affected by the ambient
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brightness [53]. Therefore, it is particularly important to preprocess the influence of light and shadow
removal on pupil diameter. Based on the observations that the changes in the pupil responses of
different participants to the same stimuli have similar patterns, we applied a principal component
analysis (PCA)-based method to estimate the pupillary light reflex. Suppose that Y = A + B + C

where Y is original sample data of pupil diameters, A is luminance influences that are prominent, B is
emotional influences that we want and C is noise. They used PCA to decompose Y and computed the
first principle component as the estimate of the light reflex. To enhance the recognition performance,
they adopted a bimodal deep autoencoder (BDAE) to extract the shared representations of both EEG
and eye movements. The authors construct two restricted Boltzmann machines (RBMs) for EEG and
eye movement data, respectively. They connected the two hidden layers of the EEG-RBM and the
eyes-RBM, trained the stacked RBMs and input their results into the BDAE, which then learned a
shared representation of the two modalities from the RBMs. Finally, this new shared representation
was used as the input to train a linear SVM. Their experiments show that compared with a single
modality (eye movement: 67.82%, EEG: 70.33%), multimodal deep learning from combined EEG and
eye movement features can significantly improve the accuracy of emotion recognition (85.11%).

Wu et al. [54] applied deep canonical correlation analysis (DCCA) to establish a multimodal
emotion-recognition model in which the connecting functional features from EEG and those
features from eye movements are fused. The architecture of the DCCA model includes three
parts: stacked nonlinear layers to achieve nonlinear transformations for two modalities separately,
followed by a canonical correlation analysis (CCA) calculation to maximize the correlation between
the two transformed modalities. Finally, the two transformed features are fused by weighted
average. An SVM is trained on the fused multimodal features to construct the affective model.
Notably, the emotion-relevant critical subnetwork actually lies in the network topology. The three
high-dimensional topological features, strength, clustering coefficient and eigenvector centrality,
are extracted to represent the connected functional features of EEG. For the eye movement signals,
the artifacts were eliminated using signals recorded from the electrooculogram (EOG) and FPz channels.
Similar to [37], principal component analysis was adopted to eliminate the luminance reflex of the
pupil and to preserve the emotion-relevant components. Next, the BeGaze2 [55] analysis software
of SMI (SeoMotoric Itruments, Berlin, Germany) eye movement glasses was used to calculate the
eye movement parameters, including pupil diameter, fixation time, blinking time, saccade time and
event statistics. Then, the statistics of these parameters were derived as 33-dimensional eye movement
features. The experimental results not only revealed the complementary representation characteristics
between the EEG functional connection network and eye movement data, but also found that the brain
functional connectivity networks based on the 18-channel EEG approach are comparable with that of
62-channel EEG under a multimodal pattern, which provided a solid theoretical basis for the use of
portable BCI systems in real situations.

We believe that a highly robust emotion-recognition model can be achieved by combining internal
physiological EEG signals and external eye movement behavioral signals. The strategies of the model
include extracting discriminative EEG representations and eye movements for different emotions and
then combining the EEG and eye movement signals through efficient model fusion methods.

3.2. EEG and Facial Expressions

Facial expressions are the most common emotional features. Facial expressions can usually be
divided into basic expressions (such as happy and sad), complex expressions, abnormal expressions
and microexpressions. The most commonly used emotion recognition methods for facial
expressions are geometric and texture feature recognition and facial action unit (facial muscle action
combination) recognition.

The texture operator has strong abilities for image-feature extraction. The extracted texture features
are mainly used to describe the local gray changes in the image. The representative methods are the
Gabor wavelet [56] and local binary pattern [57]. Geometric feature extraction is a classical emotional
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feature extraction method that typically locates the key points of the human face, measures the relative
distances between the positioning points, and finally, defines the features according to the distances.
In [58], the authors located eight key points in the eyebrows and the corners of the eyes and mouth.
They calculated and obtained six normalized geometric feature vectors and used them in experiments
to demonstrate the validity of the geometric feature extraction method.

According to anatomic principles, when a person’s emotional state changes, the facial muscles
will be subject to a certain degree of tension or relaxation. This process is dynamic, not static.
Various (dynamic) facial expressions can be decomposed into combinations of facial action units (AU),
which can be used to recognize complex expressions, abnormal expressions and micro expressions.
Ekman et al. developed a facial action coding system (FACS) [59]. Facial expressions can be regarded
as combinations of the different facial motion units defined by FACS.

Although emotion recognition methods based on expression are more direct and the facial
modality data are easy to obtain, this approach lacks credibility. For example, people may show a
smile, but it may be a wry smile. Moreover, it is difficult to detect emotional states through the facial
expressions of patients with facial paralysis. Therefore, a combination of facial expression and EEG,
which reflect the activities of the central nervous system, will undoubtedly detect changes in people’s
emotional states more objectively and accurately.

Huang et al. [60] proposed two multimodal fusion methods between the brain and peripheral
signals for emotion recognition. Their approach achieved accuracy rates of 81.25% and 82.75% on
four emotion-state categories (happiness, neutral, sadness and fear). Both models achieved accuracies
higher than those of either facial expression (74.38%) or EEG detection (66.88%) alone. They applied
principal component analysis (PCA) to analyze the facial expression data and extract high-level features
and a fast Fourier transform to extract various PSD features from the raw EEG signals. Due to the
limited data quantity, they proposed a method that can help prevent overfitting. From the modality
fusion aspect, they adopted a decision strategy based on production rules. Such approaches are
commonly found in simple expert systems in cognitive modeling and artificial intelligence fields.

However, their study proved that multimodal fusion detection achieves significant improvements
compared with single-modality detection methods. Indeed, it may very well reflect how humans
conduct emotion recognition: for example, an expression of weak happiness is typically answered
with a neutral emotion, whereas a strong expression of sadness usually evokes fear.

In an extension of their work [22], they applied a pretrained, multitask convolutional neural
network (CNN) model to automatically extract facial features and detect the valence and arousal
values using a single-modal framework. For EEG, they first used the wavelet transform to capture the
time-domain characteristics of the EEG when extracting PSD features; then, they used two different
SVM models to recognize the values of valence and arousal. Finally, they obtained the decision-level
fusion parameters based on training data for both fusion methods. In addition to implementing the
widely used fusion method based on enumerating different weights between two models, they also
explored a novel fusion method that requires a boosting technique. They employed both classifiers
(facial expression and EEG) as subclassifiers of the AdaBoost algorithm to train the weights of the
AdaBoost algorithm. The final results were calculated using Equations (2) and (3):

Sboost = 1/(1 + exp(−
n
∑

j=1

w js j)) (2)

rboost =

{

high Sboost ≥ 0.5
low Sboost < 0.5

(3)

where Sboost stands for the score of AdaBoost score, and the scores of the two classifiers are fused by
the AdaBoost method to obtain the final mood score. rboost represents the prediction results (high or
low) of the AdaBoost fusion classifier. s j ∈ {−1, 1}( j = 1, 2, . . . , n) represents the corresponding output
result of j-th sub-classifier. In this case, S1 is the facial expression classifier and S2 is the EEG classifier.
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To obtain w j( j = 1, 2, . . . , n) from a training set of size m, s(xi) j ∈ {−1, 1} designates the output of the j-th
classifier for the i-th sample and yi denotes the true label of the i-th sample. They applied this method
separately for the online experiment and achieved accuracies of approximately 68.00% for the valence
space and 70.00% for the arousal space after fusion—both of which surpassed the highest-performing
single-modality model.

To improve the classification accuracy and reduce noise, Sokolov et al. [61] proposed a combined
classification method with decision-level fusion for automated estimation of emotion from EEG
and facial expressions. In their study, different Hjorth parameters were adopted for different prime
emotional quantities (e.g., arousal, valence and dominance) estimation tasks from a given EEG channel
and frequency band. For face detection, to reduce the detection error and false alarm rate and speed up
the image processing, a cascaded classifier and a monolithic classifier were combined into a two-level
classifiers cascade. In the first level, the Haar-like feature cascade of the weak classifier was used to
detect face-like objects, while the second level was used for face verification by a convolutional neural
network. Then, the face feature was represented by PCA, which preserved the greatest amount of
energy with the fewest principal components. They applied an SVM as a classifier for each modality.
Finally, the two modalities were combined by the multi-sample–multi-source strategy [20], in which
the final output is the average score from both modalities:

ycombined =
1
M

M
∑

j=1















1
N

N
∑

i=1

(

yi, j

)















(4)

where ycombined is the combined output score, M is the number of modalities used (EEG and face) and
N is the number of samples for each biometric modality. yi, j is the output of the system for the i-th
sample from j-th modality and yi, j ∈ [0, . . . , 1].

Different from eye movement, facial expressions can be captured conveniently by a camera.
Therefore, the application scenarios of EEG and facial expression modality fusion are more extensive.
However, if subjects feign their facial expressions, they can always successfully “cheat” the machine.
Therefore, how to use EEG as auxiliary information to avoid errors caused by subjects camouflaging
their true emotions is an important research direction.

4. Various Hybrid Neurophysiology Modalities

Emotion usually refers to a state of mind that occurs spontaneously rather than consciously
and is often accompanied by physiological changes in the central nervous system and the periphery,
affecting EEG signals and heart rate. Many efforts have been made to reveal the relationships between
explicit neurophysiology modalities and implicit psychological feelings.

4.1. EEG and Peripheral Physiology

In general, physiological reactions are the results of nonautonomic nerves. The physiological
reactions and the corresponding signals are difficult to control when emotions are excited. Studies
have used such physiological reactions to determine and classify different kinds of emotions [62].
A large number of studies [63,64] have shown that all kinds of physiological signals that change over
time have various common characteristics. On one hand, their processing operations are very similar;
on the other hand, they can be used to extract features from three dimensions (Figure 3a): the time,
frequency and time–frequency domains.

Feature extraction is an important step in emotion evaluation because high-resolution features
are critical for effective pattern recognition. The common time domain features include statistical
features [65] and Hjorth features [66]. The common frequency domain features include PSD [67], DE [68]
and rational asymmetric (RASM) [69] features. The common features in the time–frequency domain
include wavelet [70], short time Fourier transform [71] and Hilbert–Huang transform [72] features.
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Figure 3. (a) Relevant emotion features extracted from different physiological signals. Physiological
features and where they were collected are listed, such as EEG, EOG, RSP, EMG, GSR and BVP
temperature. We can extract emotionally relevant features from these physiological signals that change
over time in three dimensions: the time, frequency and time-43frequency domains; (b) Measurement
of brain activity by EEG, fNIRS and fMRI. Briefly, we introduced how these three kinds of brain
imaging signals collected from the cerebral cortex work with fMRI based on radio frequency (RF)
transmit and RF receive; fNIRS is based on light emission and light detection and EEG is based on
electrical potentials.

From the aspect of emotion recognition based on various hybrid neurophysiology modalities,
a method of emotion recognition of multimodal physiological signals based on a convolutional
recurrent neural network is proposed [73]. In this method, a CNN was used to learn the fine spatial
representation of multichannel EEG signals and an LSTM was used to learn the time representation
of physiological signals. The two features were then combined to perform emotion recognition
and classification and tested on the DEAP dataset. In the arousal emotion dimension, the average
correct emotion recognition rate was 93.06%; in the valence emotion dimension, the average correct
emotion recognition rate was 91.95%. To extract the spatial signals of EEG, this study develops a
position mapping and uses “0” to represent the unused electrode channels in the DEAP dataset.
The international 10–20 system is generalized with the test electrodes used in the DEAP dataset to a
matrix (h ×w), where h is the maximum number of vertical test points and w is the maximum number
of horizontal test points. Through position mapping, a one-dimensional EEG data vector sequence is
transformed into a two-dimensional EEG data matrix sequence. Finally, the two-dimensional matrix
sequence is divided into several groups of two-dimensional matrix sequences. Each matrix sequence
has a fixed dimension, and no overlap occurs between two consecutive matrix sequences. To extract
the temporal feature of physiological modalities, the signals collected from 33–40 channels of the DEAP
dataset are two EOG, two EMG, one GSR, one RSP, one BVP and one ST. Two stacked recurrent neural
network (RNN) layers are built. Each layer of the RNN includes multiple LSTM units, and the output
of the first RNN layer forms the input to the second RNN. At the fusion level, they use feature-level
fusion to combine the extracted spatial features from the EEG signals with the temporal features
extracted from the physiological signals. These fused features are input to a softmax layer to predict
the emotional state. The final results are calculated using Equation (5):

P j = softmax([VS, VT]), P j ∈ R2 (5)

where VS represents the spatial feature vector of EEG, VT is the temporal feature vector of the
physiological signals and P j stands for the predicted emotional state.
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Kwon et al. [74] proposed improving emotion classification accuracy and reducing model
instabilities using a CNN model based on EEG and GSR data. First, a wavelet transform was applied to
represent the EEG signal in the frequency domain. The EEG signal was collected from 32 electrodes and
derived from a single stimulus. To learn the EEG features from all channels in the spectrogram image,
this study adopted a multilayer 2D CNN instead of the one-layer, one-dimensional CNN applied in
prior conventional research. In this way, the network was able to extract efficient temporal–spatial
features for EEG. The GSR signals are preprocessed by using the short time zero-crossing rate (STZCR).
After passing through the various layers of the CNN, a nonlinear activation function and a pooling
layer, the EEG image is flattened and combined with the STZCR of the GSR. Based on these fused
features, a fully connected layer and softmax were used to perform classification. The author applied
data processing to denoise and design a reasonable network architecture to extract efficient features
and combine features, and finally, was able to improve the classification performance significantly.

Currently, the advanced algorithms of multimodal emotion recognition based on EEG and
physiological signals requires considerable training data to construct a high-quality machine learning
model. This computational complexity limits the application of these advanced algorithms in portable
devices and scenarios requiring timeliness.

Hyperdimensional (HD) computing [75] has demonstrated rapid learning ability on various
biological signal processing tasks [76,77], each of which operates with a specific type of biological
signal (see the overview in [78]). Chang et al. [79] extended single-task HD processing to multitask
processing and applied it to physiological signals from multimodal sensors. The experimental results
on the AMIGOS datasets show that the method achieved a balance between accurate and necessary
training data to a certain extent; the proposed model’s average classification accuracy was the highest,
reaching 76.6%, and its learning speed was the fastest. They also proposed multimodal emotion
recognition (HDC-MER) based on high-definition computing. HDC-MER uses random nonlinear
functions to map real-valued features to binary HD vectors, further encodes them over time and fuses
various patterns, including GSR, ECG and EEG. HDC-MER includes two stages: in the first stage,
the original features are transformed into high-definition binary embedded features and in the second
stage, multimodal fusion, learning and classification are performed. First, the spatial encoder bundles
all the modality feature information at a given point in time by using most of the functions of the
HD vector components. A time encoder is used to collect feature changes between videos to capture
time-dependent mood swings. After spatial and time domain coding is completed, the next step is
to fuse multimodal HD vectors. The fusion unit bundles the corresponding HD vectors into a fused
d-bit HD vector. The output from the fusion unit is sent to the associative memory for training and
inference. During the training phase, the fusion unit generated from the training data is bundled to
its corresponding class prototype of the associative memory. That is, associative memory collects the
fusion unit of the same class and bundles them to a prototype HD vector by the majority function.
During the inference phase, they used the same encoding, but the label of the fusion unit is unknown;
hence, they call it the query HD vector. To perform classification, the query HD vector is compared
with all learned prototype HD vectors to identify its source class according to the Hamming distance
(i.e., a measure of similarity), defined as the number of bits that differ between the two HD vectors.
Finally, two emotional labels with the minimum distance are returned.

Based on the combination of peripheral physiological signals and central nerve signals,
this approach can avoid recognition errors caused by emotional camouflage, and patients with
dyskinesia can also be effectively processed.

4.2. EEG and Other Neuroimaging Modality

Although the arousal index of human emotional activity can be effectively detected to a certain
extent by measuring the activity of the human peripheral nervous system, this approach cannot
effectively measure the central nervous system of the human body. As a classic cognitive style,
the generation of positive emotion mainly depends on related brain activities. To date, functional
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neuroimaging has become a more direct tool for exploring and explaining brain activity (Figure 3b).
The low spatial resolution of EEG is one of its shortcomings in the study of emotional activity.
In addition to EEG based on neural electrical activity, brain imaging techniques based on blood oxygen
imaging, such as fNIRS and fMRI, have been widely used in neuroimaging research. Therefore,
in the application of emotion recognition, integrating various brain imaging modality information can
provide high-resolution spatiotemporal neural images that can help in further understanding the brain
rules when emotional states occur. Then, related emotions can be identified.

Compared with EEG, the advantage of near-infrared technology is that it is not affected by
widespread environmental electrical noise, and its sensitivity to EMG artifacts is much lower than that
of EEG. Near-infrared light is absorbed when it penetrates biologic tissue; the measurement results of
near-infrared spectroscopy are related to brain activity and are attributed to the effect of this interaction.
The slow hemodynamic response showed that Hb increased slightly after the beginning of the neural
activity, followed by a large, but delayed increase in HbO2, which reached a peak at approximately
10 s [80,81] after activation, while Hb decreased correspondingly [82]. The changes in the concentration
of oxygenated hemoglobin and deoxyhemoglobin can be calculated using the modified Beer-Lambert
law (shown in Equation (6)) based on the detected changes in light intensity [83].

[

∆Hb

∆HbO2

]

=

[

αdeaxy(λ1) αoxy(λ1)

αdeaxy(λ2) αaxy(λ2)

]−1

·

[

∆A(λ1)

∆A(λ2)

]

·B (6)

where ∆ represents the amount of change at a given time relative to an initial time, and α indicates
the absorption rate of a certain hemoglobin (oxy or deaxy) to a certain wavelength of light (λ1 or
λ2). A represents the light intensity of a certain wavelength detected. B indicates the length of the
optical path, which is related to the distance between the emitters and receivers (usually 3 cm) and is a
constant predetermined by the experiment. Thus, the sum of two unknowns (∆Hb and ∆HbO2) can
finally be calculated. However, the fNIRS system measures the hemodynamic response, which takes
several seconds to develop. The delay in the hemodynamic response has been estimated by modeling
simulations and computational methods [84,85]. More invasive methods also demonstrate delayed
hemodynamic responses [86].

However, fNIRS technology has some problems; for example, the time resolution is insufficient
and cannot directly reflect neural activity, which seriously affects the reliability of fNIRS in detecting
brain function. However, fNIRS can determine the brain function signal source through channel
localization. In contrast, EEG, which is a mature brain function detection technology, has high time
resolution, but its disadvantage is that the detection signal cannot identify the brain region source.
On the other hand, both fNIRS and EEG techniques have the advantages of small restrictions on the
environment and subjects and can be used to detect the brain functions of subjects in a state of natural
relaxation. Therefore, combining fNIRS and EEG technology into a bimodal detection technology
capitalizes on their spatiotemporal resolution advantages and can help people better understand the
neural mechanisms of brain activity in cognitive psychological tasks.

A multimodal method for the joint evaluation of fNIRS and EEG signals for emotional state
detection was proposed in [87]. The emotional state was recorded from video capture of facial
expressions, and the related neural activity was measured by wearable and portable neuroimaging
systems: functional fNIRS and EEG, which can evaluate hemodynamic and electrophysiological
responses, respectively. EmotivEPOC (Neurotech, San Francisco, CA, USA) headphones were
used to collect EEG signals at a 128 Hz sampling rate, while fNIRS devices and sampling wireless
fNIRS systems were used to monitor the prefrontal cortex of the receptors to avoid the problem of
overlapping brain regions. The method included simultaneous detection and comparison of various
emotional expressions through multimodalities and classification of spatiotemporal data with neural
characteristics. The experimental results showed a strong correlation between spontaneous facial
emotion expression and brain activity related to an emotional state. By comparing the recognition
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results of the system with the actual tags of the test images, the recognition accuracy of the system was
approximately 74%. At the same time, the experimental results showed that the method using fNIRS
and EEG achieved better performance than did the method using only fNIRS or EEG. Nevertheless,
this study did not explain in detail the time synchronization method for the different time resolutions
and measurement delays between fNIRS and EEG.

In practical applications of BCI systems, time synchronization may be a key problem because the
information transfer rate is the most important factor in evaluating BCI systems. To address these
problems, computational methods such as using prior information [88] or normalized features [89]
were proposed to obtain better BCI performance than a single modality. Morioka et al. [88] used fNIRS
features as prior information to estimate cortical currents in EEG, while Ahn et al. [89] combined EEG
and fNIRS features by normalizing all features into the range [0,1] and applied the sum of the features.
Although further optimization steps are still needed, these two novel approaches may become future
solutions for overcoming the current limitations in integrating EEG-fNIRS features.

To the best of our knowledge, in the field of computer engineering, there are few studies on emotion
recognition that integrate EEG-fNIRS, and most of them focus on the task of motion imagination.
For example, in [90], the performance of a sensory motor rhythm-based BCI was significantly improved
by simultaneously measuring EEG and NIRS [91]. Some studies [80,92] have shown that hemodynamic
changes may be a promising indicator to overcome the limitations of command detection. It is expected
that more researchers will conduct in-depth research on integrating EEG-fNIRS for emotion recognition
in the future.

To monitor brain activity through fMRI, the principle is that the brain contains a large number of
hydrogen protons in rich water, and the spins of hydrogen protons emit electromagnetic waves at a
certain frequency under the action of an external main magnetic field (B0). If the proper radio frequency
(RF) current is used to excite the protons from a direction perpendicular to the main magnetic field,
the spin precession angle increases, and when the excitation current is removed, the proton will return
to its original state and emit the same signal as the excitation frequency. To take advantage of this
phenomenon, a coil is used to receive signals transmitted from the body in vitro for imaging (Figure 3b).
Compared with EEG and fNIRS, the greatest advantage of monitoring brain activity with fMRI is that
the spatial resolution is higher than fNIRS; nevertheless, like fNIRS, the time resolution is lower than
that of EEG, which makes it difficult to achieve real-time data collection. Additionally, the current
application environment of fMRI is relatively limited, which also limits its application scenarios. As far
as we know, in the field of computer engineering, no research exists on using combined EEG-fMRI for
emotion recognition; most of the existing studies focus on the neural mechanism.

5. Heterogeneous Sensory Stimuli

In the study of emotion recognition, to better simulate, detect and study emotions, researchers
have employed use a variety of materials to induce emotions, such as pictures (visual), sounds (audio)
and videos (audio-visual). Many studies [36,37] have shown that video-induced stimulation based on
visual and auditory multisensory channels is effective because audio-visual integration enhances brain
patterns and further improves the performance of brain–computer interfaces. Vision and audition,
as the most commonly used sensory organs, can effectively provide objective stimulation to the brain,
while the induction ability of other sensory channels, such as olfaction and tactile sensation, is still
lacking. As the most primitive sense of human beings, olfaction plays an important role in brain
development and the evolution of human survival. Therefore, in theory, it can provide more effective
stimulation than can vision and audition.

5.1. Audio-Visual Emotion Recognition

Multisensory channel integration to induce subjects’ emotions, especially video material
that involves emotion recognition evoked by visual and auditory stimuli, will be a future trend.
For audio-visual emotion recognition, a real-time BCI system to identify the emotions of patients with
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consciousness disorders was proposed [10]. Specifically, two classes of video clips were used to induce
positive and negative emotions sequentially in the subjects, and the EEG data were collected and
processed simultaneously. Finally, instant feedback was provided after each clip. Initially, they recruited
ten healthy subjects to participate in the experiment, and their BCI system achieved a high average
online accuracy of 91.5 ± 6.34%, which demonstrated that the subjects’ emotions had been sufficiently
evoked and efficiently recognized. Furthermore, they applied the system to patients with disorders
of consciousness (DOC), who suffer from motor impairment and generally cannot provide adequate
emotional expressions. Thus, using this BCI system, doctors can detect the potential emotional states
of these patients. Eight DOC patients participated in the experiment and significant online accuracy
achieved for three patients. These experimental results indicate that BCI systems based on audio-visual
stimulation may be a promising tool for detecting the emotional states of patients with DOC.

5.2. Visual-Olfactory Emotion Recognition

Although the affective information from audio–visual stimuli has been extensively studied,
for some patients with impaired visual and auditory abilities, such integration cannot play a role.
If multisensory channels could be combined with odor to induce emotion stimulation, new discoveries
and breakthroughs may be achieved in emotion recognition research, especially for those patients with
normal olfactory function.

However, due to the volatile gases of odorant mixtures, the influences of peripheral organs,
and the role of the brain, confusion can easily occur in these processes, and it is difficult to quantify.
Therefore, research on odor-induced emotions is relatively rare. The representative example of multiple
sensory emotion recognition related to olfactory activity is a single study that induced emotion in
a patient with DOC [93]. During the experiment, the patient was asked to imagine an unpleasant
odor or to ‘relax’ in response to either a downward pointing arrow or a cross appearing on a screen,
respectively. The patients’ electrophysiological responses to stimuli were investigated by means of EEG
equipment and analyzed using a specific threshold algorithm. A significant result was observed and
calculated, which shows that this paradigm may be useful for detecting covert signs of consciousness,
especially when patients are precluded from carrying out more complex cognitive tasks.

6. Open Challenges and Opportunities

In this section, we discuss the important open issues, which may become popular in research
on multimodal emotion recognition based on EEG in the future. In research of multimodal emotion
recognition based on EEG, we found many technical challenges and opportunities (Figure 4). Here,
we focus on some important research opportunities, which may also be obstacles to aBCI leaving the
laboratory and moving to practical application.

6.1. Paradigm Design

For general BCI paradigms, the approaches of neurophysiology-informed affect sensing can be
categorized in terms of their dependence on user volition and stimulation [3]. The user initiative means
that the user sends instructions to the BCI system by actively thinking. The degree of stimulation
depends on the users and essentially refers to whether the stimulation is specific (e.g., whether it
is necessary to implement different stimuli for different users). This section introduces the latest
emotion-related experimental paradigm according to the classification scheme presented in [94] and
provides corresponding application suggestions.

6.1.1. Stimulus-Independent and Passive Paradigms

To explore emotions, researchers use general materials related to different emotions to design
emotional paradigms, such as the international affective pictures (IAPS) [95], music, movie clips and
videos. Pan [96] proposed an experimental paradigm based on open pictures. A facial expression was
displayed in the center of the monitor. The emotional content of these images was measured by a
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self-assessment model (SAM) [97] that contained nine valence and arousal dimensions. The presentation
time for each picture was eight seconds. During the presentation, the subjects were asked to focus
on the smiling or crying faces. At the completion of the experiment, each subject was asked to mark
each picture with the SAM. A music-induced method [98] can spontaneously lead subjects to a real
emotional state. In [99], the researchers asked subjects to evoke emotions by recalling an unpleasant
smell. Many studies [100,101] have shown that when people receive both auditory and visual sensory
inputs, their brains may integrate the auditory and visual features of these stimuli, and audio–visual
integration may be accompanied by increased brain activity and state. Huang et al. [22] developed
a real-time BCI system based on audio-visual channels to identify emotions evoked by video clips.
The researchers used video clips representing different emotional states to test and train subjects.

Figure 4. Open challenges and opportunities in multimodal emotion recognition for EEG-based
brain–computer interfaces (BCI).

In this paradigm, the subjects generally self-report the emotional experience scale; thus, it is
difficult to know whether the subjects truly received the passive stimulus during the experiment,
but because this experimental design is relatively simple and does not require any elaborate laboratory
settings, it is widely used.

6.1.2. Stimulus-Independent and Active Paradigms

In the design of this paradigm, some universal participatory materials can be used while
simultaneously encouraging subjects to actively achieve a specific target state in some way during
the experiment. The most common paradigm is to design emotions by having subjects participate
in games. When players realize that their emotional state has an impact on the game parameters,
they begin to actively induce their own state to manipulate the game environment according to their
preferences [102]. Because the experimental material is universal and the task is completed actively by
the user, this paradigm is both expansible and objective.

6.1.3. Stimulus-Dependent and Passive Paradigms

This paradigm is mainly customized based on the user’s characteristics. Specifically, we can
selectively provide or automatically play back media items that are known to induce a specific emotional
state in certain users. Pan et al. [103] used this paradigm to identify the state of consciousness of patients
with consciousness disturbances. In each experiment, the paradigm begins with an audio-visual
description in Chinese: “focus on your own photo (or a stranger’s photo) and count the number of
frame flash lasting for eight seconds, indicating the target photo. Next, two photos appear, one of

55



Brain Sci. 2020, 10, 687

which has a flashing frame. The flashing frame is randomly selected and flashes five times. Ten seconds
later, one of the two photos identified by the BCI algorithm appears in the center of the graphical user
interface (GUI) as feedback. If the result is correct, a scale symbol, a positive audio feedback clip of
applause and a detected photo are presented for four seconds to encourage the patient; otherwise,
a question mark (‘?’) is presented. Patients are asked to selectively focus on the stimulus related to
one of the two photos according to the audio–visual instructions (that is, a voice in the headset and
sentences on the screen at the same time).

6.1.4. Stimulus-Dependent and Active Paradigms

Stimulus-dependent and active paradigms are relatively rarely used. Because this approach
requires subjects to independently recall the past to stimulate their emotions, it is difficult to effectively
control the changes in their emotional states. However, some studies [104,105] have shown that
emotional self-induction techniques, such as relaxation, are feasible as control methods.

6.2. Modality Measurement

The most important thing for multimodal emotion identification is the measurement and collection
of modality data. However, the portability, intrusiveness, cost and integration of the measuring
equipment determine the key factors as to whether the multimodal emotion-recognition system can be
widely used. The detection equipment for the behavior modality is relatively mature and has reached
highly useful levels in terms of portability and the quality of the obtained signals. For face detection,
a variety of high-fidelity cameras are very advanced options. For eye movement signal acquisition,
conventional eye movement measurement methods include desktop-captured eye movements and
glasses-type captured eye movements. Recently, it has been shown that CNNs can be used to extract
relevant eye movement features from images captured by smart-phone cameras [106].

For brain imaging equipment, electrodes are directly implanted into the cerebral cortex by
surgery, allowing high-quality neural signals to be obtained. However, these procedures pose safety
risks and high costs, including wound healing difficulties and inflammatory reactions. In contrast,
electroencephalograph leads attach to the scalp and fNIRS avoid expensive and dangerous operations.
However, due to the attenuation effect of the skull on the brain signal, the signal strength and resolution
obtained are weaker than those of the intrusive acquisition equipment. Although fMRI is noninvasive
and has high temporal and spatial resolution, it is expensive and requires users to be in a relatively
closed space; consequently, it is difficult to expand to wide use. A team of researchers [107] at the
University of Nottingham in the UK has developed a magnetoencephalography system that can be
worn like a helmet that allows the scanned person to move freely and naturally during the scanning
process. This approach may lead to a new generation of lightweight, wearable neuroimaging tools in
the near future, which in turn would promote practical applications of BCI based on brain magnetism.

