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In order to answer the ever-fluctuating demand of high-mix low-volume production environments, reconfiguring the production systems and improving 
their performance rely heavily on the application of advanced decision support tools. Estimating the expected values of the performance measures (KPIs) 
in the face of these decisions, however, is even more challenging in such an environment as the complex structure, behavior and input demand creates an 
enormously large variable domain restraining the analysis. The paper introduces a novel workflow for providing simulation-based decision support for 
improving KPIs of high-mix low-volume production systems by reducing the size of the input domain with the application of unsupervised machine 
learning techniques.  

Decision making, Simulation, Data analytics  

1. Introduction 
Companies responding to fluctuating demand of a broad variety 

of products and accompanied services need special faculties of 
changeability, adaptiveness, and responsiveness to remain 
competitive.  There is a common understanding that in so-called 
high-mix and low-volume (HMLV) production environments both 
the structure and the behaviour of the systems should be tailored 
to the changing conditions by finding trade-offs between a tangled 
and typically conflicting set of key performance indicators (KPIs) 
and cost. Floating above all the waves generated by external 
sources (market demand, suppliers) or internal causes (resource 
availability, inventory levels), HMLV companies have to show a 
consistently stable, high-level performance especially in terms of 
quality and service level [1][2].  

On a daily basis, HMLV production can be managed by cross-
functional, proactive workforce supported by appropriate pull 
mechanisms, order grouping and visualisation techniques [3]. 
Production levelling decouples market demand from production 
orders so that mix and volume loads the available resource base in 
a balanced way. This technique is widely, often implicitly, applied. 
Clustering of products by ABC/XYZ analysis or some machine 
learning method into families and defining patterns for their 
execution sequence on bottleneck resources can greatly stabilize 
service level [1]. When expected delivery times are short, the 
techniques of lot-splitting and limiting the load of order releases 
can be well applied [4]. A combined measure including 
organizational and technological aspects is suggested in [5] for 
increasing machine equipment effectiveness and throughput, 
specifically in HMLV production. Extension of resource capacities 
or availability (by proper maintenance), inclusion of buffers, 
increased levels of inventories and work-in-progress can also 
result in consistently high delivery performance, but rarely at 
affordable cost levels. However, the analysis of the interplay of all 
but the most important structural and behavioural factors is 
cumbersome, even for approximate, system dynamics [6] or 
logistics curve [7] models of a single work system. Hence, it 
remains still open how to warrant consistently high performance 
level towards customers in an HMLV environment.  

Recently, in parallel with the proliferation of massive sensing, 
data processing and storage techniques characteristic to cyber-

physical production systems [8], the broadly shared view evolved 
that (big) data analytics can provide the right response to the 
growing complexity of production management, by replacing or 
complementing some of its functions [9][10]. While admitting the 
success of advanced machine learning methods in identifying 
models and predicting the behaviour of complex production 
systems [11][12], it must be emphasised that just those 
algorithmic methods which are able to work over very large 
datasets are hardly capable of exploiting the available engineering 
background knowledge. Still, there is a common view that 
simulation, and in particular discrete event-based simulation 
(DES) provides the most efficient set of tools for analysing the 
complex impact of decisions which are related both to the static 
structure and dynamic behaviour of a production system [13][14]. 
Fine granularity of details, semantic clarity, transparency, 
conformance to real systems, rich assortment of available 
modelling and evaluation tools are all on the side of merits, while 
main shortcomings are limited generality, potentially haphazard, 
uncharacteristic future scenarios and extreme computational load. 
The latter issue can be alleviated by simulation metamodeling 
[15][16], but only at the cost of transparency. Hence, the goal of 
this work is to combine the strengths of model and data-driven 
analytics in a novel way, specifically in the service of improving the 
management of HMLV production systems.  

