16 research outputs found

    Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel

    Get PDF
    Cost control is a recurring problem in companies where studies have provided different solutions. The main objective of this research is to propose and validate an alternative to cost control using data science to support decision-making using the business intelligence 4.0 paradigm. The work uses Machine Learning (ML) to support decision-making in company cost-control management. Specifically, we used the ability of hierarchical agglomerative clustering (HAC) algorithms to generate clusters and suggest possible candidate products that could be substituted for other, more cost-effective ones. These candidate products were analyzed by a panel of company experts, facilitating decisions based on business costs. We needed to analyze and modify the company's ecosystem and its associated variables to obtain an adequate data warehouse during the study, which was developed over three years and validated HAC as a support to decision-making in cost control

    A framework for designing data pipelines for manufacturing systems

    Get PDF
    Data pipelines describe the path through which big data is transmitted, stored, processed and analyzed. Designing an appropriate data pipeline for a specific data driven manufacturing project can be challenging, whereas there is a paucity of frameworks to guide one in the design. In this research we develop a framework for designing data pipelines for manufacturing systems. The framework consists of a template for selecting key layers and components that make up big data pipelines in manufacturing systems. A use case is presented to provide an illustrative guideline for its application. Benefits of the framework and future directions are discusse

    An automated machine learning based decision support system to predict hotel booking cancellations

    Get PDF
    Booking cancellations negatively contribute to the production of accurate forecasts, which comprise a critical tool in the hospitality industry. Research has shown that with today’s computational power and advanced machine learning algorithms it is possible to build models to predict bookings cancellation likelihood. However, the effectiveness of these models has never been evaluated in a real environment. To fill this gap and investigate how these models can be implemented in a decision support system and its impact on demand-management decisions, a prototype was built and deployed in two hotels. The prototype, based on an automated machine learning system designed to learn continuously, lead to two important research contributions. First, the development of a training method and weighting mechanism designed to capture changes in cancellations patterns over time and learn from previous days’ predictions hits and errors. Second, the creation of a new measure – Minimum Frequency – to measure the precision of predictions over time. From a business standpoint, the prototype demonstrated its effectiveness, with results exceeding 84% in accuracy, 82% in precision, and 88% in Area Under the Curve (AUC). The system allowed hotels to predict their net demand and thus making better decisions about which bookings to accept and reject, what prices to make, and how many rooms to oversell. The systematic prediction of bookings with high probability of being canceled allowed hotels to reduce cancellations by 37 percentage points by acting to avoid their cancellation.info:eu-repo/semantics/publishedVersio

    A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector

    Get PDF
    The increasing availability of data, gathered by sensors and intelligent machines, is chang-ing the way decisions are made in the manufacturing sector. In particular, based on predictive approach and facilitated by the nowadays growing capabilities of hardware, cloud-based solutions, and new learning approaches, maintenance can be scheduled—over cell engagement and resource monitoring—when required, for minimizing (or managing) unexpected equipment failures, improving uptime through less aggressive maintenance schedules, shortening unplanned downtime, reducing excess (direct and indirect) cost, reducing long-term damage to machines and processes, and improve safety plans. With access to increased levels of data (and over learning mechanisms), companies have the capability to conduct statistical tests using machine learning algorithms, in order to uncover root causes of problems previously unknown. This study analyses the maturity level and contributions of machine learning methods for predictive maintenance. An upward trend in publications for predictive maintenance using machine learning techniques was identified with the USA and China leading. A mapping study—steady set until early 2019 data—was employed as a formal and well-structured method to synthesize material and to report on pervasive areas of research. Type of equipment, sensors, and data are mapped to properly assist new researchers in positioning new research activities in the domain of smart maintenance. Hence, in this paper, we focus on data-driven methods for predictive maintenance (PdM) with a comprehensive survey on applications and methods until, for the sake of commenting on stable proposal, 2019 (early included). An equal repartition between evaluation and validation studies was identified, this being a symptom of an immature but growing research area. In addition, the type of contribution is mainly in the form of models and methodologies. Vibrational signal was marked as the most used data set for diagnosis in manufacturing machinery monitoring; furthermore, supervised learning is reported as the most used predictive approach (ensemble learning is growing fast). Neural networks, followed by random forests and support vector machines, were identified as the most applied methods encompassing 40% of publications, of which 67% related to deep neural network with long short-term memory predominance. Notwithstanding, there is no robust approach (no one reported optimal performance over different case tests) that works best for every problem. We finally conclude the research in this area is moving fast to gather a separate focused analysis over the last two years (whenever stable implementations will appear)

    Artificial intelligence for throughput bottleneck analysis – State-of-the-art and future directions

