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A B S T R A C T   

Identifying, and eventually eliminating throughput bottlenecks, is a key means to increase throughput and 
productivity in production systems. In the real world, however, eliminating throughput bottlenecks is a chal
lenge. This is due to the landscape of complex factory dynamics, with several hundred machines operating at any 
given time. Academic researchers have tried to develop tools to help identify and eliminate throughput bottle
necks. Historically, research efforts have focused on developing analytical and discrete event simulation 
modelling approaches to identify throughput bottlenecks in production systems. However, with the rise of in
dustrial digitalisation and artificial intelligence (AI), academic researchers explored different ways in which AI 
might be used to eliminate throughput bottlenecks, based on the vast amounts of digital shop floor data. By 
conducting a systematic literature review, this paper aims to present state-of-the-art research efforts into the use 
of AI for throughput bottleneck analysis. To make the work of the academic AI solutions more accessible to 
practitioners, the research efforts are classified into four categories: (1) identify, (2) diagnose, (3) predict and (4) 
prescribe. This was inspired by real-world throughput bottleneck management practice. The categories, identify 
and diagnose focus on analysing historical throughput bottlenecks, whereas predict and prescribe focus on 
analysing future throughput bottlenecks. This paper also provides future research topics and practical recom
mendations which may help to further push the boundaries of the theoretical and practical use of AI in 
throughput bottleneck analysis.   

1. Introduction 

One of the grand themes that have permeated manufacturing is the 
endless pursuit of productivity [1] (p.341). Manufacturing companies 
must increase their factory floor productivity to remain cost-efficient 
and competitive. Productivity is often measured in terms of 
“throughput”. Throughput is defined as the number of products pro
duced in a unit time interval [2] (p. 3823). In real-world production 
systems, practitioners constantly devote their efforts to improving sys
tem throughput. However, they often find a sizable gap between target 
and actual throughput. Recent empirical studies show throughput losses 
in real-world production systems to be 20 %–30 % ([3] (p.831), [4] 
(p.7278)). These losses are partly due to the existence of “throughput 

bottlenecks”. Throughput bottlenecks are machines which constrain 
throughput. They may occur in a system due to variability in the time 
duration of production flow disturbances, such as unplanned stops in 
machines, variable processing times of machines, setups, operator de
lays and so on [5,6]. 

To improve throughput, multiple operations management theories 
(cf. Theory of Constraints (ToC) [7], swift even flow [8](p.102)) 
recommend eliminating throughput bottlenecks. However, this is easier 
in theory than in practice. Academic researchers have helped practi
tioners identify and analyse throughput bottlenecks by developing 
analytical approaches (such as system-theoretic analysis based on 
recursive equations) [2,4,9,10] and discrete event simulation 
model-based approaches (building discrete event simulation models of 
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production systems) [11–16]. Although these approaches have helped 
analyse throughput bottlenecks, they were better suited to static analysis 
and more useful for early configuration of production systems [17]. Each 
time the production system changes, new equations may have to be 
manually derived (in the case of analytical approaches) and existing 
models updated, or sometimes new models created (in the case of 
simulation approaches). This is a time-consuming and expensive task. 

Recently, artificial intelligence (AI) in manufacturing has been pro
pelled from hype to reality [18–20] by a convergence of algorithmic 
advances, data proliferation due to increased digitalisation, reduced 
data storage costs and a tremendous increase in computing power. It has 
now become possible for practitioners to better address the challenges of 
analysing throughput bottlenecks by using AI. Using production system 
data, the dynamics of a production system can be understood in detail, 
throughput bottlenecks automatically identified and diagnosed, and 
then possible actions prescribed. Over the last decade, academic re
searchers successfully used AI for throughput bottleneck analysis in 
production systems. They have thus advanced the field significantly 
from its earlier analytical and simulation-based approaches. However, 
there is no currently available comprehensive presentation of the 
state-of-the-art in AI for throughput bottleneck analysis, summarising 
what has been achieved and how AI has helped advance the field. Most 
importantly, there is no account of the challenges encountered, and the 
research opportunities this may provide. This information is also 
important for practitioners who are increasingly showing interest to 
implement AI solutions for throughput bottleneck analysis [21](p.7). 
But before the implementation, they need to identify different AI solu
tions and analyse their usefulness in the specific context of their factory. 
This study provides support and guidelines to make it easier for them to 
navigate through the different AI solutions and to select the appropriate 
AI solution. 

Therefore, the purpose of this paper is to present the state-of-the-art 
of academic literature on the use of AI for throughput bottleneck anal
ysis. Specifically, this paper makes three contributions: (1) it presents a 
classification structure (identifying, diagnosing, predicting and pre
scribing) for existing research efforts, with special emphasis on its 
impact in improving real-world, shop-floor throughput bottleneck 
management, (2) it describes the state of the art of AI (in terms of input 
data, modelling approach and output) for throughput bottlenecks 
analysis; and (3) it provides a wide range of future research directions, 
and a series of practical recommendations, to influence the future 
development and use of AI for throughput bottleneck analysis in 
practice. 

The remainder of this paper is structured as follows. Section 2 pre
sents the theoretical background on throughput bottlenecks and AI. 
Section 3 presents the methodology adopted to conduct our systematic 
literature review. Section 4 presents the state-of-the-art research in AI 
for throughput bottleneck analysis. Section 5 presents future research 
directions. This is followed by practical recommendations in Section 6. 
Section 7 provides the limitations of the study. Finally, Section 8 con
cludes the paper, summarising the main conclusions of this study. 

2. Theoretical background 

To understand state-of-the-art results in throughput bottleneck 
analysis, readers must be knowledgeable about the fundamentals of 
throughput bottlenecks and AI. Therefore, in this section, the theory of 
throughput bottlenecks will be presented first. The main challenges of 
throughput bottleneck elimination in real-world shop floor practices are 
then explained. These will help the readers to comprehensively under
stand the phenomenon of throughput bottlenecks in production systems. 
Also, it will make the results of the paper broadly accessible to a larger 
audience. Finally, there will be an overview of AI within the 
manufacturing domain. 

2.1. Theory of throughput bottlenecks 

According to [22], to explain any theory, it is important to under
stand four building blocks of that theory: (1) object of study, (2) con
cepts, (3) propositions and (4) domain. 

This section explains the theory of throughput bottlenecks by iden
tifying and describing its building blocks. 

Fig. 1 shows a conceptual model of the building blocks of throughput 
bottleneck theory. In this figure, the outermost dashed block represents 
the domain, the solid inner block denotes the object of study, the three 
innermost blocks represent the construct, and the arrows represent the 
propositions. Each building block is then explained. 

2.1.1. Object of study 
As in this paper, the focus is on studying throughput bottlenecks in a 

production system. Thus, the object of study is the “production system”. 

2.1.2. Concepts 
Understanding throughput bottlenecks within a production system 

requires three concepts: (1) variability, (2) throughput bottlenecks and 
(3) throughput. Variability is defined as “any deviation from absolute 
regularity” [23] (p.5). Variability focuses on the stochastic effects of 
machines in a production system [24,25,6]. Stochastic effects are caused 
by process time variabilities [26]. These are random events such as 
unplanned stops, variations in the processing times, setups, operator 
delays and so on. It is important to note that these variabilities may be 
different for different machines in a production system and may change 
with time. Throughput is defined as “the number of products per unit 
time interval from the production system” [2] (p. 3823). A unit time 
interval may be on any time scale, such as a shift, day, week or month. 
Throughput is a measure of the performance of a production system [2]. 
Throughput bottlenecks are defined as “the machines whose perfor
mance impedes the overall system performance most strongly” [13] 
(p.5019). For example, take a production system with ten machines. If 
two of them impede throughput from the production system more 
strongly than the other machines, then these two are called throughput 
bottlenecks. 

2.1.3. Propositions 
The relationships between variability, throughput and throughput 

bottlenecks are explained in the following sentences. Arrow A is the 
relationship between variability and throughput [27]. The greater the 
processing time and flow time variabilities, the greater the fluctuation in 
production system throughput. For example [28,29], showed that var
iable processing times in a machine produced significantly lower 
throughput. Arrow B is the relationship between variability and 
throughput bottlenecks. Variability in a set of machines affects 
throughput more than other machines [7]. These sets of machines are 
called throughput bottlenecks [12,13,30]. Arrow C is the relationship 
between throughput bottlenecks and production system throughput. 
Eliminating throughput bottlenecks leads to increased throughput [31, 
32]. 

2.1.4. Domain 
The concepts and propositions of throughput bottlenecks are inten

ded to hold and be generalisable within the domain of discrete flow line 
production systems (or commonly called as flow shops) with or without 
buffers (such as automotive machining production systems or assembly 
production systems) [11,33,34]. 

To summarise, the theory of throughput bottlenecks explains how 
the variability of random events in machines brings about throughput 
bottlenecks and constrains production system throughput. Once 
throughput bottlenecks are eliminated, greater throughput is obtained. 
But, when throughput bottlenecks are eliminated, the system dynamics 
change, affecting processing time and flow time variabilities. A new set 
of machines will then emerge as throughput bottlenecks [35]. To 

M. Subramaniyan et al.                                                                                                                                                                                                                       



Journal of Manufacturing Systems 60 (2021) 734–751

736

achieve higher throughput, these new throughput bottlenecks need to be 
identified and eliminated. This cycle of identifying, analysing and 
eliminating throughput bottlenecks is a continuous process in real-world 
production systems until a desired level of throughput is reached. 

2.2. Practical challenges of eliminating throughput bottlenecks 

To successfully realise the cycle of identifying and eliminating 
throughput bottlenecks, practitioners need to repeatedly analyse 
throughput bottlenecks at different time intervals. However, on the real- 
world shop floor, there are four frequent challenges in identifying and 
eliminating throughput bottlenecks: (1) time frame (2) shiftiness (3) 
multiple root causes and (4) equivocality. Addressing these four chal
lenges will have a maximum impact on the production system 
throughput. These challenges are explained below. 