2. Problem statement and solution approach 

Point of departure of this study is that a company is already in 
command of some key enabling techniques of cyber-physical 
production [8]. First and foremost, it is able to build digital models 
of its physical and logistic processes, and is routinely using 
enterprise information and (semi-) automated production 
planning and control systems. It collects and maintains data 
related both to its external business environment as well as its 
internal operations on all the strategic, tactical and operational 
levels in a systematic and synchronized way. Much precious, often 
implicit and tacit production engineering and management 
knowledge provides the background of these systems, whereas 
one can assume with good reason that the immense amount of data 
accumulated in past records hides pieces of information which can 
be turned into knowledge for improving the performance of the 
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overall system. The general questions are whether there are ways 
from the realm of models to that of the data, and vice versa; can the 
various potentials be exploited in conjunction. If so, how can such 
an improvement process be included into the decision-making 
process of a company? When it comes specifically to HMLV 
production, how can such a company fulfil its commitments 
towards its customers under changing circumstances by relying on 
its advanced cyber-physical faculties? The answer lies in a new 
way of using the models for analysing the impact of potential 
changes either in the structure or the behaviour of the system by 
experimenting with generalized, compressed past records. This 
makes projection from past to future admissible and the whole 
approach computationally tractable. 

Accordingly, the proposed analysis and decision-support 
workflow has the following main stages: 
1. Scope setting. Selection of the most relevant factors which have 

an essential impact on the operation of the HMLV production 
system. Market demand, system structure and capacity, 
planning and control logic, buffering and inventory policy, 
supplier performance, availability and reliability of machine 
and human resources, maintenance policy are such typical 
factors. Scope of analysis is also set by the determination of 
KPIs, primarily delivery performance, lead time, quality, 
resource utilization and cost efficiency. Note that when quality 
is non-negotiable, as it is predominant in the practice, the 
conflict of delivery performance and cost emerges as the core 
issue in managing HMLV production systems. 

2. Model building. Developing a detailed DES model of the 
production system at hand, together with its external 
environment. The model should capture all the factors setting 
the scope, but its granularity can be even much finer.  

3. Rough-cut sensitivity and cost trade-off analysis. Grouping the 
factors affecting the operation of the system along the 
dimensions of internal vs. external and structural vs. 
behavioural, reflecting source and type. After factorial 
experiment design [14] the execution of sweeping simulation 
runs and identifying and ordering those factors which mainly 
influence the selected KPIs. Visual management tools [17] can 
help to pinpoint them, or even their combinations. Finally, 
selecting those control factors which can be managed at a 
reasonable cost.  

4. Focused analysis with model and data-driven analytics. 
Identification of the possible decision situations, 
understanding and building up a detailed decision workflow of 
the as-is situation, together with the information basis of the 
decisions (e.g., in what situations are specific sequencing rules 
used). Generalizing past data by means of machine learning 
techniques and running detailed predictive simulation runs 
with decision alternatives over these compressed datasets. 
Selecting the best choice, together with the context defined by 
the generalized situation.  

5. Verification and validation. Performing experiments for the 
comparative analysis of the original and the improved 
decision-making processes, by using the digital models.  

6. Maintenance and update. Under changing circumstances, 
repeating the workflow time and again. Beyond updating the 
digital models, changes instigated should be revised with a 
frequency which corresponds the actual decision horizon.  

3. Industrial case study  

A real-life case study, using the proposed workflow is introduced 
here, building on results achieved earlier by scope setting and 
model building. The use case was delivered by a HMLV company 
well advanced in digitalisation (winner of the Industry4.0 award 
of the Hungarian Factory of 2017 contest). Specifically, a combined 
system was selected for the case study, producing daily ca. 1700 
products of 39 types (each of high complexity) belonging to four 
families. The facility could be taken as a factory within the factory 
(see Fig. 1). 

 
Fig. 1. Material flow in the sample production system 

The machining area contains four CNC milling centres and two 
CNC turning machines and a conveyor line. The manufacturing 
process starts with the tube cutting, followed by the machining, 
while the piston rod manufacturing is performed in parallel with 
the machining of the tubes. The machinery area provides supply to 
the preassembly area, where semi-finished products required in 
multiple product families are assembled, after the washing 
operation. There are two assembly work cells for the final 
assembly and test of the finished products, in a one-piece-flow 
production with manual material transport. The conveyor belt has 
a length-dependent buffer capacity and each station has a specified 
buffer area of fixed size.  