For physiological signal acquisition, Chen et al. [108] designed “intelligent clothing” that facilitates
the unnoticeable collection of various physiological indices of the human body. To provide pervasive
intelligence for intelligent clothing systems, a mobile medical cloud platform was constructed by using
mobile Internet, cloud computing and big data analysis technology. The signals collected by smart
clothing can be used for emotion monitoring and emotion detection, emotional care, disease diagnosis
and real-time tactile interaction.

Concerning multimodal integrated acquisition devices, the VR-capable headset LooxidVR
produced by LooxidLabs (Daejeon, Korea) integrates head-mounted display (HMD) with built-in
EEG sensors and eye tracking sensors. In addition, a phone can be attached to display virtual
reality (VR) content [109]. This method can achieve direct synchronization and synchronous
acquisition of eye movement tracking and matching EEG data, thus realizing high-fidelity synchronized
eye-movement tracking and EEG data to augment VR experiences. The BCI research team [110] of
the Technical University of Berlin has released a wireless modular hardware architecture that can
simultaneously collect EEG and functional near-infrared brain functional images—as well as other
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conventional physiological parameters such as ECG, EMG and acceleration. A similar high-precision,
portable and scalable hardware architecture for multiphysiological parameter acquisition is a
prerequisite for engineering applications for multimodal emotion recognition research. In other
words, the improvements in hardware for collecting modality signals will improve the signal quality,
widen the user population and promote reform and innovation in the field of aBCI.

6.3. Data Validity

6.3.1. EEG Noise Reduction and Artifact Removal

EEG signals have been widely used in medical diagnosis, human-computer interaction,
neural mechanism exploration and other research fields. However, EEG signals are extremely
weak and easily polluted by unwanted noise, which leads to a variety of artifacts [111]. Artifacts are
unwanted signals; these mainly occur stem from environmental noise, experimental errors and
physiological artifacts [112]. Environmental artifacts and experimental errors from external factors are
classified as external artifacts, while physiological factors from the body (such as blinking, muscle
activity and heartbeat) can be classified as inherent artifacts [113,114]. To obtain high-quality EEG
signals, in addition to the improvement and promotion of hardware acquisition equipment mentioned,
effective preprocessing (noise reduction and artifact removal) of EEG signals is also very important.

For EEG processing, first of all, we should avoid artifacts from the source as much as possible and
tell the subjects not to blink or do some actions that may cause artifacts before the start of EEG signal
acquisition. Then for some unavoidable artifacts (EOG, EMG, ECG), we need to consider whether
the EEG signal and the artifact signal overlap in frequency. If the frequencies do not overlap, we can
try to remove the pseudo by linear filtering. For example, the frequency of the five frequency bands
(delta: 1–3 Hz, theta: 4–7 Hz; alpha: 8–13 Hz; beta: 14–30 Hz; gamma 31–50 Hz) related to emotion of
EEG is 1 ~50 Hz. Low-frequency filter is used to remove EMG artifacts with higher frequency and
high-frequency filter is used to remove ocular artifacts with lower frequency. When the artifacts of
electrophysiological signals such as frequency overlap, high amplitude and wide frequency band
exist, the preprocessing of EEG signals needs to identify and separate the artifacts while retaining the
EEG signals containing emotional information. Blind source separation (BSS) [115] techniques are
commonly used to remove related artifacts, including canonical correlation analysis (CCA) [116] and
independent component analysis (ICA) [117].

6.3.2. EEG Bands and Channels Selecting

The “emotional brain” theory [118] reveals that not every brain region is associated with emotional
tasks. This inspires researchers to choose areas of the brain that are closely related to emotion for
EEG measurement. At the same time, some studies [119] have shown that there is a close relationship
between different EEG bands and different emotional states. By selecting the key frequency bands and
channels and reducing the number of electrodes, not only can the computational costs be reduced,
but the performance and robustness of the emotion-recognition model can be significantly improved,
which is highly important for the development of wearable BCI devices.

Zheng et al. [120] proposed a novel critical channel and frequency band selection method through
the weight distributions learned by deep belief networks. Four different configurations of 4, 6, 9 and
12 channels were selected in this experiment. The recognition accuracy of these four configurations
is relatively stable, achieving a maximum accuracy of 86.65%—even better than that of the original
62 channels. They also compared the performances of DE characteristics in different frequency bands
(delta, theta, alpha, beta and gamma) and found that the performance of the gamma and beta bands was
better than that of other frequency bands. These results confirm that the β and γ oscillations of brain
activity have a greater relationship with emotional processing than do other frequency oscillations.
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6.3.3. Feature Optimization

Many studies [65,121] have found that different feature vectors have different effects on the accuracy
of emotional state classification. Combining a variety of different features into high-dimensional
feature vectors can also improve the classification accuracy. In addition, different subjects have different
sensitivities to different features. Not all features carry important information about the emotional
state. Irrelevant and redundant features not only increase the risk of overfitting, but also increase the
difficulty of emotion recognition because of increasing the feature space.

Therefore, to eliminate the influence of feature irrelevance and redundancy, improve the real-time
performance of the classification algorithm and improve the accuracy of multimodal emotion
recognition, feature optimization is usually needed after feature extraction. Feature optimization can
be divided into two types: feature selection and feature dimensionality reduction. We can assume that
the feature set after feature extraction is {X1, . . . , Xn}, the features to be selected are Xi, the optimized
features are Yi, the number of features is n and m and the feature selection algorithm, which evaluates
and selects the optimal feature subset with strong emotional representation ability from the original set
of features is fs : {X1, . . . , Xn} → {X1, . . . , Xm}(n ≤ m) . The feature dimensionality reduction algorithm
is fd : {X1, . . . , Xn} → {Y1, . . . , Ym}(n ≤ m) , which maps the original feature set to a new feature set
whose feature attributes are different than those of the original features.

• Feature selection. Selecting features with a strong ability to represent emotional state is highly
important in emotion recognition tasks. Many algorithms exist that can reduce dimensionality by
removing redundant or irrelevant features, such as particle swarm optimization (PSO) [122] and
the genetic algorithm (GA) [123].

• Feature dimension deduction. The essence of feature dimension reduction is a mapping function
that maps high-dimensional data to a low-dimensional space and creates new features through
linear or nonlinear transformations of the original eigenvalues. The dimensionality reduction
methods are divided into linear and nonlinear dimensionality reduction. Examples of linear
dimensionality reduction include principal component analysis (PCA) [124] and independent
component analysis (ICA) [125], etc. Nonlinear dimensionality reduction is divided into methods
based on kernel functions and methods based on eigenvalues, such as kernel-PCA [126].

6.4. Generalization of Model

In practical applications, trained emotional models often need to remain stable for long periods;
however, the physiological signals related to emotion often change substantially and data from different
individuals will present differently in different time environments. In practical multimodal emotion
identification, various problems often occur, such as modality data loss and incomplete modality
data collection. Thus, whether we can conduct cross-modality emotion identification also involves
system generalizability. However, there are natural differences in the data between different modalities.
Generally, these problems limit the popularization and wide application of emotion-recognition
systems. The important challenges in achieving a multimodal emotion-recognition system with strong
generalizability lie in solving the problems of modality–modality, object–object and session–session
variability. Currently, we can adopt the following three types of strategies to solve these problems:

(1) A general classifier is trained, but the traditional machine-learning algorithms are based on the
assumption that the training data and the test data are independently and identically distributed.
Therefore, when the general classifier encounters new domain data, its performance often
degrades sharply.

(2) Look for effective and stable feature patterns related to emotion. The authors of [69] found
that the lateral temporal areas activate more for positive emotions than for negative emotions
in the beta and gamma bands, that the neural patterns of neutral emotions have higher alpha
responses at parietal and occipital sites and that negative emotional patterns have significantly
higher delta responses at parietal and occipital sites and higher gamma responses at prefrontal
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sites. Their experimental results also indicate that the EEG patterns that remain stable across
sessions exhibit consistency among repeated EEG measurements for same participant. However,
more stable patterns still need to be explored.

(3) For the problem of differences in data distribution, the most mature and effective approach
is to use transfer-learning to reduce the differences between different domains as much as
possible. Assume that Ds = {XS, YS} and Dt = {Xt, Yt} represent the source domain and the
target domain, respectively, where X ∈ x, Y ∈ y is the sample data and the label. To overcome
the three challenges, we need to find a feature transformation function f that makes the edge
probability distribution and the conditional probability distribution satisfy P( f (Xs)) = P( f (Xt))

and P(Ys

∣

∣

∣ f (Xs)) = P(Yt

∣

∣

∣ f (Xt)) , respectively.

• For the subject–subject problem, other objects are the source domain, and the new object
is the target domain. Due to the large differences in EEG among different subjects, it is
traditional to train a model for each subject, but this practice of user dependence is not in
line with our original intention and cannot meet the model generalization requirements.
In [127], the authors proposed a novel method for personalizing EEG-based affective models
with transfer-learning techniques. The affective models are personalized and constructed
for a new target subject without any labeled training information. The experimental results
demonstrated that their transductive parameter transfer approach significantly outperforms
other approaches in terms of accuracy. Transductive parameter transfer [128] can capture
the similarity between data distributions by taking advantage of kernel functions and
can learn a mapping from the data distributions to the classifier parameters using the
regression framework.

• For the session–session problem, similar to the cross-subject problem, the previous session is
the source domain, and the new session is the target domain. A novel domain adaptation
method was proposed in [129] for EEG emotion recognition that showed superiority
for both cross-session and cross-subject adaptation. It integrates task-invariant features
and task-specific features in a unified framework and requires no labeled information
in the target domain to accomplish joint distribution adaptation (JDA). The authors
compared it with a series of conventional and recent transfer-learning algorithms, and the
results demonstrated that the method significantly outperformed other approaches in
terms of accuracy. The visualization analysis offers insights into the influence of JDA on
the representations.

• For the modality–modality problem, the complete modality data are the source domain,
and the missing modality data are the target domain. The goal is to achieve knowledge
transfer between the different modality signals. The authors of [127] proposed a novel
semisupervised multiview deep generative framework for multimodal emotion recognition
with incomplete data. Under this framework, each modality of the emotional data is treated
as one view, and the importance of each modality is inferred automatically by learning a
nonuniformly weighted Gaussian mixture posterior approximation for the shared latent
variable. The labeled-data-scarcity problem is naturally addressed within our framework by
casting the semisupervised classification problem as a specialized missing data imputation
task. The incomplete-data problem is elegantly circumvented by treating the missing views
as latent variables and integrating them out. The results of experiments carried out on
the multiphysiological signal dataset DEAP and the EEG eye-movement SEED-iv dataset
confirm the superiority of this framework.

6.5. Application

Emotion recognition based on BCI has a wide range of applications that involve all aspects of our
daily lives. This section introduce potential applications from two aspects: medical and nonmedical.
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6.5.1. Medical Applications

In the medical field, emotion recognition based on BCI can provides a basis for the diagnosis and
treatment of mental illnesses. The diagnosis of mental illness has remained at a subjective scale and
lacks objective and quantitative indicators that can help clinicians diagnose medical treatments.

Computer-aided evaluation of the emotions of patients with consciousness disturbances can help
doctors better diagnose the physical condition and consciousness of patients. The existing research on
emotion recognition mainly involves offline analysis. For the first time, Huang et al. [10] applied an
aBCI online system to the emotion recognition of patients with disorders of consciousness. Using this
system, they were able to successfully induce and detect the emotional characteristics of some patients
with consciousness disorders in real time. These experimental results showed that aBCI systems hold
substantial promise for detecting emotions of patients with disorders of consciousness.

Depression is a serious mental health disease that has high social costs. Current clinical practice
depends almost entirely on self-reporting and clinical opinions; consequently. There is a risk of a series
of subjective biases. The authors of [130] used emotional sensing methods to develop diagnostic aids to
support clinicians and patients during diagnosis and to help monitoring treatment progress in a timely
and easily accessible manner. The experiment was conducted on an age- and sex-matched clinical
dataset of 30 patients and 30 healthy controls. The results of experiments showed the effectiveness of
this framework in the analysis of depression.

Mood disorders are not the only criteria for diagnosing autism spectrum disorders (ASD). However,
clinicians have long relied on the emotional performances of patients as a basis for autism. The results
of the study in [131] suggested that cognitive reassessment strategies may be useful for children and
adolescents with ASD. Many studies have shown that emotion classification based on EEG signal
processing can significantly improve the social integration abilities of patients with neurological
diseases such as amyotrophic lateral sclerosis (ALS) or acute Alzheimer’s disease [132].

6.5.2. Non-Medical Applications

In the field of education, students wore portable EEG devices with an emotion-recognition function,
allowing teachers to monitor the students’ emotional states during distance instruction. Elatlassi [133]
proposed to model student engagement in online environments using real-time biometric measures
and using acuity, performance and motivation as dimensions of student engagement. Real-time
biometrics are used to model acuity, performance and motivation include EEG and eye-tracking
measures. These biometrics have been measured in an experimental setting that simulates an online
learning environment.

In the field of driverless vehicles, emotion recognition based on EEG adds an emotion-recognition
system to the autopilot system, thus increasing the driving reliability of the automatic driving
system [134]. At the same time, a human-machine hybrid intelligent automatic driving system in
man’s loop is built. To date, in the automatic driving system, because passengers do not know whether
the driverless vehicle can correctly identify and assess the traffic condition or whether it can make the
correct judgment and response in the process of driving, passengers are still very worried about the
safety of pilotless driving. The brain computer interface technology can detect the passenger’s emotion
in real time and transmit the real feeling of the passenger in the driving process to the driverless system,
which can adjust the driving mode according to the passenger’s emotional feeling. In the whole system,
the human being as a link of an automatic driving system is very good for man-machine cooperation.

In entertainment research and development, we can build a game assistant system for emotional
feedback regulation based on EEG and physiological signals that provided players with a full sense of
immersion and extremely interactive experiences. In the study of [135], EEG-based “serious” games
for concentration training and emotion-enable applications including emotion-based music therapy on
the web were proposed and implemented.
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7. Conclusions

Achieving accurate, real-time detection of user emotional states is the main goal of the current aBCI
research efforts. The rapidly expanding field of multimodal sentiment analysis shows great promise
in accurately capturing the essence of expressed sentiments. This study provided a review of recent
progress in multimodal aBCI research to illustrate how hBCI techniques may be implemented to address
these challenges. The definition of multimodal aBCI was updated and extended, and three main
types of aBCI were devised. The principles behind each type of multimodal aBCI were summarized,
and several representative aBCI systems were highlighted by analyzing their paradigm designs,
fusion methods and experimental results. Finally, the future prospects and research directions of
multimodal aBCI were discussed. We hope that this survey will function as an academic reference
for researchers who are interested in conducting multimodal emotion-recognition research based on
combining EEG modalities with other modalities.
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Abstract: Emotion assessment in stroke patients gives meaningful information to physiotherapists to
identify the appropriate method for treatment. This study was aimed to classify the emotions of stroke
patients by applying bispectrum features in electroencephalogram (EEG) signals. EEG signals from
three groups of subjects, namely stroke patients with left brain damage (LBD), right brain damage
(RBD), and normal control (NC), were analyzed for six different emotional states. The estimated
bispectrum mapped in the contour plots show the different appearance of nonlinearity in the EEG
signals for different emotional states. Bispectrum features were extracted from the alpha (8–13) Hz,
beta (13–30) Hz and gamma (30–49) Hz bands, respectively. The k-nearest neighbor (KNN) and
probabilistic neural network (PNN) classifiers were used to classify the six emotions in LBD, RBD and
NC. The bispectrum features showed statistical significance for all three groups. The beta frequency
band was the best performing EEG frequency-sub band for emotion classification. The combination of
alpha to gamma bands provides the highest classification accuracy in both KNN and PNN classifiers.
Sadness emotion records the highest classification, which was 65.37% in LBD, 71.48% in RBD and
75.56% in NC groups.

Keywords: emotion; stroke; electroencephalogram (EEG); bispectrum

1. Introduction

Stroke is one of the highest causes of death in Malaysia, with more than 40,000 survivors
are managing their health today [1]. Globally, there were 6.2 million deaths caused by stroke in
2017, where the highest rates of stroke mortality countries were reported in Eastern Europe, Africa,
and Central Asia [2]. Stroke is caused by the insufficient supply of oxygen to the brain, damaging
damage brain cells. This is turn will definitely affect some brain functions which results in stroke

69



Brain Sci. 2020, 10, 672

survivors to have difficulties in daily living, such as mobility, communication and expressing their
thoughts. Also, stroke patients often suffer from emotional and behavioral changes due to their
dissatisfaction with the current conditions.

Past studies have been carried out to investigate emotional changes in stroke patients as the
influence of their physiological phenomenon [3–5]. These studies revealed that emotions and thoughts
are seen as interactive reactions and are intimately related to the health and physiological problems.
This leads to the increase risk of a second or recurrent stroke with persistent depression. Therefore,
emotion recognition of stroke patients is very helpful in the diagnosis of their psychological and
physiological conditions.

The assessment of the emotional conditions and mood of stroke patients is required during
rehabilitation to identify the presence of mental health problems such as persistent depression and
mood disorders. This also assists in identifying the severity of associated functional impairment of
the patients.

Conventionally, emotion assessment can be done through interviews with patients [3,6],
an observation on patients’ behaviors [6] as well as using standardized measures such as the
Hospital Depression and Anxiety Scale (HADS) [6] and Beck Depression Inventory (BDI) [7].
These standardized measures determine the emotional states of the patient by scoring. However,
the conventional approaches could be cheated by patients and information that is acquired then will
be not accurate. Consequently, researchers tried other approaches to understand the emotional states
of patients. Recent studies have stated that emotion assessment can be performed using physiological
signals [8], such as skin conductance (SC) [9], respiration signal [10], electrocardiogram (ECG) [11],
and electroencephalogram (EEG) [12].

This paper is organized as follows: Section 1, the problem and the context of the study in emotion
assessment in stroke patients is discussed. Then, Section 2 reviews the literature on EEG analysis
and non-linear features. This section also discusses the use of bispectrum features in EEG analysis.
Section 3 focuses on the materials and methods used in this study, including the description of the EEG
data, preprocessing, feature extraction, statistical analysis and classification methods. The next section
presents the results and their discussions. Lastly, the summary of this paper is briefly discussed.

2. Related Works

EEG is the brain signal that can be measured from placing electrode sensors along the scalp to
record the electrical activity of the brain that happens near the surface of the scalp [13]. EEG signal can
be used for diagnostic purposes and any abnormalities detected from it connotes that there is brain
disorder in that person.

From previous research, the brain has been reported as having higher responsibility and
involvement in emotional activities [14]. The brain as the center of emotions is responsible to
give responses when it perceives a stimulus. Hence, brain signals are able to provide emotional
information of a stroke patient. With this concept, most recent studies of emotion assessment for stroke
patients have utilized brain signals. Adamaszek et al. studied the emotional impairment using the
event-related potentials (ERP) of a stroke patient [15], Doruk et al. studied the emotional impairment in
stroke patients by comparing the emotional score in the Stroke Impact Scale (SIS) with the EEG features,
the EEG power asymmetry and coherence [16]. Bong et al. assessed the emotions of stroke patients
by using EEG signals in the time-frequency domain [12]. In this study, the electroencephalogram
(EEG)-based emotion recognition algorithm is proposed to study the emotional states of stroke patients.

According to previous studies, stroke patients suffer from emotional impairment and consequently,
hence their emotional experiences are less significant compared to normal people [15,17–19]. In another
related study by Bong et al. [12], left brain damage (LBD) stroke patients were most dominant in
perceiving sadness emotion and RBD stroke patients were most dominant in anger emotion. In addition,
the authors’ dominant frequency band was the beta band by using wavelet packet transform (WPT)
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with Hurst exponent feature. The highest accuracy obtained was 76.04% in the happiness emotion for
the normal control (NC) group using the features from beta to gamma band.

Previous emotional classification studies by Yuvaraj et al. [20] have also shown that the accuracy
of the feature extracted from the single frequency band was higher in the beta and gamma bands.
Also, the highest accuracy was obtained when all frequency bands from delta to gamma were combined.
The author obtained an average accuracy of 66.80% in NC using the combinations of the five frequency
bands. In addition, they obtained an average accuracy of 64.73% with the beta band and 65.80%
with the gamma band of NC. These results were optimized with the application of the feature
selection technique.

The brain is a chaotic dynamical system [21–23], where EEG signals are generated by nonlinear
deterministic processes. This is also referred to as deterministic chaos theory with nonlinear coupling
interactions between neuronal populations [24,25]. In contrast with linear analysis, nonlinear analysis
methods will give more meaningful information about the emotional state changes of stroke patients.
Over the last few years, a number of research works have been reported on analyzing EEG signals by
using non-linear methods [25–27]. For example, a recurrence measure was applied to study the seizure
EEG signals [25]. Zappasodi et al. used fractal dimension (FD) to study the neuronal impairment
in stroke patients [26]. In addition, Acharya et al. studied sleep stage detection in EEG signals by
using different nonlinear dynamic methods, higher order spectra (HOS) features and recurrence
quantification analysis (RQA) features [28]. In their study, HOS was used to extract momentous
information which helped with the diagnosis of neurological disorders.

HOS has been claimed as an effective method for analyzing EEG signals. HOS feature has been
the most commonly used nonlinear feature. It is the frequency domain or spectral representation of
higher order cumulants of a random process. HOS only includes cumulants with third order and
above. HOS gains its advantage with the elimination of Gaussian noise and provides a high signal to
noise ratio (SNR) [29,30]. HOS provides the ability to extract information deviation from Gaussian and
preserves the phase information of signals. Thus, HOS is able to estimate the phase of the non-Gaussian
parametric signals. In addition, HOS detects and characterizes nonlinearities in signals. In contrast,
the second order measure is power spectrum, which can only reveal linear and Gaussian information
of signals.

The third order HOS is bispectrum and is able to preserve phase information of EEG signals.
Bispectrum is the easiest HOS to be worked out [31]. Bispectrum has been utilized in the emotional
study in EEG signals. Yuvaraj et al. applied bispectrum to study the difference between Parkinson’s
disease patients and normal people in six discrete emotions (happiness, sadness, fear, anger, surprise,
and disgust) [27,32]. Hosseini applied bispectrum to classify the two emotional states (calm and
negatives states) of normal subjects [33].

However, the emotional states of stroke patients are yet to be analyzed using the bispectrum
features. Hence, in this work, the bispectrum feature is used to classify stroke patients’ EEG signals in
different emotional states.

Bispectrum is proven in its ability to detect quadratic phase coupling (QPC), a phenomenon of
nonlinearity interaction in EEG signals. QPC is the sum of phases at two frequency variables given by
f1 + f2 [34,35]. Bispectrum can be estimated through two approaches: direct and indirect methods.
For a stationary, discrete time, random process x(k), the direct method is estimated by taking the
1D-Fourier transform of the discrete series given by:

Bi( f1, f2) = E[X( f1)X( f2)X
∗( f1 + f2)], (1)

where Bi is the bispectrum magnitude, E [ ] denotes statistical expectation operation, X( f ) is the Fourier
transform (1-D FFT) of the time series, x(k) and * denote the complex conjugate.

71



Brain Sci. 2020, 10, 672

For the indirect method, bispectrum is estimated by first estimating the third order cumulants
of the random process x(k). Then the nth-order moment is equal to the expectation over the process
multiplied by the (n − 1) lagged version of itself. Therefore, the third order moment, m3x is:

m3x(τ1, τ2) = E[X(k)X(k + τ1)X(k + τ2)], (2)

where E [ ] denotes statistical expectation operation, τ1 and τ2 are lags of the moment sequence.
The third order cumulant sequence, C3x(τ1, τ2), is identical to its third order moment sequence.

It can be calculated by taking an expectation over the process multiplied by 2 lagged versions given by:

C3x(τ1, τ2) = E[X(k)X(k + τ1)X(k + τ2)]. (3)

The bispectrum, B( f1, f2), is the 2D-Fourier transform of the third order cumulant function is
given by:

B( f1, f2) =
∞
∑

τ1=−∞

∞
∑

τ2=−∞

C3x(τ1, τ2) exp[− j( f1τ1 + f2τ2)], (4)

for
∣

∣

∣ f1
∣

∣

∣≤ π ,
∣

∣

∣ f2
∣

∣

∣≤ π , and
∣

∣

∣ f1 + f2
∣

∣

∣≤ π .
Bispectrum is a symmetric function as shown in Figure 1. The shaded area is the non-redundant

region of computation of the bispectrum, where f2 ≥ 0, f2 ≥ f1, f1 + f2 ≤ π, which is sufficient to
describe the whole bispectrum [36].

𝐶 (𝜏 , 𝜏 )
𝐶 (𝜏 , 𝜏 ) = 𝐸[𝑋(𝑘)𝑋(𝑘 + 𝜏 )𝑋(𝑘 + 𝜏 )]𝐵(𝑓 , 𝑓 ),

𝐵(𝑓 , 𝑓 ) =   𝐶3𝑥(𝜏1, 𝜏2) exp −𝑗 𝑓1𝜏1 + 𝑓2𝜏2∞
𝜏2=−∞

∞
𝜏1=−∞ ,    

|𝑓 | ≤ 𝜋 |𝑓 | ≤ 𝜋 |𝑓 + 𝑓 | ≤ 𝜋 𝑓 ≥ 0, 𝑓 ≥ 𝑓 , 𝑓 + 𝑓 ≤ 𝜋

 

Ω

−
− −

 

Figure 1. Symmetry regions and non-redundant region (Ω) of bispectrum.

3. Materials and Methods

3.1. EEG Data

The EEG database used in this study was collected from stroke patients, with left brain damage
(LBD), right brain damage (RBD) and normal control (NC) at the Hospital Canselor Tuanku Muhriz
(HCTM), Kuala Lumpur. (formal approval obtained from UKM Medical Center and Ethics committee
for human research, reference no.: UKM 1.5.3.5/244/FF-354-2012). The EEG raw signals of 15 subjects
each from every group (LBD, RBD, and NC) were used for the analysis. The background and
neurophysiological characteristics of the subjects in the three groups are described in Table 1.
The subjects passed the Mini-Mental State Examination (MMSE) with scores of more than 24 over
a total of 30 points which was conducted to exclude dementia. The subjects also passed the Beck
Depression Inventory (BDI) with scores of less than 18 points, to exclude subjects with psychological
problems. The Edinburg Handedness Inventory (EHI) was used to determine the handedness of the
subjects, and measured in a scale from −1 to 1. The scales were interpreted as pure left hander for a
score of −1, mixed left hander for a score of −0.5, neutral for a score of 0, mixed right hander for a score
of 0.5 and pure right hander for a score of 1. From Table 1, the scores show that all subjects were right
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handers. All subjects were self-reported to have normal vision or corrected to normal vision (with
spectacles or contact lenses) to ensure better effect of perceiving emotions from audio–visual stimuli.

Table 1. Background and neurophysiological characteristics (mean ± std) of left brain damage (LBD),
right brain damage (RBD), and normal control (NC) subjects.

Variables LBD RBD NC p-Value

Sample size, N 15 15 15 NA
Age (year) 56.73 ± 6.15 55.87 ± 6.21 51.87 ± 4.19 0.05979
Female/male 5/10 5/10 12/3 NA
MMSE score (range: 0–30) 26.93 ± 1.77 27.2 ± 1.87 28.87 ± 0.81 0.00392
BDI scale (range: 0–21) 7.07 ± 2.91 6.20 ± 1.90 5.47 ± 1.20 0.14936
EHI (range: −1 to 1) 0.85 ± 0.50 0.85 ± 0.47 0.89 ± 0.40 0.96493
Duration of disease (year) 1.74 ± 1.47 2.24 ± 1.97 NA NA

The EEG data were collected using a 14-channel wireless EEG device, Emotiv EPOC headset,
with built in digital 5th order Sinc filter. The electrode placement was based on the international
standard 10–20 system as shown in Figure 2. The EEG data were collected at sampling frequency of
128 Hz. One of the limitations of the EEG is that it has poor spatial resolution as compared to high
resolution brain imaging devices, such as functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) scans [37]. However, the Emotiv EPOC device has 14 electrodes with
2 references providing appropriate spatial resolution as well as practical in terms of time and money
for this study. Moreover, the EEG device provides high temporal resolution data that record the neural
activity changes in milliseconds, which is impossible for fMRI and PET scans.

−

 

Figure 2. Electrodes placement of Emotiv EPOC according to 10–20 system.

To collect the emotional EEG data, an emotional elicitation protocol was designed to stimulate the
emotional states of subjects. The data collection protocol is shown in Figure 3. The stimuli used to
evoke the emotions in subjects were audio–visual in the form of video clips edited from International
Affective Picture System (IAPS) and International Affective Digital Sound (IADS). Six emotional content
video clips were presented to stimulate six discrete emotions, namely anger (A), disgust (D), fear (F),
happiness (H), sadness (S) and surprise (SU) [12].
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Figure 3. Data collection protocol.

Prior to the experiment, the subjects were asked to complete the MMSE, BDI, and EHI tests and
informed consent was given to them. Then, instruction about the experimental procedure was given to
the subjects. The experiment started with a sample video clip, followed by six trials of video clips
which were displayed continuously. Emotional EEG signals were recorded during the six trials video
clips display. After that, the EEG recording was stopped for self-assessment, where the subjects were
asked about the emotions they felt or perceived from the video clips. The self-assessment time was at
least 1 min and it was subject-dependent. During this period, subjects were asked to relax and get
ready for the next video. This was to avoid stimulus order effects. Then the experiment began with
the sadness emotion. The same experimental procedures were repeated for happiness (H), fear (F),
disgust (D), surprise (SU) and anger (A) emotions. There were a total of 42 video clips, including
those of the sample video clips. The duration of each video clip was 46 s to 1 min, therefore, the total
duration of the data collection was between 90 to 120 min.

3.2. Preprocessing

There were a total of 36 trials of EEG signals collected from each subject in all groups (LBD, RBD
and NC). The collected EEG signals were preprocessed to remove the effects of noises and artifacts
that caused interference to the raw signals. The preprocessing of the EEG signals was performed
using MATLAB.

The artifacts due to eye blinks were filtered using thresholding method, where the potentials
higher than 80 µV and lower than −80 µV were offset from each EEG raw signal [32]. A 6th order
Butterworth bandpass filter was used to filter the EEG signals with cut-off frequencies from 0.5 to
49 Hz to extract the delta to gamma frequency bands [32].

3.3. Feature Extraction

The indirect method was used in this study to estimate bispectrum using the bispeci function in
the MATLAB Higher Order Statistics Toolbox. The number of points used to form each fast Fourier
transform (NFFT) was 1024. The bispectrum features were extracted from data by using 50% overlap
with Hanning window. The preprocessed time domain EEG data were segmented into six seconds
length for every channel. Each data segment is also known as an epoch, and contains 768 data. Three
types of EEG frequency sub-bands were used for analysis, namely the alpha (8–13) Hz, beta (13–30) Hz
and gamma (30–49) Hz bands.