    Get PDF
    Identifying, and eventually eliminating throughput bottlenecks, is a key means to increase throughput and productivity in production systems. In the real world, however, eliminating throughput bottlenecks is a challenge. This is due to the landscape of complex factory dynamics, with several hundred machines operating at any given time. Academic researchers have tried to develop tools to help identify and eliminate throughput bottlenecks. Historically, research efforts have focused on developing analytical and discrete event simulation modelling approaches to identify throughput bottlenecks in production systems. However, with the rise of industrial digitalisation and artificial intelligence (AI), academic researchers explored different ways in which AI might be used to eliminate throughput bottlenecks, based on the vast amounts of digital shop floor data. By conducting a systematic literature review, this paper aims to present state-of-the-art research efforts into the use of AI for throughput bottleneck analysis. To make the work of the academic AI solutions more accessible to practitioners, the research efforts are classified into four categories: (1) identify, (2) diagnose, (3) predict and (4) prescribe. This was inspired by real-world throughput bottleneck management practice. The categories, identify and diagnose focus on analysing historical throughput bottlenecks, whereas predict and prescribe focus on analysing future throughput bottlenecks. This paper also provides future research topics and practical recommendations which may help to further push the boundaries of the theoretical and practical use of AI in throughput bottleneck analysis

    Data Science and Analytics in Industrial Maintenance: Selection, Evaluation, and Application of Data-Driven Methods

    Get PDF
    Data-driven maintenance bears the potential to realize various benefits based on multifaceted data assets generated in increasingly digitized industrial environments. By taking advantage of modern methods and technologies from the field of data science and analytics (DSA), it is possible, for example, to gain a better understanding of complex technical processes and to anticipate impending machine faults and failures at an early stage. However, successful implementation of DSA projects requires multidisciplinary expertise, which can rarely be covered by individual employees or single units within an organization. This expertise covers, for example, a solid understanding of the domain, analytical method and modeling skills, experience in dealing with different source systems and data structures, and the ability to transfer suitable solution approaches into information systems. Against this background, various approaches have emerged in recent years to make the implementation of DSA projects more accessible to broader user groups. These include structured procedure models, systematization and modeling frameworks, domain-specific benchmark studies to illustrate best practices, standardized DSA software solutions, and intelligent assistance systems. The present thesis ties in with previous efforts and provides further contributions for their continuation. More specifically, it aims to create supportive artifacts for the selection, evaluation, and application of data-driven methods in the field of industrial maintenance. For this purpose, the thesis covers four artifacts, which were developed in several publications. These artifacts include (i) a comprehensive systematization framework for the description of central properties of recurring data analysis problems in the field of industrial maintenance, (ii) a text-based assistance system that offers advice regarding the most suitable class of analysis methods based on natural language and domain-specific problem descriptions, (iii) a taxonomic evaluation framework for the systematic assessment of data-driven methods under varying conditions, and (iv) a novel solution approach for the development of prognostic decision models in cases of missing label information. Individual research objectives guide the construction of the artifacts as part of a systematic research design. The findings are presented in a structured manner by summarizing the results of the corresponding publications. Moreover, the connections between the developed artifacts as well as related work are discussed. Subsequently, a critical reflection is offered concerning the generalization and transferability of the achieved results. Thus, the thesis not only provides a contribution based on the proposed artifacts; it also paves the way for future opportunities, for which a detailed research agenda is outlined.:List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Conceptual Background 1.3 Related Work 1.4 Research Design 1.5 Structure of the Thesis 2 Systematization of the Field 2.1 The Current State of Research 2.2 Systematization Framework 2.3 Exemplary Framework Application 3 Intelligent Assistance System for Automated Method Selection 3.1 Elicitation of Requirements 3.2 Design Principles and Design Features 3.3 Prototypical Instantiation and Evaluation 4 Taxonomic Framework for Method Evaluation 4.1 Survey of Prognostic Solutions 4.2 Taxonomic Evaluation Framework 4.3 Exemplary Framework Application 5 Method Application Under Industrial Conditions 5.1 Conceptualization of a Solution Approach 5.2 Prototypical Implementation and Evaluation 6 Discussion of the Results 6.1 Connections Between Developed Artifacts and Related Work 6.2 Generalization and Transferability of the Results 7 Concluding Remarks Bibliography Appendix I: Implementation Details Appendix II: List of Publications A Publication P1: Focus Area Systematization B Publication P2: Focus Area Method Selection C Publication P3: Focus Area Method Selection D Publication P4: Focus Area Method Evaluation E Publication P5: Focus Area Method ApplicationDatengetriebene Instandhaltung birgt das Potential, aus den in Industrieumgebungen vielfältig anfallenden Datensammlungen unterschiedliche Nutzeneffekte zu erzielen. Unter Verwendung von modernen Methoden und Technologien aus dem Bereich Data Science und Analytics (DSA) ist es beispielsweise möglich, das Verhalten komplexer technischer Prozesse besser nachzuvollziehen oder bevorstehende Maschinenausfälle und Fehler frühzeitig zu erkennen. Eine erfolgreiche Umsetzung von DSA-Projekten erfordert jedoch multidisziplinäres Expertenwissen, welches sich nur selten von einzelnen Personen bzw. Einheiten innerhalb einer Organisation abdecken lässt. Dies umfasst beispielsweise ein fundiertes Domänenverständnis, Kenntnisse über zahlreiche Analysemethoden, Erfahrungen im Umgang mit verschiedenen Quellsystemen und Datenstrukturen sowie die Fähigkeit, geeignete Lösungsansätze in Informationssysteme zu überführen. Vor diesem Hintergrund haben sich in den letzten Jahren verschiedene Ansätze herausgebildet, um die Durchführung von DSA-Projekten für breitere Anwendergruppen zugänglich zu machen. Dazu gehören strukturierte Vorgehensmodelle, Systematisierungs- und Modellierungsframeworks, domänenspezifische Benchmark-Studien zur Veranschaulichung von Best Practices, Standardlösungen für DSA-Software und intelligente Assistenzsysteme. An diese Arbeiten knüpft die vorliegende Dissertation an und liefert weitere Artefakte, um insbesondere die Selektion, Evaluation und Anwendung datengetriebener Methoden im Bereich der industriellen Instandhaltung zu unterstützen. Insgesamt erstreckt sich die Abhandlung auf vier Artefakte, die in einzelnen Publikationen erarbeitet wurden. Dies umfasst (i) ein umfangreiches Systematisierungsframework zur Beschreibung zentraler Ausprägungen wiederkehrender Datenanalyseprobleme im Bereich der industriellen Instandhaltung, (ii) ein textbasiertes Assistenzsystem, welches ausgehend von natürlichsprachlichen und domänenspezifischen Problembeschreibungen eine geeignete Klasse von Analysemethoden vorschlägt, (iii) ein taxonomisches Evaluationsframework zur systematischen Bewertung von datengetriebenen Methoden unter verschiedenen Rahmenbedingungen sowie (iv) einen neuartigen Lösungsansatz zur Entwicklung von prognostischen Entscheidungsmodellen im Fall von eingeschränkter Informationslage. Die Konstruktion der Artefakte wird durch einzelne Forschungsziele im Rahmen eines systematischen Forschungsdesigns angeleitet. Neben der Darstellung der einzelnen Forschungsbeiträge unter Bezugnahme auf die erzielten Ergebnisse der dazugehörigen Publikationen werden auch die Verbindungen zwischen den entwickelten Artefakten beleuchtet und Zusammenhänge zu angrenzenden Arbeiten hergestellt. Zudem erfolgt eine kritische Reflektion der Ergebnisse hinsichtlich ihrer Verallgemeinerung und Übertragung auf andere Rahmenbedingungen. Dadurch liefert die vorliegende Abhandlung nicht nur einen Beitrag anhand der erzeugten Artefakte, sondern ebnet auch den Weg für fortführende Forschungsarbeiten, wofür eine detaillierte Forschungsagenda erarbeitet wird.:List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Conceptual Background 1.3 Related Work 1.4 Research Design 1.5 Structure of the Thesis 2 Systematization of the Field 2.1 The Current State of Research 2.2 Systematization Framework 2.3 Exemplary Framework Application 3 Intelligent Assistance System for Automated Method Selection 3.1 Elicitation of Requirements 3.2 Design Principles and Design Features 3.3 Prototypical Instantiation and Evaluation 4 Taxonomic Framework for Method Evaluation 4.1 Survey of Prognostic Solutions 4.2 Taxonomic Evaluation Framework 4.3 Exemplary Framework Application 5 Method Application Under Industrial Conditions 5.1 Conceptualization of a Solution Approach 5.2 Prototypical Implementation and Evaluation 6 Discussion of the Results 6.1 Connections Between Developed Artifacts and Related Work 6.2 Generalization and Transferability of the Results 7 Concluding Remarks Bibliography Appendix I: Implementation Details Appendix II: List of Publications A Publication P1: Focus Area Systematization B Publication P2: Focus Area Method Selection C Publication P3: Focus Area Method Selection D Publication P4: Focus Area Method Evaluation E Publication P5: Focus Area Method Applicatio