2.2.1. Time frame 
Throughput bottlenecks need to be identified and analysed in 

different time frames to allow the planning and execution of throughput 
improvement actions [2]. For example, on a shop floor, practitioners 
need to analyse short-term throughput bottlenecks (such as machines 
behaving like bottlenecks within a production shift) and take rapid 
short-term action (running those bottlenecks during breaks, ensuring 
they are not starved and so on). This allows practitioners to reduce 
throughput fluctuations and achieve the target short-term throughput. 
At the same time, practitioners need to analyse long-term throughput 
bottlenecks (such as machines behaving like bottlenecks over multiple 
production runs). This allows them to take long-term actions (making 
suitable jigs and fixtures to simplify the workload or allocating buffer 
spaces before a bottleneck) and substantially increase long-term 
throughput. 

2.2.2. Shiftiness 
Throughput bottlenecks are dynamic on the shop-floor [11]. In other 

words, the throughput bottleneck location shifts from one machine to 
another in a production system. For example, on a machining produc
tion line, a practitioner might realise that a milling machine in the 
production system was the throughput bottleneck in a previous pro
duction shift, whereas in the current production shift a grinding machine 
has become the throughput bottleneck. Throughput bottleneck locations 

shift for three reasons: (1) variability in process times, (2) product mix 
and (3) practitioners’ actions. Process time variabilities occur due to 
random processing times, unplanned stops and so on. This changes the 
system dynamics, leading to a shift in the throughput bottleneck loca
tion [6]. Similarly, different products may have different processing 
times on different machines in the production line, leading to shifting 
throughput bottleneck locations [36]. Finally, if practitioners take ac
tion to eliminate the current throughput bottlenecks, then this also 
changes the system dynamics and new throughput bottlenecks emerge 
[35]. Therefore, practitioners need to monitor the location of 
throughput bottlenecks continuously and act quickly. 

2.2.3. Multiple root causes 
Multiple root causes (such as random variations in cycle time, minor 

stops, setup times and different causes of unplanned stops) may cause 
throughput bottlenecks to emerge in a production system [26,10]. 
Often, there is no single root cause of throughput bottlenecks [37], with 
root causes appearing in combination. For example, a machine might 
behave like a throughput bottleneck because it has greater random 
variations in cycle times and longer unplanned stops. In such situations, 
practitioners need to prioritise the right root causes of the throughput 
bottleneck which, upon being eliminated, gives maximum improvement 
in throughput. 

2.2.4. Equivocality 
Among production and maintenance practitioners, there is ambigu

ity regarding the identification of throughput bottlenecks. This is 
because there are differing views on throughput bottlenecks (such as 
cycle time bottlenecks, downtime bottlenecks, setup time bottlenecks), 
making it difficult to reach a consensus on selecting the right set of 
bottleneck machines. For example, production practitioners might claim 
that only the machine with the highest cycle time (without considering 
other process time variabilities) constitutes a throughput bottleneck 
[38]. Maintenance practitioners, on the other hand, might claim that the 
machine with the highest downtime (without considering other vari
abilities) constitutes the bottleneck [39]. Therefore, there is no 
consensus on correctly identifying a bottleneck. The impact of this 
ambiguity is that practitioners might take a set of actions (based on their 
views) that are ineffective in eliminating the bottleneck. 

Fig. 1. Conceptual model of throughput bottlenecks in production systems.  
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2.3. Artificial intelligence in manufacturing 

AI has no single accepted definition [40] (p.119). It is subject to 
multiple interpretations by researchers from different fields (computer 
science, mathematics and so on) which makes establishing a common 
understanding of AI challenging. The focus of this paper is not on 
elaborating on and arguing about these differing interpretations by re
searchers in various fields. Rather, this paper is interested in exploring 
the usefulness of AI in solving the problem of throughput bottleneck 
analysis within a manufacturing context. This means it is important to 
understand AI and its applications within the manufacturing field. This 
will promote appreciation and interpretation of the role of AI in 
throughput bottleneck analysis. 

Within manufacturing, academic scholars and practitioners tend to 
view the goal of AI as making computers more intelligent. This is done 
by processing large amounts of data, uncovering hidden patterns and 
unknown correlations, learning from the data and finding the best 
possible solutions to real-world problems [41,42]. A variety of tools are 
used to facilitate this process; statistical tools, rule-based methods, 
machine learning (ML), deep learning (DL), reinforcement learning, 
probabilistic graphical models, soft computing, knowledge representa
tion (such as knowledge graphs), game theory, and even traditional 
computer algorithms (such as planning and search algorithms). How
ever, it is also important to note that the existing manufacturing liter
ature is ambiguous regarding which set of tools belongs to AI. For 
example [43], and [44] consider only DL (which is based on neural 
networks) as a single type of AI whereas [45] (p.1596) shows a rela
tionship describing DL as a subset of ML, which is a subset of AI. In 
real-world manufacturing practice, it needs to be acknowledged that ML 
and AI are often used interchangeably. In this paper, AI is considered to 
be a set of tools used to process data, extract patterns and learn from that 
data. 

It is also important to acknowledge that, in manufacturing academic 
literature, AI also appears under multiple names. These include big data 
analytics (cf. [46]), data mining (cf [47].), predictive modelling (cf 
[48].), data science (cf [49].), pattern recognition (cf [50].) and 
data-driven (cf [51].), where the goal is also to process huge volumes of 
data, learn from it and make computers more intelligent. A general 
glossary for AI may be found in [52]. 

An AI solution to any given problem has three important aspects: (1) 
desired output, (2) input data and (3) modelling approach [53,54]. AI 
solutions always begin by defining their desired output. To successfully 
achieve that output, input data must then be defined. Understanding the 
type of input data is critical to understanding how AI is used in solving 
the problem. Finally, it is important to understand the steps within a 
given modelling approach (such as feature engineering, classification) 
used to obtain a desired output from the input data. 

3. Review methodology 

Understanding the current state of the art of AI of throughput 
bottleneck analysis means collecting and analysing relevant research 
work from the existing literature. To do this, the guidelines published in 
[55] and [56] are adapted (examples of this adaptation are also 
described in [57,58]). The three steps, defined by [55] and [56], for 
systematically collecting and analysing research efforts are: (1) material 
collection, (2) descriptive analysis and (3) category selection. These are 
outlined below. 

3.1. Material selection 

To identify and select relevant literature, we searched Scopus, the 
largest scholarly database [59]. This database has also been used by 
other researchers within manufacturing to conduct systematic literature 
reviews (cf [60–62]). To facilitate the search process in Scopus, search 
terms need to be identified and selected. We adapted the procedure for 

structuring search terms into different levels [58] (p.4806) to construct a 
funnelling structure and identify relevant literature. It is common to use 
a three-level search structure, with one level broadly describing the 
research field, the second describing the core problem and the third 
defining the solutions (methods, approaches and so on) used to solve 
that problem, as shown in Table 1. Each of these levels is described 
below. 

Level 1 defines the field for the literature search. As the focus of this 
paper is to summarise the state-of-the-art of throughput bottleneck 
analysis in the manufacturing field, the search terms include the word 
“manufacturing”. However, “manufacturing” is also referred to in 
research papers as “production”, hence the term “production” is also 
included. 

Level 2 focuses on the core problem addressed in this paper which is 
throughput bottlenecks. However, there is a possibility that the term 
“bottlenecks” may be used implicitly in research papers to mean 
throughput bottlenecks. Hence to capture this, the term “bottleneck” is 
used as a selection criterion. 

Level 3 identifies the type of approach used to analyse throughput 
bottlenecks. As the focus of this paper is AI for throughput bottlenecks, 
the term artificial intelligence is used. However, a myriad of terminol
ogies is used in academic research to describe the term AI. These include 
data analytics, data science, machine learning, predictive modelling, 
pattern recognition, learning and so on (as described in Section 2.3). In 
order not to miss any source in the initial search, a broad range of terms 
(as shown in Table 1) were used as selection criteria. 

The search terms shown in Table 1 were searched for under “article 
title, abstract, keywords” in the Scopus database to retrieve the relevant 
studies. We decided to start our search in 2009 when [2] (p. 3843) in 
their review of analytical approaches to throughput analysis indicated 
that, with the availability of real-time production system data, a new 
paradigm for analysing production systems was emerging. The search 
was conducted on 23rd October 2020. 

The initial search yielded a total of 622 documents. To review these 
documents, a systematic review methodology was adapted from [63] 
(p.168), as shown in Fig. 2. The initial search results had a range of 
document types such as journal articles, conference proceedings, book 
chapters, trade journals and editorials. As it is common for researchers in 
the manufacturing engineering and AI fields to report their research 
efforts in the form of either journal articles or conference proceedings, 
only these two document types were considered in Scopus. Irrelevant 
subject areas such as biology, earth and planetary sciences, veterinary 
sciences and so on were then excluded. The subject areas kept for 
analysis were engineering, computer science, business management and 
accounting, decision sciences and mathematics. These refinements 
yielded a final set of 405 documents. The titles and abstracts of these 
documents were then reviewed. This included reading the titles and 
abstracts and excluding documents that did not address the problem of 
throughput bottlenecks in manufacturing. After this filtering process, a 
set of 57 documents remained. Each of these 57 documents was then 
read thoroughly to filter out documents that did not focus on using AI 
tools. For example, analytical approaches and discrete event 
simulation-based approaches for throughput bottleneck analysis were 
excluded as they did not rely on the data to analyse throughput bottle
necks but instead used models to understand and experiment with 

Table 1 
Three-level structure of keywords.  