In the above setting, the direct industrial motivation is to 
consistently improve the delivery performance at reasonable cost. 
Hence, in response to the (external) requested delivery due date, a 
reliable confirmed delivery due date (CDD) should be determined 
for each customer order (CO), possibly close to the requested. Once 
the CDD is fixed, it can only be changed by serious degradation of 
the delivery performance. Thus, planning and control of the 
manufacturing system—and the way how to improve CDD 
conformance—is a critical issue.  

Applying the proposed workflow (stage 1), the rough process 
model of the decision flow was built, a set of input mixes and 
related volumes were collected for a one-year period, as well as a 
couple of internal and external factors were identified influencing 
the CDD assigned to a certain customer order (see Fig. 2).  

 
Fig. 2. Timeline of an order with main decisions (orange). 

As main external factors the product item number, the 
volume/day are relevant, while internal factors are grouped as 
structural (buffer sizes, operator and machine and operator 
availability) and dynamic (lot-splitting and -sequencing) (for 
details, see [2]). 

As highlighted in Fig. 2, during the planning process the 
customer orders (CO) are converted to production orders (PO) by 
assigning CDD and release date (RD) at the planning level. The 
decision points are marked with orange. At the RD a simple pattern 
of lot-splitting and -sequencing rules is combined at operational 
level, in order to form a viable daily sequence of POs for the coming 
time period (by default 2 shifts). LT defines the time required for a 
PO to be completed with all its required operations while started 
at RD and finished at CD. It is important to note that the primary 
goal of the analysis was to reduce the number of unmet CDDs, i.e. 
to keep CDD conformance. Hence, after setting up the relation 
between LT and the assigned CDD (CDD =  + LT(lot, seq,…)) the 
focus was on reducing LT variance for individual orders (see grey 
area between CDD and CD in Fig. 2), and the makespan for a 
complete daily demand as far as possible. Makespan is the 
indicator for measuring the completion time of a set of POs to be 
produced in an allocated time window (by default 2 shifts). 

PLANNING MACHINING ASSY&PACK

CDRD
t

CDD

CO

CDD

RD

Lot/seq

PO

WA

CO – Customer Order; PO – Prod. Order; CDD – Confirmed Delivery Due date; CD – Completion 
Due date;  LT – Lead Time; RD – Release Date; Lot/seq – Daily sequence of lots; WA – Washing 

LT

s



4. Data and model-driven analysis  

4.1 Sensitivity analysis of service level and cost trade-off 

Having the detailed simulation model of the above described 
production system in hand, a rough-cut sensitivity analysis was 
performed (factorial experiment design, with high and low values 
assigned to the factors, see [2]) in order to find the most relevant 
ones and to measure their effect on CDD conformance. As it turned 
out, the availability of human operators had limited effect on the 
makespan, while in some cases low availability of certain milling 
and turning machines significantly deteriorated the output. This 
was strongly related to the daily mix and so to the workload on 
these machines. From the simulation experiments, in particular 
sequencing and lot-sizing (dynamic), as well as buffer sizes 
(structural) emerged as the most significant influencing factors, at 
zero and reasonable cost, respectively. Therefore, subsequent 
analysis (stage 4) focused on them. 
 