    A Hierarchical, Fuzzy Inference Approach to Data Filtration and Feature Prioritization in the Connected Manufacturing Enterprise

    Get PDF
    The current big data landscape is one such that the technology and capability to capture and storage of data has preceded and outpaced the corresponding capability to analyze and interpret it. This has led naturally to the development of elegant and powerful algorithms for data mining, machine learning, and artificial intelligence to harness the potential of the big data environment. A competing reality, however, is that limitations exist in how and to what extent human beings can process complex information. The convergence of these realities is a tension between the technical sophistication or elegance of a solution and its transparency or interpretability by the human data scientist or decision maker. This dissertation, contextualized in the connected manufacturing enterprise, presents an original Fuzzy Approach to Feature Reduction and Prioritization (FAFRAP) approach that is designed to assist the data scientist in filtering and prioritizing data for inclusion in supervised machine learning models. A set of sequential filters reduces the initial set of independent variables, and a fuzzy inference system outputs a crisp numeric value associated with each feature to rank order and prioritize for inclusion in model training. Additionally, the fuzzy inference system outputs a descriptive label to assist in the interpretation of the feature’s usefulness with respect to the problem of interest. Model testing is performed using three publicly available datasets from an online machine learning data repository and later applied to a case study in electronic assembly manufacture. Consistency of model results is experimentally verified using Fisher’s Exact Test, and results of filtered models are compared to results obtained by the unfiltered sets of features using a proposed novel metric of performance-size ratio (PSR)
    corecore