
The relevance of model-driven engineering thirty years

from now

Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty

Cheng, Philippe Collet, Benoit Combemale, Robert B. France, Rogardt

Heldal, James Hill, et al.

To cite this version:

Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty Cheng, et al.. The
relevance of model-driven engineering thirty years from now. 17th International Conference
ACM/IEEE - Conference on Model Driven Engineering Languages and Systems (MODELS),
Sep 2014, Valencia, Spain. 8767, pp. 183-200, 2014. <hal-01156595>

HAL Id: hal-01156595

https://hal.archives-ouvertes.fr/hal-01156595

Submitted on 27 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01156595

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13271

DOI: 10.1007/978-3-319-11653-2_12
URL : http://dx.doi.org/10.1007/978-3-319-11653-2_12

To cite this version : Mussbacher, Gunter and Amyot, Daniel and Breu, Ruth and
Bruel, Jean-Michel and Cheng, Betty and Collet, Philippe and Combemale, Benoit
and France, Robert B. and Heldal, Rogardt and Hill, James and Kienzle, Jörg and
Schöttle, Matthias and Steimann, Friedrich and Stikkolorum, Dave and Whittle,
Jon The relevance of model-driven engineering thirty years from now. (2014) In:
17th International Conference ACM/IEEE - Conference on Model Driven
Engineering Languages and Systems (MODELS), 28 September 2014 - 3 October
2014 (Valencia, Spain).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

The Relevance of Model-Driven Engineering

Thirty Years from Now

Gunter Mussbacher1, Daniel Amyot2, Ruth Breu3, Jean-Michel Bruel4,
Betty H.C. Cheng5, Philippe Collet6, Benoit Combemale7, Robert B. France8,

Rogardt Heldal9, James Hill10, Jörg Kienzle1, Matthias Schöttle1,
Friedrich Steimann11, Dave Stikkolorum12, and Jon Whittle13

1 McGill University, Canada
2 University of Ottawa, Canada

3 University of Innsbruck, Austria
4 University of Toulouse, France

5 Michigan State University, USA
6 Université Nice-Sophia Antipolis, France

7 University of Rennes / INRIA, France
8 Colorado State University, USA

9 Chalmers University of Technology, Sweden
10 Indiana University-Purdue University Indianapolis, USA

11 Fernuniversität Hagen, Germany
12 Leiden University, The Netherlands

13 Lancaster University, UK
{gunter.mussbacher,joerg.kienzle}@mcgill.ca,

damyot@eecs.uottawa.ca, Ruth.Breu@uibk.ac.at, bruel@irit.fr,

chengb@cse.msu.edu, philippe.collet@unice.fr,

benoit.combemale@irisa.fr, france@cs.colostate.edu,

heldal@chalmers.se, hillj@cs.iupui.edu,

matthias.schoettle@mail.mcgill.ca, steimann@FernUni-Hagen.de,

d.r.stikkolorum@liacs.leidenuniv.nl, whittle@comp.lancs.ac.uk

Abstract. Although model-driven engineering (MDE) is now an established
approach for developing complex software systems, it has not been universally
adopted by the software industry. In order to better understand the reasons
for this, as well as to identify future opportunities for MDE, we carried out a
week-long design thinking experiment with 15 MDE experts. Participants were
facilitated to identify the biggest problems with current MDE technologies, to
identify grand challenges for society in the near future, and to identify ways that
MDE could help to address these challenges. The outcome is a reflection of the
current strengths of MDE, an outlook of the most pressing challenges for socie-
ty at large over the next three decades, and an analysis of key future MDE re-
search opportunities.

Keywords: Model-driven engineering, challenges, research opportunities.

1 Introduction

Model-driven engineering (MDE) is now an established approach for developing
complex software systems and has been adopted successfully in many industries
including the automotive industry, aerospace, telecommunications, and business in-
formation systems [26][27][38]. However, MDE is arguably still a niche technolo-
gy [51]. It has not been adopted as widely as popular programming languages such as
Java and C#, and, whilst some modeling languages like the Unified Modeling Lan-
guage (UML) have become widespread [19], they are often not used to their full po-
tential [43] and the use of models to automatically generate systems is still relatively
rare [51]. One could argue that now is a good time to reflect on the successes of MDE
as well as its shortcomings. It is a little over ten years since OMG published the first
Model Driven Architecture (MDA; http://www.omg.org/mda/) specification, almost
20 years since it adopted UML, and many decades since the first Computer-Aided
Software Engineering (CASE) tools were introduced. In all that time, MDE has not
become the de-facto way to develop software systems. It is perhaps time, then, to
examine the barriers to MDE adoption as well as to look for opportunities where
MDE can make a difference in the future.

Towards this end, this paper reflects on the last twenty years of MDE research and
practice, makes a candid assessment of where we believe MDE has succeeded and
failed, and highlights key research and application opportunities for MDE in the next
30 years. Our intent is to bring fresh impetus to the MDE community and to define a
roadmap for future research in this area, particularly in areas that remain largely un-
explored by the community. The paper provides an opportunity for MDE researchers
to consider their current MDE research within the broader context of grand societal
challenges, with the aim to stimulate novel modeling research, techniques, and tools.

To put together this roadmap, we followed an approach loosely based on design
thinking [15]. Design thinking is a well-established, brainstorming-oriented approach
to problem solving that attempts to understand a problem from diverse perspectives,
applies creativity techniques to generate as many solutions as possible without pre-
filtering, and then down-selects and refines a smaller number of solutions based on
well-defined criteria. In essence, design thinking is a process for tackling a problem
by first diverging (pushing the envelope, envisioning novel ideas) and then converg-

ing (consolidating the results). Design thinking is based around a number of guiding
principles that aim to take a diverse set of participants, each with differing views and
experiences, and shape them towards a common and transformative solution: listening
is favored over dominating, quantity of ideas over filtering, being positive over saying
“No”; participation; seeking wild ideas; and trusting the process.

In our case, the “problem” to which we applied design thinking was how to in-
crease the adoption of MDE and change the perception that MDE might not yet be a
solution for the grand societal challenges of today. We brought together 15 junior and
senior MDE researchers for a week-long design thinking exercise. Participants per-
formed a series of activities, inspired by design thinking and creativity literature, that
promoted thinking outside the box, including external provocations.

