4,777 research outputs found

    An Institutional Framework for Heterogeneous Formal Development in UML

    Get PDF
    We present a framework for formal software development with UML. In contrast to previous approaches that equip UML with a formal semantics, we follow an institution based heterogeneous approach. This can express suitable formal semantics of the different UML diagram types directly, without the need to map everything to one specific formalism (let it be first-order logic or graph grammars). We show how different aspects of the formal development process can be coherently formalised, ranging from requirements over design and Hoare-style conditions on code to the implementation itself. The framework can be used to verify consistency of different UML diagrams both horizontally (e.g., consistency among various requirements) as well as vertically (e.g., correctness of design or implementation w.r.t. the requirements)

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Using edit distance to analyse errors in a natural language to logic translation corpus

    Get PDF
    We have assembled a large corpus of student submissions to an automatic grading system, where the subject matter involves the translation of natural language sentences into propositional logic. Of the 2.3 million translation instances in the corpus, 286,000 (approximately 12%) are categorized as being in error. We want to understand the nature of the errors that students make, so that we can develop tools and supporting infrastructure that help students with the problems that these errors represent. With this aim in mind, this paper describes an analysis of a significant proportion of the data, using edit distance between incorrect answers and their corresponding correct solutions, and the associated edit sequences, as a means of organising the data and detecting categories of errors. We demonstrate that a large proportion of errors can be accounted for by means of a small number of relatively simple error types, and that the method draws attention to interesting phenomena in the data set

    Architectural Refinement in HETS

    Get PDF
    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement language, that we equip with a notion of refinement tree and with calculi for checking correctness and consistency of refinements. Soundness and completeness of these calculi is also investigated. Finally, we present the integration of the VSE refinement method in HETS as an institution comorphism. Thus, the proof manangement component of HETS remains unmodified

    Reasoning with constraint diagrams: summary of PhD thesis

    Get PDF

    A cognitive exploration of the “non-visual” nature of geometric proofs

    Get PDF
    Why are Geometric Proofs (Usually) “Non-Visual”? We asked this question as a way to explore the similarities and differences between diagrams and text (visual thinking versus language thinking). Traditional text-based proofs are considered (by many to be) more rigorous than diagrams alone. In this paper we focus on human perceptual-cognitive characteristics that may encourage textual modes for proofs because of the ergonomic affordances of text relative to diagrams. We suggest that visual-spatial perception of physical objects, where an object is perceived with greater acuity through foveal vision rather than peripheral vision, is similar to attention navigating a conceptual visual-spatial structure. We suggest that attention has foveal-like and peripheral-like characteristics and that textual modes appeal to what we refer to here as foveal-focal attention, an extension of prior work in focused attention

    Heterogeneous verification of model transformations

    Get PDF
    Esta tesis trata sobre la verificación formal en el contexto de la Ingeniería Dirigida por Modelos (MDE por sus siglas en inglés). El paradigma propone un ciclo de vida de la ingeniería de software basado en una abstracción de su complejidad a través de la definición de modelos y en un proceso de construcción (semi)automático guiado por transformaciones de estos modelos. Nuestro propósito es abordar la verificación de transformaciones de modelos la cual incluye, por extensión, la verificación de sus modelos. Comenzamos analizando la literatura relacionada con la verificación de transformaciones de modelos para concluir que la heterogeneidad de las propiedades que interesa verificar y de los enfoques para hacerlo, sugiere la necesidad de utilizar diversos dominios lógicos, lo cual es la base de nuestra propuesta. En algunos casos puede ser necesario realizar una verificación heterogénea, es decir, utilizar diferentes formalismos para la verificación de cada una de las partes del problema completo. Además, es beneficioso permitir a los expertos formales elegir el dominio en el que se encuentran más capacitados para llevar a cabo una prueba formal. El principal problema reside en que el mantenimiento de múltiples representaciones formales de los elementos de MDE en diferentes dominios lógicos, puede ser costoso si no existe soporte automático o una relación formal clara entre estas representaciones. Motivados por esto, definimos un entorno unificado que permite la verificación formal transformaciones de modelos mediante el uso de métodos de verificación heterogéneos, de forma tal que es posible automatizar la traducción formal de los elementos de MDE entre dominios logicos. Nos basamos formalmente en la Teoría de Instituciones, la cual proporciona una base sólida para la representación de los elementos de MDE (a través de instituciones) sin depender de ningúningún dominio lógico específico. También proporciona una forma de especificar traducciones (a través de comorfismos) que preservan la semántica entre estos elementos y otros dominios lógicos. Nos basamos en estándares para la especificación de los elementos de MDE. De hecho, definimos una institución para la buena formación de los modelos especificada con una versión simplificada del MetaObject Facility y otra institución para transformaciones utilizando Query/View/Transformation Relations. No obstante, la idea puede ser generalizada a otros enfoques de transformación y lenguajes.Por último, demostramos la viabilidad del entorno mediante el desarrollo de un prototipo funcional soportado por el Heterogeneous Tool Set (HETS). HETS permite realizar una especificación heterogénea y provee facilidades para el monitoreo de su corrección global. Los elementos de MDE se conectan con otras lógicas ya soportadas en HETS (por ejemplo: lógica de primer orden, lógica modal, entre otras) a través del Common Algebraic Specification Language (CASL). Esta conexión se expresa teóricamente mediante comorfismos desde las instituciones de MDE a la institución subyacente en CASL. Finalmente, discutimos las principales contribuciones de la tesis. Esto deriva en futuras líneas de investigación que contribuyen a la adopción de métodos formales para la verificación en el contexto de MDE.This thesis is about formal verification in the context of the Model-Driven Engineering (MDE) paradigm. The paradigm proposes a software engineering life-cycle based on an abstraction from its complexity by defining models, and on a (semi)automatic construction process driven by model transformations. Our purpose is to address the verification of model transformations which includes, by extension, the verification of their models. We first review the literature on the verification of model transformations to conclude that the heterogeneity we find in the properties of interest to verify, and in the verification approaches, suggests the need of using different logical domains, which is the base of our proposal. In some cases it can be necessary to perform a heterogeneous verification, i.e. using different formalisms for the verification of each part of the whole problem. Moreover, it is useful to allow formal experts to choose the domain in which they are more skilled to address a formal proof. The main problem is that the maintenance of multiple formal representations of the MDE elements in different logical domains, can be expensive if there is no automated assistance or a clear formal relation between these representations. Motivated by this, we define a unified environment that allows formal verification of model transformations using heterogeneous verification approaches, in such a way that the formal translations of the MDE elements between logical domains can be automated. We formally base the environment on the Theory of Institutions, which provides a sound basis for representing MDE elements (as so called institutions) without depending on any specific logical domain. It also provides a way for specifying semantic-preserving translations (as so called comorphisms) from these elements to other logical domains. We use standards for the specification of the MDE elements. In fact, we define an institution for the well-formedness of models specified with a simplified version of the MetaObject Facility, and another institution for Query/View/Transformation Relations transformations. However, the idea can be generalized to other transformation approaches and languages. Finally, we evidence the feasibility of the environment by the development of a functional prototype supported by the Heterogeneous Tool Set (HETS). HETS supports heterogeneous specifications and provides capabilities for monitoring their overall correctness. The MDE elements are connected to the other logics already supported in HETS (e.g. first-order logic, modal logic, among others) through the Common Algebraic Specification Language (CASL). This connection is defined by means of comorphisms from the MDE institutions to the underlying institution of CASL. We carry out a final discussion of the main contributions of this thesis. This results in future research directions which contribute with the adoption of formal tools for the verification in the context of MDE
    corecore