Level Terms 

1 “Manufacturing” OR “production”  
AND 

2 “bottleneck”  
AND 

3 “Artificial intelligence” OR “data-driven” OR “data mining” OR “machine 
learning” OR “pattern recognition” OR “statistics” OR “prediction” OR “big 
data analytics” OR “data science” OR “learning”  
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throughput bottlenecks in the production system. This process resulted 
in a set of 17 documents. Finally, the duplicate documents (those doc
uments published as conference papers and later in an extended version 
as a journal paper keeping the same core idea) were identified and 
removed. After this process, a final set of 16 documents remained. These 
16 were then reviewed, to understand how they helped advance the field 
beyond previous analytical and simulation-based solutions and to 
identify future research directions. 

3.2. Descriptive analysis 

To understand the chronological order of research efforts, their 
dissemination venue and their authors, it is common to discuss the de
tails of the documents such as their title, year and place of publication 
and authors’ country of affiliation [63] (p.169). This data is provided in 
Table 2. 

From the Venue column in Table 2, it can be seen that 14 documents 
were published in journals and two in conference proceedings. The most 
frequent publications used to disseminate research results are leading 
industrial engineering journals, such as the International Journal of 
Production Research (three publications), Computers and Industrial 
Engineering (three publications) and the Journal of Manufacturing 
Systems (two publications). This highlights the importance of 
throughput bottlenecks. 

From the Country column (specifying the authors’ affiliation coun
try) and Year of publication column in Table 2, it may be inferred that 
research into AI for throughput bottleneck analysis in manufacturing 
systems was first explored by researchers in the US, as reported in 
publications [13,33,35]. Overall, the US and Sweden account for 
two-thirds of the literature, whereas other countries (like Italy, New 
Zealand, Switzerland and China) jointly account for one-third. 

Also, based on the Title of publication column, different terms may 
be understood to represent AI for throughput bottleneck analysis. The 
term “data-driven” was used in the titles of eight publications. The term 
“prediction” was used in four publications and the rest of the publica
tions use the name of the core AI tool used for throughput bottleneck 
analysis, such as “adaptive network-based fuzzy inference system 
(ANFIS)” [64] and “hierarchical clustering” [65]. This confirms that 
different terminologies are used to express the idea of processing the 

production system data, learning the patterns from that data and using it 
to analyse throughput bottlenecks. 

3.3. Category selection 

Various criteria may be adopted to classify and analyse the retrieved 
documents, for example based on the nature of the data, the AI tools 
used for throughput bottleneck analysis and so on. To maintain a close 
link to practice this study adopts the Gartner data analytics framework 
[66] and categorizes studies according to their goal as: (1) describe, (2) 
diagnose, (3) predict and (4) prescribe. Many fields adapt the Gartner 
framework based on its suitability for literature classification purposes 
(for example, in finance [67] and maintenance [53]). Note that the 
original term “describe” (meaning describing the past) in the Gartner 
framework is replaced with “identify” because it better suits the context 
of this study. The four different categories can be described as follows:  

• Identify focusses on identifying the historical throughput bottlenecks 
in a production system. It answers the question, “which machines 
were throughput bottlenecks in the production system?” AI tools 
used to identify throughput bottlenecks examine the characteristics 
of the machines by learning from the historical data in the produc
tion system to identify throughput bottlenecks.  

• Diagnose focusses on identifying possible root causes of historical 
throughput bottlenecks in a production system. It answers the 
question, “what were the root causes of historical throughput 
bottleneck machines?” AI tools are used to explore drivers of his
torical throughput bottlenecks.  

• Predict focusses on identifying future throughput bottlenecks in a 
production system. It answers the question, “what will be the 
throughput bottlenecks in the production system?” AI tools use his
torical data sets to learn the patterns, forecast future patterns and use 
these forecasts to predict throughput bottlenecks.  

• Prescribe focusses on identifying and recommending actions on 
future throughput bottlenecks. It answers the question, “what actions 
need to be taken on future throughput bottlenecks?” Once the future 
throughput bottlenecks are known, possible actions on them are 
prescribed to reduce their effect on overall production system 
throughput. 

Fig. 2. Systematic review methodology.  
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The above categorization is important for throughput bottleneck 
management in real-world, shop-floor practice. On the shop floor, the 
cycle of throughput bottleneck elimination (as explained in Section 2.1) 
involves identifying, diagnosing, predicting and prescribing steps to
wards determining elimination actions. For example, identifying and 
diagnosing historical throughput bottlenecks are important steps in 
retrospective investigation or analysis of the causes that led to the 
occurrence of throughput bottlenecks. This will help shop-floor practi
tioners take appropriate reactive actions to eliminate these bottlenecks. 
Knowing future bottlenecks will help practitioners plan proactive ac
tions. A detailed explanation of the real-world significance of these 
categories is provided in the next section (Section 4). 

Finally, a three-step categorisation is adopted to present the AI so
lution for each bottleneck category. These are: (1) input data, (2) 
modelling approach (including the feature engineering steps) and (3) 
outputs, as clarified in Section 2.3 above. 

4. State-of-the-art research in AI for throughput bottleneck 
analysis 

This section presents the state-of-the-art AI solutions for each cate
gory defined in Section 3.3. For each category, an introduction that 
explains the real-world significance of the category is presented first. 

Table 2 
List of publications on AI for throughput bottleneck analysis.  

Title of 
publication 

Year of 
publication 

Venue Reference Country 

Data-driven 
bottleneck 
detection of 
manufacturing 
systems 

2009 International 
Journal of 
Production 
Research 

[13] USA 

Bottleneck 
detection of 
complex 
manufacturing 
systems using a 
data-driven 
method 

2009 International 
Journal of 
Production 
Research 

[33] USA 

Throughput 
bottleneck 
prediction of 
manufacturing 
systems using 
time series 
analysis 

2011 Journal of 
Manufacturing 
Science and 
Engineering, 
Transactions of 
the ASME 

[35] USA 

Bottleneck 
prediction 
method based 
on improved 
adaptive 
network-based 
fuzzy inference 
system (ANFIS) 
in 
semiconductor 
manufacturing 
system 

2012 Chinese Journal 
of Chemical 
Engineering 

[64] China 

Real-time data- 
driven average 
active period 
method for 
bottleneck 
detection 

2016 International 
Journal of 
Design and 
Nature and Eco 
dynamics 

[72] Sweden 

A statistical 
framework of 
data-driven 
bottleneck 
identification in 
manufacturing 
systems 

2016 International 
Journal of 
Production 
Research 

[71] Italy, China 

An algorithm for 
data-driven 
shifting 
bottleneck 
detection 

2016 Cogent 
Engineering 

[34] Sweden 

A two-layer long 
short-term 
memory 
network for 
bottleneck 
prediction in 
multi-job 
manufacturing 
systems 

2018 ASME 2018 13th 
International 
Manufacturing 
Science and 
Engineering 
Conference, 
MSEC 2018 

[80] USA 

Data-driven 
detection of 
moving 
bottlenecks in 
multi-variant 
production lines 

2018 IFAC – Papers 
Online 

[70] Switzerland 

Data-driven 
algorithm for 
throughput 
bottleneck 
analysis of 
production 
systems 

2018 Production and 
Manufacturing 
Research 

[37] Sweden 

A data-driven 
algorithm to 

2018 [79] Sweden  

Table 2 (continued ) 

Title of 
publication 

Year of 
publication 

Venue Reference Country 

predict 
throughput 
bottlenecks in a 
production 
system based on 
active periods of 
the machines 

Computers and 
Industrial 
Engineering 

A proactive task 
dispatching 
method based 
on future 
bottleneck 
prediction for 
the smart 
factory 

2019 International 
Journal of 
Computer 
Integrated 
Manufacturing 

[81] China, New 
Zealand 

A prognostic 
algorithm to 
prescribe 
improvement 
measures on 
throughput 
bottlenecks 

2019 Journal of 
Manufacturing 
Systems 

[82] Sweden 

A parallel-gated 
recurrent units 
(P-GRUs) 
network for the 
shifting lateness 
bottleneck 
prediction in 
make-to-order 
production 
system 

2020 Computers and 
Industrial 
Engineering 

[36] China 

A generic 
hierarchical 
clustering 
approach for 
detecting 
bottlenecks in 
manufacturing 

2020 Journal of 
Manufacturing 
Systems 

[65] Sweden, 
Germany 

A data-driven 
approach to 
diagnose 
throughput 
bottlenecks from 
a maintenance 
perspective 

2020 Computers and 
Industrial 
Engineering 

[75] Sweden, 
Germany  
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The documents presenting an AI solution are then identified from 
Table 2 and the AI solution’s architecture is summarised in tabular 
format with information on input data, modelling approach and output. 
It is important to note that different categories may have different 
tabular formats, especially concerning modelling approaches. This is 
because the steps within a modelling approach are unique across cate
gories. Finally, a brief discussion on the AI solution’s architecture and 
the challenges associated with using that solution in real-world practice 
is presented. To facilitate the reading process for each category, a 
reading guide for the readers of the paper appears in Fig. 3. 

4.1. Identifying historical throughput bottlenecks 

In practice, throughput bottlenecks can be analysed in two different 
time frames: long-term and short-term (as explained by the time frame 
challenge in Section 2.2). [2] (p.3838) indicates that short-term 
throughput bottlenecks are responsible for impeding short-term 
throughput and that eliminating it should ultimately help remove 
long-term bottlenecks. However, the definitions of short-term and 
long-term periods remain still unclear in the literature. [2] (p.3838) 
pointed out that “long-term” and “short-term” throughput bottlenecks 
are not clearly defined and emphasised the need for a proper definition. 
[68] (p.196) argues that “long-term” and “short-term” are relative def
initions in the context of throughput bottleneck management and states 
that it is difficult to find a precise definition. 