The result is a reflection of the current strengths of MDE and an analysis of key fu-
ture research opportunities for MDE. This exploratory paper first gives an overview
of the key accomplishments of the MDE community over the last 20 years (Section
2.1), and then summarizes major current problems in MDE (Section 2.2). Before con-
tinuing, the employed methodology based on design thinking is explained in more
detail, including a description of specific activities and their rationale (Section 3). The
paper then re-examines MDE through the lens of what are the most pressing chal-
lenges for society at large over the next three decades (Section 4.1). By focusing on
four fictitious future software systems (Section 4.2), the paper unravels how MDE
does or does not address the future challenges of society. Based on this analysis, the
paper suggests four grand challenges for MDE (Section 5), which we hope will stimu-
late new research directions in this area. Section 6 concludes the paper and proposes
action items that can be initiated immediately.

2 The Last 20 Years

MDE has made significant progress in addressing software engineering challenges
over the past 20 years. The major areas of advancement include: modeling languages,
model analysis techniques, model-based verification and validation, and model trans-
formations. Each of these areas has developed foundational theories, tool support,
bodies of empirical evidence, and, to varying degrees, has been used in industrial
settings. For each area, we identify the key research challenges being addressed, high-
light the key accomplishments, and give a few representative examples.

2.1 Major Areas of Advancement

Modeling Languages. Researchers working in the area of modeling languages have
focused on two key challenges [21]: (i) Abstraction Challenge: What kind of model-
ing constructs and underlying foundation is needed to support the development of
domain- or problem-level abstractions that are considered first-class modeling ele-
ments in a language? (ii) Formality Challenge: What characteristics and/or properties
of a modeling language are necessary to enable automated processing and rigorous
analysis? Furthermore, what aspects of a language should be formalized?

To address these challenges, a complementary set of strategies has evolved [21].
Extensible General-Purpose Modeling Languages. The abstraction challenge is

addressed by providing a general-purpose language that has support for customizing
the language to a specific domain. Example customizations are profiles (e.g., UML
profiles), domain-specific modeling processes, and, at a fine-grained level, the use of
specialized syntactic forms and constraints on specific modeling elements. The for-
mality challenge can be handled by either mapping the modeling language to a formal
language, or annotations can be added to the modeling language at the meta-model
level to constrain properties that should hold between language elements.

Domain-Specific Modeling Languages (DSMLs). In order to create a modeling lan-
guage for a given problem domain, meta-metamodeling mechanisms, such as OMG’s

MOF [33] and its Ecore implementation have been extensively used. Intelligent tex-
tual and graphical editors, together with debuggers and code generators, can now be
built (and even modeled) for DSMLs with relatively little effort.

General-purpose modeling languages are relatively more popular in the research,
industrial, and educational arenas. Furthermore, the use of modeling has become suf-
ficiently mature such that modeling standards have emerged. UML has been the de
facto standard for object-oriented modeling [40]. Furthermore, commercial tools are
also available for commonly used modeling languages, such as the Object Constraint
Language (OCL), the Systems Modeling Language (SysML), and the Business
Process Model and Notation (BPMN). Recently, numerous studies have been per-
formed to study the impact of modeling on various aspects of software develop-
ment [23][40], for use in specific domains, such as embedded systems [1], and to
study the impact of the use of modeling languages in industry [43].

While initially DSMLs were created on a limited basis by individual organizations
mostly in the research sector, numerous industrial organizations have witnessed the
significant advantages of using DSMLs, particularly when considering automatic
code generation and domain-specific analysis as objectives. As such, the field of
modeling language engineering has emerged as an important area of research to ena-
ble a broader community to systematically develop DSMLs for their respective do-
main and organization. Example frameworks to support DSML development include
MOF (http://www.omg.org/spec/MOF), EMF (http://www.eclipse.org/modeling/emf),
VisualStudio [14], JetBrains/MPS (http://www.jetbrains.com/mps), Kermeta [29],
GME (http://www.isis.vanderbilt.edu/Projects/gme), Epsilon [31], and Xtext
(http://www.eclipse.org/Xtext). A popular DSMLs in relatively wide use is
MATLAB’s Simulink (http://www.mathworks.com/products/simulink).

Model Analysis. While the process of modeling facilitates a better understanding
of system requirements, design constraints, and user needs, the value of models in-
creases significantly with the ability to automatically process the models and analyze
the models for various properties. Significant progress has been made to formally
analyze models for behavioral properties [21][34][37]; analyze models for structural
properties [6], both within a given diagram type [12], and across multiple types of
diagrams [8]. Within the embedded systems domain, model analysis is achieved by
executing models in simulation environments, such as Simulink [21][30] or USE [35].
Also models may be queried using standardized model query languages [32]. Finally,
model understanding can be achieved through animation and visualiza-
tion [13][22][44][46]. In some cases, production-quality tools have been built from
research tools (e.g., Microsoft’s Static Driver Verifier is based on a model-based ap-
proach to find errors in device drivers using the model checker SLAM [4]).

Model-Based Analysis. Models have also been an enabling technology used to fa-
cilitate numerous software and systems development tasks. For example, model-based
testing has long been used in industry [7][17][18][48], and for specific domains, such
as reactive and embedded systems [9]. Enterprise architecture models are among the
modeling approaches settled in practice ([28], also see The Open Group Architecture
Forum at http://www.opengroup.org/subjectareas/enterprise/togaf). The major goal of
these models is to document actual elements of an organization’s IT infrastructure,

and to interrelate these elements as a basis for further analysis and decision support.
Since enterprise architecture models usually get very large, visualization aspects have
been considered for several years [10]. Similarly, business process and workflows
models have been adopted by industry for many years. Business process models are
both applied in a pure organizational context and within IT management to analyze
organizational processes and their IT support [45]. In addition, workflow models are
used to configure workflow engines, thus they have been precursors of using models
at runtime [49]. Model-based testing applies implementation-independent models and
code generation to the area of testing [41]. The manifold approaches in this area have
not only addressed theoretical considerations of generating models and test cases, but
yielded also practice-oriented methods and tools [48] and standardization efforts [3].

