994 research outputs found

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Towards the Correctness of Software Behavior in UML: A Model Checking Approach Based on Slicing

    Get PDF
    Embedded systems are systems which have ongoing interactions with their environments, accepting requests and producing responses. Such systems are increasingly used in applications where failure is unacceptable: traffic control systems, avionics, automobiles, etc. Correct and highly dependable construction of such systems is particularly important and challenging. A very promising and increasingly attractive method for achieving this goal is using the approach of formal verification. A formal verification method consists of three major components: a model for describing the behavior of the system, a specification language to embody correctness requirements, and an analysis method to verify the behavior against the correctness requirements. This Ph.D. addresses the correctness of the behavioral design of embedded systems, using model checking as the verification technology. More precisely, we present an UML-based verification method that checks whether the conditions on the evolution of the embedded system are met by the model. Unfortunately, model checking is limited to medium size systems because of its high space requirements. To overcome this problem, this Ph.D. suggests the integration of the slicing (reduction) technique

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    The relevance of model-driven engineering thirty years from now

    Get PDF
    International audienceAlthough model-driven engineering (MDE) is now an established approach for developing complex software systems, it has not been universally adopted by the software industry. In order to better understand the reasons for this, as well as to identify future opportunities for MDE, we carried out a week-long design thinking experiment with 15 MDE experts. Participants were facilitated to identify the biggest problems with current MDE technologies, to identify grand challenges for society in the near future, and to identify ways that MDE could help to address these challenges. The outcome is a reflection of the current strengths of MDE, an outlook of the most pressing challenges for society at large over the next three decades, and an analysis of key future MDE research opportunities

    functional modeling in safety by means of foundational ontologies

    Get PDF
    Abstract Modern theory of safety deals with systemic approach to safety, formalized in form of several systemic prediction models or methods such as FRAM (Functional Resonance Analysis Method) or STAMP (System-Theoretic Accident Model and Processes). The theory of each approach emphasizes different viewpoints to be considered in approaching various industrial safety issues. This paper focuses on FRAM and its functional viewpoint for modern complex sociotechnical systems. The methodology in this paper is based on the utilization of foundational ontologies to conceptualize the core ideas of FRAM, with the focus on the concept of functions as used in theory. The outcomes of the case study in the aviation domain provide for what needs to be determined to properly model functions in FRAM and they allow for better utilization of the method in real-case applications. The results also confirm some previous research, suggesting that modern systemic approach to safety is theoretically grounded on common - or at least complementary - tenets, to be prospectively integrated by means of ontology engineering

    Interfacing TuLiP with the JPL Statechart Autocoder: Initial progress toward synthesis of flight software from formal specifications

    Get PDF
    This paper describes the implementation of an interface connecting the two tools : the JPL SCA (Statechart Autocoder) and TuLiP (Temporal Logic Planning Toolbox) to enable the automatic synthesis of low level implementation code directly from formal specifications. With system dynamics, bounds on uncertainty and formal specifications as inputs, TuLiP synthesizes Mealy machines that are correct-by-construction. An interface is built that automatically translates these Mealy machines into UML statecharts. The SCA accepts the UML statecharts (as XML files) to synthesize flight-certified implementation code. The functionality of the interface is demonstrated through three example systems of varying complexity a) a simple thermostat b) a simple speed controller for an autonomous vehicle and c) a more complex speed controller for an autonomous vehicle with a map-element. In the thermostat controller, there is a specification regarding the desired temperature range that has to be met despite disturbance from the environment. Similarly, in the speed-controllers there are specifications about safe driving speeds depending on sensor health (sensors fail unpredictably) and the map-location. The significance of these demonstrations is the potential circumventing of some of the manual design of statecharts for flight software/controllers. As a result, we expect that less testing and validation will be necessary. In applications where the products of synthesis are used alongside manually designed components, extensive testing or new certificates of correctness of the composition may still be required

    EOOLT 2007 – Proceedings of the 1st International Workshop on Equation-Based Object-Oriented Languages and Tools

    Get PDF
    Computer aided modeling and simulation of complex systems, using components from multiple application domains, such as electrical, mechanical, hydraulic, control, etc., have in recent years witness0065d a significant growth of interest. In the last decade, novel equation-based object-oriented (EOO) modeling languages, (e.g. Mode- lica, gPROMS, and VHDL-AMS) based on acausal modeling using equations have appeared. Using such languages, it has become possible to model complex systems covering multiple application domains at a high level of abstraction through reusable model components. The interest in EOO languages and tools is rapidly growing in the industry because of their increasing importance in modeling, simulation, and specification of complex systems. There exist several different EOO language communities today that grew out of different application areas (multi-body system dynamics, electronic circuit simula- tion, chemical process engineering). The members of these disparate communities rarely talk to each other in spite of the similarities of their modeling and simulation needs. The EOOLT workshop series aims at bringing these different communities together to discuss their common needs and goals as well as the algorithms and tools that best support them. Despite the short deadlines and the fact that this is a new not very established workshop series, there was a good response to the call-for-papers. Thirteen papers and one presentation were accepted to the workshop program. All papers were subject to reviews by the program committee, and are present in these electronic proceedings. The workshop program started with a welcome and introduction to the area of equa- tion-based object-oriented languages, followed by paper presentations and discussion sessions after presentations of each set of related papers. On behalf of the program committee, the Program Chairmen would like to thank all those who submitted papers to EOOLT'2007. Special thanks go to David Broman who created the web page and helped with organization of the workshop. Many thanks to the program committee for reviewing the papers. EOOLT'2007 was hosted by the Technical University of Berlin, in conjunction with the ECOOP'2007 conference
    • 

    corecore