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Preface

The importance of computer applications has grown quite a lot in the last
few years. These applications influence and sometimes control many areas
of human life. Nowadays, it is possible to find a programmed computer
chip in many products starting with common things like a TV set or a
mobile phone. The list continues with medical tools and ends with high-tech
products like for example airplanes. Obviously, each application needs to be
extremely reliable, since every encountered problem costs lots of money, trust
of customers and sometimes even human lives. To avoid these extra costs,
it is important to restrict, as much as possible, our limited ability to design
and implement complex systems with sufficiently high degree of confidence in
their correctness under all circumstances. The problem of design validation
— ensuring the correctness of the design at the earliest stage possible — is
therefore the major challenge in any system development process.

Design validation is the task of testing a design adequately to ensure
that all parts will function within specifications in end-user applications and
environments. While testing explores some of the possible behaviors and
scenarios of the system, leaving open the question of whether the unexplored
trajectories may contain the fatal bug, formal verification conducts an
exhaustive exploration of all possible behaviors. Thus, when a design is
declared correct by a formal verification method, it implies that all behaviors
have been explored.

At the beginning, formal verification was introduced to help proving
correctness of computer hardware but recently also communication protocols
and computer software have received proper attention. However, the usage
of verification methods varies in the different areas. While verification of
hardware is a daily routine for all hardware developers today, the state of
software verification is still unsatisfactory. Things are changing . . . .
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In this thesis, we are concerned with the formal verification of designs of
(real-time) embedded systems that may be specified hierarchically. In order
to perform formal verification, the design is specified as a set of interacting
systems; each described as a finite state transition system. There are two
major approaches to formal verification: theorem proving and model checking.
Theorem proving has the advantage of effectively verifying state models using
axioms and proof rules but it has two main disadvantages. Firstly, it requires
sufficient expertise in formal methods and secondly, if and when a failed
proof occurs, the theorem prover does not present a counterexample. As a
consequence, only a small number of research groups has been able to apply
this technique to industrial-scale software. Model checking has appeared
as a clear competitor to the traditional verification method, particulary in
developing reliable software for concurrent systems. In model checking, a
specification or implementation is described as a transition system and then
some properties of the system — expressed as a logic formula — are checked.
Usually logics that are used, are suitable to express properties like liveness
(something desired will eventually happen) or safety (something bad never
happens).

The main problem that formal verification tools have to face is the fact
that transition systems tend to consume too much memory, more than
today’s computers can manage. This problem usually is called state space
explosion. Thus, it is quite complicated to develop an efficient verification
tool for embedded applications. In contrast, hardware devices don’t need
such large transition systems due to some regularities in their design.

Abstraction is probably the most important technique for reducing the
state space in order to create safe, compact, finite-state models that are
suitable for verification. The verification will run faster regardless of
the particular implementation techniques it employs. Some abstraction
techniques reduce the size of the state transition graphs while others find
a mapping between the actual data values in the system and a small set of
abstract data values. Program slicing, as yet another abstraction technique,
removes variables from the system that do not influence the behavior to be
checked.

Scope and Goals of the thesis

The main goal of the thesis addresses embedded software verification,
together with the corresponding methodology, in order to minimise the risks
of software failure. Additionally, a simple-to-use tool is under development
that will help in the formal verification of the applications, and that reduces
the state space explosion problem.
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Before any checking can begin, one is thus confronted with the task of
specifying and designing the embedded system of interest. The implementa-
tion of the system is not considered here. The modeling step is difficult since
no universal method exists to model a system. However, it is crucial to the
relevance of the results subsequently obtained. It becomes easier when the
Unified Modeling Language is used. This language is a graphical notation for
creating software application designs in an object oriented manner. When
used within a methodology, several of the language models are useful to
represent different views. These views are used within the developing process
for means of documentation, communication and requirements capture and
allow the abstraction from implementation details such as programming
language and computer platform.
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CHAPTER 1

Introduction

The fearful unbelief is unbelief in yourself.
Thomas Carlyle.

I
n recent years, the use of embedded software has risen to a previously
unseen level. Everywhere we see devices that utilize modern computer

technology to improve usability or performance; cars, telephones, vending
machines etc. all use embedded software nowadays.

As we all know from our computers, there are bugs in all useful computer
programs. While bugs are irritating, they are often harmless on our home
PC but not accepted in embedded software; if the brake system of a car fails
it is too late to submit a bug report.

Embedded systems are often safety critical and therefore require high-
quality design and guaranteed properties. Model-based design has been
advocated as the method of choice for dealing with systems as these. The
design process consists of building models on which the required properties
are carefully checked before continuining with implementation phases. This
allows high quality to be achieved at lower costs.

We will start the introduction by defining embedded systems. Then, the
importance of designing is considered together with a short description of a
succesful design language. To continue, the need for verification is explained
in great detail together with a verification method (and its optimization) that
is particularly used throughout the thesis. Finally, an outline of the thesis
is given to briefly show what we have considered to achieve high quality of
embedded systems.

1
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1.1 Embedded Systems

Deep in the intellectual roots of computation is the notion that software is
the realization of mathematical functions as procedures. These functions
map a body of input data into a body of output data. Such functions are
widely used in various areas for all kinds of applications available for various
needs, such as spreadsheets, word processors, scientific calculators and tools,
etc.

Embedded software is not like that since they are mostly control-oriented
rather than data-oriented. Embedded computers [75] are processing devices
used in diverse areas as wireless communications, medical instrumentation,
food preparation, water treatment facilities and so on. Users of these systems
may not be aware of the CPU embedded within, making decisions about how
and when the system should act, as illustrated in Example 1.1 The users are
not intimately involved with such a device as a computer per se, but rather
as an electrical or mechanical appliance.

Example 1.1. Consider a simple pumping control system [98] that transfers
water from a source tank A into another sink tank B using a pump, as shown
in Figure 1.1. Each tank has two meters to detect whether its level is empty
or full. The level is ok if it is neither empty or full. Controls on the water
levels are used to switch the pump on or off i.e. the pump is switched off as
soon as either tank A becomes empty or tank B becomes full.

Figure 1.1: A Pumping Control System

Embedded systems [1] do not provide standard computing services and
normally exist as part of a bigger system. A computerized washing-machine is
an embedded system where the main system provides the feature of washing
clothes with the help of an embedded computer. Embedded systems were
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incorporated into commercial automobiles around the 1970s. The anti-
lock braking system (ABS) is probably the best known. Today this trend
continues with more innovative technologies such as adaptive cruise control
and smart radar systems to avoid collisions. In each case, the embedded
computer is part of a larger system that provides some noncomputing feature
to the user. Usually, embedded systems are built with the least powerful
computers that can meet both functional and performance requirements1.
Of course, this is to reduce the manufacturing cost of the equipment but this
does not mean that it is just software on small computers.

In conventional operating systems, a programmer easily allocates big
chunks of memory without having to think about the consequences. These
systems have enough main memory and a large pool of virtual memory
to support such allocations. In contrast, the embedded system developers
have to manage with complex algorithms to manage resources in the most
optimized manner.

Embedded software is different from traditional software in many as-
pects [74]. It has additional properties like liveness, concurrency, reactivity,
heterogeneity, and interfaces. Of course, all these properties are essential to
the correctness of a program meaning that it is not sufficient to realize the
right mapping from input data to output data. Liveness means that typical
software in embedded systems does not terminate (unless it fails) or blocks
waiting for events that will never occur. Concurrent processing is a feature
of most embedded systems. This means that there are many events that need
to be processed in parallel, and frequently, the order of incoming events is
not predictable. Additionally, many embedded systems are reactive systems.
They are event-driven and must respond to external stimuli. It is usually the
case in reactive systems that the response made by the system to an input
stimulus is state dependent i.e. the response not only depends on the stimulus
itself but also on what has previously happened in the system. Naturally,
embedded systems are a mixture of hardware and software components; the
embedded software interacts with the hardware. The systems can also be
heteregoneous in terms of different communication protocols or scheduling
policies. Interfaces are universally accepted solutions to combine hardware
and software after separate and independent development cycles. Its use
enables the portability of software onto different hardware platforms together
with the reuse of major parts of the software or hardware.

In most of the real-life applications, real-time systems often work in

1Functional requirements specify what should be done whereas performance
requirements specify how well something has to be done. Every performance requirement
presupposes a functional requirement, since specifying how well something should be done
presupposes specifying what should be done as well.
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an embedded context and most of the embedded systems have real-time
processing needs. Such systems are called Real-Time Embedded Software
Systems.

Real-Time Embedded Systems

The common feature of all real-time software systems [3, 38] is timeliness i.e.
the requirement to respond correctly to inputs with acceptable time intervals.
They encompass all devices with performance constraints. As defined by D.
Gillies:

A real-time system is one in which the correctness of the computations
not only depends upon the logical correctness of the computation but
also upon the time in which the result is produced.

A hard real-time system is a system whose operation is correct if results are
produced according to the timing specification. A late response results into
an erroneous computation and a system failure. In these systems, late data
is bad data.

Soft real-time systems (e.g. airline reservation systems) are systems
whose operation is degraded if results are not produced following the
specified timing requirements. It is possible that the timing constraint is
missed occasionally or missed by small deviations, or occasionally skipped
altogether. Here, late data may still be good data.

Firm real-time systems combine both hard and soft timeliness require-
ments. The computation has a shorter soft requirement and a longer hard
requirement.

1.2 The Need for Design

Many embedded systems interact with multiple sources at the same time.
Such sources can be electrical devices, mechanical ones or just human beings.
Frequently, custom software has to be specifically written to control the
embedded system.

A first problem that arises with interaction is that the environment
disregards the opinion of the developers of how and when the system ought to
behave [38]. Another problem programmers of such applications have to face,
is that they have to make sure that the application reacts to external events at
the moment they occur, rather than when it might be convenient. Moreover,
the embedded system developers have to implement complex algorithms on
less hardware resources. The list of bottlenecks can easily be extended.
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All the above reasons make embedded systems more complex and
expensive to develop and to maintain. Developers often find themselves
struggling to understand and to control them [8, 42, 131]. The question now
is whether there exists a feasible way to construct embedded systems. To
answer this question, let’s first take a look at the following anecdote [103]:

When my son was 13, my husband and I thought he should have some
space of his own. So we called in Leon the handyman and sat around
the kitchen table. “What do you want?” he asked. Simple . . . a few
closets, some electrical outlets, a cable hookup. Leon went off and
remodeled the basement, and life was good. That is until winter came
along and poor Michael comes upstairs and says, “Mom, I’m cold.”
You see, we hadn’t thought about putting heat in the basement. So we
decided to put in a gas fireplace. However, we don’t have natural gas
where I live, so we had to get a propane tank. Unfortunately, the only
place it would fit was over in one corner, with all the storage in the
other corner, and everything else in a third corner. The result is that
you can’t sit in my basement and see the TV and the fireplace at the
same time. If we’d done some planning, we would have been able to
design a room that was much more functional and comfortable.

Clearly, the anecdote shows that software development, either embedded
or not, is more than just typing in some lines of code. We must produce
systems that scale as the underlying business grows and evolves at high
speed. And these systems have to cope with the users’ never ending appetite
for functionality, scalability, extensibility, and reliability.

Nowadays, most programming languages provide lots of features to be
capable to meet such users’ demands [8, 131]. Consider for example the
programming language Java2. Its associated virtual intermediate machine
architecture provides platform independence by hiding the organizational
details of the platform it runs on. Also, Java has an excellent support for
exception handling and concurrency. Moreover, it is an advanced object-
oriented language that allows the construction of very complex applications.
Furthermore, object-oriented design is the key to both software reuse and
the harnessing of complexity.

Unfortunately, all these features are not enough to develop very complex
systems. Let’s finish the anecdote [103]:

Now in this instance we made some mistakes, but it wasn’t a serious
disaster. Think about building a skyscraper, though. No one would
dream of a major construction project without thorough blueprints.

2Available from http://java.sun.com/
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That’s blueprints plural, because it’s important to not only have one
plan of the skyscraper — you need to have multiple plans. The
electrician needs a view to show where the wiring goes. The plumber
needs another plan so he doesn’t put a sink in the elevator. And the
carpenters need to know where to put this expensive crown molding
in the CEO’s office. Different workers need different views of what
they’re trying to build. And that’s what we’re doing with software.

Embedded systems are systems in which the number, diversity of devices,
amount of software, and degree of connectivity continuously increases.
Therefore, they are never constructed by a single developer, an aspect the
anecdote also adresses. Of course, developing embedded systems, or other
complex systems, requires a clear understanding of the problem and a clear
plan for the solution. In order to develop such understandings, developers
need to visualize the system and communicate their decisions and creations
to a wide audience. The conclusion is the same as the anecdote i.e. it
is essential to have a design on which to base our efforts to develop such
systems [8, 42, 131].

1.3 What is Design?

The heart of building (embedded) software systems is the construction of a
design. In [131] a nice description is given:

What is design? . . . It’s where you stand with a foot in two worlds —
the world of technology and the world of people and human purposes
— and you try to bring the two together.

A design is an attempt to fully understand the problem and to have a clear
plan for the solution. It abstracts the essential details of the underlying
problem from its usually complicated real world. It is the architectural model
of a system that is created, modified and analyzed during the development
cycle of a system [8, 42, 131]. It is the process of conceiving, inventing
and contriving a scheme to be able to turn a specification for a (complex)
system into an operational one. Design encompasses all the activities involved
in conceptualizing, framing, implementing, commissioning and ultimately
modifying complex systems [42].

The goal of design [8] is to make the next step, implementation, as simple
and efficient as possible. During design, developers create a model of the
objects that interact with each other to fulfil the requirements of a system.
Design describes the solution, in great detail. Moreover, omitting design
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is expensive and risky since it is cheaper and less time-consuming to make
decisions at design level than at code level i.e. it prevents painful rework
later [4, 8] (see section 1.6).

A design, also called a model, is far more accessible than the actual
code that makes up the final system. It is a simplification of a reality; it
is a blueprint of the actual system that needs to be built. Of course, a
design is a visual model that enables more developers to understand, to
(re)build, to evaluate and to review more of the system. This allows them
to understand their own responsabilities and to estimate their effort more
accurately. Within a design, decisions can be changed very quickly and
efficiently. This contributes to the overall success of the project.

1.3.1 Different Views

Clearly, the anecdote indicates that a single model of a complex system has
to describe the system from different perspectives [8, 103]. Each perspective
is needed for a full understanding of the system. One view might show
the system from the user’s perspective while another view might describe
the communication between several components of the system. Yet another
view can be used to specify the behavioral part of some components.

It is important that the different views are visualized using a common
language that is shared by all persons who are involved in the development
process. Naturally, this requires a consistent use and understanding of the
language. Moreover, the language must have plenty of features to be able to
create several system perspectives. The Unified Modeling Language is such
a language.

1.4 The Unified Modeling Language

In this thesis, we want to be able to cope with embedded systems which
are given as models in the formalism of the Unified Modeling Language
(UML) [96]. The Object Management Group (OMG) states:

The Unified Modeling Language (UML) is a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of
a software-intensive system. The UML offers a standard way to write
a system’s blueprints, including conceptual things such as business
processes and system functions as well as concrete things such as
programming language statements, database schemas, and reusable
software components.
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The important point to note here is that UML is a language intended to
specify designs and not a method or procedure. The UML is used to define
a software (embedded) system; to detail the artifacts in the system, to
document and construct; it is the language that the blueprint is written
in. The language is capable to separate business logic from the underlying
platform technology. The UML may be used in a variety of ways to support
a software development methodology but in itself it does not specify that
methodology or process i.e. it does not tell you what to do first and what to
do next or how to design your system.

1.4.1 History

Identifiable object-oriented modeling languages began to appear between
mid-1970 and the late 1980s as various methodologists experimented with
different approaches to object-oriented (OO) analysis and design. The
number of identified modeling languages increased from less than 10 to more
than 50 during the period between 1989-1994. Many users of OO methods
had trouble finding complete satisfaction in any one modeling language,
fueling the “method wars.” To stop these wars, the UML was constructed.

UML was a combination of three different approaches to modeling soft-
ware. Ivar Jacobson had a methodology for viewing requirements called Use
Cases that included diagrams very suspiciously similar to telecommunications
diagrams.

Jacobson in 1992 more formally defined a method for modeling objects
called Objectory. Around the same time James Rumbaugh was working
on another method for modeling object-oriented systems called OMT. Yet
another modeling method named after its creator, Grady Booch, was being
developed and defined a couple of years later.

Rumbaugh and Booch started working together at Rational Software (now
IBM Rational) [57] in 1994 to combine their two methods. Put into a
draft in 1995, it became the now-famous 0.8 version of UML. Jacobson soon
joined with Rumbaugh and Booch to bring his ideas for Use Cases and his
experience into the mix. It was also around this time (in 1996) that the
OMG [responsible for the CORBA standard] submitted a RFP (request for
a proposal) for a standard method to model object-orientated software. By
September of 1997 UML was submitted to the OMG, and was later approved
in November of the same year. From that point forward, UML has been the
standard modeling language for the OMG [96] and is, as of this writing, the
defacto standard for modeling software. In 2004 the second version of UML
was developed by the OMG in the form of UML 2.0. Even though the OMG
controls the further development of the UML standard Booch, Rumbaugh,
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and Jacobson will forever be remembered as the “Three Amigos” of software
for their contribution to UML.

1.4.2 The Basics

UML is composed of many model elements [38, 96, 105] that represent
different parts of a (embedded) software system. UML offers nine different
diagram types for specifying both structure and behavior of a system. These
are use case diagrams for catching the requirements of a system, class
diagrams and object diagrams for describing its static structure, and com-
ponent diagrams and deployment diagrams which depict its implementation
structure. Collaboration diagrams , sequence diagrams , statechart diagrams ,
and activity diagrams specify the different aspects of behavior of a system,
building up on the static structure defined in the corresponding diagrams
described above.

All in all, UML tries to specify and visualize all aspects of software
systems utilizing all nine diagram types. Each diagram type focuses on a
specific aspect of the system to be built. Therefore, they are independent
views of the model just as a number of computer screens looking into different
records or parts of a database showing different views. Use case diagrams
show the functionality of the system from an outside-in viewpoint. They are
helpful to determine the required features the system is supposed to have.
More precisely, they tell what the system should do but they cannot specify
how this should be achieved. Class diagrams describe the structure and
the interdependencies of the classes in an object-oriented system whereas
object diagrams depict the instances of these classes. The latter ones can be
used to test class diagrams for accuracy. In contrast, the interdependencies
between physical pieces of software (e.g. in makefiles) are visualized by
component diagrams and the relationships between software and hardware
by deployment diagrams. Behavior that occurs between objects is grasped
in different ways, either with focus on the structural dependencies between
them (collaboration diagrams) or with focus on the message flow (sequence
diagrams). The intraobject behavior is captured by statechart diagrams,
whereas the workflow and other activities in the system are depicted with
the help of activity diagrams.

Example 1.2. The pumping control system of Example 1.1 easily extends
to a controller for a complex network of pumps and pipes to control multiple
source and sink tanks, such as those in water treatment facilities or chemical
production plants. Now, let’s add additional control changes to this embedded
system. The pump is to be switched on as soon as the water level in tank A
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reaches ok, provided that tank B is not full. The pump remains on as long
as tank A is not empty and as long as tank B becomes full. Such control
changes can be visualized using statechart diagrams, as shown in Figure 1.2.
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Figure 1.2: Statechart Diagram of a Pumping Control System

1.4.3 Tool Support

Over the years, UML has been established as a standard in object-
oriented software engineering, defining parts and making systems more easily
understandable. There exists a lot of UML-tools (either commercial or not)
that are widely applied in the development of a wide range of systems. And
most of them ultimately produce full production code from the model for the
target system. We will mention a few of them.

Rational Rose [57], one of the best known UML-tools; free to universities,
but not as fully featured as some of the others e.g. they do not support code
generation for statecharts. Note that Rational was bought by IBM.
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Rhapsody [58], is meant to be a clear competitor to Rational Rose,
supporting model-driven development and all those good things. It is the
tool, I have worked with during the last four years. Also, the company is
member of the OMG.

A free UML tool is for example ArgoUML [111], but it runs far behind
the others in the sense that they are slow in adapting to new versions of the
UML standard. Another free one (for now) is Jude [29]. It looks like the
authors intend to create a “plus” version for which they will charge money,
while keeping the basic (fairly fully featured) version free.

1.5 The Need for Verification

Today, embedded systems are widely used in applications where failure is
undesirable or even unacceptable: coffee-machines, medical instruments, air
traffic control systems, video-on-demand applications, and other examples
too numerous to list. We frequently read of incidents where some failure is
caused by an error in a hardware or software system. A recent example of
such a failure is the destruction of the Ariane 5 rocket [80], due to a floating
point overflow; one bug and one crash [45].

The story of the Ariane 5 rocket tells us that the need for reliable
hardware and software systems is critical [45, 71, 80]. As the involvement of
such systems in our lives increases, so too does the necessity for ensuring
their correctness. Unfortunately, it is no longer feasible to shut down
a malfunctioning system in order to restore safety; we are very much
dependent on such systems for both their continuous operation and proper
functioning [26]. Therefore, verification becomes important.

Verification will play an important role in each development process3 to
ensure that the system conforms to its specification and to guarantee that
the system is functioning as expected by the users [4, 123]. Verification
ensures that the developed system is correct and that the right system is
developed. Naturally, with a product quality below expectations, users will
definitely find a substitute system that better satisfies their needs. Suppose,
for example, that the coffee-machine has software problems all the time,
would you consider tea after a while? Of course, not only verified software
is neccesary to avoid problems: if the coffee-machine suffers from regular
hardware failure, then again one would consider tea after a while. When
printing, the same mechanisms appear. If there are five networkprinters
available, then people choose the best one. Again, people start looking for

3We concentrate our verification purposes only on the software part of embedded
systems.
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alternatives if those printers regularly fail due to soft- or hardware problems
or due to the lack of local support.

Roughly speaking, each development process [107] starts with a re-
quirement analysis that is followed by proper design phases that make the
implementation of the system a lot easier. Of course, in each phase, possibly
several methodologies are used. For the specification of (embedded) systems,
usually several UML models representing different views are developed. In
spite of the use of design languages like UML, the software design becomes
more and more complicated so that the integrity of a system design, even
in the early stages, is very difficult to be guaranteed. Furthermore, because
UML is a very expressive and rich language, sometimes the model gives rise
to behaviors that are not expected by the designers and those behaviors could
cause serious bugs for the system.

Ideally, faults (inconsistencies, misconceptions, deadlocks, etc.) in a
system have to be discovered as early as possible, to avoid painful rework later
on in the development process [4]. Therefore, detailed designs are important
since they provide the last chance to validate the solution before the expensive
implementation process and test phases begin. Costs to detect and correct
faults grow dramatically when these have propagated to later phases [2, 4].
Recovering from faulty reasoning during or after the next phases is a very
tedious practice and incredibly expensive to fix. Observations have shown
that the costs of correcting a fault in design and code phases is often 10 to
100 times less expensive than if it is found during the test phases [2, 4]. This
is a major driver for focusing the effort on detecting faults early on in the
development process. The goal of this thesis is to develop a method where
faults may be detected during the design phase.

1.6 Our UML Design Verification Method

Do we want a fast design or a correct design? We all know the right answer
by now. Design verification is becomming the major part of the design phase;
its goal is to find faults in the design itself.

Some people still claim and still believe that the use of formal methods is
not required [20]. We all know that this is a mistruth. Formal methods are
mathematically-based approaches. They are highly important in systems
where the issue of correctness is of concern. Formal methods have the
potential to help eliminate errors early in the design process. Formal methods
ensure that errors are not introduced into the development process [20, 21]
because it is a tedious practice to remove errors during or after the code
phase. The use of formal methods in the design phase improves the quality of
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the software, whether or not mathematical approaches are used in subsequent
phases of software development [21]. You may know that design verification
is a formal verification technique that, of course, extensively uses formal
methods.

Design verification is not the same as design validation. The problem of
design validation — ensuring the correctness of the design at the earliest stage
possible — can be solved by using techniques like simulation and testing [26].
Both methods typically inject signals at certain points in the system and
observe the resulting signals at other points. These methods can be an
efficient way to find many errors. However, checking all of the possible
interactions and potential pitfalls using simulation and testing techniques is
rarely possible, but extremely important when verifying embedded systems
for their continuous operation, proper functioning in different circumstances,
and so on. In contrast, formal verification such as design verification based on
model checking [26], the main method used throughout this thesis, conducts
an exhaustive exploration of all possible behaviors.

1.6.1 A Part of the Design

The previous sections have illustrated that for the specification of object-
oriented (embedded) systems, usually several models representing different
views are developed, independent of the used modeling language. Building
models that faithfully represent complex systems is a non trivial problem and
a prerequisite to the application of formal verification techniques even at a
high level of abstraction. Since there are lots of things of a design (specified
with UML) that can be verified, the design verification is here limited to
the verification of one of the most important UML diagrams: the statechart
diagram; i.e. we will focus on the verification of the behavior of objects. So
why this limitation?

Typically, most embedded systems are control-oriented rather than data-
oriented, meaning that the dynamic behavior is much more important than
business logic (the structure and operations on the internal data maintained
by the system). For control-oriented systems, UML statecharts [38, 96, 105]
are widely accepted as good, clean and abstract representations to represent
the dynamic behavior of classes of these systems.

Embedded systems do often have complex control schemes. They
are characterized by concurrency aspects, by the synchronization and
the communication among various entities inside or outside the system.
Consequently, embedded statechart models become highly complex and as a
result, error conditions easily find their way to inflitrate in these models.
Moreover, it quickly becomes impossible to manually verify whether the
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system possibly deadlocks, whether its components react on time, and so
on and so forth. Properties like the mentioned ones are highly essential
for the behavior of embedded systems and their correctness. Embedded
system behavior must be free from any failure. That is the reason why this
manuscript limits the verification of the design to the verification of UML
statechart models.

1.6.2 The Process

It is one of the intentions of all the chapters to explain the verification
methodology in detail and how it is step-wise built. Therefore, we will now
just briefly give an overview; the black box of the verification process.

Figure 1.3 presents a verification process of embedded systems, whose
behavior is expressed using UML statechart diagrams. These diagrams
(saved using the XMI exchange syntax) are first transformed into an
equivalent format, called Extended Hierarchical Automata [46, 68, 72, 124].
From these formats, a model in the language of the model checker Ca-
dence SMV (CaSMV) [86] is generated. Additionally, behavioral temporal
properties are injected into the model as well. Once having the complete
model, which in fact is the combination of a finite state machine and a
logical formula, the essential behavioral properties are automatically verified
using the model checking technique. If the system does not satisfy a
property, a counterexample (i.e. a path in the statecharts that does not
fullfil the requirement) is returned. The software developers interpret the
counterexample and fix the fault in the UML model; at that moment, the
whole process of designing and verifying is restarted.

Details about the model checking technique are given in Section 1.6.4,
which also motivates the use of it in our verification approach. The
motivation for using CaSMV is given in Section 1.6.5. Another aspect of
our UML verification methodology overcomes an important key obstacle of
model checking: the state explosion problem. To improve the efficiency of
model checking by tackling the state explosion problem, the technique of
program slicing can be applied to the statechart diagrams that are part of
the design. This problem is briefly discussed in Section 1.6.7.

One of the advantages of the method is that it can be fully automated.
Another advantage is that the entire background mathematics of model
checking is completely hidden to the software designers. This eliminates
a specific expertise in the theoretical field of model checking.

In fact, we have built a Java-application [53, 122] that does the necessary
transformations, calls the model checker at the appropriate time, and
interprets the returned counterexample (the process visualized in Figure 1.3
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Figure 1.3: Black Box of Methodology & Tool Architecture

refers to the architecture of our Java application). Moreover, this application
can be used as a plug-in tool for existing UML Case tools, like for example
Rhapsody [58]. Additionally, the verification procedure can be used in an
incremental design process. This means that each new version of the design
can be automatically verified. Having an automated verification method,
which is based on a mathematical approach and that easily integrates in the
design phase, increases both our confidence in the UML system design and
the use of it in industrial applications; at least, that is what we hope.

1.6.3 Model Checking

Model checking is the most successful approach that has emerged for verifying
requirements of software and reactive systems. The essential idea behind
model checking is shown in Figure 1.4. A model-checking tool accepts a
system design (called models) and a property (called specification) that the
final system is expected to satisfy. The tool then outputs yes if the given
model satisfies given specifications and generates a counterexample otherwise.
The counterexample details why the model doesn’t satisfy the specification.
By studying the counterexample, you can pinpoint the source of the error in
the model, correct the model, and try again. The idea is that by ensuring
that the model satisfies enough system properties, we increase our confidence
in the correctness of the model.

Model: Kripke Structure

The model, used by a model checking tool, is a type of state transition graph,
called a Kripke structure [26], to capture the behavior of embedded systems.
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Figure 1.4: Model Checking Approach

Each state in a Kripke structure is essentially a tuple containing one value
for each state variable i.e. a state is a snapshot or instantaneous description
of the system that captures the values of the variables at a particular instant
of time. A transition in a Kripke structure denotes change in the value of one
or more variables i.e. it shows how the state of the system changes over time.
The computations of the model can be defined in terms of its transitions. A
computation is an infinite sequence4 of states where each state is reached from
the previous state by some transition. These computations can be visually
represented into an infinite tree where the root is labeled with our chosen
initial state and the children of any state denote the next possible states.
Obviously each path in the tree indicates a possible execution or behavior of
the system.

Example 1.3. Let’s recap Example 1.1 and 1.2 again. Suppose that initially
both tanks are empty and that the pump is turned off. The infinite execution
tree is shown in Figure 1.5. Remember that a system state, represented
by a bullet in the figure, is defined by a tuple of values for each of the
three components in the system. For example, (tankA = Empty, tankB =
Ok, pump = Off) and (tankA = Empty, tankB = Full, pump = On) are
possible system states.

Specification: Temporal Logic

The aim of model checking is to examine whether or not the execution
tree satisfies a user-given property specification. The question now is how
do we specify properties of paths (and states in the paths). Referring to
Example 1.1, how do we state properties like it is always possible to reach a

4The infiniteness comes from the fact that each state must always have a successor
state.
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Figure 1.5: Execution Tree of a Pumping Control System

state where tank B is ok or full? In fact, temporal logic [26] is a simple and
intuitive notation suitable for this purpose.

Temporal logic is a form of logic specifically intended for statements
and reasonings which involve the notion order in time. It is a formalism
for describing sequences of transitions between states in a system. Time,
however, is not explicitly mentioned, but instead, a formula might specify
that eventually some state is reached, or that an error state is never entered.
Properties like eventually, never or always are specified using special temporal
operators . These operators can also be combined with boolean connectives or
nested arbitrarily to build up complicated expressions describing properties.
Temporal logics differ in the operators that they provide and the semantics of
those operators. We will focus on Lineair Temporal Logic and Computation
Tree Logic [12, 26].

The Lineair Temporal Logic: LTL Lineair temporal logic, which
states path properties, studies the evolution of a system (through time)
by examining the state sequence in a system’s path. An LTL specification
describes the intended behavior of a system on all possible executions. The
logic is called linear since a system in a given state is only considered to have
a single successor state in the next instant. The logic is the propositional
logic built up from the elementary propositions augmented with five new
operators (Figure 1.6, Figure 1.7):

• The unary operator X (“next time”) requires that a property holds in
the second state of the path.

• The unary operator F (“eventually” or “in the future”) is used to assert
that a property will hold at some state in the path.
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• The unary operator G (“globally” or “always”) specifies that a property
holds at every state on the path.

• The binary operator U (“until”): ϕ1 U ϕ2 states that ϕ1 is verified until
ϕ2 is verified.

• The binary operator R (“release”) is the logical dual of the previous
operator (ϕ1 R ϕ2). It requires that ϕ2 holds along the path up to and
including the first state where ϕ1 holds, if ϕ2 ever stops to hold i.e. the
first property is not required to hold eventually.

p X p...

p F p...

G p...pp pp pppp

Figure 1.6: Unary LTL Operators
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Figure 1.7: Binary LTL Operators

The Computation Tree Logic: CTL Computation tree logic expresses
state properties that can take into account the branching structure of a
transition system, i.e. that a state can have various distinct successors. For
instance, many futures are possible starting from a given state. Special
purpose path quantifiers, A and E, allow one to quantify over the branching
structure of a transition system.

• Aϕ states that all the executions out of the current state satisfy property
ϕ.

• Eϕ states that from the current state, there exists an execution satisfying
ϕ.
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The path quantifiers are mostly used in combination with the LTL operators,
and they are easiest to understand in terms of the computation tree obtained
by unfolding the Kripke structure. The A and E combinators on the one
hand, G and F on the other hand, are often used in pairs as illustrated in
Figure 1.8.
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Figure 1.8: CTL Operators

Example 1.4. Using temporal logic, the property “it is always possible to
reach a state where tankB is ok or full” can be formalized as:

AGEF (tankB = Ok ∨ tankB = Full)

To understand this formula it is sufficient to know that AGEFϕ states that at
any instant of any execution it would be possible to reach ϕ. Or, ϕ is always
potentially reachable. This can be verified even if there exists an execution
in which ϕ is never realized. Along every execution, the quantifier E allows
expressing that alternative executions exist which would carry on the system
behavior in different ways.

Tool Support

Some myth that sometimes is still being propagated is the following: formal
methods are not supported by tools [20]. The concepts presented above take
effect in model checkers ; which are of course mechanized versions of the model
checking technique. During the past few years, errors have been discovered,
when using these model checkers, within larger and larger systems. The
success and limitations of these tools lead to an important research activity
in the field of verification. Although this research has a high theoretical
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level, it systematically faces reality through the development of new tools,
with increasing efficiency. We will mention a few of them.

To perform verification tasks on statecharts, we have decided to use
the Symbolic Model Verifier (SMV) [87]. This tool has been developed by
K. L. McMillan and has further evolved into Cadence SMV (CaSMV) [86].
Its input language provides features for describing finite state systems that
range from synchronous to asynchronous. The proof assistant supports
several compositional methods. These methods allow the verification of large,
complex systems by reducing the verification problem to small problems that
can be solved automatically by model checking. It provides a variety of
such techniques: induction, circular compositional reasoning, temporal case
splitting, and data type reduction.

SPIN [54, 55] was designed for simulation and verification of distributed
algorithms. Its input language allows to describe the behavior of each process
in the system as well as the interactions between them. Its key feature is
the availability of several state space reduction methods: state compression,
on-the-fly verification and hashing techniques. Properties to be verified can
only be written in LTL.

Other model checkers are DESIGN/CPN, UPPAAL, KRONOS, and
HYTECH. Interesting to note is that some theorem provers, like PVS [109]
or Isabelle [100] provide model checking features. This approach allows
state of the art model checkers to tackle intractably large or even infinite
state spaces. Theorem proving has the advantage of effectively verifying
infinite state models using axioms and proof rules but it has two main
disadvantages. Firstly, it requires sufficient expertise in formal methods.
Secondly, if and when a failed proof occurs, the theorem prover does not
present a counterexample. As a consequence, only a small number of research
groups has been able to apply this technique to industrial-scale software.

1.6.4 The Benefits of Model Checking

Model checking [26] is a formal method, a mathematical approach. We use
it as part of the verification process. Why not using another formal method
like for example theorem proving?

In [21] it is pointed out that most software developers still believe that
formal methods are too hard, to tedious to be used in practice, that it requires
effort, expertise and significant knowledge in order to be succesful. But this
definitely does not hold for all types of formal methods. It might be true
for theorem proving but it is false for model checking. Model checking is a
fully automatic technique; once activated, for finite state possibly interleaving
processes, it performs an exhaustive search to verify whether a logical formula
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either holds or not. Consequently, this considerably reduces the amount
of knowledge of the underlying formal model that is required to use this
approach.

But there is another very straightforward reason. Statecharts are
hierarchical state machines, i.e. finite-state machines whose states themselves
can be other machines. They document the various modes (“states”) that a
class can go through, and the events that cause a state transition, together
with the resulting actions. Since the design covers state machines, model
checking [26] is the most appropriate technique to verify the design (or model)
against the given specifications, as will be clarified later on.

Conclusion We have a formal method that is capable of independently
verifying statechart diagrams. That formal method is part of a Java
application. That application visualizes the counterexample returned by
the model checker. Thus, software developers are not required to have
any mathematical knowledge about the model checking technique at all. A
single push on a button is enough to know whether their designs satisfies the
requirements. Admitted, do we, as software developers, still want more?

1.6.5 The Benefits of Cadence SMV

Why have we chosen to use CaSMV and not for example SPIN [55]? As said
before, the lack of understanding formal methods results in disasters, which
is perhaps the main reason why they are still not trusted in industry [21].
The same can be said of tools supporting formal methods. The more difficult
they are to learn and to use, the less they will play a role in the development
life cycle.

To convince software developers of the applicability of formal methods
and tools, we have chosen to integrate CaSMV in our application. It
has a language that is easier and more natural to use comparing with
other languages (e.g. Promela [55, 54], the language of the SPIN model
checker). The language is based on a language for describing hierarchical
finite concurrent state machines. As a consequence, the statechart diagrams
are easily reflected in the CaSMV model. Moreover, a dedicated introductory
course on using the model checker takes less than two weeks. The user
gains success rather quickly; strengths and weaknesses of CaSMV are rapidly
known.

More technically, we have chosen to use CaSMV for the following reasons.
It is a tool for checking finite state systems against specifications in both tem-
poral logics LTL and CTL. It also provides an input language for describing
finite state systems that range from synchronous to asynchronous. Therefore
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it is well-suited for reactive systems whose components are tightly connected
through the exchange of (a)synchronous messages (events). Moreover, it
is a proof assistant that supports several compositional methods. These
methods allow the verification of large, complex, systems by reducing the
verification problem to small problems that can be solved automatically by
model checking. It provides a variety of such techniques including refinement,
circular compositional reasoning, induction, temporal case splitting and data
type reduction. For example, we have used the first two techniques to
automatically decide whether a class implements its interface.

Conclusion We have integrated an easy to use tool that applies the model
checking technique to finite state possibly interleaved concurrent models.
Whenever a software developer wants to add or wants to change something
in our automatic verification methodology, he only has to learn the main
principles of model checking and, of course, he has to learn how to work with
CaSMV. We hope that these two benefits will motivate software developers
to integrate and to use formal methods more in the software life cycle. Are
you still hesitating?

1.6.6 Some Succes Stories

Another motivation for the choice of model checking and CaSMV was also
due to some success stories. Model checking was originally intended for the
analysis of concurrent software systems, but nevertheless, the technique was
first used in hardware verification. Let us enumerate some of the many
success stories, whose list still continues to grow.

In the hardware community, model checking is a proven succesful
verification technology. An impressive example that illustrates the power of
both model checking and (Ca)SMV is the verification of the cache coherence
protocol described in the IEEE Futurebus+ standard (IEEE Standard 896.1-
1991). The purpose of [28, 81] was to use SMV to prove the correctness of
the protocol design. However, with the model checker SMV, several bugs
and potential errors were found. A similar success story: the model checker
SMV was used to find a deadlock in a cache coherence protocol for a shared-
memory multiprocessor [85]. Another similar success: using model checking
the reason that data was lost on a high speed communications IC Chip could
be identified [92].

Model checking has also proven to be effective in the software community.
A number of properties of the Traffic Alert and Collision Avoidance System
II (TCAS II) were successfully analyzed with the model checker SMV [25].
SMV was also used to analyze the A-7E aircraft software requirements [108];
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several temporal properties were verified and/or falsified. Bandera [30], which
is a toolset for extracting models from Java source, uses SMV (one of the
supported model checkers) to apply model checking on these models.

1.6.7 The State Explosion Problem

Model checking is a method used to verify the behavioral correctness of
several systems. In its basic form, it constructs a structure (e.g. infinite
tree) that consists of all states that a system can reach and all transitions
that a system can make between those states.

Model checking sounds like an almost ideal behavioral verification tech-
nique but it suffers from one big and fundamental problem: state explo-
sion [26] and almost any system has a huge number of states. Often the
size of a state space of a system tends to grow exponentially in the number
of its processes and variables. The base of the exponentiation depends on
the number of local states a process has, the number of values a variable may
store, and so on.

With the advantage of model checking in mind, researchers have devel-
oped several methods in order to reduce the number of required states:
abstraction, symmetry, induction, partial order reduction, and many oth-
ers [26]. Abstraction, for example, is probably the most important technique
for reducing the state space explosion problem. The technique is performed
on a high-level description of the system, before the model of the system
is constructed. Thus, abstraction avoids the construction of the unreduced
model that might be too big to fit into memory. Some abstraction techniques
reduce the size of the state transition graphs while others find a mapping
between the actual data values in the system and a small set of abstract
data values. On the other hand, partial order reduction is aimed at reducing
the size of the state space that needs to be searched by model checking
algorithms. To state it differently, the full state graph, which may be too big
to fit in memory, is never constructed.

Slicing can be viewed as a projection, or as a flattening of a program.
When used to slice models (like the previous examples), we’d better call
it model slicing instead of program slicing to clarify the distinction between
both techniques. The first one, constructs a slice based on a given correctness
property while the latter one uses a collection of program statements to
compute its slices.

Nevertheless, all reduction techniques have a common property. The
reduced system is often much smaller than the actual system, and as a result,
it is usually much simpler to verify properties at the reduced level. Moreover,
the correctness of the verification is not affected i.e. the same results are
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achieved when verifying properties at the actual system as at its abstracted
version.

Program Slicing

Program slicing [112] is a program analysis technique that reduces programs
to those statements that are relevant for a particular computation. A
slice provides the answer to the question “What program statements
potentially affect the value of variable v at statement s?” Mark Weiser [127,
128] introduced program slicing because he made the observation that
programmers have some abstractions about the program in mind during
debugging. When debugging a program one follows the dependencies from
the erroneous statement s back to the influencing parts of the program.
These statements may influence s either because they decide whether s is
executed or because they define a variable that is used by s. Program slicing
computes these dependencies automatically and thus assists the programmer
in a lot of error prone tasks, such as debugging, program integration, software
maintenance, testing, and software quality assurance.

Example 1.5. Code Listing 1.1 shows a simple program that we want to slice.
The slice for the statement print a, consists just of the black statements.
The gray statements do not have an influence on the particular statement of
interest, and therefore are not included into the slice.

Code Listing 1.1 A Simple Program

read a

read b

read c

a = 2*b

print a

... and Model Checking

Program slicing is a technique for identifying portions of a program that can
influence the way in which a collection of designated statements executes.
For the purpose of model construction, we can use slicing to automate the
process of eliminating portions of a program from a model without affecting
the precision of the model. The idea is to extract a safe slicing criterion from
the specification to be checked, e.g., temporal logic formulas. For example,
this process may identify the set of statements that can directly influence the



1.7. A Guided Tour Through This Thesis 

truth or falsity of the propositions in the formula. Slicing on such a criteria
leaves a resulting program that preserves all of the relevant information for
the behaviors of interest as defined by the specification. This sliced program
is used then as a starting point for the abstraction and specialization process.

Research has shown that it is a useful abtraction technique to tackle
the state explosion problem when model checking is applied to software
programs. Applying model checking to software requires that the program
source code must be translated to a finite-state transition system that, of
course, safely models the program behavior. Some researchers [30, 51] have
developed a variation on program slicing to remove parts of the program’s
source code that are irrelevant for verifying a given correctness property.

Before model checking can begin, the model has to be adapted into a
formalism accepted by a model checking tool. Yet another extension of
program slicing has been succesfully used to slice models written in the input
language of the model checker SPIN [93, 94].

Specifically slicing is used to reduce the statecharts of the RSML
modeling language [52] in order to improve the understanding of the design
specification. Another attempt to slice statecharts is developed in [43]. To
continue, [125] presents a method to reduce the state space in model checking
by slicing equivalent representations of UML statecharts with respect to a
given correctness property. It is the latter methodology that we will optimize
to achieve smaller models.

1.7 A Guided Tour Through This Thesis

This document reports both on things we have discovered and things we
have built. It contains overviews on topics that are relevant for the context
and the motivation of our work. How our work relates to the literature is
always mentioned (mostly at the end of each chapter), and each chapter
provides a specific functionality of our UML based verification approach (see
the sections with title Methodology Extended).

Part I — Verification

Applying formal techniques in the development of embedded systems relies
on a model of the system, a description of the requirements of the system
and a technique to check that the requirements are satisfied by the model.
In the first part, we propose a UML-based verification method to identify
and remove errors, misconceptions, etc. during the design phase of embedded
software development. In order to mechanise the technique that checks that



 1. Introduction

the conditions on the evolution of the system are met by the model, we
propose model checking and the use of CaSMV (Section 1.6). This avoids that
designers have to recover from faulty reasoning later on in the development
process (Section 1.5). Remember that statechart diagrams are mainly used
to model the evolution of embedded systems. And of course, the behavior of
embedded systems can be captured by interacting finite state machines.

Chapter 2 — Semantics of UML Statecharts Figures 1.3-1.4 show
that applying model checking to a UML design consists of several tasks. The
first task is to convert the design into a formalism accepted by CaSMV.
This modeling task is simply a compilation task that can be performed
automatically but that is guided by several rules. Naturally, to guarantee a
correct verification of system properties, the semantics of statecharts must be
fully respected, otherwise verification does not make very much sense. In this
chapter, a formal statechart semantics is constructed to ease the modeling
task towards CaSMV. To do that, statecharts are first transformed into an
equivalent format, called Extended Hierarchical Automata [68, 72, 124], and
the formal semantics of statecharts are written in terms of the latter ones.

Contribution: We present the content of this chapter as highly relevant
background material. The only contribution is that I have written a formal
semantics (that differs from that used in [36, 73]) in order to have a clear
connection between the formalism accepted by CaSMV [86].

Chapter 3 — The Model of a Standalone Statechart As mentioned,
this thesis especially concentrates on the behavioral part of UML, namely
the statechart diagrams, because they are the most complex formalism used
in UML (therefore errors occur most likely here) and have some specific
features, like hierarchy and concurrency, which require non-trivial verification
methods. Our examination is focused on embedded (control) systems since
statecharts allow to construct a state-based model of such systems and the
reaction to external events. In this chapter, it is assumed that the behavior
of the embedded system is specified by a standalone statechart. To carry
out the verification automatically using CaSMV, this chapter allows us to
translate each standalone statechart into a CaSMV model, of course, using
the formal semantics defined in Chapter 2.

Contribution: The methodology to verify the behavior of a system, specified
within a standalone statechart, is not unknown in the literature. All the
methodologies have one thing in common: they translate the hierarchical
structure of the statechart model to the input language of a particular model
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checker. So, the black box of the different approaches will be more or
less the same; only the details differ. Positively stated, our methodology
tries to retain the quite complex behavioral semantics of UML statecharts,
while the existing approaches make some significant simplifications. This has
the advantage that our verification methodology can handle more realistic
behavioral designs. For published material, see the next chapter.

Chapter 4 — The Model of Communicating Statecharts A beha-
vioral model described as a statechart is based on modes and transitions,
on events, on conditions and on different types of data items too. But a
realistic behavioral design of a system is not described as a single statechart.
There are many examples where the whole system is decomposed into several
statecharts, but only some of them are active at any given time. For example,
there may be a factory with several independent machines (chip placement
machines, screening machines, etc.) that make up an assembly line. Each
piece of equipment may be controlled by a statechart that describes its
behavior. Not suprisingly, for such complex systems, verification (using the
same model checker CaSMV) is definitely needed to find incorrect behavior.

Contribution: In this chapter, the formal semantics defined in Chapter 2
is extended into a behavioral semantics for communicating statecharts. As
before, this semantics is used to generate a corresponding CaSMV model.
This bridges a big gap in the literature, and enables developers to verify
designs of quite complex systems. Therefore this chapter can be seen
as an important addition to contemporary work. The technical content
of this paper has been summarized in a one-page abstract and a poster
of the “Proceedings of the 32nd Spring School in Theoretical Computer
Science” [116], appeared as part of a paper in the proceedings of the
“Proceedings of the Dutch Proof Tools Day” [115], and was visualized in a
second poster, which was presented at the “PhD FWET Symposium” [119].

Chapter 5 — Specification Correctness Towards verification purposes,
it is necessary to state the properties that the design must satisfy. System
properties are usually given in some temporal logical formalism to assert how
the behavior of the system evolves over time. How to write properties and
how to translate them in the language of CaSMV is outside the scope of
this thesis. However, what we will discuss are some problems with temporal
formulas that arise after the model transformation has been performed in the
first task.

Contribution: The technical content of this chapter appeared as part of a one-
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page abstract and a poster of the “Proceedings of the 32nd Spring School in
Theoretical Computer Science” [116], and appeared as part of a paper in the
proceedings of the “Proceedings of the Dutch Proof Tools Day” [115].

Chapter 6 — Protocol Conformance If you are familiar with object-
oriented methods, you will be aware of the concept of a class and an interface.
The UML allows that classes use behavioral state machines — also called
statecharts — to describe their piece of system functionality as a sequence
of events an object reacts to, together with the resulting behavior. The
UML also allows that interfaces use protocol state machines to focus only on
allowable sequences of behavior invocations on a class, but, without having
to show its behavior. Having two views — a behavioral and a protocol view
— for components of a system gives rise to the problem of model consistency:
both statecharts have to be consistent and not contradictory; a class needs
to implement its interface. Otherwise, an implementation of the designed
models will not be feasible, thereby making them useless.