Model Transformations (Management). A model transformation establishes a
relationship between two sets of models, and itself may even be model-based. Several
categories of model transformations have been defined, as well as the intent for model
transformations [39]. An operational transformation takes a source set of models to
produce a target set of models that are a refinement, abstraction, or refactoring of the
source. Emerging techniques in this category focus on the composition of multiple
views to form a single integrated model, the decomposition of a single model into
multiple models, each representing a different aspect of a system, and the translation
of models to a format amenable to automated analysis, including static analysis, mod-
el checking, and other types of behavioral and performance analyses.

Synchronization transformations enable model traceability and synchronization be-
tween a model and its related artifacts. Examples include transformations to support
code generation and code updates to reflect changes to models. The OMG
Query/View/Transformation (QVT) standard [32] defines several languages that can
be used to define such transformations at different levels of abstraction. To facilitate
their use and development, Czarnecki and Helsen developed a survey of features used
for transformation languages [16]. Successful tools for model transformations include
ATL (http://www.eclipse.org/atl/), Epsilon (http://www.eclipse.org/epsilon/), and
several tools based on Triple Graph Grammars [25].

Other contributions have gained traction, but are not as well established as the
above, including model repositories (e.g., REMODD: http://www.remodd.org), pat-
terns, aspects, features, models at run-time, and MDA/MDE processes.

2.2 Major Current Problems in Model-Driven Engineering

While much progress has been made in MDE over the last 20 years, the MDE com-
munity also has recognized many problems that it still must face. This subsection
summarizes the main current problems in the field of MDE (in no particular order) as
identified by the workshop participants.

Shortcomings of MDE to Address Increasing Demands on Software. Software
has to respond to an ever-increasing number of demands. The explosion of stringent
functional requirements and qualities is complemented by the ever-increasing need to
customize and tailor software to specific usage contexts. Many software systems are
tightly connected with their environment, are distributed, need to support heterogeneous

platforms, and/or are open in nature. Software needs to adapt to rapidly changing hard-
ware and implementation platforms, and is developed in a context that requires develop-
ers to shorten time-to-market to a minimum. In such context, the inherent complexity of
the problems that we are trying to solve with software keeps growing.

Current modeling approaches, techniques and tools do not live up to the challenge.
Often, mature tools provide techniques that can successfully cope with software sys-
tems that we were building a decade ago, but fail when applied to model complex
systems like the ones described above. Some academic techniques propose interesting
ways of addressing these shortcomings, but the prototypical nature of academic tools
often prohibits their application to the development of real-world software systems.

Obstacles for Tool Usability and Adoption. The proliferation of modeling lan-
guages, tools, and techniques makes it hard for users to commit to using MDE. Even
after a suitable language and tool have been identified, the users face significant usa-
bility challenges [24][42][52], e.g., steep learning curves, arduous user interfaces, and
difficulty with migrating models from one version of a tool to the next. Despite the
fact that software development is a team activity, there is little effective tool support
for collaborative modeling. In general, tools do not support the fundamentally creative
side of the modeling process due to their inflexibility and complexity. Far fewer MDE
community or interactive forums on the web can be consulted to find solutions to
problems when compared to programming-based forums. Finally, model transforma-
tions, which are essential in order for MDE to be effective, are difficult to maintain
and adapt to changing requirements and implementation platforms [50].

MDE Is Not Considered “Cool”. Even though MDE has been around for over 10
years, it is currently not as widespread in industry as the modeling community has
hoped for [51]. As bluntly illustrated in Table 1, MDE is simply not considered cool.
Why this is the case needs to be investigated. Maybe, the bad experience with CASE
tools decades ago still casts a dark shadow on MDE. Maybe, the effects of the so-
called UML Fever [5] are continuing to hurt the perception of MDE by people outside
the community. Some even argue that there is a stronger need to investigate people’s
perception of MDE than to research new MDE technologies [11].

Table 1. Results of six queries (with quotes) on Google Search, February 12, 2014

 “Agile”… “MDE”… “Model-Driven Engineering”…

...“is cool” 4,250 10 (*) 0

...“is not cool” 1 41 10

(*) The first two results actually linked to Cabot’s article entitled “Model driven engineering is not

cool” [11], and 7 links had nothing to do with MDE.

Inconsistencies between Software Artifacts. A number of companies are using

software modeling languages such as UML in their architecture development. The
problem is that these models are often ignored as soon as one moves on to coding.
Changes are made in the code but not in the models, leading to inconsistencies be-
tween software models and code. Synchronization of models between different levels
of abstraction is not the norm. Good tool support is lacking to keep these models in

sync today. A complicating factor is that often a system is modeled with multiple
views using different models and modeling notations, thus further increasing the like-
lihood of introducing inconsistencies between these models. Even when additional
information is overlaid onto an existing view (as is the case, for example, in UML,
when stereotypes define non-functional properties), there are no guarantees that the
resulting system is consistent or correctly functioning.

Models Are Still Not Valued as Much as Code. The advantage of code is that it
is a product on its own. It is often quite motivating to work directly on the product. It
permits a software engineer to point out, e.g., that this part is due to her programming.
In addition, one can obtain constant feedback when programming by executing the
code, allowing one to easily experiment with the code and test its behavior. Unfortu-
nately, for many people, modeling is considered a superfluous activity that becomes
an activity in itself not necessarily for the benefit of the software development. This
concern makes it hard to see both the short and long time benefits of using models to
specify the product and creates a lack of trust in the technology.

Lack of Fundamentals in MDE. Unlike most other fields of engineering, model-
driven engineering does not have a Body of Knowledge (BoK) as such. Some recent
initiatives such as SWEBOK (http://www.computer.org/portal/web/swebok) and
SEMAT (http://semat.org/) aim at filling this gap, but the required effort is huge. This
deficiency also hampers the support for reuse. Programming languages have libraries.
Modeling libraries are emerging (e.g., [2], also see REMODD) but the lack of com-
mon representations, query mechanisms, and critical mass pose obstacles.

Education Issues. There is a large mismatch between modeling examples found in
books and the ones used in the real world. For example, small and unrealistic state-
chart diagrams are often used. It is relatively easy to teach the syntax of a modeling
language such as UML, but we still struggle with how to teach design principles using
modeling. For students, it is difficult to learn to use their abstraction abilities [36][47],
which have been shown to closely relate to software design skills. For effective teach-
ing, students need to be motivated by the benefits of modeling (e.g., solution com-
plexity can only be managed by models instead of simple coding problems).