Bispectrum features were computed from the non-redundant region (Ω) of bispectrum The features
extracted from each epoch were variance (v), sum of logarithmic of bispectrum (H1), sum of logarithmic
of diagonal elements in the bispectrum (H2), first moment of diagonal elements in the bispectrum (H3),
second moment of diagonal elements in the bispectrum (H4) and moment of bispectrum (H5).

The variance, v of the bispectrum was computed as:

v =
1

N − 1

N
∑

i=1

∣

∣

∣Bi − µ
∣

∣

∣

2
, (5)
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where N is the total number of bispectrum in Ω, µ is the mean of bispectrum in Ω, Bi is the bispectrum
series for i = 1, 2, 3, . . . , N.

Sum of logarithmic amplitudes of bispectrum (H1):

H1 =
∑

Ω

log
(∣

∣

∣B( f1, f2)
∣

∣

∣

)

, (6)

where Ω is the non-redundant region of bispectrum, f1 and f2 are frequency variables of bispectrum
and B( f1, f2) is the bispectrum feature of f1 and f2 in Ω.

The sum of logarithmic amplitudes of diagonal elements in the bispectrum (H2):

H2 =
∑

Ω

log
(∣

∣

∣B( fm, fm)
∣

∣

∣

)

, (7)

where Ω is the non-redundant region of bispectrum and B( fm, fm) is the diagonal element of bispectrum
feature in Ω.

The first-order spectral moment of amplitudes of diagonal elements in the bispectrum (H3):

H3 =
N
∑

m=1

m· log
(∣

∣

∣B( fm, fm)
∣

∣

∣

)

, (8)

where B( fm, fm) is the diagonal element of bispectrum feature in Ω, N is the total number diagonal
elements of bispectrum in Ω, and m = 1, 2, 3, . . . , N.

The second-order spectral moment of the amplitudes of diagonal elements in the bispectrum (H4):

H4 =
N
∑

m=1

(m−H3)2
· log
(∣

∣

∣B( fm, fm)
∣

∣

∣

)

, (9)

where B( fm, fm) is the diagonal element of bispectrum feature in Ω, N is the total number diagonal
elements of bispectrum in Ω, and m = 1, 2, 3, . . . , N.

The moment of bispectrum (H5):

H5 =
(√

f 2
1 + f 2

2

)

·
∣

∣

∣B( f1, f2)
∣

∣

∣, (10)

where f1 and f2 are frequency variables of bispectrum and B( f1, f2) is the bispectrum feature of f1 and
f2 in Ω.

3.4. Statistical Analysis

One-way analysis of variance (ANOVA) was used to test the significant difference of the bispectrum
features among the six emotions classes for LBD, RBD and NC respectively. The use of ANOVA was
to statistically analyze the bispectrum features for whether there were differences among the class
means of the six emotions. The use of ANOVA requires the assumption that the observations from
the feature were approximately normally distributed, the observations were independent and the
variances of the classes were equal. The null hypothesis was: “All the emotions of the extracted feature
have equal mean”. The null hypothesis was rejected and the bispectrum features were validated
as statistically significant among the six emotional states if the p-value is less than or equal to 0.05.
When the null hypothesis was not rejected, it implies that all the emotions of the extracted feature have
equal mean, thus the feature that failed to reject the null hypothesis was not suitable to be used for
emotion classification.
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3.5. Classification

Each feature used for classification has a total of 90 trials (6 trials × 15 subjects) with 84 feature
vectors (14 channels × 6 windows) for each emotion. The k-nearest neighbor (KNN) and probabilistic
neural network (PNN) classifiers were used to classify the six emotions in the three groups (LBD, RBD
and NC). The KNN is one of the most widely applied classifier due to it lower complexity and fast
decision making. The KNN searches for the nearest distance or to examine for the most likeliness
between the unknown sample and the training dataset. The distance of the unknown sample and the
training dataset is determined by the distance metric. In this study, the Cityblock distance metric was
implemented in the KNN classification [38].

The PNN uses the Parzen window for nonparametric approximation of the probability distribution
function (PDF) of each class and applies Bayes’ rule to allocate the new input data to the class with
the highest probability by using the PDF of each class [39]. The classifier parameter is the spread
value and is proportional to the standard deviation of the Parzen window in PNN. A small spread
value gives narrow PDF, whereas a large spread value gives wide PDF and the classifier becomes
less selective [40,41].

In this work, the k values of 1 to 15 were tested in KNN and the spread values of 0.1 to 1.5 with an
increment of 0.1 were used in PNN to classify the features. The performance of the classifiers was
validated through 10-fold cross validation, where 90% of the data were used for training and 10% of
the data were used for testing.

4. Results and Discussions

Bispectrum features were extracted from the EEG signals in three groups of subjects (LBD, RBD,
and NC) for the analysis of six emotions, namely anger (A), disgust (D), fear (F), happiness (H),
sadness (S), and surprise (SU). The contour plots of the estimated bispectrum using the anger emotion
of one subject from the LBD group was plotted for the alpha, beta and gamma bands as shown in
Figure 4. The plots of the bispectrum magnitude show the relationship between the two bispectrum
frequency variables, f1 and f2, of the anger emotion. In Figure 4, the f1 (x-axis) and f2 (y-axis) are phased
coupled. Frequency variables that are phase coupled indicate the presence of quadratic phase coupling
(QPC) [31], where the QPC represents the underlying neuronal interaction of the emotional state at
the frequencies ( f1 and f2). The higher magnitude indicates stronger QPC between the frequencies.
The red color represents the greatest increase in the magnitude of bispectrum, while the blue color
represents the greatest decrease in the magnitude of bispectrum.

The distribution of the bispectrum over the ( f1, f2) plane differs in each frequency band. The alpha
band in Figure 4a shows more bispectrum distribution at lower phase coupled frequencies, which is
between (0.04, 0.04) Hz and (0.1, 0.1) Hz in the non-redundant region and other symmetry regions.
Whereas the beta band in Figure 4b and gamma band in Figure 4c show the bispectrum distribution at
higher phase coupled frequencies. These are between (0.1, 0.1) Hz and (0.2, 0.2) Hz in the beta band
and between (0.3, 0.3) Hz and (0.4, 0.4) Hz in the gamma band. Moreover, the maximum magnitude of
the bispectrum in the alpha band is the lowest among the three frequency bands. The beta band has
larger maximum bispectrum magnitude than the alpha band, while the gamma band has the largest
maximum bispectrum magnitude among the frequency bands.
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(c) 

Figure 4. Bispectrum contour plot of LBD anger emotion in (a) alpha band, (b) beta band,
and (c) gamma band.

Figures 5–7 show the bispectrum plots in the non-redundant region and one symmetry region
of the six emotions of Subjects #1 from NC, LBD and RBD groups, respectively. From these figures,
the different emotional states have different bispectrum distribution over the plane with different
phased coupled peaks and maximum magnitude for each. In the past studies, bispectrum has been
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claimed as a useful signal classification method as it is able to show distinctive distribution in different
conditions, such as the left-hand motor imagery and the right-hand motor imagery [42]. The bispectrum
provides an EEG feature that is able to recognize these two conditions. Another study has shown
that the bispectrum feature is different before meditation and during meditation [43]. This study
revealed that the bispectrum exhibit more phase-coupled distribution during meditation than the state
before meditation. In addition, the maximum bispectrum magnitude increased during meditation.
For the non-human experiment, the “induced” ischemic stroke in rat showed the difference bispectrum
distribution in different states of ischemia [44]. In this study, the bispectrum distribution decreased as
the rat turns from normal state to ischemic state. Consequently, the distinctive bispectrum pattern of
the six emotional states presented in this study implies that the emotional states of each group were
distinguishable by applying bispectrum analysis. The significant difference of the emotional states
using the bispectrum feature is further validated by the statistical analysis using ANOVA as shown
in Table 2.

Table 2. Statistical validation results of LBD, RBD, and NC by using ANOVA (statistically significant at
p ≤ 0.05).

Group Features
Alpha Beta Gamma

F Value p-Value F Value p-Value F Value p-Value

LBD

v 11.403 <0.001 8.081 <0.001 28.332 <0.001
H1 49.542 <0.001 37.080 <0.001 36.839 <0.001
H2 35.788 <0.001 48.353 <0.001 78.123 <0.001
H3 35.993 <0.001 50.731 <0.001 78.527 <0.001
H4 1.716 0.127 1.347 0.241 1.595 0.158
H5 27.171 <0.001 31.501 <0.001 41.921 <0.001

RBD

v 3.091 0.009 18.464 <0.001 9.743 <0.001
H1 11.070 <0.001 4.255 0.001 10.508 <0.001
H2 18.778 <0.001 14.958 <0.001 28.436 <0.001
H3 18.529 <0.001 15.113 <0.001 26.585 <0.001
H4 1.785 0.112 8.005 <0.001 2.676 0.020
H5 7.429 <0.001 27.299 <0.001 25.434 <0.001

NC

v 6.256 <0.001 14.068 <0.001 8.138 <0.001
H1 2.993 0.011 6.004 <0.001 10.874 <0.001
H2 4.887 <0.001 20.415 <0.001 38.428 <0.001
H3 4.903 <0.001 20.139 <0.001 36.136 <0.001
H4 2.335 0.040 0.442 0.820 1.550 0.171
H5 6.704 <0.001 11.123 <0.001 13.184 <0.001

From the experiment, six types of bispectrum features were extracted from preprocessed EEG
data of LBD, RBD and NC. The statistical test using ANOVA was performed on the extracted features
and the degrees of freedom were 45,354. The results are shown in Table 2 in three different frequency
bands for LBD, RBD and NC respectively. For a p-value less than or equal to 0.05, this indicates
that the differences between some of the means of the emotional states are statistically significant.
The significant bispectrum features imply that there is an interaction of neuronal subcomponents at
different frequencies in different emotional states. The shaded p-values show the feature which are
statistically not significant between the means of emotion classes as they are larger than 0.05. All the
bispectrum features were statistically significant in LBD, RBD and NC except the second moment of the
diagonal elements in bispectrum (H4), thus, H4 was discarded in classification. Moreover, from Table 2,
the F values are higher in H1 and H3 for LBD, H2 and H5 in RBD and v, H5, and H2 in NC. The highest
overall F values are in the LBD group, while NC has comparably smaller values compared to both
LBD and RBD groups.
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(a) anger (b) disgust 

(c) fear (d) happiness 

(e) sadness (f) surprise 

Figure 5. The bispectrum contour plot of the non-redundant region and one symmetry region in the
alpha band of subject #1 NC group.
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(a) anger (b) disgust 

(c) fear (d) happiness 

(e) sadness (f) surprise 

Figure 6. The bispectrum contour plot of the non-redundant region and one symmetry region in the
alpha band of subject #1 LBD group.
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(a) anger (b) disgust 

(c) fear (d) happiness 

(e) sadness (f) surprise 

≤

Figure 7. The bispectrum contour plot of the non-redundant region and one symmetry region in the
alpha band of subject #1 RBD group.

In emotion classification, the features were trained with varying k values for KNN and spread
values for PNN. The classifiers were tested for all groups and frequency bands. Figures 8–10 show the
classification performance of varying k values in three individual EEG frequency sub-bands (alpha,
beta, and gamma) and the combination of the three bands using Cityblock KNN classifier. From the
figures, the average accuracy of the bispectrum features was similar across all k values tested for alpha,
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beta, and gamma bands. However, the k value of 1 achieved the highest average accuracy when using
the features from the combination of the alpha to gamma band. Moreover, the combination of the alpha
to gamma band significantly performs better than other frequency bands for all k values as shown in
Figures 8–10. The beta band, on the other hand, is the single band that performs best among the three
EEG sub-bands.
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Figure 8. Average classification performance of bispectrum features by varying k values for the LBD
group using k-nearest neighbor (KNN).
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Figure 9. Average classification performance of bispectrum features by varying k values for the RBD
group using KNN.
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Figure 10. Average classification performance of bispectrum features by varying k values for the NC
group using KNN.

In Figures 11–13, the average accuracy of the emotion classification of varying spread values using
PNN classifier are plotted for LBD, RBD and NC, respectively. For most of the features, the accuracies
are consistent at the spread value between 0.1 and 0.6. Then the accuracy is observed to gradually drop
when spread value is larger than 0.6 and further declines when spread value increases. The spread
value of 0.4 was chosen to classify the six emotional states as it has achieved the optimum accuracy for
most of the features. Similarly, the combination of frequency bands has the highest average accuracy
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for all spread values. The beta frequency band is the best performance individual frequency band
among the three frequency sub-bands in all groups.
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Figure 11. Average classification performance of bispectrum features by varying spread values for the
LBD group using probabilistic neural network (PNN).
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Figure 12. Average classification performance of bispectrum features by varying spread values for the
RBD group using PNN.
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Figure 13. Average classification performance of bispectrum features by varying spread values for the
NC group using PNN.

Table 3 shows the average accuracy of all emotional states of the bispectrum features from the
combination of all bands from alpha to gamma using KNN and PNN classifiers. For both classifiers,
the optimum parameters for LBD, RBD and NC are found to be the same. The optimum k value in
KNN classification for all three groups is 1, and the optimum spread values in PNN classification is
0.4. In Table 3, the KNN is observed to have higher average accuracy than the PNN classifier for all
three groups. Notably, the H3 feature is seen to have the highest average accuracy feature in all three
groups using KNN, whereas the H3 feature achieves the highest accuracy in the LBD group using PNN.
Meanwhile, the H1 feature obtains highest average accuracy in RBD and NC using PNN. According to
the results obtained, the top three features are H3, H1, and H2 for all the groups, whereas the worst
performing bispectrum feature is the variance. The highest average classification accuracy is 65.40% in
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the NC group using KNN. Hence the H3 feature is considered the most effective bispectrum feature in
this study.

Table 3. Summary of average accuracy of all emotions of different bispectrum features using the
combination of alpha to gamma bands.

Classifier KNN PNN

Group LBD RBD NC LBD RBD NC

k/Spread 1 1 1 0.4 0.4 0.4
v 31.02 30.28 32.72 28.43 28.30 28.70

H1 58.27 61.79 63.67 53.24 55.06 57.41
H2 55.59 60.06 62.90 49.88 49.72 55.25
H3 58.67 62.22 65.40 54.57 52.84 56.11
H5 46.54 47.38 47.10 40.46 40.31 38.83

The confusion matrix of the H3 feature in KNN emotion classification is presented in Tables 4–6
for LBD, RBD and NC, respectively. From Table 4, the highest predicted class is happiness in LBD.
In Table 5, the RBD group has the highest predicted value in sadness and surprise emotions, whereas
the NC group has the highest predicted value in sadness emotion in Table 6. For PNN classification,
the confusion matrix is presented in Tables 7–9 for each subject group. Likewise, the PNN classification
predicted the happiness emotion correctly in the LBD group, as shown in Table 7. In addition,
the sadness emotion has the highest classification accuracy in RBD and NC groups as shown in
Tables 8 and 9.

Table 4. Confusion matrix of the LBD group using the H3 feature in KNN classification.

Actual

A D F H S SU

Predicted

A 35 8 4 3 2 8
D 4 31 6 3 5 5
F 5 5 31 3 2 2
H 3 2 7 41 7 3
S 3 3 5 4 35 5

SU 4 5 1 0 3 31

Table 5. Confusion matrix of the RBD group using the H3 feature in KNN classification.

Actual

A D F H S SU

Predicted

A 36 3 5 3 0 3
D 2 35 4 3 2 4
F 4 10 32 3 6 3
H 3 4 9 36 5 4
S 1 1 2 6 38 2

SU 8 1 2 3 3 38

Table 6. Confusion matrix of the NC group using the H3 feature in KNN classification.

Actual

A D F H S SU

Predicted

A 39 4 1 4 1 6
D 2 40 3 0 3 9
F 1 4 34 4 3 4
H 2 3 6 38 5 0
S 2 1 6 6 41 1

SU 8 2 4 2 1 34
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Table 7. Confusion matrix of the LBD group using the H3 feature in PNN classification.

Actual

A D F H S SU

Predicted

A 32 6 3 4 1 7
D 8 32 7 3 4 1
F 5 5 30 3 4 2
H 5 4 5 37 7 7
S 3 2 6 5 35 3

SU 1 5 3 2 3 34

Table 8. Confusion matrix of the RBD group using H1 feature in PNN classification.

Actual

A D F H S SU

Predicted

A 27 4 0 1 1 6
D 5 35 5 2 4 5
F 7 3 32 8 4 1
H 4 2 6 34 2 5
S 1 2 6 6 41 2

SU 10 8 5 3 2 35

Table 9. Confusion matrix of the NC group using the H1 feature in PNN classification.

Actual

A D F H S SU

Predicted

A 32 3 2 2 1 8
D 5 35 10 4 6 8
F 5 3 33 2 4 3
H 4 5 5 35 3 2
S 3 2 3 9 40 3

SU 5 6 1 2 0 30

The classification rates using the KNN classifier for individual emotions are show in Figure 14.
From the figure, the emotion with highest accuracy in all groups was sadness, where the LBD group
achieved 65.37%, RBD group achieved 71.48% and NC group achieved 75.56%. Meanwhile, the fear
emotion recorded the lowest accuracy in all the three groups, which was 53.52%, 57.96% and 60.74%
for LBD, RBD and NC respectively.
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Figure 14. The accuracy of each emotional state using the KNN classifier.

The accuracy of the individual emotional states classified using the PNN classifier is shown in
Figure 15. The PNN classifier has the same highest accuracy emotion with KNN, which was the sadness
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emotion. The LBD group has 57.41%, RBD has 62.59% and NC has 65.19% classification accuracy for
sadness emotion using PNN. In Figure 15, the lowest classification accuracy for LBD and NC groups is
the surprise emotion, which is 50.93% and 47.22%, respectively. In the RBD group, on the other hand,
disgust emotion recorded the lowest classification accuracy of only 50.00%.
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Figure 15. The accuracy of each emotional state using the PNN classifier.

In this work, the surprise and fear achieved lower recognition rates compared to other emotions.
The happiness was the most accurately recognized emotion, as well as the facial expressions for anger,
sadness and disgust [45,46]. According to past studies, there is no convincing evidence for the surprise
and fear emotions to be accurately recognized [47–49].

The emotional state that shows highest classification accuracy in each group (LBD, RBD and NC)
indicates that the emotion is more significant compared to other emotional states in the respective
groups. From this current result, all of the LBD, RBD and NC groups show highest classification
accuracy for sadness. Meanwhile, NC group exhibits the highest average accuracy for both classifiers,
followed by RBD with LBD trailing behind.

As a result, in this study, the LBD and RBD stroke patients have recorded a lower classification
accuracy compared to the NC. This suggests that the emotional states of NC are more significant than
the stroke patients. In order to validate the significant differences among the three groups, ANOVA
was used to test the statistical difference among the average accuracy obtained from the KNN classifier
and the resultant p-value was less than 0.05. Hence, the emotion classification accuracy for LBD,
RBD and NC were statistically significant. This signifies the significant difference among the three
groups, which implies that there are differences in the emotional experiences between LBD, RBD and
NC groups. From this work, the NC group was observed to have the highest emotion classification
accuracy, followed by the RBD group and the LBD group performed worst. Therefore, the NC group
has the highest efficiency in EEG emotional classification with the use of machine learning, while the
LBD group the lowest.

This work is significant to those past studies in which only second order measures of statistics,
such as the power spectrum [50,51], which is a linear feature, was used. The power spectrum can only
reveal the amplitude information about the EEG signals, the phase information, such as the phase
coupling in the signal, cannot be observed by applying the power spectrum. Furthermore, the use of
linear approaches has ignored the nonlinear characteristics of the EEG signals, thus, bispectrum was
implemented in this study to detect and characterize the nonlinearities of EEG signals. Also, this current
study using the bispectrum was able to provide distinctive information for different emotional states
which was useful for emotion classification by achieving the highest accuracy of 75.56% using the H3.
bispectrum feature.
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5. Conclusions

The importance of emotion assessment of stroke patients stems from the need to seek information
on the severity of emotional impairment symptoms. Therefore, an accurate emotion assessment
approach is required to identify the symptoms of mood disorders in stroke patients. This work
proposed the use of the bispectrum feature to classify the discrete emotions (anger, disgust, fear,
happiness, sadness and surprise) of stroke patients and normal people. This study aims to develop an
accurate emotion identification method, which can be used to recognize the current emotional state of
strokes patient during diagnosis.

In this work, the bispectrum reveals the presence of QPC in the EEG signals and exhibits different
QPC relations in each emotional state. This difference in the harmonic components and peaks were
shown in the bispectrum contour plots arising from the nonlinear interactions between neuronal
populations in each emotional state. In this study, the proposed method of emotion classification
by using the bispectrum feature and KNN classifier has shown its effectiveness in the combination
of alpha to gamma frequency bands. In addition, the bispectrum feature, H3, was able to provide
an accuracy of 75.56% in the NC group. Moreover, the proposed method gave a comparable result
with some current studies in emotion classification, However, there were only six types of bispectrum
features implemented in this study and there are more to be explored. Also, future works could also
focus on the optimization of the classification accuracy.

To conclude, bispectrum-based features are effective to analyze the nonlinearity EEG signals,
and therefore is a useful feature for emotion assessment. Bispectrum feature was able to provide the
emotional information of stroke patients and hence can be used as the substitute for conventional
observation-based or scoring methods.
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Abstract: Brain–computer interfaces (BCIs) measure brain activity and translate it to control computer
programs or external devices. However, the activity generated by the BCI makes measurements for
objective fatigue evaluation very difficult, and the situation is further complicated due to different
movement artefacts. The BCI performance could be increased if an online method existed to measure
the fatigue objectively and accurately. While BCI-users are moving, a novel automatic online artefact
removal technique is used to filter out these movement artefacts. The effects of this filter on BCI
performance and mainly on peak frequency detection during BCI use were investigated in this paper.
A successful peak alpha frequency measurement can lead to more accurately determining objective
user fatigue. Fifteen subjects performed various imaginary and actual movements in separate tasks,
while fourteen electroencephalography (EEG) electrodes were used. Afterwards, a steady-state visual
evoked potential (SSVEP)-based BCI speller was used, and the users were instructed to perform
various movements. An offline curve fitting method was used for alpha peak detection to assess
the effect of the artefact filtering. Peak detection was improved by the filter, by finding 10.91% and
9.68% more alpha peaks during simple EEG recordings and BCI use, respectively. As expected, BCI
performance deteriorated from movements, and also from artefact removal. Average information
transfer rates (ITRs) were 20.27 bit/min, 16.96 bit/min, and 14.14 bit/min for the (1) movement-free,
(2) the moving and unfiltered, and (3) the moving and filtered scenarios, respectively.

Keywords: Brain-Computer Interface (BCI); Steady-State Visual Evoked Potential (SSVEP); artefact
removal; Individual Alpha Peak; movement artefact; Electroencephalography (EEG)

1. Introduction

Electroencephalography (EEG) recordings of brain activity are used for multiple purposes, from
medical diagnostics to brain–computer interfaces (BCIs) [1,2]. The recorded activity is analysed with
various methods according to the end goal, and one or several features are extracted and interpreted.

BCIs evaluate specific components of brain activity and try to classify them according to criteria
set previously, in order to execute a corresponding command when such a component is detected.
By providing multiple types of commands, the control of a BCI system can be handled by the users’
brain activity alone (interpreted by the BCI) without the need for muscle movements. Steady-state
visual evoked potentials (SSVEPs) are one of the specific brain activities which BCIs can utilise. They
are generated when the user is looking at a source of light that flickers with a constant frequency
(for example, by changing colour or luminance). BCI performance can be easily influenced by the
recording environment. The lighting conditions in the room, movements of the users, or even the
attention and fatigue levels significantly alter the speed of the BCI.
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User fatigue could be partially or even totally countered by changing the parameters of the BCI.
For this, a measure of the subjects’ fatigue is necessary. Although there are subjective methods for
acquiring fatigue levels from the users, for example, questionnaires, there are two main drawbacks
to these methods. The subjectivity can cause mistakes in the following parameter changes, possibly
not improving the BCI performance at all, or even detrimentally affecting it. Secondly, these methods
require the users to stop using the BCI and, for example, fill out a questionnaire. As BCIs are online
systems taking breaks during their use does not make sense. Therefore an online and objective measure
is required for optimal use with BCIs.

EEG recordings are also commonly utilised in the research of brain activity and functions [3,4].
For example alpha activity can be associated with attention [5]. Alpha peaks and mean powers of
different frequency bands have been proposed to indicate user attention or tiredness during BCI
use [6–9]. The reported results of these investigations vary and are sometimes contradicting.

Moreover, there are findings in the field of neurosciences, which were not considered
by the previously mentioned researches for measuring fatigue associated with BCIs. Namely,
the inter-individual differences, how these affect the bandwidths, already discussed in [10], and
the methods for determining the peak frequency in a band [11]. The traditional band limits may be
inappropriate, as there are differences between the subjects to such an extent that their peak alpha
frequency, for example, may fall entirely out of the traditional alpha range. Although this will not
affect finding the peak in most cases, as it is still likely within the range, the mean power or any ratio
calculated from it will be affected, however. To determine the individual peaks, a robust and accurate
method is required, which can handle the common pitfalls of peak detection, such as split peaks.

There are several different techniques, with benefits and drawbacks, that have been applied for
determining peak frequencies. They include simple and complicated methods alike [11]. One of the
most common methods is specifying the frequency band, by extracting data from the fast Fourier
transform (FFT), which is limited by traditional, personalised, or in some way generalised frequency
borders (e.g., 8–13 Hz for alpha band), and finding the local maximum. Determining the peak alpha
frequency in a condition where the eyes are closed is usually straightforward; however, with open
eyes this task can become quite challenging. If there are no obvious peaks in the range, or there is a
split peak, the estimation can become biased and incorrect [11]. Since visual BCIs require open eyes,
this method is not suitable for peak detection during SSVEP-based BCI use.

An alternative method of determining the highest peak in a frequency band was developed
originally by [12]. The estimation is done by calculating a weighted average of the power contained in
the frequency band that is sensitive to the spectral distribution. This method can yield results even if a
clear peak is not detectable. However, it requires a clear definition of the boundaries of the band. Since
brain activity has a high inter-subject variance, the boundaries cannot be defined in a generalised way
without somehow biasing the estimation. The behaviour of the frequency components of the recorded
brain activity can also be profoundly different. This makes the estimation of the peak frequency
challenging to automate, even when utilising data recorded with different conditions (e.g., eyes open
and closed) [11].

A less commonly used method is curve fitting, which can alleviate several of the previous
issues [13,14]. The problems split peaks have caused can be alleviated, for example, and the boundaries
play a lesser role in finding the peak frequency. A curve fitting method for finding peak alpha
frequencies was introduced by [13] and was improved later to account for split peaks [15].

A promising and already implemented approach with curve fitting is provided by [11], who
utilises a Savitzky–Golay filter for the smoothing of the FFT, which can ease peak detection. It also
includes calculating the derivatives of the FFT spectrum and finding inflexion points before applying
curve fitting based on the least-squares approach. Savitzky–Golay filters have the important property
of not altering the properties of the peaks. In this experiment this method is used for individual alpha
frequency (IAF) detection during simple EEG recordings and SSVEP-based BCI tasks.
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With the individual alpha frequency (IAF), the individual alpha ranges can be defined, and phase
information can be calculated, which seem to be promising approaches to measuring attention or
fatigue. They can show whether the target brain area is receiving external information from the stimuli,
or if the information gathering is blocked by the alpha activity [5,16].

There is another issue to consider when using BCIs and neural activity measurements, which
is the artefacts present in the recorded EEG data. All previously mentioned peak detection methods
can suffer from ocular or muscular artefacts, which can easily occur during a recording. With all
different methods of peak estimation, it is crucial to have data with a high signal to noise ratio (SNR),
or preferably, without any noise. Most of the studies handling EEG data, to minimise noise, require
the subjects to sit in a comfortable position and move as little as possible, or even physically fix the
position of the head by using head-mounts.

However, BCIs aim to develop solutions for people with disabilities or for use in everyday
scenarios, and as such they have to consider head movements and blinking, which are unavoidable for
any prolonged use of the system. This is especially true with mobile systems, as more movements are
expected if the wires do not restrict the users. Commonly offline analysis is used after rejecting all
noisy data from further calculations, however, this cannot be done with BCI systems. BCIs require
online and therefore (semi-)automatic artefact removal and analysis. Optimally BCI systems require
an artefact correction (and not rejection) method, in order to always be able to process the users’ EEG
activity. The exact choice of artefact removal algorithm is not simple. These usually remove one or
both of the most common EEG artefacts, eye movements, and muscle movements.

The authors in [17] presented a method based on correlation index and the feature of
power distribution to automatically detect eye blink components, using extended infomax ICA.
Ref. [18] presented a way of removing ocular artefacts by using blind source separation on the raw
EEG recording.

Regarding muscular artefacts, Ref. [19] demonstrated muscular artefact cancellation in
single-channel EEG recordings with a combination of ensemble empirical mode decomposition and
joint blind source separation. They successfully removed muscular artefacts without altering the
underlying EEG activity.

More recently, Ref. [20] introduced the source-estimate-utilizing noise-discarding (SOUND)
algorithm. It uses Wiener estimators and employs anatomical information to identify and suppress
noise and artefacts in EEG and MEG. Also recently, Ref. [21] developed a generic EEG artefact removal
algorithm, which allows the annotation of artefact segments and clear segments. With this information
the algorithm based on the multi-channel Wiener filter (MWF) can remove a wide variety of artefacts
from EEG data. The result was a high-performance semi-automatic artefact removal algorithm able
to remove both muscular and ocular artefacts. This algorithm requires only a short time to do
computations and handles both common EEG artefact types—ocular and muscular—therefore, it is
optimal for use with BCIs. Authors in [21] tested their algorithm performance using both hybrid and
real EEG recordings. However, the calculations were offline, and the selection of the artefact segments
is made manually by the experimenter. For this experiments’ purpose the calculations had to be done
online. Moreover, the effect of such a filter on the measurement of peak frequencies from an FFT
transformed signal needed to be investigated.

In this experiment, we wished to create a scenario that could easily occur when using a mobile
BCI system. Therefore, the experiment necessitated movements which would occur in everyday
scenarios, such as chewing, speaking, and head gestures, freely selected and even combined by the
users. We then used the automatised version of the presented artefact removal algorithm in online
EEG recordings, and BCI experiments to filter out these common movements, and used the recorded
EEG data to determine the IAFs using curve fitting methods.
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By checking the effect of online artefact removal on peak detection, we can grasp how effective
is it to measure attention and fatigue-related EEG parameters while the users are mobile. For BCIs
whose target user group is healthy people, mobility or movements are expected and indeed necessary
to account for. Although the exact parameters or combination of them for describing objective user
fatigue or attention is not clear yet, IAFs can be used as a base for many parameter estimations. Once
determined, the negative effects of fatigue could be countered by altering BCI parameters. For both
artefact removal and peak detection we utilised novel methods and algorithms. In our study we
used IAF measurement methods as an indicator, or starting step for determining objective fatigue.
However, it is out of the scope of this paper to make measurements or assumptions measuring either
fatigue or attention during BCI use. Additionally we measured the effect of the artefact removal on
BCI performance. However, the main goal remains the evaluation of the artefact removal combined
with peak detection during BCI use. Even if BCI performance is worse using these methods, it can be
easily amended by simply not filtering the data for BCI classification.

