161 research outputs found

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello

    Adaptive Robotic Chassis (ARC)

    Get PDF
    The ARC is a width adjusting agricultural robot and accommodates auxiliary functions for supporting crop production and maintenance. Easily interchangeable payloads and components provide a modular solution to perform focused crop surveying functions with the potential for herbicide distribution, weeding, and harvesting while driving through varying crop rows. The potential auxiliary functions will be implemented by future teams with this year\u27s effort being put toward finishing the physical chassis. The final product was successfully designed to weigh approximately 600 pounds targeting rolling speeds of0.90 fps to 2.30 fps with proof of concept shown in testing consisting of chain drive attached to wheels to show speeds are attainable as well as bench tests to show differential control capabilities

    A blokkláncon alapuló nyomonkövetési rendszerek alkalmazhatóságának elemzése szimulációs modellel az élelmiszer-ellátási láncban

    Get PDF
    Napjainkban a vásárlók fokozott egészség- és környezet tudatossága hatással van a fogyasztók élelmiszerekkel szemben támasztott igényeire, sokan kíváncsiak a termékek teljes életútjára. A korábban alkalmazott élelmiszer nyomonkövetési rendszerek is képesek ezeket az információkat előállítani, de a blokkláncok megjelenése új lehetőségeket nyithat meg ezen a területen is. A technológia innovációja nemcsak az információs aszimmetriát szüntetheti meg, hanem csökkentheti az élelmiszerbiztonsági kockázatokat is. Habár a fogyasztók a keresett információhoz könnyebben és gyorsabban juthatnak hozzá, az új blokklánc-alapú rendszer felállítása és üzemeltetési költsége növelheti a termékek árát. A rendelkezésre álló statisztikák és publikációk adatai alapján munkánk eredményeként egy rendszerdinamikai szimulációs modell készült el (az entitások áramának és tranzíciójának lekövetésével) a blokklánc-alapú nyomonkövetési rendszerek alkalmazhatóságának elemzésére. A modellen futtatott szimulációk szerint az új rendszert használó fogyasztók száma az elkövetkező öt évben nem éri el azt az arányt, ami gazdaságossá tenné a bevezetését. Tanulmányunkban ennek okait kerestük, illetve különféle hatásokat elemeztünk, amelyek befolyásolhatják a fogyasztókat

    A model based method for evaluation of crop operation scenarios in greenhouses

    Get PDF
    Abstract This research initiated a model-based method to analyse labour in crop production systems and to quantify effects of system changes in order to contribute to effective greenhouse crop cultivation systems with efficient use of human labour and technology. This method was gradually given shape in the discrete event simulation model GWorkS, acronym for Greenhouse Work Simulation. Model based evaluation of labour in crop operations is relatively new in greenhouse horticulture and could allow for quantitative evaluation of existing greenhouse crop production systems, analysis of improvements, and identification of bottlenecks in crop operations. The modelling objective was a flexible and generic approach to quantify effects of production system changes. Cut-rose was selected as a case-study representative for many cut-flowers and fruit vegetables. The first focus was a queueing network model of the actions of a worker harvesting roses in a mobile cultivation system. Data and observations from a state-of-art mobile rose production system were used to validate and test the harvesting model. Model experiments addressed target values of operational parameters for best system performance. The model exposed effects of internal parameters not visible in acquired data. This was illustrated for operator and gutter speed as a function of crop yield. The structure and setup of the GWorkS model was generic where possible and system specific where inevitable. The generic concept was tested by transferring GWorkS to harvesting a greenhouse section in a static