4.2 Dynamic changes—lot-sizing and sequencing 

Following the workflow stages, an in-depth analysis of the 
selected dynamic factors is presented below. As lot-sizing and 
sequencing are carried out on a daily basis, for analysing their 
effects on the makespan a series of experiments were conducted 
on a dataset containing daily input mixes (i.e. daily inputs for 
sequencing and lot-sizing). This baseline dataset had to cover a 
representative time period, whereas, so as to keep the 
computational demand of simulation runs at bay, it had to be of 
limited size. Extending the work introduced in [2], the size of the 
baseline dataset was reduced by unsupervised learning (k-means 
clustering) [18]. All in all, the baseline dataset contained 235 daily 
input mixes from which a series of clusters were formed. The 
predefined numbers of clusters were 5, 10, 25, 50, 75 and 100, 
respectively. Each cluster is represented by its centroid, which is 
the closest (in terms of Euclidian distance) data point from the 
cluster to the geometric mean of the cluster. Thus, each centroid 
corresponds to an actual daily input mix. Fig. 3 presents a heatmap 
of the baseline dataset, where the columns stand for the products, 
and each row is a daily input mix. Additional columns on the left 
represent the six kinds of clusterings. Rows are sorted according 
to the 25-means clustering (C25, see left hand side of Fig. 3). Daily 
mix groups visually arise from the map; for instance, in C25 the 
first two clusters are dominated by a single product (P32), 
whereas the differences of the two clusters are due to demand for 
geometric variations of the same product type (P), and demand for 
products of another type (S).  

So as to asses and compare the representative power of various 
clusterings, simulation experiments were run on the baseline 
dataset and the centroids by applying the combination of different 
sequencing and lot-sizing rules. Rules were suggested by planners 
of the factory and the literature [1][4]. The sequencing rules are 
composed of sub-rules, which are executed on the input mix in a 
fixed order (see also Table 1). First, ordering specifies how the 
daily input mix is sorted: base uses a predefined, heuristic pattern; 
max performs a descending sort according to volume; oscillation 
sorts descending and then appends every second item to the end 
of the sequence in ascending order. Grouping specifies if products 
with matching secondary attributes (like diameter, length) are to 
be grouped together after sorting. There are two lot-splitting 
techniques: cycle splits each item of the sequence according to a 
predefined lot-size and appends the rest to the end of the sequence 
and repeats this until no item is above the given lot-size. Local only 
splits the lots, but keeps their ordering.  Table 1 shows the sub-
rules and their domains, which can be combined to form 10 
different sequencing rules altogether, which are later referred to 
by combining the values of the sub-rules (e.g. “max_False_cycle”).  

 

 
Fig. 3. Heatmap of six clusterings (with color-coded labels on the left) of 

the daily input mixes (brighter colors denote larger volumes). 

Table 1 Sub-rules specifying the sequencing and lot-sizing rules and their 
domains. 

Ordering Domain: grouping Domain: lot-splitting 
base {False} {cycle, local} 
max {False, True} {cycle, local} 
oscillation (osc) {False, True} {cycle, local} 

 

The simulation experiments were evaluated by comparing how the 
various sequencing and lot-sizing rules performed on each dataset. 
The performance metric for a given rule and dataset is the 
percentage of daily input mixes for which the application of the 
rule resulted in a makespan that remained below 105% of the best, 
minimal makespan for that specific input mix. A comparison of the 
different rules’ performance for each dataset is illustrated in Fig. 4, 
while the MAE.S column of Table 2 shows the Mean Absolute Error 
(MAE) of rule performance on the various clusters compared to 
that on the baseline dataset. 
 
Table 2 Numerical comparison between the performances of the different 
datasets. 

Dataset ID MAE.S MS.S MAE.B 

C5 0.166 0.963 0.273 

C10 0,149 0.958 0.180 
C25 0,106 0.947 0,092 

C50 0,057 0.946 0,091 
C75 0,054 0.924 0,062 

C100 0,036 0.922 0,015 
base 0 1.000 0 

 
Based on the graph and the numerical results it can be seen that 
the C25 dataset can properly represent the baseline dataset, 
thereby reducing its size by an order of magnitude. For the input 
mixes in each cluster the rule performing the best on the cluster 
centroid was assigned, which resulted in decreased makespans as 
it can be seen in Table 2. The MS.S column displays the makespan 
in percentage of that of the baseline dataset. The results show that 
the effects of dynamic changes and the evaluation of different 
sequencing and lot-sizing rules can be successfully carried out on 
representative, but smaller datasets created by unsupervised 
learning. It became also clear that it is worth adapting the 
sequencing and lot-sizing rules to the actual daily demand. 