Contribution: This chapter provides a methodology to tackle this consistency
problem using useful verification features of CaSMV. A one page abstract
appeared in the “Proceedings of the Joint BeNeLuxFra Conference in
Mathematics” [120]. A condensed version of this chapter is to appear in
the “Bulletin of the Belgian Mathematical Society” [121].

Part II — Optimization

As mentioned enough already, model checking is a method for formally
verifying finite-state concurrent systems. Specifications about the system are
expressed as temporal logic formulas, and efficient symbolic algorithms are
used to traverse the model defined by the system and check if the specification
holds or not. CaSMV is a formal verification tool, which is quite effective
in automatically verifying properties of combinational logic and interacting
finite state machines. The major problem of model checking is that the
state spaces arising from practical problems are often hugh, generally making
exhaustive exploration infeasible. Dependency analysis and a corresponding
slicing algorithm is one way to improve scalability. This is the topic addressed
in the second part of my thesis.

Chapter 7 — The Basics of Slicing Hierarchical Automata This
chapter presents a method for slicing hierarchical automata with respect
to the properties to be verified. The algorithm can remove the hierarchies
and the concurrent states which are irrelevant to the property. This results
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in smaller hierarchical automata. As a consequence the state space during
model checking is efficiently reduced.

Contribution: The technical content of this chapter appeared in [125], as
joint work of Wang Ji, Dong Wei, and Qi Zhi-Chang.

Chapter 8 — Internal Broadcasting: As Rich As Needed Concur-
rent programs have additional dependencies called interference dependencies.
A node S1 is interferent dependent on node S2 if S2 defines a variable v,
S1 uses variable v, and S1 and S2 execute in parallel. A simple slicing
algorithm that does not carefully threat such inference dependencies will
produce imprecise slices, i.e. a smaller slice could be returned. The same is
true when slicing hierarchical automata.

Contribution: The algorithm presented in Chapter 7 presents a naive slicing
algorithm, in the sense that interference dependencies are not carefully
threated. The goal of this chapter is showing how the algorithm presented
in Chapter 7 can be improved to yield an algorithm that is efficient yet
effective for reducing the number of interference dependencies used in slicing
statecharts with concurrent states. This way, far more precise slices can be
returned by the algorithm. The technical content of this chapter was first
presented on the “TCS Seminar in Amsterdam” [118]. It was a second time
presented on the “FNRS Contact Day in Liège” [117].

Part III — Illustrations

The title of the last part could also have been: “The Theory into Practice”.
Chapter 9 illustrates the verification procedures: the statecharts, the CaSMV
models, the interpretation of the counterexamples, etc. Chapter 10 extensively
shows how the slicing algorithm works. Finally, Chapter 11 uses examples to
explain that carefully considering interference dependencies may yield smaller
slices.
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CHAPTER 2

Semantics of UML Statecharts

The eye sees only
what the mind is prepared to comprehend.

Henri Bergson.

A
lmost all embedded systems are event-driven, meaning that they conti-
nuously wait for the occurrence of some external or internal event (e.g.

an arrival of a data packet). After recognizing the event, such systems react
by performing the appropriate computation that may include generating
events that trigger other internal software components. Once the event
handling is complete, the software goes back to a dormant state (e.g. an
idle task) in anticipation of the next event. This reactive system behavior
is often described by graphical state based notations. Among others, UML
statecharts [38, 96, 105] is one example for these notations and they have
found widespread acceptance in the industry.

This thesis is about verifying UML statecharts based on model checking.
So what is a statechart precisely? That is one of the topics of this chapter.
Additionally, to ease verification, statecharts are first transformed into
Extended Hierarchical Automata [46, 68, 72, 124].

The formal verification of a behavioral design involves proving the
statechart’s consistency with its specification. To do this, the meaning of
these statechart diagrams needs to be defined and understood. Therefore,
it is necessary to provide a precise formal semantics for constructs of the
behavioral design. This is another topic of this chapter. We will provide
such a semantics for the hierarchical representation of a single statechart.
It’s presented in such a way that the connection between the formalism,
accepted by CaSMV [86], becomes clear later on. Moreover, the semantics
will serve as the basis for the semantics of communicating statecharts.

33
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2.1 Finite State Machines

A program that sequences a series of actions, or handles inputs differently
depending on what mode it’s in, is often implemented as a Finite State
Machine (FSM) [7, 79]. Such machines (Definition 2.1) are an efficient way to
specify constraints of the overall behavior of a system. Being in a state means
that the system responds only to a subset of all allowed inputs, produces only
a subset of possible responses, and changes state directly to only a subset of
all possible states.

Definition 2.1 (Finite State Machine (FSM)). A finite state machine
is an ordered four tuple M =< Q,Σ, δ, q0 > where Q is a finite set of states,
Σ is the input alphabet — a finite set of symbols, q0 is the initial state — a
member of Q, the transition function δ maps the states and inputs onto a set
of state transitions.

The behavior of the machine is more easily understood when represented
graphically in the form of a state transition diagram. In each particular
state of the machine there can be zero or more transition rules that are
executable. If precisely one transition rule is executable, the machine makes
a deterministic move to a new control state. If more than one transition rule
is executable a nondeterministic choice is made to select a transition.

Applied to reactive system objects, a FSM specifies the events of interest
to a reactive object, the set of states that object may assume, and the actions
(and their order of execution) in response to incoming events in any given
state. This is crucial in many systems because the allowable sequences of
primitive behaviors may be restricted.

Example 2.1. A 10-bit counter [41], counting on event a and issuing
overflow after 1024 occurences, can be represented as a FSM, as illustrated
in Figure 2.1.

0

a


1

a
a


...
 1023


a / overflow


Figure 2.1: A 10-bit Counter as a Finite State Machine
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2.2 UML Statecharts

Clearly, Example 2.1 shows the most important shortcoming of FSMs; the
total number of states and transitions increase exponentially as the system
complexity increases. The negative side effect of this is that the FSM
becomes an unstructured and chaotic state diagram. To solve this problem
David Harel proposed statecharts [49] which are extensions of FSMs. They
form the basis for UML statecharts [96] which extend the properties of
Harel’s automata with some additional features and some modifications in
the semantics.

Example 2.2. The statechart of the 10-bit counter [41] (Example 2.1)
is shown in Figure 2.2. Clearly, syntactic sugar is added to finite state
transition diagrams such that suitable abbreviations for unwieldly diagrams
become available. A transition is labeled with an event (e.g. the event a), a
guard (e.g. [x<1023]), and an action (e.g. x:=x+1). The transition, labeled
with a[x<1023]/x:=x+1, is taken when the event a has occurred and when
the guard is satisfied (i.e. the event has not yet occurred 1024 times). While
being taken, the action x:=x+1 is executed. Obviously, the variable x holds
the number of occurrences of the event a.

Counter


a [x < 1023] / x := x + 1;


a [x = 1023] / overflow; x := 0;


Figure 2.2: A 10-bit Counter as a Statechart

Objects have both behavior and state or, in other words, they do things
and they know things. Some objects do and know more things, or at least
more complicated things, than other objects. Some objects are incredibly
complicated, so complex that developers can have difficulty understanding
them. To understand complex classes better, particularly embedded classes
that act in different manners depending on their state, one or more UML
state machine diagrams should be developed.

UML statecharts [38, 96, 105] are hierarchical automata associated to
objects (class instances) to model their behavior. A statechart is a complete
graphical characterization of all the desired behaviors of an object during
in its lifecycle. To be more precise, statecharts, consisting of states and
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transitions, convey how objects behave through time as a result of the objects
reactions to events from the rest of the universe.

2.2.1 States

A state depicts a situation where the object satisfies some condition, performs
some activity, or waits for some event. Reactions include changing states,
executing internal actions and sending events to possibly other objects. The
event-driven nature of statecharts is especially useful in modeling reactive
systems. Thus, each state represents a distinct context for the behavior of
the system. States have a status, meaning that they are either active or
inactive. When a state is active, the system is said to be in that state.

Example 2.3. A state captures the relevant aspects of the system’s history
very efficiently. For example, you can say that a computer keyboard is
either in the shifted state, or the default state. The behavior of a keyboard
(Figure 2.3) depends only on certain aspects of event history, namely whether
the Shift key has been depressed, but not, for example, on how many and
which specific characters have been typed previously [102] . Note that the
behavior only captures upper case and lower case letters.

any_key / send_upper_case_code();


shifted


any_key / send_lower_case_code();


default


shift_depressed
 shift_released


State


action

Internal Transition


Figure 2.3: Statechart Diagram of a Keyboard

Each state possibly contains multiple internal actions. An action is best
described as a task that takes place within a state e.g. pieces of code to
implement behavior in that context. Table 2.1 gives a brief overview of
different internal actions.
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Action Description
Entry Actions Entry actions are executed at the moment the state

is entered. Such actions are often used to perform
setup needed within a state.

Internal Transitions These transitions have a source state but no target
state. They represent reactivity within a state, and
when fired, the active state does not change as a
result of it. Internal transitions can be useful for
modeling interrupt actions that do not change the
state e.g. putting up a help screen.

Exit Actions Actions which are performed whenever the state is
exited. If a transition leaves a state, its exit action
is executed before the action on the transition and
the entry action of the new state.

Table 2.1: Internal Actions of a State

States may be hierarchical in the sense that it can have distinct subcontexts
represented as substates. The hierarchical state that contains other states is
called the parent state of the contained children (sub-) states. A child state
cannot be active if the parent is inactive. As parent states change from an
inactive state to an active state, at least one child state necessarily becomes
active.

The UML provides two different types of hierarchical states often called
composite states. An orthogonal composite state (an AND state) is composed
of several concurrent regions (= sequential composite states, the OR states)
graphically separated by dashed lines. If an AND state is active, all its regions
are active. Each OR state is composed of AND/OR states. If a sequential
composite state is active, only one of its substates is active. A simple state is
a state not composed of any substates. The root state is a special hierarchical
state, since it is present in each statechart, and it is always active. This state
is the outermost composite state of the statechart diagram, but is not drawn
always explicitly.

Example 2.4. Consider a requirement that states that a user should not
have to wait for his/her browser to be able to work with his/her email
application [106]. In considering this requirement, it would be necessary to
specify these two activities as concurrent, as shown in Figure 2.4 (especially
in considering the time that it takes to launch your average web browser
and email application). Whenever the automaton is in state UserConnected
both regions (Email and Internet) are considered active. The states of these
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regions are exclusive; the system can never be in both their states at the same
time.

EmailAppClosed
 EmailAppOpen


launch_email_app


quit_email_app


read_email


BrowserClosed
 BrowserOpen


launch_browser


quit_browser


request_page


UserConnected


Email


Internet


 Concurrent Regions

 Each Region is Sequential


Transition


Initial State


Initial Transition


Figure 2.4: Statechart Diagram of a User Connection

In addition to the above primitive constructs, pseudostates such as initial,
final and history states are used to extend the notation. An initial state is the
source of a transition which points to the default substate of the composite
state whereas a final state is one in which no transitions lead out of. Default
substates are the ones that an object is in when it is first created. A history
state records the most recent active state information of its containing state.
History states are useful for when the device has left a hierarchical state,
done something else for a while, and now needs to get back to the hierarchical
state and context. There are also other pseudostates (join, fork, conditionals,
etc.) used to connect multiple transitions into more complex state transitions
paths (see Section 2.2.2).

2.2.2 Transitions

The job of transitions is to specify when and to which states the object can
switch. Transitions represent potential pathways among the states of the
object. The progression of one state to another is triggered by an event that
is either internal or external to the object. The syntax for transitions is:

event-trigger (parameters) [guard ]/action-list
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Table 2.2 explains the fields of transitions in greater detail. All of these fields
are optional. Even the event-trigger may be omitted in the case of an null-
triggered transition to be taken when a state completes its activities, if any,
or immediately upon entering the state, if not.

Field Description
Event-trigger The name of the event triggering the transition.
Parameters Events may have parameters (comma-separated

list) and these parameters may be used by the
actions associated with the transition.

Guard A boolean expression that is evaluated when the
event occurs. The transition is taken only if the
guard evaluates to TRUE.

Action-list A comma-seperated list of operations executed as
a result of the transition being taken.

Table 2.2: Transition Syntax

A simple transition indicates that the system may change its state and
perform a sequence of actions when a specified event occurs and a specified
guard condition is satisfied. Such transitions represent directed relationships
between a source state vertex and a target state vertex.

On the other hand, UML provides also compound transitions. Such
transitions represent paths made of one or more transitions which are linked
by pseudostates, originating from a set of states and targeting a set of states.
A compound transition is enabled when all the source states are occupied, a
specified event occurs and the guard is satisfied. After a compound transition
fires, all of its destination states are occupied. Otherwise stated, compound
transitions consists of multiple segments.

To show parallel behavior, fork segments or join segments are used. The
fork (top of Figure 2.5) has one transition entering and any number of
transitions exiting, all of which will be taken. The exiting transitions are
connected to concurrent regions and represent splitting of control. The join
(bottom of Figure 2.5) represents the end of the parallel behavior and has
any number of transitions (originate from concurrent regions) entering, and
only one leaving.

To show conditional behavior a branch or a merge is used. The top
diamond of Figure 2.6 is a branch and has only one transition flowing into it
and any number of mutually exclusive transitions flowing out. That is, the
guards on the outgoing transitions must resolve themselves so that only one
is followed. The bottom diamond of Figure 2.6 is a merge that is used to end
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Figure 2.5: A Fork and a Join Segment

the conditional behavior. There can be any number of incoming, and only
one outgoing transition.

Figure 2.6: A Branch and a Merge Segment

UML features also interlevel transitions. Such transitions cross state
boundaries.

2.3 Informal Operational Semantics

Semantics of UML is a means to understand how UML should be used, and
to ensure that when UML models are communicated there is a common
shared understanding of what they mean. Therefore, if we ever want to
be able to verify behavioral properties of statecharts, we must have a clear
understanding of its semantics. A semantics definition is thus a necessary
prerequisite. The term semantics, as used in this thesis, refers to the run-time
interpretations of UML statecharts.

For some, the only acceptable definitions of language semantics are
the ones that are expressed in some well-known mathematical formalism.
Despite, UML found this not the most suitable approach [14], although their
intent is to define the semantics of state machines very precisely. This is
because UML is intended to model complete systems across a broad spectrum
of different application domains [61]. Therefore, there are a number of
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variation points to allow for different semantic interpretations that might
be required in several domains.

iLogix Rhapsody [58] is a CASE - Tool for embedded systems software
development. Rhapsody is claimed to be “The Industry’s first and only UML
based object-oriented analysis, design and implementation tool for embedded
systems and software developers.” That’s the reason why we have used
it during the last four years. Rhapsody offers automatic code generation
with additional simulation functionality. Many of the fundamentals of the
statechart’s semantics, as implemented in the current version of the tool, have
been adopted in the UML. The main difference between both semantics is
that, as mentioned previously, UML leaves the door open for many semantic
variation points.

The operational semantics followed in this thesis, is the semantics offered
by Rhapsody [48].

2.3.1 Active Configuration

Obviously, embedded systems are composed of many classes. Some of these
classes are reactive and thus have an associated statechart describing its
behavior. Others are data-driven and do not necessarily have an associated
statechart. During run-time possibly many objects exists and each can be in
a different active configuration. This is because for each new instance of a
reactive class, a new statechart is born.

An active configuration is defined as a maximal collection of active
states i.e. as the maximal set of states the system resides in simultaneously,
including the root state. A state becomes active when it is entered as a
result of some transition, and becomes inactive if it is exited as a result of
a transition. If a sequential composite state is entered, exactly one of its
substates is added to the configuration. If a concurrent composite state is
entered, all of its substates are added to the active configuration.

Example 2.5. Returning to Figure 2.4, a possible active configuration
can be {root, UserConnected, EmailAppClosed, BrowserClosed} or {root,
UserConnected, EmailAppOpen, BrowserOpen}.

2.3.2 Event Handling

The behavior of an embedded software system can be thought of as a black
box that continuously receives some input events and reacts by producing
some output events. This output may in turn affect the production of later
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input events by the environment. To handle such events, UML provides the
following extremely important key components:

• An event queue that holds incoming event instances until they are
dispatched.

• An event dispatcher mechanism that selects and dequeues event instances
from the event queue for processing.

• An event processor that processes dispatched event instances according
to the general semantics of UML state machines and the specific form of
the state machine in question. This component is simply referred to as
the “state machine”.

2.3.3 Stable State Configuration

An active configuration is a stable state configuration of an object if all actions
(entry/exit/internal activities) are completed and if no further transitions are
possible without dispatching an event i.e. it is impossible to enable and fire
null-triggered transitions.

Example 2.6. Let’s return to the statechart diagram of Figure 2.4 and sup-
pose that configuration {root, UserConnected, EmailAppClosed, Browser-
Closed} is active. This configuration would be stable as well since an
event (e.g. launch−browser, launch−email−app) must be dispatched to reach
either {root, UserConnected, EmailAppClosed, BrowserOpen} or {root,
UserConnected, EmailAppOpen,BrowserClosed}. It would be instable if it
had an outgoing transition that was not labeled by an event.

In the context of a single statechart, the start chart may react on different
kinds of events. Each statechart uses so-called interacting events to
communicate with the outside world e.g. to interact with a user. Besides
interacting events, a statechart may generate events to represent the
completion of internally generated actions. These events are used by the
statechart to support the procedural flow of control. From now on, we refer
to them as flow events.

2.3.4 Step Semantics or Run-to-Completion

The behavior of a system is described as a set of possible runs. A run-
to-completion (RTC) step brings the state machine from one stable state
configuration to another stable one. Therefore, a run consists of a series
of detailed stable snapshots of the system’s situation. The first one in the
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sequence is the initial configuration and each subsequent configuration is
obtained from its predecessor by executing a step.

In fact, a RTC step is the period of time in which events are accepted and
acted upon. At the beginning of a step, an event is firstly dispatched from
the queue and then processed. Intuitively, this means that once an event
has been dispatched, some transitions are enabled to fire, and thereafter, the
system evolves on its own until no more transitions can be taken. Then, the
dispatcher has to be called once again. Events are assumed to never occur
exactly at the same time. More precisely, if two events occur at the exact
same time, they can be processed as if they had occurred in either order,
with no loss of generality.

What does it mean that the system evolves on its own? After reacting
to a message, the statechart may reach a configuration in which some of the
active states have outgoing null-triggered transitions that can be enabled for
firing. In this case, the system evolves on its own, meaning that these null-
triggered transitions will be taken until a stable state configuration is reached.
Once a stable state configuration is reached, the reaction to the event is fully
completed and control returns to the dispatcher. At this point, the event is
entirely consumed and is therefore no longer available for processing. The
next event can be dispatched and processed now. Events that cannot be
served immediately to a stable configuration are discarded meaning that the
current stable configuration does not evolve to another stable one; the event
does not enable any transitions.

Example 2.7. Looking at Figure 2.4, the RTC step between configura-
tions {root, UserConnected, EmailAppClosed, BrowserClosed} and {root,
UserConnected, EmailAppClosed, BrowserOpen} consists in the execution
of a single transition, which is labeled with the event-trigger launch−browser.
Here, the evolution to the second configuration happens without going through
intermediate snaphots of the system. This is quite clear because the statechart
does not have null-triggered transitions i.e. in each configuration, an event
must be dispatched and processed to reach a subsequent one.

The execution of a step does not necessarily take zero time. The time
a step will take depends on the actions that are performed while taking
the step. Therefore, the RTC step is assumed to be ininterruptable i.e.
higher-priority events cannot interrupt the handling of other events thereby
completely avoiding the internal concurrency issue. Thus, an event will
never be processed while the state machine is in some intermediate and
inconsistent situation; instead the event will be placed in the event queue
when it is received during the execution of a step. Obviously, the assumption
simplifies the transition function of the state machine since incoming events
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are processed only after the state machine has reached a well-defined
stable state configuration. The practical meaning of these semantics is
thread protection, allowing the state machine to safely complete its RTC
step without concerning about being interrupted in mid-transition by a
subsequent event.

Summarized, each RTC step is composed of microsteps between two
stable configurations, as illustrated in Figure 2.7 [48]. It asserts that events
are consumed one by one, where the processing of the next event does not
start before the previous one has been fully consumed. As a response to
an event, the system, being in a stable configuration, undergoes a series of
microsteps (reflected by the injection of several transitions) until it reaches
another stable configuration. At that point, the system is ready to react to
the next event.

Stable State

Conf.

Stable State

Conf.

Stable State

Conf.

Stable State

Conf.
...

Initial

Instable State

Conf.

Instable State

Conf.

Instable State

Conf.
microstepmicrostep microstep microstep

RTC  step RTC  step RTC  step RTC  step

Figure 2.7: The Run-to-Completion Step

The Dispatcher and the Event Queue

The role of the dispatcher is to find an event that can be accepted in the
current configuration of the object. In general, more than one event can be
available in the environment, and therefore they are stored in a First in First
Out (FIFO) queue. This queue not only stores the events but also forms the
basis for the dispatching operation since the dispatcher works on this queue.
When trying to dispatch an event, the dispatcher considers the events in the
queue in the order they were put in.

The processing of the dispatched event consists firstly of selecting a
maximal set of non-conflicting transitions among the enabled ones. The
selected transitions are then fired, and as a consequence there is an implied
action sequence. Firstly, the source states are exited and their exit actions are
executed, where deeper states are exited before their parent states. Secondly,
the actions attached to the transitions are executed. The closer the action
is to the source state, the earlier it is evaluated. Finally, the target states
are entered and their entry actions are executed. Parent states are entered
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before substates. Note that in case of orthogonal regions, some orders are
undetermined. Conceptually, actions are instantaneous, atomic and non-
interruptible.

What is the meaning of conflicting transitions? In UML, it is possible
for more than one transition to fire at the same time. When this happens,
such transitions may be in conflict with each other. Take the case of two
transitions originating from the same state, triggered by the same event, but
with different guards. If both guard conditions are true, there is a conflict
between the two outgoing transitions. Only one of them must be fired. But
which one and what criteria can be used to make the choice? In such a
situation, the selection of which transition will fire is based on a priority
scheme. A transition has a higher priority if its source state is a substate of
the source of the other one. If the conflict cannot be resolved using priorities,
UML allows that they may be fired non-deterministically.

Example 2.8. Figure 2.8 defines a well-formed statechart diagram (adapted
from [60]). There is a concurrent composite state A with regions B and
C. Transition t1 has a lower priority than transition t3. Transition t2 has
lower priority than transitions t4 and t5. The conflict between the latter ones
cannot be resolved using priorities because their source states are equal. As
a consequence, they will be fired non-deterministically. Transitions t3, t4 and
t5 are some of the interlevel transitions and transition t1 is concurrent with
transitions t2, t4and t5.
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Figure 2.8: A Sample statechart to Illustrate Transition Priorities
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What happens in the case concurrent states are integrated in the state
machine? In the presence of orthogonal regions it is possible to fire multiple
transitions as a result of the same event; as many as one transition in each
region in the current state configuration. The priority scheme is used here
again to solve possible conflicts among transitions, of course, in each region
separately. The order in which selected transitions fire is not defined. Each
orthogonal region in the active state configuration that is not decomposed
into orthogonal regions can fire at most one transition as a result of the
current event. When all orthogonal regions have finished executing the
transition, the current event is fully consumed, and the run-to-completion
step is completed. Thus, a RTC step applies to the entire state machine.
However, it is possible to define state machine semantics by allowing the RTC
steps to be applied concurrently to the orthogonal substates of a composite
state, rather than to the whole state machine. This would allow the event
serialization constraint to be relaxed. However, such semantics are quite
subtle and difficult to implement.

2.4 Extended Hierarchical Automaton

Extended Hierarchical Automata (EHAs), which form the structural basis
of our formal operational semantics, were introduced in [46, 68, 72, 124] to
provide an alternative equivalent representation and a formal operational
semantics for statechart diagrams by a small number of complex transition
rules. EHAs can be considered as a formal syntax of UML statecharts,
describing the statechart elements in a concise format, resolving the problem
of inter-level and composite transitions by using special labels. An EHA
(Definition 2.3) is built as a parallel and/or hierarchical composition of
sequential automata (Definition 2.2) whose states themselves can be other
automata. We follow the definition from [124], which is a variant of the one
introduced in [68].

Every sequential automaton A ∈ F characterizes an extended hierarchical
automaton on its own: intuitively, such an extended hierarchical automaton
is composed by all those sequential automata which lay below A, including
A itself, and has a refinement function ρA which is a proper restriction of
ρ. An EHA can be regarded as a kind of abstract faithful syntax of UML
statecharts, whose syntax is abstracted and the essential parts are reserved
and presented structurally.

Definition 2.2 (Sequential Automaton). A sequential automaton A is
a 4-tuple (σA, s

0
A, λA, δA) where σA is a finite set of states, s0

A is the initial
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state, λA is a finite set of labels, and δA ⊆ σA × λA × σA is the transition
relation.

Definition 2.3 (Extended Hierarchical Automaton). An EHA H =
(F,E, ρ, A0, V ) is a 5-tuple, where F is the set of sequential automata with
mutually disjoint sets of states, E is a finite set of events, and V is the set
of variables. ρ : ∪A∈FσA → 2F is a refine function, which defines a tree that
satisfies:

• there exists a unique root automaton A0 ∈ F having no parent states:
@s ∈ ∪A∈FσA: A0 ∈ ρ(s);

• every non-root automaton has exactly one ancestor state:
∀A ∈ F \ {A0}, ∃1s ∈ ∪A′∈F {A}σA′ , A ∈ ρ(s);

• there are no cycles:
∀s /∈ ρ∗(s).

A state s for which ρ(s) = ∅, | ρ(s) |= 1, | ρ(s) |≥ 2 holds is said to be a
simple state, a sequential composite state, and a concurrent composite state
respectively.

Example 2.9. The extended hierarchical automaton of our sample state-
chart (Figure 2.8) is given in Figure 2.9 and the connection between both
representations is quite clear. The refinement function is given by the dotted
gray arrows. Default states are represented by thicker rounded rectangles.
We have: F = {Root, A,B,C,Ds,Es}; A0 = Root; ρ(A) = {B,C};
ρ(D) = {Ds}; ρ(E) = {Es}; all the other states are basic.

The set of events is the union of several sets i.e. E = Ei∪Ef ∪ε. Each subset
denotes the set of interaction events, the set of flow events and the null-event
respectively. An interaction event is an event generated by the end-user of
the system e.g. the event inter−poweron is generated at the moment the
end-user turns a machine on. A flow event is internally generated by the
system, so that the system can control its own execution. The null-event is
used to characterize null-triggered transitions.

The claim that extended hierarchical automata are alternate equivalent
representations of statecharts is obtained only when transition labels of
transitions t of sequential automata A ∈ F are required to be 5-tuples
(sr, ev, g, ac, td) where

• the source restriction sr refers to the source(s) of the transition in the
statechart i.e. it captures the “real” source(s) of the transition;

• ev is the event which triggers the transition;
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Figure 2.9: A Sample Extended Hierarchical Automaton

• g is the guard ;

• ac is the sequence of actions to be executed;

• the target determinator td is the target(s) the transition enters in the
statechart.

The source restriction and the target determinator play a major role in the
representation of compound/interlevel transitions1. We use the following
functions SR,EV,G,AC, TD defined in the obvious way; for a transition
t = (s, (sr, ev, g, ac, td), s′) of a sequential automaton A ∈ F (S(A) and T (A)
are defined in Definition 2.4):

Function Returns Practical
SRC source state in the EHA SRC(t) = s(∈ σA)
SR source(s) state in the statechart SR(t) = sr(∈ S(A))
EV trigger event EV (t) = ev(∈ E)
G guard G(t) = g
AC action list AC(t) = ac
TD target(s) state in the statechart TD(t) = td(∈ T (A))
TGT target state in the EHA TGT (t) = s′(∈ δA)

Table 2.3: Functions Related to Transition Labels

An illustration of these functions is given in the following example:

1The semantics of the source restriction and the target determinator slightly differs
from the one defined in [46, 72].
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Example 2.10. Table 2.4 illustrates the transition labels after transforming
Figure 2.8 into Figure 2.9. You see that SRC(t3) is the source of t3 in the
EHA while SR(t3) is the source of t3 in the statechart. A similar explanation
for TGT (t6) and TD(t6). Note that the source restriction is always filled in
whereas the target determinator is not always given.

t t1 t2 t3 t4 t5 t6

SRC(t) {D} {E} {A} {A} {E} {I}
SR(t) {D} {E} {G} {H} {H} {I}
EV(t) ∅ ∅ ∅ ∅ ∅ ∅
G(t) ∅ ∅ ∅ ∅ ∅ ∅

AC(t) ∅ ∅ ∅ ∅ ∅ ∅
TD(t) ∅ ∅ ∅ ∅ ∅ {G}

TGT(t) {J} {K} {F} {I} {K} {A}

Table 2.4: Transitions Labels as Used in the Sample EHA

2.5 Formal Operational Semantics

The first step towards model checking UML statecharts is to provide a
corresponding formal operational semantics. The semantics is defined over
EHAs and is based on Kripke structures. Our notation is (slightly) different
from that used in [36, 73] in such a way to have a connection between the
formalism accepted by CaSMV [86].

Definition 2.4. For A ∈ F , the automata, states, and transitions under A
are defined respectively as

A(A) = {A} ∪ (
⋃

A′∈ρ(σA)

A(A′))

S(A) =
⋃

A′∈A(A)

σA′

T (A) =
⋃

A′∈A(A)

δA′
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2.5.1 Configuration

A configuration denotes a global state of an extended hierarchical automaton,
either active or inactive. A global state is composed of local states of
component sequential automata. This means that the global state of a
configuration is derived from the local states of the set of sequential automata
in a top-down manner starting from the root automaton.

Let H = (F,E, ρ, A0, V ) be an EHA. We formally define a configuration
as follows:

Definition 2.5 (Configuration). A configuration of H is a tuple C = 〈ζ,
v, qe, hist〉 with

• ζ ⊆ S(H) such that (i) ∃1s ∈ σA0
: s ∈ ζ and (ii) ∀s, A : s ∈ ζ ∧ A ∈

ρ(s) ⇒ ∃1s
′ ∈ A : s′ ∈ ζ;

• v is the variable valuation;

• qe is the event queue i.e. a FIFO queue containing events of E \ ε and

• hist is the history mapping that associates to each automaton the last
visited substate i.e. A ∈ F → σA ∪ {nil}.

For A ∈ F the set of all configurations of A is denoted by CA.

In constrast to Section 2.3, the semantics of a configuration has changed
since additional information is added to it. Now, not only states belong
to configurations but also the event queue is part of it. This cannot be a
surprise because the event queue is used thoroughly while the state machine
is executing. Either an event is dispatched, to activate an RTC step, or
new events are generated, as the result of some actions during an RTC step.
The same reasoning can be applied for the other elements belonging to the
configuration.

2.5.2 Priority

The UML approach to transition selection deals with the sets of exit states
w.r.t. transitions. These sets include all states left by a transition in a step.
In addition two transitions t and t′ are defined to be in conflict if there is a
common state in the exit state sets. Thus, there is at least one state that
they both exit.

Priorities resolve some, but not all, transition conflicts. State hierarchies
are used to define priority between conflicting transitions. A transition t′ has
higher priority than a transition t if one of its sources is located in a substate
of a source of t. Thus, the state priority allows the transition to be taken if
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there is no higher priority active state. If the priority cannot be solved then
both transitions fire non-deterministically. As a direct consequence, UML’s
priority scheme is based on state levels and source states for which an order
relation can be defined. Formally defining a priority rules scheme involves
defining an order relation on the states of the automaton.

Definition 2.6 (State Precedence). The state precedence for s, s′ ∈ S(H),
is defined as follows:

s ≺ s′ ⇔ s′ ∈ S(ρ(s))

� denotes the reflexive closure of ≺. Relation � is a partial order relation.

Example 2.11. Referring to Figure 2.9, A ≺ G since G belongs to
S(ρ(A)) = S({ALeft, ARight}) = {D,G, J,E,H,K}. Note that it is
impossible to define the state precedence between J and K.

Definition 2.7. For all S, S ′ ⊆ S(H), the precedence between the sets S and
S ′ is defined as:

S � S ′ ⇔ ∀s ∈ S,∃s′ ∈ S ′ : s � s′

Knowing that the source restriction sr ⊆ (S(ρ(SRC(t))) ∪ {SRC(t)}) and
that the target determinator td ⊆ S(ρ(TGT (t))), it is easy to understand
the following definitions.

Definition 2.8 (Conflicting Transitions). For t, t′ ∈ T (H), t is conflic-
ting with t′ is written as t#t′ and is defined as follows:

t#t′ ⇔
t 6= t′

∧
(SRC(t) � SRC(t′)) ∨ (SRC(t′) � SRC(t))

Definition 2.9 (Priority Scheme). Conflicts between t, t′ ∈ T (H) are
solved using the following priority scheme:

t @ t′ ⇔
SRC(t) ≺ SRC(t′)

∨
(SRC(t) = SRC(t′)) ∧ (SR(t) ≺ SR(t′))

t @= t′ ⇔ SRC(t) = SRC(t′) ∧ SR(t) = SR(t′)

t @ t′ : t has lower priority than t’.
t @= t′ : t and t’ have equal priority.

Example 2.12. Referring to Figures 2.8-2.9, we derive that t2#t5 (Defini-
tion 2.8) and that t2 @ t5 (Definition 2.9).
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2.5.3 Operational Semantics

What we want to describe is the behavior of a statechart represented by
its equivalent extended hierarchical automaton. An operational semantics
focuses on the operations the system can perform — whether internally or
interactively with some supersystem or the outside world.

The operational semantics of an extended hierarchical automaton will
be defined as a Kripke structure, which is a set of states related by a total
transition relation. Such a semantics computes necessarily infinite sequences
of configurations; the computation doesn’t stop if no further transition can
be found. Instead, the next configuration will be exactly the same as the
previous one i.e. self-transitions.

Definition 2.10 (Operational Semantics). The operational semantics of
an extended hierarchical automaton H is a Kripke structure K = (S, s0,
STEP
→ ) where

• S = CH is the set of statuses of K,

• s0 = CH0
∈ S is the set of initial statuses, and

•
STEP
→ is the transition relation defined in the sequel (Definition 2.16).

Usually, the states are called configurations and the transition relation is
called the STEP relation. The extended hierarchical automaton is supposed
to react on messages from some supersystem or the outside world. In
the definition of UML statechart diagrams the particular nature of the
environment is not specified. Actually, we state it to be an environment
event generator (EEG). The event generator creates the messages (∈ Ei) from
external objects the automaton responds to. Because there is no information
included in the model, the event generator is non-deterministic.

It cannot be a suprise that a transition of K is a maximal set of
non-conflicting transitions of the sequential automata of H which respect
priorities. The maximal set of non-conflicting transitions is defined using
the set of enabled transitions. A transition t is enabled in C if its guard
expression is true, if it is triggered by the right event, and if all of its source
states are active; it is executed if there is no higher priority transition that
could preempt t.

Definition 2.11 (Enabled Transitions). For a configuration C, an event
e ∈ E, the set of all enabled transitions, triggered by e, in C is defined as
follows:

ET (C)e = {t ∈ T (H) | {SRC(t)} ∪ SR(t) ⊆ C ∧ EV (t) = e ∧ C |= G(t)}
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Definition 2.12 (Maximal Enabled Transitions). For a configuration
C, an event e ∈ E, the set of all maximal enabled transitions, triggered by e,
in C, written MaxET (C)e, satisfies the following conditions:

• MaxET (C)e ⊆ ET (C)e

• ∀t, t′ ∈ MaxET (C)e : ¬(t#t′)

• ∀t ∈ MaxET (C)e : @t′ ∈ ET (C)e : t @ t′

The role of the dispatcher is to find an event from E that can be accepted
in the current configuration of the object. The dispatcher works on a First
In First Out (FIFO) queue dedicated to flow and interaction events only.
In the dispatching process, a higher priority is given to ε since triggering
ε-transitions means that the current configuration is still not stable. Only
when a stable configuration is reached, the dispatcher is allowed to dispatch
an event from the queue.

Definition 2.13 (Dispatcher). For a configuration C, dispatch(C) returns
the event (∈ E) to be dispatched in C:

dispatch(C) =







ε if MaxET (C)ε 6= ∅
qe[0] if MaxET (C)qe[0] 6= ∅
nil otherwise

Once transitions are taken, a new configuration is entered and proper actions
are performed. From now on, we refer to this as a progress rule and a
stuttering rule. The first one is activated when there is a passage between
two configurations due to the execution of some transition whereas the latter
one has to be taken to guarantee that the transition relation is total i.e.
each configuration must have, at any time, a subsequent configuration. The
combination of both rules forms the transition relation of the Kripke structure
K (Definition 2.16).

Definition 2.14 (Progress Rule). Let c1 = 〈ζ, v, qe, hist〉 and c2 =
〈ζ ′, v′, q′e, hist

′〉 be two configurations of CH , and k =| MaxET (C)dispatch(C) |.
If dispatch(C) 6= nil then the transition relation from c1 to c2 is defined as

c1
prog
−→dispatch(C) c2 with:

ζ ′ = ζ \
⋃

1≤i≤|k| leaves(ti) ∪
⋃

1≤i≤|k| enters(ti)

v’ = variable valuation after
executing transitions of MaxET(C)dispatch(C)

qe’ = newQueuee(C)
hist’ = newHist(C)
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The function newQueuee returns a new queue of events. The head possibly
is shifted out, and new events possibly are added to the end of the queue.
Obviously, newHist maps automata to their last active substate. It is of
course undefined, if no history state is attached to the automaton.

Definition 2.15 (Stuttering Rule). Let c1 = 〈ζ, v, qe, hist〉 and c2 =
〈ζ ′, v′, q′e, hist

′〉 be two configurations of CH. If dispatch(C) = nil then the

transition relation from c1 to c2 is defined as c1
stut
−→ c2 with c1 = c2, i.e.

configuration c1 has to stutter.

Definition 2.16 (
STEP
→ ). The transition relation of a Kripke structure K is

defined as follows:

STEP
→ =











prog
−→ε if MaxET (C)dispatch(C)=ε 6= ∅
prog
−→qe[0] if MaxET (C)dispatch(C)=qe[0] 6= ∅
stut
−→ otherwise

The update of a configuration uses functions enters (Definition 2.17) and
leaves (Definition 2.18). These functions compute the correct set of states to
enter and to leave when a transition is executed.

Definition 2.17. For a configuration C, the set of states a transition t enters,
when executed, is defined as follows:

{TGT (t)} ∪ TD(t) ∪ (
⋃

s∈TD(t) init(ρ(s)))

enters(t) = ∪















































⋃

A∈ρ(TGT (t))

init(A) if TD(t) = ∅

⋃

A∈ρ(TGT (t)),(x∈TD(t),s)∈S(A),x∈S(ρ(s))

s

∪
⋃

A∈ρ(TGT (t)),(x∈TD(t))/∈S(A)

init(A)
otherwise

with

init(A) =











s0
A ∪ (

⋃

A′∈ρ(s0
A)

init(A′)) if hist(A) = nil

hist(A) ∪ (
⋃

A′∈ρ(hist(A))

init(A′)) otherwise
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Obviously, when a transition t executes, its target states, TGT (t) and
TD(t), are entered. Additionally, if TD(t) is a composite state, either the
system has to enter recursively predefined states —

⋃

s∈TD(t) init(ρ(s)) —
which are either default states or states that are marked by the history
mapping. Besides these states, we also have to add some other states.
If the target determinator of t is empty, then we have to enter TGT (t)
properly —

⋃

A∈ρ(TGT (t)) init(A). Otherwise we add all those composite states

(∈ TGT (t)) that are either superstates of elements of TD(t) or that are
concurrent states of elements of TD(t). An illustration of Definition 2.17 is
given in the following example.

Example 2.13. Let’s return again to Figure 2.9 and considerer transition
t6. This transition enters a concurrent state in a very special way. From
Definition 2.17 it follows that TGT (t6) and TD(t6) has to be included in
enters(t6). Additionally, all the hierarchical states of region B that contain
a member TD(t6) have to be included as well. Finally, we also have to add
the initial states of region C (recursively) since t6 enters a concurrent state
and therefore enters each region. Summarized,

enters(t6) = {TGT (t6)} ∪ TD(t6)∪

∪



















⋃

A∈ρ(TGT (t6)),(x∈TD(t6),s)∈S(A),x∈S(ρ(s))

s

∪
⋃

A∈ρ(TGT (t6)),(x∈TD(t6))/∈S(A)

init(A)

= {A} ∪ {G} ∪ {D} ∪ {E,H}

The set of states a transition leaves is much easier to compute. If a composite
state is left, the state itself is left together with all of its active descendants.

Definition 2.18. For a configuration C, the set of states a transition t leaves,
when executed, is defined as follows:

leaves(t) = {SRC(t)} ∪ {s ∈ S(ρ(SRC(t))) | s ∈ C}

2.5.4 Summary

The operational semantics of UML state machines is defined as a Kripke
structure. Such a structure forms the basic for embedding statecharts into
temporal logic, in particular, the symbolic execution technique integrated in
the model checker CaSMV. In fact, the operational semantics is defined as a
collection of run-to-completion steps between statechart configurations. Each
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RTC-step is formally based upon two update rules: the progress rule and the
stuttering rule. Special about the progress rule is that it first computes,
based on priority rules, a maximally consistent set of enabled transitions for
a given event and then executes this set of transitions using functions like
enters and leaves.

2.6 Related Work

We will discuss related work dealing with formal semantics definitions of
UML statecharts.

The work of Latella et al. [73] has been one starting point of our work.
In contrast to their work, our approach includes the history mechanism,
supports actions, and integrates stuttering rules in the formal semantics
definitions. We let us inspire by [36], to reduce the complexity of the
semantics of [73] to a semantics that has a quite clear connection by the
formalism accepted by CaSMV.

Paltor and Lilius [99] as well as Kwon [67] define an operational semantics
for UML statecharts in terms of rewrite rules. Since they do not use a
structured approach like ours, their semantics does not offer the same level
of clarity.

Both [5] and [113] have proposed a formal semantics definition for UML
statecharts in the PVS specification language. But to the best of my
knowledge, they do not handle events adequately enough i.e. the order of
event arrivals is neglected.

For a complete list of formal semantics definitions for UML statecharts,
we refer to [31, 114].



CHAPTER 3

The Model of a Standalone Statechart

It claims to be fully automatic, but actually,
you have to push this little button here.

Gentleman John Killian.

T
he ever increasing complexity of embedded systems poses a challenge
in verifying their correctness. For such safety-critical applications an

approach is definitely needed to validate the complexity of the behavioral
designs at a higher level of abstraction. With formal verification we verify
that every possible behavior of the target system satisfies the specification.

By applying verification techniques we can reduce the cost of development
much earlier in the lifecycle while defects are relatively inexpensive to correct.
Applying formal techniques in the development of embedded systems relies
on a model of the system, a description of the requirements of the system
and a technique to check that the requirements are satisfied by the model.

In this chapter, we propose a UML-based verification method that checks
whether the conditions on the evolution of the embedded system are met by
the model. The general approach is to abstract some kind of model from
the code (i.e. statechart diagrams), against which the software can be proven
through the use of appropriate mathematics. Model checking is an example
of such a mathematics, and using the Cadence version of SMV (CaSMV) [86]
guarantees that the verification process can be performed fully automatically.

This chapter considers embedded systems whose behaviors are expressed
with standalone statechart diagrams. The transformation from the statechart
to a model, required by the model checking technique and CaSMV, is
heavily addressed here. Additionally, we introduce some basic concepts of
model checking and outline the place of the statechart transformation in our
methodology.

57
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3.1 Model Checking with Cadence SMV

In a nutshell, model checking is a technique for automated correctness
verification of safety-critical reactive systems. A reactive system is a system
consisting of several components designed to continuously interact with one
another and with the system’s environment. On the other hand they are
also control-oriented. Therefore, model checking can be applied to analyse
embedded systems, whose behavior is expressed within a standalone UML
statechart diagram.

From a logical viewpoint, the general approach of the model checking
technique (see Figure 1.4 and Section 1.6.3) consists of three steps. In the first
step, the system is expressed as a semantic model M. The model M is a finite
model that captures the intuition about the behavior of a reactive system;
given as a Kripke structure [26]. The second step defines the specification
of a property ϕ expected of the system. The property ϕ is a set of desired
behaviors in time, and is therefore a logical formula defined in a temporal
logic. In the last step, model checking amounts to determining the truth of
formulas in models, i.e. whether M |= ϕ.

3.1.1 Kripke Model

A Kripke model M (Definition 3.1) is a modeling formalism independent
way of representing the behavior of a system. A Kripke model is basically
a graph having the reachable states of the system as nodes and the state
transitions of the system as edges. It is a non-deterministic finite state
machine whose states are labeled with boolean variables, which are the
evaluations of expressions in that state [17].

To obtain a model M we need a set of atomic propositions AP , which
denote the properties of individual states we are interested in. Additionally,
a set of transitions between states, and a function that labels each state with
a state of properties that holds in that state.

Definition 3.1 (Kripke Model). A Kripke Model M over a set of atomic
propositions AP is a tuple M = (σ, σ0, δ, λ). It consists of a Kripke Structure
(σ, σ0, δ) and a labeling function λ where

• σ is the set of states.

• σ0 ⊆ σ is the set of initial states.

• δ ⊆ σ × σ is the transition relation that must be total, that is, for every
state s ∈ σ there is a state s′ ∈ σ such that δ(s, s′).
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• λ : σ → 2AP is a function that labels each state with the state of atomic
propositions that are true in that state (e.g. a = 1).

Note that in Kripke models deadlock states are disallowed. This is for
technical reasons (it simplifies the theory somewhat). Instead, in the
corresponding Kripke model we add an edge from the deadlock state back to
itself.

As can be directly seen from the definition, Kripke models have a close
relationship with automata. But there are some changes. To give an example,
labeling is on states instead of having labels on arcs. To give another example,
there is no definition of final states.

Example 3.1. Figure 3.1 is the representation of a fairly small Kripke
model. We have: σ = {S0, S1}; σ0 = {S0}; δ = {(S0, S1), (S1, S0)};
λ(S0) = {x = 0, y = 1}; λ(S1) = {x = 1, y = 0}.

S0 S1
X=0

Y=1

X = 1

Y = 0

Figure 3.1: A Small Kripke Model

Cadence SMV [86] is a formal verification system for designs, based on a
technique called symbolic model checking [87]. It verifies that every possible
behavior of the target system satisfies the specification.

The required model for CaSMV is, of course, a Kripke model, whose state
is defined by a collection of state variables. The transition behavior and its
initial state(s) are determined by a collection of parallel assignments which,
when solved, tell us what state transitions the program can make.

The required specification for CaSMV is a collection of properties in
temporal logic. A property can be as simple as a statement that a particular
pair of signals are never asserted at the same time, or it might state some
complex relationship in the values or timing of the signals.

CaSMV is quite effective in automatically verifying properties of combi-
national logic and interacting finite state machines. Sometimes, when the
checking of a property fails, the tool will automatically produce a counter-
example. This is a behavioral trace of the finite state machines that violates
the specified property. Thus making CaSMV a very effective debugging tool,
as well as a formal verification system.
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3.1.2 Introductory Example

Rather than giving a complete overview of the syntax and the semantics of
the CaSMV language, let us first consider a simple example that illustrates
the basic concepts. The following presentation is adapted from the SMV
manual [87]. Further details on the CaSMV system are in [89, 90].

Consider the CaSMV program in Code Listing 3.1. The first part defines
the Kripke model. The space of states σ of the Kripke model is determined by
the declarations of the state variables (in the example request and state).
The variable request is declared to be of (predefined) type boolean. This
means that it can assume the (integer) values 0 and 1. The variable state is
a scalar variable, which can take the symbolic values ready or busy. Thus, a
state of σ is defined by mapping the state variables to a value from the given
domains.

Code Listing 3.1 An Example CaSMV Program

module main() {

request: boolean;

state : {ready, busy};

init(state) := ready;

next(state) := case {
state = ready & request: busy;

default : {ready, busy};
};

property: SPEC AG(request -> AF state = busy);

}

The following assignment sets the initial value of the variable state to ready.
The initial value of request is completely unspecified, i.e. it can be either 0 or
1. Therefore, the initial set of states σ0 is given by these init-statements. Be
aware of the fact that initial-state assignements are simultaneously executed
at the start.

The transition relation δ of the Kripke model is expressed by defining
the value of variables in the next state (i.e. after each transition), given the
value of variables in the current states (i.e. before the transition). The case
segment sets the next value of the variable state to the value busy (after the
column) if its current value is ready and request is 1 (i.e. true). Otherwise
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the next value for state can be any in the set {ready,busy}. Obviously,
next-state assignments are simultaneously executed once per cyle.

The variable request is not assigned. This means that there are no
constraints on its values, and thus it can assume any value, which is thus an
unconstrained input to the system.

Specifications can be expressed in CTL as well as in LTL. The keyword
SPEC is followed by a CTL formula, that is intended to be checked for truth in
the Kripke model defined above. The intuitive reading of the formula is that
every time request is true, then in all possible future evolutions, eventually
state must become busy.