Uncertainty in Environments, Requirements, and Systems. It is not that hard to
create a model if the problem fits one’s mental picture. That usually depends on the
modeler’s domain knowledge and well-defined, stable domain abstractions. However,
nowadays software more and more adapts (and sometimes self-adapts) to its environ-
ment. The inherent uncertainty in many such problem domains (such as human
science, social issues, etc.) and environments makes software very complex. In the
face of uncertainty, actual modeling techniques neither ease the integration of mul-
tiple concerns nor support problem domain modeling.

Lack of (Industrial) Evidence of Benefits. There have been a number of empiri-
cal papers in the last few years that address the lack of industrial proofs of bene-
fits [20][50]. These papers give a good status of the use of MDE in industry, but they
do not let us understand why MDE projects fail or succeed. We are still lacking
knowledge on factors that make MDE successful, also considering that model-based
approaches are regularly used in the hardware industry (e.g., model checking to ana-
lyze hardware designs instead of testing).

3 Methodology

In this section, we describe our methodology for defining the MDE roadmap pre-
sented in this paper. The method is loosely based on principles of design think-
ing [15], which aims to approach a problem from as many angles as possible (i.e.,
problem understanding), generate as many ideas as possible (i.e., ideas generation),
and then only finally consolidate those ideas into a small number of workable solu-
tions (i.e., ideas selection). This section describes how we applied design thinking in
terms of the concrete activities (see Table 2) that our participants undertook.

Table 2. Activities of the Design Thinking Workshop

(Phase) Activities Rationale

(1) Put Aside Personal Interests. Each
participant was given an opportunity to
talk about their own research agenda.

The aim was NOT to look for research overlaps or
to build on existing research strengths. Since the
workshop aimed at getting people to think diffe-
rently, participants needed to put aside their own
research interests for the week. By providing a
forum to air their research first, participants feel
content that their research has been articulated, and
also feel happy to step outside their boundaries.

(2) Think Beyond MDE and Software

Engineering. Participants were asked to
identify the grand challenges of the
population at large in the next 30 years.
This was done by asking participants to
describe two futuristic scenarios: a per-
fect day and a hellish day in 2030. (*)

One way to reach genuinely novel and different
ideas is to change context completely. By asking
participants to temporarily not think about software
engineering, but instead think about societal chal-
lenges, we created an environment in which new
thinking could blossom and participants could
engage with issues that they feel passionate about.

(3) External Influences. Two external
speakers from outside the software engi-
neering community were invited to talk
to participants: one was an expert on
environmental sustainability, the other
was an expert on robotics in marine
environments.

External speakers were introduced at key points as
a nudge to make sure participants continued to
think differently: these speakers were introduced to
provide inspiration from a perspective traditionally
not considered in MDE research.

(4) Ideas Generation. Participants self-
organized into small groups and gener-
ated ideas for future systems that could
address grand challenges identified in
phase 2.

Participants were provided with a safe, supportive
environment to generate ideas. Ground rules were
put in place to ensure that any idea could be heard.
Participants were told to value listening over do-
minating in conversations, quantity of ideas rather
than pre-filtering, being positive over being criti-
cal, to seek wild ideas, and to fully engage with the
process.

Table 2. (Continued)

(5) Consolidation of Ideas. The partici-
pant groups were taken through a series
of iterative cycles where they presented
their ideas to an external mentor and
their peers, received constructive feed-
back, and then were asked to re-present
the evolving idea at regular intervals.

Through this process, the most promising ideas
were nurtured to ensure that they satisfied the
criteria of: novelty, feasibility (within 30 years),
relevance to MDE, and a different way of thinking.

(6) Documentation of Results. During
the workshop, the participants began
writing this paper, which was then com-
pleted after the workshop.

The ideas developed in phase 5 were used as driv-
ing exemplars to identify new areas for MDE re-
search, which are the ultimate result of the design
thinking exercise.

(*) Not included for space reasons, see http://www.cs.mcgill.ca/~joerg/SEL/motb-day.html.

Setup and Participant Selection. We brought together 15 participants for a week-
long design thinking workshop at McGill University’s Bellairs Research Institute.
Participants were required to devote themselves fully to the workshop for the whole
week so that outside distractions could be minimized. The approach to participant
selection was largely “curated” in that the organizers made a prioritized list of poten-
tial participants with the aim of maximizing diversity in terms of seniority, gender,
and research area. In the case that an invited potential participant could not attend, the
organizers went down the prioritized list trying to maintain diversity. The final set of
15 participants included 2 women and 13 men, who came from thirteen academic
institutions from across 8 countries and covered research in a wide spectrum of the
software lifecycle from early requirements to implementation. (It was of course dis-
appointing to not maintain a better gender balance. Despite best efforts, we were con-
strained by the heavy skew towards male MDE researchers.)

Activities. Table 2 summarizes the activities of the design thinking workshop. Ac-
tivities were designed to avoid tunnelled thinking so that genuinely fresh ideas could
emerge. This was achieved in a number of ways: (1) Move people away from their
own research areas so that they are open to fresh ideas; (2) Move people away from
software engineering by having them discuss grand challenges of society today; (3)
Introduce external speakers at key points to inject fresh ideas from a completely dif-
ferent perspective; (4) Encourage unfettered ideas generation, where “anything goes”
and pre-filtering of ideas is discouraged; (5) Consolidate ideas by down-selecting
and/or refining them according to well-defined criteria; and (6) Document the results.
All of these activities are tried and tested, and are based on well-accepted techniques
in design thinking and/or creativity theory.

Rationale. Table 2 gives the rationale for each phase of the design thinking exer-
cise. Each phase was carefully designed so that, taken as a whole, the phases would
lead to new ways of thinking about MDE and MDE research. It is important to under-
stand that many of the activities in phases 1-5 are not an end by themselves, but are
either ways of moving the group of participants towards the end goal, or ways of ge-
nerating useful by-products. The ultimate end-result comes in phase 6, where the

roadmap is defined. The ideas selected in phase 5, for example, were example futuris-
tic systems where MDE could have an influence. Rather than proposing that the
community should start developing these systems, we see these systems as useful
driving ideas to help understand where the current gaps are in MDE research.