 

Fig. 4. Impact of clustering of daily demands to performance prediction. 

4.3 Structural changes—buffer sizes 

In contrast to lot-sizing and sequencing, the decisions resulting 
in structural changes do not happen on a daily basis. Making such 
changes requires substantial resources and thus, it is essential to 
evaluate their effects through reliable experiments beforehand. 
Similarly to the analysis of dynamic changes, the dataset used in 
the simulation experiments has to be concise and representative 
at the same time. 

Using the results of the already available clustering, a series of 
experiments were conducted in order to do sensitivity analysis as 
for adjusting the sizes of different buffers. As it is shown in Fig. 1, 
the C1-C4 conveyors supplying the milling machines also act as 
buffers. The product routings for each product define which 
milling machine and therefore which conveyor to use. This means 
that changing the length of a conveyor is expected to have an input 
mix dependent effect on the makespan. In the experiments, for 
each dataset the length of each conveyor was increased (one at a 
time) and the resulting makespans for the different clusterings 
were compared just like the performance of the sequencing rules. 
Now the performance measure was the percentage of cases when 
changing a given buffer resulted in the best makespan. Column 
MAE.B of Table 2 shows the mean absolute error for the different 
clusterings, and one can see that the C25 dataset provides similar 
values for buffer size changes as for dynamic changes, thus making 
it a suitable choice for representing the input mixes. 

4.4 Verification of decisions   

In order to validate the effects of the structural and dynamical 
changes based on the insights gained from the C25 dataset, 
experiments were done on input mixes of the baseline dataset with 
the modified system structure and control.  Hence, the size of the 
most sensitive buffer was increased and each daily input mix was 
classified according to the C25 clustering.  Sequencing and lot-
sizing was performed thus in a situation dependent way, by the 
application of the rule best performing on that specific cluster. The 
resulting daily makespans were then compared to the daily 
makespans of the original model which was driven by the baseline 
dataset. Table 3 gives descriptive statistics of the results, showing 
the percentage reduction of the makespan summarized by pushing 
time windows of 1, 5 and 10 days, respectively, over the whole 
horizon (which is 235 days long). It can be concluded that even 
though on a daily basis the impact of novel methods may vary (first 
column), on a longer horizon they definitely provide suitable base 
for improved decision-making in a HMLV production system. The 
expected makespan reduction of the imposed changes indeed paid 
off, thus founding their real-life implementation. 

 
Table 3 Numerical performance comparison of the different datasets. 

5. Conclusions 

Decision making in companies which have to fulfill ever-
fluctuating demand in a HMLV production environment is an 
extremely challenging task: mistakes are barely tolerated since the 
negative effects almost immediately reach the customers, whereas 
the right and cost efficient answers have to be found in a complex 
web of interrelated options. 

The paper suggested a novel workflow for decision support that 
combines model- and data-driven analysis, by making intensive 
use of advanced tools of industrial digitalization, discrete event 
simulation and unsupervised learning in particular. Main stages of 
the workflow follow a sequential refinement strategy, starting 
from strategic scope setting, followed by model building and 
rough-cut sensitivity analysis, and then by focused simulation 
experiments over compressed datasets. For this stage in 
particular, k-means clustering of a baseline dataset representing 
the daily demand mix of products spanning a relatively long 
horizon was suggested.  

Guiding through a real-life industrial use case, the paper has 
shown that the workflow can discern both structural and 
behavioral factors—like buffer sizes, or lot-sizing and sequencing 
rules—whose adaptive changes can consistently improve overall 
system performance. Further progresses can be expected by using 
the simulation model as a digital twin, or applying data analytics to 
enhancing the integrity of collected datasets, as suggested in [19]. 
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 Roll. Sum (1) Roll. Sum (5) Roll. Sum (10) 
mean 0.966 0.967 0.950 

std. 0.512 0.233 0.170 
25% 0.832 0.868 0.886 

50% 0.933 0.907 0.905 

75% 1.001 0.942 0.930 