First, the materials are described, followed by the description of the implementation and changes
to the artefact removal method, followed by the peak detection method and finally the experimental
protocol including the used BCI system. The results of the simple EEG recordings and the BCI use are
detailed separately and discussed in the respective sections of the paper.

2. Materials and Methods

2.1. Participants

Fifteen healthy users (eight female) participated. All of them were students of the Rhine-Waal
University of Applied Sciences. The average age (SD) was 23.8 (2.9) years. After discussing the
experimental protocol with each subject, they signed a consent form according to the Declaration
of Helsinki. The experiment was approved by the ethical committee of the Medical Faculty of the
University Duisburg-Essen. Subjects were paid a small fee to participate in the experiment.

2.2. Hardware

For recording EEG, a biosignal amplifier, g.USBamp (Guger Technologies, Graz, Austria) was
utilised. Passive Ag/AgCl electrodes were used to measure EEG signals, fourteen of them were placed
at the following positions: PZ, PO3, PO4, O1, POZ, O2, O9, O10, P3, CZ, P4, F1, FZ, and F2 according to
the international 10-5 electrode placement system. AFZ was used as a ground, and the left earlobe
was used for reference. Before the experiment, all electrodes were prepared with an electrolytic gel to
lower impedances below 5 kΩ.

Data were recorded at a sampling rate of 256 Hz. A bandpass filter between 2 Hz and 60 Hz, as
well as a notch filter between 45 Hz and 55 Hz to remove power line noise were applied. These filters
were applied before utilising the artefact removal method, specified in Section 2.4. Data were sent to
be processed in blocks of 64 samples (250 ms long recordings).

The BCI program, including the graphical user interface (GUI) and all calculations, ran on a laptop
(MSI GE72MVR 7RG Apache Pro (17.3 inches), resolution: 1920 × 1080 pixels, vertical refresh rate:
120 Hz, Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz, operating on Microsoft Windows 10 Education).

2.3. Experimental Protocol

The experiment was divided into three phases, each with its subsequent tasks. After signing the
consent form, subjects were prepared for recording. Electrode gel was applied at all recording sites.
This was followed by the first phase, setting up the artefact removal filter (Section 2.4).
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In the filter setup phase users had to follow the instructions on screen, altogether six of them,
while keeping their gaze as much as possible in the middle of the screen, marked by a cross. Between
the tasks they could take short breaks as needed, during which no EEG data were saved. Each task
required a specific activity for ten s, and they were the following: blink, move your head, do face
movements/gesticulation and remain as still as possible (for three times in total). The order of the
tasks was randomised. The data recorded during these tasks was used to create the multi-channel
Wiener filter. For further details on this phase please see Section 2.4.

After the filter has been created, in the second phase of the experiment, users had to do ten specific
tasks. The tasks were in a randomised order, presented by the GUI. During this phase there was no
stimulation presented to the users; simply EEG was recorded. The tasks were the combination of
three distinct settings, eyes open or closed, filter on or off, and relaxing/imagining movements/doing
movements. The relaxing conditions with both eyes open and closed were only measured without the
filter being on, as there was nothing to filter out and consequently precise results were expected even
with less data, thus resulting in 2 × 2 × 3 − 2 = 10 tasks. The GUI did not show any information about
the filter, only whether to keep eyes closed/open and what activity to do. Subjects were instructed to
do any combination of the movements they had done during the first phase, but not any new type of
movement. Each user could freely select any combination of the movements done previously, however
during the recording they were monitored by the experimenter to assure they kept moving/still during
the whole recording as per instructed. If not all conditions were fulfilled (e.g., a subject opened his or
her eyes, did not keep still, or did not move according to the specific task) the task was repeated. Each
task had to be maintained for 45 s, during which EEG was recorded.

For the third phase of the experiment, users had to use an SSVEP-based BCI speller to write a word
selected by them (approximately 5–6 characters long, or 15–18 selections with the BCI, respectively,
but otherwise not specified). Due to its robustness in previous experiments, a three step speller was
used (see Section 2.5.2). The same word had to be written thrice while executing one of the tasks:
keeping as still as possible, moving according to the movements in phase one of the experiment, and
the same movements, but with the filter active. For the keeping still task, no filter was used. However,
during the later offline analysis the filtered data was calculated from the corresponding unfiltered data.
The state of the filter was, again, not shown to users, and they were instructed when necessary by the
experimenter not to stop moving, similarly as in phase two. These three tasks were randomised as well.
The experiment was finished if the user has written the preferred word thrice, or if after a prolonged
time no progress was made towards finishing the spelling task. In the latter case the condition was
deemed unsuccessful for spelling with the BCI.

The whole experiment lasted approximately one hour, with possibilities for short breaks between
the tasks (when needed by the users) For an overview of the phases of the experiment, please see
Figure 1.
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Figure 1. Three phases of the online experiment. Electroencephalography (EEG), brain–computer
interface (BCI), steady-state visual evoked potential (SSVEP).

2.4. Artefact Removal

The artefact removal algorithm presented by [21] was adopted for this experiment. As a summary
of their method: The algorithm calculates an estimate of the multi-channel artefact signal by linearly
combining the channels of observations. The input data, as mentioned before, is labelled as artefact
segments and artefact-free segments, which are used in acquiring an optimal filter solution using
only covariance matrix estimates. The neural responses can be obtained by subtracting this estimated
artefact from the data.

Furthermore the spectral properties of the data (different effects on different electrode locations)
are also considered, and the algorithm can be extended by performing a finite impulse response
filtering in each channel, which acts as a per-channel spectral filter. This way, the algorithm can
optimally remove the pre-defined artefact types while at the same time minimises the removal of
actual EEG components. For a detailed description of methods and calculation please refer to [21].

This algorithm was applied in our custom made BCI program (Section 2.5.2), which was also
handling EEG recordings. For this, the algorithm was made automatic and online, calculations being
done after each block of recorded EEG data (every 250 ms) to remove possible artefacts before being
processed by the BCI classification. For the automation a training phase was added, where the generic
marking of artefact segments was done.

The experiment started with this training phase for creating the filter. Users were asked to follow
instructions presented in the GUI, which told them to remain as still as possible for several seconds or
to do movements. Six tasks were listed in a randomised order, requiring blinking, head movements,
face movements/gesticulation and remaining as still as possible (three times in total), for ten seconds
each. The instructions were closely monitored by the experimenter, and if any deviation from them
was noted, the whole phase was repeated. There were no limitations on the movement types, e.g., for
head movements nodding or shaking of the head could be done as well as any other head movement,
however subjects were instructed to remember the movements they made in this phase and replicate
them in the later phases. By specifying whole data segments of this phase as artefact segments or clean
segments, the manual marking was omitted, making the artefact removal automatic. This, however,
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could have influenced the performance of the removal process. In a practical application the users
are not in the presence of experts, and since their knowledge of EEG artefacts can be minimal or even
non-existent, they cannot be asked to mark these artefacts segments themselves.

During this training phase, four targets were flickering, precisely as in the spelling task later,
with the same frequencies. This was done to mitigate the effect of the filter on the signal the BCI was
searching for. Although there was flickering, no interaction was possible for the users (no selection, no
feedback, no classification). Users were instructed to do the movements while looking at the middle
of the screen, marked by a cross. Thus the four flickering targets were in their visual field, but the
users were not looking directly at them. The tasks where users had to remain still were marked as
artefact-free data, while all other recordings were marked as artefacts.

The filter was created with a delay of four samples. This means that time-lagged versions of
each channel (up to ±four samples, or ∼16 ms) are stacked to the observation matrix, which is used
to calculate the multichannel Wiener filter. This delay was selected considering the temporal and
spatial effects (e.g., blink artefacts can have large autocorrelation coefficients after tens of milliseconds)
of artefacts on EEG. For details please refer to [21]. The resulting filter was a 126 × 126 matrix,
9 (from −4 to +4 sample time lags) × 14 (electrodes). This was applied to each incoming block
(14 electrodes × 64 samples) of data when the filter was active. First, the time-lagged versions of the
incoming data were calculated with zero-padding to match the original dimensions and the dimension
of the filter. Then the artefact estimate was calculated for the original (not time-lagged) channels using
the filter. The artefact estimate was then removed from the EEG to get the filtered data as described
in [21].

2.5. Offline Analysis

After the experiment, an offline analysis was conducted to determine peak frequencies in the
theta, alpha, and beta ranges. The program recorded EEG data after the notch filtering at 50 Hz and the
bandpass filtering between 2 Hz and 60 Hz in every case (referred to as unfiltered from here on), and
additionally when the artefact removal filter was operational, it recorded the data after the removal
process as well (referred to as filtered from here on). The offline analysis was done differently for the
data recorded in phases two and three of the experiment.

In phase two, after the training phase for the artefact removal, the users had to do different
movement-related tasks or imaginary movements while EEG data were being recorded. In the cases
where the artefact removal was not applied online during the recording, the filtered data was calculated
offline from the corresponding unfiltered data, this way providing more data for the statistical analysis,
providing more robust results. Altogether ten different tasks were required from the users, and for both
the unfiltered and the filtered data the peak detection algorithm from [11] was applied to find IAFs.

First, the FFT was normalised, then a smoothing filter (Savitzky–Golay filter) was applied.
Potential alpha peaks were determined by finding zero crossings in the first derivative of the smoothed
normalised FFT. If there were multiple crossings, the highest peak was used. If the peak was higher
than the next highest peak by a predefined threshold, it became a peak frequency. Inflexion points
were determined from the second derivative of the FFT, and the area under the curve (Q) between the
two inflexion points around the peak was calculated.

The EEG data were separated into three sets, according to the spatial position of the recording
electrodes. The occipital area had seven recording electrodes: PO3, PO4, O1, POZ, O2, O9, and O10 the
centro-parietal area consisted of PZ, PO3, PO4, P3, CZ, and P4, while the frontal area encompassed only
F1, FZ, and F2. This was done, so the results are easier to present here.

2.5.1. Center of Gravity

Center of Gravity (CoG) calculation is a more global method of peak frequency detection,
as information is given about the shape of the peak as well, and even not so pronounced peaks
can be detected. First, the FFT of the epoch has to be calculated, and a frequency range specified for
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the calculations. Originally, as proposed by Klimesh et al. [22], this was done by visually inspecting
the signal, and finding the beginning of the “ascent” and the end of the “descent” of the alpha peak.
The peak frequency is calculated using the following formula:

IAF = ∑(a( f )x f )/ ∑ a( f ), (1)

where IAF is the individual peak frequency, and a( f ) is the power spectral estimate from the FFT at
frequency f . The frequency range for this equation was the previously determined start of “ascent”
and end of “descent”.

Corcoran et al. [11], used the centre of gravity calculation with an automatic search for the
frequency range. After finding the alpha peak as described above, for the CoG calculation the
first derivative of the FFT was searched for local minima or near horizontal functions prior and after
the peak. If there were multiple minima before/after the peak, the closest ones to the peak were used.

2.5.2. BCI

Classification was done only during the third phase of the experiment when the users had to write
a word using BCI. In the other phases the EEG data was only processed using the method described in
Section 2.4 and offline.

Minimum energy combination (MEC) was used to classify the recorded EEG data, similarly
to [23]. MEC combines the data from the least noisy channels. The amount of noise in the data
recorded by each channel is calculated by removing the target signals and assessing the rest. The
combination is executed for each target frequency, resulting in comparable SNR measures for all targets.
After normalization, the result of the classifier is given in percentages for each investigated frequency.
For more details please see [23].

In our case, not a single classifier, but four of them were analysing data simultaneously. The only
difference between them was the amount of data to analyse, which was 3, 4, 5, and 6 s respectively.
The calculations of a classifier started only if enough data were available (for example the 5-second
classifier started after 5 s of recording). However, once started they would analyse after each block of
incoming data, by shuffling out the oldest block of data and appending the new block. If more than six
seconds of recording were available, all four classifiers were calculating simultaneously. The results
were combined by weighted averaging, by assigning the highest weights to the longest classifiers.
For more details please see [24].

After selecting a target, the flickering stopped for two seconds, and the data recording for the
classifiers was started from the beginning (3, 4, 5, 6, or more seconds were needed again for the
respective classifiers to start calculating). This gaze shifting time was implemented to allow users to
find the next target and to allow the dissipation of the SSVEPs generated by the previous flickering.

In phase four flickering targets were utilised, however, to reduce the occurrence of false positives,
three additional frequencies were involved in the calculations of the classifier, without being presented
to the users as flickering stimuli. If one of the additional stimuli was classified, no output was produced.
The four target frequencies were: 14.0 Hz,14.2 Hz,14.4 Hz, and 14.6 Hz, while the additional three
(not displayed) were: 14.13 Hz,14.33 Hz, and 14.53 Hz. This makes measuring activities in the different
wavebands easier as there is minimal overlap. The range 14–15 Hz is above the traditional alpha
range and the expected peak alpha frequency. Conversely, the range is below the expected peak beta
frequency and as such the SSVEPs should have little or no effect on finding these peak values.

2.5.3. Graphical User Interface

The GUI was presented to the users throughout the entire experiment. However, the users could
not interact with it during the first two phases. No selection was possible there, and in phase two even
the flickering effect was not present. For the third phase (BCI spelling task) it had full functionality.
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This speller was a three-step speller; three selections were necessary to write any letter, similar
to [24]. Twenty-seven characters (letters of the English alphabet and ’_’ for space) were organised
into three flickering targets in the initial layout, and an additional target enabled the users to delete
the last written character (Figure 2). Each selection narrowed down the presented characters to the
ones contained in the selected target, e.g., selecting the first target from the initial layout resulted in
the first nine characters of the English alphabet to be distributed among three targets. If a target was
selected that only contained a single letter, that letter was written. At each layout other than the initial,
the option to go back to the previous layout was provided to the users (replacing the delete option).
For more details on the spelling logic please see for example [25].

Figure 2. An image of the GUI, with the size of the stimuli and the distances between them. Users
were looking at it from approximately 80 cm distance. The stimuli are the smaller squares, surrounded
by non-flickering frames, and the length of their sides are equal.

3. Results

3.1. Peak Detection

With the methods mentioned in Section 2.5, an alpha peak was determined for each subject and
each electrode with each task. To provide more compact, comprehensible results, the electrodes have
been grouped according to their areas into three groups, occipital, centro-parietal, and frontal. Between
the first two groups there was a small overlap, PO3, and PO4 are a part of both groups.

The parameters for the offline analysis, according to [11] were as described above (e.g., the
sampling rate was 256 Hz, 45 s of EEG data was used for 14 recording electrodes). Additionally, alpha
peaks were expected in the range of 7–14 Hz, with the Savitzky–Golay filter of frame width 15 and
ninth polynomial order. In the case of competing peaks 20% peak height difference was set as the
threshold, and the minimum number of channel estimates to resolve for calculating average CoG
and peak alpha frequency estimates were 4, 3, and 2 for the occipital, centro-parietal, and frontal
areas, respectively.

A few examples of the FFT from electrode OZ from the occipital area, after the Savitzky–Golay
smoothing filter was applied, are shown in Figures 3–5.

99



Brain Sci. 2019, 9, 347

Figure 3. Smoothed fast Fourier transform (FFT) from Subject 1, electrode OZ, eyes open, executing
movements. The artefact removal in this case did not result in better peak detection. The borders of the
automatic detection range, 7 Hz and 14 Hz are marked on the plot as well.

Figure 4. Smoothed FFT from Subject 3, electrode OZ, eyes open, relaxing. The artefact removal in this
case resulted in better peak detection. The borders of the automatic detection range, 7 Hz and 14 Hz
are marked on the plot as well.
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Figure 5. Smoothed FFT from Subject 5, electrode OZ, eyes open, imagining movements. In this case,
both the unfiltered and the filtered data could be used to find a clear peak. The borders of the automatic
detection range, 7 Hz and 14 Hz are marked on the plot as well.

For each area specified, a mean and standard deviation were calculated. Peaks of individual
channel estimates were weighted by Q f , which is calculated by dividing Q (area under the curve
between the inflexion points) by the bandwidth of this range (the number of frequency bins between
the inflexion points). Q f aims to quantify the relative strength of each channel peak, as described
by [11]. As an example, the results of Subject 6 are shown in Table 1.

Table 1. Examples of the calculated peak alpha frequencies with the curve fitting and Center of Gravity
(CoG) methods for Subject 6. The results are presented by task, with “Mov.” indicating movements
during the recording and “Imag.” indicating imaginary movements done by the subject. The column
“Ch.” lists the number of channels that were used to calculate the Peak and SD values. If a channel
could not be used for detecting a peak, it was excluded from the average calculation. For the Occipital,
Centro-Parietal and Frontal areas 4, 3, and 2 electrodes were the minimum to calculate the average
peaks, respectively.

Occipital

Curve Fitting Center of Gravity

Eyes State Unfiltered Filtered Unfiltered Filtered

Peak SD Ch. Peak SD Ch. Peak SD Ch. Peak SD Ch.
(Hz) (Hz) (Hz) (Hz)

Closed Relax 9.43 0.12 7 9.47 0.09 7 9.48 0.02 7 9.51 0.04 7
Open Relax 10.80 0.17 7 10.79 0.09 7 10.66 0.05 7 10.70 0.03 7

Closed Mov. 9.88 0.13 7 9.96 0.09 7 9.77 0.03 7 10.04 0.03 7
Closed Mov. 9.75 0.00 7 9.78 0.09 7 9.74 0.05 7 9.81 0.03 7
Closed Imag. 9.53 0.09 7 9.71 0.09 7 9.67 0.04 7 9.84 0.04 7
Closed Imag. 9.64 0.13 7 9.75 0.00 7 9.69 0.03 7 9.76 0.02 7
Open Mov. - - 0 - - 0 - - 0 - - 1
Open Mov. - - 3 - - 0 - - 3 - - 0
Open Imag. 10.50 0.00 7 10.50 0.00 7 9.85 0.06 7 10.05 0.02 7
Open Imag. 10.50 0.00 7 10.50 0.00 7 10.11 0.06 7 10.25 0.01 7
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Table 1. Cont.

Centro-Parietal

Eyes State Curve Fitting Center of Gravity

Unfiltered Filtered Unfiltered Filtered

Peak SD Ch. Peak SD Ch. Peak SD Ch. Peak SD Ch.
(Hz) (Hz) (Hz) (Hz)

Closed Relax 9.50 0.00 6 9.50 0.00 6 9.50 0.04 6 9.57 0.03 6
Open Relax 10.85 0.13 6 10.85 0.13 6 10.70 0.08 6 10.67 0.06 6

Closed Mov. 9.71 0.10 6 9.82 0.13 6 9.76 0.06 6 10.05 0.08 6
Closed Mov. 9.75 0.00 6 9.87 0.14 6 9.83 0.05 6 9.84 0.03 6
Closed Imag. 9.70 0.10 6 9.75 0.00 6 9.78 0.06 6 9.90 0.02 6
Closed Imag. 9.67 0.13 6 9.75 0.00 6 9.71 0.05 6 9.72 0.04 6
Open Mov. - - 0 - - 0 - - 0 - - 2
Open Mov. - - 0 - - 0 - - 0 - - 0
Open Imag. 10.52 0.16 6 10.46 0.10 6 9.69 0.18 6 9.93 0.07 6
Open Imag. 10.40 0.21 6 10.39 0.21 6 10.14 0.14 6 10.21 0.08 6

Frontal

Curve Fitting Center of Gravity

Unfiltered Filtered Unfiltered Filtered

Peak SD Ch. Peak SD Ch. Peak SD Ch. Peak SD Ch.
(Hz) (Hz) (Hz) (Hz)

Closed Relax 9.25 0.00 3 9.50 0.00 3 9.37 0.01 3 9.47 0.01 3
Open Relax 10.50 0.00 3 10.75 0.00 3 9.24 0.03 3 10.06 0.01 3

Closed Mov. 9.75 0.00 3 9.75 0.00 3 9.59 0.01 3 9.78 0.00 3
Closed Mov. 9.75 0.00 3 9.75 0.00 3 9.77 0.00 3 9.83 0.01 3
Closed Imag. 9.50 0.00 3 9.75 0.00 3 9.70 0.01 3 9.69 0.00 3
Closed Imag. 9.50 0.00 3 9.75 0.00 3 9.66 0.00 3 9.59 0.01 3
Open Mov. - - 0 - - 0 - - 0 - - 0
Open Mov. - - 0 - - 0 - - 0 - - 0
Open Imag. 10.58 0.14 3 10.00 0.00 3 9.47 0.01 3 9.61 0.01 3
Open Imag. 10.42 0.14 3 10.00 0.00 3 9.97 0.01 3 9.89 0.00 3

The measured peaks were manually inspected to check the results provided by the algorithm.
This was done for each electrode separately. The previously used areas are not used here. The results
of the manual inspection are shown in Table 2.

Table 2. Manual inspection of peaks from phase two of the experiment. Values in parenthesis mark
cases when the automatic and manual inspections both found peaks, however the peaks were more
than 0.5 Hz apart, so they are considered wrong. The not parenthesized numbers in the same cells
include these cases.

Manual
Inspection

Manual Peaks

Unfiltered Filtered

Peak Found No Peak Peak Found No Peak

Automatic
Peaks

Peak Found 1266 70 (10) 1447 41 (6)

No Peak 113 651 189 423

Using this confusion matrix, the accuracy of the automatic peak measurement can be assessed by
dividing the number of true negative and true positive cases by the number of all cases. An online
tool for accuracy calculation can be found at https://bci-lab.hochschule-rhein-waal.de/en/acc.html.
It was found to be 89.69% accurate if manual inspection is considered ground truth. The true correct
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peaks divided by all cases can be used to compare the efficacy of the algorithm in finding peaks in
different scenarios. The comparisons with these values are solely used here for grasping the difficulty
of finding alpha peaks in different scenarios. The tasks were inspected individually, each with its
confusion matrix, and the summary of these results is shown in Figure 6, with the accuracy and the
previously mentioned efficacy.

Figure 6. The accuracy and efficacy (true positive divided by the total) of the second phase of the
experiment, shown individually for each task the users had to do during the recordings. “Cl.” notes
tasks with closed eyes, “O.” is for open eyes, “Imag.” notes imaginary movement, and "Mov." stands
for actual movements. The results of the same task from the online recordings were averaged, e.g.,
“Cl. Eye Mov.” shows the combined accuracy and efficacy of two tasks. As mentioned in Section 2.3 the
relaxation tasks were only done once, every other case contains twice the amount of data.

The accuracy results from Figure 6 are mixed; in some cases the unfiltered data is more accurate; in
other cases the artefact removal increases accuracy. The average difference is 2.18%, with the unfiltered
data being more accurate. However, the efficacy, or how often a true peak was found in the different
tasks, is always higher for the filtered data (Figure 6). In some cases there is not much difference, e.g.,
with closed eyes relaxing there is only a 3.22% increase, but in the most pronounced case, with eyes
open and relaxing, 27.51% more alpha peaks were found when the artefact removal was applied.

To statistically evaluate the effectiveness of peak detection with and without artefact removal, the
cases when the peak was successfully determined were compared. For each subject, each electrode and
each task the results of the peak detection were deemed unsuccessful if no peak could be determined
with the above-mentioned settings, or successful if a peak was found. This way 2100 (15 Subjects,
14 Electrodes, and 10 Tasks) data points were gathered for both the filtered and unfiltered conditions.
The comparison was done by using McNemar’s test, for both the automatic detection method (without
changing false positive and negative findings) and the manually corrected results. The automatic
results showed a significant difference (p < 0.0001), with an average successful detection rate of 65%
for the unfiltered condition and 72% for the filtered condition, while the manual results also showed a
significant difference (p < 0.0001), with detection rates of 67% and 78% respectively. By examining the
tasks separately (merging data from separate recordings with the same task), McNemar tests show
significant differences for the eyes closed relaxing task, p = 0.011 and p = 0.004 for the automatic
and manual results respectively and for eyes closed moving, eyes open relaxing, eyes open imaginary
movement, and eyes open moving conditions, p < 0.0001 in every case for both automatic and
manual results. The only not significantly different condition was with eyes closed and imaginary
movement, p = 0.70 and p = 0.286 for the automatic and manual results respectively. For all cases
which were significantly different, the filtered data provided a better rate of finding peaks.

The results were also compared task-wise to see if different alpha peaks were detected using the
filtered/unfiltered data. For this comparison, the grouped data was used, with a separate condition
for each group. For the occipital group at least four out of the seven electrodes needed a determined
peak to calculate an average, for the centro-parietal area this was three out of six, and for the frontal
area, two out of three. As in some cases no peak was detected, the number of samples for which this
comparison could be done was varied and limited. The measured average values were compared
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for each task separately with a repeated measures two factor ANOVA, as this enabled more samples
for some of the comparisons, and the data were checked with regard to filtering (movement artefacts
filtered out in the specified way or not), and the peak detection method (curve fitting or center of
gravity). The results are shown in Table 3.

Table 3. The results of the comparison (repeated measures two factor ANOVA) of the detected peaks
for all tasks. The values are p values, the significant results (under 0.05) are marked with an ‘*’. Methods
are CoG and curve fitting, Filtering notes the presence/absence of the artefact removal.

ANOVA Results Area Method Filtering Method*Filtering

Closed Eyes Relax
Occipital 0.112 0.084 0.830
Parietal 0.025 * 0.989 0.831
Frontal 0.057 0.061 0.831

Open Eyes Relax
Occipital 0.933 0.109 0.377
Parietal 0.332 0.297 0.139
Frontal 0.382 0.540 0.268

Closed Eyes Move 1
Occipital 0.104 0.049 * 0.090
Parietal 0.104 0.525 0.301
Frontal 0.146 0.588 0.320

Closed Eyes Move 2
Occipital 0.313 0.882 0.853
Parietal 0.047 * 0.397 0.252
Frontal 0.059 0.133 0.077

Closed Eyes Imaginary 1
Occipital 0.026 * 0.050 * 0.707
Parietal 0.078 0.587 0.491
Frontal 0.012 * 0.088 0.940

Closed Eyes Imaginary 2
Occipital 0.634 0.002 * 0.580
Parietal 0.919 0.260 0.222
Frontal 0.024 * 0.253 0.818

Open Eyes Move 1
Occipital - - -
Parietal - - -
Frontal - - -

Open Eyes Move 2
Occipital - - -
Parietal - - -
Frontal - - -

Open Eyes Imaginary 1
Occipital 0.191 0.924 0.070
Parietal 0.013 * 0.372 0.580
Frontal 0.821 0.168 0.070

Open Eyes Imaginary 2
Occipital 0.189 0.236 0.423
Parietal 0.002 * 0.956 0.728
Frontal 0.235 0.162 0.891

As can be seen from the table, the majority of the detected peaks were not significantly different.
More details about the significant differences are shown in Table 4. The largest difference in means
when the filtering is concerned is 0.141 Hz. Regarding the selected algorithm, the difference of means
can be as high as 0.353 Hz. If more precise peak detection is necessary in the future, the parameters of
the artefact removal and peak detection methods likely have to be adjusted.
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Table 4. The significantly different cases from Table 3. Most differences arose from the used peak
determination method, but there are examples of the filtering-out of artefacts causing differences.

Significant
Cl. Eyes Relax Cl. Eyes Move Cl. Eyes Imag. Cl. Eyes Imag.

Parietal Parietal Occipital Frontal

Mean SD Mean SD Mean SD Mean SD

Method
Curve Fitting 9.950 0.250 100.003 0.357 100.094 0.324 90.670 0.267
CoG 90.780 0.222 90.904 0.359 90.985 0.305 90.473 0.247

Cl0. Eyes Imag0. O0. Eyes Imag0. O0. Eyes Imag0.

Frontal Parietal Parietal

Mean SD Mean SD Mean SD

Method
Curve Fitting 90.716 0.328 100.325 0.328 100.457 0.385
CoG 90.505 0.269 90.972 0.325 100.210 0.402

Cl0. Eyes Move Cl0. Eyes Imag0. Cl0. Eyes Imag0.

Occipital Occipital Occipital

Mean SD Mean SD Mean SD

Filtering
Unfiltered 100.448 0.405 100.015 0.317 90.948 0.244
Filtered 100.307 0.413 100.064 0.311 100.042 0.246

3.2. Peak Detection During BCI Phase

The analysis of IAF during BCI use was done as it would be for fatigue or attention level analysis.
This means the EEG data was separated into flicker-free and flickering segments. These segments were
then further subdivided into different time segments of the recording. This way, peak detection could
be done for different time segments of the experiment, which could be used to track the properties
of the IAF throughout the recording. For all these segments the manual inspections proved to be
more complicated than the previous phase due to the frequent lack of clear peaks, and even when
peaks were found they were mostly flat or distorted. The analysis of the flicker-free and flickering
segments was done on an electrode basis (not grouped into areas) and is discussed separately in the
next sections.

3.2.1. Flicker-Free Segments

After every selection, a two-second gaze shifting time was implemented in the BCI, for the users
to have enough time to find the next target letter. During this gaze shifting time the flickering of the
stimuli was turned off. These segments were merged and divided into eight-second long segments
(or 4096 samples with the sampling rate 256 Hz). These segments were separately checked for peaks
in the alpha range with the curve fitting method described above. This was followed by manual
inspection, and the results of this are shown in Table 5. The accuracy of the automatic detection is
85.12% if the manually detected peaks are considered ground truth. The accuracy and efficacy (as
described above) values calculated for the two cases are shown in Figure 7, together with the same
results from the flickering segments, which are described in the next section.
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Table 5. Manual inspection of peaks from the BCI recordings (phase three of the experiment), when the
stimuli were not flickering. Values in parenthesis mark cases when both the automatic and manual
inspections found peaks, however, the peaks were more than 0.5 Hz apart, so they were considered
wrong. The not parenthesized numbers in the same cells include these cases.

Manual
Inspection

Manual Peaks

Unfiltered Filtered

Peak Found No Peak Peak Found No Peak

Automatic
Peaks

Peak Found 594 86 (16) 781 43 (11)

No Peak 243 939 182 856

Figure 7. The accuracy and efficacy (true positive divided by the total) of the third phase of
the experiment, shown for using the BCI while relaxing/moving, as well as open eyes while
relaxing/moving from phase two.