The resulting transition system is visualized in Figure 3.2. Obviously, the
elements of the Kripke model are as follows: σ = {S0, S1, S2, S3}; σ0 =
{S0, S1}; δ = {(S0, S1), (S0, S2), (S0, S3), (S0, S0), . . .}; λ(S0) = {state =
ready, request = 0}; . . . .

S0 S1state=ready

request=0

S2 S3
state=busy

request=1

state=busy

request=0

state=ready

request=1

Figure 3.2: Kripke Model of the Introductory Example

3.2 Methodology

We suppose that the behavior of embedded systems is specified within a single
statechart diagram. A prerequisite to formally verify behavioral properties
is to map the statechart diagram to a formal semantic model. Naturally,
the semantic model should satisfy the UML semantics of statecharts. Model
checking the behavior of only a single object (i.e. a single statechart), requires
an interpretation of the statecharts model as a Kripke model. It is the
responsibility of our methodology to construct a semantic model, required
by the model checker CaSMV, for such embedded systems. In fact, at this
point, we start building the architecture of our simple-to-use tool (Figure 3.3)
that helps in the formal verification of embedded systems design. Chapter 9
applies the verification methodology to a far more complex example, which
is considered as an industrial benchmark.
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UML Model

1 Statechart


(XMI)


Extended

Hierarchical Automaton


(EHA)


True or

False with


Counterexample


Property


CaSMV

Kripke Model


Model Checker

CaSMV


Java Application


UML Model

Class Diagrams


Figure 3.3: Methodology & Tool Architecture

The tool input is a UML specification which has been formatted using the
XMI exchange syntax. For verification purposes, the XML representation of
the statechart diagram is post-processed by a Java application [53, 122] that
generates an EHA; as a semantically equivalent formal model. In a next step,
and based on the formal operational semantics, the same Java application
automatically transforms the EHA to the requested CaSMV model1.

To summarize things, our tool provides the mapping from a statechart
diagram to a CaSMV model (= Kripke model), through an intermediate
model, namely an extended hierarchical automaton. The CaSMV model
satisfies the semantics defined in Chapter 2, Section 2.5. Next to a statechart
diagram, class diagrams are taken into account as well when transforming the
embedded behavior from UML to CaSMV. These diagrams provide important
additional information concerning some elements that make up the semantic
model e.g. types of variables or initial values of variables.

3.3 Motivating Example

We will use the coffee vending machine [56] as an example in order to
show how CaSMV models are constructed. Both because it is a well-
known example of an embedded system, and because it incorporates in its
specification both reactiveness and control-oriented features.

Assume that we have a statechart modeling a coffee vending machine

1See also Section 3.8.
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(Figure 3.4). Then a possible event is a user inserting a coin which, when
it occurs, leads to a state change of the automaton. Obviously, the user
forms a part of the environment of the machine. After inserting some coins
and pushing a button, additional state changes and actions occur and finally
coffee is offered to the user.

Off


LightOff


LightOn


t16: flow_cupstart
t17: flow_coffeedone


CupBusy
CupIdle

t0: flow_cupstart


t1: / gen(new flow_cupdone());

CoffeeBusy
CoffeeIdle


t6: / gen(new flow_coffeedone());


t5: flow_coffeestart


t18: inter_poweron / money = 0;


t19: inter_poweroff


Empty


t4: [cup = 1 || coffee = 1]


t3: [cup = 0]


t7: [coffee = 0]
Cup
 Coffee


Light


On


StandBy


CupReady


t12: inter_button [money > 0] / gen(new flow_cupstart());


CoffeeReady


t13: flow_cupdone / gen(new flow_coffeestart());


Controller


t14: flow_coffeedone / money = money - 1;


t10: inter_coin / money = money + 1;


t11: inter_return / money = 0;


Figure 3.4: Statechart Diagram for a Coffee Vending Machine

The extended hierarchical automaton, primarily used in the following
sections, is given in Figure 3.5.

3.4 From a Statechart to a Kripke Model

As we have mentioned, model checking a statechart diagram requires a map-
ping from the statechart to a Kripke model. The automatic transformation
of a statechart to a Kripke model M (Definition 3.1), through an EHA,
has to respect the automaton’s operational semantics, which is defined as a
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Off


On


t18: inter_poweron / money = 0;


Empty


t3: [cup = 0]


t4: [cup = 1 || coffee = 1]


t7: [coffee = 0]


Root


CoffeeIdle


CoffeeBusy


t5: flow_coffeestart


t19: inter_poweroff


t6: / gen(new flow_coffeedone());


Coffee

CupIdle


CupBusy


t0: flow_cupstart

t1: / gen(new flow_cupdone());


Cup


LightOff


LightOn


t16: flow_cupstart

t17: flow_coffeedone


Light


StandBy


CupReady


t12: inter_button [money > 0] / gen(new flow_cupstart());


CoffeeReady


t13: flow_cupdone / gen(new flow_coffeestart());


Controller

t14: flow_coffeedone / money = money - 1;


t10: inter_coin / money = money + 1;


t11: inter_return / money = 0;


Figure 3.5: Extended Hierarchical Automaton for a Coffee Vending Machine

Kripke structure K (Definition 2.10). Not surprisingly, K has to be correctly
integrated into M. The integration is defined as follows:

K = (CH , CH0
,

STEP
→ )

↓ ↓ ↓
M = (σ, σ0, δ, λ)

Let’s explain the integration into more detail. Intuitively, you must already
know that a state of σ is a snapshot of all the variables of the given system.
Based on this, we will map configurations of the complete EHA to states
of σ (CH 7−→ σ). Since each configuration (Definition 2.5) is a quadruple
(states,variables, event−queue,history mapping), a state of σ is a quadruple
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as well. In Section 3.5.4, it is explained that the history mapping is treated
in a very special way. As a consequence, a state of σ will be defined as a
triple instead of as a quadruple: (states, variables, event−queue)H 7−→ σ.

The set of initial states σ0 is given by the set of initial configurations which
is derived from the initial configuration of the set of sequential automata in
a top-down manner starting from the root automaton (CH0

7−→ σ0).

The transition relation δ will correspond to the STEP relation
STEP
→ .

Therefore, the complete execution semantics of statecharts will be covered

by δ (
STEP
→ 7−→ δ).

The labeling function λ immediately follows from the above three defined
mappings. In fact, you may notice that a state is not explicitly labeled, but
it is implicitly labeled by its corresponding state-variable valuations.

The construction of the model M is split up into three different blocks i.e.
Section 3.5 defines the block of state variables (since these are used to define
σ), Section 3.6 specifies the block of initial states, and finally Section 3.7
carries out the block that covers the transition relation.

3.5 The Set of States σ

A run-to-completion step is defined as the passage between two stable state
configurations, possibly going through several instable ones. Not surprisingly,
σ will be defined as the set of statuses S = CH . Therefore, each element that
belongs to a configuration C (Definition 2.5) will correspond to a suitable
CaSMV variable. Declarations of these variables determine the space of
states σ.

3.5.1 Local States

A configuration C denotes a global state of an EHA, and is composed of
local states of component sequential automata (Definition 2.10). To correctly
control the evolution of a state machine, the state it is in at any given moment
must be known. This is achieved by using a separate variable to store this
information for each machine.

In addition, the fact that combined states, both sequential and con-
current, may appear within a machine means that additional variables are
needed in order to deal with submachines. This will be dealt by following
the same reasoning as for the main machine. The latter will, of course,
correspond with the root state.
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Specifically, each sequential automaton of the EHA tree is represented
by a CaSMV scalar variable (finite domain). Rule 3.1 defines the possible
values of such variables. Note that the NotActive value is optional since it
can be possible that the machine continuously is in an automaton during its
evolution (e.g. no final state is reached). The value StateMachineError is
only added to the scalar variable of the top automaton to indicate whether
or not a fault has occurred during the verification process.

Rule 3.1 (Automaton Declaration). The root automaton A0 ∈ F is
represented by a scalar variable:

st−Root : {σA0
, [NotActive], StateMachineError};

Each automaton A ∈ F \ {A0} is represented by an enumerated variable:

st−A : {σA, [NotActive]};

An illustration of such declarations is given in Code Listing 3.2. At this point
the usefullness of extended hierarchical automata must become clear.

Code Listing 3.2 Local State Declarations

st_Root : {Off, Empty, On, StateMachineError};
st_Coffee : {CoffeeIdle, CoffeeBusy, NotActive};
st_Light : {LightOn, LightOff, NotActive};
st_Cup : {CupBusy, CupIdle, NotActive};
st_Controller: {StandBy, CupReady, CoffeeReady, NotActive};

On the other hand, flattening the hierarchy is a very straightforward way to
represent a statechart as a transition system. But our representation avoids
such an approach, since this can lead to an exponential blow-up in size,
particularly when there is a lot of sharing of states and transitions.

3.5.2 Variable Valuation

Each configuration C, no matter if it is stable or not, has specific values for the
variables (attributes) used by the embedded system (Definition 2.10). And
the evolution of the machine can lead to different actions such as modifying
the value of several attributes. Therefore, attributes of the system has to be
modeled in M as well.

All attributes, whose value changes due to the evolution of the statechart,
are gathered into defined types (see Rule 3.2). A type definition is a special
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kind of module declaration2 with no parameters, and a slightly different
syntax.

Rule 3.2 (Attribute Declaration). Let Attr be the set of attributes whose
values change due to the evolution of the machine. Each attri ∈ Attr is
declared inside a type definition as follows:

typedef attributes struct {attri : finite type of attri; }

A state variable is created by instantiating the type definition:

attr : attributes;

Knowledge about attributes and their corresponding types is retrieved from
the class diagram. Typed reasoning and attribute domain information can be
used to inject type specific operations and constraints in the CaSMV model
checker. Attributes of the coffee vending machine are modeled as shown in
Code Listing 3.3.

Code Listing 3.3 Attribute Declarations

typdef attributes struct {
money : 0..20;

cup : boolean;

coffee: boolean;

}

3.5.3 Event Queue

The actual state of a state machine is also given by the contents of its event
queue (Definition 2.10). The event queue holds the events that have not
yet been handled by the machine. The finite set of events E of an EHA
(Definition 2.3) holds three types of events: flow events, interaction events
and the null event. However, in the model M the event queue will store
interaction and flow events only. As we will see later, the null event will be
treated in a special way.

This time, an array is used to model the event queue. Each array is
bounded since M has to be a finite model, and therefore only finite types

2A module is a bundle of definitions (type declarations and assignments) that can be
reused. When creating an instance of the module, actual expressions are plugged in for
the formal parameters, thus linking the module instance into the program. E.g. module
counter

−
bit(carry

−
in, clear, bit

−
out, carry

−
out){...}
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can be added to the model. To be able to store interaction and flow events,
the type of the array is an enumerated type. Naturally, a NotDefined value
is used to specify empty positions. Additionally, a pointer to the first free
queue position, and a overflow indicator is inserted into the model. The
modeling of the event queue is more formally defined in Rule 3.3, and an
illustration is given in Code Listing 3.4.

Rule 3.3 (Event Queue Declaration). The event queue of a configuration
C is modeled as follows:

event−queue: array 0..(SIZE - 1) of {Ei, Ef , NotDefined};

The pointer to the first empty queue position is modeled as follows:

event−tail: 0..(SIZE-1);

The queue overflow indicator is declared as follows:

event−overflow: boolean;

Code Listing 3.4 Event Queue Declarations

event_queue : array 0..(SIZE - 1) of

{ inter_poweron, inter_poweroff, inter_coin,

inter_return, inter_button,

flow_coffeestart, flow_cupstart,

flow_coffeedone, flow_cupdone, NotDefined

};
event_tail : 0..(SIZE-1);

event_overflow: boolean;

3.5.4 History Mapping

The history mapping of a configuration, that attaches the last visited substate
to each sequential automaton, is not modeled explicitly as a state variable.
History states are treated in a special way at the moment the transition
behavior is constructed. Thus, the mapping will be implicitly integrated
in the model. How this is actually achieved, will be shown further on
(Section 3.7).
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3.6 Initial States σ0

The model checker CaSMV starts the reachability analysis by initializing the
set of state variables. Initializing variables in CaSMV is done using the init

operator.

3.6.1 Local States

Each sequential composite state is initialized to its default state because the
default state is the first state entered when its containing state becomes
active. However, only the sequential composite states that the machine
resides in before execution starts, are initialized. The initial value of the
other states is set to NotActive; they are not supposed to be active at the
very beginning of a run.

Rule 3.4 (Automaton Initialization). The root automaton A0 ∈ F is
initialized in M using a trivial program statement:

init(st−Root) = s0
Root;

Each automaton A ∈ F \ {A0} is initialized as follows:

init(st−A) =

{

s0
A; if A ∈ default(s0

Root)
NotActive; otherwise

with

default(s) = ρ(s) ∪
⋃

A∈ρ(s)

default(s0
A)

Rule 3.4 is quite useful to initialize our sample embedded system, as shown
in Code Listing 3.5. When the machine comes into existence, the default
state Off is the only state that is entered immediately.

Code Listing 3.5 Automaton Initialization

init(st_Root) := Off;

init(st_Coffee) := NotActive;

init(st_Light) := NotActive;

init(st_Cup) := NotActive;

init(st_Controller):= NotActive;
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3.6.2 Variable Valuation

Each attribute is initialized to its default value set in the UML class diagram
or to the value assigned in a default state that is active when the machine
becomes alive. If the initial value of an attribute is not defined, we omit an
initial assignment. As a consequence CaSMV will explore all possible initial
values.

3.6.3 Event Queue

There are two kinds of models: the closed model and the open model. In
a closed model, the machine does not interact with the outside world i.e.
Ei = ∅. In contrast, some models need external stimuli such as the coffee
vending machine. Open models, that react to messages sent by external
entities, cannot be verified with a model checker since these messages are not
generated by any element of the model. They can only be analysed when the
events are created by an event generator. Because there is no information
included in the model, the event generator is non-deterministic. When
located in some status, the external events that may enable some transitions
in the current status are selected for once. The reason is that for a single
statechart, the behavior of the environment is completely unpredictable.
Then all the possible subsequent statuses are found, and which status will
be reached is non-deterministic.

Rule 3.5 (Event Queue Initialization). Let EC0
be the set of external

stimuli the initial configuration C0 responds to. Then, the event queue is
initialized as follows:

if EC0
= ∅ then























init(event−queue) :=
[NotDefined :

i = 0..(SIZE − 1)];

init(event−tail) := 0;
init(event−overflow) := 0;

otherwise







































init(event−queue[0]) := {EC0
};

init(event−queue[1]) := NotDefined;
. . . := . . . ;
init(event−queue[SIZE-1])) := NotDefined;

init(event−tail) := 1;
init(event−overflow) := 0;
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The initialization of the event queue is dependent on the presence of
interaction events in the initial configuration of the extended hierarchical
automaton. The queue is empty if the initial configuration does not respond
to the messages sent by the outside world. Otherwise the event generator
adds one of the messages non-deterministically to the first position of the
queue. Rule 3.5 defines the way the event queue of the coffee vending machine
needs to be initialized (Code Listing 3.6).

Code Listing 3.6 Event Queue Initialization

init(event_queue[0]) := {inter_poweron};
init(event_queue[1]) := NotDefined;

...;

init(event_queue[SIZE-1]) := NotDefined;

init(event_tail) := 1;

init(event_overflow) := 0;

Why does the presence of external stimuli imply different CaSMV initializa-
tions? The reason is that we are restricted to the single assignment rule,
provided by CaSMV. Each variable can be assigned only once in a program.
The rule is that we may either assign a value to x, or to init(x) and next(x),
but not both. Tables 3.1 and 3.2 illustrate legal assignments and illegal ones
respectively [89, 90].

x:= 0; next(x):= 1;
init(x):= 0; init(x):= 0;

next(x):= 1;

Table 3.1: Legal CaSMV assignments

Assigning an array reference with a variable index counts as assigning every
element in the array, as far as the single assignment rule is concerned [89, 90].
Thus for example,

x[0] := 0;

x[count + 1]:= 1;

is a violation of the single assignment rule, if count is not a constant. This
is because CaSMV cannot determine at compile time that count + 1 is not
equal to 0.
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x:= 0; next(x):= 1;
x:= 1; next(x):= 0;
x:= 1; x := 1;
init(x):= 0; next(x):= 0;

Table 3.2: Illegal CaSMV assignments

3.7 Transition Behavior δ

The transition behavior of M is formulated using the STEP relation of
K (Definition 2.16). This way, M satisfies the operational semantics
completely. Since the STEP relation goes from one configuration to another,
it is necessary to define the transition behavior for each element of such
configurations.

Section 3.7.1 generally outlines how
STEP
→ is modeled in CaSMV. Sec-

tions 3.7.2-3.7.3 define two important encoding mechanisms. Sections 3.7.4-
3.7.6 define the constructs that are needed to guarantee some evolution while
the statechart is verified against expectation properties. Finally, Section 3.7.7
points out the way the statechart stutters during the verification process.

3.7.1 STEP Relation

To recap, the general structure of a step can be seen as a combination of
two closely related phases and a stutter rule (Definition 2.16). The first
phase checks whether an instable state configuration can evolve on its own.
This means that null-triggered transitions that may fire are identified and
executed. Similarly, the second phase checks whether a stable configuration
can evolve by dispatching an event from the environment. Like in the first
phase, transitions that may fire are identified and executed.

Rule 3.6 (Step Relation Representation). Let Tif ⊆ T (A0) be the set
of all transitions triggered by an external event (∈ Ei ∪Ef ). Let Tε ⊆ T (A0)
be the set of all null-triggered transitions. Then, the STEP relation of K is



3.7. Transition Behavior δ 

inserted into M as follows:

progress−auto :=
∨

t∈Tε

t;

progress−trigger :=
∨

t∈Tif

t;

case {
progress−auto & ∼error : {. . .};
progress−trigger & ∼error : {. . .};
error : {. . .};
default : {. . .};

};

Rule 3.6 exploits the power of the branch statement to define the correct
execution order between the several phases of the STEP relation in the
transition relation. For example, the second branch statement is only
taken when the state machine is in a stable configuration (represented by
progress−trigger). As long as the statechart is in some intermediate
and inconsistent situation (represented by progress−auto), the first branch
statement will be taken.

To acquire a total transition relation, an additional stutter rule is added
to the STEP relation of K when inserted into the model M. Stuttering rules
provide that finite runs are always interpreted as special cases of infinite runs.
A configuration may stutter due to two reasons:

• At the moment an error has occurred, the state configuration is forced
to stutter in a so-called exception configuration.

• Due to the lack of progress, the state configuration remains the same.
This happens when no transitions can be identified to fire. This rule
prevents the model to behave incorrectly at the moment a (in)stable
configuration cannot evolve anymore.

It is clear that the statechart transitions are divided into two sets. One set
contains all the transitions without a trigger while the other set consists of
the transitions with a trigger. The progress rule (Definition 2.14) indicates
that we have to know, at each moment, whether a state configuration can
still evolve or not. This is the responsibility of progress variables. The
valuation of both progress variables depends on the enabledness conditions
of transitions, and a truth value indicates progress in the current state
configuration. Such variables are macro variables3; they will not be added to

3Macro variables make descriptions more concise.



 3. The Model of a Standalone Statechart

the state space of M. Whenever a progress variable occurs in an expression,
it is replaced by the valuation of the corresponding disjunction (not the
disjunction itself!).

3.7.2 Encoding Active States

Since the run-to-completion step works with configurations — sets of active
states — it is necessary to specify for each state CaSMV conditions that
make the state active. Such conditions (Rule 3.7) are again macro variables.
Clearly, the conditions exploit the structure of an extended hierarchical
automaton; a state can only be active if its parent state is active as well.

Rule 3.7 (Active State Conditions). For the root automaton A0 ∈ F ,
the conditions that make the states s ∈ σA0

active are defined as follows:

in−s : boolean;
in−s := (st−Root = s);

For each automaton A ∈ F \ {A0}, and a state s ∈ S(A0), A ∈ ρ(s) the
conditions that make the states s′ ∈ σA active are defined as follows:

in−s’ : boolean;
in−s’ := in−s &( st−A = s’);

Rule 3.7 applied on the coffee vending machine gives the result as shown in
Code Listing 3.7. The Empty state is active iff the machine resides in the
state; thus the value of st−Root is Empty. Analogously, the light is off iff the
machine is in the concurrent state On and iff the region Light resides in the
LightOff state.

3.7.3 Encoding Enabled Transitions

Active state conditions simplify the representation of enabled transitions,
as defined by Rule 3.8 and illustrated in Code Listing 3.8. A transition t
is enabled (Definition 2.11) in C if all of its source states are active, if its
guard expression is true and if its trigger is offered by the environment and
is currently being dispatched (the head of the FIFO queue). Naturally, the
guard and the trigger are optional elements in these conditions.
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Code Listing 3.7 Active State Conditions

in_Off, in_Empty, in_On: boolean;

in_Off := (st_Root = Off);

in_Empty:= (st_Root = Empty);

in_On := (st_Root = On);

in_CoffeeIdle, in_CoffeeBusy: boolean;

in_CoffeeIdle:= in_On & (st_Coffee = CoffeeIdle);

in_CoffeeBusy:= in_On & (st_Coffee = CoffeeBusy);

in_LightOn, in_LightOff: boolean;

in_LightOn := in_On & (st_Light = LightOn);

in_LightOff:= in_On & (st_Light = LightOff);

...;

Rule 3.8 (Enabled Transition Representation). The enabledness con-
dition of each transition t ⊆ T (A0) is specified as follows:

t : boolean;
t := in−SR(t) [& G(t) ][& event−queue[0] = EV(t)];

with

in−SR(t) :=
∧

s∈SR(t)

in−s;

As you can see, we haven’t used SRC(t) in the enabledness condition. This
is because we have constructed the source restriction in such a way that
SR(t) ⊆ (S(ρ(SRC(t))) ∪ {SRC(t)}). For example, consider transition t3

with SRC(t3) = On and SR(t3) = CupIdle. The source restriction of t3

will only be active if its parent state is active as well. As another example,
let’s look at transition t5. Now, SRC(t5) = SR(t5) = CoffeeIdle thus it
is again useless to explicitly add SRC(t5) in the enabledness condition.

3.7.4 Local States, Priority Scheme, History Mapping

In a step, the system reacts to stimuli by propagating to other states i.e. one
configuration changes to another configuration. Obviously, the updating to
a new configuration depends on the transitions that are enabled for firing
since the selected transitions cause the current active states to change to the
transitions destination states.
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Code Listing 3.8 Enabledness Conditions

t3, t4, t7, t18, t19 : boolean;

t3 := in_CupIdle & (cup = 0);

t4 := in_Empty & (cup = 1 || coffee = 1);

t7 := in_CoffeeIdle & (coffee = 0);

t18:= in_Off & event_queue[0] = inter_poweron;

t19:= in_On & event_queue[0] = inter_poweroff;

t5, t6 : boolean;

t5:= in_CoffeeIdle & event_queue[0] = flow_coffeestart;

t6:= in_CoffeeBusy;

t16, t17 : boolean;

t16:= in_LightOff & event_queue[0] = flow_cupstart;

t17:= in_LightOn & event_queue[0] = flow_coffeedone;

...;

As mentioned, each state variable represents a sequential automaton. In a
sequential automaton there can be, at any time, at most one transition being
enabled for firing. The collection of all these selected transitions make up
the set of maximal enabled transitions (Definition 2.12).

To model state changes (for each state variable) in CaSMV, a collection
of parallel next statements is used. A next statement defines what the value
of a state variable is, one time unit further, based on Definitions 2.17- 2.18.
Each next statement (Rule 3.9) consists of the identification of the transitions
that may fire based on the priority scheme (Definition 2.9).

Rule 3.9 (State Change Representation). The state changes for each
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automaton A ∈ F are defined as follows:

next(st−A) :=
case {

- - entering transitions

ti :







s0
A; if no history state, TGT (ti) = s, TD(ti) = ∅
k; if TGT (ti) = s, k ∈ TD(ti), k ∈ σA

k′; if TGT (ti) = s, k′ ∈ σA, ∃k ∈ TD(ti) ∧ k ∈ S(ρ(k′))

- - deepest transitions followed by higher-level transitions

tj :















TGT (tj); if TGT (tj) ∈ σA

stA; if TGT (tj) ∈ S(A) \ σA

NotActive; if no history state, TGT (tj) /∈ S(A)
stA; if history state, TGT (tj) /∈ S(A)

- - equal conflicting transitions
choose−in− . . .− event = Tk :















TGT (tk); if TGT (tk) ∈ σA

stA; if TGT (tk) ∈ S(A) \ σA

NotActive; if no history state, TGT (tk) /∈ S(A)
stA; if history state, TGT (tk) /∈ S(A)

- - otherwise
default : stA;

};

with s ∈ S(A0) such that A ∈ A(ρ(s)), if A 6= A0.

In practice, each sequential automaton will have two such next statements.
One statement defines the state changes caused by null-triggered transitions,
while the other statement specifies the state changes caused by triggered
transitions. Naturally, each statement is placed in the correct progress

branch block, as shown in Code Listing 3.9.
Clearly, Code Listing 3.9 illustrates that real parallellism is achieved for

a concurrent state. Both because each concurrent region (e.g. CoffeeIdle)
of a state is represented by a state variable, and because the next statements
execute simultaneously.

Entering Transitions

Upon entering a sequential automaton, some cases are differentiated. The
first option in the branch (Rule 3.9) attached to ti is a default entry when an
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Code Listing 3.9 State Changes

progress_auto & ~error : {
next(st_Root) := case {
t7 : Empty;

t3 : Empty;

t4 : On;

default: st_Root;

};
next(st_Coffee) := case {
t6 : CoffeeIdle;

t7 : NotActive;

t3 : NotActive;

t4 : CoffeeIdle;

default: st_Coffee;

};
next(st_Light) := case {
t7 : NotActive;

t3 : NotActive;

t4 : LightOff;

default: st_Light;

};
...;

};

progress_trigger & ~error : {
next(st_Root) := case {
t19 : Off;

t18 : On;

default: st_Root;

};

next(st_Coffee) := case {
t5 : CoffeeBusy;

t19 : NotActive;

t18 : CoffeeIdle;

default: st_Coffee;

};

next(st_Light) := case {
t17 : LightOff;

t16 : LightOn;

t19 : NotActive;

t18 : LightOff;

default: st_Light;

};
...;

};

incoming transition terminates on the outside edge of the composite state.
In this case, the default state is entered. A transition forces an explicit entry
if the transition goes to a substate of the composite state, then that substate
becomes active; the second option in the branch. This rule applies recursively
if the transition terminates on a transitively nested substate; the last option
in the branch. Finally, there is also a history entry meaning that the last
visited substate becomes active again; this is not explicitly modeled.

As an example, consider transition t18 (Code Listing 3.9). Once the
power of the machine is turned on, the concurrent state On is entered by
default. This implies that the default states (e.g. CoffeeIdle, LightOff)
of each concurrent region become active as well.

Hierarchical Conflicting Transitions

Suppose that at least two transitions t and t′ conflict and that t @ t′ holds.
This means that t′ has the highest priority to execute. Obviously, in a case
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block, the earlier it is placed, the earlier it is evaluated and taken. This
guides the place of the enabledness conditions in such blocks. The definition
of the target state is rather obvious.

The coffee vending machine does not contain any hierarchical conflicting
transitions. Code Listing 3.9 only shows that the deeper a transition lies in
the EHA, the earlier it is placed in the branch statement e.g. t17 is deeper
in the hierarchy than t18. If they conflict (which cannot happen here) t17 is
evaluated and taken first, as the UML semantics requires.

Equal Conflicting Transitions

Suppose again that at least two transitions t and t′ conflict and have equal
priority i.e. t @= t′ (Section 2.5). Then it is up to the machine (or to
the model checker during verification) to select and fire one transition non-
deterministically. CaSMV is forced to make such choices as defined in
Rule 3.10.

Rule 3.10 (Equal Conflicting Transition Representation). For each
automaton A ∈ F and for each s ∈ σA, let δse

bet the set of all outgoing
transitions of s triggered by the same event e ∈ E. The possible conflicts
among these transitions (when enabled) are solved non-deterministically as
follows:

choose−in−s−e : {T | ∃t′ ∈ δse
: δse

3 ω(T ) @= t′} ∪ {NotDefined};

choose−in−s−e :=

{

{ω(T ) ? T};
{NotDefined | no transition is enabled};

ω : ∆ → δ attaches to each symbol T a transition t.

As you can see, several choose functions are defined as enumerated macro
variables. The type of such a variable is a set of symbols. These symbols
are representations of transitions that leave the same state while triggered
with the same event. Thus, there exists a chance that some of them, when
enabled, are in conflict.

The value of these choose variables is defined using CaSMV set expres-
sions. Such expressions are interpreted to represent a non-deterministic
choice between the values in the set. A set is specified as a list of elements
between curly brackets, and each element can be a guarded expression c ? e.
In this case the value of e is included in the set if the condition c is true. Thus,
each symbol T is included in the set if its corresponding transition t is enabled
in the current configuration. However, if, in the current configuration,
no transition enables, then the set will be a singleton set. Note that the
NotDefined value is not included in the set, in case at least one enabledness
condition is true.
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History Mapping

If a transition causes the sequential state to be left in an undefined state, we
set its next value to NotActive. Of course, if a history state is attached to
the sequential automaton, its next value has to be set to its current value. At
the moment the automaton is entered again, the last active visited substate
becomes active as well, as required by the UML semantics.

3.7.5 Variable Valuation

Class attributes in a UML model can be assigned new values in actions
performed by a transition. If an attribute value changes as a result of
such actions, we use the transition macro as the enabling condition for the
assignment. An attribute keeps its current value if a transition does not
affect its value. The general rule is:

Rule 3.11 (Attribute Value Changings). The behavioral update, with
respect to the priority scheme, for class attributes is defined as follows:

case {

ti :







next(attr.attri):=







expressioni; if attr.attri = expressioni belongs
to the action list of ti

attr.attri; otherwise
};

As before, there will be two such assignments since the transitions are divided
into two disjunctive sets.

Code Listing 3.10 Attribute Value Changings

t14:= in_CoffeeReady & event_queue[0] = flow_coffeedone;

case {
...;

t14: {
next(attr.money) := money - 1;

next(attr.cup) := attr.cup;

next(attr.coffee):= attr.coffee;

};
...;

};
...;
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3.7.6 Event Queue

Several examples will be used to explain how event variables are updated
during verification, in order to respect the event processing rules.

While the machine executes a set of transitions, it is insensitive to newly
arrived events (∈ Ei ∪ Ef ), which accumulate in the queue attached to the
statechart, until all transitions have finished their activities.

The generation of flow events caused by transition actions, which are
carried out sequentially, defines the delivery order of the events. Concurrent
transitions execute interleaved such that events can be generated in several
orders. Combine this with the fact that external stimuli need to be generated
at appropiate moments, then it cannot be a suprise that it is a rather difficult
task to correctly define the transition relation of the event variables e.g. the
trace of event delivery order must be reflected in the event queue.

Flow Events

As an example, Figure 3.6 shows two situations. The left part shows a
transition tr1 that, when executed, produces two flow events. Obviously,
the trace of delivery order is (flow−ev1, flow−ev2). The right part
shows two concurrent transitions (tr2 and tr3). When they both are
performed during a step, the delivery order is either (flow−ev3, flow−ev4,
flow−ev5) or (flow−ev5, flow−ev3, flow−ev4) due to the interleaved model
of computation inside concurrent states.

Source1


Target1


tr1: / gen(new flow_ev1()); gen(new flow_ev2());


Source2


Target2


tr2: / gen(new flow_ev3()); gen(new flow_ev4());


State1


Target3


tr3: / gen(new flow_ev5());


Figure 3.6: Trace of Flow Events Delivery Order

Code Listing 3.11 shows how both orders are reflected into M. As previously
mentioned, the event−tail is used to place newly generated events into
the queue with respect to both the delivery order and the FIFO order.
Additionally, such updatings have to conform to the single assignment rule.
This is achieved by using a for loop and by carefully specifying the branch
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conditions; it is impossible that two branch conditions can be taken for the
same index i. The latter conditions are defined using transition macros as
enabling conditions, again with respect to priorities.

Code Listing 3.11 Event Queue Update with Flow Delivery Orders

for (i = 0; i < SIZE; i = i + 1) {
case {
tr1 & event_tail = i : next(event_queue[i]):= flow_ev1;

tr1 & (event_tail + 1) = i : next(event_queue[i]):= flow_ev2;

tr2 & ~tr3 & event_tail = i: next(event_queue[i]):= flow_ev3;

tr2 & ~tr3 & (event_tail + 1) = i:

next(event_queue[i]):= flow_ev4;

~tr2 & tr3 & event_tail = i: next(event_queue[i]):= flow_ev5;

tr2 & tr3 & event_tail = i:

next(event_queue[i]):= {flow_ev3, flow_ev5};
tr2 & tr3 & (event_tail + 1) = i:

next(event_queue[i]):=

case {
i > 0 & next(event_queue[i-1]) = flow_ev3: flow_ev4;

default : flow_ev3;

};
tr2 & tr3 & (event_tail + 2) = i :

next(event_queue[i]):=

case {
i > 0 & next(event_queue[i-1]) = flow_ev4: flow_ev5;

default : flow_ev4;

};
default : next(event_queue[i]) := event_queue[i];

};
};

If the action list of a transition (e.g. tr1) generates multiple events, then
multiple branch statements are inserted into M. Concurrent transitions,
like tr2 and tr3 are treated in an extraordinary way since M must contain
every possible behavioral combination. The side effect is the highly complex
way to achieve the correct trace of event delivery order.

Updating the variables event−tail and event−overflow is much easier
(Code Listing 3.12) but we must be aware of queue overflows. If this
happens the model checker is forced to infinitely reside in a special error
state: StateMachineError.
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Code Listing 3.12 Event Tail/Overflow Update

case {
tr1 | (tr2 & ~tr3) :

if ((event_tail + 2) >= SIZE) {
next(event_tail) := event_tail;

next(event_overflow):= 1;

} else {
next(tail) := tail + 2;

next(event_overflow):= event_overflow;

};
~tr2 & tr3 : if ((event_tail + 1) >= SIZE) {

next(event_tail) := event_tail;

next(event_overflow):= 1;

} else {
next(event_tail) := event_tail + 1;

next(event_overflow):= event_overflow;

};
tr2 & tr3 : if ((event_tail + 3) >= SIZE) {

next(event_tail) := event_tail;

next(event_overflow):= 1;

} else {
next(event_tail) := event_tail + 2;

next(event_overflow):= event_overflow;

};
};

Interaction Events

External stimuli are the events used by the statechart to communicate with
the outside world. They have the property that they might be available in
the environment. But this is not a necessary prerequisite, since the behavior
of the environment is unpredictable. For example, a user inserts a coin in
the coffee vending machine or not.

Since the statechart repudiates all responsibility to create these stimuli
and does not know when they might even occur, the transition behavior has
to simulate the occurrence of those events using the event generator. Stated
otherwise, the transition behavior has to play the role of the outside world
whenever it might be appropriate.

The coffee vending machine moves from Off to On when a inter−poweron

event occurs. When the machine is in StandBy coins can be inserted or
returned. But the machine can change state from On to Off whenever the



 3. The Model of a Standalone Statechart

user wants it too.
External stimuli accumulate in the queue, as shown in Code Listing 3.13.

Now, a macro variable, e.g. poweroff, is used to avoid that the machine
is immediately turned off, when it resides in the On state. Otherwise, the
machine never has the chance to prepare some coffee. E.g. at the moment
t12 takes care of some evolution, the event flow−cupstart is added at the
end of the queue. At the same time, it is possible that somebody turns the
machine off. Following the RTC step semantics, the machine reaches state
Off after t12 has finished execution. Moreover, because inter−poweroff is
not modeled as an interrupt, it accumulates separately in the queue. Note,
that the guard on the position in the queue has slightly changed; as will be
clarified later on.

Code Listing 3.13 Event Queue Update with External Stimuli

t12:= in_StandBy & event_queue[0] = inter_button & (money > 0);

t13:= in_CupReady & event_queue[0] = flow_cupdone;

poweroff: {InterPowerOff, NotDefined};
poweroff:= {InterPowerOff, NotDefined};

for(i=0; i<SIZE; i=i+1) {
...;

case {
...;

t12 & event_tail = (i+1):

next(event_queue[i]):= flow_cupstart;

t12 & (event_tail+1) = (i+1) & poweroff=InterPowerOff:

next(event_queue[i]):= inter_poweroff;

t13 & event_tail = (i+1) & poweroff=NotDefined:

next(event_queue[i]):= flow_coffeestart;

t13 & (event_tail+1) = (i+1) & poweroff=InterPowerOff:

next(event_queue[i]):= inter_poweroff;

t18 & event_tail = (i+1): next(event_queue[i]):=

{inter_coin, inter_return, inter_button, inter_poweroff};
...;

};
};
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Influence of Progress Phases

So far, we have updated the event variables without explicitly considering the
progress blocks. What happens with their behavioral updates when placed
correctly in both phases of the step relation? Basically, it is as good as the
same, but there are some remarkable differences.

A first notable difference is the manipulation of the queue (Code
Listing 3.14). Obviously, if the dispatcher decides to fire null-triggered
transitions, all new events are inserted at the tail (denoted by event−tail

= i) of the queue. However, when an event is dispatched, it is also shifted
out off the queue. As a direct consequence, the first position to insert a new
event is marked by the condition event−tail = (i+1). This is exactly the
position before the one the tail points to, since elements are moved from the
back to the front of the queue.

Code Listing 3.14 Event Queue Update with Tail Consideration

progress_auto & ~error : {
for(i = 0; i<SIZE; i=i+1) {
case {
-- update queue

-- position:

-- (event_tail) = i,

-- (event_tail+1)= i,

-- ...

-- next(event_queue[i]):=...;

};
};
...;

};

progress_trigger & ~error : {
for(i = 0; i<SIZE; i=i+1) {
-- shift head out

if ( ((i + 1)<event_tail)

&(i + 1)<SIZE)

next(event_queue[i]):=

event_queue[i+1];

else {
if( ~event_tail=0) {
case {
-- update the non-empty queue

-- position:

-- (event_tail) = (i+1),

-- (event_tail+1)= (i+1),

-- ...

-- next(event_queue[i]):=...;

};
} else {

-- same as in progress_auto

};
};

};
};

Another worthwhile difference is the way the tail variable is updated. Either
the pointer is moved as much places as the total number of produced events,
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or it is moved one position less. Only this way, at any time, event−tail will
point to the first empty queue position.

3.7.7 ... inside Stuttering Phases

The system may stop executing when a exception (e.g. queue overflow,
race conditions) has occurred. These mistakes forces the model checker to
infinitely leave the machine in a special error state.

Rule 3.12 (Stuttering in an Exception Configuration). A system that
remains infinitely often in an exception configuration, is modeled as follows:

error: {
next(st−A0) := StateMachineError;
next(st−A) := NotActive; ∀A ∈ F \ A0

next(attr.attri) := attr.attri; ∀attri ∈ attr
next(event−queue) := event−queue;
next(event−tail) := event−tail;
next(event−overflow) := event−overflow;

};

If there does not exist an automaton A ∈ F to which the execution of
transitions can be delegated, then H has to stutter, as enforced by the
stuttering rule 2.15. Such a lack of progress is modeled in CaSMV using
Rule 3.13.

Rule 3.13 (Stuttering due to Lack of Progress). The stuttering rule
for each EHA is modeled as follows:

default: {
next(st−A) := st−A; ∀A ∈ F
next(attr.attri) := attr.attri; ∀attri ∈ attr
next(event−queue) := event−queue;
next(event−tail) := event−tail;
next(event−overflow) := event−overflow;

};

3.8 Template Embedded Models

A template embedded model is a model that allows us to convert ar-
bitrary embedded statecharts to the modal logic of CaSMV, covering
all behavioral model elements as defined in the UML specification, in
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particular, hierarchy, sequentialism, parallelism, non-determinism, priorities,
and run-to-completion step semantics. After augmenting the model with
expectation properties, the CaSMV model checker is subsequently used to
verify behavioral design.

To show how an embedded model looks like in CaSMV, it is sufficient to
cover the basic structure of each model in one module (Code Listings 3.15
to 3.17); i.e. the main module.

Code Listing 3.15 Template Embedded Models

/* Define the data types

1. Define size of the event queue

E.g. #define SIZE 3

2. Type definitions of the class attributes

(Section 3.5.2)

**/

main module () {

/* Variables Declaration

1. ... of the automata

(Section 3.5.1)

2. ... of the class attributes

(Section 3.5.2)

3. ... of the event variables

(Section 3.5.3)

**/

/* Macro Variables Declaration/Instantiation

1. ... of the in_substate conditions

(Section 3.7.2)

2. ... of the enabling and choose conditions

(Section 3.7.3)

3. ... of the exception condition

E.g. error:= queue_overflow;

4. ... of interaction conditions (event generator)

(Section 3.7.6)

**/

The template, we have introduced here, makes way for the automatic
translation of UML statecharts4. In particular, we will use the standardized

4See also Section 3.2.
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Code Listing 3.16 Template Embedded Models Continued

/* Initialization

1. ... of the automata

(Section 3.6.1)

2. ... of the class attributes

(Section 3.6.2)

3. ... of the event variables

(Section 3.6.3)

**/

translation of UML in XML to fill out the parameters of our template. With
such an automatic translation available, UML would not only be the standard
for embedded system development, but also the portal to formal verification.
Hence UML would become a more powerful and interesting tool, particularly
for engineers and programmers.

3.9 Assumptions Made

For reasons to be complete, we provide the assumptions we have made during
the construction of an embedded Kripke model.

3.9.1 Actions attached to States

An action in a transition indicates that an atomic computation is performed
when the transition fires. Actions can be attached to states as entry/exit
actions or associated with internal transitions as well. Entry/Exit actions
can be substituted with transition actions without changing the semantics of
a statechart [47]. After replacing them, internal transitions can be modeled
easily as self loops, again without affecting the semantics. During the firing
of a transition, the execution of events and actions happens in the following
order: event, exit action of the source state, action sequence attached to the
transition, and entry action of the target state finally.

So far, we know that a Kripke model captures the basic concepts of the
state of a system and the actions (transitions) that modify the state. Based
on this definition, the states of an EHA (∈ S(A0)) are not assumed to have
any action during the model construction. Instead, entry actions are moved
to the incoming transitions and are the last ones in the sequence of actions
executed by the incoming transitions; exit actions are moved to the outgoing
transitions and are the first ones in the sequence of actions executed by
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Code Listing 3.17 Template Embedded Models Continued

/* Transition Relation

case {
progress_auto & ~error: {

-- updates caused by null-triggered transitions

-- (Sections 3.7.4 to 3.7.6)

};
progress_trigger & ~error: {

-- updates caused by triggered transitions

-- Section 3.7.7

};
error: {

-- exception configuration

-- Section 3.7.7

};
default: {

-- lack of progress

-- Section 3.7.7

};
};

**/

/* Specification

expectation phrases in LTL/CTL

**/

}

these transitions; internal transitions are converted into self-loops, of course
without entry or exit actions.

3.9.2 Actions attached to Transitions

Our model checker has to analyze transition actions according to their written
order, since the actions order of execution is highly relevant. Additionally,
it is a violation against the single assignment rule of CaSMV when the
transition’s action sequence (including entry/exit actions) defines at least one
class attribute twice. If a transition violates this rule, then the transition is
split up into several unique transitions without a trigger and basic states,
in such a way that each transition respects the single assignment rule (see
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figure 3.7).

Source


Target


ev [optional] / a:=A1; A2; ...; a:=Ai; ...; An;


Source


Dum1


ev [optional] / a:=A1;A2; ...;Ai-1;


Target


/ a:=Ai; ...;An;


Figure 3.7: Splitting up Transitions

The statechart without injections (sc) and the one with injections (sci) are
two ways of specifying the same embedded system. But a model for sci will
be constructed. sci differs from sc in the sense that at least one transition of
sc is replaced by a complete range of newly created transitions and states.

Not surprisingly, the equivalence between sc and sci has to be retained
during verification. Two systems are equivalent if they have the same
semantics meaning that the same information can be derived from their
behavior.

Suppose the embedded system is specified by a single sequential automa-
ton. Due to the absence of concurrent states, the semantically equivalence
between sc and sci is proven easily since the bifurcations do not change the
sequential execution of statements.

The presence of concurrent states makes things more complicated.
Orthogonal regions represent independent states that may concurrently be
active with other states. The operational semantics is based on the premise
that a single run-to-completion step applies to the entire state machine and
includes the parallel steps taken by the concurrent regions in the current
active configuration. When we examine the regions as cooperating entities,
can we still talk about equivalence? In fact this is not always guaranteed.
E.g. the splitting up of transitions may lead to a change in the trace delivery
order of newly generated events.

To guarantee the equivalence between sc and sci, such aspects have to be
considered, since they influence the information that can be derived from its
behavior: another event delivery order implies behaviors that are not present
in the original statechart. Thus, a manipulation of the operational semantics
is the only way out.
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Let’s illustrate our reasoning by examining Figure 3.7. Suppose that in sc
transition t1 and transition t2 execute concurrently in the same RTC-step.
Following the operational semantics, the active configuration AB evolves into
configuration A’B’while dispatching a single event. The same must be true in
the model sci: configuration A’B’ must be reached while dispatching a single
event. What is the bottleneck? The current structure of the templates is such
that in each time step during model checking, real parallelism is achieved in
case concurrent states belong to an active configuration. If we keep this
way of working, transition t1−1 and transition t2 execute concurrently and
transition t1−2 might be fired with some other null-triggered transition
leaving state B’. Obviously, if this happens, the execution order and the
event delivery order of both statecharts will possibly be different. This can be
avoided by interrupting the run-to-completion steps at obligatory moments.

A Non-Trivial Solution

Guaranteeing the equivalence poses a real challenge in the construction of
M. Since orthogonal states run independently of each other, race conditions
(e.g. two regions changing the value of the same variable, one region using
the value of a variable that another one is changing) may not occur. This
gives us everything we need to correctly implement equivalence, using an
interrupt. If a concurrent state of sci contains states that are not present in
the corresponding concurrent state of sc, then a private queue is attached
to it. At the moment we detect — using a lookahead mechanism — that
an active concurrent configuration evolves to a concurrent configuration
containing one or more newly introduced states and transitions, the interrupt
is called.

The interrupt has several responsibilities. Firstly, it is capable to achieve
real parallelism in the same manner the operational semantics achieves it. In
general the following steps are taken:

• Achieve real parallelism between those transitions leaving states from the
active concurrent configuration. This results in reaching a configuration
containing newly introduced states in some of the regions. In our example
the interrupt executes transition t1−1 and t2 concurrently.

• Achieve real parallelism between those transition leaving newly intro-
duced states. In our example transition t1−2 will be taken by the
interrupt. This step can be repeated several times.

Secondly, although real parallelism is achieved, the event delivery order will
be respected since the interrupt is obliged to update the private queues of
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the regions. The general queues used to implement the run-to completion
semantics are not affected! Only the first step of the interrupt is allowed
to make an exception. The first step will remove the event from the
corresponding general queue. Last, a lookahead mechanism is used again
to detect wether a real configuration (containing only states present in the
original statechart) can be reached. If so, the private queues are merged
(several orders) to update the global queues. Now, the interrupt has finished
working and a new event can be dispatched now.

Undoubtedly, modeling such an interrupt this way is not a trivial case.
Therefore, we assume that the action sequence of each transition changes
class attributes only once. On the other hand, it is debatable whether
multiple assignments will be present at design stage.

3.9.3 Firing Multiple Transitions

The semantics of UML statecharts allows for the possibility of non-deter-
minism in state transitions. Multiple transitions, triggered by the same event,
may be enabled for firing from the same source state at the same time. At
each step, only one of the transitions leaving the same state is allowed to fire.
Nonetheless, the simultaneous firing of multiple transitions is allowed only,
if these transitions are in separate orthogonal components. Unfortunately,
there are some situations where the UML semantics does not provide a clear
solution.

Suppose that t1 and t2 (Figure 3.8) fire simultaneously, and the
corresponding target states are reached properly. However, either Target1

or Target2 is made active since they belong to a sequential automaton. But
which one exactly, is not defined in the UML semantics. We believe that
such a situation is rather akward and therefore we omit it.

Source1


Target1


t1


...


...


Source2


Target2


t2


...


...


Figure 3.8: Problem when Firing Multiple Transitions
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3.10 Conclusions and Related Work

The behavior of embedded systems is graphically specified using standalone
UML statechart diagrams. The behavioral properties of these systems
are verified using the model checking technique, which is integrated in an
automated verification tool. This chapter has illustrated how an embedded
standalone statechart can be translated into a CaSMV Kripke model, which is
a necessity to exhaustively verify the UML design model. Do not forget that
we aim at a correct design before actually implementing the software. The
chapter has also illustrated how the verification methodology is capable to
handle open models. This allows software developers to verify open designs
where the environment is not (yet) completely specified. It may be of no
surprise that our methodology can be integrated in an iterative model based
design process.

We will now investigate existing approaches to the formal verification
of statecharts using model checking and we will point out the main
disadvantages of the other approaches (see also [15]). All the methodologies
have one thing in common: they translate the hierarchical structure of the
statechart model to the input language of a particular model checker. So,
the black box of the different approaches will be more or less the same; only
the details differ.