4 Grand Challenges for the Next 30 Years

Through several iterations of group brainstorming activities, prioritization activities,
and the perfect/hellish-day-in-2030 session (phase 2 of our methodology), we identi-
fied six grand challenges for society at large to be addressed over the next three dec-
ades. They are introduced here in Section 4.1, in no particular order of importance.
We also provide examples of futuristic software systems in Section 4.2 to illustrate
potential solutions to some of these challenges and highlight the characteristics of
such systems that may have to be addressed by new modeling solutions (phases 4 and
5 of our methodology).

4.1 Six Grand Challenges

1) Resource Affordability and Availability. Many kinds of resources exist, includ-
ing health, food, knowledge, and energy. Yet, they are not available and affordable to
all in equitable ways, even for primary needs. There is a need to substantially improve
the management of resources, including their Creation, Access, Distribution, Usage,
and Disposal (collectively referred to as CADUD), in order to improve resource
availability and affordability for everyone. Additional threats to mitigate include
costs, corruption, greed, wrong incentives, lack of basic infrastructures and data, and
the use of local optimizations instead of more sensible global optimizations.

2) Sustainability. Many resources such as energy and food are not easily renewa-
ble without control and efforts, and we are now facing many sustainability issues that
demand more precise, trustable, and timely information for decision making. In par-
ticular, there is much room for better trade-offs between economic growth and re-
sponsible use of resources, for education and understanding of cause and effects of
CADUD-like resource management, and for ways to avoid misinformation of sustai-
nability factors by special interest groups. There is a vicious cycle where the need for
comfort often leads to growth, which in turn requires more energy, leading to pollu-
tion (and global warming) that stresses our level of comfort. Attitudes need to change
at all levels of granularity (from the individual level to city-wide, regional, national,
continental, and planetary levels).

3) Disaster and Crisis Management. There is a strong need to improve the pre-
dictability of natural disasters such as storms and earthquakes, as well as of human-
triggered crises related to economy, health, and social tensions. Where predictions are
impossible or fail, societies should be enabled to react in a timely way.

4) Steady-State Economy. Global and local economies are still based on a growth
model that cannot be sustained forever. Mechanisms are needed to bring economies of

any scale to a “steady-state” that would no longer rely on continuous growth, exploit-
ing resources and people in all areas of the world.

5) Life Balance. Individuals are subject to many extrinsic factors such as peer
pressure and demand for performance that are difficult to balance with real intrinsic
motivation and a sustainable lifestyle. They are also bombarded with an ever-growing
amount of information that strains the individual’s abilities to cope with life’s chal-
lenges. Support is needed to help understand, manage, and control extrinsic factors
and information to avoid getting caught in a pernicious “rat race” and, instead, to
achieve a healthy balance in life.

6) Common Sense. Current governance structures are often subject to bureaucracy
and abusive lobbying. There is an opportunity to bring back common sense in gover-
nance and better balance the weight of individual/common needs versus the interests
of special interest lobbying groups.

4.2 Four Examples of Futuristic Systems

1) Model-Experiencing Environments (MEEs). Facing the vicious cycles that ham-
per sustainable solutions development and effective resource management, we believe
that any person, community, decision maker, or company should be able to play, ana-
lyze, and “experience her personalized Model-Experiencing Environments (MEEs).
Those MEEs are very “sophisticated and highly tuned “what-if” impact models, but
with a simplified and adaptive user interface. Each MEE consists of combinations of
interconnected models based on open data, enabling one to play, run, and see evi-
dence on the impact over resource consumption chains.

We envision different kinds of MEEs. In any MEE, the user can adjust the level or
amount of different properties she is interested in, e.g., impact on health, employment,
economy, amount of waste, gas, water, or even taxes. Then, she is able to specify and
assemble certain criteria in a do-it-yourself way for the scenario she is interested in.
The selection is automatically propagated to the outcome view where the different
impacts are shown. The impacts are visualized in graphs, charts, or any adapted inter-
faces such as personalized virtual reality ones. Finally, deployed MEEs feed back into
underlying open models to improve accuracy or user confidence.

The following list overviews the different kinds of MEEs:
 MEE for Game-Based Learning: allows children to learn about impacts in a

playful way (tackling challenge 5 (life balance)).
 Crowd-Sourcing MEE Use: permits several people to see impacts if they do

something together (tackling challenges 1 (resources affordability and avail-
ability), 2 (sustainability), and 5).

 MEE-Enabled Community Decisions: informed decisions can be made by
community members (tackling challenges 1, 2, 5, and 6 (common sense)).

 MEE-Driven Policy Analysis: enables policy makers to understand impacts
of their decisions (tackling challenges 1, 2, 3 (disaster and crisis manage-
ment), 4 (steady-state economy), 5, and 6).

In addition, MEEs are likely to be useful in broader domains than just resource
impact models. Any kind of experiencing can benefit from MEEs: personal health

companion, family expenses habits monitoring, etc. This ultimately allows models to
be part of everybody’s life and usage, making them trusted daily objects that enable
everyone to learn, think, and act on her own.

2) Making Zense. Imagine relaxing yoga music… “Do you feel like you are in a
rat race? Do you need to make personal decisions, but can’t evaluate their short term
and long term impact? Do you have trouble balancing work, family, and personal
activities?” Making Zense helps you find a healthy balance. Humans are unique; mod-
eling a human being is too complex. A human story captures important events and
facts, accomplishments, failures, health records, nutrition history, sleep patterns, and
social connections. A human story is completely personal and confidential, i.e., it is
not possible to identify a living person from her human story, but there is a way to
assess happiness levels throughout a person’s life.

Billions and billions of human stories make up the Human-esZense – a vast collec-
tive wisdom, the essence of the human race. It does not stop there. Cities and coun-
tries are also unique, and their stories are also found in the Human-esZense. From
time to time, a role model emerges from human stories. It is shaped by societal forces
at play. A role model displays characteristics that are beneficial to achieve happiness.

Making Zense feeds your human story continuously into the Human-esZense and
compares it with similar human stories. Based on this collective knowledge, personal
trajectories are continuously presented, possible outcomes of one’s life with varying
probabilities and happiness levels, and role models are used to characterize these
possible paths along your road to happiness. Once a role model you would like to
aspire to is selected, the Human-esZense enables the assessment of what-if scenarios
by comparing the proposed changes to your life based on the role model against the
Human-esZense, addressing challenge 5 (life balance)).