3.2.2. Flickering Segments

The rest of the recordings during BCI use (when the stimuli were flickering), were merged and
divided into 15 second long segments for this analysis. Since the recording time was different for each
subject, the available data was also varied. The length of the segments (15 s) was chosen to provide
at least three segments from each participants’ data. For this analysis, all subjects’ EEG data was
used, regardless of whether they could finish the BCI spelling task or not. The peak detection method
was slightly altered to avoid mistakes from the SSVEPs. The boundaries for the search were altered,
to 8–13 Hz (this way the ∼14 Hz SSVEP and ∼7 Hz subharmonic were both excluded from the range).
The following manual inspection results are shown in Table 6 and Figure 7.

Table 6. Manual inspection of peaks from the BCI recordings (phase three of the experiment), when
the stimuli were flickering. Values in parenthesis mark cases when both the automatic and manual
inspections found peaks, however, the peaks were more than 0.5 Hz apart, so they were considered
wrong. The not parenthesized numbers in the same cells include these cases.

Manual
Inspection

Manual Peaks

Unfiltered Filtered

Peak Found No Peak Peak Found No Peak

Automatic
Peaks

Peak Found 893 183 (12) 1206 60 (8)

No Peak 528 1882 600 1620

106



Brain Sci. 2019, 9, 347

3.3. BCI Performance

The accuracy, the total time and the Information Transfer Rate (ITR) of the spelling tasks were used
to evaluate the BCI performance of the three different scenarios, relaxing, moving without applying
artefact removal, and moving while applying artefact removal. An online tool for ITR calculation
can be found at https://bci-lab.hochschule-rhein-waal.de/en/itr.html. These measures are shown in
Table 7 together with the mean and SD for the scenarios. The cases when users could not finish the
spelling tasks are excluded, and not used in the statistical evaluation. The scenarios were compared
with one factor repeated measures ANOVA, and the respective results are p = 0.036, p = 0.001 and
p = 0.011 (with Greenhouse-Geisser correction) for the accuracy, ITR and spelling time respectively.
All three parameters show significant difference.

Further investigations were done by pairwise tests (paired t-tests). For brevity, the relaxing
scenario is marked RE, the moving without filter MW, and the moving while filtering MF, from here
on. The pairwise accuracy results are: p = 0.556, p = 0.024, and p = 0.085 for RE-MW, RE-MF,
and MW-MF, respectively. For ITR: p = 0.048, p = 0.003, and p = 0.014 for RE-MW, RE-MF,
and MW-MF, respectively. Finally, for spelling time: p = 0.020, p = 0.012, and p = 0.049 for
RE-MW, RE-MF, and MW-MF, respectively. This translates into the MW and MF scenarios performing
significantly worse than the movement-free scenario in every aspect, except accuracy, which is not
different significantly between the MW and RE scenarios.

Table 7. Performance results of the online BCI tasks. The top row indicates the scenario.

Relaxing Move & No Filter Move & Filter

Acc
(%)

ITR
(bpm)

Time
(s)

Acc
(%)

ITR
(bpm)

Time
(s)

Acc
(%)

ITR
(bpm)

Time
(s)

S1 92.3 17.2 67.3 100.0 19.2 75.0 92.3 11.0 105.0
S2 100.0 24.5 73.5 100.0 19.6 91.8 94.1 15.8 102.0
S3 100.0 22.9 78.5 - - - 89.5 7.9 194.0
S4 100.0 24.0 120.0 100.0 23.2 124.0 93.3 16.3 170.0
S5 95.0 11.6 169.0 87.5 7.0 258.0 95.5 8.8 249.0
S6 100.0 23.8 90.8 - - - - - -
S7 100.0 24.6 73.3 94.1 9.9 163.0 90.5 6.4 275.0
S8 100.0 13.2 136.0 94.7 15.0 123.0 93.8 12.5 120.0
S9 100.0 24.5 103.0 100.0 23.8 106.0 100.0 24.0 105.0

S10 94.1 17.5 92.5 100.0 22.4 80.3 100.0 21.9 82.3
S11 100.0 18.0 102.0 94.0 11.0 142.0 86.0 7.0 202.0
S12 94.1 16.2 99.8 100.0 13.8 130.0 80.0 5.4 267.0
S13 100.0 24.2 74.3 100.0 22.8 78.8 100.0 22.6 79.8
S14 100.0 23.8 75.5 94.1 12.4 130.0 94.1 14.8 109.0
S15 100.0 24.2 74.3 100.0 20.3 88.5 100.0 17.3 104.0

Mean 98.37 20.68 95.32 97.26 16.96 122.34 93.51 13.69 154.58
SD 20.68 4.57 28.22 4.00 5.71 49.00 5.81 6.27 70.40

Additionally two subjects could not finish the spelling task with the MW scenario, and one could
not finish the task with the MF scenario. Furthermore, the MF scenarios’ performance is worse than
the MW scenarios’ regarding ITR and spelling time. The potential causes of this are examined in the
Discussion section.

4. Discussion

The online automatic artefact removal method applied proved to improve IAF detection.
For simple EEG recordings the method from [21] proved to result in data significantly better for
determining alpha peaks using the described curve fitting method from [11]. The detection rate
increased from 64.87% to 71.52%. After manual inspection and correction the increase is from 66.57%
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to 78.48%. The increase was even more pronounced in some cases, especially while the users were
relaxing with open eyes.

Generally, movements did not affect alpha peak detection, which is likely the combined result of
several effects. Movement control is associated with the central brain area, which in this experiment
was measured by a single electrode. The effect of these potentials in the central area did not influence
the occipital area, where most recording electrodes were located. Furthermore the movements did not
require any visualisation or precision, and thus while the movements were executed by the users likely
the visual cortex pertained a high alpha activity, possibly even higher than in a relaxing condition.

As opposed to movement-related artefacts not influencing the alpha peak detection, imaginary
movement tasks resulted in a more considerable decrease in the amount of found peaks. Without
artefact removal, this decrease was 17.61% and 35.00% of the total for the closed and open-eyed
conditions, respectively. With artefact removal it changed to 13.23% and 46.18% of the total, respectively.
This effect is likely the result of users not trained for executing imaginary movement tasks; thus they
were likely visualising the movements. This, in turn, decreases alpha activity in the occipital area,
and a peak is harder to detect. In these cases the artefact removal algorithm made the peak detection
substantially more effective.

The most substantial effect of filtering, however, was for the eyes open and relaxing condition.
The reason for this is hard to pinpoint and requires further investigation. One reason could be that
users were inspecting their surroundings during this task, which would then reduce alpha activity in
the occipital area.

When the SSVEP-based BCI was used by subjects while relaxing, compared to the open eyes
relaxing condition from phase two, there was no substantial decrease in efficacy (5.33% and 2.84% of
the total for the flicker-free and the flickering conditions, respectively), when checking the unfiltered
results. With artefact removal, the differences increased to 25.96% and 18.61% of the total. These
differences confirm the degradation of peak detection efficacy when our SSVEP-based BCI is used.
The substantial change in efficacy after artefact removal is due to the substantial improvement of peak
detection in phase two for the eyes open and relaxing condition.

When users were moving during BCI use, the decrease was 31.61% and 38.94% of the total for the
flicker-free and the flickering conditions with the unfiltered data, respectively. With artefact removal,
these differences remained high, 38.94% and 39.05% of the total, respectively. This result shows that
BCI use while the users are moving effects the detectable peaks substantially.

Although the BCI use, especially with the users moving degraded peak detection by a large
amount, the artefact removal provided an improvement in every condition, the efficacy (true positive
rate) increased on average by 9.68% of the total (combining flicker-free and flickering conditions, as
well as relaxing and moving scenarios) if the filtering is applied.

The performance of the BCI decreased for the scenarios when users were moving as expected.
However, the filtering had no positive effect. Instead the opposite occurred, performance was worse
than without filtering. There can be several reasons for this, the most obvious one being the filter
affecting the prevalence of the SSVEPs generated by the flickering. This could be the result of setting
up the filter, and defining the coefficients for filtering. If the SSVEP during this phase (phase one of
this experiment) is not comparable in strength to the one during the experiment, the filter can decrease
the power of the frequency component during the online task to the levels of the training phase,
which decreases BCI performance. As shown by [26], attention affects the properties of the generated
activity, and, as in our experiment, users were instructed to look at the middle of the screen in the
training phase, not directly at the stimuli, the decrease in performance can very well be a consequence.
To investigate this and other potential causes, further studies are necessary.

Another important detail of note is the classification method, MEC, which selects the least
noise-ridden electrodes data for classification. As in our case, eight electrodes were providing data
for the classifier; if half of them were influenced by artefacts, the four remaining could still be used to
classify without too much difficulty. This can be another factor in the performance difference between
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the filtered and unfiltered BCI tasks. As the classification method is robust against noise, and the
artefacts in this experiment did not cause enough noise to necessitate the artefact removal, the only
effect of the filter was the attenuation of SSVEP responses, which resulted in slower classification.
The use of fewer electrodes to necessitate the use of slightly noisy electrode channels or the use of a
different classification algorithm can be used to investigate this effect further.

Although the detection rate can be improved, during BCI use a considerably lower number of
peaks was found. This can be the result of a less boring task (BCI use), or change in mental fatigue, or
just from the difficulty of finding peaks during BCI use. However, the investigation of this is not in the
scope of this paper. Peak alpha frequency determined during the eyes open condition for example
can be measured with the filtering method (providing an improvement), which could then be used to
calculate the individual alpha range and provide a list of other parameters based on the alpha range
(area under the curve, power in the lower alpha range/higher alpha range etc.).

5. Conclusions

The measurement of objective user fatigue can provide a way to minimize its negative effects on
BCI performance, by adjusting parameters of the BCI accordingly. Methods which help to measure
user fatigue objectively, accurately, and online are therefore highly beneficial for BCIs that are planned
to be used for a prolonged time. As mentioned previously, BCIs in the future are expected to be used
in everyday, practical scenarios. In these cases, movements can cause artefacts in EEG recordings,
this was also observed in this experiment as well. Therefore, some movements have to be anticipated
and handled accordingly. The measurement of fatigue or attention with EEG has the same difficulties
regarding movement artefacts, as the cases where fatigue measurements are needed are always related
to some activity, e.g., after prolonged driving phases. The presented online automatic artefact removal
showed an average 9.68% of the total increase in the number of peaks found during an SSVEP-based
BCI use, where the users were moving to generate artefacts. When no BCI was used, the increase was
on average 10.91% of the total.

This means that the used techniques are beneficial for detecting the peak alpha frequency from
the EEG recordings, even during BCI use under noisy conditions. Utilising artefact removal and curve
fitting for peak alpha frequency measurements, the basis for determining objective fatigue accurately
was greatly improved. These results were achieved without restrictions on the specific movements.
Furthermore, the artefact removal was trained in a generic way without a specific artefact detection
algorithm. Refining the parameters of both the removal method and the peak detection algorithm can
lead to even better results, as can the implementation of an online artefact detection algorithm.

Our experiment employed movements which would occur in everyday scenarios, such as talking
or chewing gum. The next step regarding mobility will be testing in a noisy environment using a
mobile amplifier.

Regarding objective fatigue and attention measurement, increasing the number of measured
parameters is planned, e.g., by determining theta peaks, extracting phase information for alpha peaks,
as well as assessing the spatial information, to find a reliable way to measure fatigue and at the final
end e.g., the level of attention of BCI users.

To conclude, the presented system provided, on average, a nearly 10% (of the total) increase in
the amount of detected alpha peak frequencies. Even when users were moving or executing imaginary
movement tasks it provided a better peak finding rate. With small adjustments, further improvements
can be expected, providing a promising way towards extracting information from EEG in practical,
everyday, mobile scenarios.
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Abstract: It is important to maintain attention when carrying out significant daily-life tasks that
require high levels of safety and efficiency. Since degradation of attention can sometimes have dire
consequences, various brain activity measurement devices such as electroencephalography (EEG)
systems have been used to monitor attention states in individuals. However, conventional EEG
instruments have limited utility in daily life because they are uncomfortable to wear. Thus, this study
was designed to investigate the possibility of discriminating between the attentive and resting
states using in-ear EEG signals for potential application via portable, convenient earphone-shaped
EEG instruments. We recorded both on-scalp and in-ear EEG signals from 6 subjects in a state of
attentiveness during the performance of a visual vigilance task. We have designed and developed
in-ear EEG electrodes customized by modelling both the left and right ear canals of the subjects.
We use an echo state network (ESN), a powerful type of machine learning algorithm, to discriminate
attention states on the basis of in-ear EEGs. We have found that the maximum average accuracy of
the ESN method in discriminating between attentive and resting states is approximately 81.16% with
optimal network parameters. This study suggests that portable in-ear EEG devices and an ESN can
be used to monitor attention states during significant tasks to enhance safety and efficiency.

Keywords: In-ear EEG; echo state network (ESN); attention monitoring; vigilance task

1. Introduction

Humans are placed in many situations where it is necessary to sustain attention, such as working,
studying, driving, and exercising. However, it is difficult to maintain rigorous attention for a long time.
For instance, when subjects were placed in a laboratory setting, their level of attention immediately
dropped within 30 min and gradually decreased further over time [1]. The decrease in attention
was accelerated as the workload—and, thus, the cognitive demand—increased [2,3]. Degradation of
attention sometimes results in dire consequences, for instance, at construction sites, in cars, at hospitals,
or on battlefields. Loss of attention has been reported to have severe consequences such as failure to
learn or work [4], medical malpractice [5], and traffic accidents [6]. Thus, it is important to monitor
attention states during significant tasks requiring high levels of safety and efficiency, and if the level of
attention is reduced during such tasks, it is important to take appropriate actions aimed at preventing
critical mistakes and improving performance.

There has been a large body of studies on monitoring attention states through techniques that
measure brain activity. Electroencephalography (EEG), which records the summed electrical potential
from a large ensemble of neurons beneath electrodes, is the most common method used for attention
monitoring because it is more portable and cost-effective than other neuroimaging techniques. The theta
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(4–8 Hz) and alpha (8–11 Hz) bands within EEG signals are known to be associated with the level of
attention during a task [7]. In addition, gamma (>30 Hz) oscillations are regarded as an EEG correlate
of sustained attention and high cognitive performance [8]. Measuring these electrophysiological
features using portable EEG devices has been used to detect attention states during the performance of
tasks. However, conventional headsets or cap-shaped EEG devices are uncomfortable to wear in daily
life. On the other hand, as mobile phones have advanced to provide multimedia services, earphones
are now an essential accessory for smartphone users. Thus, a novel earphone-shaped instrument
measuring EEG signal in the ear canal and around the ears has emerged as a strong candidate among
attention-measuring devices.

Since the in-ear EEG concept was first introduced [9], a few groups have reported in-ear EEG device
prototypes and their signal-detecting properties [10–16]. In-ear EEG signals show alpha attenuation,
defined as the suppression of alpha activity (at approximately 10 Hz) when subjects open their eyes.
In-ear EEG signals are highly correlated with on-scalp EEG signals recorded from electrodes near the
temporal regions. EEG characteristics, such as auditory steady-state responses (ASSRs) [9,10,12,13,15,16],
event-related potentials (ERPs) [9–12], steady-state visual evoked potentials (SSVEPs) [9,16,17], and
sleep-related EEG signals [18–20] have been detected and identified from in-ear EEG signals.

There has been a small body of work using in-ear EEG signals to classify brain states using
brain–computer interface (BCI) techniques. Most previous studies using in-ear signals and BCI
paradigms are synchronous or reactive systems that use external cues, such as ERPs [11,21,22],
ASSRs [23], and SSVEPs [17]. The P300 ERP component, which is elicited by target stimuli, is detected
with approximately 85% accuracy [11]. When two different sound stimuli are delivered to the right
and left ears, the attended stream can be identified from P300 components with approximately 77%
accuracy [12]. SSVEPs, which are elicited by visual stimulation at specific frequencies, can be classified
with 79.9% accuracy [17]. Since these paradigms are dependent on external visual or auditory stimuli,
they cannot be used to detect mental states that require constant monitoring independent of external
stimuli. To our knowledge, only a few studies have reported the use of an asynchronous or active
BCI that detects mental states in individuals. One study has reported that drowsiness during driving
simulations can be recognized from in-ear EEG signals with approximately 85% accuracy over 10 s
epochs and 98.5% over 230 s epochs [24]. A similar study to measure day time drowsiness reported
that in-ear EEG signals during 30 s epochs of drowsiness were discriminated from 30 s epochs of
wakefulness with 80% accuracy [25]. Another study reported that mental workload and motor action
during a visuomotor tracking task were detected using a two-channel in-ear EEG system with 68.55%
accuracy in 5 s windows and 78.51% accuracy when a moving average filter was applied over five such
windows [26]. One study has reported that in-ear EEG signals could be distinguished when subjects
viewed emotional pictures for 30 s [27]. In binary classification tasks, positive valence and negative
valence could be discriminated with 71.07% accuracy and high and low arousal could be discriminated
with 72.89% accuracy. A four-way classification task using all combinations of high or low valence and
high or low arousal group was performed with 54.89% accuracy. These studies successfully detected
mental states such as drowsiness, mental workload, and emotional states, but long time windows
were required for successful classification. A reduced time window and increased classification
performance are necessary for asynchronous BCI systems that monitor mental states for the prevention
of attention lapses.

The aim of this study is to examine the possibility of discrimination between the attentive state
and the resting state using in-ear EEG signals for the potential development of portable, convenient
earphone-shaped EEG instruments for attention monitoring. In this study, we recorded both in-ear
and on-scalp EEG signals in the attentive state from 6 subjects during the performance of the visual
vigilance task. We have designed and developed in-ear EEG electrodes customized by impressions of
both the left and right ear canals of the subjects.

In this study, more importantly, we have used an echo state network (ESN), a branch of reservoir
computing which is one of the powerful algorithms in machine learning techniques, to discriminate
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attention states using in-ear EEG. The recurrent property of reservoirs (internal units) in an ESN has
been used to provide powerful prediction of nonlinear time series data [28–31]. Since EEG signals are
highly nonlinear and nonstationary, an ESN has been used for EEG prediction, such as monitoring
epileptic seizures [32], distinguishing ERP signals elicited by emotional stimuli [33,34], and decoding
the intention to move in different directions [35]. These studies have demonstrated that an ESN is
more effective than other EEG feature extraction methods. Additionally, ESNs have distinguished
human mental states with higher performance than other machine learning classifiers. Therefore,
we hypothesize that ESNs are potentially useful for detecting attention states using in-ear EEG signals.

2. Materials and Methods

2.1. Data Acquisition

In this study, we used moldable plastic beads (InstaMorph, Happy Wire Dog, LLC. USA) and
conductive silver paste (ELCOAT P-100, CANS, Japan) to develop in-ear EEG electrodes to place in
the ear canal. Ear canal impressions were taken with InstaMorph and connected to electric leads.
Then, conductive silver paste was painted on the impressions for electrical conductivity (Figure 1).
An in-ear EEG electrodes was placed in each ear. Flat silver disks were produced to place the on-scalp
electrodes on the forehead (right and left). Ag/AgCl foam electrodes with conductive adhesive
hydrogel (Kendall®, Coviden, USA) were used for the ground and reference channels. Lead wires
attached to each electrode were connected to an OpenBCI Cyton Board (32 bits, 250 Hz sampling
rate). The validity of biosignal acquisition using the developed electrodes was tested and identified by
measuring electrocardiography (EKG) signals. The right mastoid process (behind the ear) was selected
as the reference site, and the left mastoid process was selected as the ground site. In addition, on-scalp
EEG was performed on the forehead (Fp1 and Fp2) under the same conditions as the in-ear EEG to
compare the two types of signals.

–

 
Figure 1. The design of the in-ear electroencephalography (EEG) electrodes. (a) Impressions were
taken of the ear canal using moldable plastic beads, and conductive silver paste was painted on the
impressions for electrical conductivity. (b) The participants wore in-ear EEG electrodes on both ears
and an on-scalp electrode on either side of the forehead. The mastoid processes were used for the
reference and ground channels. Each electrode was connected to an OpenBCI Cyton Board, and then
EEG signals were transmitted to a computer (PC) via Bluetooth technology.
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2.2. Participants

Six right-handed participants between 25 and 30 years old were recruited (mean age = 28.17 ±
2.32 years, 4 males) for this study. All participants had normal or corrected vision and no history of
neuropsychiatric disease or ear-related problems. We took impressions of participants’ ear canals three
days before the experiment. The participants were asked to sleep a sufficient amount and abstain from
smoking, alcohol, and caffeine for at least 24 h before the experiment.

Signed consent forms for the experiment were obtained from all participants after the nature of the
experiment and the associated precautions had been explained to them. Participants received financial
compensation for participating in this experiment, and additional rewards were given based on their
task performance. Participants could quit the experiment whenever they felt too tired to maintain their
attention. The study and all experimental processes were approved by the institutional review board
(IRB) of KAIST.

2.3. Experimental Stimuli and Protocol

To verify the in-ear EEG acquisition, we obtained eyes-closed and eyes-open resting-state signals
to identify alpha attenuation after cleaning the ear canals with ethanol (the results are shown in
Appendix A). Then, attention states were elicited by a visual vigilance task, which was modified from
a psychomotor vigilance task (PVT) [36] and the Eriksen flanker task [37]. PVTs are widely used for
identifying sustained attention and behavioral alertness by measuring a subject’s reaction time to a
specific visual stimulus [38,39]. In general, subjects are asked to press a button as fast as possible when
a red dot appears on a monitor. Response-stimulus intervals vary randomly from 2 to 10 s. The Eriksen
flanker task is also a widely used task to measure selective attention and executive functions [40,41].
Subjects are asked to press a button corresponding to the target stimulus presented at the center of the
screen as quickly as possible, regardless of the flanker stimuli surrounding the target.

Since those two tasks are often used for measuring a subject’s attention state, a visual vigilance task
combining the two could effectively induce users to maintain their attention with minimal movement
during the EEG recording (Figure 2). The participants in this study were asked to focus on a fixation
cross centered on a monitor and to press the right or left arrow key when stimuli were presented.
The stimuli consisted of five successive arrows pointing in two opposite directions (left or right);
one yellow target arrow was positioned at the center, and four white flankers were positioned to
the left and right of the target arrow. Two types of flanker arrays were presented: Congruent and
incongruent. The congruent flankers pointed in the same direction as the target, and the incongruent
flankers pointed the opposite direction from the target. The two flanker types were equal in number
and randomly permuted. The time interval from the presentation of the fixation cross to the stimulus
in each trial was 6 ± α seconds, where α is a random number less than 2. EEG data collected during
this period, when participants were paying attention while expecting to see the stimuli, were regarded
as the signal of an attentive state. Moreover, the EEG signal taken during this time would not be
corrupted by motion artifacts from keystrokes. If the participants responded before a certain threshold
time, they received additional rewards. The threshold time was initially set to 0.4 s in the practice
session but was adjusted for each run depending on each participant’s performance to encourage them.
Each run consisted of 8 self-paced trials. After one run, the participants rested for 48 s while trying not
to move. The resting period of 48 s was set to obtain a dataset of a similar total length to that of the
attention state.

There were a total of ten runs, but the participants could quit the experiment if they felt too
exhausted to maintain attention. Therefore, the total numbers of runs and trials were different for
each subject. On average, each subject performed 8.17 ± 1.72 runs (min = 6 runs, max = 10 runs).
The average duration of vigilance trials for each subject was 387.10 ± 83.27 s, and the average resting
time was 416.2 ± 89.80 s.
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Figure 2. The task for eliciting the attention and resting states. The upper left inset shows the
paradigms of the visual vigilance tasks; the target cue centered on the monitor (yellow arrow) was
randomly presented with congruent or incongruent flankers. Participants were to press the arrow
key corresponding to the target cue as quickly as possible, regardless of the flankers. After 8 trials of
vigilance tasks, the participants rested for 48 s while trying not to move.

2.4. EEG Preprocessing and Feature Extraction

The EEG signals were segmented into windows of 0.5 s (125 points) each and bandpass filtered at
1–50 Hz with a 6th-order Butterworth filter to reduce artifacts. Then, spectral and temporal features
were extracted from the filtered signals in epochs of 0.5 s. First, the short-time Fourier transform (STFT)
was used to estimate the power spectral densities (PSDs) using an interval of 0.5 s. The square root
of the spectral power was subdivided into five EEG frequency bands (delta: 1–4 Hz, theta: 4–8 Hz,
alpha: 8–13 Hz, beta: 13–30 Hz, and gamma: 30–50 Hz). Second, five temporal features for EEG signals
corresponding to five EEG frequency bands were also extracted. The EEG signals were filtered with five
bandpass filters according to EEG frequency bands (i.e., delta, 1–4 Hz; theta, 4–8 Hz; alpha, 8–13 Hz; beta,
13–30 Hz; and gamma, 30–50 Hz). The mean amplitude, standard deviation, peak-to-peak amplitude,
skewness, and kurtosis were calculated for 0.5 s windows for each frequency band. In total, 10 spectral
features (5 frequency bands × 2 channels (right and left)) and 50 temporal features (5 measurements ×
5 frequency bands × 2 channels) were collected (Table 1).

All input features were standardized using the following equation:

Fch =
Fch −mean(Fch)

std(Fch)
(1)

where Fch denotes the original value of an input feature from each channel. Standardized features
Fch were also rescaled to a range of −1 to 1, and used as inputs for the classification of resting versus
attentive states. The preprocessing and feature extraction were performed with MATLAB Signal
Processing Toolbox.
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Table 1. Description of extracted features.

EEG
Bands

Freq.
Range

Spectral
Feature

Temporal Features

Delta 1–4 Hz Delta power
Mean

amplitude
Standard
Deviation

Peak to
Peak

Skewness Kurtosis

Theta 4–8 Hz Theta power
Mean

amplitude
Standard
Deviation

Peak to
Peak

Skewness Kurtosis

Alpha 8–13 Hz Alpha power
Mean

amplitude
Standard
Deviation

Peak to
Peak

Skewness Kurtosis

Beta 13–30 Hz Beta power
Mean

amplitude
Standard
Deviation

Peak to
Peak

Skewness Kurtosis

Gamma 30–50 Hz
Gamma
power

Mean
amplitude

Standard
Deviation

Peak to
Peak

Skewness Kurtosis

Total number of features
(in single channel)

5 25

2.5. Echo State Network (ESN)

The discrimination of the attentive and resting states using in-ear and on-scalp EEGs was
performed using an ESN. An ESN, which is a type of recurrent neural network (RNN) with a sparsely
connected internal unit layer (hidden layer), is recognized as a powerful tool to learn chaotic systems
using the recurrent property of biological neural networks [42]. In this study, as presented in Figure 3,
the ESN consisted of an input layer, an internal unit layer (also called a reservoir), and a readout layer
(also called an output layer). The weights of the neurons in the internal unit layer were initially set to
have sparse and random connectivity. The weights of all connections to the readout (output) layer
could be tuned to generate specific temporal patterns.

 

𝑥(𝑡) = (1 − 𝛼) ∙ 𝑥(𝑡 − 1) + 𝛼 ∙ 𝑓(𝑊𝑖𝑛 ∙ 𝑢(𝑡) +𝑊 ∙ 𝑥(𝑡 − 1))
−

α

𝑦(𝑡) = 𝑊𝑜𝑢𝑡(𝑢(𝑡), 𝑥(𝑡)),

the “reservoir”, ESN

∙
∙ ∙ −

∙

Figure 3. The structure of the echo state network (ESN). The ESN consisted of an input layer (2 input
units in this study), an internal unit layer and a readout layer (1 readout). The units of the input layer
were connected to the internal units with fixed weights. These internal units were recursively connected
to each other with fixed weights. The units of the readout layer were linearly connected from the units
of the input and the internal layers with adjustable weights (the figure was modified from [35]).

RNNs, including ESNs, have the fading or short-term memory due to the recurrent properties of
the internal unit layer. The state of the internal unit, x(t), is described by the following equation:

x(t) = (1− α)·x(t− 1) + α· f
(

Win·u(t) + W·x(t− 1)
)

, (2)
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where u(t) is an input vector at time step t with Win, the weight matrices between the input and internal
units. Vector x(t − 1) was the previous state of the internal unit with W, the weight matrices within
internal units. The most distinctive characteristics of ESNs compared to conventional RNNs is that W

is randomly generated and fixed during learning. Function f is the activation function, and α is the
leaking rate of the reservoir. The hyperbolic tangent (tanh) function was used as the activation function
in this study. The units of the readout layer y(t) were updated according to the following equation:

y(t) = Wout(u(t), x(t)), (3)

where (u(t),x(t)) is the concatenation of input and internal units. The feedback from the previous output
y(t) can be delivered to the next internal state x(t + 1) and output y(t + 1) but it was not used for this
study (for details, see [35]). The echo state, the current state of the internal unit layer, was continuously
updated by input streams. The most recent input had the most influence on the echo state, and the
influence of any given input decayed over time [43]. Due to this recurrent property of the “reservoir”,
ESNs are particularly useful for the prediction of nonlinear, complex time series.

Another characteristic feature of ESNs is that they use simpler learning methods than conventional
RNNs. The input layer of an ESN is linearly connected to the internal units (Win·u(t)) and the readout
layer (Wout·u(t)). The internal units have recursive connections (W·x(t−1)) and are linearly connected
to the readout layers (Wout·x(t)). Any linear learning rules can be applied to the ESN because the
weights of the input and internal units (Win and W) are randomly selected at the initialization of the
network and remain unchanged. Only the weights of the readouts (Wout) were adjusted during linear
supervised learning. Despite using a simpler learning rule, ESNs can solve complex problems. Since
an ESN has a sufficient number of internal units, the information from the inputs can be expanded to
a higher dimension to produce the best solution [44–46]. Thus, ESNs have been used in EEG signal
analysis [32–35], brain modeling [47–49], and various engineering fields [28–31].

The selection of parameters is highly significant in constructing an ESN. Many studies on ESNs
reported that the spectral radius of the internal weight matrix (λ) [50], the leaking rate (α) [51,52],
the scaling of input weights (σ) [53], the size of the internal unit layer (N) [44], and the connectivity
(c) [45] prominently affected the performance of the those networks. The optimal values of these
parameters could vary according to the data.

In this study, the leaking rate and spectral radius were optimized using the grid search method,
which created a “grid” of all possible parameters specified by the settings, and calculated the sum of
squared errors (SSE) at each one to find the best possible fit. The leaking rate α controlled the speed
of the reservoir update dynamics. A smaller α, which induced the slow dynamics of the reservoir,
increased the duration of short-term memory in the ESN [51]. The spectral radius λ is the most
important feature determining the characteristics of a reservoir. The spectral radius was rescaled to
have one as the largest eigenvalue of the internal weight matrix. In theory, a λ smaller than one (|λmax|

< 1) was important in the ESN for maintaining the echo state property, i.e., the fading influence of the
previous input over time in the reservoir [50]. In practice, however, the spectral radius could be slightly
greater than 1, but close to 1 [51,54]. Therefore, in this study, αwas optimized in the range of (0, 1] and λ
was optimized in the range of (0, 2]. The step length of the grid search for each parameter was set to 0.1.
In total, 200 (10 × 20) ESNs were generated and evaluated for parameter optimization. The ESN with
each parameter set was evaluated 10 times. The performances obtained from 10 iterations of grid search
were averaged, and the parameters that had the best average performance on average were selected.
After the optimization of α and λwith 100 internal units, the size of the internal unit layer N and the
connectivity c (sparsity of internal units) were also examined. Although a large reservoir resulted in
good performance via regularization to prevent overfitting, it incurred considerable computational
costs. Therefore, it was important to find the optimal N. The connectivity c was strongly associated
with N because it determined the sparsity of the interconnectivity of internal units. Although ESNs
were initially designed for sparsely connected reservoirs (1% interconnectivity) to have echo state
properties [42], they were reported to work well with fully connected reservoirs [32,52,55]. In this
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study, the performance of 110 ESNs was evaluated when the number of internal units was 0.1, 0.2,
0.3, . . . , 1.0, and the connectivity was 0.01, 0.1, 0.2, 0.3, . . . , 1.0. In addition, 20 ESNs with sparse
connectivity (c = 0.01, 0.1) were generated for a large reservoir (N = 100, 200, . . . , 1000).