Reflecting on the existing arguments about “long-term”, “short-term” 
and “real-world practice” in throughput bottlenecks, the authors pro
pose the following definitions. “Long-term” is considered to be a time 
with a specific number of production runs (one production run is 
equivalent to one production cycle, shift or day). Consequently, ma
chines that act as throughput bottlenecks over a certain number of 
defined production runs are called “long-term bottlenecks”. “Short- 
term” is considered to be a specific time instant within a production run. 
Machines acting as throughput bottlenecks within a production run at 
different instants of interest are called “short-term bottlenecks”. 

4.1.1. Identify long-term historical throughput bottlenecks 
In a real-world shop floor scenario, if practitioners want to signifi

cantly increase the current throughput, (by, say, 40 %–50 % [69]), then 
long-term throughput bottlenecks should be identified, plus the neces
sary actions to eliminate them. These actions are time-consuming and 
demand significant capital investment. Some examples include cycle 
time reduction involving changing or redesigning machine components 
(increasing the ram speed in a pressing machine for example), 
semi-automation (automated unloading), smart fixtures, changing the 
layout to minimise wasted motion (such as picking and stacking parts or 
placing buffers), optimising shop-floor maintenance practices to 
improve throughput, upgrading the throughput bottleneck machine or 
even deciding to buy an additional machine to eliminate throughput 
bottlenecks. AI solutions are needed which can analyse historical data 
and inform practitioners where long-term throughput bottlenecks were 
in a production system. 

Six AI solutions are presented in the literature which support prac
titioners in identifying long-term throughput bottlenecks. The archi
tecture of AI solutions is presented in Fig. 4. The technical aspects of the 
AI solutions are summarised in Table 3. The output of all these solutions 
is a set of long-term throughput bottlenecks in the production system. 

Every solution presented in Table 3 treats the task of identifying 
long-term throughput bottlenecks as a classification problem. In other 
words, each machine in a production system needs to be classified as 
either a long-term throughput bottleneck or a non-bottleneck. Different 
researchers have used different input data sets in this process and con
structed different modelling approaches. 

These modelling approaches may be broadly divided into two 
modules: extracting features and classification. Most AI solutions use 
statistical tools to extract statistical features such as averages and con
fidence intervals from the input data. One exception is [65] (p.153), 
which uses unsupervised machine learning-based clustering tools to 
group machines with similar and dissimilar behaviour based on their 
time-series profiles. These groups are then used as features to identify 
long-term throughput bottlenecks in the production system. Once the 

Fig. 3. Structure of information presented for each category.  
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features have been extracted, classification techniques are employed to 
classify the machines as throughput bottlenecks or non-throughput 
bottlenecks. Predefined rules are used for this classification. [13] 

(p.5024) and [33] (p.6934) use a rule which compares each machine’s 
blockage and starvation durations to identify the turning machines (the 
bottlenecks) for which blockage and starvation patterns change. Simi
larly, [70] (p.162) uses a rule which compares cycle times and takt times 
to classify throughput bottlenecks, [65] (p.153) classifies a group of 
machines as a throughput bottleneck if that group has the highest active 
durations. [71] (p.6321), and [72] (p.433) and [37] (p.234) use 
rule-based hypothesis testing techniques to identify throughput 
bottlenecks. 

Challenges to implementing the solutions shown in Table 3 include 
the need for sufficient historical data that needs to cover enough past 
production cycles. Moreover, as can be seen from Table 3, the existing 
research is limited to using machines’ activities-based input data such as 
active times, blockage and starvation times and so on. This input data 
needs to be interpreted cautiously. Finally, there may also be other 
contextual factors such as worker availability, supply logistics to 
different machines and product mix. These may contribute to machines 
acting as throughput bottlenecks but not be factored in by existing AI 
solutions. 

4.1.2. Identify short-term historical throughput bottlenecks 
Practitioners need to prioritise short-term throughput bottlenecks to 

reduce fluctuations and achieve the target production run throughput 
(the shift throughput). For example, [73] (p.213) indicated that the 
throughput of a semiconductor production line varies between 475 and 
800 wafers per day. These fluctuations occur due to the existence of 
short-term throughput bottlenecks. These bottlenecks need to be 
monitored continuously and require immediate attention if they should 
undergo any undesirable random processing events (including real-time 
monitoring of production lines from back offices). For example, if there 
is a breakdown event at a short-term throughput bottleneck then 
maintenance practitioners need to prioritise this machine. Information 
on short-term throughput bottlenecks is also necessary to dynamically 
rebalance a production line, including shifting workers to throughput 
bottleneck machines from upstream or downstream machines, running 
the throughput bottlenecks during shift breaks and dynamically 
changing throughput bottleneck-orientated releases [74]. This requires 
effective AI solutions to help practitioners quickly identify short-term 
throughput bottlenecks. 

The overall architecture of the AI solution is similar to that used in 

Fig. 4. Illustration of architecture of AI solutions for identifying historical long-term throughput bottlenecks.  

Table 3 
Architecture of AI solutions for identifying long-term historical throughput 
bottlenecks.  

Reference Input data 

Modelling approach Output 

Feature 
engineering 

Classification  

[13,33] Blockage and 
starvation 
durations 

Average total 
duration of 
blockage and 
starvation times 

Rule-based 
classification 

Set of long- 
term 
throughput 
bottlenecks 

[72] 
Active 
durations 

Average, 
confidence 
intervals of active 
durations 

Rule-based 
classification 

[71] 

Blockage and 
starvation 
durations (or) 
active 
durations (or) 
inter- 
departure 
durations 

Average of 
selected input 
data generated by 
batch means 
technique 

Rule-based 
classification 

[37] 
Active 
durations 

Average, 
confidence 
intervals of the 
active duration 

Rule-based 
classification 

[70] 

Set of 
machines’ 
cycle times 
for every 
product and 
Takt time for 
every product 

Cumulative 
probability 
distribution 
function 

Rule-based 
classification 

[65] 
Active 
duration time 
series 

Groups of similar 
and dissimilar 
machines, 
representative 
time series for 
each group 

Rule-based 
classification  
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identifying long-term throughput bottlenecks illustrated in Fig. 4 above. 
However, the technical aspects are different. The AI solution and its 
technical aspects (developed to identify short-term throughput bottle
necks) are presented in Table 4. 

[34] developed a solution for identifying short-term throughput 
bottlenecks. This solution identifies throughput bottlenecks continu
ously during a production run. It treats the problem as a binary classi
fication problem in which machines are classified as bottleneck or 
non-bottleneck. For this the total active duration for the active state of 
every machine at every instant is extracted. Rules taken from the active 
period method (as described in [11] (p.1081)) are then used to classify 
the machines as either a throughput bottleneck or non-throughput 
bottleneck. 

There are two main challenges in using the solution presented in 
[34]. Firstly, input data should be available and updated in real-time 
and without delay. Secondly, the production system needs to have 
reached a steady state before this solution can be used. If more than one 
machine has the same longest uninterrupted active durations at a time 
instant, the AI solution identifies all those machines as short-term 
throughput bottlenecks. Hence, in real-world practice, once a produc
tion run starts, short-term throughput bottlenecks cannot immediately 
be identified. This is because all machines might be active when a 
production run starts due to the left-over jobs in the machines from the 
previous production run. 

4.2. Diagnose historical throughput bottlenecks 

Identifying historical throughput bottlenecks is the first important 
step. The next step is to diagnose their root causes and plan the right 
elimination actions, as described in Section 2.2 (challenges of multiple 
root causes). Root causes of throughput bottlenecks may be determined 
by investigating and analysing different sources of process time vari
ability (see Section 2.1). However, there are different categories of 
process time variabilities, such as random processing times, unplanned 
stops and so on [37]. Each category may have numerous subcategories 
which exponentially increase the complexity of identifying the right root 
causes and planning the right actions to eliminate them. For example, in 
real-world production systems, there might be several categories of 
unplanned stops such as tool error, component breakage, fixture setting 
errors and stops due to a reduction in oil pressure. Moreover, these 
categories might be related to product types. [75] (p.9) indicated that 
there were 615 unique unplanned stops on a throughput bottleneck 
machine in a real-world production line. In such scenarios, it is chal
lenging to examine the details of each process time variability and plan 
the right actions manually. AI solutions are required to diagnose the 
various root causes of historical throughput bottlenecks. This may then 
help practitioners to take the right actions. 

Table 5 shows the AI solutions and their technical details focusing on 
diagnosing throughput bottlenecks. Meanwhile, the architecture of the 
AI solution is presented in Fig. 5. [75] (p.4) proposes a solution that may 
diagnose the various unplanned maintenance stops on throughput bot
tlenecks. In real-world production systems, unplanned stops are 

highlighted as of the major process time variabilities causing occur
rences of throughput bottlenecks by [76](p.1), [77](p.5831) and [75] 
(p.7). 

[75] (p.5) considers the diagnosis of unplanned stops to be a clus
tering problem and designs a solution to group unplanned stops into 
distinct clusters (based on the input data) using unsupervised machine 
learning-based k-means clustering techniques. Thereafter [75](p.10) 
uses visual plots to represent the clustering results. Practitioners (espe
cially maintenance practitioners) need to interpret these plots manually 
and prioritise the various unplanned stops for action. It is also important 
to note that the distinct group of unplanned stops created by the 
application of AI solutions is based entirely on numerical calculations. It 
is therefore imperative to interpret the cluster results whilst maintaining 
relevance to real-world practice. 

There are two main challenges in using the above solution to di
agnose throughput bottlenecks. Firstly, the number of unique unplanned 
stops should be high enough for the AI solution to work (at least the 
number of intended clusters). Secondly, existing AI solutions may only 
be used in environments for which unplanned stops are the major root 
cause of throughput bottlenecks. There may be many different root 
causes, such as random processing times, setup times and so on (see 
Section 2.1). In these situations, the existing AI solution offers limited 
benefits to practitioners. 