growing system for cut-roses and extending it with navigation in the greenhouse, product handling, and multiple operator activity (up to 3 workers). Also for rose harvesting in a static growing system, the model reproduced harvesting accurately. A seven workday validation for an average skilled harvester showed a relative root mean squared error (RRMSE) under 5% for both labour time and harvest rate. A validation for 96 days with various harvesters showed a higher RRMSE, 15.2% and 13.6% for labour time and harvest rate respectively. This increase was mainly caused by the absence of model parameters for individual harvesters. Work scenarios were simulated to examine effects of skill, equipment, and harvest management. For rose yields of 0.5 and 3 harvested roses per m2, harvest rate was 346 and 615 stems h-1 for average skilled harvesters, 207 and 339 stems h-1 for new harvesters and 407 and 767 stems h-1 for highly skilled harvesters. Economic effects of trolley choice are small, 0-2 € per 1000 stems and two harvest cycles per day was only feasible if yield quality effects compensate for extra costs of 0.2-1.1 eurocents per stem. In a sensitivity analysis and uncertainty analysis, parameters with strong influence on labour performance in harvesting roses in a static system were identified as well as effects of parameter uncertainty on key performance indicators. Differential sensitivity was analysed, and results were tested for linearity and superposability and verified using the robust Monte Carlo method. The model was not extremely sensitive for any of the 22 tested input parameters. Individual sensitivities changed with crop yield. Labour performance was most affected by greenhouse section dimensions, single rose cut time, and yield. Throughput was most affected by cut time of a single rose, yield, number of harvest cycles, greenhouse length and operator transport velocity. In uncertainty analysis the coefficient of variation for the most important outputs labour time and throughput is around 5%. The main sources of model uncertainty were in parallel execution of actions and trolley speed. The uncertainty effect of these parameters in labour time, throughput and utilisation of the operator is acceptably small with CV less than 5%. The combination of differential sensitivity analysis and Monte Carlo analysis gave full insight in both individual and total sensitivity of key performance indicators. To realise the objective of model based improvement of the operation of horticultural production systems in resources constrained system, the GWorkS-model was extended for simultaneous crop operations by multiple workers analysis. This objective was narrowed down to ranking eight scenarios with worker skill as a central theme including a labour management scenario applied in practise. The crop operations harvest, disbudding and bending were considered, which represent over 90% of crop-bound labour time. New sub-models on disbudding and bending were verified using measured data. The integrated scenario study on harvest, disbudding and bending showed differences between scenarios of up to 5 s per harvested rose in simulated labour time and up to 7.1 € m-2 per year in labour costs. The simulated practice of the grower and the scenario with minimum costs indicated possible savings of 4 € m-2 per year, which equals 15% of labour cost for harvest, disbudding and bending. Multi-factorial assessment of scenarios pointed out that working with low skilled, low paid workers is not effective. Specialised workers were most time effective with -17.5% compared to the reference, but overall a permanent team of skilled generalists ranked best. Reduced diversity in crop operations per day improved labour organisational outputs but ranked almost indifferent. The reference scenario was outranked by 5 scenarios. Discrete event simulation, as applied in the GWorkS-model, described greenhouse crop operations mechanistically correct and predicts labour use accurately. This model-based method was developed and validated by means of data sets originating from commercial growers. The model provided clear answers to research questions related to operations management and labour organisation using the full complexity of crop operations and a multi-factorial criterion. To the best of our knowledge, the GWorkS-model is the first model that is able to simulate multiple crop operations with constraints on available staff and resources. The model potentially supports analysis and evaluation of design concepts for system innovation.</p

