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Abstract

Constraint diagrams are designed for the formal specification of software systems. However, their applications
are broader than this since constraint diagrams are a logic that can be used in any formal setting. This document
summarizes the main results presented in my PhD thesis, the focus of which is on a fragment of the constraint
diagram language, called spider diagrams, and constraint diagrams themselves. In the thesis, sound and complete
systems of spider diagrams and constraint diagrams are presented and the expressiveness of the spider diagram
language is established.

1 Introduction

The focus of this thesis is the constraint diagram language, introduced by Kent [18] for use by software engineers for
formal specification. These diagrams are designed to integrate well with the diagrammatic notations in the Unified
Modelling Language (UML) and are an alternative to the UML’s textual Object Constraint Language. The constraint
diagram in Fig. 1 is an example of a system invariant that we might wish to place on a library lending system. It
expresses, amongst other things, that every person can only borrow books that are in the collections of libraries that
they have joined.

P e r s o n
L i b r a r y

B o o k sc a n B o r r o w

j o i n e d c o l l e c t i o n

Figure 1: A constraint diagram.

Indeed, one might argue that diagrams cannot be used as a formal tool but only serve as an aid to understanding
symbolic (or textual) statements and proofs. In seminal work, Shin established that diagrammatic logics could be
given the same status as traditional textual logics by defining a formal, sound and complete diagrammatic reasoning
system [22]. Furthermore, Shin proved that her so-called Venn-II system is equivalent in expressive power to monadic
first order predicate logic. In the last decade, many more diagrammatic logics have emerged, most of which are sound
and complete, for example [2, 9, 10, 13, 14, 15, 17, 20, 23, 24].

Kent’s aim, when he introduced constraint diagrams, was to provide a user friendly, formal notation that is well
suited to those who like to use diagrams for modelling but shy away from the textual languages that are currently the
only viable option for formal specification. The hope is that, by providing sufficiently expressive formal diagrammatic
notations, the use of formal methods will be encouraged, leading to improved software design and, as a result, more
reliable software will be built. In order for Kent’s vision to be realized, the syntax and semantics of constraint
diagrams must be formalized. Furthermore, to enable software engineers to reason about their models, it is essential
that sound and, where possible, complete sets of reasoning rules are specified. It is also desirable to identify decision
procedures for decidable fragments of the language so that we can determine whether software specifications are valid
or contradictory. It is important to establish the expressive power of the constraint diagram language (or fragments
of it) so that we are aware of its limitations in terms of what can be formally specified. Whilst it is all to easy to
identify such tasks, their solution is not necessarily straightforward.
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Figure 2: A spider diagram and a constraint diagram.

Much work has been conducted on a fragment of the constraint diagram language called the spider diagram
language [8, 12, 13, 14, 15, 20]. Capable of expressing arbitrary finite lower and upper bounds on set cardinality,
spider diagrams (and constraint diagrams) are based on Euler diagrams augmented with shading and spiders. In
Fig. 2, d1 is a spider diagram and expresses that A ∩ B = ∅, 1 ≤ |B| ≤ 2 and |U − A| ≥ 2 where U is the universal
set. The trees in d1 are examples of spiders. In both spider and constraint diagrams, spiders represent the existence
of elements and, in constraint diagrams only, can be used to make universally quantified statements. Unlike spider
diagrams, constraint diagrams can express statements involving dyadic predicate symbols by using labelled arrows.
The diagram d2 in Fig. 2 is a constraint diagram and, in addition to the information expressed by the underlying
spider diagram, it expresses that there is an element in A that is related to exactly one element, x, under the relation
r and x ∈ B. The diagram is semantically equivalent to the first order predicate logic sentence

∀x1¬(A(x1) ∧B(x1)) ∧ ∃x1∃x2∃x3

(
¬(x1 = x2) ∧ ¬(x1 = x3) ∧ ¬(x2 = x3)∧

A(x1) ∧B(x2) ∧ ¬A(x3) ∧ ∀x4

(
B(x4) ⇒ (x4 = x2 ∨ x4 = x3)

) ∧ r(x1, x2) ∧ ∀x4

(
r(x1, x4) ⇒ x4 = x2

))
.

Prior to the work in this thesis, various sound and complete systems of spider diagrams have been developed,
all of which are based on Venn diagrams1 and restricted to making statements in a conjunctive normal form. The
first contribution that this thesis makes is to formalize a spider diagram logic based on the more user friendly Euler
diagrams and the restriction to CNF is removed. Reasoning rules are defined and the system is shown to be sound,
complete and decidable. This work is elaborated in section 2. Secondly, the spider diagram logic is shown to be
equivalent in expressive power to monadic first order logic with equality. Hence, spider diagrams are more expressive
than Shin’s Venn-II system. The expressiveness work is detailed in section 3. The third contribution, discussed in
section 4, is the formalization of a relatively highly expressive fragment of the constraint diagram language, for which
sound and complete reasoning rules are provided. This is the first constraint diagram reasoning system. Whilst the
basic completeness proof strategy is reasonably straightforward the details are difficult. A decision procedure can be
extracted from the proof, showing that the system is decidable.

2 Spider Diagrams

In this section, we give a brief overview of the spider diagram system developed in the thesis. We specify the formal
syntax and semantics (this will be useful to us in section 3) and include one of the reasoning rules that is defined for
the system. The work on constraint diagrams discussed in section 4 directly extends the spider diagram system and
more reasoning rules will be illustrated there.