The paper by Latella et al. [72] proposes a translation from a sub-
set of UML statecharts into Promela; the input language of the model
checker SPIN [54, 55]. The subset considered covers the aspects related
to concurrency and state hierarchy. In contrast with our transformational
approach, variables and history states are not covered but can be handled
conceptually. Moreover, the operational semantics is heavily restricted to
triggered transitions only, meaning that instable configurations are never
encountered during verification. Obviously, this dramatically simplifies the
semantics of the transition relation. Another disadvantage of Latella’s
approach is that the translation does not consider multiple statecharts5

which communicate with each other through event queues. However,
the authors, having doubts about the methodological soundness of such
an approach, claim that the translation can be easily adapted to handle
communicating statecharts as well. The paper by Darvas et al. [35] extends
the approach of [72], in such a way that multiple statecharts can be handled.
Unfortunately, they do not provide the semantics that they have followed,
nor give some transformational details.

5The verification of multiple statecharts is addressed in the next chapter.
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The work by Lilius and Paltor [99] discusses a formalisation of UML
state machines for the translation to Promela as part of their verification tool
vUML [77]. Compared with most other works, the subset of UML statecharts
considered is bigger. Although, the tool vUML performs verification
automatically by invoking SPIN [55, 54], the performed verification is
restricted to essentially deadlock detection, or overrunning a message queue.
Compared with our work (addressed in this chapter and the next one), their
operational semantics does not consider the case where objects share the
same execution thread. They also do not make a distinction between different
types of events that play a major role in the construction of a Kripke model
for communicating statecharts. Again, this is a simplification of the STEP
semantics and the way it has to be faithfully translated into the Promela
language (= modeling language of SPIN).

Some work has also been done in translating statechart diagrams to
variants of the model checker SMV. The papers [23, 27] propose a very
incomplete STEP semantics e.g. the trace of event delivery order is not
respected at all. On the other hand, the paper by Beato et al. [10] presents
a tool which enables the active UML behavior of a system to be verified in
a complete automatic way. The proposed model has some similarities with
our model but again the trace of event delivery order is neglected. Also, they
did not have mentioned how the priority scheme is guaranteed. One of its
advantages is the incorporation of an assistant that acts as a user guide for
writing properties in temporal logic.

The above overview has clearly shown that our semantics is quite complete.
The next chapter provides the semantics and the translation process for
(a)synchronously communication statecharts. An illustration of the way the
verification process can be integrated in the UML design can be found in
Chapter 9.



CHAPTER 4

The Model of Communicating Statecharts

I am a computer, dumber than any human
and smarter than any administrator.

Computer One Liners.

E
mbedded systems are composed, to a large extent, of event components
which must react continuously to external stimuli from their environ-

ment. The typical task of such systems is to control the cooperation of
several active processes in the system’s environment. Embedded applications
will be typically characterized by many components in such a way that they
have to simultaneously control several active external processes. Designers of
embedded systems use statecharts extensively for the behavioral description
of these components.

When systems are modeled as a set of components, issues of com-
munication or synchronization necessitates a thorough verification of the
overall system behavior. Most problems of embedded systems arise from
the coordination of interactions, which may result in deadlocks or other
unwanted (hazardous) states. As the complexity of the systems increases,
the manual verification of these properties becomes more and more error
prone. Automatic support is required to help the designer in this task.

This chapter presents an automated verification process of embedded
systems design using a collection of UML statecharts. The method extends
the methodology discussed in Chapter 3. Again, the verification is performed
by an automatic model transformation from the UML models to CaSMV,
still through extended hierarchical automata. The transformation preserves
the behavioral semantics of the system, which is in turn an extension of the
semantics presented in Chapter 2.

95
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4.1 Motivating Example

We introduce the Automated Rail Car System described in [50], which will be
used throughout this chapter as an example to explain and illustrate the main
ideas. The Automated Rail Car System is a model of autonomous rail-bound
cars which transport passengers between terminals and which adhere to a
simple arrival and departure protocol to allocate and deallocate platforms
inside the terminal.

Figure 4.1: A Rail Car System

4.2 Object Communication

The state machine view describes the dynamic behavior of objects over time
by modeling the life cycles of objects of each class. Each object is treated as
an isolated entity that communicates with the rest of the world by detecting
events and responding to them. Events represent the kind of changes that an
object can detect such as the receipt of explicit signals or calls sent from one
object to another [38, 96, 104, 105]. Both types of events can have a name
and carry a list of parameters.

Asynchronous with Signals A signal is an event explicitly intended as
a communication vehicle between two objects; the reception of a signal is
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an event for the receiving object. The sending object explicitly creates and
initializes a signal instance and sends it to a single object or to a set of objects.
Signals embody asynchronous one-way communication. The sender does not
wait for the receiver to deal with the signal but independently continues
with its own work. To model two-way communication, multiple signals can
be used, at least one in each direction.

Synchronous with Calls A call is a synchronous communication (waits
for a response) that represents the dispatching of an object operation. The
parameters of the operation are the parameters of the call event. We choose
to have a call event whenever an object sends out a message, the control is
passed to the receiver, the receiver changes its state and returns the control
to the sender. Basically, this means that the caller waits for the callee before
continuing its own execution.

Example 4.1. Suppose the objects car:Car and hnd:CarHandler are part
of the Automated Rail Car System from [50]. These objects use statecharts
to describe behavior that can be different under different circumstances, as
partially shown in Figures 4.2-4.3 respectively. The synchronous commu-
nication between car and hnd is achieved by sending out a call event like
c−departAck.

4.3 Object Concept

Model checking the communication between objects will not succeed without
thoroughly examining the static structure of the embedded system. This
structure tells us whether instances of classes are either active or passive
instances. The UML allows both active and passive objects to have state
machines without any constraints.

Active Objects When it comes to concurrency, the UML offers the
concept of active objects. An active class indicates that, when instantiated,
it will control its own execution. Rather than being invoked or activated by
other objects, it can operate standalone, and define its own thread of control
(behavior) [110]. Here, the thread of control represents an abstract notion of
control and not an operating system thread.

As only one message may be treated at a time (step semantics), there
will have to exist some mechanism for queuing the messages. Whether this
queuing mechanism exists or how it acts, is not said in [96]. Following
the Rhapsody semantics [48], each active object is a one threaded object
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Init


waitExit


/ hnd.gen(new s_departReq());


synchExit

c_departAck / reply(1);


synchCruiser


...

commHandler


commCruiser


end


/ crs.gen(new s_engage());


departure


...


...
Root


Figure 4.2: Statechart Diagram for a Car

that performs event management using its own event queue and queuing
mechanism [48].

Passive Objects In contrast, a passive object, by not having its own
thread of control, does not have a scope for executing the state machine.
As a consequence the state machine will not run continuously as in the case
of active objects, instead it will only be able to be executed while the passive
object can run on some other object’s thread of control. The behavioral
specification of passive objects raises some questions [44]:

• Where are the messages directed towards a passive object stored?

• If there is a queue, how is it managed?

• On which execution thread does it execute?

These problems will be solved later on.
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Figure 4.3: Statechart Diagram for a CarHandler

4.3.1 Multi-Threading

Due the presence of active objects, embedded applications become multi-
threaded applications. Each thread performs steps in parallel to the other
threads. In practice, an interleaved model of computation is often used.
Obviously, this makes the definition and the behavior far more complicated
than in the case of a standalone statechart.

Object/Thread Relationship Which objects belong to which threads?
When a class is defined as an active class, the instances of this class will have
their own thread of control. Objects can also be related to threads through
composition. This means that components of a composite class will run on
the thread of the latter one, unless they are instances of an active class, in
which case they have their own thread of control. Instances of classes that are
not designated as active classes, run on the default thread of control which
is used by the main program [48].

Summarized, each thread of control contains at most one active object,
and allows to include an arbitrary number of passive objects in the group.
Each active object, as owner of the thread of control, thus has its own event
queue, whereas passive objects share their event queue with some active
object. Obviously, all event handling is delegated to the shared event queue.
When the event has reached the top of the queue, the event is taken from
the queue and dispatched to the destination object.

Example 4.2. Figure 4.4 (inspired by [34]) illustrates the multi-threading
concept using the Automated Rail Car System from [50]. It is a snapshot of
a model part and shows active objects car and term:Terminal. Each car
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comes equipped with a cruise controller (passive object crs) for maintaining
speed. hnd on the other hand handles the transactions between a car and
a terminal. Clearly, active objects car and term designate their threads of
control to which their components belong.

car:Car

crs:Cruiser

0..1

*

q
e

q
c

Thread of Control 1

term:Terminal

hnd:CarHandler

0..1

*

q
eq

c

Thread of Control 2

mgr:PlatformMgr

0..1
*

Figure 4.4: Threads of Control

Communication between Threads Statecharts of objects can deal with
asynchronous communication using events and with synchronous communi-
cation using calls. In the multi-threaded case, objects receive messages from
different objects. To avoid that events get lost, the queuing mechanism will
be extremely important.

The case of asynchronous communication is simple. The generated events
are put in the event queue of the thread to which the receiving object belongs,
and dispatched to the statechart at the appropriate moments [48].

In the case of synchronous communication, the thread to which the
sending object belongs is blocked until the receiving statechart completes
its response to the call event, which accumulates in the call queue1 of the
thread containing the callee [48]. Due to the locking mechanism, situations
of deadlocks and starvation are possible.

Example 4.3. Sending a call event (c−departAck) from hnd to car in fact
enters the event into the call queue qc of the first thread of control. Sending a
signal event (s−departReq) from car to hnd causes the event to be entered
in the event queue qe of the second thread of control. Communication between

1The reason for having two queues for both event types is explained in Section 4.4.
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car and crs (Figure 4.5) based on events (∈ E), causes these events to be
entered in the queues of the thread to which they belong.

disengaged


...


engaged


s_disengage


s_engage


Root


Figure 4.5: Statechart Diagram for a Cruiser

4.4 Operational Semantics Extended

The step algorithm for a multi-threaded embedded system consists of per-
forming the step cycle described in Chapter 2 for each thread. Unfortunately,
there are several complications in the semantics relative to those of a
standalone statechart, particularly concerning the dispatching mechanism.

Having a clear understanding of the semantics is important to build a
concise model used by the verification process. As before, the semantics will
be defined in terms of extended hierarchical automata. But now, the set of
events E = Ei ∪Ef ∪Es ∪ ε is the union of the set of interaction events, flow
events, signal events, and the null-event respectively. Call events (∈ Ec) do
not belong to E; they will be treated and dispatched separately.

4.4.1 Threads Containing Exactly One Object

The asynchronous communication between active objects only, easily integra-
tes in the RTC-step semantics. Basically, generated event instances are
inserted into the thread’s event queue qe and hold there until the instances
are dispatched. More precisely, signal events are treated for dispatching like
any other event; they will be dispatched after they have reached the head of
the queue.

Active objects execute based on an interleaved model of computation.
At any time, exactly one active object will execute. Knowing this, we safely
conclude that the RTC-step semantics, belonging to threads (covering exactly
one object) is exactly the same as the semantics attached to a standalone
statechart (see Chapter 2). To each active object, an event (either an
interaction, a flow, a signal event or the null-event) is dispatched in a stable
configuration and its statechart is evaluated until a stable state configuration
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is properly reached.

On the other hand, the synchronous communication between active objects
complicates the RTC-step semantics. As discussed previously, synchronous
communication is achieved through call events. Call events are special
events in the sense that they represent a synchronous invocation of a specific
operation i.e. they are created by method call actions. When a method call
is executed as an action, the whole transition step is completed only when
the invoked objects (= callees) complete their own run-to-completion steps.
This means that the sender of a call event is blocked until the callee has
consumed the event.

The blocking mechanism necessitates us to give a higher priority to
synchronous messages than to asynchronous ones. In the dispatching process,
we first try to dispatch a call event and if that is not possible, then we try to
dispatch an event (see Definition 4.1). The basis for dispatching call events
is, again, a FIFO queue qc (shared by the objects belonging to the same
thread of control); call events are served to the statechart in the order they
were put in (from the oldest to the youngest). If a call event arrives when the
state machine is not in an appropriate state to handle the event, the event
is discarded, conforming the general RTC-step semantics. Strictly speaking,
from the caller’s point of view this means that the call is completed.

Definition 4.1 (Dispatcher). For a configuration C, dispatch(C) returns
the event (∈ E ∪ Ec) to be dispatched in C:

dispatch(C) =















ε if MaxET (C)ε 6= ∅
qc[0] if MaxET (C)qc[0] 6= ∅
qe[0] if MaxET (C)qe[0] 6= ∅
nil otherwise

Having two separated queues to store the events changes the run-to-
completion step semantics (Chapter 2) in some ways. Still, a step is a
sequence of transitions between two stable configurations. As before, this
means that once an event (signal, call, interaction, flow, ε) is dispatched,
the system evolves on its own until no more transitions can be taken. Then,
the dispatcher has to be called once again. Definition 4.2 shows how another
progress rule is injected in Definition 2.16 in such a way that a higher priority
is given to calls than to signals. Obviously, each configuration of Kt contains
two queues: qc and qe.

Definition 4.2 (
STEP
→ ). The transition relation of a Kripke structure Kt is
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defined as follows:

STEP
→ =



















prog
−→ε if MaxET (C)dispatch(C)=ε 6= ∅
prog
−→qc[0] if MaxET (C)dispatch(C)=qc[0] 6= ∅
prog
−→qe[0] if MaxET (C)dispatch(C)=qe[0] 6= ∅
stut
−→ otherwise

with Kt the Kripke structure of an active object (a thread).

It is sufficient to build the Kripke structure Kt for each active object (thread)
separately. They form the basis for the Kripke structure K, which serves as
the Kripke structure of communicating statecharts. Obviously, K operates
interleaved which means that only one state component changes value in
a given transition. The choice of which component changes value is non-
deterministic. In general, for models of communicating threads (parallel
processes) whose actions interleave arbitrarily, the transition relation is
disjunctive. Thus, we simply avoid to explicitly compute the transition
relation of the communicating statecharts.

4.4.2 Threads Containing Multiple Objects

Sometimes several objects execute on the same thread of control (Sec-
tion 4.3.1) while sharing the same event queue. These objects possibly
communicate (a)synchronously with each other or with objects belonging
to other threads of control. The problem is now to describe the step cycle
for each thread carefully.

At the moment a stable state configuration is reached, the dispatcher is
called. Due to the presence of multiple objects, the dispatcher selects an event
from one of the queues (either qc[0] or qe[0]) and sends it to the statechart
of the object that responds to the message; which is of course unique.
Thereafter, the statechart of the target object is repeatedly evaluated until a
stable configuration is reached. Only then, the event is fully consumed and
the next event can be dispatched, but possibly another object’s statechart
responds to the latter event.

However, before serving a new event, the dispatcher needs to verify
whether there are other objects that became unstable due to the progress
made in the last evaluated statechart. Following the step semantics, these
objects must become stable before it is allowed to dispatch a new event. The
whole step cycle is summarized in Definition 4.3.

Definition 4.3 (
STEP
→ ). Let ‘last’ be the statechart to which an event is last

dispatched. Let ‘auto’ be one of the objects that became unstable due to the
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progress made in ‘last’. Then, the transition relation of a Kripke structure
Kt is defined as follows:

STEP
→ =



























(
prog
−→ε)last if (MaxET (C)dispatch(C)=ε)last 6= ∅

(
prog
−→ε)auto if (MaxET (C)dispatch(C)=ε)auto 6= ∅

prog
−→qc[0] if MaxET (C)dispatch(C)=qc[0] 6= ∅
prog
−→qe[0] if MaxET (C)dispatch(C)=qe[0] 6= ∅
stut
−→ otherwise

with Kt the Kripke structure of an active object (a thread).

4.5 Model Checking with CaSMV Revisited

CaSMV allows us to describe an embedded system as a set of finite
state transition systems, each of which operates interleaved to each other.
Therefore, it will be sufficient to map each thread of control to a module of
the language.

A process is an instance of a module which is introduced by the keyword
process. At any given time, the process is either running or not running.
An assignment to the next value of a variable only applies if the process
is running. If not, the value remains the same in the next time step. The
interval between times that a process runs is arbitrary i.e. non-deterministic.
This means that the processes operate interleaved to each other.

A fairness constraint must be used in order to force a given process
to execute infinitely often. Each process has a special variable called running
which is one if and only if that process is currently executing.

4.5.1 Introductory Example

Code Listing 4.1 (taken from [87]) shows us an interleaving model of execution
for a ring of three asynchronous inverting gates. The Kripke model is defined
by instantiating three times the module type inverter in the module main,
with the names gate1, gate2 and gate3 respectively.

The inverter module, which in fact defines a sub-Kripke model in turn,
has one formal parameter inp. In the instance gate1, inp is given the value
of the expression gate3.outp. This expression is evaluated in the context of
the main module. However, an expression of the form a.b denotes component
b of module a, just as if the module a were a data structure in a standard
programming language.
At most one of the three processes is allowed to run at any given time
(interleaving semantics). The specification of the program states that the
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Code Listing 4.1 Another Example CaSMV Program

module main() {
gate1: process inverter(gate3.outp);

gate2: process inverter(gate1.outp);

gate3: process inverter(gate2.outp);

property: SPEC (AG AF gate1.outp) & (AG AF ~gate1.outp);

}

module inverter(inp) {
INPUT inp: boolean;

outp: boolean;

init(outp):= 0;

next(outp):= ~inp;

FAIRNESS running;

}

output of gate1 must be infinitely often zero and must be infinitely often
one. In fact, without a fairness constraint, this specification is false, since
the system is not forced to execute a process infinitely often e.g. gate2 would
continuously execute. Hence, the output of a given gate may remain constant,
regardless of changes of its input.

Figure 4.6 visualizes a snapshot of the corresponding transition system.
As clearly shown by the figure, the Kripke model M is represented by a
disjunction of the component (i.e. instance) Kripke models Mi [87], due to
the interleaving semantics:

M =
∨

i

Mi

Figure 4.6 sufficiently clarifies that the transition relation of M is made of
the modules’ transition relation as follows [87]:

δ =
∨

i

δi where δi = (v′i ⇐⇒ fi) ∧ (
∧

j 6=i

(v′j ⇐⇒ vj))

Some state variables v′i are given new values as determined by fi, while the
remaining variables just keep their old value.

So this time, the elements of the Kripke model are as follows: σ =
{S0, S1, S2, . . .}; σ0 = {S0 = {S0gate1, S0gate2, S0gate3}}; λ(S0) = {gate1.inp
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= 0, gate1.outp = 0, gate2.inp = 0, gate2.outp = 0, gate3.inp = 0, gate3.outp
= 0}; . . . .

gate1.inp=0

gate1.outp=0 S0gate1

S0gate2

S0gate3

gate2.inp=0

gate2.outp=0

gate3.inp=0

gate3.outp=0

S0
gate1.inp=0

gate1.outp=0S0gate1

S0gate2

S1gate3

gate2.inp=0

gate2.outp=0

gate3.inp=0

gate3.outp=1

S1

gate3 runs

gate1.inp=1

gate1.outp=1S1gate1

S0gate2

S1gate3

gate2.inp=0

gate2.outp=0

gate3.inp=0

gate3.outp=1

S2

gate3 runs

gate2 runs

...

gate1 runs

Figure 4.6: Partial Kripke Model of the Introductory Example

4.6 Methodology Extended

The architecture (or methodology) of our verification tool does not change
dramatically. Instead of working with a standalone statechart, the tool
peforms the necessary transformations on a set of communicating statecharts,
which still have been formatted using the XMI exchange syntax (still has to
be implemented). Now, it is the set of communicating statecharts that has
to be mapped to a CaSMV model, which still represents a Kripke model
that satisfies the semantics formally defined above. Chapter 9 applies the
verification methodology to an industrial benchmark.

4.7 From a System to a Kripke Model M

Communication between objects causes several statecharts to be present in
the model of the embedded system. Some of these objects are active objects,
while others are passive ones. This causes objects (statecharts) to be grouped
together in separate threads of control, which operate interleaved to each
other.

For the specification of larger systems, CaSMV models can be divided
into several modules; which can be regarded as subroutines of the model.
Each module can be reused several times. As illustrated in Section 4.5,
modules can be parameterized, and each module can have its own local
variable declarations, its own initialization and its own transition relation;
thus its own Kripke structure. The modules are instantiated in a mainmodule
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Figure 4.7: Methodology & Tool Architecture

similar to state variable declarations. The main module is what CaSMV uses
to construct the Kripke model of the whole system. It has a special meaning
in the same way that it does in the C programming language.

Since several objects are now grouped together in several threads, the
problem is how to correctly define a Kripke model M for such complex
systems. We say that (as in Section 4.5)

M =
∨

i

Mi

=
∨

i

(σi, σ0i
, δi, λi)

with Mi the Kripke model of a thread. This is due to the fact that a thread
shares the characteristics of a module. A visualization of the real lookings of
M is provided by Figure 4.8.

The set of states σ of the model will follow from the way threads are
encoded into CaSMV. Once having a suitable representation, CaSMV is
capable to construct σ as the union of σi (This is done in the main module
as mentioned previously.). The latter one refers to the set of states that
belongs to a separate thread of the system. In Section 4.8, it is explained
how σi really looks like. Of course, something similar can be said of σ0, δ,
and λ. You may again notice that states are not explicitly labeled, but they
are implicitly labeled by their corresponding state-variable valuations.

Section 4.7.1 clarifies the encoding of the several threads the system is made
of. Of course, a word on inter-threaded communication is given here as well,
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Figure 4.8: Kripke Model of a System

since the communication plays an important role to return a correct encoding
scheme, which defines σ. Sections 4.7.2-4.7.3 discuss the set of initial states
and the transition relation respectively.

4.7.1 The Set of States σ

The fundamental concept taken as our starting point is that of the thread
of control. The embedded system is specified in terms of threads which are
associated to the reception of several kinds of events. The behavior of each
thread (as a collection of its containing objects’ behavior) is reflected into a
different module (see Section 4.8), which in turn is instantiated as a process

in the main module (see Rule 4.1). This will instruct CaSMV to execute the
threads interleaved.

Rule 4.1 (Thread Declaration). Let the embedded system be divided into
a collection of threads, called Threads. Then, ∀thr ∈ Threads, a variable is
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declared in the main module as follows:

thr: process thr−active(params);

params: a list of formal parameters;
thr−active: a module named after the active object.

As an example, let us apply Rule 4.1 to the Rail Car System. The
corresponding Kripke model consists of two threads (see Example 4.2) which
is reflected into two separate modules, as illustrated in Code Listing 4.2. The
list of parameters will be defined later on.

Code Listing 4.2 Thread of Control Declarations

module main() {
...;

thr1: process car(params1);

thr2: process term(params2);

...;

}

module car(params1) {
...;

FAIRNESS running;

}

module term(params2) {
...;

FAIRNESS running;

}

How to invoke inter-threaded communication? We just use a very straight-
forward strategy. The sender of an event is given the responsibility to
accumulate the event into the corresponding queue of the receiver’s threads.
A module only has access to such queues when they are declared as global
variables; thus when they are defined inside the main module (see Code
Listing 4.3). Obviously, the declarations of both queues are performed using
Rule 3.3.

It is worthwhile to note that the name of each event is preceded by the
name of the reacting object. Only then, the dispatcher is able to serve every
event to the correct target object.

As mentioned enough already, statechart transitions are treated in a
run-to-completion manner. Thus, a transition will freeze in mid-execution,
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Code Listing 4.3 Event Declarations

module main() {
...;

thr1_event_queue: array 0..(SIZE-1) of {
s_crs_engage, ..., NotDefined

};
thr1_call_queue : array 0..(SIZE-1) of {

c_car_departAck, ..., NotDefined

};

thr1_event_tail : boolean; thr1_call_tail : boolean;

thr1_event_overflow: boolean; thr1_call_overflow: boolean;

thr2_event_queue: array 0..(SIZE-1) of {
s_hnd_departReq, ..., NotDefined

};
thr2_call_queue : array 0..(SIZE-1) of {..., NotDefined};

thr2_event_tail : boolean; thr2_call_tail : boolean;

thr2_event_overflow: boolean; thr2_call_overflow: boolean;

thr1: process car(params1);

thr2: process term(params2);

...;

}

waiting for actions to complete. Moreover, it is required that all parts of a
transition must be fully executed before the statechart becomes stable and
the system can respond to another event. In this context, the difference
between ordinary events (signals, interactions, flows) and synchronous calls
is extremely important. Harel and Gery [50] wrote the following:

...when the client’s statechart invokes another object’s operation, its
execution freezes in midtransition, and the thread of control is passed
to the called object. Clearly, this might continue, with the called object
calling others, and so on. However, a cycle of invocations leading back
to the same object instance is illegal, and an attempt to execute it will
abort.

Put in another way, after sending out a synchronous message, the calling
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thread is blocked and deblocked when a reply is returned2. To integrate
the (de)blocking mechanism into CaSMV, additional global variables, block
variables and origin−queues, are injected into the Kripke model (see
Rule 4.2).

Rule 4.2 (Blocking Declaration). Let the embedded system be divided into
a collection of threads, called Threads. Then, ∀thr ∈ Threads, if at least
one object of thr possibly sends out a synchronous message, a block variable
is declared in the main module as follows:

thr−block: boolean;

Additionally, ∀thr ∈ Threads, if at least one object of thr possibly responds
to a synchronous message, an origin−queue is defined in the main module as
follows:

thr−origin−queue: array 0..(SIZE-1) of {Obj1, . . . , Objn, NotDefined};

with {Obj1, . . . , Objn} the set of objects with whom a synchronous commu-
nication is performed.

The value of a block variable evaluates to true at the moment a call event
is generated by a specific transition. Otherwise the thread of control has not
yet sent out a synchronous message or a reply has already been returned.
Obviously the caller is given the responsibility to set the truth value whereas
the callee must falsify it again, of course, at the appropriate moments.

Each synchronous message originates from another object. Therefore, to
reset a block variable properly, additional origin−queues accumulate in the
Kripke model. Figure 4.9 explains the relationship between the call−queue

and the origin−queue of the same threads of control.

Ci Cj

Oi Oj

Originates from

Figure 4.9: Relationship between Call Queue and Origin Queue

To state it simply, block variables denote active and sleeping threads. Their
values make it possible to restrict the running variables in such a way that

2It is impossible that objects residing in the same thread of control synchronously
communicate with each other.



 4. The Model of Communicating Statecharts

the calling thread is frozen and therefore taken out of consideration in the
interleaved model of computation (see Rule 4.3). When all processes get
stuck (starvation due to cyclic calls), their stutter rules will be activated (see
Section 4.8). Then a counterexample is constructed.

Rule 4.3 (Sleeping Declaration). Let the embedded system be divided into
a collection of threads, called Threads. Then, ∀thr ∈ Threads, if at least one
object of thr possibly sends out a synchronous message, the running variable
of the corresponding module thr−active(params) is influenced as follows:

INVAR thr.running → (∼ thr−block | activate);

with
activate: boolean;
activate:=

∧

thr∈Threads

thr−block;

An illustration of blocking and sleeping declarations is given in Code
Listing 4.4 applied on the Rail Car System. The statechart CarHandler

responds to a synchronous message CarHandler−departReq somewhere
along its execution path. Since the active object Car issues this request,
it is placed in the origin queue of the receiving thread thr2.

Code Listing 4.4 Blocking and Sleeping Declarations

module main() {
...;

thr1_block : boolean;

thr1_origin_queue: array 0..(SIZE-1) of {..., NotDefined};

thr2_block : boolean;

thr2_origin_queue: array 0..(SIZE-1) of {
carObj, ..., NotDefined

};

activate: boolean;

activate:= thr1_block & thr2_block;

...;

INVAR thr1.running ---> (~thr1_block | activate);

INVAR thr2.running ---> (~thr2_block | activate);

}
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4.7.2 Initial States σ0

As before, initial states contain the initial values for system variables. The
computation tree (Section 1.6.3) is obtained by unwinding the Kripke model
from the initial states.

Threads are specified as processes in the model, thus they do not need to
be initialized since each process defines a Kripke model, as part of the whole
model, in turn.

Each queue is initialized using a strategy derived from Rule 3.5. To
represent open models event queues are possibly initialized as non-empty
queues. This is because interaction events are still allowed to accumulate in
these queues. On the other hand, call stacks and origin stacks are always
empty before execution starts since call events definitely are generated by the
system. As everything happens automatically in the Rail Car System, it can
be considered as a closed model, leading to queue initializations as shown in
Code Listing 4.5.

Code Listing 4.5 Queue Initializations

init(thr1_event_queue) := [NotDefined: i = 0..(SIZE-1)];

init(thr1_event_tail) := 0;

init(thr1_event_overflow):= 0;

init(thr1_call_queue) := [NotDefined: i = 0..(SIZE-1)];

init(thr1_origin_queue) := [NotDefined: i = 0..(SIZE-1)];

init(thr1_call_tail) := 0;

init(thr1_call_overflow):= 0;

init(thr2_event_queue) := [NotDefined: i = 0..(SIZE-1)];

init(thr2_event_tail) := 0;

init(thr2_event_overflow):= 0;

init(thr2_call_queue) := [NotDefined: i = 0..(SIZE-1)];

init(thr2_origin_queue) := [NotDefined: i = 0..(SIZE-1)];

init(thr2_call_tail) := 0;

init(thr2_call_overflow):= 0;

At the very beginning of a run, no process will respond to a synchronous
message. Thus the initial value of each block variable is false.
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4.7.3 Transition Behavior δ

An embedded system can be specified in terms of threads. Each thread
consist of a collection of statechart diagrams. Put in another way, thread
behavior is based on the behavior of its objects. Thus each module, as
representation of threads, will have a transition relation (see Section 4.8)
that conforms both the thread behavior and the RTC-step semantics. The
transition relation of M is built as the union of the modules’ transition
relation, the same way as it was built in Section 4.5.

4.8 From a Thread to a Kripke Model Mi

It is already known that M is built upon the union of Mi, which are the
Kripke models belonging to the threads the system is made of. The question
now is how a thread will be mapped to a Kripke model Mi.

Each thread bundles a set of objects: at most one active object and
possibly at least one passive object (see Section 4.3). Each object has its own
statechart and therefore also its own extended hierarchical automata, which
we now denote as Hobj . In Chapter 3, we have mapped a single hierarchical
automaton Hobj to a model MHobj

. Knowing this, we say that

Mi = (σi, σ0i
, δi, λi)

=
∨

k

(σHobjk
, σ0Hobjk

, δHobjk
, λHobjk

)

What does the formula precisely mean? As you can see on Figure 4.8, the
set of states σi is a combination of the set of states σHobjk

of each automaton
that belongs to the thread. Or, a state of σi is a union of configurations i.e.
one configuration of each automaton Hobjk

. This is because for a single EHA,
we have mapped its configurations to σ (Section 3.4).

The set of initial states σ0i
is built the same way. It refers to the

initial configurations of the thread, of course, which is defined by the initial
configurations of its containing objects.

The transition relation δi again covers the STEP relation, which either
is the STEP relation defined in Definition 4.2 or the one defined in
Definition 4.3. It completely depends on the total amount of objects gathered
in the thread.

As before, the construction of the Kripke models Mi is split up into three
different blocks. Section 4.8.1 explains how σi is encoded in CaSMV. A
word on the initial states σ0i

is given in Section 4.8.2. Finally, Section 4.8.3
specifies the translation of the STEP relation into CaSMV constructs.
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4.8.1 The Set of States σi

A module is a bundle of definitions. Much like a subroutine, a module may
have formal parameters. When creating an instance of the module, actual
variables are plugged in for the formal parameters, thus linking the module
instance to the program. Most often the formal parameters of a module are
declared to be either inputs or outputs. Inputs are expected to be assigned
outside the module, whereas outputs are expected to be assigned inside the
module. Sometimes a formal parameter can be declared als both an input
and an output. Whether or not formal parameters are assigned inside or
outside a module, they need to be declared in the module anyway.

Each module contains a list of parameters. This list is defined based
on the communication among objects of threads and the fact that senders
of events have the responsibility to place the events in the queues of the
receiving threads (see Section 4.3.1).

Rule 4.4 applied to the Rail Car System gives a module heading as
captured in Code Listing 4.6. We omit to give the declaration of these
variables since it is completely the same as the declaration of these variables
in the main module.

Rule 4.4 (Module’s List of Parameters). Let the embedded system
be divided into a collection of threads, called Threads. Then, the list of
parameters for a particular thread thri ∈ Threads contains the following
elements:

thrj−event−queue
thrj−event−tail
thrj−event−overflow







if ∃oi ∈ thri, oj ∈ thrj : async(oi, oj)

thrj−call−queue
thrj−call−tail
thrj−call−overflow
thrj−origin−queue
thrj−block























if ∃oi ∈ thri, oj ∈ thrj : sync(oj , oi)

async(oi, oj): object oi communicates asynchronously with object oj;
sync(oj , oi): object oj communicates synchronously with object oi;

thri−event−queue thri−call−queue
thri−event−tail thri−call−tail
thri−event−overflow thri−call−overflow

thri−origin−queue
thri−block























. . . of its own
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Code Listing 4.6 Module Headings

module Car(thr1_event_queue, thr1_event_tail, thr1_event_overflow,

thr2_event_queue, thr2_event_tail, thr2_event_overflow,

thr1_call_queue, thr1_call_tail, thr1_call_overflow,

thr2_call_queue, thr2_call_tail, thr2_call_overflow,

thr1_origin_queue, thr1_block,

thr2_origin_queue, thr2_block,

) {

/** Declaration of the parameters **/

thr1_event_queue: array 0..(SIZE-1) of {
s_crs_engage, ..., NotDefined

};
...;

};

Obviously, the configuration of a thread is built upon the configurations of
the containing standalone statecharts. Automata and attributes are declared
using Rule 3.1 and Rule 3.2 respectively, but the object name is integrated
in the declaration. As an example, we give some declarations for the Car

module (see Code Listing 4.7).

Code Listing 4.7 Automata and Attribute Declaration of Module Car

car_st_Root : {..., operating, ..., StateMachineError};
car_st_Operating : {..., departure, ..., NotActive};
car_st_Departure : {commHandler, commCruiser, end, NotActive};
car_st_commHandler: {init, waitExit, syncExit, NotActive};
car_st_commCruiser: {..., syncCruiser, ..., NotActive};

crs_st_Root: {..., engaged, disengaged, StateMachineError};

4.8.2 Initial States σ0i

The initial configuration of a thread is built upon the initial configuration
of its containing standalone statecharts. Thus, it is sufficient and straight-
forward to initialize each statechart separately by using the rules defined in
Section 3.6. Note that it is not needed to initialize the parameters of the
module, since these parameters are initialized in the main module of K.
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4.8.3 Transition Behavior δi

Definition 4.3 guides the way the transition relation of each template
will be constructed3. Every statechart running on a particular thread of
control satisfies the operational semantics of a standalone statechart. As
a consequence, the transition behavior of each module will have the raw
structure as illustrated in Code Listing 4.8.

Code Listing 4.8 Raw Structure of a Module’s Transition Behavior

/* Transition Behavior

for each object (one active, several passive) in the thread:

1. first phase of the progress rule

(object_progress_auto)

for each object (one active, several passive) in the thread:

2. second phase of the progress rule

(object_progress_call)

for each object (one active, several passive) in the thread:

3. third phase of the progress rule

(object_progress_trigger)

for all objects in the thread define a global stutter rule

**/

Not surprisingly, Definition 4.3 forces us to use additional variables and a
case statement to achieve the accurracy of the semantics (Rule 4.5). Let us
explain this a little bit more in detail. The intent of the variable last is to
indicate the last object (statechart) that has performed some activity during
a RTC-step. Clearly, we have to define a transition relation for this variable.
It is initialized with the object that executes right from the start. As we will
see later on, its value is updated in each branch of the transition behavior.

Rule 4.5 (Additional Variables). Let Obj be the set of objects running
on the same thread of control thr, and Objectk (∈ Obj) the object that starts
the execution of the thread. To achieve a correct operational semantics inside
the module thr, two additional variables are inserted into thr as follows:

3Definition 4.2 can be seen as a special case of Definition 4.3.



 4. The Model of Communicating Statecharts

last: {Obj} ∪ {NotDefined};
object−progress: {Obj} ∪ {NotDefined};

init(last):= Objectk;

object−progress:= case {
. . .
last = Objecti & Objecti−progress−auto: Objecti;
. . .
∼ (

∨

Objecti∈Obj

Objecti−progress−auto): NotDefined;

default: {Objecti−progress−auto ? Objecti};
};

It is the purpose of the variable object−progress to indicate the object’s
statechart that has to be evaluated until a stable state configuration is
reached. Its value is calculated based upon the value of the variable last. If
the last active object still has an instable configuration (indicated by Objecti

−progress−auto), the value of object−progress is set to the name of this
last object. This is because the RTC-step of each object must be finished
before making progress in the statechart of another object. However, if the
last object has reached a stable configuration, then we have to check if there
are other objects that became instable due to the progress made in the last
active statechart. If this is the case, the value of object−progress is set
non-deterministically. It is only when all the objects have reached a stable
configuration that a new event will be served to one of the objects.

Both variables are very useful to build the case statement of the step
relation (see Rule 4.6). As a simple extension of the standalone step relation
(Rule 3.7.1), the first branches of the statement correspond with the first

phase of the progress rule (
prog
−→ε). The next branches correspond with the

second and third phase of the progress rule (
prog
−→qc[0],

prog
−→qe[0]) respectively.

Rule 4.6 also shows a slight change in the stuttering rules. Now, the
statecharts are forced to reside in the StateMachineError state when either
a fault (error) or a deadlock (activate) has occurred.

Rule 4.6 (Thread’s Step Relation Representation). Let Obj be the set
of objects running on the same thread of control thr. Then, ∀Objecti ∈ Obj,
the step relation of a module looks as follows:
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case {
. . .
object−progress = Objecti & ∼error : {
. . . ;
next(last):= Objecti;

};
. . . ;

. . . ;
Objecti−progress−call & ∼error:{
. . . ;
next(last):= Objecti;

};
. . .

. . . ;
Objecti−progress−trigger & ∼error:{
. . . ;
next(last):= Objecti;

};
. . .
error | activate : {. . .};
default : {. . .};

};

Each branch statement performs the necessary updates (local states, at-
tributes, and queues) based on the transitions that execute during a time
step. The next statements that represent these changes are specified in
exactly the same way as it is done in Section 3.7. It is even possible
to use these rules to achieve communication between the objects. To be
complete, Code Listing 4.9 illustrates some of these updatings for both types
of communication.

Remember that a transition freezes in mid-transition at the moment a
synchronous communication is invoked. It is impossible to represent such a
freezing in CaSMV, but it can be simulated using dummy states. Basically,
what this means is that right after sending out a call event, the statechart
resides in this dummy state, and not in the target state of the transition.
Thus, transitions generating call events have to be rewritten, following the
rewrite rule as illustrated in Figure 4.10.
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Code Listing 4.9 Partial Thread Update

module Car(...) {
/* Declarations */

car_t1:= in_Init;

car_t2:= in_synchExit & in_synchCruiser

& (thr1_call_queue[0]=c_car_departAck);

/* Transition Behavior (Partial) */

car_progress_auto & ~error: {
for (i = 0; i < SIZE; i = i + 1) {
case {
car_t1 : next(thr2_event_queue[i]):= s_hnd_departReq;

default: next(thr2_event_queue[i]):= thr2_event_queue[i];

};
};
for (i = 0; i < SIZE; i = i + 1) {
case {
car_t2 : next(thr1_event_queue[i]):= s_crs_engage;

default: next(thr1_event_queue[i]):= thr1_event_queue[i];

};
};

};

car_progress_call & ~error: {
if ( ((i + 1)<event_tail) & (i + 1)<SIZE) {
next(thr1_call_queue[i]):= thr1_call_queue[i+1];

next(thr1_origin_queue[i]):= thr1_origin_queue[i+1];

};
else { ...; };

next(thr2_block):= case {
car_t2 : 0;

default: thr2_block;

};
};

};
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Source


Dum1


ev [optional] / A1; ...; object.callEvent();


State1


/ Ai; ...; An;


Source


Target


ev [optional] / A1; ...; object.callEvent(); Ai; ...; An;


Figure 4.10: Rewrite Rule for Synchronous Communications

4.9 Template Embedded Models Extended

We can now extend the template embedded model of a standalone statechart
(Section 3.8) to cover communicating statecharts. The usefulness of the
template remains the same.

4.10 Conclusion

This chapter (and the previous one) has presented a method for the
verification of UML statechart models generated in the development process
of embedded systems. The method allows the automated verification of
behavioral requirements through model transformation and application of
the model checker CaSMV. This approach must be used to avoid logical
design errors in a (relatively) early design phase, before the implementation
and execution begins. Chapter 9 applies the verification methodology to an
industrial benchmark.





CHAPTER 5

Specification Correctness

We all have our time machines.
Some take us back, they’re called memories.
Some take us forward, they’re called dreams.

Jeremy Irons.

V
erification and validation is critical and costly for high-assurance sys-
tems. In finite-state verification, model checkers examine finite-state

machines, representing embedded software systems, to look for errors (such
as deadlocks) in the design. Errors are defined as violations of requirements;
as violations of properties of the system.

Even though many formal specification techniques are available to verify
various properties for embedded systems, it takes much effort to specify
properties using temporal logic, because embedded systems have a complex
nature, and a merely intuitive understanding is not sufficient to draw
conclusions about their behavior.

In reactive systems, temporal logics are used to describe and reason
about sequences of states evolving in time. This is important because such
systems continually respond to their environment, and are mostly designed
not to terminate. It is not the purpose of this chapter to show how to
write temporal logic formulas. Instead, it is assumed that the professional
engineer is capable to define such formulas in relation to the statecharts.
However, before giving them to the CaSMV embedded model, they need to
be transformed, because the embedded model sometimes contains dummy
states not present in the statecharts. This chapter will explain the reason
and the solution for these transformations. But first, some mathematical
background of temporal logics, as used by the model checking technique, is
given.

123
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5.1 Model Checking of Temporal Logic

Temporal logic model checking [26] is one of the most popular and well
studied paradigms for the formal verification of hardware systems, concurrent
systems, reactive systems, etc. In temporal logic model checking, the system
is modeled as a Kripke model M = (σ, σ0, δ, λ) (Definition 3.1). The
correctness property that needs to be verified on the given Kripke structure
is specified in terms of a temporal logic formula ϕ. In general, a model
checking problem is a problem of checking whether a given model satisfies a
given property; it is a problem of determining the validity of the formula on
specific states of the transition system (denoted as M |= ϕ).

Temporal logic is a famous formal specification language for use with a
model checker. It is a nonclassical logic that enable us to formulate and verify
propositions about situations dynamically changing in time. As an example,
consider the statement: “The door of the dishwasher is open.” Though
its meaning is constant in time, the truth value of the statement can vary
in time. Sometimes the statement is true, and sometimes the statement is
false, but the statement is never true and false simultaneously. In a temporal
logic, statements can have a truth value which can vary in time. Contrast
this with an atemporal logic, which can only handle statements whose truth
value is constant in time.

Technically, a temporal logic is a logic augmented with temporal modali-
ties to allow specification of event orders in time, without having to introduce
time explicitly. For example, a temporal logic with the modalities always
and eventually will be able to specify the following property: “for all future
moments in which p holds there will be a future moment in which q holds”.
Whereas traditional logics can specify properties relating to the initial and
final states of terminating systems, a temporal logic is better suited to
describe on-going behavior of non-terminating and interacting (reactive)
systems.

5.2 The Language of Temporal Logic

Temporal logic, used by model checking tools, serves to formally state
properties concerned with the executions of a system.

As must be known by now, a path (or an execution) refers to a sequence
of states (Definition 5.1). Temporal logic uses atomic propositions to
make statements about the states. Atomic propositions are elementary
statements which have a well-defined truth value in a given state. For
example, statements like “open”, “in−phase−1” are atomic propositions.



5.2. The Language of Temporal Logic 

These propositions are assembled into a set denoted Prop = {P1, P2, . . .}.
Obviously, a proposition Pi is defined as true in a state q if and only if
Pi ∈ λ(q) [12].

Additionally, temporal logic uses boolean combinators like the negation
(¬), the conjunction (∧), the disjunction (∨), the logical implication (⇒),
the double implication (⇔) and the constants true and false. This allows us
to define more complex statements relating various simpler sub-formulas [12].
For example, error ⇒ ¬warm.

Lastly, temporal combinators allow one to speak about the sequencing of
the states along an execution, rather than about states individually. Some
examples: Pi states a property of the current state, whereas XPi states
that the next state ( temporal combinator X for “next”) satisfies Pi. The
statement Pi ∨ XPi states that Pi is satisfied in either the current state, or
in the next state, or in both states. Of course, temporal combinators can be
arbitrarily nested [12].

The two most popular logic frameworks for system verification are:

• linear time: at each moment there is only one possible future

• branching time: time has a tree like nature in which, at each instant,
time may split into alternative courses representing different futures

As Figure 5.1 illustrates, the difference lies in the semantics of the time
structure. In a logic of linear time, temporal modalities are provided
for describing events along a single time line. Whereas in a logic of
branching time, the modalities reflect the branching nature of time by
allowing quantification over possible futures.

t

t

now now

Figure 5.1: Linear Time versus Branching Time

In the following definitions of these logics, we refer to paths and reachable
states.

Definition 5.1 (Path). A path in M is a finite or infinite sequence of states
π = s0, s1, . . . such that for every i ≥ 0, si → si+1.
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We denote individual states of π by their subindices: for instance, π0 is the
first state of the path, and πi is the i+1th state of the path. A superindexed
path πi denotes a suffix of π that starts at πi. In particular, π0 = π.

Definition 5.2 (Reachable State). A state s is called reachable in M, if
there exists a finite path π in M such that π0 ∈ σ0, and the last state of π
is s. In other words, there exists a path from some initial state to the state s
M.

5.2.1 Branching Time Logic

In branching time temporal logic [26], each moment in time may have
several possible futures. Branching time temporal logics are interpreted
over structures that can be viewed as trees, each describing the behavior
of the possible computation of a non-deterministic system. In such logics,
the temporal operators quantify over the paths that are possible from a given
state.

One such branching logic is the Computation Tree Logic (CTL), which
extends propositional logic with unary temporal operators (EX and AX,
EF and AF, EG and AG) and binary temporal operators (EU and AU)1.
The informal semantics of these operators is given in Section 1.6.3.

Syntax The CTL formulas are syntactically described as follows:

ϕ, ψF P1 | P2 | ... (atomic propositions)
| ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | . . . (boolean combinators)
| EXϕ | EFϕ | EGϕ | E[ϕUψ] (temporal combinators)
| AXϕ | AFϕ | AGϕ | A[ϕUψ] (temporal combinators cont.)

Of course, this is an abstract grammar. In practice, each tool dealing with
temporal formulas will allow parentheses, and will have its own operator
priority conventions. As well, each tool will have its specific set of atomic
propositions and combinators.

Semantics Let us turn to the semantics of CTL, i.e. given a model M and
a CTL formula ϕ, how to determine whether M satisfies ϕ (M |= ϕ)? To do
that, we have to define a satisfaction relation for states and then for models.
Naturally, the interpretation of CTL formulas is defined directly on the set
of states, but the notion of a path (Definition 5.1) is also used. In general,

1Normally, a temporal logic also provides a release operator R, but this operator is
omitted here, because CaSMV does not support it.
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for the statements given below M, s |= ϕ means that a state s in the model
M satisfies the formula ϕ.

M, s |= p ⇔ p ∈ λ(s)
M, s |= ¬ϕ ⇔ M, s 6|= ϕ
M, s |= ϕ ∧ ψ ⇔ M, s |= ϕ and M, s |= ψ
M, s |= ϕ ∨ ψ ⇔ M, s |= ϕ or M, s |= ψ

M, s |= EXϕ ⇔ ∃s′ : s→ s′ and M, s′ |= ϕ
M, s |= AXϕ ⇔ ∀s′ : s→ s′ implies M, s′ |= ϕ

M, s |= EFϕ ⇔ ∃π : ∃i ≥ 0 : π0 = s and M,πi |= ϕ
M, s |= AFϕ ⇔ ∀π : ∃i ≥ 0 : π0 = s implies M,πi |= ϕ

M, s |= EGϕ ⇔ ∃π : ∀i ≥ 0 : π0 = s and M,πi |= ϕ
M, s |= AGϕ ⇔ ∀π : ∀i ≥ 0 : π0 = s implies M,πi |= ϕ

M, s |= E[ϕ U ψ] ⇔ ∃π : π0 = s and
∃i ≥ 0 : M, πi |= ψ and ∀j < i : M, πj |= ϕ

M, s |= A[ϕ U ψ] ⇔ ∀π : π0 = s implies
∃i ≥ 0 : M, πi |= ψ and ∀j < i : M, πj |= ϕ

CTL Expansion Rules When the transition relation is total, CTL
operators can be expanded as follows:

EFϕ = ϕ ∨ EX EFϕ
AFϕ = ϕ ∨ AX AFϕ

EGϕ = ϕ ∧ EX EGϕ
AGϕ = ϕ ∧ AX AGϕ

E[ϕ U ψ] = ψ ∨ (ϕ ∧ EX E(ϕ U ψ))
A[ϕ U ψ] = ψ ∨ (ϕ ∧ AX A(ϕ U ψ))

For instance, note that in order for EFϕ to hold at state s, either ϕ may
hold at s, or there must be an edge from state s to state t such that EFϕ
holds at t. Hence we can write EFϕ = ϕ ∨ EX EFϕ.