For the supervised learning of the output weight matrix, Tikhonov regularization (ridge regression)
methods were used instead of linear regression, which often leads to numerical instabilities [56].
The regularization parameter was set to a very small value (β = 10−8) so that the properties would be
similar to those of linear regression. Finally, the classification accuracy was obtained with the test set
from the optimized and trained ESN. In this study, only one readout was used for the ESN output
because there were two classes (resting and attentive states) to distinguish. The attentive states were
assigned a value of 1, and the resting states were assigned a value of −1. The predicted states were
determined from the values of the readout: the state was classified as an attentive state if the readout
returned a positive value or a resting state if the readout returned a negative value.

2.6. Data Separation and Evaluation

In order to train and evaluate the attention state classifiers, three cross-validation schemes were
used. The first cross-validation was within-subject validation, which was designed to evaluate
individual classifiers for each subject. The EEG signals were divided into training and test sets based
on the total number of runs. When the dataset consisted of K runs, K−1 runs were used to train the
classifier, and the remaining run was used to evaluate the trained classifier. The same process was
repeated K times by changing the training and test sets as shown Figure 4a. Therefore, classification
performances was obtained for each individual subject. Next, cross-subject validation was performed
(Figure 4b). The EEG features from one subject were used for testing, and those from the remaining
5 subjects were used for training classifier. This process was repeated for each of 6 subjects. Finally,
10-fold cross-validation was performed to evaluate generic classifiers for all subjects. As presented in
Figure 4c, all the data were combined and randomly split into training and test set. For each validation,
90% of data were used for training the classifier, and 10% of data were used for evaluating the trained
classifier. This process was repeated 10 times, with a different training and test set each time. In all three
cross-validation schemes, attention epochs whose response times were too short (false start < 100 ms)
or long (lapse >mean(RT) + 3 × std(RT)) were not regarded as “attended trials” and were excluded.

“ ”

 

Figure 4. Data separation. (a) Within-subject validation was used to train and evaluate the individual
classifiers on the attentive and resting states. One run was used for the test set, and the remaining runs
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were used for the training set. This process was repeated K times, and the test set was switched every
time. The accuracy was averaged over K repetitions. (b) Cross-subject testing was performed. The data
from one subject were used as a training set, and the data from the other 5 subjects were used as a test
set. This process was repeated for each of subjects. (c) A generic classifier was evaluated using 10-fold
cross-validation. The complete dataset from all subjects was collected and randomly split into a test set
(10%) and a training set (90%). This process was repeated 10 times, with a different training set and a
different test set each time. The accuracy was averaged over 10 repetitions.

3. Results

3.1. Classification Results

The ESN had a single readout that indicated whether the subject was in an attentive state or a
resting state. Because the attentive state was labeled 1 and the resting state was labeled −1, positive
readout values were classified as an attentive state, and negative values were classified as a resting
state. The classification performance was evaluated using three cross-validation schemes: Within-subject
validation, cross-subject validation, and 10-fold cross-validation. Parameter optimization was performed
by averaging accuracies obtained from 10 iterations of the grid search. First, individually trained ESN for
each subject was evaluated using the within-subject validation. The within-subject validation provided a
K number of performances if the total number of runs was K for each individual. The results of all runs
were averaged for each subject. The maximum training accuracy resulting from the grid search was
92.62% on average (Table 2) when in-ear EEG signals were used. The test accuracy using the test set was
81.16%. The results were not much different from those of the on-scalp EEG (82.44%).

Table 2. The maximum training accuracy and test accuracy for each subject in the within-subject
validation.

In-Ear EEG On-Scalp EEG

Subject # Training Accuracy (%) Test Accuracy (%) Training Accuracy (%) Test Accuracy (%)

1 (M) 92.77 ± 2.14 81.42 ± 4.18 98.14 ± 0.54 91.23 ± 2.13
2 (M) 91.59 ± 1.49 75.89 ± 2.91 88.25 ± 2.26 78.52 ± 2.84
3 (M) 94.11 ± 1.34 83.28 ± 2.88 92.06 ± 1.64 80.64 ± 2.79
4 (M) 93.97 ± 1.76 79.34 ± 3.39 96.25 ± 0.67 85.73 ± 3.82
5 (F) 91.25 ± 3.47 79.46 ± 5.01 92.24 ± 1.07 83.05 ± 4.47
6 (F) 92.00 ± 2.09 87.59 ± 3.25 90.74 ± 1.45 75.46 ± 3.40

Avg. 92.62 ± 0.45 81.16 ± 2.20 92.95 ± 2.19 82.44 ± 2.24

Next, the cross-subject validation and the 10-fold cross-validation were used for evaluating a
generic classifier. Table 3 and Figure 5 demonstrated the classification results obtained from two
validations. In the 10-fold cross-validation, in which all data were combined and split, the classification
accuracy was 74.15% on average when in-ear EEG signals were used (73.73% on average when on-scalp
EEG signals were used). These results were slightly lower than those obtained from the within-subject
validation, which individually trained and tested for each subject. In addition, cross-subject validation,
in which data from one subject were used for test set and data from the other 5 subjects were used
for training set, resulted in much lower classification performance (64% for in-ear EEG and 65.7% for
on-scalp EEG) than the other two validation schemes.
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Table 3. The maximum training accuracy and test accuracy in the cross-subject validation and
10-fold cross-validation.

In-Ear EEG On-Scalp EEG

Validation
Method

Subject #
Training

Accuracy (%)
Test

Accuracy (%)
Training

Accuracy (%)
Test Accuracy

(%)

Cross-Subject
Validation

1 (M) 73.46 62.65 77.17 79.54
2 (M) 63.55 58.36 74.56 60.12
3 (M) 66.00 54.59 61.46 55.31
4 (M) 81.16 65.39 83.33 76.35
5 (F) 83.55 69.52 72.88 58.63
6 (F) 85.08 73.47 78.73 64.24

Avg. 75.46 ± 3.44 64.00 ± 2.60 74.69 ± 2.77 65.70 ± 3.71

10-fold
Cross-Validation

Avg. 80.89 ± 1.93 74.15 ± 2.20 78.42 ± 2.19 73.73 ± 2.24

 

Figure 5. The test accuracy for three cross-validation schemes: within-subject validation, cross-subject
validation, and 10-fold cross-validation (CV).

3.2. Smoothing

The ESN identified the attentive or resting state in epochs of 0.5 s. The ESN outputs can greatly
fluctuate due to the influence of external artifacts or internal states. As seen from the black dotted
lines in Figure 6a, the readouts fluctuated with a large amplitude, which leads to rapid fluctuation of
predictions (blue lines in Figure 6a).

In order to overcome this problem, the readout values were smoothed using a moving average
filter. The current output was the average of itself and n previous outputs when the window size was
n as shown below:

y(t) =
∑t

t−n+1
y(t), (4)

where y(t) was the current output and n was the window size. If there were fewer previous outputs
than the window size, the outputs were averaged with every available previous output. The window
size was set between 1 and 12 windows (0.5 to 6 s). In Figure 6b, the red lines were outputs smoothed
with 6 s windows. The smoothed outputs provided higher classification accuracy than that of the
original outputs by reducing fluctuations of readouts (Figure 6c). The average accuracy for the in-ear
EEG classification was increased by 2.45% for the within-subject validation, 1.26% for the 10-fold
cross validation, and 1.86% for the cross-subject validation (1.03% for the within-subject validation,
0.73% for the 10-fold cross validation, and −0.26% for the cross-subject validation in the on-scalp EEG
classification with a 6 s smoothing window). This result indicates that smoothing the readout values
successfully reduces their fluctuation and improves the classification performance (Table 4).
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Figure 6. The smoothing of the readout in the ESN. (a) The classification results obtained from the
original values of the readout fluctuated (black dotted lines: original values of readouts, blue lines:
prediction results using original readouts). (b) Averaging with previous 6 s outputs corrected the
fluctuation (red lines: smoothed readouts using 6 s window). (c) The smoothing resulted in improved
classification results (blue lines: prediction results using smoothed readouts).

Table 4. The performances according to smoothing window.

Within-Subject Cross-Subject 10-fold CV

Smoothing
Window (second)

In-Ear
EEG (%)

On-Scalp
EEG (%)

In-Ear
EEG (%)

On-Scalp
EEG (%)

In-Ear
EEG (%)

On-Scalp
EEG (%)

Non (0.5 s) 81.16 82.44 64.00 65.70 74.15 73.73
2 (1 s) 81.32 82.73 64.64 65.78 74.75 73.63
4 (2 s) 82.33 83.56 65.86 65.73 75.07 73.89
6 (3 s) 82.90 83.74 65.84 65.64 75.32 74.01
8 (4 s) 83.24 83.81 66.09 65.36 75.36 74.22
10 (5 s) 83.24 83.70 65.97 65.73 75.34 74.54
12 (6 s) 83.62 83.47 65.85 65.44 75.41 74.46

3.3. Comparison with Conventional Machine Learning Methods

In order to evaluate the discrimination performance of the ESN, various machine learning
methods commonly used in EEG classification were also investigated to compare for the in-ear and
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on-scalp EEG signals. The following 7 machine learning methods were used: (1) Regularized linear
discriminant analysis (R-LDA), (2) decision tree (DT), (3) random forest (RF), (4) naïve Bayesian
algorithm (NB), (5) k-nearest neighbor algorithm (k-NN), (6) support vector machine (SVM) with
linear kernels, and (7) SVM with Gaussian kernels. A detailed explanation of each machine learning
methods can be found in Appendix B. The same features used in ESN classification were used for these
conventional machine learning methods. The hyperparameters for each classifier were optimized
during training. All processes were performed in MATLAB using Statistics and Machine Learning
Toolbox. The accuracies obtained from each validation for each conventional machine learning method
were compared with those obtained from ESN using Student’s t-test and the multiple comparison
problem was corrected using Bonferroni correction.

When within-subject validation was conducted (Figure 4a), we found that the ESN resulted
in 81.16% for the in-ear EEG (82.44% for on-scalp EEG) classification accuracy without smoothing
and 83.62% (83.47% for on-scalp EEG) accuracy after smoothing with a 6 s window. These results
significantly outperformed those of the 11 machine learning methods, as shown in Figure 7.

 
Figure 7. Comparison of classification accuracy between the echo state network (ESN) and conventional
machine learning methods and smoothing obtained from the within-subject validation. The ESN
classification highly outperformed other conventional machine learning methods in both (a) in-ear and
(b) on-scalp EEGs. The results were sorted in descending order based on the accuracy of nonsmoothed
prediction. The dotted line denoted the chancel level (50%). ESN: echo state network, SVM-Gaussian:
support vector machine (SVM) with Gaussian kernels, R-LDA: regularized linear discriminant analysis
(LDA), SVM-Linear: SVM with linear kernels, RF: random forest, k-NN: k-nearest neighbor algorithm, DT:
decision tree, and NB: naïve Bayesian algorithm (*** denotes p < 0.001 when comparing original predicted
results without smoothing (0.5 s window) of the ESN and other methods, +++ denotes p < 0.001 when
comparing smoothed results using 6 s window of the ESN and other methods, Bonferroni corrected).
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The classification results obtained from 10-fold cross validation and cross-subject validation were
also higher with an ESN compared to other machine learning methods (Figure 8). The smoothing of
classification results with 6 s window led to greater increases in performance in conventional machine
learning methods compared to ESN. In the 10-fold cross-validation, the classification accuracies using
smoothing classification results obtained from RF and SVM with Gaussian kernels were not significantly
different from those that were obtained using the ESN. In the cross-subject validation, SVM with
linear kernels, regularized LDA, and SVM with Gaussian kernels provided performances that were
statistically not different from those of the ESN. However, the ESN still outperformed these methods
for all validations.

 

or Alzheimer’s disease 

Figure 8. Comparison of classification accuracy between the echo state network (ESN) and conventional
machine learning methods obtained from the (a) 10-fold cross-validation (CV) and (b) cross-subject
validation using in-ear EEG signals. The results were sorted in descending order based on the accuracy
of nonsmoothed prediction. The dotted denotes the chance level (50%). (*** p < 0.001, ** p < 0.01,
* p < 0.05 for comparisons of original predicted results without smoothing (0.5 s window), +++ p < 0.001,
+++ p < 0.01, + p < 0.05 for comparisons of smoothed results using 6 s window, Bonferroni corrected).

4. Discussion

It is sometimes critical to maintain attention when carrying out tasks requiring high levels of safety
and efficiency in daily life [7,8]. During these tasks, attention monitoring may be helpful for preventing
mistakes and improving performance by providing proper solutions, such as neurofeedback or brain
stimulation. In this study, we have demonstrated that the ESN classification of in-ear EEG signals is a
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potentially powerful method to discriminate the attention state from the resting state compared with
other conventional machine learning techniques and even with on-scalp EEGs. In addition, we have
shown that parameter optimization procedure is important for producing better performance and have
suggested the range of optimal parameters in ESN for in-ear EEGs for the highest results.

Based on these results, we suggest that this approach can be applied to the prediction of sleep
deprivation and of highly stressful states, as vigilance degradation is associated with lack of sleep [36]
and with high levels of anxiety and stress [3,37]. Furthermore, attention monitoring using in-ear EEG
and ESNs could potentially aid in the diagnosis of attention-related diseases such as attention deficit
hyperactivity disorder (ADHD) [57,58] or Alzheimer’s disease [59,60].

Due to the inconvenience of conventional cap-type or headset-type EEG devices, even though
extensive research has been performed, BCI techniques for attention state monitoring have not been
widely used in daily life. We suggest that earphone-shaped EEG devices using in-ear EEG signals
would be a strong candidate for potential BCI devices in future, which can monitor human mental states
including attention states even when the users are listening to music or watching the movies. Since
the first research on the “in-the-ear recording concept” was published in 2012 [9], the BCI application
of in-ear EEG signals has been investigated using the external stimuli such as visual or auditory
cues [11,17,21–23] or independently of external stimuli [24,25]. Compared with the performance of
the previous studies on the BCI application of in-ear EEG signals to mental state monitoring, our
performance using the ESN technique is higher than theirs: Previous studies successfully have detected
drowsiness [24,25], mental workload during visuomotor tracking task [26], and emotional states [27]
but have required long time window (more than 10 s) to achieve high classification accuracy (Table 5).
In this study, we suggest that the attention monitoring system using in-ear EEG and the ESN is much
faster to classify mental states than previous studies, within every 0.5 s with high accuracy of 81.16%
when using one run as the test set and remaining runs as the training set within each subject. We have
demonstrated that the classification accuracy increased to 83.62% after smoothing the classification
results with a 6-s window, which is much higher than those of conventional machine learning methods
used for EEG classification compared in this study (Figure 7). The classification accuracy was lowered
to 74.15% in the 10-fold cross validation, which was performed by combining all features from all
subjects and splitting into training and test set, and 64% in the cross-subject validation, which was
performed by using data from one subject as test set and data from remaining 5 subjects as training set.
However, these results were still outperformed conventional machine learning methods (Figure 8).

The decreased accuracy in the cross-subject validation compared to those in the within-subject
model might be resulted from intersubject variability of EEG signals. Because the parameters of ESN
greatly affect classification performance, it is important to apply parameter optimization. The optimized
parameters obtained from the grid search were varied for each validation. Therefore, in the cross-subject
validation, the ESN could not find optimal parameters and thus could not learn distinguishing features
for the classification due to the difference of EEG properties for each individual. The spectral radius λ
and the leaking rate α were optimized using the grid-search. The leaking rate, which determines how
fast the dynamics of the reservoir are updated, was optimized in the range of (0, 1]. The spectral radius,
which determines characteristics of reservoir (short-term or long-term), was optimized in the range of
(0, 2]. In theoretical, a λ smaller than one was suggested for the echo state property but a λ larger than
one (but close to 1) can be employed in practice [51,54]. We found that a λ larger than one was selected
in many cases. Determining the proper size of the reservoir is also important in the performance of
ESN. When internal units were sparsely connected to each other, insufficient number of internal units
could not extract nonlinear features. Too many internal units resulted in decreased accuracy as well as
high computational cost. Although the denser connectivity required higher computational cost, it did
not ensure higher accuracy. Therefore, it is important to find the optimal reservoir size and sparsity.
The additional discussions about parameter optimization were attached in Appendix C.
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Table 5. Comparison with previous studies on asynchronous brain–computer interface (BCI) using
in-ear EEG signals (CV denotes cross-validation).

Authors
Mental States

(Classes)
Window

(Seconds)
Methods Validation Accuracy

Hong et al. (2018)
[24]

Drowsiness
(5 levels)

10 RF 5-fold CV
0.780

(kappa value)

Nakamura et al.
(2018) [25]

Drowsiness
(Wake vs. N1) 30 SVM

Leave-one trial-out
(all subjects)

80%

10-fold CV
(all subjects)

82.9%

Kuatsjah et al.
(2019) [26]

Mental workload
(Visuomotor task

vs. Rest)

5 The best among various
ML approaches

Across-trial for
each subject

68% (approx.)

25 79.30%

5 NN
5-fold CV for
each subject

71.50%

Athavipach et al.
(2019) [27]

Emotion
(Valence)

30 SVM
10-fold CV for

each subject

73.01%

Emotion
(Arousal)

75.70%

Emotion
(Valence+Arousal)

59.23%

This Study
Attention

(Vigilance task
vs. Rest)

0.5 ESN

Across-trial for
each subject

81.16%

10-fold CV
(all subjects)

74.15%

Cross-subject 64.00%

The bold types were used for discriminating our results from others’.

Real time prediction of test sets in in-ear EEGs for attention state monitoring may be possible,
once the training process is accomplished. However, it is also necessary to train in real time to reduce
the computational cost. We should address that the supervised learning method in this study has
incurred a high computational cost, even if the size of the dataset is not too large. To monitor mental
state continuously in real time, the network needs to be adaptive to new data constantly. Therefore,
we will modify and improve the training method suitable for real-time monitoring in future studies.

In this study, we have designed and developed the in-ear EEG electrodes by customizing each
subject’s ear canals. It is difficult to develop a generic earpiece that suits all users because the shape
and length of both left and right ear canals in each user are different [61]. Therefore, we suggest that
generic and more comfortable in-ear electrodes, which can be made flexible with carbon nanotube
polydimethylsiloxane (CNT/PDMS) [10] or memory foam substrate [13], are required for the production
of earphone-shaped EEG devices suitable for individuals to achieve better measurement performance.

In this study, we have identified only binary mental states: Attention and resting states.
The attention states will be further divided into various types of attention states and levels beyond
binary classification for our future investigation. In addition, we suggest that this methodology can be
potentially expanded to apply to monitoring of other mental states, such as stressfulness, drowsiness
and sleepiness, or emotion (positive/negative valence). We also suggest that the ESN and other machine
learning techniques are likely useful for analysis of the in-ear EEG signals for mental state monitoring
systems. Furthermore, we speculate that earphone-shaped mental state monitoring system using
in-ear EEG signals can be a strong candidate device for massive commercial services of BCI.

5. Conclusions

This study suggests that the attention state can be detected with high accuracy using the ESN
and in-ear EEG signals. The attention states can be discriminated from the resting state for every
0.5 s with 81.16% accuracy when ESN was trained and tested using in-ear EEG signals within each
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subject. We suggest that this method can be likely applied to asynchronous or active BCIs, which
can detect mental states without external stimuli. Unlike synchronous or passive BCIs which use
external stimuli, asynchronous or active BCIs are potentially useful in daily life. The smoothing of
ESN readouts will be useful for stable BCI systems because large fluctuations of classification results
can cause negative effects in practice such as excessive feedback to users. The application of this
technology using earphone-shaped EEG devices and the ESN may pave the way for comfortable
mental monitoring devices in the near future.
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Appendix A

To verify the in-ear and on-scalp EEG acquisition, the alpha attenuation tests were performed prior
to the visual vigilance task. It is known that the alpha wave shows dominant peak approximately 10 Hz
when eyes are closed but decreases when eyes are opened. This phenomenon is widely used to assess
EEG signals. The STFT was used to estimate the PSD using a 1-s (250 data points) window with a 50%
overlap. The PSDs of each state were averaged and compared for each channel. The alpha attenuation
effect was observed both from in-ear and on-scalp EEG signals but the effect was diminished for in-ear
EEG signals (Figure A1).

—
—

Figure A1. Alpha attenuation effect. Red lines denote averaged power spectral densities (PSDs) during
eyes-closed resting state and blue lines are averaged PSDs during eyes-open resting state from (a) left
in-ear EEG channel, (b) right in-ear EEG channel, (c) left on-scalp EEG channel, and (d) right on-scalp
EEG channel.
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Appendix B

The classification accuracy of ESN was compared with conventional machine learning methods
in Section 3.3. Total 60 features, which is the same feature set used in ESNs (Table 1), were used as
features for 7 conventional machine learning methods: (1) R-LDA, (2) DT, (3) RF, (4) NB, (5) k-NN,
(6) SVM with linear kernels, and (7) SVM with Gaussian kernels.

Discriminant analysis (DA) is the most widely used classification method, which finds optimal
boundaries to separate two or more classes using multivariate observations [62,63]. LDA assumes that
observations in all classes have normal distributions with identical covariance. When the covariance
matrix is regularized from the observations, it is called (1) regularized LDA (R-LDA). (2) DT learning
constructs a predictive model (decision tree) for rule-based classification by splitting multiple binary
nodes with input features and pruning trees with labeled outputs [63]. (3) RF constructs multiple DTs
in training and classifies the class using multiple outputs from trained trees [64–66]. Using multiple
DTs reduces overfitting and noise in every tree. (4) NB is a simple probabilistic classifier based on Bayes’
theorem, which infers posterior probability (class) from prior probability, likelihood, and evidence
(current observation, i.e., input) [62]. (5) k-NN classifies input observations based on their closeness
calculated by Euclidean distance [62]. The classification of new observation (test data) is performed
based on the k closest neighbors (training data). The 5-NN was used to avoid overfitting in this study.
SVM is a classifier used to find the optimal hyperplane using the largest margin (support vectors)
between the two classes [62]. The method for computation of hyperplane is called kernel function.
(6) SVM with linear kernel is an originally proposed method for SVM construction, which uses simple
inner (dot) products. In the case of nonlinear classification, (7) Gaussian function (SVM with Gaussian
kernel) can be used instead of inner products.

Appendix C

The influence of each parameter was compared using the training results. The optimized
parameters (leaking rate α, spectral radius λ, reservoir size N, and the sparsity of interconnectivity c)
were varied for each validation. Figure A2a shows the average training accuracy in the 10-fold cross
validation when each of the two parameters (α, λ) was changed. In most cases, the selected λ values
were larger than 1 or close to 1. The selected α values were varied in the rage of 0.3 to 1.

The influences of the reservoir size and connectivity of the internal unit layer were also examined.
An insufficient number of internal units (N < 40) resulted in poor classification accuracy, but the
accuracy increased as the size increased (Figure A2b,d). ESNs with large reservoir sizes (N = 100,
200, . . . , 1000) were also generated with sparse connectivity (c = 0.01, 0.1). Although the optimal
sizes and connectivity were different for each subject, the maximum accuracy was obtained from 200
internal units and 0.01 connectivity. The larger reservoir size had lower classification accuracy in both
in-ear and on-scalp EEG. The accuracy was not influenced by sparsity of internal units if the size was
large enough. The calculation durations in training ESN were also compared. The calculation time
increased linearly as a function of the reservoir size (Figure A2d). We found that the reservoir with
lower density (c = 0.01) was more computationally effective while maintaining the accuracy compared
to the reservoir with higher density (c = 0.1). Larger reservoir size increased the gap of computational
cost between reservoirs of two different degrees of sparsity.

129



Brain Sci. 2020, 10, 321

 

λ α
10, 20, …, 100) and interconnectivity (

0.2, …, 1). 100, 200, …, 1000) with sparse 

–

–
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Figure A2. The influences of the parameters in the echo state network (ESN) in the 10-fold cross-validation.
(a) The average accuracy according to spectral radius λ and leaking rate α. (b) The average accuracy
according to the number of internal units (N = 10, 20, . . . , 100) and interconnectivity (c = 0.1, 0.2,
. . . , 1). (c) Accuracy according to the number of internal units (N = 100, 200, . . . , 1000) with sparse
interconnectivity (c = 0.1, 0.01). (d) The computational cost of the training ESN according to the number
of internal units. The computational cost linearly increased as the size increased. The sparser reservoir (c
= 0.01) had less computational cost compared with the denser reservoir (c = 0.1), which became more
evident as the reservoir size increased. The dotted box was inserted when the reservoir size was 100
because the N increases in steps of 10 between 10 and 100, and in steps of 100 between 100 and 1000.
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Abstract: The online shopping market is developing rapidly, meaning that it is important for
retailers and manufacturers to understand how consumers behave online compared to when in
brick-and-mortar stores. Retailers want consumers to spend time shopping, browsing, and searching
for products in the hope a purchase is made. On the other hand, consumers may want to restrict their
duration of stay on websites due to perceived risk of loss of time or convenience. This phenomenon
underlies the need to reduce the duration of consumer stay (namely, time pressure) on websites.
In this paper, the browsing behavior and attention span of shoppers engaging in online shopping
under time pressure were investigated. The attention and meditation level are measured by an
electroencephalogram (EEG) biosensor cap. The results indicated that when under time pressure
shoppers engaging in online shopping are less attentive. Thus, marketers may need to find strategies
to increase a shopper’s attention. Shoppers unfamiliar with product catalogs on shopping websites
are less attentive, therefore marketers should adopt an interesting style for product catalogs to hold a
shopper’s attention. We discuss our findings and outline their business implications.

Keywords: consumer behavior; electroencephalogram (EEG) biosensor; attention and meditation;
brain computer interface

1. Introduction

E-commerce, which has grown exponentially because of Internet technology, has induced changes
at the market, industry, and economic levels, and has profoundly altered life, politics, and society [1].
Online network platforms are used globally to undertake various online services, and such platforms
provide a robust means for generating income and, for an immeasurable number of consumers from
around the world, to shop online [2]. Shopping websites display numerous products organized by
category; despite being produced by different firms, and many of these products share similar features.
However, these products, along with their information, are too great in number to be processed by the
human brain because of a human’s limited cognitive capacity, thus causing the consumer confusion
and low satisfaction [3–5]. In addition, shopping is a series of decision-making processes aimed at
satisfying consumer needs. The focus of academic attention should be shifted to online shopping
behavior because of the mismatch between excessive stimuli and limited brain capacity [6]. According
to Drucker [7], “the objective of a business is to create and retain customers”. Information about
customers largely concerns their consumption behavior, which involves the processing and selection
of product information.

Generally, retailers want consumers to spend more time shopping, browsing, and searching for
products in the hope that they make a purchase. On the other hand, consumers may want to restrict their
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duration of stay on websites due to a perceived risk of loss of time or convenience [8]. Previous research
discussing the purchasing decision process has assumed that shoppers face time pressure. For example,
Lin and Wu [9] found that time pressure will increase the proportion of consumers unable to make a
judgment or a choice. Vermeir and Kenhove [10] suggested that consumers under high time pressure
search less for coupons and products with a promotion. Rieskamp and Hoffrage [11] demonstrate
that compared to those under low time pressure, individuals under high time pressure accelerate the
search for information, using less information, and staying focused on the most important features.
Liu et al. [12] indicate that when shopping online under time pressure, participants’ observation length
and count for browsing products with high brand awareness were respectively longer and higher
than those for browsing products with low brand awareness. However, when they shopped online
without time pressure, no difference between products with high and low brand awareness levels
was observed.

Time pressure is an essential variable of consumer behavior; it prompts a decision to be made
within a limited time [13]. Moon and Lee [14] perceived time-pressure purchases as a consumption
decision made within time constraints specified by the consumer, suggesting that time pressure
indicates a sense of psychological urgency. Moreover, consumers typically base their purchasing
decisions more on limited knowledge than on careful deliberation and comparison; such decisions
tend to be made in a matter of seconds [15–17]. Pieters and Warlop [18] showed that time pressure
affects visual attention in ways such that consumers skip certain brand elements to optimize their
decision-making. Moreover, both the cue utilization model proposed by Olson and Jacoby [19] and the
theory of planned behavior proposed by Ajzen [20] assume that consumers are aware of their purchase
motives and can distinguish products and brands they intend to purchase. Thus, some consumers have
selection criteria that form a basis for evaluating product brands and selecting the top-ranked ones.

Shoppers behavior online has been reported in many studies, and the browsing behavior and
attention span of shoppers engaging in online shopping under time pressure were investigated in the
present study. The remainder of this paper is structured as follows. Section 2 reviews relevant literature
and describes hypotheses about online shopping behavior. Section 3 introduces the method of this
study. The findings are presented in Section 4 and their implications and suggestions are discussed in
Section 5. Finally, Section 6 concludes this study and outlines this paper’s contributions.

2. Background and Hypotheses

Time pressure is an influential factor in consumer behavior [21]; it can have a marked influence on
decision-making and restrict information-processing ability [22]. Its effects on people’s decision making
intensify in the face of information overload [23]. Moreover, Payne et al. [24] found that people progress
through a hierarchy of responses as time pressure intensifies. Specifically, shoppers under moderate
time pressure become faster and slightly more selective at information processing, whereas those under
heavy pressure tend to skim through information superficially without examining every single detail.
However, some studies have suggested that time pressure typically prompts decision makers to make
decisions and execute decision-making strategies through simple means [25,26], and that people under
time constraints can turn to other strategies to facilitate their information processing [27]. In addition,
Levy [28] showed that when people were in a hurry, they hastened their decision making. Pieters
and Warlop [18] argued that consumers under time pressure will filter some information, accelerate
information acquisition, and adjust their information acquisition strategies.

Generally, time pressure reduces visual attention [29]. Although products with newly designed
packaging can attract visual attention [30], such products can be neglected by people who perceive
their packaging to be overly novel [31], leading to financial loss and even the removal of some products
from the shelf [32].