2.1 Syntax

The spider diagram d1 in Fig. 3 has two contours: these are the circles labelled A and B; in general contours are
simple closed curves. This diagram also has four zones: these are the minimal regions in d1. For example, one zone is
inside the contour A and outside the contour B. The shaded zone in d1 is the habitat of one spider (the habitat of a
spider is the set of zones that the spider is placed in)and is touched by two spiders (a spider touches a zone provided
that zone is in its habitat).

The contour labels used in our diagrams are chosen from a countably infinite set, L. A zone can be described by
the labels of the contours that it is inside and the contours that it is outside. Formally, we define a zone to be a pair
of finite, disjoint sets of contour labels. The zone (a, b) is included in a but not included in b. A region is a set of
zones.

1In a Venn diagram, all of the intersections between the sets referenced in the diagram must be explicitly represented.
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Figure 3: Two spider diagrams

Definition 1. An abstract unitary spider diagram, d, (with labels in L) is a tuple 〈L,Z, Z∗, SI〉 whose components
are defined as follows.

1. L = L(d) ⊂ L is a finite set of contour labels.

2. Z = Z(d) ⊆ {(a, L− a) : a ⊆ L} is a set of zones such that

(i) for each label l ∈ L there is a zone (a, L− a) ∈ Z(d) such that l ∈ a and

(ii) the zone (∅, L) is in Z(d).

3. Z∗ = Z∗(d) ⊆ Z is a set of shaded zones.

4. SI = SI(d) ⊂ Z+ × (PZ − {∅}) is a finite set of spider identifiers such that

∀(n1, r1), (n2, r2) ∈ SI • r1 = r2 ⇒ n1 = n2

If (n, r) ∈ SI we say there are n spiders with habitat r.

The symbol ⊥, is also a unitary diagram. If d1 and d2 are spider diagrams then so are (d1 t d2) (‘d1 or d2’) and
(d1 u d2) (‘d1 and d2’).

Every contour in a drawn diagram contains at least one zone, captured by condition 2 (i). In any drawn diagram,
the zone inside the rectangle but outside all the contours is present, captured by condition 2 (ii). The definition of
a spider diagram given here is abstract but the thesis also contains the formal syntax of drawn (or concrete) spider
diagrams and mappings are given between these two levels of syntax. The motivation for using two levels of syntax can
be found in [11] and some previous spider diagram systems also follow the two level approach. The abstract syntax
given here is more elegant than previous formalizations. Consequently, many of the definitions given in the thesis
which use the abstract syntax are more succinct than in previous systems.

Example 1. The drawn diagram d1 in Fig. 3 corresponds to the abstract diagram with

1. contour labels {A,B},
2. zones {(∅, {A,B}), ({A}, {B}), ({B}, {A})({A,B}, ∅)},
3. shaded zones {({B}, {A})} and

4. spider identifiers {(1, {({B}, {A})}), (1, {({A}, {B}), ({B}, {A})})}.
Spiders represent the existence of elements and regions represent sets – thus we need to know how many elements

we have represented in each region. Whilst our definition of a spider diagram uses spider identifiers, it is useful (for
our semantic interpretation) to define the set of spiders in a diagram. We define, for unitary diagram d, the set of
spiders in d to be

S(d) = {si(r) : ∃(n, r) ∈ SI(d)1 ≤ i ≤ n}.
The spider si(r) has habitat r. The set of spiders inhabiting region r in d is denoted by S(r, d) where

S(r, d) = {si(r′) ∈ S(d) : r′ ⊆ r}.
The number of spiders touching r in d is denoted by T (r, d), where

T (r, d) = {si(r′) ∈ S(d) : r′ ∩ r 6= ∅}.
In d1, Fig. 3, the zone ({B}, {A}) is inhabited by one spider and touched by two spiders.
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2.2 Semantics

Regions in spider diagrams represent sets. We can express lower and, in the case of shaded regions, upper bounds on
the cardinalities of the sets we are representing as follows. If region r is inhabited by n spiders in diagram d then d
expresses that the set represented by r contains at least n elements. If r is shaded and touched by m spiders in d then
d expresses that the set represented by r contains at most m elements. Thus, if d has a shaded, untouched region, r,
then d expresses that r represents the empty set. Missing zones (zones that could be in the diagram given the label
set, but are not present) also represent the empty set. To formalize the semantics we shall map contour labels, zones
and regions to subsets of some universal set. We assume that no contour label is a zone or region and that no zone is
a region. We define Z and R to be the sets of all zones and regions respectively.

Definition 2. An interpretation of contour labels, zones and regions, or simply an interpretation, is a pair
m = (U,Ψ) where U is a set and Ψ: L ∪ Z ∪ R → PU is a function mapping contour labels, zones and regions to
subsets of U such that the images of the zones and regions are completely determined by the images of the contour
labels as follows:

1. for each zone (a, b), Ψ(a, b) =
⋂
l∈a

Ψ(l) ∩ ⋂
l∈b

Ψ(l) where Ψ(l) = U − Ψ(l) and we define
⋂
l∈∅

Ψ(l) = U =
⋂
l∈∅

Ψ(l)

and

2. for each region r, Ψ(r) =
⋃

z∈r
Ψ(z) and we define Ψ(∅) =

⋃
z∈∅

Ψ(z) = ∅.

We introduce a semantics predicate which identifies whether a diagram expresses a true statement, with respect
to an interpretation.