3) Models4 (Modeling for the Illiterate). Most modeling languages
and tools target highly-educated experts. Yet, many complain that models are difficult
to create and use. One reason is that we have not yet fully understood what modeling
is, and the intuition needed to make it effective. In addition, a global trend nowadays
is to invite the population at large to learn programming (e.g., see the code.org
effort), as programming and configuration will become pervasively required.
Models4 is an application that enables anyone to create and use models
needed to configure their daily lives and long-term goals, for example with the MEE
and Making Zense systems. It is so intuitive that illiterate people can use it as effec-
tively as domain experts, hence confronting the education portion of challenge 1
(resources affordability and availability). Note that by targeting illiterate people as a
primary audience, the development of Models4 helps us truly understand
what modeling really is, which in turn enables us to transfer this knowledge to a much
broader set of modeling approaches, including those for software and systems devel-
opment.

4) Have You Thought of … (HYTo). Too often, projects are cancelled at very late
stages. Political, cultural, or other factors can play a role in these decisions. For ex-
ample, after the election of a local government, the political leaders decide to stop the
creation of a promised ‘very green’ park, because of the intense lobbying of other
parties, such as influential contractors who plan to develop the space into lucrative

real-estate projects. ‘Have you thought of the coming elections, which could possibly
be won by the opposition party?’, the HYTo application will ask you – along with
‘Have you thought of the increase in tourist revenue because of the park?’ and ‘Have
you thought of the increased CO2 emissions because of reduced green space and in-
creased traffic to the real-estate project?’. HYTo helps you make decisions while tak-
ing the predictions of other (external) factors into account. Consequently, HYTo is
applicable to all challenges identified in the previous sub-section.

5 Grand Challenges of Model-Driven Engineering

As a community, we have made substantial progress in the areas of modeling lan-
guages, processes, quality, and automated integration of models (across domains and
at different levels of abstraction). In addition, we now have, or are very close to hav-
ing, good modeling techniques for tackling complexities related to scalability, fore-
casting/predictions, data/knowledge-awareness, personalized adaptation, usability,
real-time, and perceived intelligence. However, these techniques are currently not
capable of supporting the modeling needs required to realize the kinds of systems
outlined in the previous section. While the MDE community tends to cope well with
only one of these dimensions of complexity at a time, existing and future systems will
face many of these dimensions at the same time, for example:

 Real-time, knowledge-aware forecasting at the personal level (as exemplified
by MEE, Making Zense, and HYTo, which all try to predict future events and
behaviors based on gathered knowledge),

 Personalized, ubiquitous access for uneducated users (obviously applicable
to Models4 but also to a certain degree to all other identified sys-
tems as they are deployed on a massive scale to users without expert know-
ledge),

 Ultra-large scale, intelligent, near-future predictions (which is an essential
part of MEE, HYTo, as well as Making Zense not just at the personal level
but also at the level of whole communities or even countries), and

 Knowledge-aware shaping of usable models, i.e., the tailoring of models to
stakeholders’ immediate needs based on knowledge accumulated at the indi-
vidual, community, and global levels (as required for Making Zense, HYTo,
and MEE because the power of these systems lies in the fact that contextual
models are provided at the right level of abstraction for each stakeholder).

In the final phase of our design thinking-inspired methodology, we more closely
looked at the grand societal challenges, futuristic systems and scenarios, and iterative
refinements of our ideas through the lens of the MDE community and distilled them
into common threads to highlight the following four grand modeling challenges and
new research areas for MDE for the next 30 years.

I) Cross-Disciplinary Model Fusion. One grand challenge is to better take advan-
tage of modeling knowledge across disciplines. Our MDE community has focused
much on software and systems modeling, without much interaction with modeling
activities in areas such as artificial intelligence, databases, the semantic web, or hu-
man-computer interactions. This lack of interaction and awareness is even worse

when we consider entirely different fields, e.g., biology, economics, arts, law, medi-
cine, and social sciences. We need to study more rigorously what other communities
do and learn from their modeling experience and challenges. This will help us im-
prove our modeling approaches to better deal with multiple dimensions of complexi-
ty, while at the same time enabling us to provide modeling approaches that better fit
the needs of other disciplines. The MDE community has a lot to offer in terms of
language, process, quality, and automation expertise that can be leveraged in these
other disciplines. All of the challenges identified in the previous section require mod-
els from different disciplines to be fused into models that are usable by stakeholders.
Solutions to challenges 2 (sustainability), 3 (disaster and crisis management), 4
(steady-state economy), and 6 (common sense) must, for example, make use of mod-
els from economics, physics, biology, and politics to adequately address these prob-
lems. Consequently, solution systems for these challenges (e.g., the highly sophisti-
cated what-if scenarios of MEE and the context-aware questions of HYTo) rely on
cross-disciplinary model fusion.

II) Personal Model Experience. A second grand challenge of MDE is to make
modeling and the use of models directly benefit the individual. Nowadays, access to
sophisticated models and model analysis is restricted to a select few. We need to find
ways to provide individual end users with straightforward access to models that en-
code global information relevant to their particular situation. Furthermore, individuals
must be allowed and able to customize these models to their particular context and
needs, and feel confident that the customization is trustworthy and accurate. While
some default models may be used as starting points, the high individuality of these
personalized models presents new challenges for model reuse. Furthermore, innova-
tive model analysis algorithms and tools have to be developed, that based on the glob-
al information and the individual’s personal context, can produce valuable, timely
insight, which the individual can then use to make decisions on a local scale in accor-
dance to personal beliefs. Solutions to challenges 1 (resource affordability and availa-
bility), 2 (sustainability), and 5 (life balance), and hence solution systems for these
challenges (i.e., Making Zense, MEE, and HYTo), depend on such a personal model
experience to demonstrate to the individual the consequences of local/global and indi-
vidual/communal actions. Models4 , on the other hand, highlights the need to
pay close attention to non-expert users.

III) Flexible Model Integration. An additional grand challenge is to determine
how software models should be structured to provide value when developing systems
that flexibly address many concerns simultaneously, as seen in the four types of sys-
tems described at the beginning of this section. This challenge is complementary to
the first one that seeks for cross-fertilization with radically different disciplines to
MDE, but it focuses on heterogeneous concern integration within an application field.
This integration is already happening in the industry today. For example in the auto-
motive industry, mechanical parts, electronic parts, and software are now extremely
integrated. Furthermore, telecommunication plays an important role, as cars start to
communicate more and more with each other and the surrounding environment. Soft-
ware modeling can play an important role in integrating these large and complex sys-
tems. Tackling this integration challenge also means to be able to dynamically use

and reuse models as well as integration strategies with better confidence in and pre-
dictability of the result. To this aim, means must be devised that allow modelers to
specify assumptions and limitations of models explicitly, as well as the contexts in
which a model can successfully be applied, and how to apply it. Solutions to any of
the identified societal challenges require flexible model integration, which can be
observed most prominently in the MEE and HYTo solution systems where models for
differing concerns need to be assembled on the fly depending on the user’s context.