Clement et al. [6] noted that consumers under time pressure tend to focus on certain products
and brands, as well as their characteristics. Studies conducted in brick-and-mortar stores have found
that the timing of purchases made under time pressure is similar to those made when not under time
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pressure. This indicates that consumers do not select certain products due to time pressure; they either
make decisions in a matter of seconds when they need to identify familiar information quickly from
a pool of information [33], or adjust their search strategies to concentrate on the design features of
brands [18]. Accordingly, this study argues that shoppers under time pressure focus on fewer products
to facilitate their product search on shopping websites, and that they adjust their search strategies
to identify the salient design features of products; this information-processing strategy reflects the
stimulation of the brain in a top-down fashion. Based on the aforementioned argument, Hypotheses 1
and 2 were formulated as follows:

Hypotheses (H1). Shoppers view fewer products when shopping under time pressure than they would when

shopping not under time pressure.

Hypotheses (H2). Shoppers focus more on renowned brands when shopping under time pressure than they

would when shopping under no time pressure.

Our ability to focus on the task at hand is a key element in efficient information processing
and our attention is easily distracted by novel events or changes in the stimulus environment [34].
Bettman et al. [35] maintained that attention changes occur because of reflexive reactions to threats such
as time pressure. In a study by Ordonez and Benson [27], subjects dealing with decisions under time
pressure adopted different decision-making strategies to accelerate their information-processing speed.
Zur and Breznitz [36] also argued that decision makers typically spend less time viewing information
when they are under time pressure, indicating that under such circumstances they may change their
decision-making strategies and thereby change their level of attention. Therefore, Hypothesis 3 was
formulated as follows:

Hypotheses (H3). Under time pressure, shoppers engaging in online shopping are less attentive than those not

under time pressure.

In the United Kingdom, approximately 70% of consumers who enter grocery stores have incomplete
purchase intentions [37]. Previous research [38] has shown that 85% of consumers do not handle
commodity items while shopping and 90% of consumers view only the covers of commodity items.
Furthermore, consumers tend to purchase products they like after simply viewing them; such actions
occur most frequently during online shopping [39]. Brands with sophisticated designs and noticeable
visual elements (e.g., product names, logos, layouts, and slogans) can make a deep impression on
consumers [40–42].

From a cognitive neuropsychological perspective, visual attention can be expressed in terms
of orientation-attention and discover-attention. Orientation-attention is a parallel and non-selective
pre-attentive search process that enables a considerable amount of information to be processed
efficiently and simultaneously. Discover-attention is a serial search process of sequentially searching for
information details on the packaging of a product (e.g., textual content and caution labels). In the view
of Perkins [43], orientation-attention is the primitive stage of attention, whereas discover-attention
enables the complete understanding of a commodity. Neither cognitive system can be distinguished
easily in real-world contexts other than shopping [44]. Generally, consumers depend on slow, serial
search processes [45]. The presence of branded products and previous online shopping experiences
can facilitate their search. Thus, when they have to make purchase decisions in a short time frame or if
they intend to purchase renowned products, they tend to simplify their search on shopping websites.
Clement et al. [6] assumed that a comprehensive understanding of product catalogs and experiences
of shopping at physical stores can expedite product searches, although their findings showed that
consumer product searches in brick-and-mortar contexts were facilitated not by their familiarity with
product catalogs, but by their understanding of the way products were displayed in-store. However,
this study argues that product catalogs on shopping websites differ from those of physical stores;
hence, they might facilitate online product searches. Accordingly, Hypotheses 4 and 5 were formulated
as follows:
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Hypotheses (H4). Familiarity with product catalogs on shopping websites can reduce product search time

during shopping.

Hypotheses (H5). Experience using other shopping websites can reduce product search time during shopping.

3. Methods

We aimed to understand the effect of time pressure on consumer browsing behavior and attention
level with an EEG (electroencephalogram) biosensor cap with regard to branded products on online
shopping website. To verify our hypotheses, we conducted a laboratory study on a real-world website.
Participants were recruited and assigned to two time-pressure levels (the presence or absence of
time-pressure situations). They were assigned a purchasing task and instructed to browse on Taobao
(a famous Chinese shopping website). We used an EEG biosensor cap to track the attention level
of the participants as they browsed products on the webpage. Upon completion of the experiment,
the participants were given a $20 gift card as our token of appreciation for their time and effort.

3.1. Electroencephalogram (EEG) Technique

According to the traditional model of control, physiological systems self-regulate their activity
to preserve steadiness by reducing fluctuations around a homeostatic equilibrium point. By contrast
with this view, a wide bulk of evidence has recently been provided that several physiological time
signals exhibit intrinsic fractal fluctuations. Indeed, heartbeat, respiration, gait rhythm, dynamics of
neurotransmitter release, electromyography, and brain activity reveal similar temporal patterns over
multiple time scales [46]. In an active postsynaptic neuron, a negative voltage between neural dendrites
and other locations along the neuron is generated. Within a small brain compartment in which dendritic
structure are parallel and follow a main direction, such a situation can be modelled as a current dipole
generating an electromagnetic field. Both electrical potentials and magnetic fields, generated from the
dipole in this compartment, can be measured non-invasively by sensors located on or close to the scalp.
The technology that measures electrical potentials is called electroencephalography [47].

In this study, a light NeuroSky EEG biosensor cap (i.e., MindWave Mobile as shown in Figure 1)
was used for measuring the attention and meditation levels of shoppers. The MindWave Mobile is a
portable, wireless hardware cap developed by NeuroSky Company (Taipei, Taiwan). Crowley et al. [48]
have evaluated a similar NeuroSky EEG biosensor cap (i.e., Mindset) to measure the attention and
meditation levels of a subject in practice. MindWave Mobile outputs 12 bit raw-brainwaves (3–100 Hz)
with a sampling rate of 512 Hz and EEG power spectra (alpha, beta, etc.). The detected waves were
interpreted by eSense™ (NeuroSky’s proprietary algorithm for characterizing mental states, Windows
version v1.2.3) to indicate each subject’s mental state when they were shopping online. For each
different mental state (i.e., attention, meditation), the meter value from eSense™ is reported on a
relative scale of 1 to 100. On this scale, a value between 40 and 60 at any given moment in time is
considered “neutral”. A value from 60 to 80 is considered “slightly elevated”, and may be interpreted
as levels being possibly higher than normal. Values from 80 to 100 are considered “elevated”. Similarly,
a value between 20 and 40 indicates “reduced”, while a value between 1 and 20 indicates a “strongly
lowered” level of each different mental state.

In addition, meditation is considered as a promising technique for body and mind regulation.
Meditation plays an important role at physical, mental, and spiritual levels. EEG measures the brain
activity useful to recognize the emotional states. EEG has excellent resolution at the millisecond scale,
and is superior to positron emission tomography (PET) and functional magnetic resonance imaging
(fMRI) [49]. Crowley et al. [48] have evaluated the use of NeuroSky’s Mindset headset to measure
the attention and meditation levels of a subject in practice. Thus, analyzing shoppers’ attention and
meditation level when shopping under time pressure or not is straightforward.
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Figure 1. MindWave Mobile, NeuroSky.

3.2. Subjects and Tasks

To address the research questions, a sample of 30 participants who had online shopping experience
was recruited via convenience sampling. While wearing an EEG cap, the subjects performed tasks
of product purchases on Taobao. They used the catalogs, listed recommendations, and keywords
provided by the website and purchased products of their preference. The experiment was conducted
in a quiet laboratory with a laptop computer to ensure that the subjects would not be disturbed. The
EEG biosensor cap was connected with Bluetooth to a laptop to record subjects’ brainwaves and obtain
experimental data.

3.3. Experimental Procedure

An Institutional Review Board (IRB) proof was conducted (Approval No.: NCKU-HREC-E-
104-101-2) before this experiment. All subjects were asked to complete a questionnaire regarding their
mental and physical states and whether they had ever shopped on any shopping websites, and to sign
an informed consent form.

To reduce any discomfort from wearing the cap, which would affect the experimental results, the
subjects were given some time (approximately 3 min) at the beginning of the experiment to accustom
themselves to the cap. During the experiment, each subject purchased 10 specific items in odd and
even number from the 20 best-selling products sold on Taobao (Figure 2) while under time pressure
(10 min) and not under time pressure (unlimited time) conditions. The sample size was comparable
with in-store studies of shopper navigation and the number of purchases was also comparable with
that used in past in-store work. Table 1 presents the top 20 products on Taobao shopping website at the
time of the experiment and their respective item numbers. This experiment was aimed at investigating
whether the subjects focused on certain products or renowned brands when under time pressure. The
renowned brands were defined according to the American Marketing Association, World Brand Lab
and other related websites. The shopper’s choices, durations, visual attention and site navigation
were recorded using our own designed program. After the experiment, each subject completed a
questionnaire regarding the number of years of experience they had in using shopping websites.
Data collected from the questionnaire were analyzed to determine whether familiarity with shopping
website product catalogs and experience using shopping websites facilitated the subjects’ purchase
behavior in online shopping.

 

 

Figure 2. Taobao home page.
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Table 1. Top 20 products on Taobao and assigned items.

Condition Under Time Pressure Not Under Time Pressure

Item1 Sweater coat Dress
Item2 Women’s footwear Mobile phone
Item3 Shirt Sweater
Item4 Windbreaker Children’s apparel
Item5 Wallpaper iPhone
Item6 Wall sticker Purse
Item7 Men’s footwear Cotton-padded clothing
Item8 Thermos Dr. Martens boots
Item9 Spring and autumn dresses Spring and autumn women’s bottoming shirt
Item10 Watch Tablet computer

4. Results

To test the proposed hypotheses, the experimental data on the subjects’ online shopping behavior
were analyzed through the paired t-test to compare the test outcomes between different test conditions
and attention types. Descriptive statistics and paired t-test results are shown below.

4.1. Demographic Data

The demographic data in Table 2 show that the sample comprised 15 men and 15 women who
had experience using shopping websites. The subjects were 21–30 years old and all held a bachelor’s
degree. Most of the subjects had extensive experience using the Internet (>10 years, 83.4%; 5–10 years,
13.3%; <1 year, 3.3%) and reported that they had used Ruten (86.7%), Yahoo! (80%), PChome (53.3%),
Taobao (26.7%), and Amazon (10%) for online shopping. Regarding the frequency with which they
used online shopping websites, 46.8% reported that they used them 1–5 times per year, 26.6% reported
using them 5–10 times per year, and 26.6% used them >10 times per year. For the number of years of
experience using online shopping websites, 50% had 1–5 years of experience, 33.3% had 5–10 years of
experience, and 16.7% had >10 years of experience.

4.2. T-Test Results

4.2.1. Shoppers Viewed Fewer Products under Time Pressure

The mean of products viewed by all 30 subjects was 28.78 (standard deviation (SD): ±11.986),
and the mean time spent on purchasing the 10 assigned product items was 9.097 min (SD: ±3.9072).
An independent t-test revealed a non-significant gender difference in the number of products viewed,
as shown in Table 3, where SD stands for standard deviation and SE stands for standard error. The
F-value was non-significant at 0.958 > 0.05 for the under time-pressure condition and at 0.960 > 0.05
for the not under time-pressure condition. Thus, an equal-variances test was conducted for the
under time-pressure condition (t = 0.323, p = 0.749 > 0.05) and the not under time-pressure condition
(t = −0.643, p = 0.525 > 0.05). No significant difference was observed between the numbers of products
viewed by the male and female participants, regardless of the condition. Accordingly, the data were
subjected to further analysis.

Table 4 tabulates the descriptive statistics for the number of products viewed under both conditions,
and Table 5 presents the paired t-test results. The p value was 0.001 indicates a significant difference in
the number of products viewed between two conditions; specifically, the subjects under time-pressure
condition viewed more products.
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Table 2. Demographic statistics.

Item Variable N %

Sex
M 15 50

F 15 50

Age 21–31 30 100

Highest level of
education

Graduate 30 100

How many years of
experience do you have

using the Internet?

<1 year 1 3.3

5–10 years 4 13.3

>10 years 25 83.4

Have you shopped
online before?

Yes 30 100

Which of these online
shopping website(s)
have you purchased
items from before?

Ruten 26 86.7

PChome 16 53.3

Yahoo 24 80

Taobao 8 26.7

Amazon 3 10

How frequently do you
use shopping websites

each year?

1–5 times 14 46.8

5–10 times 8 26.6

>10 times 8 26.6

How many years of
experience do you have

using shopping
websites?

1–5 times 15 50

5–10 times 10 33.3

>10 times 5 16.7

Table 3. Independent t-test results for gender differences in the number of products viewed.

Independent Variable n Mean SD SE df t p-Value

Under time pressure (male) 15 23.867 4.580 1.182
28 0.323 0.749Under time pressure (female) 15 23.333 4.466 1.153

Not under time pressure (male) 15 32.200 14.178 3.660
28 −0.643 0.525Not under time pressure (female) 15 35.733 15.867 4.097

Table 4. Descriptive statistics for the number of products viewed.

Condition n Mean Median Min Max SD

Under time pressure 30 23.600 29 14 37 4.453
Not under time

pressure
30 33.967 22 18 84 14.893

Table 5. Paired t-test results for the number of products viewed between two conditions.

Independent Variable n Mean SD SE p-Value

Under time
pressure—Not under

time pressure
30 −10.366 15.082 2.753 0.001 ***

*** p < 0.001.

In addition, regarding the EEG analysis, a paired t-test was conducted on the attention and
meditation levels of the subjects when shopping under time pressure and not under time pressure
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conditions; the corresponding descriptive statistics and paired t-test results are presented in Tables 6
and 7, respectively. The p-value for the difference between the attention levels was 0.008 and the
difference between the meditation levels was 0.572 (Table 7). These results indicate that under
time-pressure and not under time-pressure conditions, the subjects differed significantly in attention
but not in meditation. Their attention during online shopping was weaker while under time pressure.

Table 6. Descriptive statistics for attention and meditation levels.

Condition n Mean Median Min Max SD

Under time pressure (attention) 30 46.941 52.38 33.85 60.48 6.216
Not under time pressure (attention) 30 50.615 53.49 37.93 64.7 6.931
Under time pressure (meditation) 30 56.127 58.26 46.71 64.74 4.453
Not under time pressure (meditation) 30 55.702 56.94 49.2 69.04 14.893

Table 7. Paired t-test results for attention and meditation levels.

Independent Variable n Mean SD SE p-Value

Under time pressure—Not under time
pressure (attention)

30 −3.673 7.097 1.295 0.008 **

Under time pressure—Not under time
pressure (meditation)

30 0.424 4.060 0.741 0.572

** p < 0.01.

4.2.2. Shoppers Focused more on Renowned Brands while under Time Pressure

This section discusses whether shoppers focus more on renowned brands when under time
pressure. Of the 10 assigned product items to be purchased, 1.31 products were from renowned brands
on average (SD: ±0.8658). An independent t-test revealed a no significant gender difference in the
number of branded products purchased (Table 8). The F-value was not significant at 0.806 > 0.05 for the
under time-pressure condition and at 0.259 > 0.05 for the not shopping under time-pressure condition.
Thus, an equal-variances test was conducted for under the time-pressure condition (t = 0.638, p = 0.529
< 0.05) and not shopping under time-pressure condition (t = −0.475, p = 0.638 > 0.05). No significant
difference was observed between the numbers of branded products purchased by the male and female
subjects, regardless of the condition.

Table 8. Independent t-test results for gender differences in the number of renowned brands.

Independent Variable n Mean SD SE df t p-Value

Under time pressure (male) 15 1.067 0.883 0.228
28 0.638 0.529Under time pressure (female) 15 0.867 0.833 0.215

Not under time pressure (male) 15 1.600 0.632 0.163
28 −0.475 0.638Not under time pressure (female) 15 1.733 0.883 0.228

A paired t-test was conducted to examine whether deducting the number of renowned brand
products purchased with the under time-pressure condition from those purchased with the not under
time-pressure condition would yield a result greater than zero. Descriptive statistics and the paired
t-test results are shown in Tables 9 and 10, respectively. The p-value was 0.001 (Table 10), which
indicates a significant difference in the number of renowned brand products purchased between the
two conditions; specifically, fewer products were purchased under time pressure.
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Table 9. Descriptive statistics for renowned brand products purchased.

Condition n Mean Median Min Max SD

Under time pressure 30 0.967 1 0 3 0.850
Not under time
pressure

30 1.667 1 0 3 0.758

Table 10. Paired t-test results for the number of products purchased.

Independent Variable n Mean SD SE p-Value

Under time pressure—Not under time
pressure

30 −0.7 0.987 0.180 0.001 ***

*** p < 0.001.

4.2.3. Familiarity with Product Catalogs on Shopping Websites Facilitated Product Searches
during Shopping

When shopping with the not under time-pressure condition, the subjects were asked to purchase
five products under the condition that the subjects were unfamiliar with the product catalogs, and five
others under the condition that the subjects were familiar with the product catalogs. The products are
shown in Table 11. The amount of time that the male (ID a, b, c, . . . with symbol �) and female (ID A,
B, C, . . . with symbol N) subjects spent on product searches is depicted by Figure 3, in which the x-axis
denotes the amount of time spent searching for products in catalogs that the subjects were familiar
with, and the y-axis represents the amount of time they spent searching for products in catalogs that
they were unfamiliar with.

Table 11. Taobao’s best-selling products purchased not under time pressure.

Condition Catalog Unfamiliarity Catalog Familiarity

1 Dress Purse
2 Mobile phone Cotton-padded clothing
3 Sweater Dr. Martens boots
4 Children’s apparel Spring and autumn women’s bottoming shirt
5 iPhone Tablet computer

●
▲

−
−

f

−

−

Figure 3. Product search time in minutes.

An independent t-test was conducted to determine the significance level of the gender difference
in the product search times (Table 12). The F-value was not significant at 0.057 > 0.05 for catalog

143



Brain Sci. 2019, 9, 301

familiarity and at 0.075 > 0.05 for catalog unfamiliarity. Thus, an equal-variances test was conducted for
the catalog familiarity condition (t = −2.550, p = 0.017 < 0.05) and the catalog unfamiliarity condition
(t = −1.745, p = 0.092 > 0.05). A significant gender difference was observed in the product search times
under the catalog familiarity condition but not under the catalog unfamiliarity condition. Accordingly,
the data were subjected to further analysis.

Table 12. Independent t-test results for gender differences in the product search times.

Independent Variable n Mean SD SE df t p-Value

Familiarity (male) 15 3.649 1.386 0.357
28 −2.550 0.017Familiarity (female) 15 5.901 3.127 0.807

Unfamiliarity (male) 15 5.415 1.796 0.463
28 −1.745 0.092Unfamiliarity (female) 15 6.847 2.620 0.676

A paired t-test was conducted to examine whether deducting the product search time under
the catalog unfamiliarity condition from that under the catalog familiarity condition would yield a
result greater than 0. Descriptive statistics and the paired t-test results for the product search times
are presented in Tables 13 and 14, respectively. The p-value was 0.000 (Table 14), which indicates a
significant difference in the product search times between the catalog familiarity and unfamiliarity
conditions; specifically, longer search times were observed under the catalog unfamiliarity condition
as expected.

Table 13. Descriptive statistics for the product search times.

Condition n Mean Median Min Max SD

Unfamiliarity 30 6.331 5.50 2.59 10.66 2.295
Familiarity 30 4.998 3.10 1.44 13.53 2.819

Table 14. Paired t-test results for the product search times (familiarity vs. unfamiliarity).

Independent Variable n Mean SD SE p-Value

Unfamiliarity—Familiarity 30 1.356 1.789 0.326 0.000 ***

*** p < 0.001.

Moreover, the number of product web pages surfed under the catalog familiarity condition was
compared with that under the catalog unfamiliarity condition (Figure 4). An independent t-test was
used to determine the significance level of the gender difference in the number of product web pages
surfed (Table 15). The F-value was non-significant at 0.733 > 0.05 under the catalog familiarity condition
and at 0.511 > 0.05 under the catalog unfamiliarity condition. Thus, an equal-variances test was
conducted for the catalog familiarity condition (t = 0.173, p = 0.864 > 0.05) and catalog unfamiliarity
condition (t = −1.434, p = 0.163 > 0.05). No significant gender difference was observed in the number of
product web pages surfed between the male and female subjects, regardless of the catalog familiarity
or unfamiliarity condition. Accordingly, the data were subjected to further analysis.

Table 15. Independent t-test results for gender in the number of web page surfed.

Independent Variable n Mean SD SE df t p-Value

Familiarity (male) 15 15.467 8.854 2.286
28 0.173 0.864Familiarity (female) 15 15.000 5.567 1.437

Unfamiliarity (male) 15 16.733 8.655 2.234
28 −1.434 0.163Unfamiliarity (female) 15 21.400 9.155 2.364
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.Figure 4. Number of product web pages surfed (familiarity vs. unfamiliarity).

The number of product web pages surfed was compared between the catalog familiarity and
unfamiliarity conditions. The descriptive statistics and paired t-test results are presented in Tables 16
and 17, respectively. The p-value was 0.004, which indicates a significant difference in the number of
product web pages surfed between the two conditions; specifically, more pages were surfed under the
catalog unfamiliarity condition as expected.

Table 16. Descriptive statistics for the number of product web page surfed.

Condition n Mean Median Min Max SD

Unfamiliarity 30 19.067 9.50 8 40 9.070
Familiarity 30 15.233 13.50 6 44 7.271

Table 17. Paired t-test results for the number of web page surfed.

Independent Variable n Mean SD SE p-Value

Unfamiliarity—Familiarity 30 –3.833 6.664 1.216 0.004 **

** p < 0.01.

Testing for significant differences in attention and meditation levels between the catalog familiarity
and unfamiliarity conditions was undertaken. The descriptive statistics and paired t-test results are
presented in Tables 18 and 19, respectively. The p-value for attention was 0.007 and the p-value for
meditation was 0.946 (in Table 19). These results indicate a significant difference between the catalog
familiarity and unfamiliarity conditions in the attention levels of the subjects but not in their meditation
levels. Notably, the subjects with catalog unfamiliarity demonstrated weaker attention during product
searches than those with catalog familiarity.

Table 18. Descriptive statistics for attention and meditation.

Condition n Mean Median Min Max SD

Familiarity (attention) 30 52.914 55.44 41.71 71.63 8.741
Unfamiliarity (attention) 30 48.797 51.30 32.94 58.9 6.464
Familiarity (meditation) 30 56.169 55.44 48.01 72.28 5.143

Unfamiliarity (meditation) 30 56.241 58.82 49.16 66.44 4.885
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Table 19. Paired t-test results for attention and meditation levels.

Independent Variable n Mean SD SE p-Value

Unfamiliarity—Familiarity (attention) 30 4.117 7.820 1.427 0.007 **
Unfamiliarity—Familiarity (meditation) 30 −0.072 5.791 1.057 0.946

** p < 0.01.

4.2.4. More Experience Using Shopping Websites Facilitated Product Search

Before the experiment, all the subjects were asked to complete a questionnaire that included
items about their number of years of experience using shopping websites. A survey of Taiwanese
online shoppers conducted by Foreseeing Innovative New Digiservices (which operates under the
Institute for Information Industry, a non-governmental organization promoting the development
of Taiwan’s information industry) revealed that most shoppers have more than 5 years of online
shopping experience. Accordingly, in this study, those with more than 5 years of experience were
defined as “more experienced online shoppers,” and those with less than 5 years of experience were
defined as “less experienced online shoppers.” In this survey of our participants, the more experienced
online shoppers spent an average of 9.93 min (SD: ±4.2937), compared with their less experienced
counterparts, who spent an average of 11.75 min (SD: ±4.8990) in purchases. Therefore, the null
hypothesis is “There is no significant difference in the product search times between more experienced
and less experienced online shoppers.” Table 20 presents the independent t-test results for the product
search times between the more experienced and less experienced online shoppers. The test statistic
was t = 1.073 and p = 0.293 > 0.05. Therefore, the difference in product search times between the more
experienced and less experienced online shoppers was not significant.

Table 20. Independent t-test results for the product search times.

Independent Variable n Mean SD SE df t p-Value

Less experienced shoppers 16 11.754 4.899 1.224
28 1.073 0.293More experienced shoppers 14 9.937 4.293 1.147

5. Discussion and Implications

After experiment and hypothesis testing, the findings of this study and their implications are
summarized as follows.

5.1. Under Time Pressure, Shoppers Focus on Fewer Products during Online Shopping

This finding corresponds with previous studies that have shown that shoppers under time pressure
tend to hasten their product selection [50,51], expedite their information searches to reduce time spent
processing information [25,36], or concentrate on specific brands and desired product attributes when
making purchase decisions [18]. Therefore, comparing the results of the previous studies revealed that
online shopping behavior under time pressure has not changed much despite the rapid development
of the Internet and growing use of online shopping services over the past decade.

Moreover, Iyer [22] showed that customers with sufficient time for shopping but without shopping
lists are inclined to make more purchases. Dhar and Nowlis [50] noted that online stores typically offer
discounts for rush purchases. Ahituv et al. [13] suggested that under time pressure, decision makers
tend to make decisions and execute decision-making strategies through simple means. Discounts
promote consumption and, under time constraints, they can prompt quick purchase decisions. Most
shopping website operators offer limited-edition products that can only be purchased by applying for
a membership within certain periods. Such promotional campaigns, which feature a limited number
of products, can prompt shoppers to hasten their product searches and make quick purchase decisions.
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Shopping website operators can launch similar campaigns to encourage consumers shopping under
time pressure, such as promotions and special offers, to boost sales and reduce the server load.

5.2. Shoppers Engaging in Online Shopping Focus More on Renowned Brand Products When Not under
Time Pressure

When shopping under time pressure, specific characteristics of products typically draw the
attention of consumers [26,36,52]. New characteristics added to a product often become essential
factors that affect consumers’ purchase decisions [53,54]. Distinctiveness exerts stronger effects on
product purchase decisions when consumers are under time pressure [50]. Contrary to these previous
studies, this study found that subjects did not pay more attention to renowned brand products when
they were under time pressure. The result indicated that the renowned brands characteristic of a
product are not equivalent to product distinctiveness or novelty, which attract consumer attention under
time pressure. In other words, only when a consumer is not under time pressure do they have adequate
time to select renowned brand products. This can be attributed to renowned brand products typically
being high-priced, prompting consumers to give more consideration prior to making a purchase than
they would give on non-renowned brand products. Moreover, Mitchell and Greatorex [55] found that
consumers tend to shop at reputable stores to reduce the risk of purchasing low-quality products.
Huang et al. [56] showed that brand awareness is crucial for reducing purchase risk. Accordingly,
shoppers tend to pay more attention to searching for renowned brand products when not under time
pressure to reduce this risk. According to the aforementioned arguments, shopping website operators
can sell more renowned brand products during non-promotional periods to encourage consumption
and improve customer trust. They can also offer their own-brand products during their time-limited
promotions to boost their profits.

5.3. Under Time Pressure, Shoppers Engaging in Online Shopping are Less Attentive

The EEG measurement results of this study in Section 4.2.1 reveal that shoppers engaging in
online shopping are more attentive when not under time pressure, probably because they adopt the
depth strategy under this condition, enabling them to focus on the content and depth of products they
view [57]. Thus, shopping website operators are suggested to improve the content and depth of their
products during non-promotional periods to enhance consumer trust and approval indirectly. They
can also encourage changes in consumer behavior through promotional activities, which can prompt
shoppers to process information more quickly [27].

5.4. Catalog Familiarity Reduces Product Search Times

Hoque and Lohse [58] found that user-friendly user interfaces can facilitate product searches.
Sharpe and Staelin [59] observed that people typically prefer spending less time on familiarizing
themselves with the layout of a website. This study showed that consumers familiar with product
catalogs of a website spend less time on product searches; this finding accords with those of previous
studies in a brick-and-mortar store. Mccarthy and Aronson [60] suggested that browsing functionality
on webpages should be designed in a manner that renders the pages easy to navigate. Elliott and
Speck [61] remarked that convenient browsing, simple interfaces, and well-organized frameworks
of websites can enhance operation ease of use and improve user experience. Other authors have
identified that consumers may leave a website quickly if they felt the information was useless [62] or
had to complete a hard task online [63]. To avoid this unwanted outcome, shopping website operators
should avoid making substantial changes to their user interfaces; such changes can confuse consumers,
lengthening their product search times. If the operators intend to refine their websites while reducing
the likelihood of deterring customers, they should consider hosting online scavenger hunt-type games
so that participants can accustom themselves to the product catalogs on the websites.

147



Brain Sci. 2019, 9, 301

5.5. Shoppers Unfamiliar with Product Catalogs on Shopping Websites are Less Attentive

Numerous people base their decisions on their past actions [64,65] and inevitably repeat those
actions. In psychology, this type of behavior is known as “familiarity” [66]. Soderlund [67] and
Payne et al. [68] have argued that familiarity with the shopping environment affects purchase
intention; specifically, shoppers with higher familiarity with the environment are more likely to
make purchases [69,70] and choose products [71,72]. In familiar shopping environments, shoppers
depend on their long-term memory; by contrast, in unfamiliar environments, they rely largely on
external messages such as visual stimuli [73]. Moreover, stimuli in unfamiliar environments can attract
attention [74], and shoppers at brick-and-mortar stores they are unfamiliar with are highly attentive
during shopping [75]. However, the EEG measurement results of this study indicate that shoppers
familiar with product catalogs on shopping websites are more attentive during shopping, which is
different from Garling et al. [73] and Ashby et al. [76]. Shopping on websites is different from in
brick-and-mortar stores. Thus, how consumer attention is affected during online shopping necessitates
further research. According to these findings, shopping website operators can retain the original
layout of their product catalogs to focus consumer attention ontheir products, which can subsequently
facilitate more immediate purchases.

5.6. Product Search Times are Not Significantly Shorter for More Experienced Shoppers

Whereas Clement et al. [6] showed that shoppers with more brick-and-mortar shopping experience
are more efficient at product searches, this study found no notable reduction in product search times
among the more experienced online shoppers. These findings are perhaps due to the differences between
the physical and virtual shopping environments. Furthermore, Daly [77] noted that positive attitudes
and satisfaction strongly affect online shopping intentions. Swaminathan et al. [78], Deighton [79],
and Lepkowska-White et al. [80] have maintained that significant browsing convenience can make
information searches easier on websites and improve their popularity. Jin and Park [81] found that less
experienced online shoppers have higher perceived risks of shopping websites, whereas their more
experienced counterparts tend to focus on the services offered by the websites. They also asserted
that service quality becomes increasingly critical for consumers as their transaction relationships with
sellers mature. Thus, website operators can improve the security and service quality of their websites
(instead of investigating whether their customers have shopped elsewhere online) to strengthen their
customer relations and attract new business.