Definition 3. Let d be a diagram and let m = (U,Ψ) be an interpretation. We define the semantics predicate,
Pd(m), of d as follows. If d =⊥ then Pd(m) =⊥. If d ( 6=⊥) is a unitary diagram then Pd(m) is the conjunction of the
following three conditions.

(i) Distinct Spiders Condition. For each region r in PZ(d)− {∅}, |Ψ(r)| ≥ |S(r, d)|.
(ii) Shading Condition. For each shaded region r in PZ∗(d)− {∅}, |Ψ(r)| ≤ |T (r, d)|
(iii) The Plane Tiling Condition All elements are in sets represented by zones:

⋃
z∈Z(d)

Ψ(z) = U.

If d = d1 t d2 then Pd(m) = Pd1(m)∨Pd2(m). If d = d1 u d2 then Pd(m) = Pd1(m)∧Pd2(m). We say m satisfies d,
denoted m |= d, if and only if Pd(m) is true. If m |= d we say m is a model for d.

Example 2. The interpretation m = ({1, 2}, Ψ) partially defined by Ψ(A) = {1} and Ψ(B) = {2} is a model for d1

in Fig. 3 but not for d2.

Every unitary diagram, d, is satisfiable, and this can be shown by constructing a model for d, taking the set of
spiders in d as the universal set and mapping contour labels to sets of spiders in an appropriate way.

2.3 Reasoning Rules

Many of the reasoning rules given in the thesis are generalizations of those in [20] for a spider diagram system which
is based on Venn diagrams and restricted to CNF. The rules given in this thesis are firstly stated informally, to aid
intuition, and then the formal definition using the abstract syntax is provided. Some of the rules have analogies in
propositional logic, like distributivity. Unlike some of the ‘propositional logic’ rules, the truly diagrammatic rules
preserve semantic information. Although this is not a requirement, information preserving rules are useful when
using semantic tableaux. Since this thesis was completed, a tableaux system for this spider diagram system has been
implemented [21]. Indeed, theorem provers have been developed for the spider diagram logic presented here [5, 6, 7].
In this section, we include just one example of a reasoning rule due to space limitations. In total, sixteen rules are
defined for the system, giving a complete set.

To motivate the rule illustrated below, we observe that a spider whose habitat is a non-trivial union of regions rep-
resents disjunctive information. This can be reflected at the syntactic level by replacing a unitary diagram containing
such a spider with a disjunction of unitary diagrams, where we split the spider.

Informal Description of the Splitting Spiders Rule. Let d be a unitary diagram with a spider s touching every
zone of two disjoint non-empty regions r1 and r2. Let d1 and d2 be unitary diagrams that are copies of d except that,
in d1, s is replaced by a spider whose habitat is region r1 and, in d2, s is replaced by a spider whose habitat is region
r2. Then d can be replaced by the diagram d1 t d2.
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Example 3. Fig. 4 illustrates an application of the splitting spiders rule. The spider with the three zone habitat
in d splits into two spiders, one in d1, the other in d2. Intuitively, the element represented by the split spider either
belongs to the set U − (A ∪B) or to the set A ∪B.

d

A B

d 1

A B

d 2

A B

Figure 4: Splitting spiders.

Formal Definition of the Splitting Spiders Rule. Let d be a unitary diagram and let r, r1 and r2 be regions of
d such that r = r1∪ r2 and r1∩ r2 = ∅. Let sn(r) be a spider in d (with habitat r). Let d1 and d2 be unitary diagrams
such that

1. Z(d) = Z(d1) = Z(d2),

2. Z∗(d) = Z∗(d1) = Z∗(d2),

3. there exist spiders s1 ∈ S(d1) and s2 ∈ S(d2) such that the habitat of s1 is r1, the habitat of s2 is r2 and

S(d)− {sn(r)} = S(d1)− {s1} = S(d2)− {s2}.

Then d can be replaced by d1 t d2 and vice versa.

2.4 Soundness and Completeness

The soundness of the system is demonstrated in the thesis by first proving that each of the sixteen rules are valid (that
is, applying the rule maintains or enlarges the class of models of the premise diagram) and then a simple induction
argument gives the required result. Some of the validity proofs are straightforward but others are more challenging
(like that of the splitting spiders rule). To prove the validity of the splitting spiders rule, we need a result which
states that if an interpretation satisfies a unitary diagram d and d1 t d2 is a diagram obtained from d by applying the
splitting spiders rule, then the distinct spiders condition holds for one of the disjuncts d1, d2 or the shading condition
holds for the other disjunct.

Lemma 1. Let d be a unitary diagram and suppose that d1 t d2 results on applying the splitting spiders rule to d. Let
m = (U, Ψ) be a model for d. Then

( ∧

r∈R(d1)

|Ψ(r)| ≥ |S(r, d1)| ∨
∧

r∈R∗(d2)

|Ψ(r)| ≤ |T (r, d2)|
)

∧
( ∧

r∈R(d2)

|Ψ(r)| ≥ |S(r, d2)| ∨
∧

r∈R∗(d1)

|Ψ(r)| ≤ |T (r, d1)|
)
.

Lemma 2. The splitting spiders rule is valid.