IV) Resemblance Modeling – From Models to Role Models. Last but not least,
modeling, and object-oriented modeling in particular, has traditionally adopted an
Aristotelian view according to which individuals (objects) are classified by universals
(classes). These classes introduce a very convenient level of abstraction in that they
allow forgetting the myriads of individuals that, from the viewpoint of the modeler,
are all more or less the same. In particular, the introduction of classes allows the re-
duction of a potentially infinite domain to a finite (and usually also rather small) one.

However, this abstraction is not without a price. In complex systems, the differenc-
es between objects may be more important than their commonalities, and if traditional
class-based modeling is used, one quickly ends up with one class per object. While
this is not a problem per se, it does question the usefulness of class-based modeling in
these contexts. The real problem surfaces however when the number of significantly
differing individuals becomes so vast that mapping them to classes boosts models to
an ultra-large scale. In that case, it may make sense to resort to a prototype-based
classification of individuals, defined by the similarity and differences of one individu-
al from another. Certain individuals, the prototypes, then serve as role models for
others, which characterize themselves by stating their role models and the differences
from them. Interaction between individuals is first defined at the prototype level; in-
dividuals may choose to override wherever deemed apt. Models of this kind may
never reach perfect accuracy; yet, they may trade precision for manageability which,
at the ultra-large scale, may be the higher good.

The need for highly individualized models is most obvious in the Making Zense
system (with its billions of unique human, city, and country models) and for the grand
societal challenges where the individual is key (e.g., challenges 1 (resource afforda-
bility and availability), 2 (sustainability), 5 (life balance), and 6 (common sense)).

6 Conclusion and Proposed Action Items

This paper formulates a roadmap by describing four grand MDE challenges that need
to be addressed by the MDE community over the next 30 years. Cross-Disciplinary

Model Fusion highlights the need to investigate modeling in radically different discip-
lines. Personal Model Experience points out that the power of modeling and model
analysis needs to be made available at an individual’s level. Flexible Model Integra-

tion advocates looking inward at software models to find ways to capture and conso-
lidate heterogeneous application concerns. Finally, Resemblance Modeling questions
the applicability of class-based modeling for systems with large numbers of highly
unique individuals.

The six societal and four MDE challenges are an opportunity for the reader to put
her modeling research into the perspective of the broader context of grand societal
challenges, possibly stimulating her to apply modeling research, techniques, and tools
to new areas, to different disciplines, or to bridge the gap and connect fields that have
traditionally been isolated. The intermediate workshop results (summary of MDE
success stories, current MDE problems, six pressing challenges for society at large,
the perfect/hellish day in 2030, and the examples of futuristic systems) provide a rich
frame of reference that allows the reader to look at the relevance of her research, and
the research of the MDE community as a whole, from a different angle.

The roadmap intends to inspire the MDE community. It is our hope that the ideas
presented here will incite new research directions and new technologies, which even-
tually partake in the creation of systems, similar to the ones envisioned in this paper,
that considerably improve the quality of life of mankind.

While the main purpose of this paper is to explore an MDE research roadmap for
the next 30 years, there are two immediate action items that emerged through intense
discussions throughout the workshop. First, there is a need in the MDE community to
more actively look outward instead of inward and invite other disciplines to join the
dialog. Perhaps, a cross-disciplinary or extra-disciplinary track at the MODELS con-
ference (e.g., a Models OUtside Software Engineering (MOUSE) track) may be a
promising start. Second, the Artificial Intelligence, Analytics, and Natural-Language
Processing communities had a coup d’éclat when IBM’s Watson won Jeopardy. The
MDE community should look for a similar demonstration of MDE capabilities that
helps solve a significant societal problem, captivates informed insiders and general
audiences, and makes everyone understand the value of modeling.

References

1. Agner, L.T.W., et al.: A Brazilian survey on UML and model-driven practices for embed-
ded software development. J. of Systems and Software 86(4), 997–1005 (2013)

2. Alam, O., Kienzle, J., Mussbacher, G.: Concern-Oriented Software Design. In: Moreira,
A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107,
pp. 604–621. Springer, Heidelberg (2013)

3. Baker, P., Dai, Z.R., Grabowski, J., Haugen, Ø., Schieferdecker, I., Williams, C.: Model-
Driven Testing – Using the UML Testing Profile. Springer, Berlin (2008)

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier: Technol-
ogy Transfer of Formal Methods inside Microsoft. In: Boiten, E.A., Derrick, J., Smith,
G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg (2004)

5. Bell, A.E.: Death by UML Fever. Queue 2(1), 72–80 (2004)
6. Berenbach, B.: The evaluation of large, complex UML analysis and design models. In:

26th International Conference on Software Engineering. IEEE Computer Society (2004)
7. Briand, L., Labiche, Y.: A UML-based approach to system testing. In: Gogolla, M.,

Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 194–208. Springer, Heidelberg (2001)
8. Briand, L.C., Labiche, Y., O’Sullivan, L.: Impact analysis and change management of

UML models. In: IEEE International Conference on Software Maintenance (2003)
9. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based

Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

10. Buckl, S., et al.: Generating Visualizations of Enterprise Architectures using Model Trans-
formations. Enterprise Modelling and Information Systems Arch. 2(2), 3–13 (2007)

11. Cabot, J.: Model driven engineering is not cool (November 08, 2012),
http://modeling-languages.com/mde-is-not-cool/

12. Cheng, B.H.C., Stephenson, R., Berenbach, B.: Lessons learned from automated analysis
of industrial UML class models (an experience report). In: Briand, L.C., Williams, C.
(eds.) MoDELS 2005. LNCS, vol. 3713, pp. 324–338. Springer, Heidelberg (2005)

13. Combemale, B., et al.: Introducing simulation and model animation in the mdetopcased
toolkit. In: 4th European Congress Embedded Real Time Software, ERTS (2008)

14. Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-specific development with visual studio
DSL tools. Pearson Education (2007)

15. Cross, N.: Design Thinking: Understanding How Designers Think and Work. Berg, Ox-
ford UK (2011)

16. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: 2nd
OOPSLA Wksh. on Generative Techniques in the Context of the MDA (2003)

17. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C., Horowitz,
B.M.: Model-based testing in practice. In: 21st ICSE, pp. 285–294. ACM (March 1999)

18. Dias Neto, A.C., et al.: A survey on model-based testing approaches: a systematic review. In:
Wksh. on Empirical Assessment of Softw. Eng. Lang. and Techn., pp. 31–36. ACM (2007)

19. Dobing, B., Parsons, J.: How UML is Used. Communications of the ACM 49, 109–113 (2006)
20. Farias, K., Garcia, A., Whittle, J., Lucena, C.: Analyzing the Effort of Composing Design

Models of Large-Scale Software in Industrial Case Studies. In: Moreira, A., Schätz, B.,
Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 639–655.
Springer, Heidelberg (2013)

21. France, R., Rumpe, B.: Model-driven development of complex software: A research road-
map. In: Future of Software Engineering. IEEE Computer Society (2007)

22. Goldsby, H.J., Cheng, B.H.C., Konrad, S., Kamdoum, S.: A visualization framework for
the modeling and formal analysis of high assurance systems. In: Wang, J., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 707–721. Springer,
Heidelberg (2006)

23. Grossman, M., et al.: Does UML make the grade? Insights from the software development
community. Information and Software Technology 47(6), 383–397 (2005)

24. Hill, J.H.: Measuring and reducing modeling effort in domain-specific modeling languages
with examples. In: IEEE Eng. of Computer Based Systems (ECBS), pp. 120–129 (2011)

25. Hildebrandt, S., et al.: A Survey of Triple Graph Grammar Tools. Electronic Communica-
tions of the EASST 57, 1–17 (2013)

26. Hutchinson, J., Rouncefield, M., Whittle, J.: Model Driven Engineering Practices in Indus-
try. In: ICSE 2011, pp. 633–642 (2011)

27. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical Assessment of
MDE in Industry. In: ICSE 2011, pp. 471–480 (2011)

28. Inmon, W.H., Zachman, J.A., Geiger, J.G.: Data Stores, Data Warehousing, and the Zach-
man Framework: Managing Enterprise Knowledge. McGraw-Hill (1997)

29. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with Kermeta.
In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 201–221. Springer, Heidelberg (2011)

30. Kawahara, R., et al.: Verification of embedded system’s specification using collaborative
simulation of SysML and simulink models. In: MBSE 2009, pp. 21–28 (2009)

31. Kolovos, D.S., Paige, R.F., Polack, F.A.: Eclipse development tools for epsilon. In: Ec-
lipse Summit Europe, Eclipse Modeling Symposium, vol. 20062 (2006)

32. Kurtev, I.: State of the art of QVT: A model transformation language standard. In: Schürr,
A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 377–393. Springer,
Heidelberg (2008)

33. Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing domain-specific design environments. Computer 34(11), 44–51 (2001)

34. Lilius, J., Paltor, I.P.: Formalising UML state machines for model checking. In: France,
R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 430–444. Springer, Heidelberg (1999)

35. Martin, G., Büttner, F., Richters, M.: USE: A UML-based specification environment for
validating UML and OCL. Science of Computer Programming 69(1), 27–34 (2007)

36. Mayart, F., Bruel, J.-M.: Psychological Requirements for Software Engineers: A Reverse
Engineering Approach. In: IEEE C3SEE, pp. 137–146 (2004)

37. McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with formal
languages. In: 23rd ICSE, pp. 433–442. IEEE Computer Society (2001)

38. Mohagheghi, P., Dehlen, V.: Where is the Proof? – A Review of Experiences from Apply-
ing MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

39. Moussa, A., et al.: Towards a model transformation intent catalog. In: First Workshop on
the Analysis of Model Transformations, pp. 3–8. ACM (2012)

40. Nugroho, A., Chaudron, M.R.V.: A survey into the rigor of UML use and its perceived
impact on quality and productivity. In: ESEM 2008, pp. 90–99. ACM (2008)

41. Offutt, J., Abdurazik, A.: Generating Tests from UML Specifications. In: France, R.B.
(ed.) UML 1999. LNCS, vol. 1723, pp. 416–429. Springer, Heidelberg (1999)

42. Pati, T., Feiock, D.C., Hill, J.H.: Proactive modeling: auto-generating models from their
semantics and constraints. In: Wksh. on Domain-Spec. Modeling, pp. 7–12. ACM (2012)

43. Petre, M.: UML in practice. In: 2013 International Conference on Software Engineering
(ICSE 2013), pp. 722–731. IEEE Press (2013)

44. Radfelder, O., Gogolla, M.: On better understanding UML diagrams through interactive
three-dimensional visualization and animation. In: AVI. ACM (2000)

45. Scheer, A.-W., Nüttgens, M.: ARIS Architecture and Reference Models for Business
Process Management. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 376–389. Springer, Heidelberg (2000)

46. Sol, E., Harel, D., Cohen, I.R.: Reactive animation: Realistic modeling of complex dynam-
ic systems. Computer 38(1), 38–47 (2005)

47. Stikkolorum, D.R., Stevenson, C.E., Chaudron, M.R.V.: Assessing software design skills and
their relation with reasoning skills. In: EduSymp 2013. CEUR, vol. 1134, paper 5 (2013)

48. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches.
Journal on Softw. Testing, Verification & Reliability 22(5), 297–312 (2006)

49. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and
Systems. MIT Press (2002)

50. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial Adoption of
Model-Driven Engineering: Are the Tools Really the Problem? In: Moreira, A., Schätz, B.,
Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 1–17.
Springer, Heidelberg (2013)

51. Whittle, J., Hutchinson, J., Rouncefield, M.: The State of Practice in Model-Driven Engi-
neering. IEEE Software 31(3), 79–85 (2014)

52. Wu, Y., Hernandez, F., Ortega, F., Clarke, P.J., France, R.: Measuring the effort for creat-
ing and using domain-specific models. In: Wksh. on Domain-Spec. Mod., p. 14. ACM
(2010)