6. Conclusions

This study investigated the behavior of consumers shopping online under time pressure,
hypothesizing that (1) shoppers under time pressure focus on renowned brand products and
are attentive, (2) shoppers with more online shopping experience are more efficient at shopping,
and (3) familiarity with product catalogs facilitates product searches. However, the results show
that shoppers under time pressure view fewer products and those not under time pressure focus
on renowned brand products. In addition, shoppers are less attentive when under time pressure.
Moreover, more online shopping experience does not significantly reduce product search times,
indicating that the presence of renowned brand products on online shopping websites can lower
shoppers’ perceived product risks. Shoppers unfamiliar with product catalogs on shopping websites
are less attentive. Furthermore, shoppers under time pressure tend to hasten their purchase decisions
and browse fewer product pages. The findings and implications of this study may contribute to
relevant academic research and online shopping businesses.
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Abstract: Abnormal emotional reactions of the brain in patients with facial nerve paralysis have
not yet been reported. This study aims to investigate this issue by applying a machine-learning
algorithm that discriminates brain emotional activities that belong either to patients with facial nerve
paralysis or to healthy controls. Beyond this, we assess an emotion rating task to determine whether
there are differences in their experience of emotions. MEG signals of 17 healthy controls and 16
patients with facial nerve paralysis were recorded in response to picture stimuli in three different
emotional categories (pleasant, unpleasant, and neutral). The selected machine learning technique
in this study was the logistic regression with LASSO regularization. We demonstrated significant
classification performances in all three emotional categories. The best classification performance
was achieved considering features based on event-related fields in response to the pleasant category,
with an accuracy of 0.79 (95% CI (0.70, 0.82)). We also found that patients with facial nerve paralysis
rated pleasant stimuli significantly more positively than healthy controls. Our results indicate that
the inability to express facial expressions due to peripheral motor paralysis of the face might cause
abnormal brain emotional processing and experience of particular emotions.

Keywords: classification; emotion; facial nerve paralysis; LASSO; MEG

1. Introduction

The human facial expressions are an essential part of communication. Eyes, mouth, and brows
specific movements can show emotions that are universally understandable [1,2]. It is believed that
facial expressions have a direct influence on subjective feelings, so that facial expressions strengthen
our emotions while suppression of that weakens emotions [3]. This theory is called the facial feedback
hypothesis (FFH), and Charles Darwin [4] was one of the first who suggested that. Several studies
have supported the FFH. As reported earlier [5], receptors in the facial skin return information to
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the brain, and when this feedback attains consciousness, it is perceived as emotion. Izard [6,7] also
argued that central neural activity in the brain stem, limbic cortex, and hypothalamus is activated
by the perception of an emotional stimulus, and then a signal is sent from the hypothalamus to the
facial muscles and subsequently to the brain stem, hypothalamus, limbic system, and thalamus. This
concept is consistent with recent studies suggesting that deliberate imitation of facial expressions is
linked to neuronal activation in limbic regions such as the amygdala [8–11], which is connected to the
hypothalamus and brain stem regions [12].

As a result of the above conceptual discussion, facial expressions generate a feedback cycle to the
brain, but what happens to this feedback cycle if a person cannot perform the facial expressions? The
inability to perform facial expressions due to the facial nerve injury is called facial nerve paralysis [13].
The facial nerve is implicated in the control of facial asymmetries and expressions [14,15], which is
mainly associated with the primary sensorimotor area [16,17]. The paralysis of the facial nerve leads to
loss of facial movement feedback and breaks the integrity of the sensorimotor circuit, which results in
impaired connectivity within the cortical facial motor network [18–21]. Such consequences of facial
nerve paralysis raise the question of whether there are differences between the processing of emotional
stimuli of healthy controls and patients with facial nerve paralysis. To answer this question, we
consider one of the formulations of the FFH, the necessity hypothesis, which states that facial expressions
are “necessary to produce emotional experience” [22]. If the “necessity hypothesis” is correct, a person
who has total facial paralysis should not experience emotions [23]. In line with this, the inability
of a woman with total facial nerve paralysis and normal intelligence to perform a facial expression
recognition task was previously reported [24]. Then again, in another study, patients with facial nerve
paralysis made at least three more incorrect judgments than the mean of the healthy controls in a
facial expression recognition task but had no significant impairment [25]. In contrast, a case study
of a woman with total facial paralysis showed no impairment in facial expression experience and
recognition [23]. Even with more patients, 18 adults with total facial paralysis, another study [26]
reported no widespread deficits in the facial expression recognition task.

Overall, these studies provide a wealth of information on proving or rejecting the necessity hypothesis.
Nonetheless, none of these studies measured the brain signals of patients with facial nerve paralysis and
healthy controls in response to emotional stimuli, and to our knowledge, differences between their brain
emotional responses have not yet been reported. It is also unclear whether these patients with facial
nerve paralysis have different brain frequencies compared to healthy subjects in response to emotional
stimuli. In the present study, we investigate this question by applying a machine learning algorithm
that classifies one second of brain activities (measured with MEG) belonging to either facial nerve
paralysis patients or healthy controls. The selected machine learning technique in this study is the logistic
regression with LASSO regularization, which is highly common in the classification of high-dimensional
data and also showed high accuracies in the emotion classification studies (e.g., [27–29]). Using this
method also showed higher accuracies compared to using the other classification methods in emotion
classification studies. For instance, Kim and colleagues [27] reported equivalent or better emotion
classification performances using logistic regression than related works using the support vector machine
(SVM), and naïve Bayes. Moreover, another EEG study [28] found that logistic regression with LASSO
regularization had better performance in emotion classification and less over-fitted results compared
to only using logistic regression. They also found that their classification performances using logistic
regression with LASSO regularization are higher than those reported by other studies using different
classifiers like naïve Bayes, Bayes, and SVM. Caicedo and colleagues [29] also studied the classification
of high vs. low valence and high vs. low arousal emotional responses of the brain considering EEG
signals. They performed logistic regression with LASSO regularization, SVM, and neural network (NN)
as classification methods, and they found that using logistic regression with LASSO regularization
makes higher accuracies in both arousal and valence categories compared to SVM and NN. In addition
to this strong evidence, using LASSO has the advantage of automatic feature selection by setting the
regression coefficients of irrelevant predictors to zero, which is often more accurate and interpretable
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than achieved estimates produced by univariate or stepwise methods [30–32]. Hence, we decided to
use the logistic regression with LASSO regularization in our study. The classifications are performed
based on considering event-related fields (ERFs) and the power spectrums of five brain frequency bands.
In addition, we assess the Self-Assessment Manikin (SAM; [33]) test to determine whether there are
differences in the experience of different emotions in these two groups of subjects.

2. Materials and Methods

In order to classify the brain’s emotional responses of healthy controls and patients with facial
nerve paralysis in three categories (pleasant, neutral, and unpleasant), we proposed a methodology,
which is described in the following section.

2.1. Subjects

Thirty-three subjects participated in the experiment: 17 healthy (11 females; aged 19–33 years;
mean age 26.9 years) and 16 patients with facial nerve paralysis (14 females; age 26–65 years; mean
age 45.8 years). Patients were recruited from the Department of Otorhinolaryngology of the Jena
University Hospital. All subjects had a normal or corrected-to-normal vision, and healthy subjects
had no history of neurological and psychiatric disorders. Beck Depression Inventory (BDI) [34] was
measured for patients. The results of this inventory and further information about patients can be
found in Table 1. All subjects gave their written informed consent, and the details of the study were
approved by the local Ethics Committee of the Jena University Hospital (4415-04/15).

Table 1. Characteristics of the facial nerve paralysis patients in this study.

Patient
Number.

Gender 1 Side

Duration of
Having Facial

Paralysis in
Month

Degree of
Paralysis

Type of
Paralysis

Reason for
Facial

Paralysis 2

Becks
Depression
Inventory

(BDI)

Depression’s
Severity

According to
BDI

1 W Left 72 Complete Chronic 3 10 Mild
2 W Right 58 Complete Chronic 1 12 Mild
3 W Right 101 Complete Chronic 1 1 Minimal
4 W Left 40 Complete Chronic 1 44 Severe
5 W Left 29 Complete Chronic 1 25 Moderate
6 W Right 79 Complete Chronic 1 3 Minimal
7 M Left 35 Complete Acute 2 6 Minimal
8 W Right 23 Complete Acute 1 7 Minimal
9 W Right 71 Complete Chronic 1 8 Minimal

10 W Left 25 Complete Chronic 1 13 Mild
11 W Right 22 Complete Chronic 2 3 Minimal
12 W Right 21 Complete Acute 1 17 Mild
13 M Right 17 Complete Chronic 1 2 Minimal
14 W Left 99 Complete Chronic 3 6 Minimal
15 W Left 19 Complete Acute 2 4 Minimal
16 W Left 16 Complete Chronic 3 15 Mild

1 W: woman, M: man, 2 1 = idiopathic, 2 = inflammation, 3 = post-surgical.

2.2. Stimuli and Design

The stimuli consisted of 180 color pictures that were selected from the International Affective
Picture System (IAPS; [35]), consisting of three emotional categories (60 pictures each): pleasant,
neutral, and unpleasant. The pictures were presented on a white screen in front of the subjects (viewing
distance about 80 cm) and were divided into three blocks consisting of 20 pictures of each category in a
pseudo-randomized order. Each picture was presented for 6000 ms, followed by varying inter-trial
intervals between 2000 to 6000 ms. The three blocks were presented successively, and each block
was followed by a short break that allowed the subject to relax. Subjects were asked to avoid eye
blinks and eye movements during viewing the pictures and remaining motionless as much as possible.
The entire recording process lasted about 45 min and was conducted in a magnetically shielded and
sound-sheltered room in the bio-magnetic center of the Jena University Hospital.
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After the measurement step, all 180 pictures were presented again in the same order as before, and
subjects were requested to rate the level of arousal and valence of each picture. Pictures were rated using
the Self-Assessment Manikin (SAM; [33]) with a seven-point scale indicating arousal (1 to 7, relaxed to
excited) and valence (1 to 7, pleasant to unpleasant) levels. To find the differences between the ratings
between patients and healthy controls, the median ratings of all healthy controls over one picture were
compared with the median ratings of 14 patients over the same picture using the Wilcoxon rank-sum test.
We did not consider the ratings of two patients because they did not fully participate in this step.

2.3. Data Acquisition and Preprocessing

MEG recordings were obtained using a 306-channel helmet-shaped Elekta Neuromag MEG system
(Vectorview, Elekta Neuromag Oy, Helsinki, Finland), including 204 gradiometers and 102 magnetometers.
In this experiment, only the information of the 102 magnetometers was analyzed. The reason for this is that
we had a higher signal-to-noise ratio (SNR) when using magnetometers than when using gradiometers
in our study. Moreover, since we used the SSS method, which estimates inside components with the 102
magnetometers and 204 magnetometers, taking magnetometers or gradiometers into account would lead
to very similar result measures [36–38]. To define the Cartesian head coordinate system, a 3D digitizer
(3SPACE FASTRAK, Polhemus Inc., Colchester, VT, USA) was used. MEG was digitized to 24 bit at a
sampling rate of 1 kHz. All channels were on-line low-pass filtered at 330 Hz and high-pass filtered
at 0.1 Hz. MaxFilter Version 2.0.21 (Elekta Neuromag Oy. Finland) using the signal-space separation
(SSS) method [39] was applied on raw data with aligning of sensor-level data across all subjects to one
reference subject which helped to achieve the same MEG channel positions for all subjects and quantify
the robustness of sensors across all subjects. Then, 1000 ms before the stimulus onset and 1500 ms
after the stimulus onset were pre-processed. Baseline correction was applied to the first 1000 ms of the
epoch. Data were down-sampled to 250 Hz and band-pass filtered (1–80 Hz). Using the independent
component analysis (ICA), eye artifacts (EOG), and artifacts caused by magnetic fields of heartbeat (ECG)
were removed. Visual detection was used to identify and remove trials that had excessive movement
artifacts. Finally, 45 to 55 trials remained for each stimulus category per subject. The artifact-free data
were low-pass filtered at 45 Hz to calculate event-related fields (ERFs). Then the power spectrums of
MEG data were calculated in five frequency bands: delta (1–4 Hz), theta (5–8 Hz), alpha (9–14 Hz), beta
(15–30 Hz), and gamma (31–45 Hz). The entire analysis was performed using the Fieldtrip toolbox [40]
and MATLAB 9.3.0 (Mathworks, Natick, MA, USA).

2.4. Feature Extraction

The feature sets used in this study can be categorized into two groups: features based on ERFs,
and features based on power spectrums. These features and the classification method used in this
experiment are explained in detail in the following section.

2.4.1. Features Based on ERFs

We took the mean values of event-related fields power (i.e., ERFs to the power of two) over
one-second post-stimulus and all stimuli of each emotion category as observations for each subject.
Thus, each subject provided three vector-valued observations: one for pleasant, one for neutral, and one
for unpleasant. Each observation incorporates 102 (magnetometers) elements. Combining observations
from all 33 subjects to define the feature matrix in one emotion category (e.g., pleasant), we obtained 33
observations with 102 predictors each. Therefore, based on ERF responses, we compiled three feature
sets (according to three emotion categories), and each feature set had a dimensionality of 33 × 102.

2.4.2. Features Based on Power Spectrums

To generate features based on power spectrums, we took the mean values of the power spectrum
(from a particular frequency band) over one-second post-stimulus and all stimuli of each emotion
category as observations for each subject. Thus, each subject provided three vector-valued observations

156



Brain Sci. 2020, 10, 147

for each frequency band (5 bands): one for pleasant, one for neutral, and one for unpleasant. Each
observation incorporates 102 (magnetometers) elements. Therefore, based on power spectrums, we
compiled 15 feature sets (according to three emotion categories and five brain frequency bands) with a
dimensionality of 33 × 102 each.

2.5. Feature Subset Selection and Classification

After extracting features, we had to select a subset of features that are mostly related to the emotion
discrimination of these two groups of subjects and apply classification methods for that subset. The
reason for selecting a subset is that from the statistical point of view, irrelevant features may decrease
the classification accuracy [41]. However, exploring based on the entire feature set and identifying
subsets of discriminative features is a very complex and lengthy process. Thus, using effective feature
selection methods helps to avoid the accumulation of features that are not discriminative in the least
amount of time possible.

Here, we employed regularized logistic regression with the most popular penalty, the least
absolute shrinkage, and selection operator (LASSO; [42]), for feature subset selection and classification.
LASSO is highly common in the classification of high dimensional data (a large number of predictors
and small sample size) because it selects variables by forcing some regression coefficients to zero and
provides high classification accuracies [43].

We defined the response variable of the logistic regression by one for healthy controls and zero for
patients with facial nerve paralysis. Let yn ∈ {0, 1} be a vector with N elements, and let xn be associate
vectors with M predictors. The probability of being healthy (class 1) for the nth subject is estimated by
Equation (1) [43]:

πn = p(yn = 1
∣

∣

∣xn) =
exp (β0 +

∑M
m=1 xnm

Tβm)

1 + exp (β0 +
∑M

m=1 xnm
Tβm)

n = 1, 2, . . . , N (1)

where βm and β0 are the regression coefficients and the intercept, respectively. The goal of LASSO
regression is to estimate the βm and β0 which are obtained by Equation (2) [43]:

β̂LASSO = argmin
β

[

−
∑N

n=1

{

yn ln(πn) + (1− yn) ln(1−πn)
}

+ λ
∑M

m=1

∣

∣

∣βm

∣

∣

∣

]
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The penalty term, λ
∑M

m=1

∣

∣

∣βm

∣

∣

∣, penalizes large regression parameters, where the regularization
constant λ, is the positive tuning parameter that controls the balance between the model fit and the
effect of the penalty term [44]. When λ = 0, maximum likelihood is reached and when λ tends
towards infinity, it increases the impact of the penalty term on the parameter estimates, and the penalty
term obliges all regression coefficients to be zero. To determine the optimal value of λ, we used a
leave-one-subject-out cross-validation (33-fold). The optimal λ was selected according to the minimum
cross-validation error under the constraint that at least two regression coefficients are not equal to
zero. This constraint resulted from pilot investigations, which revealed that reliable discrimination
of patients and healthy controls was not possible based on univariate features. Since we defined 18
feature sets, we had to determine 18 lambdas; exemplary, we show only one figure related to the
lambda determination (see Figure 1). The optimal λ associated with each feature set was used for
feature subset selection and classification. The classification performance was evaluated by accuracy,
specificity, and sensitivity. The accuracy is the ratio of the correctly classified subjects to their total
number. The ratio of correct positives (healthy controls classified as healthy controls) to the total
number of healthy controls is called sensitivity or true positive rate. The ratio of correct negatives
(patients classified as patients) to the total number of patients is called specificity or true negative rate.
To assess our classification results, we performed 1000 16-fold-stratified cross-validations to estimate
simultaneous 95%-confidence intervals for accuracy, sensitivity, and specificity (see Figure 2).
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Figure 1. Effects of LASSO regularization tuning parameter λ on regression coefficients, and deviances.
(a) A plot of the cross-validation deviance of the LASSO fit model against the λ. This figure shows
leave-one-subject-out cross-validation results to determine the optimal value of λ. The Y-axis indicates
the cross-validation deviance corresponds to the values of λ on the X-axis. The mean cross-validation
deviance is shown by the red points in this figure, and each error bar shows ±1 standard deviation.
The blue and green vertical dotted lines (in both figures) indicate the λ, which gives the minimum
deviance with no more than one standard deviation (blue circle) and the minimum deviance (green
circle), respectively. (b) The paths of the LASSO fit model’s coefficients in dependence on λ. This figure
shows how λ controls the shrinkage of LASSO coefficients. The numbers above the box show how many
non-zero coefficients remain considering the corresponding λ values on the X-axis. The Y-axis illustrates
the coefficients of classifiers. Each path refers to one regression coefficient. It is shown that when λ

increases to the left side of the plot, the number of remaining non-zero coefficients gets close to zero.

3. Results

In this section, we assess the feasibility of classifying brain emotional responses of healthy controls
and patients with facial nerve paralysis. To this end, we report the classification performances of
choosing each feature set. Then we report the results of the comparison between the levels of arousal
and valence rated by these two groups of subjects to determine whether there are differences between
their experience of emotions or not.

3.1. Classification Results

Figure 2a depicts accuracies with 95% simultaneous confidence intervals for all feature sets.
Simultaneous confidence intervals were determined at 99.2% of individual confidence levels in order to
obtain a 95% simultaneous confidence level using Bonferroni correction for six hypotheses. As can be
seen, it is possible to discriminate the brain responses of these two groups of subjects in each category:
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in the category of pleasant based on ERFs as well as on delta-, theta- and gamma-band power; in
the category of neutral based on ERFs as well as on beta- and gamma-band power; in the category
of unpleasant based on alpha-band power. The highest accuracy of 0.79 (95% CI (0.70, 0.82), 99.2%
CI (0.67, 0.85)) was obtained for pleasant stimuli in combination with a direct exploitation of ERFs.
Comparing the three categories, by trend, the groups are best distinguishable for pleasant stimuli.

In order to elaborate that accuracy values are not dominated by one of the subjects’ groups,
sensitivities and specificities with 95% simultaneous confidence intervals for all feature sets are
presented in Figure 2b,c, respectively. As expected, due to similar group sizes of 16 and 17, statistical
significances with respect to sensitivity and specificity resemble the significance pattern of accuracy.

Figure 2. Evaluation of classifier performance for all feature sets based on 1000 16-fold-stratified cross-
validations. Numerical values represent medians as well as 95% simultaneous confidence intervals for
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the metrics (a) accuracy, (b) sensitivity, and (c) specificity. The median values considering 95% CI are
represented by circles. The vertical dotted line displays results equal to random results. Considering
features based on ERFs in the pleasant category, we achieved the highest classification performances.

3.2. Ratings Results

The results of the median ratings of patients and healthy controls for arousal and valence levels in
three picture categories are indicated in Figure 3. To compare the median ratings between patients
and controls, we performed the Wilcoxon rank-sum test, which is based on the null hypothesis of
equal medians. We found no significant differences in the comparison of arousal ratings. In the
comparison of the valence ratings, we found significant higher valence ratings only for pleasant stimuli
in healthy subjects compared to patients (p = 1× 10−6). This shows that patients rated pleasant images
significantly more positively than controls, since, in the 7-point scale of valence, 1 indicates the highest
positivity and 7 the highest negativity of an emotion. Except for some outliers, neutral stimuli showed
no variation between subjects (median rating = 4).

𝑝 =  1 × 10

 

(a) (b) 

Figure 3. Boxplots of the arousal (a) and valence (b) ratings of patients and healthy controls for each
picture category. Boxplots show the median ratings of subjects for each picture category. The red lines
are the medians, and the red circles represent outliers. The valence ratings for pleasant stimuli are
significantly higher for healthy controls compared to patients.

4. Discussion

Facial nerve paralysis is a common disorder of the main motor pathway, which causes an inability
to perform facial expressions. In our present study, we investigated the automatic classification of brain
responses of patients with facial nerve paralysis and healthy controls using MEG signals in response to
three emotional categories of picture stimuli (pleasant, neutral, and unpleasant). We evaluated the
feasibility of classifying brain emotional reactions of these two groups of subjects by computing several
features based on ERFs and power spectrums in five brain frequency bands. Significant classification
performances were obtained for all three emotional categories, and the highest was achieved when
considering feature sets taken from ERFs in response to pleasant stimuli with the median of 0.79 (95%
CI (0.70, 0.82)). These results demonstrate that patients with facial nerve paralysis might have different
emotional brain responses compared to healthy controls. However, comparing the amplitude of brain
responses between patients and controls, considering ERFs and power spectra in each frequency band,
we found no significant differences. We propose that these differences might relate to the patterns
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of brain emotional responses. As a physiological explanation, since the loss of movement feedback
in facial nerve paralysis influences the cortical motor network [18–21], which is responsible for the
generation of patterned emotion-specific changes in several systems such as the limbic system [45];
it is possible that the produced patterns become different. To the best of our knowledge, there are no
studies that report the differences between the brain’s emotional responses of facial nerve paralysis
patients and healthy controls. However, our results are consistent with the result of an earlier study
that reported blocking facial mimicry of healthy subjects causes different neural activations in the
amygdala in response to emotional stimuli [3]. Our results are also compatible with a very recent study
that compared patients with facial nerve paralysis and healthy controls in resting state and found that
the brain fraction amplitude of low-frequency fluctuation is abnormal in emotion-related regions [46].

Our classification accuracies obtained using logistic regression with LASSO regularization are not
compatible with any study because, as mentioned above, to the best of our knowledge, our study is
the first to classify the brain’s emotional responses of patients with facial nerve palsy compared to the
healthy controls. However, our results can be compatible with the results of emotion classification
studies. The accuracies achieved in our study (the highest value: 0.79 (99.2% CI (0.67, 0.85))) are
similar or higher than the results achieved with many studies. For instance, an EEG study [47]
conducted SVM to classify valence and arousal in human emotions evoked by visual stimuli, and
the classification accuracies were between 54.7% and 62.6%. Another EEG study [48] also used SVM
to classify four emotion categories (joy, anger, sadness, and pleasure), and the best accuracies were
obtained considering joy (86.2%). Using both SVM and the hidden Markov model, one EEG study [49]
classified pleasant, unpleasant, and neutral emotion categories, and the highest mean accuracy was 62%.
Classification using SVM was also performed in classifying joy, sadness, fear, and relaxed states, which
resulted in an average accuracy of 41.7% [50]. Using naïve Bayes and Fisher discriminant analysis
(FDA), the average accuracy of 58% was obtained for classifying three arousal categories of picture
stimuli by another study [51]. In order to propose Bayesian network-based classifiers in classifying
emotions, one EEG study achieved the highest accuracy of 78.17% [52]. To our knowledge, only one
study [53] investigated MEG for the classification of human emotions. They performed linear SVM
classifiers and achieved the highest classification accuracy of 84%. Our classification accuracies are also
similar or higher than the results of other studies using the same classification methods as in our study.
For instance, Kim and colleagues [27] reported accuracy of 78.57% performing logistic regression to
classify positive versus negative emotions, and they also found that their results were more accurate
than results of related works using SVM and naïve Bayes. Another EEG study [28] also reported the
maximum accuracy of 78.1% when performing logistic regression with LASSO regularization in the
classification of valence and arousal. They also noted that their results achieved by using logistic
regression with LASSO regularization were higher than those achieved by logistic regression alone
or compared with other studies using classifiers such as naïve Bayes, Bayes, and SVM. Caicedo and
colleagues [29] also performed the logistic regression with LASSO regularization to classify arousal
and valence. They also used SVM and NN classifiers and achieved an accuracy of 78.2% using logistic
regression with LASSO regulation, which was higher than when using SVM and NN.

In our study, the classification accuracies obtained through brain responses to pleasant stimuli
were higher than brain responses triggered by other stimuli. This finding indicates that the processing
of pleasant emotions in facial nerve paralysis patients are significantly different from those in healthy
controls, and this difference is more pronounced than differences between the brain responses evoked
by unpleasant or neutral stimuli. However, why might paralysis of facial nerve cause different brain
emotional responses to pleasant stimuli, more than to unpleasant stimuli? One possible explanation
might be that people control their negative emotions more often than positive emotions [54]. Therefore
healthy controls may refrain from performing facial expressions while having unpleasant emotions
more than when experiencing pleasant emotions. Thus, there may not be vast differences between
the feedback caused by facial expressions during unpleasant stimuli, and consequently, the brain
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responses triggered by that, in people who can perform (healthy subjects), and people who cannot
perform facial expressions (patients with facial nerve paralysis).

In our emotion ratings task, we used the International Affective Picture System (IAPS; [35]),
including a wide range of emotional scenes such as nature, war scenes, sports, and family, as opposed
to previous studies that contained images of faces [23–26]. Using the Self-Assessment Manikin
(SAM; [33]) test, we demonstrated that patients with facial nerve paralysis significantly rated lower
valence levels for pleasant stimuli compared to healthy controls. Since valence is the positivity or
the negativity conveyed by an emotion [55], the ratings obtained from subjects in this experiment
imply that the effects of pleasant stimuli are more positive for patients than for healthy controls. Thus,
our findings demonstrate that facial feedback plays an essential role in the normal experience of
pleasant emotional images. This finding is in line with our previous findings regarding the highly
significant different brain responses of these two groups of subjects in response to pleasant stimuli,
which are reflected in the different experience of pleasant stimuli by these patients. Inconsistent
with our results, from the suppression of emotional expressions in healthy controls, Davis and his
colleagues [56] demonstrated that inhibiting facial expressions in healthy people makes no difference in
positive emotional experiences, but weakens negative emotional experiences. The different emotional
experience of patients with facial nerve paralysis and healthy controls has also been reported in earlier
studies that evaluated facial expression recognition tasks. Calder and colleagues [25] studied three
patients with total facial nerve paralysis and compared their emotion recognition with 40 healthy
controls. They reported that patients made at least three times more wrong judgments than the average
of the healthy controls, but there was no significant impairment. Giannini and colleagues [24] reported
the complete inability of a woman with total facial nerve paralysis in performing a facial expression
recognition task. However, some studies found no different emotion recognition by patients with total
facial nerve paralysis compared to healthy controls [23,26]. Accordingly, such studies suggest that facial
feedback is not necessary to recognize facial expressions, which might oppose the necessity hypothesis.
Our study does not allow us to support or oppose the previously described necessity hypothesis because
it requires that we study patients with total facial nerve paralysis. However, our study demonstrates
that the paralysis of the facial nerve causes changes in the emotional responses of the brain, especially
during pleasant stimuli and these results were also reflected in the ratings of pleasant emotion in
these patients. This finding is a strong argument for the importance of the ability to perform facial
expressions to have normal brain emotional processing and experience of particular emotions.

Considering different feature sets, we have demonstrated that the brain’s responses to pleasant,
unpleasant, and neutral stimuli in patients with facial nerve paralysis are significantly different from
those in healthy controls. Moreover, we showed that these different brain responses are associated
with the power spectrum of some frequency bands. No study to our knowledge has reported any
differences between the frequency-bands of brain emotional responses in the comparison between
healthy subjects and patients with facial nerve paralysis. However, we found some biological evidence
that may explain some of these results. There is some evidence that gamma-band activity is associated
with the activation of the sensorimotor cortex, and gamma event-related synchronization (ERS) occurs
in the sensorimotor cortex during unilateral limb movements such as movements of fingers, toes, and
tongue [57,58], thus unilateral facial movements might produce gamma activity in the sensorimotor
cortex. Since patients with facial nerve paralysis cannot fully perform facial expressions, and because
they have impaired connectivity within the sensorimotor cortex [18–21], their induced gamma activity
might be different. Many recent experiments have also focused on the role of theta–gamma oscillations
in cognitive neuroscience [59–63]. It is assumed that theta–gamma interactions are associated with
cortical sensory processing [64], and a hierarchy of oscillations including delta, theta, and gamma
oscillations arranges sensory functions [65]. Thus, impaired connectivity within the sensorimotor
cortex caused by facial nerve paralysis can lead to a disruption of the delta–theta–gamma oscillations.
Moreover, it has been demonstrated that when sensory and motor regions become engaged, the
suppression of alpha power has been observed [63]. Given that the facial nerve is mainly associated
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with the primary sensorimotor area [16,17] and the paralysis of that results in reduced connectivity
within the cortical facial motor network [18–21], it might be the reason for different alpha power in
patients with paralysis of facial nerve compared to healthy controls.

Finding significant classification accuracies in the classification of brain neutral responses of these
two groups of subjects were interesting, unexpected findings. Since it is assumed that neutral stimuli
have non-emotional content, we did not expect to find different brain responses of these two groups of
subjects during viewing neutral stimuli. However, we have shown that the brain ERFs of patients with
facial nerve paralysis differ significantly from those of healthy controls and are associated with beta
and gamma bands. Nonetheless, one possibility might be that mood changes when viewing affective
pictures may influence the processing of neutral pictures, and the presentation of neutral images alone
may lead to more accurate results [66].

5. Limitations in the Study

There are some limitations in this study that should be considered in further research. First, the
mean age of patients in this study was greater than in healthy subjects. This was because most facial
nerve paralysis patients were not interested in participating in the experiment. Therefore, we did not
have many possibilities to consider the same mean age for both groups of participants. The reason for
the unwillingness of these patients to participate in such studies might be that they feel reluctant to
communicate with other people or to participate in public [67,68]. However, it might be beneficial
to consider the same mean age in both groups of subjects in further research. The second issue that
could be considered in future studies is to include other emotional categories such as anger, anxiety,
or surprise to better classify all emotional states of these two groups of people. Third, in this study,
we did not measure the brain activations of these two groups of subjects during the resting state. We
would suggest that considering the data of the resting state in further studies would help to find the
answer to these very important questions, namely whether these two groups of subjects have different
brain activities even at baseline or whether some of the brain rhythms reflect the differences between
these two groups of test subjects at baseline.

6. Conclusions

This study shows that the emotional experiences and the brain’s emotional responses of patients
with facial nerve paralysis are accurately separated from those in healthy controls in specific emotions.
Our results suggest that the ability to perform facial expressions is necessary to have normal emotional
processing and experience of emotions.
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