Sketch of proof Let m = (U,Ψ) be an interpretation. It is easy to show Pd1(m) ⇒ Pd(m) and Pd2(m) ⇒ Pd(m).
Hence (Pd1(m) ∨ Pd2(m)) ⇒ Pd(m); in other words, d1 t d2 ² d. To show Pd(m) ⇒ (Pd1(m) ∨ Pd2(m)), show

Pd(m) ⇒
⋃

z∈Z(d1)

Ψ(z) = U ∧
⋃

z∈Z(d2)

Ψ(z) = U ∧
( ∧

r∈R(d1)

|Ψ(r)| ≥ |S(r, d1)| ∨
∧

r∈R(d2)

|Ψ(r)| ≥ |S(r, d2)|
)
∧

( ∧

r∈R∗(d1)

|Ψ(r)| ≤ |T (r, d1)| ∨
∧

r∈R∗(d2)

|Ψ(r)| ≤ |T (r, d2)|
)
.
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Then use lemma 1 to give Pd(m) ⇒ (Pd1(m) ∨ Pd2(m)).
All of the rules are shown to be valid using similar proof strategies from which it follows that the system is sound.

For space reasons, we omit details of the completeness proof. Very briefly, given spider diagrams d1 and d2 such that
d1 ² d2, the strategy is to convert both d1 and d2 into a disjunction of unitary diagrams, whilst preserving their
semantics, and then reason about these disjunctions. The completeness proof strategy used for the constraint diagram
system developed in this thesis extends that for spider diagrams and more details will be provided there.

Theorem 1. Soundness and Completeness Let d1 and d2 be spider diagrams. Then d1 ` d2 iff d1 ² d2.

It can also be shown that the system is decidable.

3 The Expressiveness of Spider Diagrams

Here, we show that the spider diagram logic is equivalent in expressive power to monadic first order logic with equality
(MFOLe). To show this equivalence, in one direction, for each diagram we construct a sentence in MFOLe that
expresses the same information. We illustrate this conversion by example, omitting the general argument which is
given in the thesis. For the significantly more challenging converse we show, for each MFOLe sentence S, there exists
a finite set of models for S that can be used to classify all the models for S. Using these classifying models we show
that there is a diagram expressing the same information as S.

We shall assume the standard first order predicate logic semantic interpretation of formulae in MFOLe, with the
exception of allowing a structure to have an empty domain. An application of this work is modelling object oriented
systems, with the universal set containing precisely the objects in existence. There may be no objects, so it is important
that we allow empty domains.

3.1 Structures and Interpretations

We wish to identify when a diagram and a sentence express the same information. To aid us formalize this notion,
we map interpretations to structures in such a way that information is preserved. Throughout this section we shall
assume, without loss of generality, that L = {L1, L2, ...} and that we have a countably infinite set of monadic predicate
symbols, P = {P1, P2, ...}. Define U to be the class of all sets. The sets in U form the domains of structures in the
language MFOLe.

Definition 4. Define INT to be the class of all interpretations for spider diagrams. Define also ST R to be the class
of structures for the language MFOLe, that is ST R = {m : U ∈ U ∧ m = 〈U, =m, Pm

1 , Pm
2 , ...〉}, where Pm

i is the
interpretation of Pi in the structure m (that is, Pm

i ⊆ U) and we always interpret = as the diagonal subset of U ×U ,
denoted diag(U × U).

We define a bijection, h : INT → ST R by h(U,Ψ) = 〈U, diag(U × U),Ψ(L1), Ψ(L2), ...〉.
Definition 5. Let d be a spider diagram and S be a MFOLe sentence. We say d and S are expressively equivalent
if and only if h provides a bijective correspondence between their models, that is

{h(I) : I ∈ INT ∧ I |= d} = {m ∈ ST R : m |= S}.

3.2 Mapping from Diagrams to Sentences

To show that the spider diagram language is not more expressive than MFOLe, we will map diagrams to expressively
equivalent sentences. An α-diagram is a spider diagram in which all spiders inhabit exactly one zone [20]2.

Theorem 2. Let d1 be a spider diagram. There exists a spider diagram, d2, that is a disjunction of unitary α-diagrams
and semantically equivalent to d1 (that is, d1 and d2 have the same models).

We map each unitary α-diagram to an expressively equivalent sentence in MFOLe. This enables us to map each
disjunction of unitary α-diagrams to an expressively equivalent sentence and, by theorem 2, this is sufficient to show
that the spider diagram language is not more expressive than the language MFOLe.

2α-diagrams play an important role in the completeness proof.
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Figure 5: Two α-diagrams: from diagrams to sentences.

Example 4. In diagram d1, Fig. 5, there are three spiders, one outside both L1 and L2, the other two inside L2 and
outside L1. The diagram d1 is expressively equivalent to the sentence

∃x1 (¬P1(x1) ∧ ¬P2(x1)) ∧ ∃x1∃x2 (P2(x1) ∧ P2(x2) ∧ ¬P1(x1) ∧ ¬P1(x2) ∧ x1 6= x2).

In diagram d2, no elements can be in L3 and not in L1, so d2 is expressively equivalent to sentence
∀x1 ¬(P3(x1) ∧ ¬P1(x1)).

We observe that the disjunction of these sentences is expressively equivalent to d1 t d2.

In general, for unitary d1 and d2, the disjunction of their expressively equivalent sentences is expressively equivalent
to d1 t d2. It is easy to see how the above example generalizes, hence showing that spider diagrams are at most as
expressive as MFOLe.