4.3. Predict throughput bottlenecks 

In real-world practice, practitioners often have regular shop-floor 
meetings before a production run starts, for example convened as 
morning meetings, pulse meetings or continuous improvement meetings 
[78] (p.85). In these meetings, it is common to discuss the performance 
of the previous production run. This is done by comparing the actual 
throughput to the target throughput for the previous production run. 
The meeting will analyse the gaps, identify which machines were acting 
as throughput bottlenecks and then plan appropriate actions during the 
upcoming shift. However, due to the stochastic nature of production 
systems, there is no guarantee that the historical throughput bottlenecks 
will continue to act as throughput bottlenecks (the shiftiness challenge 
in Section 2.2). Practitioners may make better-informed decisions and 
plan proactive action if they know the upcoming throughput bottlenecks 
in the system before the production run starts. Thus, AI solutions need to 
support practitioners in making informed decisions on the shop floor. 

Six AI solutions were found in the literature that focus on predicting 
throughput bottlenecks. The technical details of these AI solutions are 
summarized in Table 6, whilst the architecture of the AI solution is 
illustrated in Fig. 6. 

The solutions presented in Table 6 treat the throughput bottleneck 
prediction problems as classification problems. In other words, each 
machine in the production systems needs to be classified as a probable 
throughput bottleneck or non-throughput bottleneck for the future 
production run. To accomplish this, different researchers have devel
oped different AI solutions using different input data sets. 

The solutions presented in Table 6 may be divided into two cate
gories based on the input data: (1) solutions that use only machine data 
and (2) solutions that use machine data in conjunction with other 
contextual data. [35] (p.4) and [79] (p.538) use only machine data 

Table 4 
AI solution architecture for identifying short-term historical throughput 
bottlenecks.  

Reference Input data 

Modelling approach 

Output Feature 
engineering 

Classification 

[34] Sampled 
binary-coded 
active states 
(sampling 
rate once per 
second) 

Total duration of 
uninterrupted 
active state at 
every instant 

Rule-based 
classification 

Short-term 
throughput 
bottlenecks  

Table 5 
AI solution architecture for diagnosing throughput bottlenecks.  

Reference Input data Modelling 
approach 

Output 

[75] Total duration, cumulative 
frequency, co-efficient of 
variation, mean stop time, 
product types for each type 
of unplanned stop 

K-means 
clustering 

Visual plots 
representing each 
cluster information  
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(such as blockage and starvation times and active times) to predict 
future throughput bottlenecks. However, using only a machine’s data 
may be ineffective when it comes to making accurate predictions in a 
stochastic production system. This is because other contextual factors 
(such as product mix and buffers) also affect the locations of throughput 
bottlenecks in a production system. Therefore, [64] (p.1084), [80] (p.5), 
[81] (p.282) and [36](p.4) used machine data in conjunction with other 
contextual data (such as buffer amount and product types) to predict 
throughput bottlenecks. 

The modelling approach consists of two modules: forecasting and 
classification. In the forecasting step, the aim is to learn historical pat
terns from the input data, use this information and then forecast future 
patterns. Various AI tools are used for this purpose. These tools may be 
broadly classified into two categories: statistical and ML tools. Their 
purpose is to learn what has happened in the past while uncovering (a) 
unseen patterns in the input data and (b) interactions between the ma
chines and their relationships and then use this information to forecast 
future values. [35] (p.2) and [79] (p.538) use statistical time series 
forecasting tools called auto-regressive integrated moving average 
(ARIMA). These tools provide a good means to learn the linear re
lationships in the input data but they fail to effectively learn non-linear 
relationships [36] (p.2). Non-linear relationships do exist in a produc
tion system, as several machines are interacting with each other, and 
learning this information can increase accuracy. Therefore [64,80,81, 
36], use ML tools to capture these non-linear relationships. Specifically, 
they employ techniques such as ANFIS, LSTM, DNN and P-GRU, as can 
be observed from Table 6. 

In the classification step (as with the identification of historical 
throughput bottlenecks), rule-based methods are used to classify the 
machines as throughput bottlenecks or non-throughput bottlenecks. 
[35] (p.1) and [80] (p.6) use a rule which compares each machine’s 
forecast blockage and starvation durations and finds the turning ma
chines (the predicted bottlenecks) based on changes in blockage and 
starvation patterns. Meanwhile [79] (p.538) uses the rule that the ma
chine with the highest forecast active duration is the throughput 
bottleneck, [64] (p.1082) and [81] (p.283) uses the rule that the ma
chine with the highest production load is classified as a throughput 
bottleneck, and [36] (p.3) uses the rule that machines with the highest 
relative lateness are throughput bottlenecks. 

There are two main challenges in using AI solutions to predict 
throughput bottlenecks. Firstly, there needs to be sufficient historical 
data. In the research efforts to date (cf. Table 6), the amount of historical 
production system data that can be used to train AI is set (for example, 

[35] (p.4) uses data from 85 previous shifts and [80] (p.6) uses six 
months’ worth of historical data). However, [79] (p.542) argued that 
not all historical data is useful in predicting throughput bottlenecks. This 
is because major improvements might be made in the production flow 
(such as installing a new parallel machine) and the data from before 
such improvements will not represent current production system dy
namics and thus lead to inaccurate prediction of throughput bottlenecks. 
Secondly, it is a challenge to generalise a forecasting methodology 
across all production systems (for example, it cannot be said with cer
tainty that LSTM as proposed by [80](p.6) can be used to predict 
throughput bottlenecks for all production systems). The selection of a 
particular forecasting methodology depends on the production system 
dynamics and available type of data. Sometimes, getting better perfor
mance means running multiple forecasting methodologies in an 
ensemble. 

4.4. Prescribe actions on throughput bottlenecks 

Predicting throughput bottlenecks informs practitioners which ma
chines in a production system are likely to behave as throughput bot
tlenecks. However, practitioners may be interested in knowing the 
answer to a more pragmatic question: what concrete actions they must 
be prepared to take to mitigate upcoming throughput bottlenecks? This 
question is not directly answered by predictive insights. Practitioners 
must manually assess different possible actions and determine which 
actions are to be implemented. Practitioners face two main challenges in 
such a process. Firstly, the predicted type of throughput bottlenecks 
(such as cycle time bottlenecks or downtime bottlenecks) is not known 
when planning specific actions (the consensus challenge in Section 2.2). 
Secondly, in a real-world production system setting, there are too many 
variables, constraints and system-level trade-offs which need to be 
considered when deciding which actions are best for eliminating future 
throughput bottlenecks. AI solutions may help to support practitioners 
in better addressing these challenges and prescribe the right set of ac
tions on throughput bottlenecks. 

[82] proposed a partial solution aimed at prescribing actions on 
predicted throughput bottlenecks. The technical aspects of the solution 
are summarized in Table 7, whilst its architecture is illustrated in Fig. 7. 

[82] (p.274) developed a two-stage solution. The first stage involves 
forecasting the various machine states’ duration of the predicted 
throughput bottlenecks. This forecasting is based on the input machine 
states data (expressed as time series) and by using suitable time series 
forecasting techniques. The forecast values are then used to predict the 

Fig. 5. Illustration of architecture of AI solution for diagnosing historical throughput bottlenecks.  
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type of throughput bottlenecks, which is used as input for the second 
stage. In the second stage, prescriptive rules are used to provide a list of 
recommended actions. Although this solution does not prescribe an 
optimal set of actions, it is a step towards prescribing actions. 

Similar to other AI solutions, a first main challenge in implementing 
this solution is that detailed work records on throughput bottlenecks 
should be available in digital format. A further challenge is that, for the 
prescriptive solutions to work effectively, these detailed work records 
should be complete, i.e. there should be no missing or partial 
information. 

4.5. Summary 

In the previous sections, the different AI solutions for throughput 
bottleneck analysis were classified into four types: (1) identity, (2) di
agnose, (3) predict and (4) prescribe. Based on the number of publica
tions across these four categories, identify and predict have received the 
maximum research attention. 

In the identify category, the various AI solutions use only machine 
data such as active periods, blockage, and starvation times and so on, to 
identify historical throughput bottlenecks. In the predict category, some 
AI solutions use only machine data, while the rest uses machine data in 
conjunction with other contextual data. Moreover, in these two cate
gories, the problem was formulated as a classification problem, classi
fying the machines as throughput bottlenecks or non-throughput 
bottlenecks. A variety of pre-defined rules were used to facilitate this 
process. For the diagnosis category, existing research work was limited 
to diagnosing unplanned stops based on the different process time var
iabilities (see Section 2.1). This problem was formulated as a clustering 
problem, aiming to expose the underlying patterns in the occurrence of 
unplanned stops. For the prescribe category, the problem was formu
lated as a rule-based problem, in which pre-defined prescriptive rules 
are used to prescribe actions on throughput bottlenecks. All the existing 
research efforts in all categories were based on sample data in which a 
batch of data was used to construct, test and verify the performance of 
the AI solutions. It should be noted that none of the AI solutions was 
reported to be actually implemented in the real-world. 

The following sections present and discuss promising future research 
directions and practical recommendations for throughput bottleneck 
analysis. These directions and recommendations are based on the theory 
of throughput bottlenecks (Section 2.1), AI literature, a careful review of 
existing AI solutions (Sections 4.1, 4.2, 4.3 and 4.4), the authors’ prac
tical experience of working with throughput bottlenecks in practice for 
several years, as well as reflections on the gaps between theory and 
practice. 

5. Future research directions 

The existing AI solutions may be further enriched to provide deeper 
analysis of throughput bottlenecks and give a list of actions for elimi
nating throughput bottlenecks. Below, the authors list a couple of key 
research directions which will help advance the field of AI for 
throughput bottlenecks. 