5.2.2 Linear Time Logic

In linear time temporal logic (LTL), each moment in time has a unique
possible future. The logic only deals with the set of executions and not with
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the way these are organized into a tree. Linear temporal logic formulas are
therefore interpreted over linear sequences and are regarded as specifying the
behavior of a single computation of a system; a linear time formula cannot
examine alternative executions which split off from this one at each time step
where a non-deterministic choice is possible.

Linear time temporal logic extends propositional logic with unary tem-
poral operators (X, G, and F) and a binary temporal operator (U). The
informal semantics of these operators is given in Section 1.6.3.

Syntax The LTL formulas follow the formal grammar described as follows:

ϕ, ψF P1 | P2 | ... (atomic propositions)
| ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | . . . (boolean combinators)
| Xϕ | Fϕ | Gϕ | ϕUψ (temporal combinators)

Semantics The validity of formulas in LTL is originally defined on a path
rather than on an individual state, and we say that an LTL formula ϕ holds
in a state s iff ϕ holds on all paths π starting from s. This is denoted as
M,π |= ϕ.

M, π |= p ⇔ p ∈ λ(π0)
M, π |= ¬ϕ ⇔ M,π 6|= ϕ
M, π |= ϕ ∧ ψ ⇔ M,π |= ϕ and M,π |= ψ
M, π |= ϕ ∨ ψ ⇔ M,π |= ϕ or M,π |= ψ

M, π |= Xϕ ⇔ M,π1 |= ϕ

M, π |= Gϕ ⇔ ∀i ≥ 0 : M, πi |= ϕ

M, π |= Fϕ ⇔ ∃i ≥ 0 : M, πi |= ϕ

M, π |= ϕ U ψ ⇔ ∃i ≥ 0 : M, πi |= ψ and ∀j < i : M, πj |= ϕ

5.3 The Problem

As mentioned in Chapters 3- 4, the behavior of embedded systems is specified
within a set of statechart diagrams. From this, a semantical CaSMV model
is constructed, which serves as the Kripke model M during the verification
process.

Temporal logic is used to express requirements, with respect to the
statechart diagrams, that are not globally valid (in all states), but temporally
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or from a certain point onwards. CaSMV verifies these requirements through
symbolic model checking. When this process gets stuck, CaSMV constructs
a counter model, which is a path through the model not satisfying the desired
properties. The counter model in an infinite sequence of states, i.e. one or
more states are accessed infinitely often.

Unfortunately, the verification process must be guided very carefully,
since there are some syntactical differences between the statecharts and
the Kripke structures. The proposed Kripke model of statechart diagrams
denotes an ordering on the states that allows us to link requirements to the
corresponding state(s).

Transitions in UML statecharts are atomic and cannot be interrupted.
Sometimes, it is possible that a transition is broken up into additional
transitions and states through the translation to a CaSMV Kripke model
(e.g. because of synchronous calls, Section 4.8.3). As a direct consequence,
requirements are verified in these additional (dummy) states too. It cannot
be a suprise that this can result in a wrong verification process. For example,
in Figure 5.2 a next state of state S1 is state S5 and not the additional state
D.

...D

S1

S

...

...

...

S5

Figure 5.2: Execution Trace with Additional States

To avoid confusion in the formulation and the verification of requirements,
we need to transform the temporal formulas so that they cope with possible
additional states. This way, additional states are made transparent during
the verification process. For example, if the software engineer wants to know
something about a next state, we must assume that he means a next state in
his behavioral model (= statecharts), because he is not aware of the dummy
states that are introduced in the CaSMV Kripke models.
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5.4 The Solution

The most obvious solution is to use a clock operator [40] to make additional
states transparent for the verification process. The clock operator allows
applying a formula only to states satisfying some condition. Unfortunately,
only the ForSpec [6] language from Intel and the Accelera PSL language
(a.k.a. Sugar 2.0 [11]) both have such a construct. Since CaSMV does not
support clock operators, the formulas have to be translated to achieve the
same results as with the clock operators. Basically, the interpretation of
formulas have to be changed. In doing so, we make the verification process
perserve the behavioral semantics of objects.

5.4.1 CTL Transformations

We present a relatively simple solution using the CTL semantics. Some
words about the notations: I(ϕ)M refers to the interpretation of ϕ made in
the Kripke model M (= translated statechart diagrams); dummy holds all
dummy states present in the model so dummy ≡

∨

i dummyi.

EXϕ Transformation The property ϕ must hold in a next state that is
not a dummy state. Defining a new intepretation for such a formula is a
little bit tricky:

I(EXϕ)M F EX(E(dummy U (¬dummy ∧ ϕ))

With such an interpretation, ϕ would only be true, if from the current state
zero or more intermediate states are visited, until a non-dummy state is
reached that satisfies ϕ. The interpretation is best understood using the
CTL expansion rule of the EU operator (Section 5.2.1). Using the latter
definition, we first verify whether the next state is a non-intermediate one
that satisfies ϕ. If not, the next state can be an intermediate one for which
the process has to be repeated. If the next state is not an additional state,
then the next state of another execution path is examined.

AXϕ Transformation Analogously, we have the following interpretation:

I(AXϕ)M F AX(E(dummy U (¬dummy ∧ ϕ))

EFϕ Transformation Following the CTL semantics, EFϕ states that it
is possible (by following a suitable execution) to have ϕ some day. This
interpretation allows that ϕ holds in a dummy state of some execution path,
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which is of course not allowed. To guarantee that ϕ is not verified in such
additional states, we have to change the interpretation as follows:

I(EFϕ)M F EF(ϕ ∧ ¬dummy)

AFϕ Transformation Analogously as before, the interpretation becomes:

I(AFϕ)M F AF(ϕ ∧ ¬dummy)

EGϕ Transformation EGϕ means that there exists an execution path
along which ϕ always holds, i.e. in every state of the path. The UML
semantics forbids to interrupt a transition, and thus the semantics forbids to
verify ϕ in the intermediate states because ϕ can be false in some of these
states. A new interpretation

I(EGϕ)M F EG(ϕ ∨ dummy)

makes sure that these dummy states are correctly skipped. With such an
interpretation available, the model checker now verifies whether ϕ holds in
all non-dummy states along an execution path, as requested.

AGϕ Transformation Analogously as before, the interpretation becomes:

I(AGϕ)M F AG(ϕ ∨ dummy)

E(ϕ U ψ) Transformation Obviously, ϕ and ψ must be satisfied in non-
intermediate states. Thus,

I(E(ϕ U ψ))M F E((ϕ ∨ dummy) U (ψ ∨ dummy))

A(ϕ U ψ) Transformation Analogously,

I(A(ϕ U ψ))M F A((ϕ ∨ dummy) U (ψ ∨ dummy))

5.4.2 LTL Transformations

Deriving new interpretations for LTL formulas is done similarly as it is done
for CTL formulas. Therefore, we just give the interpretations without further
explanations.

I(Xϕ)M F X(dummy U (¬dummy ∧ ϕ))
I(Fϕ)M F F(ϕ ∧ ¬dummy)
I(Gϕ)M F G(ϕ ∨ dummy)
I(ϕ U ψ)M F (ϕ ∨ dummy) U (ψ ∨ dummy)
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5.5 Specifications in CaSMV

An assertion is a condition that must hold true in every possible execution of
the program. Assertions in CaSMV are written in linear time temporal logic,
that makes it possible to succinctly state proportions about the relation of
events in time. A declaration of the form

assert p;

where p is a linear temporal formula, means that every execution of the
program must satisfy the formula p. An execution that does not satisfy the
formula is called a failure of the program. On the other hand, a declaration
of the form

SPEC p;

denotes that p is a branching temporal formula.
To write down the new formula interpretations in CaSMV, it is useful to

introduce abstract auxiliary signals:

abstract <signal> : <type>;

Such signals can be part of the specification, can be part of the proof, but do
not belong to the system being verified. An abstract signal is useful to cover
the dummy predicate, as used in the previous sections (Rule 5.1). It can be
seen as a shortcut.

Rule 5.1 (Abstract Dummy Signal). The ‘dummy predicate’, as used in
the transformed temporal formulas, is inserted into CaSMV as follows:

abstract dummy: boolean;
dummy :=

∨

i

in−dummy−i;

in−dummy−i: true whenever the statechart resides in one of the additional
states.

5.6 Methodology Extended

Software developers are allowed to describe important properties, in English,
about (embedded) software systems with the intention of specifying what the
eventual system will be expected to provide. Quite often the requirements
of a system follow simple patterns.

A property specification pattern describes the essential structure (=scope)
of some aspect of a system’s behavior. As an example, the scope “global”
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means that the requirement should always hold. Using such property
patterns, expectation phrases are transformed into temporal logic formulas
through the assistant that guides the user in writing properties. The property
writing assistant is based on the pattern scheme proposed by Dwyer et al. [39].

As shown by Figure 5.3, our tool integrates (at least, this is the intention)
a versatile assistant that guides the software developer in writing properties
to be verified using temporal logic. Moreover, the tool automatically
transforms the temporal formulas such that additional states are correctly
dealt with.

UML Model

Statecharts


(XMI)


Extended

Hierarchical Automata


(EHA)


True or

False with


Counterexample


CaSMV

Kripke Model


Model Checker

CaSMV


Java Application


UML Model

Class Diagrams


Property

Writing Assistant


Property

Patterns


Property

(LTL or CTL)


Property

(English)


Figure 5.3: Methodology & Tool Architecture

It must be clear that the verification is carried out in such a way that the
developers do not need knowledge of either formal languages or temporal
logic to be able to take advantage of its potential; something which has
traditionally been difficult to overcome when deciding on the use of formal
methods; the engineer only needs knowledge of UML and the system studied,
the tool automatically obtains a CaSMV formal representation from a textual
XMI representation.





CHAPTER 6

Protocol Conformance

The piece, when it is over,
is not what is made, but how it is made.

Andrew Kuntz.

I
f you are familiar with object-oriented methods, you will be aware of the
concept of a class and an interface. A class represents an entity of a given

system and provides a piece of system functionality, whereas an interface is
a variation of a class in the sense that it only provides a definition of system
functionality. Interface classes are used by classes that claim to implement
them.

The UML allows that classes use behavioral state machines — also called
statecharts — to describe their piece of system functionality. The new version
of the standard, UML 2.0, allows that interfaces use protocol state machines
to focus only on allowable sequences of behavior invocations on a class, but,
without having to show its behavior.

A problem now arises: given a protocol state machine and a behavioral
statechart, that should be an implementation of it, how to verify that the
implementation meets the specification? This problem is called protocol
conformance verification.

This chapter addresses this problem in model-driven software design.
The contribution is to provide a methodology, which is based on refinement
mappings, to automatically verify protocol conformance. It will be shown,
that the verification procedure, described in Part 2, can easily be extended
with this new methodology. This helps to turn UML into a powerful and
interesting tool for the development of critical systems.

135
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6.1 Two Kinds of State Machines

Behavior in UML 2.0 is defined as a specification of how its context classifier
changes state over time [96]. Behavior is an abstract metaclass and the
specification of behavior can take a number of forms, as described in its
subclasses. A variety of behavior specification mechanisms are provided by
UML, such as Statemachine, Activity, Usecase and Interaction.

State machines define a set of concepts that can be used for modeling
behavior through finite state transition systems. In general, a state machine
is any device that stores the status of something at a given time and can
operate on input to change the status and/or cause an action or output to
take place for any given change [129].

In addition to expressing the behavior of a part of a system, state
machines can also be used to express usage protocols of a part of a system.
Based on this, UML 2.0 differentiates between two kinds of state machines:
behavioral state machines and protocol state machines.

6.1.1 Behavioral State Machines

In UML 2.0, behavioral state machines (BSM), extend traditional finite
automata by adding hierarchy (= state refinement to contain another au-
tomaton), concurrency and communication. They are hierarchical automata
associated to UML objects (a class instance) to model their behavior. Each
BSM gives an abstract view of all the desired behaviors of an object in its
lifecycle. In fact, a behavioral state machine is completely equivalent with
the elder UML statecharts, used throughout this manuscript so far. It can
be seen as a view that is concerned with what an object must do.

6.1.2 Protocol State Machines

A protocol state machine is always defined in the context of a classifier
(mostly an interface). In its simplest form, a PSM (see Definition 6.1)
is a state diagram in standard UML notation whose transitions are labeled
by events (call event, signal event, time event, completion event) and do not
have actions; i.e. refusing any behavioral implementation.

Definition 6.1. A UML protocol state machine is a 6-tuple PSM =
〈σ, δ, E, PREC,POSTC, s0〉 where σ is a finite set of states, E is a finite
set of events, PREC is a finite set of preconditions, POSTC is a finite set
of postconditions, δ ⊆ σ × PREC × E × POSTC × σ is a finite set of
transitions, and where s0 is the initial state. (The definition can be extended
with mappings to the sources, targets, and labels of the transitions.)
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The big difference in notation between a behavioral machine and a protocol
machine is in the transition line between the states. Now, the syntax for
transitions is:

[pre-condition] event / [post-condition]

These transitions have no actions. Instead, they only have effect descriptions.
This means that a PSM is side-effect free. Pre (post) conditions have the
same syntax as guard conditions.

Obviously, a PSM captures the triggering view of an objects behavior.
It presents the possible and the permitted transitions on the instances of
its context classifier, by specifying the consummation order of the events
and the states through which an object progresses during its life. A PSM
acts as an independent specification and defines what the instances of its
context classifier can do. The triggering view is also a requirement to the
environment external to the state machine: it is legal to send this event to
an instance of the context classifier only under the conditions specified by
the protocol state machine.

Note that each protocol state machine can also be rewritten into an
extended hierarchical automaton, in the same way as can be done for
statecharts. Therefore, we omit to give any further details.

6.2 Motivating Example

The motivating example used throughout this chapter, is based on a bounded
Stack. A Stack is a data structure that works on the principle of Last In
First Out (LIFO). Data items are pushed on and popped from the top of the
stack. Since bounded stacks have a maximum size, it is an error to push
items onto a full stack. We also get an error if we try to pop items from an
empty stack.

An abstract data type (ADT) specifies a set of operations (or methods)
and the semantics of the operations (what they do), but it does not specify
the implementation of the operations. Each ADT denote the operations you
need without having to think at the same time about how the methods are
performed. The stack as ADT is defined by specifying the operations (push,
pop, isfull, isempty) that can be performed on it. The specification is called
an interface.

UML 2.0 gives us the opportunity to present the interface by a protocol
state machine showing the way how the stack is used in practice. A possible
protocol state machine for the stack ADT is given in Figure 6.1. Four
states are used to define the lifecycle of a stack: Empty, Loaded, Full,
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and Exception. Events are used to model the pushing and popping of data
items.

Empty


Loaded


p1: evPush
 p3: evPop


Full


p6: evPush
 p7: evPop


p4: evPush

p5: evPop


Exception


p2: evPop


p8: evPush


Root


Figure 6.1: Protocol State Machine of a Stack

There are many uses for stacks: providing support for recursive procedure
calls, searching structures, computation, and so on. Depending on the use,
the methods of the stack can be implemented in many different ways, each
leading to different stack classes (array based, list based, ...). A possible
overall behavior of such a stack class is given by Figure 6.2, which shows
that the behavior of the stack is defined in a reactive manner. Obviously,
the behavioral transitions contain some guards – a predicate expression
associated with an event – which might change depending on how the stack
is implemented1. Note that the specified behavior considers the stack when
it is almost empty or almost full.

Obviously, a protocol machine specifies what a behavioral machine is
allowed to do at any given moment. At this point, the designer only has to
worry about whether the implementation – the behavioral state machine –
is correct in accord with the interface – the protocol state machine. This
problem is known as protocol conformance verification. It is the purpose of
this chapter to show how this problem can be tackled during the early phases
of system design.

1Since we are working in the design phase, the transitions do not yet contain
corresponding method calls.
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Empty


Loaded


t1: evPush / s=s+1;
 t3: evPop [s==1] / s=s-1;


Full


t6: evPush [s==(m-1)] / s=s+1;
 t7: evPop / s=s-1;


t4: evPush [s<(m-1)] / s=s+1;

t5: evPop [s>1] / s=s-1;


Exception


t2: evPop


t8: evPush


Root


Figure 6.2: Behavioral State Machine of a Stack

6.3 Protocol Conformance

The UML Superstructure 2.0 Specification [96] explains that there are
relationships between the classifier being the context of the specific BSM
and the classifier being the context of the PSM. Generally the former
specializes or realizes the latter. In UML 2.0, protocol conformance means
that every rule and constraint specified for the general PSM applies to
the specific BSM. This is augmented by specifying that the PSM can
be redefined into the BSM. Clearly, the behavioral view of an object is
not independent of its triggering view. Intuitively, the ordered collection of
stimuli received by an object’s statechart must exist as a sequence of events
in its corresponding protocol state machine. That is, every behavior of an
object’s statechart is also a behavior of its protocol statechart. If not, then
obviously, the interface class is wrongly implemented. In order to verify the
consistency between both state machines, we need a more formal definition
of protocol conformance between a PSM and a BSM and adapt a method
presented in [59]. This is where refinement mappings, as considered by Abadi
and Lamport [82], will show their use.

6.3.1 Refinement Mappings (or Simulations)

The existence of a refinement mapping proves that a machine implements
a given specification. You may know that refinement mappings are the
functional cousin of Milner’s simulation relations. Milner introduced them
for the purpose of comparing programs [95]. The simulation guarantees that
every behavior of a structure is also a behavior of its abstraction. However
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the abstraction might have behaviors that are not possible in the original
structure. Technically, a simulation (or a refinement) is a function (or a
mapping) R between the states of a low-level specification S1 and a high-
level specification S2 that satisfies conditions [26] as

(s, v) ∈ R ∧ s→S1
s′ ⇒ ∃v′ : v →S2

v′ ∧ (s′, v′) ∈ R

(If a low-level state s and a high-level state v are related, and S1 can make a
transition from s to s′, then there exists a matching transition in S2 from v
to a state v′ that is related to s′.) The existence of such a mapping implies
that any behavior that can be exhibited by S1 can also be exhibited by S2.
To summarize things, a refinement mapping consists of a state mapping, a
steps mapping and implicitly a behavioral mapping as well.

It can be of no suprise that a refinement mapping gives us everything
we need to automatically decide on protocol conformance. Each PSM
is equivalent to an abstract specification PSMa while each BSM defines
a concrete specification BSMc of some classifier. Verifying on protocol
conformance is now equal to proving that a low-level specification (i.e.
BSMc) correctly implements a high-level specification (i.e. PSMa), using a
refinement mapping between a BSM and a PSM.

A refinement mapping, denoted as Rf , from a BSM to a PSM is a
function f : σBSM → σPSM that provides the following mappings:

1. state mapping: ∀s ∈ σBSM : f(s) ∈ σPSM

2. steps mapping: ∀(si, sj)e[g]/a ∈ δBSM : (f(si), f(sj))[pre]e[post] ∈ δPSM

3. behav. mapping: xs ∈ Beh(BSM) ⇒ fw(xs) ∈ Beh(PSM)

State Mapping

There can be no formal connection (and therefore no refinement mapping) be-
tween both state machines unless the designer has specified a correspondence
relation between the states of both statecharts. To simplify things, we assume
that a PSM presents the possible and permitted states through which an
object progresses during its life i.e. a BSM cannot reside in states not present
in its corresponding usage protocol. Summarized, the state mapping is given
by a state transformer (Definition 6.2) that assumes a 1-to-1 correspondence
between the states of BSM and the states of PSM. Obviously, the initial
state s0

BSM corresponds to the initial state s0
PSM .
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Definition 6.2. The set of states that an object may have during its life is
fully defined in its PSM:

∀s ∈ σBSM : ∃!s ∈ σPSM : f(s) = s′

Steps Mapping

Analogously, Definition 6.3 specifies the mapping of the steps. Each step is
equal to a transition.

Definition 6.3. A behavioral transition, with label event[guard]/actions,
from state si to state sj is legal iff the corresponding PSM defines a protocol
transition from state si to state sj with the label [pre]event/[post].

∀(si, sj)e[g]/a ∈ δBSM : (f(si), f(sj))[pre]e[post] ∈ δPSM

This means that a behavior transition may exist iff there exists a protocol
transition with the same source, target and triggering event.

Still, it is not required that every PSM’s state/transition has a counterpart
state/transition in its redefined BSM because a PSM specifies all the
capabilities of a classifier, not all of which may be used in a particular system.
That is, σBSM ⊆ σPSM and δBSM ⊆ δPSM.

Behavioral Mapping

As already mentioned, protocol conformance means that every behavior of
an object’s statechart is also a behavior of its protocol statechart. Thus,
Definition 6.4 implicitly defines the requested mapping of behaviors (= sets of
all sequences of transitions) i.e. xs ∈ Beh(BSM) ⇒ fw(xs) ∈ Beh(PSM).

Definition 6.4. Let P be a PSM and B defined for a class c. B conforms
to P with respect to the initial state s0 if and only if whenever

s0 →∗ s′
event[guard]/actions

→ s′′

(that is, a transition is triggered from some state s’ in B that is reachable
from the initial state of B) we have a corresponding counterpart transition in
P

s0 →∗ s′
[pre]event/[post]

→ s′′

where both the pre and the post condition evaluate to true.



 6. Protocol Conformance

The refinement mapping Rf can now be used to prove whether the low-level
specification correctly simulates the high-level one. If so, then the BSMc

implements the PSMa or the BSMc conforms the PSMa. Obviously, there
must exist some verification technique (and corresponding tool) that uses Rf

to prove the protocol conformance during system design. Additionally, it is
useful if the technique finds some interesting counter examples, helping the
modeler to develop the design of her/his system.

6.4 Methodology

The refinement methodology enforces the verification process of the protocol
conformance to proceed through phases:

Phase 1 The first phase automatically decides whether the set of states of
the BSMc is indeed a subset of the one of the corresponding PSMa. If not,
the low-level specification contains states that are not present in the high-
level one. At this point, the developer is informed about her/his mistake(s).
Of course, if a fault occurs, it is impossible to have protocol conformance
between both machines and continuing with the other phases does not make
sense.

Example 6.1. The set of states used to define the behavioral stack machine
(see Figure 6.2) is fully defined in its corresponding usage protocol (see
Figure 6.1). More precisely, the sets are in this case equal.

Phase 2 Analogously to the first phase, the second phase verifies whether
each behavioral transition has a corresponding counter protocol transition.
If not, then the mapping of the transitions is not correctly followed, and the
designer is again informed about his mistake(s).

Example 6.2. It is easy to see that each behavioral transition in Figure 6.2
has a corresponding counter protocol transition in Figure 6.1.

Phase 3 The last phase proves the satisfaction of the behavioral mapping.
This phase shows that every implementation behavior is allowed by its
definition, specified in the PSMa. Of course, this shall be done by
an exhaustive search respecting the run-to-completion step semantics of
statecharts. At this stage, in order to efficiently perform this proof, a
sophisticated tool is needed. We propose the Cadence SMV model checker.
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6.4.1 Behavioral Mapping Auxiliary

The Cadence SMV system [86] – used to model check behavioral properties
(see Chapters 3-4) – provides an approach that is geared to proving that
an abstract model is implemented by some more detailed system model.
The notion of correctness is defined in terms of refinement maps that relate
signaling behavior at suitable points in the implementation with events
occurring in the abstract model. The verification is based on a circular
compositional rule that allows us to assume that one map (as a temporal
property) holds true while verifying another map, and vice versa. The
construct layer is used to provide the refinement maps. A layer is defined as a
collection of abstract signal definitions. These are expressed as assignments in
the same way the implementation is defined. Thus, inside a layer, transition
relations are specified. More precisely, higher layers offer an abstracted
description of the system. They build its specification, and describe what
it should do. The lower layers implement the higher layers, and describe how
the system actually does what it should do.

Example 6.3. Let’s consider a very simple example [86] of a specification
and an implementation of a finite state machine, as written down in Code
Listing 6.1. The specification states that x is 0 at time t = 0, and states
that the value of x at time t + 1 is 1 if x is 0, and else is either 0 or
1. Clearly, the implementation satisfies the specification which is verified
by an exhaustive search of the state space of the implementation. Note that
the transition relation inside the layer defines the protocol state machine in
Figure 6.3, while the transition relation outside the layer corresponds to the
behavioral state machine in Figure 6.4.

0


1


Figure 6.3: Example PSM

0


1


Figure 6.4: Example BSM

Using CaSMV gives us the opportunity to tie the verification of behavioral
properties together with the protocol conformance proof. Both proofs happen
through the model checking technique. Note, that CaSMV only has to verify
the behavioral mapping since the state and transition transformer connect
both state machines purely syntactically. Obviously, syntax checking can be
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Code Listing 6.1 Sample CaSMV Protocol Verification

module main () {
x: boolean;

/* The specification */

layer spec: {
init(x) := 0;

if (x=0) next(x) := 1;

else next(x) := {0,1};
}

/* The implementation */

init(x) := 0;

next(x) := ~x;

}

performed before enabling the refinement verification; it can be done without
using CaSMV.

Intuitively, to prove the protocol conformance, CaSMV executes the
BSMc following the execution semantics as close as possible and checks
it against the information covered in the refinement mapping defined inside
a layer. If no fault is found, we are allowed to say that the BSMc complies
with its corresponding PSMa. Otherwise, the model checker returns a
useful counterexample, helping the user to locate and to eliminate the design
problem.

Following Definition 6.4, the layer must contain the transition relation
(see Example 6.3) of the PSMa. The transition relation outside the layer
(see Example 6.3) is the one of the BSMc resulting in the structure shown
in Code Listing 6.2.

Doing so, the behavioral mapping is correctly defined and the model
checker is capable of proving the conformance all by itself, as wanted. The
main obstacle to face here is the construction of the transition relations. We
will now show how to solve this problem using the stack as an example (see
Section 6.2).

Behavioral Transition Relation outside a Layer

Chapters 3-4 defined a template structure in the CaSMV language [86] in
order to be able to model check some behavioral properties of a system
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Code Listing 6.2 Sample CaSMV Structure of Conformance Verification

module main() {

-- high-level specification, triggering view

layer protocol : {
-- PSM’s transition relation

}

-- low-level specification, behavioral view

-- BSM’s transition relation

};

under development. To do so, each statechart, contained in the model,
is transformed into an extended hierarchical automaton, without loss of
generality. Additionally, the statechart’s execution semantics is rewritten
into phases making up the total transition relation of behavioral state
machines. Instantiating the template structure on the behavioral stack
machine (Figure 6.2) results in the CaSMV representation, as shown in Code
Listing 6.3, which of course is simplified to the parts of main interest. The
relation between the code and the graphical representation of the behavior
is straightforward.

Protocol Transition Relation inside a Layer

The transition relation for a PSM must be specified in such a way that
Definition 6.4 is correctly used within the verification process. Informally,
Definition 6.4 says that the execution of a behavioral transition leads to the
execution of some counter protocol transition.

Code Listing 6.4 shows the CaSMV representation of the protocol state
machine (Figure 6.1). You can easily understand that init/next statements
are used to specify the refinement mapping. The init statement mentions
the state, the behavioral statechart has to reside in at time t = 0. The
next statements represents the allowable state changes at time t + 1. Each
protocol transition has a unique identifier, again used to define the condition
under which a transition is able to take the state change.

As like the behavioral transition relation, the protocol transition relation
is split up in several phases or blocks as well. This is motivated by the
fact that the execution of a behavioral transition is dictated by entering
the several phases. Moreover, the refinement mapping is more transparent
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Code Listing 6.3 Specification of Stack’s Behavioral View

...;

t4 := in_Loaded & event_queue[0] = evPush & (size < (m-1));

t6 := in_Loaded & event_queue[0] = evPush & (size == (m-1));

...;

/* Initialization of Behavioral View */

init(st_root) := Empty;

/* Total Transition Relation of Behavioral View */

case {
...;

progress_auto & ~error: { };
progress_trigger & ~error: {

next(st_root) :=

case {
t1: Loaded;

t2: Exception;

t4: Loaded;

t6: Full;

t3: Empty;

t5: Loaded;

t7: Loaded;

t8: Exception;

default : st_root;

};
...;

};
error: {

next(st_root) := StateMachineError;

...;

};
default: {

next(st_root) := st_root;

...;

};
};

in the CaSMV representation. However, the error block is not integrated
inside the layer since it seems unlogical for a PSMa without behavioral
implementations attached to it.

Example 6.4. It is allowed to reach state Full whenever t7 and p7 are
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Code Listing 6.4 Specification of Stack’s Triggering View

layer protocol: {
...;

p4 := in_-Loaded & event_queue[0] = evPush;

p6 := in_-Loaded & event_queue[0] = evPush;

...;

/* Initialization of Triggering View */

init(st_root) := Empty;

/* Total Transition Relation of Triggering View */

case {
progress_auto & ~error: { };
progress_trigger & ~error: {
next(st_root) :=

case {
p1 & t1: Loaded;

p2 & t2: Exception;

p4 & t4: Loaded;

p6 & t6: Full;

p3 & t3: Empty;

p5 & t5: Loaded;

p7 & t7: Loaded;

p8 & t8: Exception;

default : st_root;

};
};

default: {
next(st_root) := st_root;

};
};

};

enabled. Indeed, a behavioral transition, t7, is only allowed to execute
whenever its abstract counter protocol transition, p7 is executed as well. It
is forbidden to reach state Full, if behavioral transition t7 is enabled to
execute, but the conditions of its abstract counter protocol transition are not
fulfilled.

Inside the layer, every protocol transition is connected to its behavioral
counterpart. Executing a low-level transition is only possible whenever
a corresponding high-level transition is executed as well, as specified by
Definition 6.4. This explains the reason for conjuctions inside the layer.
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This is illustrated by Example 6.4. If we leave out the conjunction and
only use the abstract transitions to define the transition relation inside the
layer, strange things can happen, i.e. if behavioral transition t7 is enabled
to execute, the abstraction transition p5 shall be executed as well instead
of abstract transition p7. Indeed, transition p5 has the same activation
condition as the one of abstract transition p7 and is evaluated/taken first in
the case statement. Leaving out the behavioral transitions inside the layer
leads to a bad implementation of Definition 6.4.

The proof

The stack example shows a layer as a collection of a single abstract signal
definition st−root. Such an abstract definition entails a verification task —
to show that every implementation behavior is allowed by this definition, to
show that both machines are protocol conformant. Indeed, the model-checker
verifies whether the low-level implementation of a signal is simultaneously
consistent with its abstract definition for each possible behavior. The way
this is achieved is the same as it is achieved in Example 6.3.

At time t = 0 the model checker verifies whether the behavior machine is
in the correct initial state. The stack machine clearly fulfills this requirement.
Next, at time t + 1, each behavioral state change is verified against the state
changes defined inside the layer. If at time t + 1 the behavioral stack reaches
a state that can never be reached by the layer, a counterexample is returned
to the user. This is not the case for the stack example; the behavioral stack
is protocol conformant with its protocol statechart.

6.5 Compositional Verification

Mostly, behavioral statecharts consist of several sequential submachines
i.e. hierarchical sequential states or regions of concurrent states. The
corresponding protocol statecharts contain the abstract version of these
submachines, otherwise the machines are not protocol conformant. The
presence of several submachines leads to several (abstract) signal definitions
(inside) outside the layer respectively. Each abstract signal definition entails
a verification task. This is known as decomposition. Now, the behavioral
machine complies to the protocol machine, if each signal (= sequential
submachine) is consistent with its abstract signal definition. Therefore, it
must be possible to use decomposition in order to verify the refinement
mapping.
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Definition 6.5. Let P be a PSM and let B be a BSM (with sub-automata)
defined for a class c. B conforms to P if and only if every sub-automaton in
B conforms to its abstract counterpart sub-automaton in P.

Instead of using a single layer, decomposition allows us to use several layers
to prove protocol conformance. Each layer will contain the abstract signal
definition of a particular sub-automaton. Using several layers, instead of a
single one, results in the compositional refinement verification. Each layer
entails the verification task of the refinement mapping of sub-automata as
Definition 6.5 requires.

6.6 Related Work

In the design of large systems, the designer often faces a trade-off as to
which validation technique to use in order to guarantee that the final
implementation will meet the specification. One such validation technique is
refinement verification. This technique shows its usefulness in many fields.
We mention a few of them.

As a first example, in [83] a new class of refinement maps has been
introduced for pipelined machine verification. The result is that the use
of such refinement maps leads to drastic improvements in verification times.
As another example, refinement maps can also be used to refine abstract
architectural models into more platform specific representations [9].

To come to the field of UML, the refinement concept for UML statecharts
has been formalized in [91]. Here, refinement maps are defined in terms of
configurations and simulations, which is slightly different from our refinement
map definition. In [62] an extension of the Temporal Logic of Actions (TLA)
is defined in order to identify adequate concepts of refinement for mobile
UML state machines. Such an extension has the advantage to work with more
complex refinement maps; our refinement maps are limited to the capabilities
of CaSMV.

Important Usage Difference The verification of a system against a given
property is done in two phases when using refinements. In a first phase, the
coherence (=consistency) between the specification and the refinement is
verified. If both are consistent with each other, the property is verified on
the high-level model. Of course, the high-level model is usually much smaller
than the low-level one. This means that a two-phase approach proves to
be more efficient than a direct verification [88]. For our purposes, verifying
a particular property does not benefit from this two-phase approach. This
follows directly from the definition and the use of our refinement maps.
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6.7 Conclusion

This chapter has shown that UML state diagrams may be used at two
different levels of granularity during the behavioral design of applications;
the behavioral view focuses on the reactivity of a class whereas the protocol
view is known as the object life cycle. Additionally, we have provided
a methodology for verifying the consistency between both views. This
methodology is built around refinement mappings. The latter ones have
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proven themselves to be extremely useful to verify whether a class (as a
BSM) correctly implements its interface (as a PSM), known as protocol
conformance verification. Not suprisingly, the verification of behavioral
properties can be done at the same time the consistency between both
machines is verified. However, the exact translation from a protocol
automaton to a layer of CaSMV is explicitly omitted, since it is almost
similar to the construction of a behavioral model. For reasons to be complete,
Figure 6.5 shows how our application deals with protocol verification (not
yet implemented).
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CHAPTER 7

The Basics of Slicing Hierarchical Automata

Our greatest glory is not in never failing,
but in rising up every time we fail.

Ralph Waldo Emerson.

A
s formal verification becomes increasingly important in the industry as
a part of the design process, there is a constant need for efficient

verification techniques that are capable to deal with real-size applications.
Unfortunately, our approach (as presented in Part 2) suffers from the so-
called State (Space) Explosion problem that can arise when a system is
composed of several subsystems. In this case, a finite state model with a
number of states, which is exponential to the number of the component
subsystems, can be generated. Systems that are highly dependent on data
values share the same problem, producing a number of states exponential to
the number of data variables.

Moreover, in order to modify a program, we are mostly not interested in
its complete behavior but only in its behavior at a given point of interest.
This means that we do not observe each complete program state but only a
part of it. For instance, consider the case of debugging. When an error is
observed, the programmer tries to extract that part of the program which
is responsible for the erroneous behavior. This set of statements might be
much smaller than the original one and therefore, it might be much easier to
catch and to correct the error(s) when he only looks at this set.

The above observations motivate us to reduce the state space of UML
statecharts using the method of program slicing [127]. This chapter will
present the algorithm of [125] to reduce the state space in model checking
by slicing extended hierarchical automata with respect to the temporal
properties to be verified; it will serve as the basis for further research.
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7.1 A Brief History of Program Slicing

Almost every programmer has endured the unpleasant task of sifting through
hundreds of lines of code in order to find an error in just one. Tedium ad
nauseam: there must be a better way. Enter program slicing.

Program slicing1 is a pretty simple idea. Its fundamental concepts are
easily grasped by novices and it applies to many problem domains; who
doesn’t want to help in restricting a complicated problem to the relevant
focus of inquiry?

Program slicing is a decomposition technique which extracts program
elements related to a particular computation. A program slice consists of
those parts of a program that may (directly or indirectly) affect the values
computed at some program point of interest, referred to as a slicing criterion.

Program slices were first proposed by Weiser [126, 127, 128]. He
introduced the concept of executable backward static slices. Executable
because the slice is required to be an executable program. Backwards because
the slice consists of all program points that affect a given point in the
program. Informally, a backward slice provides an answer to the question
which program statements potentially affect the computation of variable v at
statement s? And finally, static because they are computed as the solution
to a static analysis problem i.e. without considering the program’s input. Of
course, each slicing algorithm must be sound as well, because the algorithm
must not slice away parts of the program that affect the given slicing criterion.

Example 7.1. The backward slice shown in Code Listing 7.1 indicates
exactly which statements influence the output of variable i.

Code Listing 7.1 A Backward Slice

void main() {
1: int i = 1;

2: int sum = 0;

3: while (i<11) {
4: sum = sum + i;

5: i = i + 1;

}
6: printf("sum = %d", sum);

7: printf("i = %d", i);

}

1For a complete history of program slicing, we refer to the survey in [112].
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Weiser originally introduced slices by computing consecutive sets of indirectly
relevant statements, according to data flow and control flow dependencies.
He used a control flow graph, as an intermediate program representation for
his slicing algorithm. An alternative approach to compute such backward
slices was suggested by Ottenstein et al. [97]. They noted that backward
slices could be efficiently computed using a program dependence graph, again
as an intermediate program representation, by traversing the dependence
edges backwards (from target to source).

Bergeretti & Carré were the first to define a notion for an executable
forward static slice in [13]. Informally, a forward slice answers the question
which statements are affected by the value of variable v at statement s?

Example 7.2. The forward slice shown in Code Listing 7.2 indicates exactly
which statements are influenced by the initialization of variable sum.

Code Listing 7.2 A Forward Slice

void main() {
1: int i = 1;

2: int sum = 0;

3: while (i<11) {
4: sum = sum + i;

5: i = i + 1;

}
6: printf("sum = %d", sum);

7: printf("i = %d", i);

}

Finally, the exact terminology dynamic program slicing was first introduced
by Korel and Larski [63]; a slice is computed for a particular fixed input.
The availability of run-time information makes dynamic slices smaller than
static slices, but limits there applicability to that particular input.

7.2 Some Background Material

This section gives some important definitions for program slices to be able
to capture the computation of slices for hierarchical automata. As there are
many forms of slices, the definitions are defined for a simple form; the static
backward slice. Note that the other forms can be thought of as augmentations
of this static form, and have forward counterparts.
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As mentioned already, a slice is constructed by deleting those parts of the
program that are irrelevant to the values stored in the chosen set of variables
at the chosen point, referred to as a slicing criterion [112].

Definition 7.1 (Slicing Criterion). A slicing criterion of a program Pr is
a pair < s, V > where s is a statement in Pr and V is subset of the variables
in Pr.

As the slice is simpler than the original program, e.g. the slice in Code
Listing 7.1, yet contains all the statements which could possibly affect the
final (and incorrect) value of the variable i, examining the slice will allow us
to find the error faster than examining the original program.

Definition 7.2 (Program Slice). The slice S of a program Pr with respect
to a slicing criterion < s, V > consists of only those statements of Pr needed
to capture the behavior of V at s [16].

Definition 7.3 (Executable Program Slice). The slice S of a program
Pr with respect to a slicing criterion < s, V > is any executable program with
the following properties [16]:

• S can be obtained from Pr by deleting zero or more statements from Pr.

• If Pr halts on a particular input I, then the values of the variables in V

each time statement n is executed in Pr is the same in Pr and S. If Pr
fails to terminate normally n may execute more times in S than in Pr,
but Pr and S compute the same values each time n is executed by Pr.

A common way to represent procedures of a program are control flow graphs
(CFG) [112].

Definition 7.4 (Control Flow Graph). A control flow graph for a program
Pr is a directed graph G = (N,E, s, f) in which each node n ∈ N is associated
with a statement from Pr and in which edge e ∈ E represents the flow of
control in Pr. Two special nodes are distinguished, s is the initial node, and
f is the final node, to represent the beginning and the end of Pr respectively.

Computing a slice involves identifying assignments that can affect the values
of the variables given in the slicing criterion. To do this, one computes
information similar to reaching definitions. This requires keeping track of
the variables referenced and defined at each node in the CFG [112].

Definition 7.5 (References and Definitions).

• Let REF (n) be the set of variables referenced at node n.
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• Let DEF (n) be the set of variables defined (assigned) at node n (always
a singleton set or an emptyset).

A program dependence graph (PDG) [112] is a transformation of a CFG,
where the control flow edges have been removed and two other kinds of
edges have been inserted: control dependence and data dependence edges.

Definition 7.6 (Data Dependence). A node j is called data dependent
on node i if

• there is path P from i to j in the CFG: i
∗
→ j

• there is a variable v, with v ∈ DEF (i) and v ∈ REF (j)

• for all nodes k 6= i of path P ⇒ v /∈ DEF (k)
(the path from i to j has no intervening definitions of v)

Control dependencies are usually defined in terms of postdominance. Node j
is called a postdominator of node i, if any path from i to f must go through
j. A node i is called a predominator of j, if any path from s must go through
i. In typical programs, statements in loop bodies are predominated by the
loop entry and postdominated by the loop exit.

Definition 7.7 (Control Dependence). A node j is called (direct) control
dependent on node i if

• there is a path P from i to j in the CFG: i
∗
→ j

• j is a postdominator for every node in P , except i

The PDG consists of the nodes of the CFG and control dependence edges

i
cd
→ j for nodes j which are control dependent on nodes i, and data

dependence edges i
dd
→ j for nodes j which are data dependent on nodes

i. The set of all dependencies induce a partial ordering on the statements in
the program that must be followed in order to preserve the semantics of the
original program.

Example 7.3. As an example, let us return to Code Listing 7.1. Node 4 is
data dependent on node 1 because: (i) node 1 defines variable i, (ii) node 4
references variable i, (iii) and there exists a path 1 → 2 → 3 → 4 without
intervening definitions of i. Node 5 is control dependent on node 3 because
there exists a path 3 → 4 → 5 such that: (i) node 4 is postdominated by node
5, (ii) node 3 is not postdominated by node 5.
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Using a program dependence graph, program slicing can be seen as a graph
reachability problem. The slice of a dependence graph with respect to node n
of the graph, is the graph that contains all nodes that (directly or indirectly)
reach n via a data dependence or control dependence2.

Algorithm 7.1 A Backwards Slicing Algorithm

Slice(node: Node) {
IF node is not marked THEN

mark node as visited
FOR all nodes n on which node depends DO

Slice(n)
}

Control and data dependencies were proposed and studied for sequential
programs. However, they are inadequate for representing the complete
behavior of a concurrent program. In concurrent programs that share
variables another type of dependence arises: interference. An interference
dependence is a generalization of the notion of data dependence resulting
from the definition and the use of variables that are common to parallel
executing statements [65]. Thus, interference dependencies can only arise
when data is shared between two threads.

Definition 7.8 (Interference Dependence). Node i is interference-
dependent on node j if

• i and j are in different threads, and

• there is a variable v, with v ∈ DEF (j) and v ∈ REF (i)

7.3 Curbing the State Explosion Problem

It should already be clarified that temporal logic model checking is a state
space method suitable for the automatic analysis and the verification of the
behavior of several kinds of systems. In its basic form, each model checker
creates a structure that consists of all states that a system can reach, and all
transitions that the system can make between those states. This structure
is called the state space, and of course, the state space can be automatically
created.

2In [112] a lot of different ways to compute slices are discussed.
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However, a serious problem for the model checking approach is the state
explosion problem: in general, the number of states in the global state
graph may grow exponentially with the number of components. Due to the
state explosion problem, one possible outcome of running a model checking
algorithm is that it will fail to terminate due to the size of the model. Not
surprisingly, statecharts suffer from the state explosion problem as well; e.g.
any parallel activity causes exponential growth of the state space.

In order to deal with the state explosion problem, the size of the state
space must be reduced to something that could be handled. More generally,
given a logic L and a structure M, we would like to find a smaller structure
M′ that satisfies exactly the same set of formulas of the logic L as M.
In order to accomplish this goal, we need a notion of equivalence between
structures that can be efficiently computed and that guarantees that they
satisfy the same set of formulas in L.

Since UML statecharts are constructed in a hierarchical fashion, the
state explosion may be avoided by simplifying the hierarchical states before
computing the global state graph. One way to realize this is based on program
slicing, as proposed in [125]. The slicing algorithm of [125] is based on
equivalent EHA representations. The algorithm aims at a reduction of the
state space before critical temporal properties on the behavior are formally
verified by model checking algorithms. However, it is a static algorithm since
no assumptions regarding the statechart’s input (6= initial states) are made.
Since a model checker is capable of verifying properties for all possible inputs,
dynamically slicing statecharts is avoided.

Hereafter, the algorithm of [125] is referred to as the WDQ-algorithm.

7.4 The Slicing Algorithm

The slicing procedure, described in [125], uses extended hierarchical au-
tomata as underlying representations. These representations are high-level
specifications and slicing them is in some aspects quite different from slicing
programs.

In statechart models, variables are not the only entity we want to use as
a basis for calculating a slice. Meaningful statecharts without variables are
quite common during the early stage of system specification. In this case,
states and transitions are the focus of our attention. As a direct consequence,
traditional data, control and interference dependencies proposed and studied
for sequential and concurrent programs, cannot be used anymore.

Instead, [125] extends traditional dependencies in terms of states and
transitions, and these dependencies are capable to handle hierarchy, con-
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currency and communication; concepts which are more difficult to analyze
comparing with statements. To make the slicing algorithm efficient, [125]
specifies the redefined dependencies by only considering the (n − 1)th, nth,
and (n + 1)th layer of the EHA. The WDQ-algorithm respects, as it has to,
the run-to-completion step semantics of statecharts.

The basic idea of the WDQ-algorithm, is to search states and transitions
through the dependence relations according to a given slicing criterion.
Additionally, if a state or transition of some sequential automaton belongs
to the slice, then all states and transitions of this automaton are added to
the slice. If a state (transition) belongs to the final slice, but does not take
part in some dependence relation, then its entry/exit actions (effect) will
be removed respectively. The found states and transitions, possibly affects
all states and transitions in the criterion. The units of the minimized EHA
are, of course, still sequential automata. The sliced EHA, obtained by the
procedure, is sound and executable.

7.5 Dependences in an EHA

Dependences in ordinary program slicing are defined based upon the sets
(REF and DEF ) the nodes are associated with. Something similar will
happen here.

Let H = (F,E, ρ, A0, V ) be an EHA. Let A = (σA, s
0
A, δA, λA) ∈ F be a

sequential automaton with δA ⊆ σA × λA × σA as defined in Definition 2.2.
Now we consider the notation (si, ti, si+1) for a transition from si to si+1,
where ti ∈ δA with SRC(ti) = si ∈ σA and TGT (ti) = si+1 ∈ σA.

Sets Associated to States Each state s (s ∈ S(A0)) comes equipped
with the following sets:

• The set DV is the set of update variables of s; it includes all the variables
which are assigned values in the actions below s (i.e. ρ(s), the EHA below
s), and can be defined and referenced outside the sub-EHA of s; it is the
set of the output variables of state s, denoted as s.DV .

• The set UV consists of all the variables which are referenced in the actions
below s; it is the set of the input variables for state s, denoted as s.UV .

• The set GE includes all the events which are generated in the actions
below s, and can be used as the trigger events of the transitions outside
s. Notation: s.GE.
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• The set TE includes all the events which are generated outside s, and
will be used as the trigger events of the transitions below s. Notation:
s.TE.

There is a restriction placed on the use of events: the triggering event of a
transition can only be generated in an automaton that is concurrent with
this transition. The restriction is consistent with the fact that events are
mainly used for synchronization.

Sets Associated to Transitions Each transition t (t ∈ T (A0)) has the
following sets:

• t.DV is the set of variables that are defined in AC(t).

• t.UV is the set of variables that are referenced in AC(t).

• t.CV denotes the variables referenced in G(t).

• t.GE collects the events generated in AC(t).

• t.TE is a singleton set containing EV (t).

Definition 7.9. A path P (s1, sk) from s1 to sk in A is a sequence of
transitions

(s1, t1, s2), . . . , (si, ti, si+1), . . . , (sk, tk, sk+1)

7.5.1 Sequential Data Dependence

Sequential dependence occurs when activities are performed in series; where
the output of one activity is the input of a next activity. A state or transition
is (directly) sequential data dependent on a “previous” state or transition iff
some output variables of the latter are used in the input of the other. We
use the following formal definitions:

Definition 7.10 (Sequential Data Dependence, →sdd). If A ∈ F and
u, v ∈ σA, r, t ∈ δA,

• u →sdd v iff there is a path P (v, u): (s1 = v, t1, s2), (s2, t2, s3),. . . ,
(sk−1, tk−1, sk = u) such that (v.DV ∩ u.UV ) \ ((

⋃

1<i<k

si.DV ) ∪ (
⋃

1≤i<k

ti.DV )) 6= ∅.