3.3 Mapping from Sentences to Diagrams

We now consider the significantly more challenging task of constructing a diagram for a sentence, outlining the approach
taken. Since every formula is semantically equivalent to a sentence obtained by prefixing the formula with ∀xi for
each free variable xi (giving its universal closure) we only need to identify a diagram expressively equivalent to each
sentence.

Shin’s approach for mapping MFOL (without equality) into Venn-II is algorithmic [22], which we now sketch.
To find a diagram expressively equivalent to a sentence she first converts the sentence into prenex normal form, say
Q1x1...QnxnG where G is quantifier free. If Qn is universal then G is transformed into conjunctive normal form. If
Qn is existential then G is transformed into disjunctive normal form. Quantifier Qn is then distributed through G
and as many formulae are removed from its scope as possible. All n quantifiers are distributed through in this way,
thus removing any nesting of quantifiers. A diagram can then be drawn for each of the simple parts of the resulting
sentence.

This algorithm does not readily generalize to arbitrary sentences in MFOLe because = is a dyadic predicate symbol
which means nesting of quantifiers cannot necessarily be removed. Thus we take a different approach, modelled on
what appears in [3], pages 209-210. To establish the existence of a diagram expressively equivalent to a sentence
we consider models for that sentence. To illustrate the approach we investigate relationships between models for
α-diagrams by considering a particular example.

L 1 L 2

d

Figure 6: Extending models for a diagram.

Example 5. The diagram in Fig. 6 has a minimal model (in the sense that the cardinality of the universal set is
minimal) U = {1, 2, 3}, Ψ(L1) = {1}, Ψ(L2) = {2, 3} and, for i 6= 1, 2, Ψ(Li) = ∅. This model can be used to generate
all the models for the diagram. To generate further models, we can add elements to U and we may add these elements
to images of contour labels if we so choose. We can also rename the elements in U . As an example, the element 4 can
be added to U and we can redefine Ψ(L2) = {2, 3, 4} to give another model for d. No matter what changes we make
to the model, we must ensure that the zone ({L1}, {L2}) always represents a set containing exactly one element or we
will create an interpretation that does not satisfy the diagram.
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If a sentence, S, is expressively equivalent to a unitary α-diagram, d, then we will be able to take a minimal model
for S and use this model to generate all other models for S in the same manner as above. Given a structure, we will
define a predicate intersection set. This set is analogous to the image of a zone in an interpretation.

Definition 6. Let m be a structure and X and Y be finite subsets of P (the countably infinite set of predicate symbols).
Define the predicate intersection set in m with respect to X and Y , denoted PI(m,X, Y ), to be

PI(m,X, Y ) =
⋂

Pi∈X

Pm
i ∩

⋂

Pi∈Y

Pm
i .

We define
⋂

Pi∈∅
Pm

i =
⋂

Pi∈∅
Pm

i = U where U is the domain of m.

In the context of MFOLe, we will identify all of the structures that can be generated from a given structure, m,
by adding or renaming elements subject to cardinality restrictions. We will call this class of structures generated by
m the cone of m. For each sentence, S, we will show that there is a finite set of models, the union of whose cones give
rise to only and all the models for S. Central to our approach is the notion of similar structures with respect to S. To
define similar structures we use the maximum number of nested quantifiers in S.

Example 6. Let S be the sentence ∀x1 P1(x1)∧∀x1 ∃x2 ¬(x1 = x2). The formula ∀x1 P1(x1) has one nested quantifier
and ∀x1 ∃x2 x1 6= x2 has two nested quantifiers. Therefore the maximum number of nested quantifiers in S is two.
Now, n nested quantifiers introduce n names, and so it is only possible to talk about (at most) n distinct individuals
within the body of the formula. This has the effect of limiting the complexity of what can be said by such a formula.
In the particular case here, this observation has the effect that if a model for S has at least two elements in certain
predicate intersection sets then S does not place an upper bound on the cardinalities of these predicate intersection
sets.

In a model for S, the interpretation of P1 has to have all the elements, of which there must be either zero or at
least two. Also S constrains the predicate intersection set PI(m, ∅, {P1}) to have cardinality zero. As an example, we
consider two models, m1 and m2 with domains U1 = {1, 2, 3, 4} and U2 = {1, 2, 5, 6, 7} respectively that are partially
defined by Pm1

1 = {1, 2, 3, 4} and Pm2
1 = {1, 2, 5, 6, 7}. Now

|PI(m1, ∅, {P1})| = |∅| = 0 < 2 and |PI(m2, ∅, {P1})| = |∅| = 0 < 2.

Also
|PI(m1, {P1}, ∅)| = |U1| ≥ 2 and |PI(m2, {P1}, ∅)| = |U2| ≥ 2,

so S does not place an upper bound on |PI(m, {P1}, ∅)|. We can think of m1 and m2 as extending m3 with domain
U3 = {1, 2} where Pm3

1 = {1, 2} and Pj = ∅, for all j 6= 1.

Definition 7. Let S be a sentence and define q(S) to be the maximum number of nested quantifiers in S and define
P (S) to be the set of monadic predicate symbols in S. Structures m1 and m2 are called similar with respect to S
if and only if for each subset X of P (S), either

1. PI(m1, X, P (S)−X) = PI(m2, X, P (S)−X) or

2. |PI(m1, X, P (S)−X) ∩ PI(m2, X, P (S)−X)| ≥ q(S)

and for all subsets Y of P (S) such that X 6= Y , PI(m1, X, P (S)−X) ∩ PI(m2, Y, P (S)− Y ) = ∅. Adapted from [3].