5.1. Factory floor data fusion 

Most of the existing AI solutions use machine-level data to analyse 
throughput bottlenecks. Machine-level data characterises the machine 
activities (such as MTTR, MTBF, active duration, inactive durations and 
so on) [13,37]. Although this is valuable information, it does not fully 
explain throughput bottlenecks in a way that might allow practitioners 
to take concrete actions. This may be further improved by integrating 
machine-level data with other data sources. Data fusion from multiple 
sources will help to further reduce ambiguity when identifying 
throughput bottleneck machines and actions. Moreover, data fusion can 
also be seen as a step towards the vision of achieving self-aware pro
duction systems [83]. In other words, it will provide enough ability to 
capture, characterise and forecast anticipated production system dy
namics, as well as to predict throughput bottlenecks and take elimina
tion actions automatically, without human intervention or action. This 
integration needs to be of two types: (1) machine-component and (2) 
contextual production data. 

(1) Machine-component data fusion. This refers to integrating 
machine-level data with component-level data. Machines have many 
different components and manufacturing companies are increasingly 
installing sensors to monitor them. Integrating sensor and machine data 
will help with deep diagnosis of throughput bottlenecks, understanding 

Table 6 
AI solutions architecture for predicting throughput bottlenecks.  

Reference Input data 

Modelling approach 

Outputs Forecasting 
methodology 

Classification 

[35] Blockage 
duration time 
series and 
starvation 
duration time 
series 

Auto-regressive 
moving average 
(ARMA) for 
forecasting 
blockage and 
starvation times 

Rule-based 
classification 

A set of 
predicted 
throughput 
bottlenecks 

[64] 

Processing 
times, 
utilisation 
rate, buffer 
length, mean 
time between 
failure 
(MTBF), mean 
time to repair 
(MTTR), work 
in progress, 
product types 
and releasing 
strategies 

Adaptive neuro- 
fuzzy inference 
systems (ANFIS) 
for forecasting 
production load 

Rule-based 
classification 

[79] 
Active 
duration time 
series 

Suitable time 
series 
forecasting 
technique 

Rule-based 
classification 

[80] 

Product mix, 
operator shift, 
cycle time, 
blockage 
duration time 
series and 
starvation 
duration time 
series 

Long short-term 
memory (LSTM) 
for forecasting 
blockage and 
starvation 

Rule-based 
classification 

[81] 

Processing 
times, 
utilisation 
rate, buffer 
length, mean 
time between 
failure 
(MTBF), mean 
time to repair 
(MTTR), work 
in progress, 
product types 
and releasing 
strategies 

Deep neural 
networks (DNN) 
for forecasting 
production load 

Rule-based 
classification 

[36] 

Work in 
progress, 
waiting time, 
utilisation 
rate, failure 
time and 
starvation time 

Parallel gated 
recurrent units 
(P-GRU) for 
forecasting 
lateness index 

Rule-based 
classification  
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machine health and gaining knowledge of exact root causes. This type of 
integration may also help with prescription as it opens the way to pre
scribing concrete actions for eliminating throughput bottlenecks. For 
example, [37] (p.239) points to the downtime type of throughput bot
tlenecks in a production system, based on machine-level data. However, 
if machine-level data is fused with component-level data, the root causes 
of why a downtime throughput bottleneck occurred may be deduced. 
However, fusing these two different types of data poses an open chal
lenge as they reveal information with two different granularities. 
Extensive future research in this direction will be needed, to develop AI 
solutions that provide even more detailed diagnostics of throughput 
bottlenecks. 

(2) Contextual production data. Fusion with other contextual pro
duction system data may drive improvements in the accuracy of 
throughput bottleneck analysis and lead to a better understanding of 
bottlenecks in a given context. For example, a combination of machine 
data, buffer data, product types and releasing strategies as shown in [64, 
80,81,36]. Also other types of data may be combined, such as logistics 
data, product quality data (incorporating yield aspects into bottleneck 
analysis), maintenance work order data and production planning data. 
AI solutions are needed which explore how such data might be 

combined systematically and used in the effective realisation of pre
scriptive throughput bottleneck management. 

5.2. Ensuring data quality 

Although it has become possible to collect different types of data, 
ensuring data quality is a must if AI is to deliver meaningful value to 
practitioners. The importance of data quality has been widely discussed 
for many years in the AI literature [84] and manufacturing literature (e. 
g [2,54].). However, it has received less attention in the context of 
throughput bottleneck analysis. Future research is therefore needed to 
explore ways of ensuring the right data quality. 

Addressing data quality has several challenges. Firstly, on the shop 
floor, data collection technologies may be unreliable, or their perfor
mance may deteriorate with time, leading to the recording of incomplete 
information [2] (p.3839). This needs to be compensated for systemati
cally to increase the accuracy of throughput bottleneck analysis. For 
example, all data from the factory machines should be collected and be 
available to allow production flow to be traced and AI to identify 
throughput bottlenecks. Having incomplete information from some 
machines may lead AI to identify throughput bottlenecks incorrectly, 
which will certainly impact factory performance. Secondly, actions 
aimed at eliminating throughput bottlenecks (such as reducing down
time) may be traced to machine-level actions (as argued in Section 4.2) 
and eventually down to component-level actions. In such scenarios, any 
changes to the component level will impact production system 
throughput. Therefore, ensuring data quality at all levels (system, ma
chine and component) is the key to successfully eliminating throughput 
bottlenecks in a production system. Thirdly, issues such as noisy data 
and the handling of outliers and inliers need to be addressed systemat
ically to avoid the introduction of biased AI solutions. Lastly, production 
processes also change over time. This has various causes, such as the 
ageing of machines, implementation of lean practices and general pro
duction management practices in factories. In such scenarios, changes 
occur in the underlying pattern of input data and consequently, AI may 
also start to drift over time and suffer accuracy losses. To address this, AI 
needs to be quickly adaptable to such changes, if it is to reliably analyse 
throughput bottlenecks. This aspect needs to be given special attention 
in throughput bottleneck analysis. Initial guidance towards achieving 
this is provided in [79] (p.537). 

Fig. 6. Illustration of architecture of AI solutions for predicting throughput bottlenecks.  

Table 7 
AI solution architecture for prescribing actions on throughput bottlenecks.  

Reference Stage Input data Modelling 
approach 

Output 

[82] 

1 

Individual 
bottleneck 
machine states 
(such as 
producing, 
down, etc.) time- 
series data of 
predicted 
throughput 
bottlenecks 

Forecasting 
methodology: 
suitable time series 
forecasting 
technique to 
forecast values of 
each machine state 

Forecast 
duration of each 
machine state 

2 

Forecast 
duration of each 
machine state, 
historical actions 
list 

Prescriptive rules 

List of 
recommended 
elimination 
actions  
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5.3. Benchmarking AI performance with practice 

Practitioners commonly want the performance of AI solutions to be 
100 %. As a result, academic researchers also focus on trying to develop 
highly accurate AI solutions. The literature concentrates on comparing 
the performances of various competing AI solutions focussing entirely 
on accuracy. For example, [36] (p.9) compared five different AI solu
tions to predict throughput bottlenecks in production systems, with the 
argument that the best AI solution was the one that gave the smallest 
error. Although this is a valuable comparison from an academic research 
perspective, it must be acknowledged that the performance of AI needs 
to be benchmarked against current practice. [79] (p.542) indicated that 
it is common for practitioners to have a naïve approach to their work, 
assuming for example that bottlenecks in a previous production run will 
remain as such in the next one. Although this is a simple method, the 
performance of any sophisticated AI should surpass the naïve approach 
and show its benefit in real-world practice. Further research efforts are 
required to explore relevant benchmarks and prove the value of AI in 
improving practice. 

5.4. Scaling from line to factory to supply chain 

Most of the existing AI solutions summarized in Table 2 were 
demonstrated by analysing the throughput bottlenecks in a specific 
production line, such as a door assembly line [33], or machining line 
[65]. These solutions have proved their value in helping optimise 
line-specific throughput bottleneck management and increased indi
vidual line throughput in factories with multiple production lines. 
However, increasing throughput from individual production lines may 
result in excess inventory if the downstream production lines are 
working at a slower pace. Hence, to gain maximum benefits, there is a 
need to scale AI solutions to the entire factory. Such scaling requires 
access to wider data sets from every machine in a factory. These data sets 
must then be analysed together to identify throughput bottleneck loca
tions in the factory. All this poses challenges given the increased 
complexity due to machines, processes and systems. For example, in an 
automotive plant, how can the data from thousands of machines per
forming different types of operations (such as blanking, machining, as
sembly, welding, paint shops, heat treatment and washing operations), 
all with different failure modes, processing times, and so on, be fused 
without losing information? Such scaling would significantly change a 
factory’s throughput bottleneck management practices. Instead of 

localised management of individual production lines, a factory 
perspective would be followed, focusing on improving the factory’s 
throughput. Further development in this direction will certainly benefit 
companies by ensuring a smooth, swift flow of material to end products. 

Similarly, [2] (p.3843) argues that to gain maximum benefit and 
avoid the accumulation of excess inventory, throughput bottleneck in
formation must be combined with dynamics from outside the factory, 
such as material supplies and shipping-due dates from customers. AI can 
be used to combine information from customers (such as demand in
formation) and suppliers (such as ordering raw materials) with 
throughput bottleneck information from the factory floor, thus opti
mising the entire flow of products across the supply chain. This will help 
practitioners to prioritise actions on throughput bottlenecks according 
to the desired customer shipment level (such as eliminating unnecessary 
demand from reworks and adding capacity). Further development in this 
direction will help unleash factories’ true productivity potential. 