• u →sdd t iff there is a path P (SRC(t), u): (s1, t1 = t, s2), (s2, t2, s3),. . . ,
(sk−1, tk−1, sk = u) such that (t.DV ∩ u.UV ) \ ((

⋃

1<i<k

si.DV ) ∪ (
⋃

1<i<k

ti.DV )) 6= ∅.
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• r →sdd v iff there is a path P (v, TGT (r)): (s1 = v, t1, s2), (s2, t2, s3),
. . . , (sk−1, tk−1 = r, sk) such that (v.DV ∩ r.UV ) \ ((

⋃

1<i<k

si.DV ) ∪

(
⋃

1≤i<k−1

ti.DV )) 6= ∅.

• r →sdd t iff there is a path P (SRC(t), TGT (r)): (s1, t1 = t, s2), (s2, t2, s3),
. . . , (sk−1, tk−1 = r, sk) such that (t.DV ∩ r.UV ) \ ((

⋃

1<i<k

si.DV ) ∪

(
⋃

1<i<k−1

ti.DV )) 6= ∅.

Obviously, sequential data dependencies between states and transitions of a
single sequential automaton exist iff they share some data and iff there is a
path between them without intervening definitions of the shared data.

Example 7.4. Consider Figure 7.1, the transition from s2 to s1 is sequential
data dependent on s3. The latter one is sequential data dependent on s1 in
turn.

s1


s2


s3


/ output(d);


Root


entry/a = 0;


s4


entry/b = a + 1;


s5


Sub1


entry/d = 4*b;


s8


s9


e


entry/!e;


s6


entry/a = d;


s7


[d > 0]


Sub2
 Sub3


Figure 7.1: An Example EHA with Dependences

7.5.2 Parallel Data Dependence

As its name implies, a parallel data dependence can be seen as an interference
dependence in the sense that such a dependence will arise when data is shared
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among concurrent automata. A state or transition is (directly) parallel data
dependent on a “concurrent” state or transition iff some output variables of
the latter are used in the input of the other. We use the following formal
definitions:

Definition 7.11 (Parallel Data Dependence, →pdd). If A,B ∈ F and
u ∈ σA, r ∈ δA, v ∈ σB , t ∈ δB, and there are C ∈ F and s ∈ σC such
that A,B ∈ ρ(s), then u →pdd v (or u →pdd t, or r →pdd v, or r →pdd t)
iff u.UV ∩ v.DV 6= ∅ (or u.UV ∩ t.DV 6= ∅, or r.UV ∩ v.DV 6= ∅, or
r.UV ∩ t.DV 6= ∅ respectively).

Example 7.5. In Figure 7.1, it is clear that s7 is parallel data dependent on
s8.

7.5.3 Synchronization Dependence

This dependence is a special interference dependence; it occurs when events
are shared between concurrent automata (one automaton generates the event,
the other one consumes the event as the trigger of some transition). A state
or transition is (directly) synchronization dependent on a “concurrent” state
or transition iff some events generated by the latter are used as trigger events
of the other. We use the following formal definitions:

Definition 7.12 (Synchronization Dependence, →sd). If A,B ∈ F and
u ∈ σA, r ∈ δA, v ∈ σB , t ∈ δB, and there are C ∈ F and s ∈ σC such that
A,B ∈ ρ(s), then u →sd v (or u →sd t, or r →sd v, or r →sd t) iff u.TE ∩
v.GE 6= ∅ (or u.TE ∩ t.GE 6= ∅, or r.TE ∩ v.GE 6= ∅, or r.TE ∩ t.GE 6=
∅ respectively).

Example 7.6. In Figure 7.1, the transition from s8 to s9 is synchronization
dependent on s6.

7.5.4 Transition Control Dependence

Control dependence captures the notion that a state or a transition may
affect traversal of an arbitrary transition. It refers to the flow of control
inside hierarchical automata. A state or transition is (directly) transition
control dependent on a “previous/concurrent” state or transition iff some
output variables of the latter are used in the guard of the other. We use the
following formal definitions:

Definition 7.13 (Transition Control Dependence, →tcd). Let A ∈ F
and r ∈ δA,
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• For v ∈ σA, r →tcd v iff there is a path P (v, TGT (r)): (s1 =
v, t1, s2), (s2, t2, s3),. . . , (sk−1, tk−1 = r, sk) such that (v.DV ∩ r.CV )
\ ((

⋃

1<i<k

si.DV ) ∪ (
⋃

1≤i<k−1

ti.DV )) 6= ∅.

• For t ∈ δA, r →tcd t iff there is a path P (SRC(t), TGT (r)): (s1, t1 =
t, s2), (s2, t2, s3),. . . , (sk−1, tk−1 = r, sk) such that (t.DV ∩ r.CV ) \
((

⋃

1<i<k

si.DV ) ∪ (
⋃

1<i<k−1

ti.DV )) 6= ∅.

• If B,C ∈ F and s ∈ σC satisfy A,B ∈ ρ(s), v ∈ σB, t ∈ δB, then r →tcd v
(or r →tcd t) iff r.CV ∩ v.DV 6= ∅ (or r.CV ∩ t.DV 6= ∅ respectively).

Example 7.7. In Figure 7.1, the transition from s6 to s7 is transition control
dependent on s8.

7.5.5 Refinement Data and Control Dependence

The reason to have these two (direct) dependencies will be clarified in
Section 7.6.3. It is mainly used for descending in a hierarchical automaton
or to go upwards in a hierarchical automaton.

Definition 7.14 (Refinement Data Dependence, →rdd). If A ∈ F and
u ∈ σA, B ∈ ρ(u), v ∈ σB, t ∈ δB,

• u→rdd v iff (v.DV ∩ u.DV ) 6= ∅, or (u.GE ∩ v.GE) 6= ∅.

• u→rdd t iff (t.DV ∩ u.DV ) 6= ∅, or (u.GE ∩ t.GE) 6= ∅.

Definition 7.15 (Refinement Control Dependence, →rcd). If A,B ∈
F , u ∈ σA, v ∈ σB, and v is the initial state of B, then v →rcd u iff B ∈ ρ(u).

Example 7.8. In Figure 7.1, s3 →rdd s8, and s4 →rcd s1.

7.5.6 Dependence Relation

The dependence relation (→d) defined for hierarchical automata, is the union
of the dependence relations →sdd, →pdd, →sd, →tcd, →rdd, and →rcd.

7.6 Computation of an EHA Slice

In [51], Hatcliff et al. use slicing to extract a model from the source code
that can be used in verifying a given temporal property. So the property
they want to verify determines the resulting “slice”. They say:
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If slicing removes variables from the system that do not influence the
behavior to be checked then the model checker will run faster regardless
of the particular implementation techniques it employs.

To make our presentation of the WDQ-algorithm more concrete, let us
consider model checking of statechart specifications written in linear temporal
logic. When specifying properties of state machines, LTL formulae are used
to reason about execution in terms of states, as well as values of particular
class attributes. Thus, compared with ordinary program slicing, the temporal
properties contain more information that need to be considered to construct
a reduced model. As a consequence, [125] has adapted the slicing criterion
to concentrate on multiple states and transitions.

Definition 7.16 (Slicing Criterion). A slicing criterion of H is a tuple
< {s1, . . . , sk}, {t1, . . . , tn} > where si ∈ S(A0), ti ∈ T (A0), and si 6= sj

(1 ≤ i, j ≤ k, i 6= j), ti 6= tj (1 ≤ i, j ≤ n, i 6= j).

The WDQ-algorithm, presented in Algorithms 7.2-7.6, computes the slice of
an EHA with respect to the slicing criterion according to the dependence
relations in the EHA. Chapter 10 applies in great detail the slicing algorithm
to the example of the coffee vending machine (see Section 3.3).

7.6.1 Some Useful Sets

The algorithm computes the reduced model using several sets:

• RS and RT keep track of the states and the transitions respectively to
be reserved in the final slice.

• ES and ET contain the states and the transitions respectively which are
not included in NS and NT but belong to the automata which include
the newly found elements in NS and NT .

• RefineR is a boolean function used to determine whether the refinement
information (e.g. actions) of the reserved elements should be kept in the
final slice.

• IS and IT contain the states and the transitions respectively used to
find the elements on which they depend.

• NS and NT collect the states and the transitions respectively found in
each iteration; on which IS and IT depend.



 7. The Basics of Slicing Hierarchical Automata

7.6.2 The First Step

At step 1 (Algorithm 7.2), only the states and the transitions of the slicing
criterion are included in RS and RT respectively. Assigning True to their
RefineR means that their refined elements should be reserved.

Algorithm 7.2 Step 1 of the WDQ-algorithm

1. Given the criterion < {s1, . . . , sk}, {t1, . . . , tn} >. Let

RS = {s1, . . . , sk} RefineR(s) = True (∀s ∈ RS)
RT = {t1, . . . , tn} RefineR(t) = True (∀t ∈ RT )

ES = {s | ∃A ∈ F, ((∃u ∈ RS, u ∈ σA) ∨ (∃t ∈ NT, t ∈ δA))
∧(s ∈ σA ∧ s /∈ RS)}

ET = {r | ∃A ∈ F, ((∃u ∈ RS, u ∈ σA) ∨ (∃t ∈ NT, t ∈ δA))
∧(r ∈ δA ∧ r /∈ RT )}

RefineR(s) = False (s ∈ ES)
RefineR(t) = False (t ∈ ET )

RS = RS ∪ ES; RT = RT ∪ ET ; IS = RS; IT = RT .

To guarantee that the resulting slice is sound, we have to add to ES and
ET respectively those elements which are in the same sequential automata
with the elements in RS and RT . That way, the execution trace inside
sequential automata remains the same; meaning that the automata of the
sliced EHA behave the same as the original ones, with respect to the variables
of interest. Of course, at this point, we do not yet know whether the elements
of the slicing criterion depend on these elements; and therefore, the value of
their RefineR is falsified.

Example 7.9. Consider Figure 7.1 again. If s7 belongs to RS, then it is
necessary to add the other elements of the automaton SUB2 to ES and ET ,
because only then, the reachability of s7 is guaranteed in the sliced version of
the example EHA.

7.6.3 The Second Step

The states and the transitions on which the existing states and transitions in
IS and IT depend, are computed in the second step (Algorithm 7.3). As an
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example, consider the calculation of NS. The meaning of u→d s is obvious;
alle states that influences u in some way are added to the final slice.

Algorithm 7.3 Step 2 of the WDQ-algorithm

2. Compute the states and transitions which the existing states and
transitions in IS and IT are dependent on by the following equations:
NS = {s | u→d s, u ∈ IS ∧ RefineR(u)} ∪
NS = {s | u→rcd s, u ∈ IS ∧ ¬RefineR(u)} ∪
NS = {s | t→d s, t ∈ IT ∧ RefineR(t)} ∪
NS = {s | t→tcd s ∨ t→sd s, t ∈ IT ∧ ¬RefineR(t)}

NT = {r | u→d r, u ∈ IS ∧ RefineR(u)} ∪
NT = {r | t→d r, t ∈ IT ∧ RefineR(t)} ∪
NS = {r | t→tcd r ∨ t→sd r, t ∈ IT ∧ ¬RefineR(t)}

But what does u →rcd s precisely means? Well, u is the initial state of an
automaton ∈ ρ(s) (Definition 7.15). Such a dependence relation will add
to the slice those states that are higher in the hierarchy of the EHA. These
states are important to guarantee that the reduced hierarchical automaton
can still reach state u along some execution path; thus again a soundness
aspect.

Example 7.10. If s6 is added to the slice, when slicing the EHA of
Figure 7.1, then the second step will also add state s3 to the slice, due to the
refinement control dependence relation that exists between both states. This
way, the model checker can reach state s6 along some path during verification.

Another soundness satisfaction can be found in t →tcd s ∨ t →sd s. Each
transition has three elements: a triggering event, a guard, and a list of
actions. Obviously, actions of transitions possibly may be removed in the final
slice, but the final slice must retain both the triggering event and the guard,
because they define the flow of control inside sequential automata. Therefore,
it is important to add those states that either generate the triggering event
of such transitions, or that define the variables of the guard.

7.6.4 The Third Step

Step 3 (Algorithm 7.4) searches the states and transitions which are not
included in (RS ∪ NS) and (RT ∪ NT ), but are in the same sequential
automata with new elements of NS and NT . As before, the execution trace
inside the reduced hierarchical automaton remains the same.
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Algorithm 7.4 Step 3 of the WDQ-algorithm

3. Reconstruct ES and ET :

ES = {s | ∃A ∈ F, ((∃u ∈ NS, u ∈ σA) ∨ (∃t ∈ NT, t ∈ δA))
∧(s ∈ σA ∧ s /∈ (RS ∪ NS))}

ET = {r | ∃A ∈ F, ((∃u ∈ NS, u ∈ σA) ∨ (∃t ∈ NT, t ∈ δA))
∧(r ∈ δA ∧ r /∈ (RT ∪ NT )}

7.6.5 The Fourth Step

At step 4 (Algorithm 7.5), the sets IS and IT are reconstructed. They will
include the found elements that do not belong to RS and RT .

Algorithm 7.5 Step 4 of the WDQ-algorithm

4. Reconstruct IS and IT :

IS = (NS \ RS) ∪
IS = {s | s ∈ NS ∧ s ∈ RS ∧ ¬RefineR(s)} ∪
IS = {s | ∃A ∈ F, s ∈ ES ∧ s = s0

A}

IT = (NT \ RT ) ∪
IT = {t | t ∈ NT ∧ t ∈ RT ∧ ¬RefineR(t)} ∪ ET

To construct the set IS, each state that belongs to NS takes part in a
particular dependence relation; some elements of IS are dependent on these
states; the states of NS influence other elements that are already included
in the slice. Thus, the states that belong to NS and to RS have to be
included in IS if their RefineR is falsified. That way, the algorithm can
search elements on which these states depend in turn. Additionally, all the
initial states belonging to the extended set ES have to be included in IS as
well; they are treated separately (with the refinement controle dependence) in
the second step of the algorithm, as discussed previously. All the other states
of ES are not included in IS because they are not part of any dependence
relation.

The set IT is constructed in almost the same manner but contrarily to
IS, it keeps track of all the elements of ET . This is because the second step
of the algorithm finds dependencies for the triggering event and the guard of
the transitions, as also discussed previously.
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7.6.6 The Fifth, Sixth and Last Step

At step 5 (Algorithm 7.6, RefineR is refreshed, and both sets RS and RT
are updated at step 6. If both IS and IT are empty, the algorithm will
terminate, otherwise return to step 2.

Algorithm 7.6 Step 5, 6 and 7 of the WDQ-algorithm

5. ∀s ∈ (NS ∪ ES), ∀t ∈ (NT ∪ ET )

RefineR(s) = True if s ∈ NS RefineR(t) = True if t ∈ NT
RefineR(s) = False if s /∈ NS RefineR(t) = False if t /∈ NT

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES;RT = RT ∪NT ∪ ET

7. If IS = ∅ and IT = ∅, then terminates; otherwise return to step 2.

After the algorithm terminates, all the sequential automata whose states and
transitions are included in RS and RT compose the slice of H according to
the slicing criterion. For any state s of RS, if RefineR(s) is false, then we
do not consider its sub automata (ρ(s)) and we are allowed to remove the
actions (entry, exit) of s. For a transition t of RT , if RefineR(t) is false,
then we remove the action(s) of t.

It must already be clear that if a state or transition of some sequential
automaton belongs to the slice, then all the states and transitions of this
automaton belong to the slice. The sequential automata which have no state
or transition in the slice will be removed.

7.7 Equivalence between Models

The properties to be verified are intended to be specified in LTL. Suppose
now that the propositions in LTL formulae are of three forms: x rop c, in
which x is a variable, rop is a relation operator (<,>, 6=, . . .), and c is a
constant; @si is true when the current configuration includes the state si; !e
is true when the event e has been generated and belongs to the event queue
of the current status.

As must be clear by now, slicing is used to reduce the complexity of
hierarchical automata. Therefore, we are allowed to say that slicing is
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a specific abstraction mechanism. One of the key aspects of the slicing
methodology is to pick out a set of relevant states and transitions in
correlation with an LTL specification. Thus, given an EHA H and a
specification ϕ, it is desired to extract a slicing criterion from ϕ. Slicing
H with respect to the criterion should yield a smaller residual EHA Hs that
preserves and reflects the satisfaction of ϕ (stuttering equivalent) and has as
little irrelevant information as possible.

Stuttering [70] refers to a sequence of identically labeled states along a
path in a Kripke structure (Definition 7.17). Leslie Lamport has argued
(see [70]) that the specification of a concurrent system should be invariant
under stuttering, i.e. the specification should not distinguish between a
sequence of states and any sequence that results from it by replacing an
occurrence of a state by several copies of that state.

Definition 7.17 (Stuttering). Stuttering [33] occurs in a path p of
states when a state occurs two or more times consecutively; for exam-
ple, if p = s0, s1, s2, . . . then there is i ≥ 0 such that si = si+1 so
p = s0, s1, . . . , si, si, si+2, . . .

We call a finite sequence of identically labeled states a block. Intuitively, two
paths are stuttering equivalent (Definition 7.18) when they can be partitioned
into infinitely many blocks, such that the states in the k-th block of one are
labeled the same as the states in the k-th block of the other one. Note that
the corresponding blocks may have different lengths.

Definition 7.18 (Stuttering Equivalence). Two infinite paths p =
s0, s1, . . . and p′ = r0, r1 . . . are stuttering equivalent [33], written as p ∼st p

′

if there are two infinite sequences of positive integers 0 = i0 < i1 < i2 < . . .
and 0 = j0 < j1 < j2 < . . . such that for every k ≥ 0

=λ(sik) = λ(sik+1) = . . . = λ(sik+1−1)

= λ(rjk
) = λ(rjk+1) = . . . = λ(rjk+1−1)

More meaningful to us is to define the concept of stuttering equivalence
with respect to a property ϕ. Intuitively, two executions are ϕ-stuttering
equivalent (Definition 7.19) if they can be defined as a concatenation of blocks
such that the atomic propositions of the i-th block of both executions have the
same intersection with ϕ, for each i > 0. Figure 7.2 illustrates two stuttering
equivalent paths with respect to a property in which only propositions p and
q occur.
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Definition 7.19 (ϕ-Stuttering Equivalence). Two infinite paths p =
s0, s1, . . . and p′ = r0, r1 . . . are stuttering equivalent with respect to a property
ϕ [33], written as p ∼ϕ p′ if there are two infinite sequences of positive
integers 0 = i0 < i1 < i2 < . . . and 0 = j0 < j1 < j2 < . . . such that for every
k ≥ 0

=λ(sik) ∩ ϕ = λ(sik+1) ∩ ϕ = . . . = λ(sik+1−1) ∩ ϕ

= λ(rjk
) ∩ ϕ = λ(rjk+1) ∩ ϕ = . . . = λ(rjk+1−1) ∩ ϕ

...p
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Figure 7.2: Two stuttering equivalent paths

The definition of ϕ-stuttering equivalence can be extended to structures. This
roughly means that on the property ϕ both structures have an equivalent
behavior.

Definition 7.20 (ϕ-Stuttering Equivalence for Structures). The struc-
tures M and M ′ are ϕ-stuttering equivalent iff

• their initial states agree on ϕ: λ(s0) ∩ ϕ = λ(s′0) ∩ ϕ

• for each path p of M starting from s0, there exists a path p′ of M ′ starting
from s′0 such that p ∼ϕ p

′

• vice versa, for each path p′ of M ′ starting from s′0, there exists a path p
of M starting from s0 such that p′ ∼ϕ p

We say that an LTL formulaf is invariant under stuttering when its
interpretation remains the same under state sequences that differ only by
repeated states. In other words, given any state sequence, we can repeat any
of its states without changing the interpretation of f . More formally,

Definition 7.21 (Stuttering Invariance). An LTL formula, f, is stutte-
ring invariant [26] if and only if for each pair of paths p and p′, such that
p ∼st p

′,
p |= f if and only if p′ |= f.

It is easy to see that any LTL formula f without the next (X) operator is
invariant under stuttering. For example, Gf is invariant under stuttering
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because no matter how much we repeat states, we cannot change the value
of f . The G operator says that in every state some proposition must be true,
a repeated state will not affect the truth value of a formula quantified with
always. The same can be said of the temporal operators F, and U. Clearly,
formulas using only these operators are stutter invariant because they are not
affected by repeating states. However, the X operator says that in whatever
state occurs after a single transition, some proposition must hold. If a state
is repeated, the next operator could be evaluated on the repeated state and
not on the actual next state in the system. Thus, not all formulas using the
next operator are safe to use because this could cause incorrect verification
results if a formula is used that can be affected by stuttering [33]. This is
illustrated in Example 7.11.

Example 7.11. To understand how stuttering can change the interpre-
tation of Xf , let us consider two paths p = (s0, s1, s2, s3, . . .) and p =
(s0, s0, s1, s2, s3, s3, . . .) that are stuttering equivalent. Only path p′ has
stuttering states. Suppose now that s0(f) is false and that s1(f) is true.
It is easy to understand that p |= Xf , while p′ 6|= Xf .

Lemma 7.1 states that the satisfaction of an LTLX formula3 ϕ for two ϕ-
stuttering equivalent structures is the same [26]. In other words, if M and M ′

are two stuttering equivalent transitions systems, then M satisfies a given
LTLX specification if and only if M ′ also does. Thus, if the property is
written in LTLX then it does not matter whether we check a modelM against
this property or an equivalent model M ′. Moreover, Peled and Wilke have
shown that stutter-invariant properties are expressible without the next-time
operator [101].

Lemma 7.1. Given a LTLX formula ϕ, if two structures M and M ′ are
ϕ-stuttering equivalent, i.e. M ∼ϕ M

′, then M, s0 |= ϕ iff M ′, s0 |= ϕ.

We can extract the slicing criterion (taken from [125]) for a formula ϕ
and guarantee that the transition system of the sliced EHA is ϕ-stuttering
equivalent to the original one; i.e. transitions that are not ϕ-stuttering are
preserved in the final slice. For variable propositions x rop c, only definitions
of the variable x may cause the variable to change value. This suggests that
for each proposition x rop c in a given property ϕ, each state or transition that
assigns value to x should be included in the residual slice. For a proposition
@si, it is obvious that si should be included in the slice. For the proposition
!e, the states and the transitions whose actions generate event e should be
included in the slicing criterion.

3LTLX is the subset of LTL formulae without the next time operator appearance.



7.7. Equivalence between Models 

Definition 7.22 (ϕ-Criterion). Given a LTLX formula ϕ over an EHA H,
V and E are the sets of all variables and events occurring in ϕ respectively.
Define ϕ-criterion < {s1, . . . , sk}, {t1, . . . , tn} >, and si 6= sj (1 ≤ i, j ≤
k, i 6= j), ti 6= tj (1 ≤ i, j ≤ n, i 6= j), where

• {s1, . . . , sk} is the set of all states which assign values to variables in V
or generate the events in E plus the set of all states appearing in state
propositions of ϕ;

• {t1, . . . , tn} is composed of the transitions whose actions contain assign-
ments to variables in V or generations of events in E.

Let us finish with the following theorem (taken from [125]) that guarantees
that the transition system of the sliced EHA is ϕ-stuttering equivalent to the
transition system of the original EHA.

Theorem 7.1. Given an EHA H and an LTLX formula ϕ. Let Hs be the
result of slicing H with respect to the slicing criterion 7.22, and M and M ′

the labeled transition systems of H and Hs respectively. Then, M ∼ϕ M ′

holds.

What about CTL?

As we know from Chapter 5, the model for the temporal logic CTL is a
branching structure. Without the next-time operator, two structures can
have corresponding stuttering equivalent sequences but still be distinguished
as they have different branching points. Thus for CTLX , we require that the
slicing procedure generates a reduced state space that is stuttering bisimilar
to the full original state space. This way, two structures will satisfy the same
formulae expressible in CTLX .

A stuttering bisimulation (Definition 7.23) relates states from two Kripke
structures [22]. Initial states are related, and related states are labeled with
the same proposition symbols. If two states are related and from one state
a transition is possible, then it should be possible to simulate this transition
from the related state, after first doing zero or more stuttering transitions,
i.e., transitions that do not change the labeling.

Definition 7.23 (Stuttering Bisimulation). A stuttering bisimulation
between Kripke structures (σ, σ0, δ, λ) and (σ′, σ′

0, δ
′, λ′) is a relation R ⊆

σ × σ′ such that

• (σ0, σ
′
0) ∈ R

• If (r, s) ∈ R then λ(r) = λ′(s)
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• If (r, s) ∈ R and δ(r, r′) then there exists for some n ≥ 0, s0, s1, . . . sn

such that s0 = s and for all i < n, δ′(si, si+1), (r, si) ∈ R and (r′, sn) ∈ R

• If (r, s) ∈ R and δ′(s, s′) then there exists for some n ≥ 0, r0, r1, . . . rn

such that r0 = r and for all i < n, δ(ri, ri+1), (ri, s) ∈ R and (rn, s
′) ∈ R

7.8 Methodology Extended

As shown by Figure 7.3, our tool is extended with a slicing assistant. This
assistant takes as input both an EHA and a slicing criterion and computes a
sliced EHA. The WDQ-algorithm is the underlying algorithm of the slicing
assistant. Chapter 10 applies in great detail the slicing algorithm to the
example of the coffee vending machine (see Section 3.3).
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Figure 7.3: Tool Architecture
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7.9 Conclusions and Related Work

When inspecting extended hierarchical automata, the first difficulty is usually
to overcome the complex inner structures of non-trivial automata, and to
separate the important parts from the unimportant ones. Slicing can do a
lot of this automatically. This reduces both the amount of work we have to
do to inspect a certain property as well as reducing the chance of mistakes.

Slicing hierarchical automata, as a pre-processing step for finite-state
verification, seems to be a useful method to reduce the complexity of a
statechart in order to aid verification like model checking. This chapter has
covered one particular algorithm to compute a static, backwards slice based
on dependence analysis with respect to the property in model checking UML
Statecharts. We have explicitly avoided a dynamic slicing algorithm since
model checkers are able to exhaustively verify the model for all possible
inputs. Chapter 10 illustrates that the slicing algorithm indeed removes
some states and transitions that are irrelevant to the property to be verified.
Additionally, it proves that the algorithm sometimes is not able to slice away
anything.

Besides the algorithm described in this chapter, the literature contains a
few other techniques to slice automata. Specifically, slicing is used to reduce
the statecharts of the Requirements State Machine modeling language [52] in
order to improve the understanding of the design specification. It describes
the control dependence and data dependence informally, and it assumes that
there exist no variables in the model and the actions can only generate events.
This lack of variables in the model is also present in [43].





CHAPTER 8

Internal Broadcasting: As Rich As Needed

To repeat what others have said, requires education,
to challenge it, requires brains.

Mary Pettibone Poole.

W
hen a statechart has orthogonal regions, then this semantically means
that there are independent aspects of the object, each modeled by

a (sub) state machine while the object is in the concurrent state. These
independent aspects are allowed to communicate, but they do so in well-
defined ways [37, 38]. One way that regions communicate is that one
orthogonal region may create an event that is consumed by other regions.
This is called internal broadcasting or synchronization.

Although some slicing algorithms have been proposed for statecharts,
no slicing algorithm has been proposed which can be used to handle the
problem of slicing statecharts with orthogonal regions correctly. Efficiently
calculating precise slices in the presence of concurrency and communication is
challenging, because it is difficult to statically reason about the dependencies
that arise when orthogonal regions perform communication.

The goal of this chapter is to show how the algorithm presented in
Chapter 7 can be improved to yield an algorithm that is efficient yet
effective for reducing the number of interference dependencies used in slicing
statecharts with concurrent states. The key idea of improving the precision
of interference dependencies is to define a happens-before relation [69] in
terms of states and transitions. This will be achieved by exploiting the
internal broadcasting mechanism while respecting the statechart’s execution
semantics. Moreover, the size of statecharts models is reduced, which even
more improves the efficiency of model checking.

177
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8.1 Preliminary Concepts

This section provides necessary background knowledge used to optimize the
WDQ-algorithm; to improve the precision of the interference dependencies.

8.1.1 The Broadcasting Mechanism

In UML each class has an optional statechart which describes the dy-
namic behavior of all instances of the class [96]. As a consequence of
integrating statecharts into the object-oriented paradigm, UML statecharts
have many extensions caused by the need of modeling communication
between objects. These are, for example, several different types of events
modeling (a)synchronous message processing, timing, user interaction and
other properties of object communication.

Note that not all classes have a state model. Typically, only objects with
detailed state-based behavior will require the creation of a state diagram. At
any moment in time, a state machine is in one state. If this appears as a
limitation for a particular object, then we can define this object as consisting
of various parts, each of them defined using a separate state machine. At
this point, the state diagram uses at least two orthogonal regions to represent
related but independent states that may be active concurrently with other
states.

The independent states are allowed to communicate in only a few well-
defined ways [37, 38]. For example, when an object receives an event from
the environment, it is received by all of its active orthogonal components.
That means that all those active regions may (or may not) act upon
it. This is called broadcasting or multicasting of events. As another
example, communication between orthogonal regions can also be achieved
using internal broadcasting or synchronization, i.e. events generated in one
orthogonal region are broadcasted to the other orthogonal regions, thus
providing a communication mechanism between the regions.

The order that the orthogonal regions handle a broadcast event is non-
deterministic.

Example 8.1. Figure 8.1 shows an example of both broadcast communication
types. If the object receives an event g, it is logically sent to all active
orthogonal regions. Of course, the event need not be acted on in all regions.
For example, if all regions are in their initial states when the object receives
the event g, what happens? Obviously, region A discards the event, region
B moves to substate B1, and region C transitions to substate C1. When
transition bt2 is taken in region B, it sends the event e. This event is sent
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to all active regions of the object. In this case, it may cause only a transition
in region A; the other regions discard the event.
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Figure 8.1: An Example of Broadcasting

8.1.2 Lamport’s Happens-Before Relation

The happens-before relation defined by Lamport in [69] is the relation of
causal ordering. With such a relation we are capable to grasp the concept of
one event happening before another in a distributed system. The relation is
defined as follows:

Definition 8.1 (happens-before (→hb)). The relation →hb on the set
of events of a system is the smallest relation satisfying the following two
conditions:
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1. If a and b are events in the same process, and a comes for b, then
a→hb b. (irreflexive)

2. If a is the sending of a message by one process, and b is the receipt of
the same message by another process, then a→hb b. (antisymmetric)

The first condition is simply the sequential order (
S
→hb) of events [64], which

also refers to the sequential flow of control inside the same process. The
second condition describes the relation between corresponding events on

different processes; also called the concurrent order (
C
→hb) of events [64],

which is established by communication and synchronization between parallel
processes.

Example 8.2. Figure 8.1 illustrates that the generation of the event e in
the action list of transition bt2 happens before the same event is consumed
to trigger transition at0. Clearly, the generation of an event is equivalent
to the sending of a message, while the consumption of an event is the same
as the reception of a message. This means that the internal broadcasting
mechanism (Section 8.1.1) implies a happens-before relation between states
and transitions of different orthogonal regions (see further in Section 8.3).
Here, bt2 →hb at0.

Another requirement of the happens-before relation is transitivity:

if a→hb b and b→hb c then a→hb c

Consequently, the happens-before relation may also be defined as the

transitive, irreflexive closure of the union of the two relations
S
→hb and

C
→hb

as follows [64]:

→hb= (
S
→hb ∪

C
→hb)

+

8.1.3 Digraph Definitions

When a graph is called a directed graph [130], it is usually abbreviated to
digraph. A digraph is an ordered pair G = (σ, δ) with σ a set of “nodes” or
“vertices”, and δ a set of ordered pairs of vertices (a, b), with a, b ∈ σ, called
“directed edges”, “arcs” or “arrows”. In some sense, UML statecharts are
directed graphs.

Strongly Connected We say that vertex x is reachable from y if there
is a directed path from y to x. Two vertices are strongly connected [130] if
each is reachable from the other, and a digraph is called strongly connected
if every vertex is strongly connected to every other vertex.
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Strongly Connected Component A strongly connected component [130]
is a maximal subset of vertices of a digraph and edges between them that
forms a strongly connected graph. It is a maximal subgraph in which every
vertex is reachable from every other vertex.

8.2 The WDQ-algorithm’s Inefficiency

It must already be clear that slicing is becoming increasingly popular as useful
preprocessing step in the construction of finite state models for automated
verification like model checking. Slicing not only reduces the state space to
improve the efficiency of model checking, but at the same time, slicing also
improves the understanding of the design specification. Naturally, the aim
of all slicing algorithms is to compute slices that are as minimal as possible,
and that are as precise as possible. What do we exactly mean with precise
slices?

8.2.1 Imprecise Slices

To grasp the reason for imprecise slices (and thus also for precise slices),
let us first move to traditional program slicing of concurrent programs.
Code Listing 8.1 shows two threads P and Q that execute in parallel (taken
from [66]). This threaded program has two interference dependencies; one
due to a definition and a usage of variable d (b=d→d=c), the other one due to
the access to variable c (d=c→read c). If, during slicing, both dependencies
are added to the slice, then the slice is made imprecise. The reason for the
imprecision is that there is no possible execution where the read c statement
has an influence on the assignment b=d, i.e. the latter statement is always
executed before the read c statement. Summarized, when calculating a slice,
it is important to consider the execution chronology to avoid that unrealistic
dependencies (thus irrelevant information) are added to the final slice.

Why is it that the WDQ-algorithm (Chapter 7), which downsizes the state
space of extended hierarchical automata considerably, returns imprecise slices
at the moment statecharts have concurrency features? The reason for this is
quite similar as for concurrent programs, i.e. the algorithm adds interference
dependencies to the slice which cannot happen in real executions. As a direct
consequence, too much states, transitions and their corresponding actions
may be included in the final slice.

As an example, consider again the automaton in Figure 8.1. This
concurrent automaton has one parallel data dependence (bt5 →pdd A1).
This is because a substate of A1 defines the variable b used in the action
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Code Listing 8.1 A Two-Threaded Program

 
 
 
 
 
 
 
 
 
 
 
 

thread P thread Q

...

read a ...

b = d d = c

a = 2*b ...

read c

print a

...

list of transition bt5. Nothing more, nothing less. If during slicing, this
dependence is added to the slice, then the slice is made imprecise, i.e. the
whole automaton A1 (thus ρ(A1)) will belong to the final slice. The reason
for the imprecision (and consequently the addition of irrelevant information)
is that the mentioned parallel data dependence can never happen in real
execution because of the following facts:

• Following the sequential flow of control inside region A, we know that
transition at0 executes before state A1 can be properly entered.

• Transition bt2 executes before transition at0 (Example 8.2).

• Following again the sequential flow of control inside region B, we know
that transition bt5 executes before transition bt2.

• To conclude, it is impossible that transition bt5 uses the value of variable
b defined in a substate of state A1. Indeed, transition bt5 always executes
before transition at0, thus before state A1 has been entered.

Here, the reason the WDQ-algorithm returns imprecise slices is completely
due to the definitions of the interference dependencies. These are defined in a
rather general way in the sense that only the sharing of variables is considered
without bothering the execution chronology between states and transitions.
Towards verification, this simply means that the size of the state space is not
reduced as much as possible. If, however, such interference dependencies take
happens-before orderings into account, then, for our example, the adding of
the automaton SubA is avoided.

8.2.2 Towards More Precise Slices

The goal in slicing statecharts is to produce a more “precise” slice. This
is a slice that more closely reflects the relevant paths in a statechart. The
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“preciser” a slice is, the smaller the resulting state space, and the faster
a model checker can verify the correctness of a given temporal formula.
Chapter 11 illustrates this.

From the previous section we learn that more precise slices can be
obtained by restricting the interference dependencies in terms of a happens-
before relation. As an example, if a happens before b, then a never can
be dependent on b. Placing more conditions on the existence of such
dependencies makes them less imprecise. As we will see later, the internal
broadcasting mechanism plays a mayor role here.

At this point, it is important to realize that the dynamic execution
semantics of statecharts is causal. Once a transition is fired, it cannot be
interrupted and each RTC-step possibly consists of a series of micro-steps
before a stable state configuration is reached. As mentioned in Section 7.5,
to realize synchronization, the WDQ-algorithm places a restriction on the
use of events inside statecharts; it is assumed that the triggering event of a
transition can only be generated in the automata that are concurrent with
this transition. That way, each synchronization dependence, which refers to
synchronization points, dictates the execution chronology between states and
transitions.

8.3 A Graph-Theoretic Approach

Clearly, to make the WDQ-slicing-algorithm more precise, it is necessary
to determine the order in which two events (i.e. states/transitions) have
occurred. For concurrent systems it is sometimes impossible to say which
of the two events has occurred first. Lamport’s happens-before relation
(Definition 8.1) is used in obtaining an ordering of events in a broad range
of systems.

To formally define a happens-before relation on statecharts, denoted by
→so, we first define two other relations (Sections 8.3.2-8.3.3): statechart

sequential order or
S
→so and statechart concurrent order or

C
→so. The

transitivity of the order relation →so has some interesting properties, as
discussed in Section 8.3.4. The statechart happens before relation →so is

then the irreflexive transitive closure of the two relations
S
→so and

C
→so:

→so= (
S
→so ∪

C
→so)

+

Combining the internal broadcasting mechanism with causality gives us a

very effective way to construct
C
→so. That means that all possible synchro-

nizations will be investigated under the background of the dynamic execution
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step semantics and the sequential execution semantics inside regions. But one
assumption definitely is necessary: concurrent states may not have multiple
generations of the same event. Finding preserved dependencies becomes
otherwise undecidable since, statically, it cannot be decided which sending of
the message causes the triggering of a particular transition since this requires

the availability of dynamic information. Additionally, to construct
C
→so, the

notion of a “predecessor” and a “successor” shall be thoroughly used. The
notions are defined using graph-theoretical concepts. But first, we define
some definitions and concepts, which are extensively used in the following
sections.

Useful Definitions or Concepts

Let H = (F,E, ρ, A0, V ) be an EHA. Let A = (σA, s
0
A, δA, λA) ∈ F be a

sequential automaton with δA ⊆ σA × λA × σA as defined in Definition 2.2.
The corresponding digraph of automaton A consists of a set of nodes
being σA, and a set of directed edges being δA.

Definition 8.2 (Mutilated Automaton of A Ending in x (MAEx)).
Let A ∈ F and x ∈ (σA ∪ δA). The mutilated automaton of A ending in
x, denoted as MAEx, is the maximal (near)1 sub-automaton of A ending in
x (x included), i.e. x can be reached from each state and each transition of
MAEx.

Example 8.3. Let us consider region B of Figure 8.1. As visualized in
Figure 8.2, the mutilated automaton of B ending in transition bt4 (MAEbt4)
consists of all states and transitions of B, except from state B4. Similarly,
transition bt4 and state B4 is not contained in MAEbt2, as shown in
Figure 8.3.

Definition 8.3 (Mutilated Automaton of A Starting in x (MASx)).
Let A ∈ F and x ∈ (σA ∪ δA). The mutilated automaton of A starting in
x, denoted as MASx, is the maximal (near)1 sub-automaton of A starting
in x (x included), i.e. from x we can reach each state and each transition
belonging to MASx.

Example 8.4. Let us consider region A of Figure 8.1. As visualized in
Figure 8.4, the mutilated automaton of B starting in at0 (MASat0) does not
contain the states A0 and A2, and does not contain the transitions at1 and
at2, simply because we cannot reach them from transition at0.

1Note that MAEx and MASx are not complete automata if x belongs to δA.
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8.3.1 Predecessors and Successors

Everyone knows that a predecessor is any activity that must be completed
before a specified activity can begin. Everyone also knows that a successor
is any activity whose start depends on the finish of a predecessor activity.

Example 8.5. As can be seen on Figure 8.5, transition bt0 is a predecessor
of state B4. Obviously, the latter one is successor of the first. State B3 is at
the same time a predecessor and a successor of state B2 because these states
are strongly connected.

Example 8.5 illustrates that the elements (being states and/or transitions)
of an automaton can either be predecessors or successors of other elements.
Sometimes they even play the role of both. This all depends on the way the
statechart is executed; i.e. the dynamic execution semantics has a significant
influence.
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The happens-before relation between states and transitions is constructed
using predecessor and successor information extensively. To do this precisely,
a restriction is placed on the meaning of predecessor and successor. A state,
or a transition, is now called a predecessor (successor) of an element if it
always executes before (after) that element along some execution path of
the automaton. With always, we mean that no predecessor (successor) ever
has the chance to be a successor (predecessor) as well, no matter how an
automaton transitions between states. Definitions 8.4-8.5 formally define the
set of predecessors and successors of an element respectively.

Definition 8.4 (Predecessors of an Element (predelement)). Let A ∈ F
and x ∈ (σA ∪ δA). Let MAEx be the mutilated automaton of A ending in x.
Let SCCx (⊆MAEx) be a strongly connected component of A containing x.
Then, the set of all predecessors of element x is defined as follows:

predx :=

{

MAEx \ {x} if SCCx = ∅
MAEx \ SCCx otherwise

Example 8.6. For all possible executions of the orthogonal region B, the
predecessors of transition bt2 is given by the set predbt2 = {B0, bt0, bt5}
(Figure 8.1/8.5). To reach transition bt2 some elements of predbt2 must
be executed. As clearly visualized on Figure 8.5, elements that are both
predecessors and successors of bt2 form a strongly connected component with
bt2 (cycle). These elements are removed from MAEbt2 after all.

Definition 8.5 (Successors of an Element (succelement)). Let A ∈ F and
x ∈ (σA ∪ δA). Let MASx be the mutilated automaton of A starting in x.
Let MAIx consist of MAEx and the mutilated automaton of A containing
all paths, starting in s0

A but not going through x. Let SCCx (⊆ MASx)
be a strongly connected component of A containing x. Then, the set of all
successors of element x is defined as follows:

succx :=







MASx \ {x} if MAIx = ∅ ∧ SCCx = ∅
(MASx \MAIx) \ {x} if SCCx = ∅
(MASx \MAIx) \ SCCx otherwise

Example 8.7. For all possible executions of the orthogonal region A,
the successors of transition at0 is given by the set succat0 = {A1,at3,
A3,at4,A4,at5,at6} (Figure 8.5). Obviously, state A5 is omitted from this set
because it is reachable from an arbitrary path that does not pass transition
at0.

From the definitions of predecessors and successors respectively, it follows
that ∀x ∈ prede : predx ⊆ prede, ∀x ∈ succr : succx ⊆ succr respectively.
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Figure 8.5: An Example of a Predecessor/Successor Set Calculation

8.3.2 Sequential Order

The sequential order comes from the sequential execution of events within
the same process (Definition 8.1). In the case of statecharts, the definition of
sequential ordering slightly changes. Here, states and transitions represent
the events while a sequential automaton maps to a single process. The

sequential order, denoted as
S
→so, between states and transitions follows from

the different ways a sequential automaton transitions between states.

Definition 8.6. The relation
S
→so on states and transitions of an automaton

is a relation satisfying the following condition: if A ∈ F, x ∈ (σA ∪ δA) then
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(1) predx
S
→so x

2, (2) x
S
→so succx

3, for all possible executions of A.

Example 8.8. In Figure 8.1, some elements of predbt2 = {B0, bt0, bt5} are
guaranteed to execute before bt2, if they execute in a possible execution of
region B. If they do not execute, the automaton never has a chance to reach
bt2. Similarly, transition at0 is guaranteed to execute before its successor
set (succat0 = {A1,at3, A3,at4,A4,at5,at6}).

8.3.3 Concurrent Order

Events (states and transitions) on distinct processes (orthogonal regions)

may be connected with the concurrent order relation, denoted as
C
→so, if they

synchronize. A synchronization point defines a property similar to Lamport’s
happens-before relation (Definition 8.1); it is assumed that “a message cannot
be delivered before its sending”.

Definition 7.12 defines four types of sychronization dependencies but only
two of them are useful to define the concurrent order relation. This has
anything to do with the execution semantics, as we will explain later on.

Two Orthogonal Regions

A State Synchronization Dependent on a State/Transition “A state
u is synchronization dependent on another element (transition t or state v)”
means that a transition inside u is triggered by an event generated by either t
or v. State u is definitely a composite state, either sequential or concurrent. A
dependence like this makes it impossible to specify the guaranteed execution
chronology for all possible parallel executions of both automata, because the
flow of control inside u is unpredictable.

A Transition Synchronization Dependent on a Transition “A
transition r is synchronization dependent on a transition t” means that the
triggering event of r is generated by one of the actions of t. Both transitions
belong to different regions of some concurrent state.

Definition 8.7. The relation
C
→so on states and transitions of concurrent

automata is a relation satisfying the following condition: if A,B ∈ F, r ∈
δA, t ∈ δB, and there are D ∈ F and s ∈ σD such that A,B ∈ ρ(s) and if

r →sd t (Definition 7.12) then t
C
→so r, for all possible parallel executions of

D.

2∀y ∈ predx : y
S
→so x

3∀y ∈ succx : x
S
→so y
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If r →sd t, then t is guaranteed to execute before r, if they execute in a
program run, due to the dynamic execution semantics. Once t is executed, it
cannot be interrupted. Therefore, transition r makes a change to be enabled
for firing, if its triggering event is available in the environment (i.e. kept in
the FIFO queue) and if t has finished execution. Since t is the only transition
that is capable to generate the triggering event of r, it has to be executed
before r.

Example 8.9. Let us consider Figure 8.5 again. Transition at0 is syn-
chronization dependent on transition bt2 because the broadcast event e (the
trigger of at0) is generated in the action list of bt2. We safely conclude

that bt2
C
→so at0. Following a similar reasoning, we may conclude that

at5
C
→so ct3.

A Transition Synchronization Dependent on a State “A transition r
is synchronization dependent on state u” means that the triggering event of r
is generated by the actions of u. Both elements belong to different substates
of some concurrent state. Important to know is that u is either a simple or a
composite state. If it is composite, it contains all information of its children,
positioned lower in the EHA.

Definition 8.8. The relation
C
→so on states and transitions of concurrent

automata is a relation satisfying the following condition: if A,B ∈ F, r ∈
δA, v ∈ σB, and there are D ∈ F and s ∈ σD such that A,B ∈ ρ(s) and if

r →sd v (Definition 7.12) then predv
C
→so r, for all possible parallel executions

of D.

If r →sd v then v executes before r, if they execute in a program run, due
to the dynamic execution semantics. Transition r only makes a change to
be enabled for firing, if its triggering event is available in the environment,
i.e. kept in the FIFO queue. Since v is the only state capable to generate
the triggering event of r, it has to be executed before r. From this, we may

conclude that v
C
→so r, but this order relation is not legal for every possible

execution of the concurrent automaton D. For example, if v is a simple state,
the dynamic execution semantics still can activate internal activities, even
after r has finished execution. As another example, if v is a composite state,
some child of v is responsible for the generation of the triggering event. But
after the event generation, the dynamic execution semantics still can activate
transitions inside v. Therefore, we are not allowed to conclude that always
v →hb r. However, from Definition 8.6, predv always happens before v.
Since r only makes a change to be fired, after v has executed at least once,

predv
C
→so r, for all possible parallel executions.
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8.3.4 Transitivity

Now we define the relation →so= (
S
→so ∪

C
→so)

+ as our happens before
relation on statecharts. The transitivity of this order relation has an
interesting property (Property 8.1), which is trivial due to the definitions
of predecessors and successors.

Property 8.1. Let A,B ∈ F, x ∈ (σA∪δA), y ∈ (σB∪δB), and there are D ∈
F, s ∈ σD such that A,B ∈ ρ(s). The relation →so on states and transitions
of concurrent automata is a binary relation with the following property: if
x→so y then (1) predx →so y, (2) x→so succy, and (3) predx →so succy.

Transitivity Illustrations

As mentioned in Section 8.1.1, broadcast events are events received by
all orthogonal regions. Since all regions of a statechart are in the same
object, they all receive the same events. A special type of broadcast events
are propagated events which are events that are sent as the result of a
transition taken in one orthogonal region or object. Propagated events
are also (internally) broadcasted. Propagated events are extremely useful
to define an ordering between the elements of three or more orthogonal
regions. To do this, it is sufficient to combine propagated events with the
causality of synchronization dependencies and the sequential causality inside
each concurrent substate.

A first example is visualized in Figure 8.6. As you can clearly see,
transitivity of the order relation is used to find the happens before relation
between transition bt2 and ct3. Since ordinary transitivity is used here, we
will not consider such a situation in greater detail.

As another example, consider Figure 8.7. Transition bt2 happens before
transition at0, as derived in the previous section. The sequential flow of
control in region A generates a happens-before relation between transition
at0 and at5, as visualized on the figure. It is also obvious that transition
at5 executes before transition ct3, due to the synchronization point between
them. We are allowed to conclude that bt2 always happens before ct3, if
they execute in a program run. Properties 8.2-8.3 formalize this particular
kind of transivity.

Property 8.2. The relation
C
→so on states and transitions of concurrent

automata has the following property: if A,B,C ∈ F, r ∈ δA, t ∈ δB, w ∈ δC,
and there are D ∈ F and s ∈ σD such that A,B,C ∈ ρ(s) and if r →sd t

(Definition 7.12) and (∃x ∈ succr | w →sd x) then t
C
→so w, for all possible

parallel executions of D.
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Figure 8.6: First Example of Transitivity

If t →hb r then we know, from the dynamic execution semantics, that only
after t is fired, transition r may be fired. From Definition 8.6, r always
happens before each successor element e. If x generates an event that triggers
w, then obviously t happens before w, i.e. only after t is fired, w may fire. If
r executes and the machine follows a path to x, w makes a change to execute.
We safely conclude that t →hb w, for all possible parallel executions of the
concurrent state.