In the previous example, m1, m2 and m3 are all similar with respect to S.

Lemma 3. Let m1 and m2 be similar structures with respect to sentence S. Then m1 is a model for S if and only if
m2 is a model for S, [3].

Lemma 3 essentially tells us that any model for a sentence, S, with cardinality greater than 2|P (S)|q(s) can be
restricted to give another model for S with cardinality at most 2|P (S)|q(s).

Definition 8. Let S be a sentence and m be a model for S. If the cardinality of m is at most 2|P (S)|q(s) then we say
m is a small model for S. Otherwise we say m is a large model for S.

Definition 9. Let S be a sentence and m1 be a small model for S. The cone of m1 given S, denoted cone(m1, S),
is a class of structures such that m2 ∈ cone(m1, S) if and only if for each subset X of P (S), there exists an injective
map, fX : PI(m1, X, P (S)−X) → PI(m2, X, P (S)−X) which is bijective when |PI(m1, X, P (S)−X)| < q(s).
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Figure 7: Visualizing cones.

The cone of m given S contains models for S that can be restricted to (models isomorphic to) m. We can think
of elements of cone(m,S) as enlarging m in certain ‘directions’ (adding elements to predicate intersection sets) and
‘fixing’ m in others (keeping predicate intersection sets the same).

Example 7. Let S be the sentence ∃x1∃x2(P1(x1) ∨ P2(x2)) and consider m = 〈{1, 2, 3, 4}, =m, {1, 2}, ∅, ∅, ...〉. A
visual analogy of cone(m, S) can be seen in Fig. 7. Structure m1 = 〈{1, 2, 3, 4, 5, 6}, =m1 , {1, 2, 5}, ∅, ∅, ...〉 can be
obtained from m by enlarging PI(m, ∅, {P1, P2}) and PI(m, {P1}, {P2}) by adding elements to these sets (and the
domain), but keeping PI(m, {P2}, {P1}) and PI(m, {P1, P2}, ∅) fixed. Another element of cone(m,S) is the structure
m2 = 〈{7, 8, 9, 10}, =m2 , {7, 8}, ∅, ∅, ...〉. Here, m2 renames the elements in m. The structure m3 = 〈{1, 2, 3, 4}, =m3

, {1}, ∅, ∅, ...〉 is not in cone(m,S), since there is not an injective map from PI(m, {P1}, {P2}) to PI(m3, {P1}, {P2}).
Example 8. Let S be the sentence ∀x∀y x = y and consider the structure m1 = 〈{1}, =m1 , ∅, ∅, ∅, ...〉 which satisfies
S. We have the following cone for m1:

cone(m1, S) = {m2 ∈ ST R : |PI(m1, ∅, ∅)| = |{1}| = |PI(m2, ∅, ∅)|}.

The class cone(m1, S) contains only structures that are models for S but does not contain them all, for example
m3 = 〈∅, ∅, ...〉 satisfies S but m3 is not in cone(m1, S). All models for S are in the class cone(m1, S) ∪ cone(m3, S).
In this sense, m1 and m3 classify all the models for S. We can draw a diagram expressively equivalent to S using
information given by m1 and m3. This diagram is a disjunction of two unitary diagrams, shown in Fig 8. The unitary
diagram arising from m1 has one spider, no contours and is entirely shaded. That arising from m3 has no spiders, no
contours and is entirely shaded.

d 1 d 2

Figure 8: A diagram expressively equivalent to ∀x∀y x = y.

We will show that, given a sentence, S, there is a finite set of small models, the union of whose cones give rise to
only and all the models for S. We are able to use these models to identify a diagram expressively equivalent to S. In
order to identify such a finite set we require the notion of partial isomorphism between structures.

Definition 10. Let m1 and m2 be structures with domains U1 and U2 respectively. Let Q be a set of monadic predicate
symbols. If there exists a bijection γ : U1 → U2 such that

∀Pi ∈ Q∀x ∈ U1 x ∈ Pm1
i ⇔ γ(x) ∈ Pm2

i

then m1 and m2 are isomorphic restricted to Q and γ is a partial isomorphism.

If m1 and m2 are isomorphic restricted to P (S) then m1 is a model for S if and only if m2 is a model for S. Also,
there are finitely many small models for sentence S, up to isomorphism restricted to P (S).
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Definition 11. Let S be a sentence. A set of small models, c(S), for S is called a classifying set of models for
S if for each small model, m1, for S there is a unique m2 in c(S) such that m1 and m2 are isomorphic, restricted to
P (S).

Theorem 3. Let c(S) be a classifying set of models for sentence S. Then c(S) is finite and
⋃

m∈c(S)

cone(m, S) contains

all and only models for S.

Definition 12. Let m be a small model for sentence S. The unitary α-diagram, d, representing m, is defined as
follows.

1. The contour labels arise from the predicate symbols in P (S): L(d) = {Li ∈ L : ∃Pi ∈ P Pi ∈ P (S)}.
2. The diagram has no missing zones: Z(d) = {(a, b) : a ⊆ L(d) ∧ b = L(d)− a}.
3. The shaded zones in d are given as follows. Let X be a subset of P (S) such that |PI(m,X, P (S)−X)| < q(S).

The zone (a, b) in Z(d) where a = {Li : Pi ∈ X} is shaded.