5.5. Humans-in-the-loop (HITL) 

HITL is a paradigm within AI that involves incorporating human 
feedback to improve the AI’s performance. For example, it was shown 
that HITL can link practitioners’ intelligence and AI to create a collective 
superintelligence for medical radiographic diagnosis [85] (p.1). How
ever, HITL has not received much attention in the throughput bottleneck 
analysis literature. Thus, future research into integrating practitioner 
feedback may help improve the accuracy of AI for throughput bottleneck 
analysis. 

HITL may be used in different ways for throughput bottleneck 
analysis. For example, within existing AI solutions, a time window of 
historical data for identifying long-term historical throughput bottle
necks is a parameter that needs to be set by practitioners [65] (p.146). 
They do so by using their deep domain knowledge of the production 
system; a practice that may be combined with AI. AI may select an 
automatic optimal window for detecting long-term throughput bottle
necks. Such a solution should include aspects relating to the changing 
dynamics of production systems brought about by continuous 
improvement efforts. This output may be verified by factory practi
tioners (and AI-learning based on the practitioner’s interpretation) to 
provide better estimates in the future. The impact of having such a so
lution is that it will reduce the risk of having too much historical data 
which is unrepresentative of recent production system dynamics. 
Further research is required to design an appropriate AI solution that can 

Fig. 7. Illustration of architecture of AI solution for prescribing actions on predicted throughput bottlenecks.  
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automatically detect the window period. 
Similarly, the performance of existing AI solutions in predicting 

throughput bottlenecks is evaluated based on a solution’s average per
formance. For example, [80] (p.7) reports an average error rate of 2.468, 
while [79] (p.542) reports an accuracy of 86.13 % in predicting 
throughput bottlenecks. This means that existing AI solutions have been 
shown to provide results, sometimes correctly and sometimes not. In 
other words, AI sometimes has a high level of confidence in predicting 
throughput bottlenecks but that at other times, this confidence is low. 
These lower confidence outputs may be verified and augmented by 
practitioners using their deep knowledge of factory dynamics. The 
practical significance of this is that AI may provide rapid insights into 
high-confidence throughput bottlenecks, with practitioners able to act 
immediately without further analysing the outputs, thus saving time. 
For less confident outputs, practitioners may further evaluate them and 
make informed decisions. In such scenarios, active learning might be 
provided to an AI, through practitioner feedback in the form of training 
data not originally provided as part of a confident diagnosis. To realize 
this further research is needed to determine the right level of confidence 
in the AI’s predictions and the exact procedure for operationalising it in 
practice. 

5.6. Explainable AI 

Many of the AI solutions, especially those using deep learning, are 
often called “black boxes” as they do not explain their predictions in a 
way that is comprehensible to humans [86]. This problem has prompted 
much discussion and research in the AI field about explainable AI 
(commonly referred to as XAI) [87]. In XAI, a model is created on top of 
the existing AI solution to explain its mechanisms (such as how much 
weight AI solutions gave to the features derived from input data). This is 
accomplished by the use of techniques such as partial dependence plots 
and SHAP (SHapley Additive exPlanations). XAI has started to receive 
attention within manufacturing and researchers have started developing 
XAI models [88]. 

Exploring the possible uses of XAI is also a potential future research 
direction within throughput bottleneck analysis. 

Firstly, there is the issue of identifying which types of throughput 
bottleneck analysis require XAI. The authors would argue that not all 
types require it. For example, having an XAI solution is more beneficial 
when identifying long-term throughput bottlenecks because elimination 
actions on these require significant time and money. Instead of merely 
identifying throughput bottlenecks, a more human-type explanation of 
throughput bottlenecks may be offered, referring to contextual factors 
such as buffers, the dynamics of upstream and downstream machines 
relative to throughput bottlenecks, and specific conditions related to 
production lines. Practitioners may then take time to interpret these 
explanations, augment them with their domain knowledge and take 
confident action. Similarly, when predicting throughput bottlenecks, for 
example for the next eight-hour shift, instead of merely giving infor
mation on a probable set of throughput bottlenecks, XAI can provide 
explanations on such aspects as how much a particular contextual factor 
contributed towards making a machine act like a throughput bottleneck. 
But when identifying throughput bottlenecks in real-time, then having 
less XAI might be useful (for example, highlighting the throughput 
bottleneck and its status rather than explaining contextual information), 
as practitioners might not have sufficient time to interpret the results. 
Hence, more rigorous research activity is needed to identify concrete use 
cases within throughput bottleneck analysis (in which XAI may be 
useful) and designing appropriate XAI solutions. 

Secondly, in the AI literature XAI is described as creating a model for 
interpreting final AI insights [87]. In the real world, these models have 
an impact whenever an AI solution is used in a decision situation. 
Models which explain the insights obtained from AI may increase trust 
in that AI solution. On the other hand, there may be other black boxes in 
the process of developing AI solutions (from the practitioner’s 

perspective) that need to be explained. For example, explanations need 
to be given on the data types that were used, automatic AI feature 
generation process, AI data pre-processing procedures (including treat
ment procedures for outliers and inliers, assumptions made by AI and so 
on). Practitioners need full transparency on how the AI processed the 
data to better understand the insights it provides. Future research is 
needed to create such transparency since it will increase practitioners’ 
trust in AI, thereby facilitating institutionalisation of the AI in practice. 

5.7. Closing the gap between prototype AI and its implementation in 
practice 

The existing AI solutions for throughput bottleneck analysis (devel
oped in academic research) may be considered a prototype. Existing 
studies typically start with a batch of data from a real-world production 
system, process it, develop and employ different AI solutions, compare 
their performances, select the best-performing solution and then further 
optimise it to improve its performance. The AI solution is then assumed 
to be working perfectly when implemented in real-world practice. 
However, there are two problems with such an approach: (1) AI drifting, 
and (2) usefulness. 

(1) AI drifting: developing the AI solution based on limited data and 
further optimising it may cause the AI solution to overfit. The result of 
overfitting is that, while AI solutions may look better for a given batch of 
data, their accuracy risks deteriorating when exposed to new data sets 
during practical implementation. This may create a gap between the 
prototype AI solution’s accuracy and the accuracy obtained after 
implementation. 

(2) Usefulness: existing research efforts try to make AI solutions 
achieve better accuracy by processing the data [80,36]. However, when 
the AI is implemented in the real world, how can practitioners be sure, 
for example, that the throughput bottlenecks identified by the AI solu
tion are the true throughput bottlenecks in the real-world? 

Both questions can be answered if the AI solutions are implemented 
in the real-world and the effects studied rigorously. However, no current 
study reports a real-world implementation and its effects. This indicates 
an implied tendency for researchers to stop once an adequate AI pro
totype solution has been demonstrated. Researchers then assume that 
their AI solutions work in real-world practice. 

Implementation and studying the effects of AI are therefore consid
ered the most important future research direction for addressing the 
problems of drifting and usefulness. For example, AI drifting problems 
may be studied by verifying whether the accuracy obtained in the pro
totype stage matches that after implementation. This may lead to the 
development of solutions that make AI solutions more resilient. Simi
larly, the usefulness problem may only be studied by taking elimination 
action on throughput bottlenecks highlighted by the AI solution, and 
observing whether the actual throughput increases in the real-world (see 
Section 2.1). This may help refine the existing solutions, making them 
more useful in real-world applications. Specifically, implementation 
may also help researchers study how to integrate AI solutions into shop- 
floor practice and how they should be presented to practitioners (for 
example, as a measure of probabilities calculated from the data, in visual 
form, or as direct recommendations). To achieve this, researchers need 
to work with practitioners to build a shared understanding of priorities 
and limitations, thereby improving their ability to create AI solutions 
with real-world impact. Such efforts may help advance the field of 
throughput bottleneck research whilst creating an impact within the 
industry. 

5.8. Digital twin for throughput bottleneck analysis 

The existing AI solutions process the historical production system 
data, analyse them, and give insights on throughput bottlenecks. These 
insights can then be used by practitioners to plan for appropriate elim
ination actions. However, there are limited possibilities to verify if the 
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planned actions might effectively eliminate throughput bottlenecks. 
This process can be further improved by integrating AI with discrete 
event simulation models of the production system, commonly called a 
digital twin [89]. Exploring the possibilities of using AI with 
discrete-event simulation models is also a potential research direction 
within the throughput bottleneck analysis research field. 

One example of a potential digital twin setup for throughput 
bottleneck analysis is described in the following sentences. A digital 
twin can consist of three elements: (1) real-time production system data 
(including all possible types of data such as product types, machine data, 
list of historical actions taken in the production system, etc.) (2) a 
discrete event simulation model of the production system, and (3) an AI 
agent. The real-time production system data can be continuously fed to 
the simulation model using automated input data management tech
niques [90]. The model can then produce the simulated data of the 
production system and the simulated data can, in turn, be used to train 
the AI agent. Once trained, the AI agents can automatically analyse the 
throughput bottlenecks, identify a set of elimination actions, test the 
impact of each of the actions using the simulation model and prescribe a 
concrete set of actions that need to be taken in the real-world. Practi
tioners can then implement those actions to eliminate the throughput 
bottlenecks. The feedback from taking those actions in the real-world 
can be given as input to the AI agent so that the AI agent can learn 
from the feedback (e.g., using reinforcement learning), become more 
accurate, and find novel ways in prescribing actions over time. Deter
mining the exact setup procedure of such a digital twin (including the 
components of the digital twin) and its operationalization procedure 
needs rigorous research. 

6. Practical recommendations 

As shown throughout Section 4, academic research provides practi
tioners a set of AI solutions for throughput bottleneck analysis. How
ever, taking these academic research efforts into real-world practice 
requires more than science. This is where practitioners play an impor
tant role. The authors offer seven practical recommendations to aid 
successful adoption of the various AI solutions from the literature. These 
are: (1) start small, (2) perfect data myth, (3) augmentation, (4) avoid 
incomplete data, (5) standardise data collection (6) teamwork and (7) 
reporting structure. 