    A review on multi-robot systems: current challenges for operators and new developments of interfaces

    Full text link
    [ES] Los sistemas multi-robot están experimentando un gran desarrollo en los últimos tiempos, ya que mejoran el rendimiento de las misiones actuales y permiten realizar nuevos tipos de misiones. Este artículo analiza el estado del arte de los sistemas multi-robot, abordando un conjunto de temas relevantes: misiones, flotas, operadores, interacción humano-sistema e interfaces. La revisión se centra en los retos relacionados con factores humanos como la carga de trabajo o la conciencia de la situación, así como en las propuestas de interfaces adaptativas e inmersivas para solucionarlos.[EN] Multi-robot systems are experiencing great development in recent times, since they are improving the performance of current missions and allowing new types of missions. This article analyzes the state of the art of multi-robot systems, addressing a set of relevant topics: missions, fleets, operators, human-system interaction and interfaces. The review focuses on the challenges related to human factors such as workload and situational awareness, as well as the proposals of adaptive and immersive interfaces to solve them.Esta investigación ha recibido fondos de los proyectos SAVIER (Situational Awareness VIrtual EnviRonment) de Airbus; RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/ NMT-4331, financiado por los Programas de Actividades I+D de la Comunidad de Madrid y confinanciado por los Fondos Estructurales de la UE; y DPI2014-56985-R (Protección Robotizada de Infraestructuras Críticas) financiado por el ministerio de Economía y Competitividad del Gobierno de España.Roldan-Gómez, JJ.; De León Rivas, J.; Garcia-Aunon, P.; Barrientos, A. (2020). Una revisión de los sistemas multi-robot: desafíos actuales para los operadores y nuevos desarrollos de interfaces. Revista Iberoamericana de Automática e Informática industrial. 17(3). https://doi.org/10.4995/riai.2020.13100OJS305173Abbadi, A. and Prenosil., 2015. Safe path planning using cell decomposition approximation. Distance Learning, Simulation and Communication, 8.Adams, B. and Suykens, F., 2013 Astute: Increased Situational Awareness through proactive decision support and adaptive map-centric user interfaces. 2013 IEEE European Intelligence and Security Informatics Conference (EISIC), 289-293. https://doi.org/10.1109/EISIC.2013.74Almeida, L., Menezes, P. and Dias, J., 2017. Improving robot teleoperation experience via immersive interfaces. In 2017 4th IEEE Experiment@ International Conference (exp. at'17), 87-92. https://doi.org/10.1109/EXPAT.2017.7984414Arnold, K. P., 2016. The UAV Ground Control Station: Types, Components, Safety, Redundancy, and Future Applications. International Journal of Unmanned Systems Engineering., 4(1), 37.Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B. and Onaral, B., 2012. Optical brain monitoring for operator training and mental workload assessment. Neuroimage, 59(1), 36-47. https://doi.org/10.1016/j.neuroimage.2011.06.023Beer, J., Fisk, A. D. and Rogers, W. A., 2014. Toward a framework for levels of robot autonomy in human-robot interactions. Journal of Human-Robot Interaction, 3(2), 74. https://doi.org/10.5898/JHRI.3.2.BeerBourguet, M. L., 2003. Designing and Prototyping Multimodal Commands. Interact, 3, 717-720.Brutschy, A., Pini, G., Pinciroli, C., Birattari, M. and Dorigo, M., 2014. Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous agents and multi-agent systems, 28(1), 101-125. https://doi.org/10.1007/s10458-012-9212-yCantelli, L., Mangiameli, M., Melita, C. D. and Muscato, G., 2013. UAV/UGV cooperation for surveying operations in humanitarian demining. 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR),1-6). https://doi.org/10.1109/SSRR.2013.6719363Chang, H. and Jin, T., 2013. Command fusion based fuzzy controller design for moving obstacle avoidance of mobile robot. Future information communication technology and applications, Springer, 905-913. https://doi.org/10.1007/978-94-007-6516-0_99Chen, J. Y. C., Haas, E. C. and Barnes, M. J., 2007. Human performance issues and user interface design for teleoperated robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1231-1245. https://doi.org/10.1109/TSMCC.2007.905819Chen, J. Y. C., Barnes, M. J. and Harper-Sciarini, M., 2011. Supervisory control of multiple robots: Human-performance issues and user-interface design. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications an Reviews), 41(4), 435-454. https://doi.org/10.1109/TSMCC.2010.2056682Clark, C. M., 2005. Probabilistic road map sampling strategies for multi-robot motion planning. Robotics and Autonomous Systems, 53(3), 244-264. https://doi.org/10.1016/j.robot.2005.09.002Cummings, M. L., Bruni, S., Mercier, S. and Mitchell, P. J., 2007. Automation architecture for single operator, multiple UAV command and control. Tech. Rep DTIC Document.Cummings, M. L. and Mitchell P. J., 2008. Predicting controller capacity in supervisory control of multiple UAVs. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(2), 451-460. https://doi.org/10.1109/TSMCA.2007.914757Cummings, M. L., Mastracchio, C., Thornburg, K. M. and Mkrtchyan, A., 2013. Boredom and distraction in multiple unmanned vehicle supervisory control. Interacting with computers, 25(1), 34-47. https://doi.org/10.1093/iwc/iws011De Cubber, G., Doroftei, D., Serrano, D., Chintamani, K., Sabino, R. and Ourevitch, S., 2013. The EU-ICARUS project: developing assistive robotic tools for search and rescue operations. 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR), 1-4. https://doi.org/10.1109/SSRR.2013.6719323De Greeff, J., Hindriks, K., Neerincx, M. A. and Kruijff-Korbayova, I., 2015. Human-robot teamwork in USAR environments: the TRADR project. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts, pp. 151-152. https://doi.org/10.1145/2701973.2702031Dezfoulian, S. H., Wu, D. and Ahmad, I. S., 2013. A generalized neural network approach to mobile robot navigation and obstacle avoidance. Intelligent Autonomous Systems, Springer, 12, 25-52. https://doi.org/10.1007/978-3-642-33926-4_3Di, B., Zhou, R. and Duan, H., 2015. Potential field based receding horizon motion planning for centrality-aware multiple UAV cooperative surveillance. Aerospace Science and Technology, 46, 386-397. https://doi.org/10.1016/j.ast.2015.08.006Dixon, S. R., Wickens, C. D. and Chang, D, 2005. Mission control of multiple unmanned aerial vehicles: A workload analysis. Human Factors: The Journal of the Human Factors and Ergonomics Society 47(3), 479-487. https://doi.org/10.1518/001872005774860005Donmez, B., Nehme, C. and Cummings, M.L., 2010. Modeling workload impact in multiple unmanned vehicle supervisory control. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(6), 1180-1190. https://doi.org/10.1109/TSMCA.2010.2046731Drury, J. L., Scholtz, J. and Yanco, H.A., 2003. Awareness in human-robot interactions. IEEE International Conference on Systems, Man and Cybernetics, 1, 912-918.Drury, J. L., Riek, L. and Rackliffe, N., 2006A. A decomposition of UAV-related situation awareness. Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, 88-94. https://doi.org/10.1145/1121241.1121258Drury, J. L., Richer, J., Rackliffe, N. and Goodrich, M. A., 2006B. Comparing situation awareness for two unmanned aerial vehicle human interfaces approaches. Technical rpeort, Mitre Corp Bedford MA.Endsley, M. R., 1988A. Design and evaluation for situation awareness enhancement. Proceedings of the human factors and ergonomics society annual meeting, SAGE Publications, 32(2), 97-101. https://doi.org/10.1177/154193128803200221Endsley, M. R., 1988B. Situation awareness global assessment technique (SAGAT). Proceedings of the IEEE 1988 National Aerospace and Electronics Conference (NAECON), 789-795.Endsley, M. R. and Garland, D. J., 2000. Situation awareness analysis and measurement. CRC Press. https://doi.org/10.1201/b12461Endsley M. R., 1999. Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics, 42(3), 462-492. https://doi.org/10.1080/001401399185595Flushing, E. F., Gambardella, L. and Di Caro, G. A., 2012. Gis-based mission support system for wilderness search and rescue with heterogeneous agents. Proc 2nd Workshop on robots and sensors integration in future rescue INformation system (ROSIN), IEEE/RSJ Int Conference on Intelligent Robots and Systems (IROS).Foit, K., 2014. Mixed reality as a tool supporting programming of the robot. Advanced Materials Research, Trans Tech Publications, 1036, 737-742. https://doi.org/10.4028/www.scientific.net/AMR.1036.737Frische, F. and Lüdtke, A., 2013. SA-tracer: A tool for assessment of UAV swarm operator SA during mission execution. 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 203-211. https://doi.org/10.1109/CogSIMA.2013.6523849Fuchs, C., Borst, C., de Croon, G. C., Van Paassen, M. M. and Mulder, M., 2014. An ecological approach to the supervisory control of UAV swarms. International Journal of Micro Air Vehicles, 6(4), 211-229. https://doi.org/10.1260/1756-8293.6.4.211Galceran, E. and Carreras, M., 2013. A survey on coverage path planning for robotics. Robotics and Autonomous Systems, 61(12), 1258-1276. https://doi.org/10.1016/j.robot.2013.09.004García, J. C., Patrão, B., Pérez, J., Seabra, J., Menezes, P., Dias, J. and Sanz, P.J., 2015. Towards an immersive and natural gesture controlled interface for intervention underwater robots. IEEE OCEANS 2015-Genova, 1-5. https://doi.org/10.1109/OCEANS-Genova.2015.7271501García, S. E., Slawiñski, E., Mut, V., and Penizzotto, F., 2018. Collision avoidance method for multi-operator multi-robot teleoperation system. Robotica, 36(1), 78-95. https://doi.org/10.1017/S0263574717000169Garzón, M., Valente, J., Zapata, D. and Barrientos, A., 2013. An aerial-ground robotic system for navigation and obstacle mapping in large outdoor areas. Sensors, 13(1), 1247-1267. https://doi.org/10.3390/s130101247Garzón, M., Valente, J., Roldán, J. J., Cancar, L., Barrientos, A. and Del Cerro, J., 2016. A multirobot system for distributed area coverage and signal searching in large outdoor scenarios. Journal of Field Robotics, 33(8), 1087-1106. https://doi.org/10.1002/rob.21636Garzón, M., Valente, J., Roldán, J. J., Garzón-Ramos, D., de León, J., Barrientos, A. and del Cerro, J., 2017. Using ros in multi-robot systems: Experiences and lessons learned from real-world field tests. In Robot Operating System (ROS), Springer, Cham, 449-483. https://doi.org/10.1007/978-3-319-54927-9_14Goerzen, C., Kong, Z. and Mettler, B., 2009. A survey of motion planning algorithms from the perspective of autonomous UAV guidance. Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, USA, Springer, 64-100. https://doi.org/10.1007/978-90-481-8764-5_5Goodrich, M. A. and Schultz, A. C., 2007. Human-robot interaction: a survey. Foundations and trends in human-computer interaction, 1(3), 203-275. https://doi.org/10.1561/1100000005Gregory, J., Fink, J., Stump, E., Twigg, J., Rogers, J., Baran, D., Fung, N. and Young, S., 2016. Application of multi-robot systems to disaster-relief scenarios with limited communication. In Field and Service Robotics, Springer, Cham, 639-653. https://doi.org/10.1007/978-3-319-27702-8_42Haas, E. C., Pillalamarri, K., Stachowiak, C. C. and Fields, M., 2011. Multimodal controls for soldier/swarm interaction. IEEE RO-MAN, 223-228. https://doi.org/10.1109/ROMAN.2011.6005227Hagiwara, Y., 2015. Cloud based VR system with immersive interfaces to collect multimodal data in human-robot interaction. 