4. The number of spiders in each zone is the cardinality of the set |PI(m1, X, P (S) − X)| where X gives rise to
the containing set of contour labels for that zone. The set of spider identifiers is then given by:

SI(d) = {(n, r) : ∃X X ⊆ P (S) ∧ |PI(m,X, P (S)−X)| > 0∧
n = |PI(m,X, P (S) −X)| ∧ r = {(a, b) ∈ Z(d) : a = {Li : Pi ∈ X}}}.

We write REP(m1, S) = d. Let c(S) be a set of classifying models for S. Define D(S) to be a disjunction of unitary
diagrams, given by D(S) =

m∈c(S)

REP(m, S), unless c(S) = ∅, in which case D(S) =⊥.

d 1

L 1

d 2

L 1

d 3

L 1

d 4

L 1

Figure 9: Constructing diagrams from models.

Example 9. Let S be the sentence ∃x1P1(x1) ∨ ∀x1P1(x1). To find a classifying set of models we must consider
structures of all cardinalities up to 2|{P1}| × q(S) = 21 × 1 = 2. There are six distinct structures (up to isomorphism
restricted to P (S)) with cardinality at most 2. Precisely four of these structures are models for S and are listed below.

1. m1 = 〈∅, ∅, ...〉,
2. m2 = 〈{1},=m2 , {1}, ∅, ∅, ...〉,
3. m3 = 〈{1, 2}, =m3 , {1}, ∅, ∅, ...〉,
4. m4 = 〈{1, 2}, =m4 , {1, 2}, ∅, ∅, ...〉.

Therefore, the class cone(m1, S) ∪ cone(m2, S) ∪ cone(m3, S) ∪ cone(m4, S) contains only and all the models for S.
We use each of these models to construct a diagram. Models m1, m2, m3 and m4 give rise to d1, d2, d3 and d4 in
Fig. 9 respectively. The diagram d1 t d2 t d3 t d4 is expressively equivalent to S. This is not the ‘natural’ diagram
one would associate with S.

Theorem 4. Let S be a sentence and c(S) be a set of classifying models for S. Then S is expressively equivalent to
D(S).

Hence the language of spider diagrams and MFOLe are equally expressive.
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4 Constraint Diagrams

The constraint diagram system we introduce here is a fragment of the more expressive full constraint diagram notation
(which includes further syntactic elements) introduced by Kent [18]. This fragment is considerably more expressive
than the spider diagram system and the work represents a significant step towards a reasoning system based on the
full notation. We give the syntax and semantics of our restricted constraint diagrams and state syntactic criteria that
are sufficient for identifying the satisfiability of some constraint diagrams. Some of the reasoning rules defined in the
thesis will be illustrated and we sketch the completeness proof strategy.

4.1 Syntax

The formal (abstract) syntax for constraint diagrams modifies and extends that given for spider diagrams. Here, we
will informally sketch the syntax rather than including all of the formal definitions which are given in the thesis.

A unitary constraint diagram is a unitary spider diagram with, possibly, additional syntactic components as outlined
below. Constraint diagrams may contain another type of spider, called universal spiders which are represented by
asterisks. In this system, universal spiders inhabit single zones only, with at most one in any given zone. In the full
constraint diagram language, universal spiders may inhabit many zones and any finite number of universal spiders
may have any given habitat. For clarity, non-universal spiders will now be called existential spiders. We may also
place derived contours in unitary diagrams. A derived contour is a contour without a label. In this system, the inside
of a derived contour is always shaded and they are restricted to representing the empty set. In the full constraint
diagram language, derived contours represent other sets as well. The ‘special’ derived contour in this restricted system
simplifies some of the details in the completeness proof. Arrows can be placed in unitary diagrams. Each arrow has
a label, a source and a target. Just as for contour labels, it is of use to define AL to be a countably infinite set of
arrow labels. An arrow is a triple (l, s, t) where l is an arrow label, s is the source which can be a spider and t is
the target which can be either an existential spider of a contour (possibly derived). In a unitary diagram, there is at
most one derived contour, which must be the target of at least one arrow. In the full constraint diagram language,
unitary diagrams can contain finitely many derived contours, all of which are the target of some arrow. Furthermore,
in our system, each universal spider in a unitary diagram must be the source of at least one arrow.

d

BA f
h

h

Figure 10: A constraint diagram with a derived contour.

Example 10. The diagram in figure 10 contains three contours. One of these contours is derived since it has no
label. There are four existential spiders. One of these is the target of an arrow and two are sources of arrows. Two
of the three arrows in the diagram have the same label, h. The arrow with label f targets the derived contour. By
convention, the derived contour does not affect the set of zones: the zones of d are the same as those for the underlying
spider diagram.

We define, for unitary constraint diagram d, the set of existential spiders in d to be ES(d) and we denote the
habitat of an existential spider, e, in d by η(e). As with spider diagrams, ⊥ is a unitary diagram and we can join
constraint diagrams using the logical connectives t and u.

4.1.1 Semantics

Constraint diagrams that do not contain any arrows (and, therefore, no universal spiders or derived contours) are
spider diagrams. The semantics of constraint diagrams extend the semantics of their underlying spider diagrams.
Arrow labels represent binary relations. An arrow, together with its source and target, represents a property of the
relation represented by its label. A universal spider represents universal quantification over the set represented by its
habitat.
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The diagram in Fig. 11 expresses that (the sets represented by) A and B are disjoint, B is not empty and there
is an x in U − (A ∪ B) such that for all a in A the relational image of a under f is x. This diagram could also be
interpreted as ‘for all a in A, there exists an x in U − (A∪B) such that the relational image of a under f is x’, but we
will not allow such a reading. To avoid ambiguity in diagram reading and to make the system tractable, we restrict
the semantic interpretation so that ‘there exists’ takes precedence over ‘for all’. Relaxing this semantic constraint has
non-trivial outcomes.