Property 8.3. The relation
C
→so on states and transitions of concurrent

automata has the following property: if A,B,C ∈ F, r ∈ δA, v ∈ σB, w ∈ δC,
and there are D ∈ F and s ∈ σD such that A,B,C ∈ ρ(s) and if r →sd v

(Definition 7.12) and (∃x ∈ succr | w →sd x) then predv
C
→so w, for all

possible parallel executions of D.



 8. Internal Broadcasting: As Rich As Needed

A0
 A1


at0: e


A2


at1: [guard_0]


A3


at3: [guard_2]


A5


at6: m


at2: [guard_1]


A4


at4: k


at5: /gen(new f());


A


B0


B2


bt5: k / a=b+c;


B1


bt0: g


B3


bt2: m / gen(new e());


B4


bt4: [guard_3]


B


bt1: n


bt3:


C0


C1


ct1: g


C3


ct3: f


C


ct2: h


s1


s3


Root


SubA0


entry/b = i * j;


SubA1
st0: [guard_4]


SubA


sd


sd


hb


hb


hb


hb


Figure 8.7: Second Example of Transitivity

8.4 Tuning Interference Dependences

The happens-before relation →so gives us everything we need to refine
several interference dependencies: if a happens before b, then a never can
be dependent on b. Thus, an interference dependence exists, if there does
not exist a happens-before relation (∈→so) that states the opposite. Let us
give an example using Figure 8.1. Using Definition 8.9 transition bt5 never
can be parallel data dependent on state A1, since (bt5, A1) ∈→so.

Definition 8.9 (Restricted Parallel Data Dependence). If A,B ∈ F
and u ∈ σA, r ∈ δA, v ∈ σB, t ∈ δB, and there are C ∈ F and s ∈ σC such
that A,B ∈ ρ(s), then u →pdd v (or u →pdd t, or r →pdd v, or r →pdd t) iff
(u.UV ∩ v.DV 6= ∅) ∧ ((u, v) /∈→so) (or (u.UV ∩ t.DV 6= ∅) ∧ ((u, t) /∈→so),
or (r.UV ∩ v.DV 6= ∅) ∧ ((r, v) /∈→so), or (r.UV ∩ t.DV 6= ∅) ∧ ((r, t) /∈→so)
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respectively).

Definition 8.10 (Restricted Parallel Transition Control Depen-
dence). If A,B ∈ F and r ∈ δA, v ∈ σB, t ∈ δB, and there are C ∈ F
and s ∈ σC such that A,B ∈ ρ(s), then r →tcd v (or r →tcd t) iff
(r.CV ∩ v.DV 6= ∅) ∧ ((r, v) /∈→so) (or (r.CV ∩ t.DV 6= ∅) ∧ ((r, t) /∈→so)
respectively).

The only thing that has to be done to yield an algorithm that is efficient yet
effective for reducing the number of interference dependencies used in slicing
statecharts with concurrent states, is letting the WDQ-algorithm use these
new definitions of interference dependencies instead of the imprecise ones
(Definitions 7.11 and 7.13). This also can yield a more precise slice which
positively influences the verification procedure. For the statechart shown in
Figure 8.1, a more precise slice will definitely be retrieved.

8.5 Conclusion

All approaches known to me to slice hierarchical automata do not consider
the broadcasting mechanism that is used to let regions communicate with
each other. By defining interference dependeces in terms of the broadcasting
mechanism, far more precise slices are returned by the algorithm. This
not only reduces the time to verify a property using the model checking
technique, but also reduces the underlying datastructure (BDD) used by
the model checker. This gives software developers the possibility to model
check quite complex software designs. Pieces of the model that are not of
interest are neglected during verification. Chapter 11 illustrates the strength
of broadcasting mechanism during slicing.
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CHAPTER 9

Model Construction in Practice

No one can whistle a symphony.
It takes an orchestra to play it.

Halford E. Luccock.

A
thorough system specification is not sufficient to guarantee that the
system will adequately perform its tasks during its entire life cycle. A

high quality system can only be achieved when the detection of failures is
started in the early design phases. To remove such failures, current practice
in UML design evaluation consists of manual tedious inspections which are
most of the time incomplete. Therefore, verification is highly required.
Verification of design models can reveal flaws in the design level before they
are implemented, and thus reduce the costs and time to market.

This manuscript has specifically addressed the process and the procedures
used for an effective design verification. The technique (which is automated)
allows software developers to use UML case tools for the specification of their
systems, and performs the required verifications on these specifications.

The aim of this chapter is to demonstrate how part of our tool, developed
in Chapters 3-4, offers effective support for verifying statechart specifications.
It will be shown that the verification tool can be repeatedly integrated (and
used) in an iterative and incremental design process. It will also be shown
how to develop a verified design for a variant of the production cell model [76].
Some functionalities of the model will be described together with how these
functionalities can be modeled (designed) using some UML diagrams. Some
requirements that are to be fulfilled by the control software are described and
are automatically verified. The usefulness of counterexamples to capture and
to correct design failures will be demonstrated as well.
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9.1 The Production Cell Model

The original production cell is in a metal processing plant in Karlsruhe,
Germany. The production cell, involving a robotic system, is a realistic
industry-oriented problem, where safety requirements play a significant
role [76]. Forschungszentrum Informatik, Karlsruhe, used the production cell
as the basis for a study of formal methods for critical software systems. It is
a benchmark for evaluating methodologies for designing embedded systems.
The informal description of the model is as follows:

. . . the production cell is composed of two conveyor belts, a positioning
table, a two-armed robot, a press, and a travelling crane. Metal plates
inserted in the cell via the feed belt are moved to the press. There,
they are forged and then brought out of the cell via the other belt [76].

The production cell (see Figure 9.1) has several machines that must be
coordinated in order to forge metal blanks. The metal plates are taken
from the feed belt to the rotary table. The robot takes the blanks from the
table and feeds them to the press. The latter machine performs some time
consuming treatment of the plate. When this job is done, the robot moves
the treated blanks to the deposit belt.

Figure 9.1: The Production Cell

We start the UML design in an object-oriented spirit. This means that we
have to define the basic objects that compose the system. Obviously, the
machines are working concurrently and each machine follows its own clock.
Therefore, each machine will correspond to an active object. Each component
internally represents a sequential process and executes its rules as soon as
they become enabled. In Figure 9.2, the topview of the production cell is
described.
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ProductionCell


Press

{active}


Robot

{active}


FeedBelt

{active}


DepositBelt

{active}


1

contains


Figure 9.2: Top View Class Diagram

9.2 Modeling the Press

The press goes through the cycle of loading, forging and unloading. Initially,
the press is in the middle position until the robot places a blank into the press.
Then it moves upwards to forge the blank and then it moves backwards to
the lower position to unload the blank. The robot gets the blank and the
cycle starts again.

. . . The task for the press is to forge metal blanks. The press consists
of two horizontal plates, with the lower plate being movable along a
vertical axis. The press operates by pressing the lower plate against the
upper plate. Because the robot arms are placed on different horizontal
planes, the press has three positions. In the lower position, the press
is unloaded by arm 2, while in the middle position it is loaded by
arm 1. The operation of the press is coordinated with the robot arms
as follows: 1. Open the press in its lower position and wait until
arm 2 has retrieved the metal plate and left the press, 2. Move the
lower plate to the middle position and wait until arm 1 has loaded and
left the press, 3. Close the press, i.e. forge the metal plate. This
processing sequence is carried out cyclically [76].

A common way to model the press is in two parts: a controller part and a
hardware part. These elements are represented by two classes: Press−hw

and Press−ct. Figure 9.3 describes the relationship between these objects.
The class diagram shows the structure of the press, but it does not

describe the behavior. Therefore, we need UML statechart diagrams. The
behavior of the press is modeled through the behavior of its hardware part
(see Figure 9.4) [78] and through the behavior of its controller part (see
Figure 9.5) [78]. As can be seen, initially the press is in the middle position
and the controller is in the Loaded state. This simply means that the press
is ready to be loaded, as indicated in the informal description of the press.
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{active}


Robot

{active}


FeedBelt

{active}


DepositBelt
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Press_hw
 Press_ct


contains


contains


controls


Figure 9.3: Class Diagram of the Press

At the moment the robot places a blank in the press, it sends the forge

event to the controller. The controller reacts upon this event, moves to the
Pressing state and instructs the hardware to move upwards.

Stop


Forward


Backward


t1: s_engineUp


t2: s_engineStop


t3: s_engineStop

t4: s_engineDown


t5: s_engineUp
 t6: s_engineDown


AtTop


AtMiddle


AtLower
 LowerCrash


TopCrash


t12: [in_Forward]


t11: [in_Backward]


t7: [in_Forward] / Press_ct.gen(new s_pressTop());


t10: [in_Backward] / Press_ct.gen(new s_pressLower());


t8: [in_Backward] / Press_ct. gen(new s_pressMiddle());


t9: [in_Forward] / Press_ct.gen(new pressMiddle());


Engine
 Position


Figure 9.4: Hardware of the Press

It is important to note that the model is an open model with respect to the
events, because we have not yet modeled the robot1. As an example, the
event inter−forge has to be sent out by the robot at the moment he places
a new blank into the press.

Our verification tool automatically converts open models to closed ones by
activating an event generator at the appropriate moments (see Section 3.5.3

1We do not yet consider the entry actions attached to some states of the controller.
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Pressing
 GoingBottom


t2: s_pressTop / Press_hw.gen(new s_engineDown());


t3: s_pressMiddle / Press_hw.gen(new s_engineDown());


entry/Robot_ct.gen(new s_pressReadyUnload());


UnLoading


t4: s_pressLower / Press_hw.gen(new s_engineStop());


GoingMiddle

t5: inter_unloaded / Press_hw.gen(new engineUp());


entry/Robot_ct.gen(new s_pressReadyLoad());


Loading


t1: inter_forge / Press_hw.gen(new engineUp());


t6: s_pressMiddle / Press_hw.gen(new engineStop());


Figure 9.5: Controller of the Press

and Section 3.7.6).

9.2.1 Safety Requirement

Although the other components of the production cell are not yet modeled,
the verification tool can already be used to verify some requirements that the
system should meet. One such a requirement is a safety requirement that
indicates the unreachability of a state where some property holds. In general,
the requirement can be formulated in CTL as follows:

AG(¬φ) ≡ ¬EFφ

A safety requirement examines every computation path to verify that φ never
is true. As an example: the press is not moved upwards if it is in its top
position [19, 76]. The requirement can be formulated in terms of a CTL
formula as follows:

AG(¬in−TopCrash)

Once the tool has performed the necessary transformations to build a CaSMV
Kripke model, it activates the model checker to automatically decide on the
formula. By running the verification, a counterexample is returned; it is
possible to reach the TopCrash state.

Table 9.1 shows the execution trace (which in fact is visualized by the
tool) that leads to the violation of the constraint. To save space, only the
important elements that change when the thread of the active object Press
runs, are shown.
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Interpretation of the counterexample At the beginning, the controller
of the press is in the Loaded state and immediately reacts upon the event
inter−forge; its automaton transitions to the Pressing state and sends
the event engineUp to the hardware of the press. Once the hardware has
received the message, its left region Engine first moves to the state Forward

by taking transition t2. This movement causes triggerless transitions to take
in the region Position. The latter region reaches the state Forward while
executing transition t7. At the same time, it sends an event back to the
controller. This event is not yet handled due to the fact that the hardware of
the press is still instable (RTC-step semantics); it continues to move forward
and thus reaches the state TopCrash. As can be seen, this state is a trap
state, so everything is stuck now. The controller in its turn, handles the
event s−pressTop, moves to the state GoingBottom, and finally generates the
event s−engineDown. But since the hardware cannot react upon this event,
the event is discarded and the controller remains in the state GoingBottom

forever.

9.2.2 Invariant Related Requirement

An invariant related requirement refers to the general validity of some
property φ. In CTL, such a requirement is formalized as follows:

AGφ

Now, for every computation path, φ must always be true. As an example for
the press: every unforged blank introduced into the system will eventually
leave it forged [19, 76] which is defined as:

AG(in−Loading ⇒ AF (in−UnLoaded))

Since we have to deal with an open model, the requirement is formulated
under the assumption that a new blank is placed into the press at the moment
the controller is in the Loaded state. To state it differently, every time the
controller reaches the Loaded state, a new blank is immediately inserted by
immediately generating the event inter−forge. This is the task of the event
generator. Consequently, such a way of working guarantees progress of the
system, since for verification purposes, it is useless to wait a certain amount
of time before a new blank is placed into the press. The same is true for the
event inter−unloaded.Of course, since the safety requirement is not fulfilled,
neither is this requirement satisfied. The same counterexample is returned.
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9.2.3 Changing the Design

The problem with the design that we have so far is that the controller
reacts too slowly. Thus, the design has to be changed in such a way that
the reaction of the control software is fast enough to fulfil the appropriate
timing requirements. To guarantee that the timing requirements are being
met, we have to dramatically change the way the hardware is modeled. A
more efficient way of modeling is shown in Figure 9.6 (adapted from [78]).
Clearly, the regions of Figure 9.4 are joined together. This time the safety
and invariant requirement are met by the model, as wanted. Note that the
transitions to the TopCrash and LowerCrash state will never be taken; they
are in a way redundant.

AtTop


AtMiddle


AtLower
 LowerCrash


TopCrash


t7: s_engineUp


t8: s_engineDown


t1: s_engineUp / Press_ct.gen(new s_pressTop());


t4:s_engineDown / Press_ct.gen(new s_pressLower());


t2: s_engineDown / Press_ct. gen(new s_pressMiddle());


t3: s_engineUp / Press_ct.gen(new pressMiddle());


t6: s_engineStop


t5: s_engineStop


Figure 9.6: Revised Hardware of the Press

9.3 Modeling the Robot

The robot component, as central unit, is the most complex machine of the
production cell. The robot has two arms which sometimes move together.
Just like the press, the behavior of the robot is cyclic:

. . . The robot’s task consists in: taking metal blanks from the elevating
rotary table to the press; transporting forged plates from the press to
the deposit belt [76].

The robot first waits for the rotary table to be in the correct position, and
for a plate to be present on it. Once these conditions are fulfilled, the robot
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unloads the table using the first arm. Its second arm moves towards the press
to take a forged blank from it. The robot loads the deposit belt by moving
its second arm from the press towards the belt. Of course, the robot possibly
has to wait for the press to be free. The robot feeds the press with a new
blank using its first arm. The cycle now restarts.

As before, the robot is modeled by two parts: a controller part and a
hardware part, as shown in Figure 9.7. If we leave out all the details of
the arm-movements, we get a cyclic abstract behavior of the robot (adapted
from [19, 78]), as shown in Figure 9.8. Initially, it is assumed that the robot
is in the UnLoadTable state.

ProductionCell


Press

{active}


Robot

{active}


FeedBelt

{active}


DepositBelt

{active}


1


Press_hw
 Press_ct


contains


contains


controls


Robot_ct


contains


Robot_hw


controls


Figure 9.7: Class Diagram of the Robot

9.3.1 Deadlock Free Requirement

As can directly be seen on Figure 9.8, there is only communication (through
events) with the press, since the belts are not yet modeled. Is the system
modeled so far deadlock free? Generally speaking, a concurrent program is
in a deadlock situation when no terminal state is reached, and no part of
the program is able to proceed. A system is deadlock-free when no execution
leads to a deadlock. Deadlock freedom can be expressed by the following
formula:

AG(¬deadlock)

The production cell deadlocks when no statechart is able to trigger a
transition. This is specified as follows:

AG(AF (¬(not−progress−auto ∧ not−progress−trigger)))
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unloadTable


entry/Press_ct.gen(new s_unloaded());


unloadPress
t1: s_pressReadyUnload


loadDepBelt


t2:


entry/Press_ct.gen(new s_forge());


loadPress

t3: s_pressReadyLoad


t4:


Figure 9.8: Abstract Behavior of the Robot’s Controller

with

not−progress−auto := (thrPress.hw−progress−auto = 0)
∧ (thrPress.ct−progress−auto = 0)
∧ (thrRobot.ct−progress−auto = 0)

not−progress−trigger := (thrPress.hw−progress−trigger = 0)
∧ (thrPress.ct−progress−trigger = 0)
∧ (thrRobot.ct−progress−trigger = 0)

The system does not deadlock when either the press makes progress or the
robot. CaSMV verifies that the system, modeled so far, satisfies the deadlock
free requirement but only when it is assumed that the initial state of the
controller is the loadDepBelt state. Of course, the safety and invariant
requirements are still being met by the system.

9.3.2 Refining the Design

At this point, we can refine the robot’s behavioral model by refining each
abstract state. Such a refinement takes both the movements of the arms into
account and the position of the corresponding components. Further details
can be found in [19, 78].

9.4 A Word on the CaSMV Kripke Model

As must already be clarified by now, software developers use our verification
tool to automatically decide on the requirements. One of the responsibilities
of the tool is to create a CaSMV Kripke model, which is the input of the
model checker CaSMV. Since we have several active objects, the CaSMV
model looks like given in the code listings below.
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#define SIZE 3

module main() {

thrPress_event_queue: array 0..(SIZE-1) of

{s_hw_engineUp, s_hw_engineDown,

s_hw_engineStop, s_ct_forge,

s_ct_unloaded, s_ct_pressMiddle,

s_ct_pressTop, s_ct_pressLower, NotDefined};
thrPress_event_tail: 0..(SIZE-1);

thrPress_event_overflow: boolean;

init(thrPress_event_queue[0]):= {NotDefined};
init(thrPress_event_queue[1]):= {NotDefined};
init(thrPress_event_queue[2]):= {NotDefined};
init(thrPress_event_tail):= 0;

init(thrPress_event_overflow):= 0;

thrRobot_event_queue: array 0..(SIZE-1) of

{s_ct_pressReadyLoad, s_ct_pressReadyUnLoad, NotDefined};
thrRobot_event_tail: 0..(SIZE-1);

thrRobot_event_overflow: boolean;

init(thrRobot_event_queue[0]):= {s_ct_pressReadyLoad};
init(thrRobot_event_queue[1]):= {NotDefined};
init(thrRobot_event_queue[2]):= {NotDefined};
init(thrRobot_event_tail):= 1;

init(thrRobot_event_overflow):= 0;

thrPress:process Press(thrPress_event_queue, thrPress_event_tail,

thrPress_event_overflow, thrRobot_event_queue,

thrRobot_event_tail, thrRobot_event_overflow);

thrRobot:process Robot(thrPress_event_queue, thrPress_event_tail,

thrPress_event_overflow, thrRobot_event_queue,

thrRobot_event_tail, thrRobot_event_overflow);

thrFeedBelt: process FeedBelt();

thrDepositBelt: process DepositBelt();

safety : SPEC AG (~thrPress.hw_st_Root=TopCrash);

invariant : SPEC AG (thrPress.ct_st_Root=Loading ->

AF(thrPress.ct_st_Root=UnLoading));

deadlockFree: SPEC AG ( AF (~(thrPress.hw_progress_auto=0 &

thrPress.ct_progress_auto=0 &

thrPress.hw_progress_trigger=0 &
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thrPress.ct_progress_trigger=0 &

thrRobot.ct_progress_auto=0 &

thrRobot.ct_progress_trigger=0)));

}

Above we see that the CaSMV model consists of four modules (since there
are four active objects) and that the module of the press contains the state
machine of both the hardware and the controller. The same will be true for
the other modules once their corresponding design is completed. Of course,
since the concurrent objects communicate (asynchronously) with each other,
their event queues are globally declared and globally initialized (i.e. in the
main module). That way, changes to the queue done in one process are
visible in the other processes. The initialization of the robot event queue
looks special but it isn’t: Everytime the press enters the Loading state,
the event s−ct−pressReadyLoad is generated and sent to the robot. Since
the Loading state is an initial state, this is also done when the system starts
up. Remark that the events inter−forge and inter−unloaded became signal
events now; the system itself is able to generate them, making the event
generator redundant.

module Press(...) {

thrPress_event_queue: {...};
thrPress_event_tail: 0..(SIZE-1); thrPress_event_overflow: boolean;

thrRobot_event_queue: {...};
thrRobot_event_tail: 0..(SIZE-1); thrRobot_event_overflow: boolean;

hw_st_Root: {AtTop, AtMiddle, AtLower,

LowerCrash, TopCrash, NotActive};
ct_st_Root: {Pressing, Loading, GoingMiddle,

UnLoading, GoingBottom, StateMachineError};

in_hw_AtTop, in_hw_AtMiddle, in_hw_AtLower, ...: boolean;

in_hw_AtTop := hw_st_Root = AtTop;

in_hw_AtMiddle := hw_st_Root = AtMiddle;

in_hw_AtLower := hw_st_Root = AtLower;

...;

in_ct_Pressing, in_ct_Loading, in_ct_GoingMiddle, ...: boolean;

in_ct_Pressing := ct_st_Root = Pressing;

in_ct_Loading := ct_st_Root = Loading;

in_ct_GoingMiddle:= ct_st_Root = GoingMiddle;

...;
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error: boolean;

error:= thrPress_event_overflow;

init(hw_st_Root) := AtMiddle;

init(ct_st_Root):= Loading;

hw_t1, hw_t2, hw_t3, hw_t4, hw_t5, hw_t6, hw_t7, hw_t8: boolean;

hw_t1:=in_hw_AtMiddle & thrPress_event_queue[0]=s_hw_engineUp;

hw_t2:=in_hw_AtTop & thrPress_event_queue[0]=s_hw_engineDown;

...;

ct_t1, ct_t2, ct_t3, ct_t4, ct_t5, ct_t6: boolean;

ct_t1:=in_ct_Loading & thrPress_event_queue[0] = s_ct_forge;

ct_t2:=in_ct_Pressing & thrPress_event_queue[0] = s_ct_pressTop;

...;

hw_progress_auto, ct_progress_auto: boolean;

hw_progress_auto:= 0; ct_progress_auto:= 0;

hw_progress_trigger, ct_progress_trigger: boolean;

hw_progress_trigger:= hw_t1 | ... | hw_t8;

ct_progress_trigger:= ct_t1 | ... | ct_t6;

last: {hw, ct, NotDefined};
init(last):= ct;

object_progress: {hw, ct, NotDefined};
object_progress:= case {

last = hw & hw_progress_auto: hw;

last = ct & ct_progress_auto: ct;

~(hw_progress_auto | ct_progress_auto): NotDefined;

default: {hw_progress_auto ? hw, ct_progress_auto ? ct};
};

Special to note is the initialization of the variable last which refers to the
object that made progress in the previous time step. When the system starts
up, all the statecharts enter their initial state. So in fact, we cannot say if it
is either the hardware that has entered its initial state before the controller
or the other way around. We claim it to be the controller since the initial
state of the controller immediately communicates with the robot by sending
an event.



 9. Model Construction in Practice

case {

object_progress=hw & ~error: {
next(ct_st_Root):= ct_st_Root;

next(hw_st_Root):= hw_st_Root;

next(thrPress_event_queue):= thrPress_event_queue;

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

next(thrRobot_event_queue):= thrRobot_event_queue;

next(thrRobot_event_tail):= thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(last):=hw;

};

object_progress=ct & ~error: {
next(hw_st_Root):= hw_st_Root;

next(ct_st_Root):= ct_st_Root;

next(thrPress_event_queue):= thrPress_event_queue;

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

next(thrRobot_event_queue):= thrRobot_event_queue;

next(thrRobot_event_tail):= thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(last):= ct;

};

Since our tool works automatically, it generates the above two code chunks.
In fact, they can be omitted because they never will be taken (Figure 9.5 and
Figure 9.6). It is not that difficult to integrate such an optimization in the
tool. Below, it is illustrated how the event queue of the thread is updated.

hw_progress_trigger & ~error: {
next(thrRobot_event_queue) := thrRobot_event_queue;

next(thrRobot_event_tail) := thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(ct_st_Root):= ct_st_Root;

next(hw_st_Root):= case {
hw_t1: AtTop;

hw_t2|hw_t3|hw_t5: AtMiddle;

hw_t4|hw_t6: AtLower;

hw_t7: TopCrash;

hw_t8: LowerCrash;

};
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for(i=0; i<SIZE; i=i+1) {
if (((i+1)<thrPress_event_tail) & (i+1)<SIZE)

next(thrPress_event_queue[i]):=thrPress_event_queue[i+1];

else {
if(~(thrPress_event_tail=0)) {
case {
hw_t1 & thrPress_event_tail = (i+1):

next(thrPress_event_queue[i]):=s_ct_pressTop;

(hw_t2|hw_t3) & thrPress_event_tail = (i+1):

next(thrPress_event_queue[i]):=s_ct_pressMiddle;

hw_t4 & thrPress_event_tail = (i+1):

next(thrPress_event_queue[i]):=s_ct_pressLower;

default: next(thrPress_event_queue[i]):= NotDefined;

};
} else {

case {
hw_t1 & thrPress_event_tail = (i):

next(thrPress_event_queue[i]):=s_ct_pressTop;

(hw_t2|hw_t3) & thrPress_event_tail = (i):

next(thrPress_event_queue[i]):=s_ct_pressMiddle;

hw_t4 & thrPress_event_tail = (i):

next(thrPress_event_queue[i]):=s_ct_pressLower;

default: next(thrPress_event_queue[i]):=

thrPress_event_queue[i];

};
};

};
};

if(~(thrPress_event_tail=0)) {
case {
hw_t1|hw_t2|hw_t3|hw_t4:

if (((thrPress_event_tail-1)+1)>=SIZE) {
next(thrPress_event_tail):=thrPress_event_tail;

next(thrPress_event_overflow):= 1;

} else {
next(thrPress_event_tail):=(thrPress_event_tail-1)+1;

next(thrPress_event_overflow):=0;

};

hw_t5|hw_t6|hw_t7|hw_t8: {
next(thrPress_event_tail):= thrPress_event_tail-1;
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next(thrPress_event_overflow):= 0;

};
default: {
next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

};
};
} else {

case {
hw_t1|hw_t2|hw_t3|hw_t4:

if (((thrPress_event_tail)+1)>=SIZE) {
next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= 1;

} else {
next(thrPress_event_tail):= (thrPress_event_tail)+1;

next(thrPress_event_overflow):= 0;

};

default: {
next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

};
};

};

next(last):= hw;

};

The controller of the press performs communication with the robot. There-
fore, at appropriate moments, the controller places those events into the
queue of the robot. Only then, the robot is able to react upon them. The
code listing below clearly demonstrates this. However note the difference in
the way the queue of the robot and the queue of the press is updated. In
the former one, it is sufficient to just add a new event following the FIFO
semantics. Evidently, it is forbidden to shift out the first event of the queue
of the robot; we are working in the thread of the press. The latter removes
the head of the queue (dispatched and processed), and adds new events at
the end of the queue.

ct_progress_trigger & ~error: {
next(hw_st_Root):= hw_st_Root;

next(ct_st_Root):= case {
ct_t1: Pressing;



9.4. A Word on the CaSMV Kripke Model 

ct_t2 | ct_t3: GoingBottom;

ct_t4: UnLoading;

ct_t5: GoingMiddle;

ct_t6: Loading;

};

for(i=0; i<SIZE; i=i+1) {
case {

ct_t4 & thrRobot_event_tail = i:

next(thrRobot_event_queue[i]):= s_ct_pressReadyUnLoad;

ct_t6 & thrRobot_event_tail = i:

next(thrRobot_event_queue[i]):= s_ct_pressReadyLoad;

default: next(thrRobot_event_queue[i]):=

thrRobot_event_queue[i];

};
};

case {
ct_t4 | ct_t6: if (((thrRobot_event_tail)+1)>=SIZE) {

next(thrRobot_event_tail) := thrRobot_event_tail;

next(thrRobot_event_overflow):= 1;

} else {
next(thrRobot_event_tail) := (thrRobot_event_tail)+1;

next(thrRobot_event_overflow):= 0;

};
default: {

next(thrRobot_event_tail):= thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

};
};

for(i=0; i<SIZE; i=i+1) {
if (((i+1)<thrPress_event_tail) & (i+1)<SIZE)

next(thrPress_event_queue[i]):= thrPress_event_queue[i+1];

else {
if(~(thrPress_event_tail=0)) {
case {
(ct_t1|ct_t5) & thrPress_event_tail = (i+1):

next(thrPress_event_queue[i]):= s_hw_engineUp;

(ct_t2|ct_t3) & thrPress_event_tail = (i+1):

next(thrPress_event_queue[i]):= s_hw_engineDown;

ct_t4 & thrPress_event_tail = (i+1):

next(thrPress_event_queue[i]):= s_hw_engineStop;
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ct_t6 & thrPress_event_tail = (i+1):

next(thrPress_event_queue[i]):= s_hw_engineStop;

default: next(thrPress_event_queue[i]):= NotDefined;

};
} else {
case {

(ct_t1|ct_t5) & thrPress_event_tail = (i):

next(thrPress_event_queue[i]):= s_hw_engineUp;

(ct_t2|ct_t3) & thrPress_event_tail = (i):

next(thrPress_event_queue[i]):= s_hw_engineDown;

ct_t4 & thrPress_event_tail = (i):

next(thrPress_event_queue[i]):= s_hw_engineStop;

ct_t6 & thrPress_event_tail = (i):

next(thrPress_event_queue[i]):= s_hw_engineStop;

default: next(thrPress_event_queue[i]):=

thrPress_event_queue[i];

};
};

};
};

if (~(thrPress_event_tail=0)) {
case {
ct_t4|ct_t6: if (((thrPress_event_tail-1)+1)>=SIZE) {

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= 1;

} else {
next(thrPress_event_tail):= (thrPress_event_tail-1)+1;

next(thrPress_event_overflow):= 0;

};
default: {
next(thrPress_event_tail):= thrPress_event_tail-1+1;

next(thrPress_event_overflow):= thrPress_event_overflow;

};
};
} else {

case {
ct_t1|ct_t2|ct_t3|ct_t5:

if (((thrPress_event_tail)+1)>=SIZE) {
next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= 1;

} else {
next(thrPress_event_tail):= (thrPress_event_tail)+1;
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next(thrPress_event_overflow):= 0;

};
ct_t4|ct_t6: if ((thrPress_event_tail+1)>=SIZE) {

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= 1;

} else {
next(thrPress_event_tail):= thrPress_event_tail+1;

next(thrPress_event_overflow):= 0;

};
default: {
next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

};
};

};

next(last):= ct;

};

error: {
next(hw_st_Root) := StateMachineError;

next(ct_st_Root) := StateMachineError;

next(thrPress_event_queue):= thrPress_event_queue;

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

next(thrRobot_event_queue):= thrRobot_event_queue;

next(thrRobot_event_tail):= thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(last):= last;

};

default: {
next(hw_st_Root):= hw_st_Root;

next(ct_st_Root):= ct_st_Root;

next(thrPress_event_queue):= thrPress_event_queue;

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

next(thrRobot_event_queue):= thrRobot_event_queue;

next(thrRobot_event_tail):= thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(last):= last;

};
};
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FAIRNESS running;

}

The CaSMV Kripke model for the robot looks similar. Giving further details
about this model is therefore omitted.

module Robot(...) {

thrPress_event_queue: array 0..(SIZE-1) of {...};
thrPress_event_tail: 0..(SIZE-1); thrPress_event_overflow: boolean;

thrRobot_event_queue: array 0..(SIZE-1) of {...};
thrRobot_event_tail: 0.(.SIZE-1); thrRobot_event_overflow: boolean;

ct_st_Root: {unloadTable, unloadPress, loadDepBelt,

loadPress, StateMachineError};

in_unloadTable, in_unloadPress, ...: boolean;

in_unloadTable := ct_st_Root=unloadTable;

in_unloadPress := ct_st_Root=unloadPress;

...;

error: boolean;

error:= thrRobot_event_overflow;

init(ct_st_Root):= loadDepBelt;

ct_t1, ct_t2, ct_t3, ct_t4: boolean;

ct_t1:= in_unloadTable &

thrRobot_event_queue[0]=s_ct_pressReadyUnLoad;

ct_t2:= in_unloadPress; ct_t4:= in_loadPress;

ct_t3:= in_loadDepBelt &

thrRobot_event_queue[0]=s_ct_pressReadyLoad;

ct_progress_auto, ct_progress_trigger: boolean;

ct_progress_auto := ct_t2 | ct_t4;

ct_progress_trigger:= ct_t1 | ct_t3;

case {
ct_progress_auto & ~error: {
next(thrPress_event_queue):= thrPress_event_queue;

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

next(thrRobot_event_queue) := thrRobot_event_queue;
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next(thrRobot_event_tail) := thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(ct_st_Root):= case {
ct_t2: loadDepBelt;

ct_t4: unloadTable;

default: ct_st_Root;

};
};

ct_progress_trigger & ~error: {
next(ct_st_Root):= case {

ct_t1: unloadPress;

ct_t3: loadPress;

default: ct_st_Root;

};

for(i=0; i<SIZE; i=i+1) {
if (((i+1)<thrRobot_event_tail) & (i+1)<SIZE)

next(thrRobot_event_queue[i]):= thrRobot_event_queue[i+1];

else next(thrRobot_event_queue[i]):= NotDefined;

};

next(thrRobot_event_tail):= thrRobot_event_tail - 1;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

for(i=0; i<SIZE; i=i+1) {
case {

ct_t1 & thrPress_event_tail = i:

next(thrPress_event_queue[i]):= s_ct_unloaded;

ct_t3 & thrPress_event_tail = i:

next(thrPress_event_queue[i]):= s_ct_forge;

default: next(thrPress_event_queue[i]):=

thrPress_event_queue[i];

};
};

case {
ct_t1|ct_t3: if (((thrPress_event_tail)+1)>=SIZE){

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= 1;

} else {
next(thrPress_event_tail):= thrPress_event_tail+1;
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next(thrPress_event_overflow):= thrPress_event_overflow;

};
default: {
next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

};
};

};

error: {
next(thrPress_event_queue):= thrPress_event_queue;

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

next(thrRobot_event_queue):= thrRobot_event_queue;

next(thrRobot_event_tail):= thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(ct_st_Root):= StateMachineError;

};

default: {
next(thrPress_event_queue):= thrPress_event_queue;

next(thrPress_event_tail):= thrPress_event_tail;

next(thrPress_event_overflow):= thrPress_event_overflow;

next(thrRobot_event_queue):= thrRobot_event_queue;

next(thrRobot_event_tail):= thrRobot_event_tail;

next(thrRobot_event_overflow):= thrRobot_event_overflow;

next(ct_st_Root):= ct_st_Root;

};
};

FAIRNESS running;

}

module FeedBelt() {

FAIRNESS running;

}

module DepositBelt() {

FAIRNESS running;

}
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9.5 Conclusion

This chapter has shown that UML statechart diagrams can be used to
model several parts of the production cell. The chapter has also shown
that behavioral requirements are automatically verified by our tool. This
means that a software developer can easily validate his design, since the entire
background mathematics will be hidden from him. However, it is up to him
to interpret the returned visualized counterexample and to change the design
in such a way that the failure is removed from the behavioral model. It may
not be a surprise that some failures are automatically detected by the tool
(e.g. queue overruns, etc.) and that other requirements have to be specified
by the developers (e.g. safety requirements, invariant related requirements,
etc.). Consequently, we have shown the usefulness of our tool in an iterative
and incremental design process.

The methodology presented here is not unknown in the literature. For
example, in [78] it is explained how to use the Unified Modeling Language
to model the control software of the production cell. Instead of using
CaSMV, they use SPIN during the verification of their requirements. One big
disadvantage of [78] is that the kind of models is strongly restricted. Using
the vUML verification tool [77] requires UML models that consist only of
concurrent objects. To state it differently, each object that comes equipped
with a statechart has to be an active object. If not, the tool is not able to
verify anything at all. Our work does not have such a limitation and therefore
allows richer and more complete UML models. Moreover, a design consisting
of both active and passive objects that communicate (a)synchronously with
each other is far more realistic and needed than designs containing active
objects only. We claim it to be one of the strengths of our tool.

In [18, 32] a more complete UML model for the production cell is de-
veloped. Beside statechart diagrams, use case diagrams, sequence diagrams,
component diagrams, etc. are part of the model. The model is translated to
SPIN as well. The main disadvantage (also present in [24]) is the same as
the one of [78].





CHAPTER 10

Slicing Theory in Practice

It doesn’t happen till you do.
Alan Horvath.

A
n important phase in the design of reactive systems is the verification
of their behavioral statecharts as the application domain requires very

high quality systems. A thorough verification using a model checker is a
very costly procedure because of the state explosion problem. One way to
overcome this problem is to combine slicing with model checking. When
slicing is applied to the design to ease the model checking procedure then it
must be related to the properties that are to be verified: for a given property,
the slice (i.e. a smaller statechart) is the set of sequential automata that
influence the verification results of the properties in some way. Naturally,
the satisfaction of the properties must be the same for both models.

Chapter 7 has illustrated a slicing algorithm, more precisely the WDQ-
algorithm, which removes irrelevant parts of behavioral statecharts with
respect to a property to be verified. It is the purpose of this chapter to
show how the algorithm works in practice using the coffee vending machine
example (see Section 3.3). To do that, different temporal properties are to
be considered. It will be shown that the algorithm only removes parts of the
statechart when it is allowed to. As a consequence, the sliced model is not
always smaller than the model of the design. Intuitively, it will become clear
that this all depends on the property to be verified and, of course, on the
way the statechart is designed.
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10.1 Is State CupIdle Reachable?

Let us illustrate the slicing algorithm on the coffee vending machine
(see Section 3.3) example. For clarity reasons, Figure 10.1 shows the
corresponding annoted EHA.

Off


On


t18: inter_poweron / money = 0;


Empty


t3: [cup = 0]


t4: [cup = 1 || coffee = 1]


t7: [coffee = 0]


Root


CoffeeIdle


CoffeeBusy


t5: flow_coffeestart


t19: inter_poweroff


t6: / gen(new flow_coffeedone());


Coffee

CupIdle


CupBusy


t0: flow_cupstart

t1: / gen(new flow_cupdone());


Cup


LightOff


LightOn


t16: flow_cupstart

t17: flow_coffeedone


Light


StandBy


CupReady


t12: inter_button [money > 0] / gen(new flow_cupstart());


CoffeeReady


t13: flow_cupdone / gen(new flow_coffeestart());


Controller

t14: flow_coffeedone / money = money - 1;


t10: inter_coin / money = money + 1;


t11: inter_return / money = 0;


DV = {money};

UV = {money};

TE = {inter_coin};


DV = {money};

UV = {money};

TE = {flow_coffeedone};


TE = {flow_coffeedone};


DV = {money};

UV = {money};

GE = {flow_coffeedone, ...};

TE = {inter_coin, ...};


Figure 10.1: Annoted EHA for the Coffee Vending Machine

Suppose now that we want to verify a trivial property stating that at some
point during execution the machine must reach the state CupIdle. In LTL,
this will be expressed as follows:

F (st−Cup = CupIdle)
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The slicing criterion extracted from this property will be < {CupIdle}, ∅ >.
That way it is realized that the state CupIdle is present in the slice.
Remember that every state/transition affecting the slicing criterion should
be present in the slice; otherwise, the resulting statechart is not functionally
equivalent to the original statechart with respect to the property in model
checking UML statecharts. If such a state/transition was missing from the
slice, it could result in a situation where the model checker states that a
property holds on the sliced statechart even though it does not hold on the
original statechart.

As can directly be seen on Figure 10.1, the sequential automaton Light

will not be present in the slice returned by the WDQ-algorithm. The reason
for this is quite obvious; the automaton Light only indicates progress of
the vending machine; it does not control the behavior of the machine. The
presence or the absence of this sequential automaton really does not influence
the satisfaction of the property F (st−Cup = CupIdle).

We will now show in detail how the WDQ-algorithm computes the slice.

10.1.1 Iteration 1

At the first step, the algorithm adds only the states and the transitions of
the slicing criterion to the final slice. Of course, CupIdle belongs to the
region Cup and therefore all the elements of Cup are added to the sets ES
and ET respectively. Remember that this is done to guarantee that the slice
is functionally equivalent to the original model.

Iteration 1: Step 1 of the WDQ-algorithm

1. Given the criterion < {CupIdle}, ∅ >. Then

RS = {CupIdle} RefineR(CupIdle) = True
RT = ∅

ES = {CupBusy} RefineR(CupBusy) = False
ET = {t0, t1} RefineR(t0) = False
ET = {t0, t1} RefineR(t1) = False

RS = RS ∪ ES = {CupIdle} ∪ {CupBusy} = {CupIdle, CupBusy}
RT = RT ∪ ET = {t0, t1}
IS = RS = {CupIdle, CupBusy}
IT = RT = {t0, t1}
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The algorithm now goes into the second step of the algorithm. It is important
to find the elements on which the elements of IS and IT depend. The
algorithm only adds the state On and the transition t12 to NS and NT
respectively.

Iteration 1: Step 2 of the WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = {On} since CupIdle→rcd On∧CupIdle ∈ IS∧RefineR(CupIdle)
NT = {t12} since t0 →sd t12 ∧ t0 ∈ IT ∧ ¬RefineR(t0)

The third step of the algorithm is now being processed. It is only possible to
reach state On along some execution path iff all the other elements of the root
automaton are present in the final slice. The same can be said for transition
t12. Summarized, the step is needed for the soundness aspect of the slicing
algorithm.

Iteration 1: Step 3 of the WDQ-algorithm

3. Reconstruct ES and ET :

ES = {Off,Empty, CupReady, StandBy,CoffeeReady}
ET = {t3, t7, t18, t4, t19, t14, t11, t10, t13}

Thereafter, the most tricky step is executed. The fourth step of the algorithm
refreshes the sets IS and IT . But in this iteration nothing special happens.
Note that the initial states Off and StandBy are included in the set IS.
These states will be treated separately in the second step of the algorithm
(next iteration). For such an initial state the refinement control dependence
is extremely important; it gives us the opportunity to include states to the
final slice that are higher in the hierarchy. The remaining steps 5, 6 and 7
are easy to understand.
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Iteration 1: Step 4 of the WDQ-algorithm

4. Reconstruct IS and IT :

IS = (NS \ RS) ∪ {Off, StandBy} = {On} ∪ {Off, StandBy}
IT = (NT \RT ) = NT ∪ ET = {t3, t7, t18, t4, t19, t14, t11, t10, t13, t12}

Iteration 1: Step 5, 6 and 7 of the WDQ-algorithm

5. NS∪ES = {On}∪{Off,Empty, CupReady, StandBy,CoffeeReady}
NT ∪ ET = {t12} ∪ {t3, t7, t18, t4, t19, t14, t11, t10, t13}

RefineR(On) = True ∧ On ∈ NS
RefineR(Off) = False ∧ Off /∈ NS
. . .
RefineR(CoffeeReady) = False ∧ CoffeeReady /∈ NS

RefineR(t12) = True ∧ t12 ∈ NT
RefineR(t3) = False ∧ t3 /∈ NT
. . .
RefineR(t13) = False ∧ t13 /∈ NT

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES = {CupIdle, CupBusy} ∪ NS ∪ ES
RT = RT ∪NT ∪ ET = {t0, t1} ∪ NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

10.1.2 Iteration 2

Since either IS nor IT is empty, the slicing algorithm returns to the second
step to find new elements that are relevant to the property F (st−Cup =
CupIdle). This time, the algorithm also adds elements that are already
included in the final slice. This guarantees (see Step 5) that their actions
should be preserved, i.e. it is forbidden to slice away the actions of these
elements.
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Iteration 2: Step 2 of the WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = {On}
NS = since StandBy →rcd On ∧ StandBy ∈ IS ∧ ¬RefineR(StandBy)

NT = {t6, t1, t12, t13, t10, t11}
NT = {t6, t1, t12, t13} since On →rdd t6 ∧ On ∈ IS ∧ RefineR(On)
NT = {t6, t1, t12, t13} since On →rdd t1 ∧ On ∈ IS ∧ RefineR(On)
NT = {t6, t1, t12, t13} since On →rdd t12 ∧ On ∈ IS ∧ RefineR(On)
NT = {t6, t1, t12, t13} since On →rdd t13 ∧ On ∈ IS ∧ RefineR(On)
NT = {t6, t1, t12, t13} since t12 →sd t1 ∧ t12 ∈ IT ∧ RefineR(t12)
NT = {t6, t1, t12, t13} since t12 →tcd t13 ∧ t12 ∈ IT ∧ RefineR(t12)
NT = {t6, t1, t12, t13} since t12 →tcd t10 ∧ t12 ∈ IT ∧ RefineR(t12)
NT = {t6, t1, t12, t13} since t12 →tcd t11 ∧ t12 ∈ IT ∧ RefineR(t12)
NT = {t6, t1, t12, t13} since t14 →sd t6 ∧ t14 ∈ IT ∧ ¬RefineR(t14)
NT = {t6, t1, t12, t13} since t13 →sd t1 ∧ t13 ∈ IT ∧ ¬RefineR(t13)

In the third step, the automaton Coffee will be added to the final slice.

Iteration 2: Step 3 of the WDQ-algorithm

3. Reconstruct ES and ET :

ES = {CoffeeIdle, CoffeeBusy}
ET = {t5}

This time the fourth step needs a thorough examination. First of all, the
state CoffeeIdle is added to IS. This is both because the state belongs to
ES and because it is an initial state. We have already given an illustration of
this in the first iteration. Secondly, the construction of IT may look akward
but it is quite logical. Transitions t11, t10, and t13 have to be included in this
set because t12 depends on them. There actions are going to be preserved in
the final slice and therefore it might be possible that these actions reference
variables that are defined by states/transitions that are not yet included into
the final slice. Such a way of working guarantees the functional equivalence
between both models.
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Iteration 2: Step 4 of the WDQ-algorithm

4. Reconstruct IS and IT :

IS = (NS \ RS) ∪ {CoffeeIdle} = ∅ ∪ {CoffeeIdle}

IT = (NT \ RT ) ∪ {t11, t10, t13} ∪ {t5} = {t6} ∪ {t11, t10, t13} ∪ {t5}

Iteration 2: Step 5, 6 and 7 of the WDQ-algorithm

5. NS ∪ ES = {On} ∪ {CoffeeIdle, CoffeeBusy}
NT ∪ ET = {t6, t1, t12, t13, t10, t11} ∪ {5}

RefineR(On) = False ∧ On ∈ NS
RefineR(CoffeeIdle) = False ∧ CoffeeIdle /∈ NS
RefineR(CoffeeBusy) = False ∧ CoffeeBusy /∈ NS

RefineR(t6) = True ∧ t6 ∈ NT
. . .
RefineR(t11) = True ∧ t11 ∈ NT
RefineR(t5) = False ∧ t5 /∈ NT

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES
RT = RT ∪NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

10.1.3 Iteration 3

The job is not done yet. A third iteration is needed.
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Iteration 3: Step 2 of the WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = {On}
NS since CoffeeIdle→rcd On ∧ CoffeeIdle ∈ IS ∧ ¬RefineR(CoffeeIdle)

NT = {t14, t11, t1, t13}
NT = {t14, t11, t1, t13} since t10 →sdd t14 ∧ t10 ∈ IT ∧ RefineR(t10)
NT = {t14, t11, t1, t13} since t10 →sdd t11 ∧ t10 ∈ IT ∧ RefineR(t10)
NT = {t14, t11, t1, t13} since t13 →sd t1 ∧ t13 ∈ IT ∧ RefineR(t13)
NT = {t14, t11, t1, t13} since t5 →sd t13 ∧ t5 ∈ IT ∧ ¬RefineR(t5)

Iteration 3: Step 3 of the WDQ-algorithm

3. Reconstruct ES and ET :

ES = ∅
ET = ∅

Iteration 3: Step 4 of the WDQ-algorithm

4. Reconstruct IS and IT :

IS = ∅

IT = (NT \ RT ) ∪ {t14} = {t14}

The algorithm continues with the last iteration since IT is not yet empty. We
omit to give the details of this last iteration since it only has the responsibility
to preserve the action of transition t14. The slice returned by the algorithm
is the EHA without the Light automaton.

10.1.4 Improvements

Table 10.1 shows some improvement results. As can be seen, for this example,
the removal of the sequential automaton results in a significant reduction of
the used BDD nodes.
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Iteration 3: Step 5, 6 and 7 of the WDQ-algorithm

5. NS ∪ ES = {On} ∪ ∅
NT ∪ ET = {t14, t11, t1, t13} ∪ ∅

RefineR(On) = true ∧ On ∈ NS

RefineR(t14) = True ∧ t14 ∈ NT
. . .
RefineR(t13) = True ∧ t13 ∈ NT

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES
RT = RT ∪NT ∪ ET

7. IS = ∅ and IT 6= ∅; return to step 2.

Resources Original Model Sliced Model
State Variables 33 26

BDD Nodes 29468 10776
User Time 0.10s 0.04s

Table 10.1: Improvements of F (st−Cup = CupIdle)

A binary decision diagram (BDD) is a particular data structure (a graph),
used by the model checker CaSMV, which often provides a compact
representation of boolean functions. Sets of states of an automaton can be
encoded as boolean functions [26] with BDDs . Every BDD has two different
types of nodes, terminal nodes and non-terminal nodes. The terminal nodes
represent the Boolean values, 0 and 1, while the non-terminal nodes represent
variables of the function represented by the BDD i.e. any path from a root
node to a terminal node corresponds to a set of variable assignments that
make the encoded formula have the terminal node’s value.