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), 256-259. https://doi.org/10.1109/GCCE.2015.7398709Hart, S. G. and Staveland E.L., 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology, 52, 139-183. https://doi.org/10.1016/S0166-4115(08)62386-9Hart, S. G., 2006. NASA-task load index (NASA-TLX); 20 years later. Proceedings of the human factors and ergonomics society annual meeting, Sage Publications Sage CA, Los Angeles, CA, 50(9), 904-908. https://doi.org/10.1177/154193120605000909Hobbs, A. and Herwitz, S. R., 2014. Human factors in the maintenance of unmanned aerial vehicle (UAV) swarm management. Applied Ergonomics, 58, 66-80. https://doi.org/10.1016/j.apergo.2016.05.011Hocraffer, A. and Nam, C. S. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Applied Ergonomics, 58, 66-80. https://doi.org/10.1016/j.apergo.2016.05.011Hong, A., 2016. Human-Robot Interactions for Single Robots and Multi-Robot Teams. PhD thesis, Department of Mechanical and Industrial Engineering, University of Toronto.Janchiv, A., Batsaikhan, D., hwan Kim, G. and Lee, S. G., 2011. Complete coverage path planning for multi-robots based on. 2011 11th IEEE International Conference on Control, Automation and Systems, 824-827.Jasper, P., Sibley, C. and Coyne, J. Using Heart Rate Variability to Assess Operator Mental Workload in a Command and Control Simulation of Multiple Unmanned Aerial Vehicles. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications Sage CA, Los Angeles, CA, 60(1), 1125-1129. https://doi.org/10.1177/1541931213601264Jia, X. and Meng, M. Q. H., 2013. A survey and analysis of task allocation algorithms in multi-robot systems. 2013 IEEE International Conference on Robotics and biomimetics (ROBIO), 2280-2285. https://doi.org/10.1109/ROBIO.2013.6739809Jiang, Y., 2016. A survey of task allocation and load balancing in distributed systems. IEEE Transactions on Parallel and Distributed Systems, 27(2), 585-599. https://doi.org/10.1109/TPDS.2015.2407900Johannsmeier, L. and Haddadin, S., 2016. A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robotics and Automation Letters, 2(1), 41-48. https://doi.org/10.1109/LRA.2016.2535907Kapoutsis, A. C., Chatzichristofis, S. A., Doitsidis, L., de Sousa, J. B., Pinto, J., Braga, J. and Kosmatopoulos, E. B., 2016. Real-time adaptive multi-robot exploration with application to underwater map construction. Autonomous robots, 40(6), 987-1015. https://doi.org/10.1007/s10514-015-9510-8Kavitha, S., Veena, S. and Kumaraswamy, R., 2015. Development of automatic speech recognition system for voice activated Ground Control system. 2015 IEEE International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15), pp. 1-5. https://doi.org/10.1109/ITACT.2015.7492684Khaleghi, A. M., Xu, D., Minaeian, S., Li, M., Yuan, Y., Liu, J., Son, Y. J., Vo, C., Mousavian, A. and Lien, J. M., 2014. A comparative study of control architectures in UAV/UGV-based surveillance system. Proceedings of the IIE Annual Conference, Institute of Industrial and Systems Engineers (IISE), 3455.Khamis, A., Hussein, A. and Elmogy, A., 2015. Multi-robot Task Allocation: A Review of the State-of-the-Art. Cooperative Robots and Sensor Networks, Springer, 31-51. https://doi.org/10.1007/978-3-319-18299-5_2Kirchner, E. A., Kim, S. K., Tabie, M., Wöhrle, H., Maurus, M. and Kirchner, F., 2016. An intelligent man-machine interface - Multi-robot control adapted for task engagement based on single-trial detectability of P300. Frontiers in human neuroscience, 10, 291. https://doi.org/10.3389/fnhum.2016.00291Kolling, A., Nunnally, S. and Lewis, M., 2012. Towards human control of robot swarms. Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction, 89-96. https://doi.org/10.1145/2157689.2157704Kothari, M., Postlethwaite, I. and Gu, D. W. Multi-UAV path planning in obstacle rich environment using rapidly-exploring random trees. Proceedings of the 48 IEEE Conference on Decision and Control, 3069-3074.Kruijff-Korbayová, I., Colas, F., Gianni, M., Pirri, F., de Greeff, J., Hindriks, K., Neerincx, M., Ögren, P., Svoboda, T. and Worst, R., 2015. Tradr project: Long-term human-robot teaming for robot assisted disaster response. KI-Künstliche Intelligenz, 29(2), 193-201. https://doi.org/10.1007/s13218-015-0352-5Kurniawan, H., Maslov, A. V. and Pechenizkiy, M., 2013. Stress detection from speech and galvanic skin response signals. IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), 209-214. https://doi.org/10.1109/CBMS.2013.6627790Lang, R. G., da Silva, I. N., Romero, R. A. F., 2014. Development of distributed control architecture for multi-robot systems. IEEE 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol, 163-168. https://doi.org/10.1109/SBR.LARS.Robocontrol.2014.49Larochelle, B., Kruijff, G. J. M., Smets, N., Mioch, T. and Groenewegen, P., 2011. Establishing human situation awareness using a multi-modal operator control unit in an urban search & rescue human-robot team, IEEE, 229-234. https://doi.org/10.1109/ROMAN.2011.6005237Lesire, C., Infantes, G., Gateau, T. and Barbier, M., 2016. A distributed architecture for supervision of autonomous multi-robot missions. Autonomous Robots, 40(7), 1343-1362. https://doi.org/10.1007/s10514-016-9603-zLindemuth, M., Murphy, R., Steimle, E., Armitage, W., Dreger, K., Elliot, T., Hall, M., Kalyadin, D., Kramer, J., Palankar, M. and Pratt, K., 2011. Sea robot-assisted inspection. IEEE robotics & automation magazine, 18(2), 96-107. https://doi.org/10.1109/MRA.2011.940994Lysaght, R. J., 1989. Operator workload: Comprehensive review and evaluation of operator workload methodologies. Tech. Rep. DTIC Document. https://doi.org/10.21236/ADA212879Mantecón, T., del Blanco, C. R., Jaureguizar, F. and García, N., 2014. New generation of human machine interfaces for controlling UAV through depth-based gesture recognition. Unmanned Systems Technology XVI, International Society for Optics and Photonics, 9084. https://doi.org/10.1117/12.2053244Marino, A., Parker, L. E., Antonelli, G. and Caccavale, F., 2013. A decentralized architecture for multi-robot systems based on the null-space-behavioral control with application to multi-robot border patrolling. Journal of Intelligent & Robotic Systems, 71(3-4), 423-444. https://doi.org/10.1007/s10846-012-9783-5Martín-Barrio, A., Terrile, S., Barrientos, A. and del Cerro, J., 2018. Hyper-Redundant Robots: Classification, State-of-the-Art and Issues. Revista Iberoamericana de Automática e Informática Industrial, 15(4), 351-362. https://doi.org/10.4995/riai.2018.9207Martín-Barrio, A., Roldán, J. J., Terrile, S., del Cerro, J. and Barrientos, A., 2019. Application of Immersive Technologies and Natural Language to Hyper-Redundant Robot Teleoperation. Virtual Reality, 1-15. https://doi.org/10.1007/s10055-019-00414-9Martins, H., Oakley, I. and Ventura, R., 2015. Design and evaluation of a head-mounted display for immersive 3D teleoperation of field robots. Robotica, 33(10), 2166-2185. https://doi.org/10.1017/S026357471400126XMatellán, V. and Borrajo, D., 2001. ABC2 an agenda based multi-agent model for robots control and cooperation. Journal of Intelligent & Robotic Systems, 32(1), 93-114. https://doi.org/10.1023/A:1012009429991McCarley, J.S. and Wickens, C. D., 2005. Human factors implications of UAVs in the national airspace. University of Illinois at Urbana-Champaign, Aviation Human Factors Division.McDuff, D., Gontarek, S. and Picard, R., 2014. Remote measurement of cognitive stress via heart rate variability. 36th Annual International Conference on the IEEE Engineering in Medicine and Biology Society (EMBC), 2957-2960. https://doi.org/10.1109/EMBC.2014.6944243Menda, J., Hing, J. T., Ayaz, H., Shewokis, P. A., Izzetoglu, K., Onaral, B. and Oh, P., 2011. Optical brain imaging to enhance UAV operator training, evaluation, and interface development. Journal of intelligent & robotic systems, 61(1-4), 423-443. https://doi.org/10.1007/s10846-010-9507-7Monajjemi, V. M., Pourmehr, S., Sadat, S. A., Zhan, F., Wawerla, J., Mori, G. and Vaughan, R., 2014. Integrating multi-modal interfaces to command UAVs. Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction, 106-106. https://doi.org/10.1145/2559636.2559646Moore, J., Wolfe, K. C., Johannes, M. S., Katyal, K. D., Para, M. P., Murphy, R. J., Hatch, J., Taylor, C. J., Bamberger, R. J. and Tunstel, E., 2016. Nested marsupial robotic system for search and sampling in increasingly constrained environments. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2279-2286 https://doi.org/10.1109/SMC.2016.7844578Mosteo, A. R. and Montano, L., 2010. A survey of multi-robot task allocation. Technical Report No. AMI-009-10-TEC, Instituto de Investigación en Ingeniería de Aragón, University of Zaragoza, Zaragoza, Spain.Murphy, R. R., 2004. Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 34(2), 138-153. https://doi.org/10.1109/TSMCC.2004.826267Nagi, J., Giusti, A., Di Caro, G. A. and Gambardella, L. M., 2014. Human control of UAVs using face pose estimates and hand gestures. 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 1-2. https://doi.org/10.1145/2559636.2559644Nam, C. S., Johnson, S., Li, Y. and Seong, Y., 2009. Evaluation of human-agent user interfaces in multi-agent systems. International Journal of Industrial Ergonomics, 39(1), 192-201. https://doi.org/10.1016/j.ergon.2008.08.008Nestmeyer, T., Giordano, P. R., Bülthoff, H. H. and Franchi, A., 201

    ‘Conclusion: Youth aspirations, trajectories, and farming futures

    Get PDF
    This book commenced with a question of global importance: in a world in which farming populations are ageing, who is going to provide the planet’s peoples with the “sufficient, safe and nutritious food” that is needed to meet the “dietary needs and food preferences for an active and healthy life” (FAO 2006)? In other words, where are the people who are needed to generationally renew farming? As explained in the introduction, addressing this question meant going against the grain of much research on youth and agriculture. Rather than seeking to understand youth’s apparent disinterest in farming and their exodus from the countryside, the research teams focused on those youth and young adults who stayed in, returned, or relocated to rural areas and were involved in farming (often alongside various other economic activities). Thereby, the case studies presented in this book have put in the spotlight the next generation of farmers. In this concluding chapter, we draw out some important issues emerging from across the chapters and reflect on key differences. This way, we reiterate the various pathways of becoming a farmer, the main challenges experienced by these young farming women and men, and the roles that policies and organizations could play in facilitating the process of becoming a farmer

    'Young Farmers’ Access to Land: Gendered pathways into and out of farming in Nigara and Langkap (West Manggarai, Indonesia)’ (with Charina Chazali, Aprilia Ambarwati, and Ben White)

    Get PDF
    This chapter describes rural young men and women’s pathways out of and (back) into farming in two villages in West Manggarai district, Flores island, Eastern Indonesia. The chapter has seven sections. First, we describe the methodology and our sample in the two sites. The second section then provides the geographical and social context and describes livelihood patterns in the research villages. Next, we present illustrative cases of young people’s pathways out of and (back) into farming, both young men and women, followed by an account of the tensions arising through the process of land transfer between generations in the fourth section. The fifth and sixth sections focus on young people’s farming practices and how the government supports young farmers. In the final section, we reflect on how gender, generation, and class combine to shape the pathways of young farmers out of and (back) into farming and their access to agrarian resources

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp
    corecore