6.1. Start small 

To unleash and realise the full potential of AI in throughput bottle
neck analysis, practitioners need to start small, so they can be quick in 
implementing AI solutions and demonstrate successful AI in factories. 
For example, practitioners may start their journey of implementing AI in 
throughput bottleneck analysis by deploying data collection technolo
gies to collect machine data from their production systems. Once this 
data collection is started, practitioners may immediately begin tracking 
real-time throughput bottlenecks using the AI tools (as summarized in 
Section 4.1.2) and take real-time action. This simple way of tracking 
throughput bottlenecks may help reduce variations in throughput. Once 
sufficient data has been collected over time, practitioners may revisit it 
and identify long-term throughput bottlenecks using AI tools (as sum
marized in Section 4.1.1). They may also diagnose throughput bottle
necks using AI tools (see Section 4.2), which can help to significantly 
increase throughput. By accumulating data over time, patterns might 
start to emerge. This allows for predicting the likelihood of machines 
acting as throughput bottlenecks in the future (see Section 4.3). The next 
step is to eliminate throughput bottlenecks by establishing correlational 
rules between throughput bottlenecks, non-throughput bottlenecks, 
historical actions taken on such scenarios and desired future throughput 
from the system. By establishing these correlational patterns, prescrip
tive AI tools (as summarized in Section 4.4) may provide a concrete set 
of actions. 

6.2. Perfect data myth 

In real-world practice, practitioners commonly initiate AI solutions 
once they have perfect data. This might be disadvantageous. Having 
perfect data is always a moving target. Practitioners may start with the 
data they have and try out different AI solutions and iterate from there. 
For instance, the AI solutions summarized in Table 3 may be imple
mented using event-log-type data (data that stores machines’ activities 
with corresponding time stamps). [79] (p.536) has shown (through a 
real-world test study) that ANDON light information from machines may 
also be used to predict throughput bottlenecks. Such research efforts 
demonstrate that such simple data sets are good enough for an AI so
lution to have an impact in practice. Furthermore, [79] (p.542) argues 
that, even when the accuracy of such simple data sets is not very high, it 
still positively impacts improvements in throughput bottleneck man
agement. More impact may be obtained in the future if a simple AI so
lution is already implemented and running on the shop floor, upon 
which iterations may occur. 

6.3. Augmentation 

While AI solutions may deliver powerful insights, practitioners need 
to understand that such insights require augmentation. Practitioners 
commonly set unrealistic expectations for AI solutions, for example to 
always provide 100 % accuracy. However, in the literature, the 
demonstrated accuracy (even with the most sophisticated AI tools) in 
predicting throughput bottlenecks is close to 90 % [36]. Closing this 
accuracy gap needs augmentation, using practitioners’ deep domain 
knowledge of factory dynamics. Practitioners’ feedback may also be 
used to train AI and improve its performance over time. This also con
tributes to XAI, as discussed in Section 5.6. Buying into the hype that AI 
may work perfectly, instantaneously and without supervision is often 
detrimental to the effective use of AI solutions. 

6.4. Avoid incomplete data 

Practitioners must be extra careful whenever there are manual data 
entry procedures. For example, it is still a common practice for main
tenance practitioners to record a problem and the actions taken in free- 
form sentences. Although there are AI tools to interpret these sentences, 
practitioners need to write effectively and ensure no information is 
missing. This is critical, for example, when designing prescriptive AI 
tools (as shown in Section 4.4) which use historical data sets to 
recommend future actions. 

6.5. Standardise data collection 

Practitioners may consider standardising their data collection sys
tems. The current practice is often to collect different types of opera
tional data from different systems. For example, maintenance-related 
data is stored in computerised maintenance management systems 
(CMMS), whilst event log data describing machine activities are stored 
in a manufacturing execution system (MES). Storing data in different 
systems might pose a challenge when building AI solutions. For 
example, the solutions described in [80,36,81] use various types of 
operational data, such as maintenance data, cycle time data and so on. 
Storing this data in a common database is more advantageous for 
effective implementation than having to retrieve the data from different 
sources. Moreover, having a common database may also help when 
tracking products with operational machine information from a specific 
time window as well as revealing correlational patterns. 

6.6. Teamwork 

In real-world practice, data scientists take existing academic AI so
lutions, adapt them to the real-world environment and implement them. 

M. Subramaniyan et al.                                                                                                                                                                                                                       



Journal of Manufacturing Systems 60 (2021) 734–751

749

However, this process is not the entirety of practitioners’ involvement. 
Their input is needed at every stage if AI solutions are to be implemented 
in real-world practice. During adaption and implementation, data sci
entists must fully consider the dynamics and other idiosyncrasies of the 
particular factory. This information is best provided by practitioners 
since they will have developed deep domain knowledge over time. 
Practitioners and data scientists should therefore work as a team during 
the implementation process, enriching academic solutions with relevant 
practical information. An example of this adaptation procedure (with 
relevant input from data scientists and practitioners) is demonstrated in 
[75] (p.2). Such involvement may also help practitioners understand the 
mechanisms underlying AI solutions, leading to increased transparency 
of AI solutions, thereby contributing to XAI (see Section 5.6). 

6.7. Reporting structure 

If AI solutions are implemented in real-world settings, they should be 
reported in detail. Reports should include an unambiguous description 
of the entire AI solution, with details of data collection techniques, data 
pre-processing procedures (such as missing data management, inlier and 
outlier management), modelling approaches (including the reasons for 
choosing a particular model), software used (including library packages) 
and evaluation techniques. For example, [80] (p.6) demonstrates the AI 
solution for throughput bottleneck prediction on a real-world assembly 
line. However, it presents limited information and examples covering 
the data pre-processing procedure, it presents no explanation of the 
fusion of different types of input data, the software used to develop and 
test the AI solution and so on. Similarly, [81] (p.287) provides only 
limited information explaining the data collection, fusion procedure, 
and data pre-processing techniques used. Such gaps raise various chal
lenges (such as management of missing data, downtime data due to 
external reasons such as power failures, thought process on hyper
parameter tuning of AI solutions) when researchers and practitioners 
adopt the AI solutions. Also, if possible full data sets that are used to 
create and test the AI solutions can be publicly provided. This can then 
be used by researchers and practitioners to conduct more experiments 
and further improve the AI solutions. Reporting the full information will 
help the academic and practitioner community to understand AI solu
tions, enhance their reproducibility and aid the successful transition of 
AI solutions, from their development in academic research to imple
mentation in real-world practice. 

7. Limitations 

Although this study used an established and meticulous review 
methodology, it has some limitations. Firstly, the study is limited to 
collecting and analysing all the relevant publications retrieved from 
Scopus. However, Scopus is one of the standard databases used 
frequently by researchers to collect publications in the manufacturing 
field. Still, when the throughput bottlenecks research field grows, future 
research can also use other databases (e.g., Web of Science, Google 
Scholar, and IEEE Xplore) to collect relevant publications. Secondly, this 
study only identifies 16 papers which can be considered a small sample 
delimited to a small set of researchers. However, owing to the systematic 
literature review process, the final set of 16 papers was in fact repre
sentative for the research field of AI driven throughput bottleneck 
analysis. In line with more research efforts and a growing number of 
publications, it is relevant to replicate our review in the future and 
compare the results. Thirdly, this paper uses the Gartner data analytics 
framework to classify the papers, and it needs to be acknowledged that 
also other frameworks could be used. Although the Gartner analytics 
framework is easily understandable and relevant for practitioners, a 
potential future direction is to develop different classification frame
works to effectively communicate AI solutions to researchers and prac
titioners. Lastly, this paper considers AI to include a large variety of 
tools, ranging from statistical to deep and reinforcement learning (see 

Section 2.3). This is justified by the lack of a commonly accepted defi
nition of AI and the fact that all AI-based tools can provide value from 
processing and analysing data in real-world practice. Still, the majority 
of the articles in our review consist of rule-based classification (see 
“Modelling approach” in Tables 3–7). Therefore, as the field of AI for 
throughput bottleneck analysis develops and matures over time, we 
expect to see both a broader range as well as more sophisticated 
modelling approaches. If and when a commonly accepted definition of 
AI is established in the future, it is relevant to replicate this study to 
further align the range of applications with the scope of AI solutions. 

8. Conclusions 

If higher levels of productivity are to be achieved, throughput bot
tlenecks in production systems must be eliminated. However, 
throughput bottlenecks first need to be analysed. Over the last decade, 
various research efforts have focused on developing AI solutions to help 
analyse throughput bottlenecks. In this paper, a systematic literature 
review was conducted to map the field and provide a state-of-the-art of 
AI solutions for throughput bottleneck analysis. A final literature set of 
16 publications were retrieved as a result of the systematic review 
methodology. Using the Gartner data analytics framework, the literature 
was categorized into four categories: identify, diagnose, predict, and 
prescribe. For each category, the AI solution architecture was synthe
sized and summarised in terms of input data, modeling approach, and 
output data. From the categorisation, it has been identified that 
maximum research efforts were devoted to developing AI solutions to 
identify and predict categories, and fewer efforts were devoted to di
agnose and prescribe categories. Although knowing the throughput 
bottleneck locations is the first step to eliminate them, future research 
efforts need to be more focused on the diagnosis and prescription of 
specific elimination actions to eliminate throughput bottlenecks. Addi
tional promising future research directions (e.g. combing the emerging 
trends in AI such as XAI, HITL and digital twins, with the throughput 
bottleneck analysis problems) have also been identified and proposed 
based on real-world practice. Furthermore, practical recommendations 
(e.g. starting small, augmentation and teamwork) were also provided, 
which will help practitioners to implement the existing AI solutions for 
throughput bottleneck analysis. These recommendations will further 
advance the field of throughput bottlenecks analysis in real-world in
dustrial practice. 
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