10.2 Is State LightOn Reachable?

Now suppose that we want to verify a trivial property stating that at some
point during execution the machine must reach the state LightOn. In LTL,
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this will be expressed as follows:

F (st−Light = LightOn)

The same as before, the slicing criterion extracted from this property will be
< {LightOn}, ∅ >. That way it is realized that the state LightOn is present
in the slice. It may be no suprise that this time the slicing algorithm is not
able to slice away anything. The sliced statechart is exactly the same as the
original model. We may conclude that the WDQ-algorithm only removes
elements from the model when it is able to. To be complete, we just give the
first iteration of the slicing procedure since the other iterations are almost
the same as in Section 10.1.

10.2.1 Iteration 1

Iteration 1: Step 1 of the WDQ-algorithm

1. Given the criterion < {LightOn}, ∅ >. Then

RS = {LightOn} RefineR(LightOn) = True
RT = ∅

ES = {LightOff} RefineR(LightOff) = False
ET = {t16, t17} RefineR(t16) = False
ET = {t16, t17} RefineR(t17) = False

RS = RS ∪ ES = {LightOn} ∪ {LightOff} = {LightOn, LightOff}
RT = RT ∪ ET = {t16, t17}
IS = RS = {LightOn, LightOff}
IT = RT = {t16, t17}
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Iteration 1: Step 2 of the WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = {On}
NS since LightOn →rcd On ∧ LightOn ∈ IS ∧ RefineR(LightOn)

NT = {t6, t12}
NT = {t6, t12} since t17 →sd t6 ∧ t17 ∈ IT ∧ ¬RefineR(t17)
NT = {t6, t12} since t16 →sd t12 ∧ t16 ∈ IT ∧ ¬RefineR(t16)

Iteration 1: Step 3 of the WDQ-algorithm

3. Reconstruct ES and ET :

ES = σCoffee ∪ σController ∪ (σRoot \ {On})
ET = (δCoffee \ {t6}) ∪ (δController \ {t12}) ∪ δRoot

Iteration 1: Step 4 of the WDQ-algorithm

4. Reconstruct IS and IT :

IS = (NS \ RS) ∪ {CoffeeIdle, StandBy,Off} =
IS = (NS \ RS) ∪ {StandBy,{On} ∪ {CoffeeIdle, StandBy,Off}

IT = (NT \ RT ) = NT ∪ ET = {t12, t6} ∪ ET

blabla blabla blabla blabla blabla
blabla
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Iteration 1: Step 5, 6 and 7 of the WDQ-algorithm

5. NS ∪ ES = {On} ∪ ES
NT ∪ ET = {t12, t6} ∪ ET

RefineR(On) = True ∧ On ∈ NS
RefineR(s) = False if (s ∈ ES, s /∈ NS)
RefineR(t12) = True ∧ t12 ∈ NT
RefineR(t) = False if (t ∈ ET, t /∈ NT )

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES
RT = RT ∪NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

10.3 Conclusion

This chapter has clearly shown that the slicing algorithm only slices away
some parts of the extended hierarchical automata when they are of no
interest. If that is the case, this results in far smaller binary decision
diagrams. The smaller the diagram is, the faster the model checker can
return its verification result. If parts of the automata are important to the
property to be verified, then the algorithm keeps the elements in the final
slice. By now, it must be clear that it is not always the case that the slicing
algorithm is able to slice away parts of the automata.



CHAPTER 11

Efficient Slicing Theory in Practice

Action expresses priorities.
Mahatma Gandhi.

T
he WDQ-slicing algorithm, as presented in Chapter 7, has serious
shortcomings. In fact, the slicing algorithm is pretty lenient; in order to

be certain that the result is still a valid state chart, it keeps some elements
that, in fact, could be sliced away. This is especially the case when the
hierarchical automata have a lot of synchronization (or broadcasting) issues.
However, when synchronization is thoroughly considered during slicing then
the returned slice is possibly dramatically smaller than when broadcasting
issues are omitted. This is especially relevant to scale finite-state verification
techniques.

Chapter 8 has refined some interference dependencies in terms of happens-
before relations. These new definitions are concerned with the broadcasting
issues that occur in automata. Using these more concrete dependencies
during slicing sometimes results in smaller slices (still with respect to the
property to be verified), but sometimes it does not. It is the purpose of
this chapter to show that the optimized WDQ-algorithm is able to produce
smaller slices. To do that, different temporal properties are to be considered
again.

233
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11.1 Notations

We use the example of Chapter 8. For clarity reasons, Figure 11.1 shows the
same, but annoted EHA.

A0
 A1


at0: e


A2


at1: [guard_0]


A3


at3: [guard_2]


A5


at6: m


at2: [guard_1]


A4


at4: k


at5: /gen(new f());


A


B0


B2


bt5: k / a=b+c;


B1


bt0: g


B3


bt2: m / gen(new e());


B4


bt4: [guard_3]


B


bt1: n


bt3:


C0


C1


ct1: g


C3


ct3: f


C


ct2: h


s1


s3


Root


SubA0


entry/b = i * j;


SubA1
st0: [guard_4]


SubA


DV = {a, b};

UV = {b, c, i, j};

GE = {e, f};

TE = {k, g, n, m, h};


DV = {a};

UV = {b, c};

TE = {k};


GE = {e};

TE = {m};


DV = {b};

UV = {i,j};


DV = {b};

UV = {i,j};


Figure 11.1: Annoted EHA

We define two algorithms: one is referred to as the WDQ-algorithm; the
other one is referred to as the OWDQ-algorithm. The WDQ-algorithm is the
algorithm that does not consider execution chronology. It is the algorithm
presented in Chapter 7 and illustrated in Chapter 10. The OWDQ-algorithm
refers to the optimized algorithm, as discussed in Chapter 8. The only
difference with the WDQ-algorithm is that it uses the more precise definitions
of some interference dependencies (the ones defined in Section 8.4).

It is the purpose of this chapter to explain the slicing differences between
both algorithms in detail. Therefore, we agree that the steps of the WDQ-
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algorithm are written in gray, while the steps of the OWDQ-algorithm are
written in black.

11.2 Has Variable a the Value 8?

However, suppose that we want to verify a temporal property like this:

F (a = 8)

Then, the slicing criterion is defined as < ∅, {bt5} >, since bt5 defines the
value of the variable a. The reduced model returned by both the original
slicing algorithm and the improved one will definitely differ. The WDQ-
algorithm only removes automaton C because the algorithm believes that
automaton A and SubA compute the value of variable b which is used to
define the value of variable a. However, the improved OWDQ-algorithm,
which respects the broadcasting mechanism between the regions, removes
the automata A, C, and SubA. There is nothing inside these automata that
helps region B in defining the value of variable a, or that causes B to make
progress. Additionally, the action of transition bt2 is the only one that will
be removed from the model, because it is useless to (dis)prove the given
property.

We will now show how both algorithms build their slices. As we know
from Chapter 8 the OWDQ-algorithm needs to have knowledge of all the
happens-before relations that occur in the hierarchical automaton. These
relations are used to make some interference dependencies more precise. For
simplicity reasons, we omit to give all such relations, but instead only mention
the important ones. These are summarized in Table 11.1.

. . . . . .
B0 →so bt5 B0 →so B2
bt5 →so B2 B0 →so bt2
bt5 →so bt2 bt5 →so at0
bt2 →so at0 bt2 →so A1
at0 →so A1 bt5 →so A1

at0 →so SubA1 bt5 →so SubA1
. . . . . .

Table 11.1: Some Happens-Before Relations
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11.2.1 Iteration 1

The first step of the algorithm does the initialization of all the sets. Clearly,
this is the same for both algorithms.

Iteration 1: Step 1 of the (O)WDQ-algorithm

1. Given the criterion < ∅, {bt5} >. Then

RS = ∅
RT = {bt5} RefineR(bt5) = True

ES = σB RefineR(B0) = False RefineR(B1) = False
ES = σB RefineR(B2) = False RefineR(B3) = False
ES = σB RefineR(B4) = False
ET = δB \ {bt5} RefineR(bt0) = False RefineR(bt1) = False
ET = δB \ {bt5} RefineR(bt2) = False RefineR(bt3) = False
ET = δB \ {bt5} RefineR(bt4) = False

RS = RS ∪ ES = σB; RT = RT ∪ ET = δB

IS = RS; IT = RT

RS = ∅
RT = {bt5} RefineR(bt5) = True

ES = σB RefineR(B0) = False RefineR(B1) = False
ES = σB RefineR(B2) = False RefineR(B3) = False
ES = σB RefineR(B4) = False
ET = δB \ {bt5} RefineR(bt0) = False RefineR(bt1) = False
ET = δB \ {bt5} RefineR(bt2) = False RefineR(bt3) = False
ET = δB \ {bt5} RefineR(bt4) = False

RS = RS ∪ ES = σB; RT = RT ∪ ET = δB

IS = RS; IT = RT

In the second step there is already an important difference noticeable. The
WDQ-algorithm will add state A1 to the final slice due to the fact that bt5
is parallel data dependent on this state. The OWDQ-algorithm refuses to
include this state to the final slice, because it knows that bt5 never can be
parallel data dependent on A1 since bt5 happens before A1 (see Table 11.1).
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Iteration 1: Step 2 of the (O)WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = {s3, A1} since B0 →rcd s3 ∧ B0 ∈ IS ∧ ¬RefineR(B0)
NS = {s3, A1} since bt5 →pdd A1 ∧ bt5 ∈ IT ∧ RefineR(bt5)
NT = ∅

NS = {s3} since B0 →rcd s3 ∧ B0 ∈ IS ∧ ¬RefineR(B0)
NT = ∅

One difference leads to many differences, even in the following steps
of the algorithm. In the third step, the WDQ-algorithm adds all the
remaining states/transitions of both automata A and Root to the final slice.
Contrarily, the OWDQ-algorithm only adds the remaining elements of the
root automaton to the final slice.

Iteration 1: Step 3 of the (O)WDQ-algorithm

3. Reconstruct ES and ET :

ES = (σRoot \ {s3}) ∪ (σA \ {A1})
ET = δRoot ∪ δA

ES = σRoot \ {s3}
ET = δRoot

The fourth step of the algorithm is easily understood for both versions of the
algorithm. It adds those elements to the sets IS and IT that are relevant to
the property.
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Iteration 1: Step 4 of the (O)WDQ-algorithm

4. Reconstruct IS and IT :

IS = {s3, A1}
IT = ∅ ∪ ET = δRoot ∪ δA

IS = {s3}
IT = ∅ ∪ ET = δRoot

Iteration 1: Step 5, 6 and 7 of the (O)WDQ-algorithm

5. NS ∪ ES = σRoot ∪ σA NT ∪ ET = (δRoot \ {bt5}) ∪ δA

RefineR(s3) = True ∧ s3 ∈ NS RefineR(A1) = True ∧ A1 ∈ NS
RefineR(s | s ∈ ES) = False RefineR(t | t ∈ ET ) = False

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

5. NS ∪ ES = σRoot NT ∪ ET = (δRoot \ {bt5})

RefineR(s3) = True ∧ s3 ∈ NS
RefineR(s | s ∈ ES) = False RefineR(t | t ∈ ET ) = False

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

11.2.2 Iteration 2

Since the sets IS and IT are not yet empty, the algorithms will go into a
second iteration. From this point on, we improve both algorithms with the
following:
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When searching the dependence relations at step 2, if a new state
s is found only through refinement control-dependence relation, and
there are not any elements depending on s through other relations,
then the algorithm will not search the elements which s is refinement
data-dependent on in the next iteration when s is reserved in IS.

With such an improvement, we avoid that possibly irrelevant states are added
to the slice. To illustrate this, just look at state s3. For both algorithms,
s3 is added to IS due to a refinement control dependence. This way, the
algorithms are able to include the root automaton to the slice, and therefore
transition bt5 is reachable along some execution path.

The only intention of a refinement control dependence is the soundness of
the slice. Nothing more, nothing less. Using a refinement data dependence to
add for example transition bt2 (and its corresponding action) makes no sense;
we do not yet know if there is any element dependent on this transition.

Iteration 2: Step 2 of the (O)WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = {SubA1} since A1 →rdd SubA1 ∧ A1 ∈ IS ∧ RefineR(A1)
NT = {bt2} since at0 →sd bt2 ∧ at0 ∈ IT ∧ ¬RefineR(at0)

NS = ∅
NT = ∅

Iteration 2: Step 3 of the (O)WDQ-algorithm

3. Reconstruct ES and ET :

ES = σSubA \ {SubA1}
ET = δSubA

ES = ∅
ET = ∅

Of course, the OWDQ-algorithm is finishing. The final slice returned by
the improved algorithm is therefore given by the automata Root and B. The
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Iteration 2: Step 4 of the (O)WDQ-algorithm

4. Reconstruct IS and IT :

IS = {SubA1}
IT = ∅ ∪ ET = δSubA

IS = ∅
IT = ∅

action of bt5 is the only action present in the slice. As can be seen, the WDQ-
algorithm must go into a third iteration, which will be the last one. Its slice is
given by the automata Root, B, A and SubA. As you and I definitely agree,
the slice returned by the OWDQ-algorithm is preferable towards finite-state
verification techniques.

Iteration 2: Step 5, 6 and 7 of the (O)WDQ-algorithm

5. NS ∪ ES = σSubA NT ∪ ET = {bt2} ∪ δSubA

RefineR(SubA1) = True ∧ SubA1 ∈ NS
RefineR(s | s ∈ ES) = False
RefineR(bt2) = True ∧ bt2 ∈ NT RefineR(t | t ∈ ET ) = False

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

5. NS ∪ ES = ∅ NT ∪ ET = ∅

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS = ∅ and IT = ∅; Stop.
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11.2.3 Improvements

Table 11.2 shows some important results that speak for themselves; broad-
casting may not be neglected while slicing hierarchical automata.

Resources Original Model WDQ-Model OWDQ-Model
State Variables 38 36 26

BDD Nodes 29891 26715 10004
User Time 0.09s 0.07s 0.01

Table 11.2: Improvements of F (a = 8)

11.3 Is State B2 Reachable?

Now suppose that we want to verify a trivial property stating that at some
point during execution the machine must reach the state B2. In LTL, this
will be expressed as follows:

F (st−B = B2)

The slicing criterion extracted from this property will be < {B2}, ∅ >. That
way it is realized that the state B2 is present in the slice. It might be a
surprise but the slice returned by both algorithms is exactly the same. Both
algorithms will remove the automata A, C, and SubA from the model. This is
because the latter regions do not control the execution inside region B in any
way. Note that the action of both transitions bt5 and bt2 will be removed
as well.

By using this property, we illustrate that using more correct interference
dependencies does not always give better results. You will see that during
slicing, actions of states and/of transitions are never retained in the final
slice. As a direct consequence, the broadcasting information captured in
happens-before relations will have no influence on the slicing algorithm.

11.3.1 Iteration 1

The first step of both slicing algorithms is exactly the same. This is because
elements are added to the final slice without using dependence information.

Even the second step of both algorithms shows no difference. Both
algorithms only add state s3 to the final slice due to a refinement control
dependence. Beside B0, none of the elements contained in IS and IT cause
new information to be included in the final slice. Therefore, the strength of
the OWDQ-algorithm cannot be exploited yet.
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Iteration 1: Step 1 of the (O)WDQ-algorithm

1. Given the criterion < {B2}, ∅ >. Then

RS = {B2} RefineR(B2) = True
RT = ∅

ES = σB \ {B2} RefineR(B0) = False RefineR(B1) = False
ES = σB \ {B2} RefineR(B3) = False RefineR(B4) = False
ET = δB RefineR(bt0) = False RefineR(bt1) = False
ET = δB RefineR(bt2) = False RefineR(bt3) = False
ET = δB RefineR(bt4) = False RefineR(bt5) = False

RS = RS ∪ ES = σB; RT = RT ∪ ET = δB

IS = RS; IT = RT

RS = {B2} RefineR(B2) = True
RT = ∅

ES = σB \ {B2} RefineR(B0) = False RefineR(B1) = False
ES = σB \ {B2} RefineR(B3) = False RefineR(B4) = False
ET = δB RefineR(bt0) = False RefineR(bt1) = False
ET = δB RefineR(bt2) = False RefineR(bt3) = False
ET = δB RefineR(bt4) = False RefineR(bt5) = False

RS = RS ∪ ES = σB; RT = RT ∪ ET = δB

IS = RS; IT = RT

Iteration 1: Step 2 of the (O)WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = {s3} since B0 →rcd s3 ∧ B0 ∈ IS ∧ ¬RefineR(B0)
NT = ∅

NS = {s3} since B0 →rcd s3 ∧ B0 ∈ IS ∧ ¬RefineR(B0)
NT = ∅

To guarantee the soundness of the slice, both algorithms will add the elements
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of the root automaton to the slice under construction.

Iteration 1: Step 3 of the (O)WDQ-algorithm

3. Reconstruct ES and ET :

ES = σRoot \ {s3}
ET = δRoot

ES = σRoot \ {s3}
ET = δRoot

The fourth step of the algorithm is easily understood for both versions of the
algorithm. It adds those elements to the sets IS and IT that are relevant to
the property.

Iteration 1: Step 4 of the (O)WDQ-algorithm

4. Reconstruct IS and IT :

IS = {s3}
IT = ∅ ∪ ET = δRoot

IS = {s3}
IT = ∅ ∪ ET = δRoot
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Iteration 1: Step 5, 6 and 7 of the (O)WDQ-algorithm

5. NS ∪ ES = σRoot NT ∪ ET = δRoot

RefineR(s3) = True ∧ s3 ∈ NS
RefineR(s | s ∈ ES) = False RefineR(t | t ∈ ET ) = False

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

5. NS ∪ ES = σRoot NT ∪ ET = δRoot

RefineR(s3) = True ∧ s3 ∈ NS
RefineR(s | s ∈ ES) = False RefineR(t | t ∈ ET ) = False

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS 6= ∅ and IT 6= ∅; return to step 2.

11.3.2 Iteration 2

Since neither IS nor IT is empty, the slicing algorithms start a second
iteration. As you already must guess by now, this second iteration will be
the last iteration. Of course, remember that we treat elements that are only
added to the slice with a refinement control dependence in a special way. As
a consequence, no new information will be added to the final slice.
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Iteration 2: Step 2 of the (O)WDQ-algorithm

2. Find new states and transitions using the dependencies.

NS = ∅
NT = ∅

NS = ∅
NT = ∅

Iteration 2: Step 3 of the (O)WDQ-algorithm

3. Reconstruct ES and ET :

ES = ∅
ET = ∅

ES = ∅
ET = ∅

Iteration 2: Step 4 of the (O)WDQ-algorithm

4. Reconstruct IS and IT :

IS = ∅
IT = ∅

IS = ∅
IT = ∅

11.4 Conclusion

Until now, there was no slicing method for concurrent statecharts available
which handles some interference dependencies correctly. Interference is intro-
duced through the use of variables in parallel executing regions. Chapter 8
has introduced a more precise definition of these interferences. Using them to
slice statecharts with respect to a given property results in more precise slices;
and thus in smaller slices. Of course, smaller slices are preferable towards



 11. Efficient Slicing Theory in Practice

Iteration 2: Step 5, 6 and 7 of the (O)WDQ-algorithm

5. NS ∪ ES = ∅ NT ∪ ET = ∅

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS = ∅ and IT = ∅; Stop.

5. NS ∪ ES = ∅ NT ∪ ET = ∅

6. Reconstruct RS and RT :

RS = RS ∪NS ∪ ES; RT = RT ∪NT ∪ ET

7. IS = ∅ and IT = ∅; Stop.

finite-state verification techniques like model checking. This chapter has
illustrated, as more and more statecharts consist of parallel executing regions,
that the broadcasting mechanism, as integrated by the OWDQ-algorithm,
may not be neglected while slicing statecharts. In fact, the broadcasting
mechanism is extremely important to calculate better static slices than other
approaches like the WDQ-algorithm.
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A Final Word

I don’t try to describe the future.
I try to prevent it.

Ray Bradbury.

T
he use of the UML specification language is very widespread due to
some of its features. UML models are created during the whole

software development process and often several diagrams are used to describe
the design of the system with a fair level of detail and long before the
implementation of the software is even started. However, the more complex
systems of today require modeling methods and tools that allow errors to be
detected in the initial phases of development. The use of formal methods
makes such error detection possible but the learning cost is high. Indeed,
many of these methods require as starting point a formal specification of
the software. But not all software developers are familiar with formal
specification languages and not all of them are willing to learn or to use
them.

This PhD presents a tool which avoids the learning cost, enabling the
behavior of a system expressed in UML to be verified in a completely
automatic way based on model checking, refinement and slicing. More
specifically, the tool automatically carries out a formal framework in which
to verify the UML statechart diagrams. The advantage of such an approach
is that at the one hand developers can use UML to specify and to describe
the software, and at the other hand they can use a “well-known” efficient
verification method i.e. model checking.
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We have started this research with a translation of an individual
statechart into a Kripke model that is used by the model checker CaSMV
to prove or to disprove given system properties. To not restrict the
complexity of behavioral design specifications, we have also focused on
communicating statecharts. This not only augments the complexity of the
transformation technique and the corresponding Kripke models, but also
influences the practical usefulness of the method (and tool) considerably since
quite complex behaviors can automatically be proved to be correct. There
is an interesting question to be answered here: how to deal with recursive
statecharts? My opinion is that there is a big chance that the mathematics
behind model checking needs to be extended.

Additionally, the developed methodology is also capable to deal with
what the UML community calls protocol conformance. This proves that
the verification of statecharts can be done at several levels: at the abstract
level of protocols, or at the more detailed behavioral level. To automatically
(dis)prove protocol conformance, the model checker is instrumented to use
the refinement technique. But one bottleneck is present here: the model
checker CaSMV forces us to use a very strict refinement function – a one-to-
one mapping- to relate behavioral statecharts to protocol statecharts. And
this, of course, limits capabilities. As a side effect, both types of statecharts
are syntactically very close. To overcome such a limitation, it is interesting to
investigate how to adapt the model checker CaSMV in such a way that more
complex refinement functions are allowed or that could be defined by the user.
To go even further in the field of mathematics, some maybe find it attractive
to find a connection with process algebraic techniques and concepts.

The traditional problem of formal verification like model checking is
the so-called state space explosion problem, which makes the verification of
huge UML statechart models infeasible. Applying the slicing technique to a
statechart model provides a nice work-around to this problem; slicing removes
pieces of the model that are not of interest during verification. This research
mentions a nice optimization of the slicing technique. The optimization
takes into account the broadcasting mechanism between different parts
of a statechart model to remove false dependencies between parts of the
statechart. As a result, the complexity of the verification approach is even
more reduced. In the future, we would like to develop an elegant slicing
algorithm for models consisting of communicating statecharts. We are also
planning to flood the slicing algorithm with industrial strength examples.





We hope that our verification tool will contribute to improve the quality
of UML models. In fact, it is possible as our practical examples clearly
illustrate. However, UML is a rich language and its study and formalization
goes beyond the effort of a single person or research team. This is one of
the reasons why we have focused our attention to statechart diagrams only.
In the long run, there will be (there already are) many different verification
and validation methods and tools for many different subsets of the UML
formalism. It is up to the software developer to freely choose the method or
methods that better suit his model and the problem that needs to be solved.
Our tool is then chosen at the moment the system is required to have a
correct behavior at all times. At the end, the last step is to provide a single
tool that has all the knowledge needed to analyze the different diagrams of
software design, and that can be installed in the workstation of any UML
designer.





APPENDIX B

Nederlandstalige Samenvatting

”I don’t know”
Wat betekent dat in het Nederlands?

”Sorry, dat weet ik niet”.
W. van Broeckhoven.

B.1 Algemeen

Computers hebben een grote impact gehad op ons leven, al vanaf het
moment dat ze uitgevonden zijn. Nu maken ze integraal deel uit van
ons dagelijks leven. Denk bijvoorbeeld aan keukenapparatuur, medische
toestellen, verkeerssystemen, . . . ; het zijn allemaal computers. Doordat onze
afhankelijkheid van computers in de toekomst zal blijven toenemen, is het
van groot belang dat we van dergelijke systemen kunnen aantonen dat ze
foutloos werken. We hebben immers dringend nood aan applicaties die in
hoge mate betrouwbaar zijn. Hoe bekomen we nu zulke applicaties? Dit is
de centrale vraag waarop dit proefschrift een antwoord tracht te geven, maar
wel voor een specifieke groep van systemen, namelijk ingebedde systemen1.

B.1.1 Ingebedde Systemen

Ingebedde systemen zijn computers die we terugvinden in de meest uiteen-
lopende producten: auto’s, wasmachines, mobiele telefoons, etc. Van
buitenaf is het niet direct te zien dat er inwendig van een computer gebruik
gemaakt wordt. Ingebedde systemen breiden de functionaliteit van een

1Het onderzoek uiteengezet in dit proefschrift kan ook gebruikt worden voor andere
applicaties.
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apparaat uit waardoor de intelligentie van het product verhoogt. Bijvoor-
beeld, wanneer een broodmachine uitgebreid wordt met een elektronische
tijdsschakelaar (brood wordt gebakken tegen de ochtend aan), dan is die
tijdsschakelaar het ingebedde systeem. De uitbreiding van de functionaliteit
wordt doorgaans in hoge mate bepaald door de toepassing van software.

Ingebedde systemen zijn duidelijk verschillend van standaard computers.
Om het belangrijkste verschil te noemen, ieder ingebed systeem heeft een
specifieke taak, wat niets anders is dan een functionaliteit naar de gebruiker
toe. Onze desktops daarentegen kunnen voor heel veel verschillende taken
ingezet worden. Om nog een ander verschil te noemen, een ingebed systeem
is meestal beperkt in zijn resources (geheugen etc.) en heeft een volledige
andere gebruikersinterface dan standaard computers. Het toetsenbord is
vervangen door knopjes waarvan er niet meer zijn dan nodig en de monitor
is vervangen door een eenvoudig display, een venstertje waar je informatie af
kunt lezen die voor het systeem belangrijk is.

B.1.2 Máák een Ontwerp

Nog steeds beweren sommige software-ingenieurs dat ze tijd besparen door
het ontwerpen van een programma over te slaan. Het ontwerp2 van nieuwe
software begint dan als een mooi model in het brein van de programmeur en
wordt dan ook onmiddellijk gemaakt in een programmeertaal. In dit stadium
is het zuiver, elegant en onweerstaanbaar. Na de eerste release gaat het mis.
De software begint te “rotten”. In eerste instantie is het niet zo’n probleem.
Een lelijke patch hier, een onhandige aanpassing daar, maar de schoonheid
van het ontwerp is nog steeds zichtbaar. In de loop van de tijd tasten alle
aanpassingen het ontwerp echter aan. Het wordt spaghetticode, dat uiteraard
steeds moeilijker te onderhouden is (uit [84]). Het duurt uren en zelfs weken
om de kwaliteit en de betrouwbaarheid van het product te verbeteren.

Toch bestaat er een zeer eenvoudige oplossing voor dit probleem: indien
je eerst het product ontwerpt in een menselijke taal, dan duurt het maar
enkele minuten om verbeteringen aan te brengen. Pas wanneer het ontwerp
compleet is en aanvaard wordt, kan de implementatie van het product starten.
Dit maakt dat een ontwerp een vereenvoudiging is van de realiteit; het is
een blauwdruk van het eigenlijke systeem. Ieder ontwerp, ook wel model
genoemd, zorgt ervoor dat softwareontwikkelaars het systeem beter begrijpen
en het product beter kunnen implementeren, aanpassen of uitbreiden. Met
behulp van een ontwerp kunnen beslissingen heel snel en efficiënt gewijzigd
worden, zelfs op implementatieniveau.

2Het softwareontwerp kan je het beste vergelijken met het architectenplan van je huis.
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Ingebedde systemen zijn meestal vrij complexe systemen waaraan steeds
hogere eisen gesteld worden betreffende onder meer de reactietijd, de
beschikbaarheid, de veiligheid, de robuustheid, de integreerbaarheid en
de onderhoudbaarheid. Voor deze systemen is het uitermate belangrijk
dat de implementatiefase voorafgegaan wordt door een zeer nauwkeurige
objectgeoriënteerde ontwerpfase.

B.1.3 Ontwerpen met UML

De Unified Modeling Language (UML) [96] is de standaardtaal die gebruikt
wordt tijdens de objectgeoriënteerde analyse- en ontwerpfase van software-
projecten. De taal is geschikt voor het maken van modellen van de software.
Deze modellen worden vervolgens ofwel geheel handmatig ofwel gedeeltelijk
automatisch naar programmacode omgezet.

Met behulp van UML kunnen software-ingenieurs zowel statische als dy-
namische aspecten van een systeem beschrijven. Hiertoe onderscheidt UML
verschillende soorten diagrammen. Zo kan met behulp van klassediagrammen
de architectuur van een systeem gespecificeerd worden: de klassen, de relaties
tussen de klassen, de interfaces, . . . . Een statechartdiagram laat toe om
de status weer te geven waarin een object zich kan bevinden tijdens zijn
bestaan in het systeem. Het toont ook de overgangen tussen de verschillende
toestanden samen met de events en de activiteiten die deze veranderingen in
de toestanden veroorzaken.

UML-modellen worden gebouwd en gebruikt tijdens het gehele soft-
wareontwikkelingsproces. Software-ingenieurs kunnen UML-diagrammen
opstellen tijdens de initiële ontwerpfases, zelfs wanneer het nog niet volledig
duidelijk is hoe het systeem er uiteindelijk zal uitzien. Naarmate de ontwikke-
ling evolueert, worden de diagrammen aangepast, worden ze gedetailleerder
of verschijnen er nieuwe diagrammen. Dit proces herhaalt zich tot wanneer
het gehele team tevreden is met het ontwerp. Vervolgens wordt de software
gëımplementeerd overeenkomstig dit model. De kwaliteit van de software
hangt dus af van de kwaliteit van het model.

B.1.4 De Nood aan Verificatie

Ingebedde systemen maken hoe langer hoe meer deel uit van ons dagelijks
leven. De nood aan correctheidsgaranties wordt echter alsmaar groter
aangezien we te veel afhankelijk geworden zijn van hun continue en correcte
werking. Denk bijvoorbeeld aan de gevolgen van een ontwerpfout in de
besturingssoftware van een vliegtuig of trein. Software maken zonder
verificatie wordt daarom ondenkbaar. Om nu aan de vraag naar grotere



 B. Nederlandstalige Samenvatting

kwaliteit te voldoen is een wezenlijke verbetering van het ontwerpproces
nodig. Fouten moeten zo vroeg mogelijk in het ontwikkelingsproces van het
systeem verwijderd worden.

Elk ontwikkelingsproces start met een ontwerpfase die de volgende fase, de
implementatiefase, veel vlotter doet verlopen. Echter, ingebedde systemen
zijn complexe systemen wat betekent dat ook het softwareontwerp steeds
complexer wordt waardoor het zo goed als onmogelijk is om manueel na te
gaan of zo een systeem wel degelijk aan de gestelde eisen voldoet. Ook zijn
het aantal denkbare situaties dermate groot dat testen onvoldoende zekerheid
geven over de correctheid. Het is immers mogelijk dat het ontwerp een gedrag
bevat dat wij, softwareontwikkelaars, niet verwachten. Dit gedrag kan zware
fouten in het systeem veroorzaken. Het opsporen van fouten aan de hand
van bewijsvoeringsmethodes moet daarom ook gebeuren in de ontwerpfase
en niet alleen in de implementatiefase. Meer nog, de kost om fouten te
vinden en te verwijderen groeit drastisch naarmate ze de implementatiefase
binnengedrongen zijn.

Laten we nu een voorbeeld bekijken waaruit blijkt dat verificatie wel
degelijk onmisbaar geworden is in het ontwikkelingsproces van software. Een
beroemd voorbeeld betreft de eerste Ariane 5 raket (vlucht 501) die in 1996
kort na lancering door een softwarefout, en noodgedwongen tot ontploffing
gebracht werd. Gelukkig betrof dit een onbemand tuig. Het was enkel door
toepassing van formele verificatie dat de oorzaak van deze fout gedetecteerd
werd. Er trad een overloop (overflow) en de computer werd uitgeschakeld.
De overloop (overflow) werd veroorzaakt door een data conversie van een 64-
bit floating point naar een 16-bit signed integer waarde. Het floating point
getal had een waarde die veel te groot was voor de voorstelling als 16-bit
signed integer. Dit voorbeeld illustreert duidelijk dat indien eerst verificatie
wordt toegepast, dergelijke situaties vermeden kunnen worden. Het spaart
veel tijd, veel geld, en soms ook wel mensenlevens.

B.2 Verificatiemethode

Ingebedde systemen zijn eigenlijk interactieve computersystemen. De inputs
worden doorlopend van de buitenwereld verkregen, terwijl de outputs steeds
aan de buitenwereld ter beschikking worden gesteld. Eenvoudiger uitgelegd,
ingebedde systemen zijn reactieve systemen; ze wachten op gebeurtenissen
waarmee ze wat moeten doen, of nog, hun acties worden veroorzaakt door
reacties op externe events.

Voor deze ingebedde systemen is de toepasbaarheid van het “state
machine” gedachtegoed bijna vanzelfsprekend. De modellering en de im-
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plementatie van dergelijke systemen vallen zeer natuurlijk te omschrijven in
termen van toestandmachines (UML-statecharts). Het zijn formele modellen
waarmee het gedrag van het ingebedde systeem als een reeks van overgangen
van de ene toestand naar de andere beschreven wordt. Figuur B.1 beschrijft
het vanzelfsprekende gedrag (sterk vereenvoudigd) van een koffiezetautomaat
met behulp van een UML-statechart.

StandBy
 MaakKoffie


[geld > 0] / verstuur(ev_vul_kop)


ev_kop_gevuld / geld = 0;


Uit
 Aan

ev_vul_kop


ev_kop_gevuld


LegeKop
 VulKop

ev_vul_kop


/ verstuur(ev_kop_gevuld);


Motor


LampIndicatie


KoffieEngine


Figure B.1: Het Gedrag van een Koffiezetautomaat

Het ontwerp (en de implementatie) van ingebedde systemen is zeer gecom-
pliceerd geworden, en daardoor uitermate gevoelig voor fouten. Voor een
klein model kan de correctheid van een ontwerp met de hand bewezen
worden. Doch kan dit soms een tijdrovende en foutgevoelige bezigheid zijn.
Traditionele simulaties (testen) zullen ook tekortschieten in het blootleggen
van fouten in het ontwerp. Daarom is het beter gebruik te maken van
geautomatiseerde formele methoden voor de verificatie.

De gerenommeerde formele verificatietechniek model checking is een
aanvullende methode die zo goed als geen expertise vereist; het is als het
ware een “simulatie in een hogere versnelling”. Model checking controleert
het systeem op fouten als volgt: er wordt steeds gestart bij de beginsituatie
van het systeem en vervolgens worden alle paden die het systeem kan
nemen automatisch afgelopen. Met behulp van model checking kunnen we
bijvoorbeeld nagaan dat het systeem nooit in een fouttoestand kan belanden.
Indien deze fouttoestand wel bereikt kan worden, dan kan het model checking
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algoritme ook aanduiden via welk pad (= tegenvoorbeeld) deze fouttoestand
bereikt kan worden. Dergelijke informatie is belangrijk om na te gaan
waar de fout in het ontwerp zit. De fout in het ontwerp wordt vervolgens
aangepast waardoor een betrouwbaarder en veiliger systeem ontstaat. Het
moet duidelijk zijn dat model checking gebaseerd is op een automatische
en een uitputtende verkenning van de bereikbare toestandsruimte van het
systeem. Deze thesis maakt gebruik van de model checker Cadence SMV
(CaSMV) [86] om zo de kwaliteit van ingebedde systemen te verhogen.

Aan de ene kant hebben we UML-statecharts, aan de andere kant hebben
we de model checker CaSMV die we kunnen inzetten om na te gaan of het
systeem al dan niet aan de gegeven eigenschappen voldoet (zie Figuur B.2).
Een belangrijke bijdrage van deze thesis is de transformatie van het grafische
statechartmodel naar het textuele inputformaat van CaSMV. De volledige
uitvoeringssemantiek van statecharts mag niet verloren gaan tijdens deze
transformatie. Daartoe hebben we eerst de uitvoeringssemantiek formeel
gedefinieerd om zo het transformatieproces vlotter te laten verlopen (zie
hiervoor Hoofdstuk 2).

UML

Statechart


Model


Textueel Model

(CaSMV taal)


Model Checken

(CaSMV


OK


NOK

Tegenvoorbeeld


Slicen

Te Bewijzen

Eigenschap


Figure B.2: Integratie van Model Checking in het Ontwerpproces

De gevolgde methode is in de literatuur niet onbekend. Toch vinden wij
dat de voorgestelde methodes fundamentele tekorten bevatten. Ten eerste
bevat de literatuur een eerste klasse van methodes die enkel in staat zijn
om ontwerpen bestaande uit juist één UML statechart te verifiëren. Deze
methodes maken voor de verificatie ook gebruik van een backend-tool zoals
SPIN [55], of CaSMV [86]. Dergelijke ontwerpen zijn voor ingebedde
systemen echter niet altijd even realistisch. Uiteraard is het wel zo dat
een initieel ontwerp van een ingebed systeem start met een enkele statechart
maar al snel zullen meerdere statecharts aan het ontwerp toegevoegd worden,
zoals uit latere voorbeelden zal blijken. Bovendien bleek na onderzoek
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ook dat de methodes een onvolledige en/of een onnauwkeurige en/of een
beperkte uitvoeringssemantiek integreerden in het verificatieproces. Dit legt
niet alleen modelleringsbeperkingen op aan software-ingenieurs, maar zorgt
er ook voor dat de gevolgde semantiek tijdens de verificatie verschilt van de
semantiek die gevolgd wordt tijdens de implementatie. Niet verwonderlijk
dat dit nadelig is voor zowel de kwaliteit als de betrouwbaarheid van het
systeem. De semantiek van één statechart die wij gedefinieerd hebben in
Hoofdstuk 2, werkt deze nadelen weg en ligt aan de basis van het gehele
transformatieproces. In Hoofdstuk 3 hebben wij het transformatieproces
van een enkel statechart nauwkeurig beschreven. Zowel de semantiek als
het transformatieproces zijn zodanig opgebouwd dat ze zich eenvoudig laten
uitbreiden naar meer realistische ontwerpen van ingebedde systemen.

Anderzijds kent de literatuur ook een methode die reeds complexere
ontwerpen kan verifiëren op de juistheid van eigenschappen. Deze ontwerpen
bevatten meerdere UML-statecharts met de veronderstelling dat ze altijd
parallel ten opzichte van elkaar werken. Voor ingebedde systemen is dit al
meer aanvaardbaar. Laten we, ter illustratie, terugkeren naar het voorbeeld
van de koffiezetautomaat. Een koffiezetautomaat reageert op inputs van de
omgeving. Bijvoorbeeld, de automaat biedt koffie aan nadat een klant het
juiste geldbedrag in de machine heeft geworpen. Uiteraard zijn zowel de
automaat als de klant autonome entiteiten die tegelijkertijd (= in parallel)
acties kunnen uitvoeren. Indien we nu een dergelijk systeem wensen te
ontwerpen, ontstaat een model bestaande uit verschillende concurrente
statecharts; het gedrag van het koffiezetapparaat wordt beschreven in
een statechart en het gedrag van de klant eveneens. Indien ook de
onderhoudsman aan het systeem wordt toegevoegd, dan kan zijn gedrag
eveneens gespecificeerd worden in nog een andere statechart. Maar een
ingebed systeem kan inwendig ook bestaan uit verschillende concurrente
componenten. Het gedrag van elke component wordt dan gespecificeerd
in afzonderlijke, doch parallele statecharts. Denk bijvoorbeeld aan de
verschillende onderdelen van je auto.

Maar we zijn nog niet tevreden, we willen een nog grotere groep van
ontwerpen verifiëren, net daar waar de literatuur afhaakt. We willen
eigenschappen kunnen bewijzen over ontwerpen bestaande uit zowel actieve
als passieve objecten. Actieve objecten zijn de zogenaamde autonome con-
currente entiteiten waarover we zonet gesproken hebben. Dit in tegenstelling
tot passieve objecten; zij kunnen niet uitvoeren in parallel met andere
objecten. Zo is een wasmachine een actief object (het staat altijd aan,
of het voert uit), maar de onderdelen (watertank, sproeier, droger) ervan
zijn passieve objecten die nooit tegelijkertijd actief zullen zijn. Hoofdstuk 4
beschrijft de semantiek die we nodig hebben voor dergelijke ontwerpen. Het
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is immers belangrijk te weten hoe actieve en passieve objecten met elkaar
communiceren, welke events onmiddellijk afgehandeld moeten worden en
welke niet, enz. Deze semantiek is in feite een zeer eenvoudige uitbreiding van
de semantiek gedefinieerd in Hoofdstuk 3. Deze semantiek zal opnieuw een
zeer grote rol spelen tijdens het transformatieproces van dit soort ontwerpen.

Samengevat hebben we een methode ontwikkeld die in staat is een grote
diversiteit aan ontwerpen (juist één statechart, enkel actieve statecharts,
zowel actieve als passieve statecharts) te verifiëren op hun correctheid. Enkel
en alleen op die manier kunnen we de kwaliteit van complexe ingebedde
systemen verhogen aangezien fouten in complexe ontwerpen vroegtijdig
gesignaleerd kunnen worden.

Uiteraard hebben we ook nood aan een logisch formalisme waarmee de
correctheidseigenschappen op een formele manier uitgedrukt kunnen worden.
Dit wordt beschreven in hoofdstuk 5.

We gaan nog een stapje verder. Als je vertrouwd bent met objectge-
oriënteerde methodes, dan weet je dat er zoiets bestaat als klassen en
interfaces. Een klasse is de abstractie van een entiteit uit een bepaald
systeem. Iedere klasse omvat een gedeelte van de systeemfunctionaliteit. Het
is een stukje code dat beschrijft hoe de entiteit er in werkelijkheid uitziet, wat
het kan doen en hoe alles werkt. Een interface daarentegen is een variant van
een klasse. Interfaces maken het mogelijk een onderscheid te maken tussen
wat een object kan en zijn daadwerkelijke implementatie. Een interface kan
dus worden gëımplementeerd door twee verschillende klassen die helemaal
niets met elkaar te maken hebben, echter door de interface kunnen ze wel
uniform benaderd worden.

De laatste nieuwe versie van de UML standaard laat nu toe dat het
gedrag van klassen gespecificeerd wordt aan de hand van zogenaamde
gedragsstatecharts, dewelke dezelfde zijn als de statecharts zoals we ze tot nu
toe gebruikt hebben. Anderzijds bestaan er ook protocol statecharts die enkel
aan interfaces gekoppeld mogen worden. Met behulp van deze statecharts
kunnen we aanduiden hoe een klasse de interface moet gebruiken; welke
events in welke volgorde mogen optreden; dus op welke manier een klasse
dient te reageren op inputs. De acties die gebeuren ten gevolge van deze
reacties worden niet weergegeven.

Wat is nu het probleem? Enerzijds hebben we een gedragsstatechart,
anderzijds hebben we een protocol statechart, hoe kunnen we nu bewijzen dat
een klasse de opgelegde regels van zijn interface wel degelijk implementeert?
Dit noemen we protocol conformance verificatie en wordt uitvoerig behandeld
in Hoofdstuk 6. De verificatie is zodanig gemodelleerd dat ze combineerbaar
is met de verificatiemethode uit Hoofdstukken 3-4. Bovendien is het
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zo dat het consistentiebewijs tussen de twee soorten statecharts volledig
automatisch uitgevoerd kan worden. Een groot plusplunt! De kwaliteit van
de systemen wordt opnieuw verhoogd.

B.3 Optimalisatiemethode

Zoals we reeds vermeld hebben, is het niet onwaarschijnlijk dat het software-
ontwerp dermate complex is dat het nodig is om speciale aandacht te besteden
aan de correctheid ervan. Dit kan gerealiseerd worden door gebruik te maken
van model checking, wat een geautomatiseerde formele verificatiemethode
is, en waarmee zowel gewenste als ongewenste eigenschappen bewezen
of weerlegd kunnen worden. Het probleem waar model checking altijd
mee te kampen heeft, is het probleem van de toestandsexplosie: het
aantal toestanden van een systeem kan exponentieel groeien met het aantal
componenten van een systeem, waardoor de grootte van de systemen die
daadwerkelijk geverifieerd kunnen worden ernstig beperkt wordt. Anders
gezegd, er ligt een beperking op de grootte van de statecharts die gebruikt
worden om het systeemgedrag te specifieren in de ontwerpsfase. Hoe groter
de statecharts, hoe groter de kans dat tijdens de verificatie de model checker
out-of-memory gaat.

Maar niet getreurd, voor elk probleem bestaat een oplossing. De
literatuur beschikt reeds over een algoritme dat het probleem van de
toestandsexplosie reduceert (besproken in Hoofdstuk 7). Dit algoritme is
gebaseerd op de program slicing techniek. Het slicing algoritme filtert als
het ware uit een statechart een veel kleinere statechart. En het is nu net
dit kleinere statechart waarop de model checker een systeemeigenschap gaat
bewijzen of weerleggen. Uiteraard bevat de kleinere statechart alle informatie
die relevant is voor een bepaalde te bewijzen eigenschap. De irrelevante
informatie wordt met andere woorden achterwege gelaten.

Laten we het slicing idee even illustreren op het voorbeeld van de
koffiezetautomaat. Stel dat we de volgende eigenschap willen nagaan: van
zodra het event ev−vul−kop gegenereerd wordt, moet de machine in de
toestand VulKop terechtkomen. Om deze eigenschap te bewijzen is het
niet nodig dat het volledige statechart als input naar de model checker
gestuurd wordt. De toestand LampIndicatie kan probleemloos uit dit
model verwijderd worden, zonder te raken aan de waarheidswaarde van de
eigenschap. Dit is omdat deze toestand slechts de verwerkingsindicatie geeft
naar de gebruiker toe. Het bekomen van een kleiner model door wegwerking
van dergelijke irrelevante toestanden is nu net de verantwoordelijkheid van
het bestaande statechart slicing algoritme.
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Uiteraard bevat het bestaande slicing algoritme een belangrijke tekort-
koming. Het houdt te weinig rekening met de concurrente aspecten binnenin
de statecharts. Het is nu net de doelstelling van Hoofdstuk 8 om deze
concurrente aspecten te verwerken in het bestaande slicing algoritme. Op
die manier kunnen we nog meer irrelevante informatie verwijderen met
betrekking tot een te bewijzen eigenschap. Er worden dus als het ware nog
kleinere modellen gefilterd uit de originele statecharts.

Wat is nu het grote plusplunt aan het slicing algoritme? Wel, we creëren
de mogelijkheid om grotere modellen te bewijzen op de juistheid ervan, door
ons enkel te richten op een relevant deelmodel. Voor de model checker
betekent dit dat hij minder te kampen krijgt met het probleem van de explosie
van de toestandsruimte.

B.4 Besluit

Dit proefschrift beschrijft een onderzoek op het gebied van software verificatie
waarbij enkel gekeken wordt naar de dynamische aspecten ervan. De
nadruk ligt op de verificatie van het ontwerp van ingebedde systemen
om zo de betrouwbaarheid van dergelijke systemen te verhogen. De
verificatie maakt gebruik van een gerenommeerde bewijsvoeringsmethode,
model checking, die gebruikt wordt in zowel de academische wereld als de
bedrijfswereld. Aangezien model checking gebaseerd is op het onderzoek
van toestandsruimtes, is het struikelblok voor de toepasbaarheid ervan het
probleem van de explosie van deze toestandsruimtes. In dit proefschrift
hebben we een bestaande techniek geoptimaliseerd om dit probleem te
verlichten.
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[113] Issa Traoré. An Outline of PVS Semantics for UML Statecharts. J. UCS,
6(11):1088–1108, 2000.

[114] STL Queen’s University. References: Semantics of UML State Machines
(Statechart Diagrams). Availble from http://www.cs.queensu.ca/home/

stl/internal/uml2/bibtex/ref_umlstatemach%ines.html.

[115] S. Van Langenhove and A. Hoogewijs. Integrating Cadence SMV in the
Verification of UML Software. In Proceedings of the 8th Dutch Proof
Tools Day, pages 15–29. Foundations group of the NIII, Nijmegen, The
Netherlands, July 2004.

[116] S. Van Langenhove, A. Hoogewijs, and B. De Leeuw. UML based Verification
of Software. In Proceedings of the 32nd Spring School in Theoretical
Computer Science, Concurrency theory and Applications. CIRM, Luminy,
Marseille, France, April 2004.

[117] Sara Van Langenhove. Internal Broadcasting to Slice UML State Charts: As
Rich As Needed. FNRS Contact Day: The Theory and Practice of Software
Verification, October 13th, 2005 - Liège, Belgium.
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