BA

f

Figure 11: A constraint diagram.

Definition 13. An interpretation of CL and AL is a triple m = (U,Ψ, φ) where (U,Ψ) is an interpretation for
the spider diagram system (that is, as in definition 2) and φ : AL → P(U × U) is a function mapping arrow labels to
relations on U .

Next we formalize the notion of the image of a relation. Let R be a relation on a set U . Define the image of R to
be im(R) = {b ∈ U : (a, b) ∈ R}. Let A be a subset of U . Define A.R to be A.R = im(R∩ (A×U)) and say A.R is the
image of R with the domain restricted to A.

As for spider diagrams, for each unitary diagram d and for each region r ⊆ Z(d) we define S(r, d) and T (r, d) to
be the set of existential spiders that are completely within r and that touch r respectively (that is, S(r, d) and T (r, d)
do not contain universal spiders). We define Ae(d) and Au(d) to be the sets of arrows in d with an existential source
and universal source respectively; the sets Ae(d) and Au(d) partition the set of arrows in d, denoted A(d). Arrows in
Ae(d) and Au(d) are called existential arrows and universal arrows respectively.

Definition 14. Let d be a constraint diagram and let (U,Ψ, φ) be an interpretation. The semantics predicate,
Pd(m), of d is defined as follows. If d is unitary and d 6=⊥ then Pd(m) is the conjunction of the following conditions.

(i) Plane Tiling Condition. All elements are in sets represented by zones:
⋃

z∈Z(d)

Ψ(z) = U.

(ii) There exists an extension of Ψ: L ∪ Z ∪R → PU to Ψ: L ∪ Z ∪R ∪ ES(d) → PU such that the conjunction of
the following conditions are satisfied.

(a) Spiders Condition. Each existential spider represents the existence of an element in the set represented
by its habitat:

∀ e ∈ ES(d) |Ψ(e)| = 1 ∧Ψ(e) ⊆ Ψ(η(e)).

(b) Strangers Condition. No two existential spiders represent the existence of the same element:

∀ e1, e2 ∈ ES(d)Ψ(e1) = Ψ(e2) ⇒ e1 = e2.

(c) Shading Condition. Each shaded zone, z, represents a subset of the elements represented by the existential
spiders touching z:

∀ z ∈ Z∗(d) Ψ(z) ⊆
⋃

e∈T ({z},d)

Ψ(e).

(d) Existential Arrows Condition. For any existential arrow, (l, s, t), the image of φ(l) with its domain
restricted to Ψ(s) equals Ψ(t):

∀ (l, s, t) ∈ Ae(d)Ψ(s).φ(l) = Ψ(t).

(e) Universal Arrows Condition. For any universal arrow, (l, s, t), the image of φ(l) with its domain
restricted to any element in the set represented by the habitat of s equals Ψ(t):

∀ (l, s, t) ∈ Au(d)∀x ∈ Ψ(η(s)) {x}.φ(l) = Ψ(t).

Otherwise, Pd(m) is defined in a similar manner to the spider diagram case.
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4.2 Satisfiability

Unlike spider diagrams, not all unitary constraint diagrams are satisfiable. For example, the diagram in Fig. 12 is
unsatisfiable. It expresses that there is an element in A that is related to exactly one element, x say, in U −A under
the relation f and exactly one element in U −A distinct from x also under the relation f , which cannot happen. We
give syntactic criteria for identifying whether a unitary α-diagram is satisfiable.

A

f

f

e 1

e 2

Figure 12: An unsatisfiable unitary constraint diagram.

Definition 15. For each arrow, a = (l, s, t) in unitary α-diagram d, define the set of hit existential spiders of a
in d, denoted hit(a, d), to be

(i) hit(a, d) = ∅ if t is derived,

(ii) hit(a, d) = {t} if t ∈ ES(d) and

(iii) hit(a, d) = S(t, d) if t ∈ L(d),

where, for contour (label) t, S(t, d) is the set of existential spiders whose habitats are completely within t. The arrows
of d are pairwise compatible if and only if

(i) every pair of arrows with the same existential spider as their source and the same label have the same hits and

(ii) every pair of arrows with the same universal spider, s, as their source and the same label have the same hits or
the habitat of s is not inhabited by any existential spider and

(iii) if an existential spider has the same habitat as a universal spider and both are the source of arrows with the
same label then these arrows have the same hits.

If the arrows of d are not pairwise compatible then d is said to contain incompatible arrows.

In Fig. 12 one arrow with label f has hit {e1} and the other has hit {e2}. Since these arrows have the same source
they are incompatible, failing condition (ii). Incompatible arrows provide the only source of unsatisfiability for unitary
α-diagrams.

Theorem 5. Unitary α-diagram d (6=⊥) is satisfiable if and only if the arrows of d are pairwise compatible.

Part of the strategy to prove the above theorem is to construct a model for d with pairwise compatible arrows
as follows. The universal set is taken to be ES(d), the set of existential spiders in d. Each contour label, l ∈ L, is
mapped to

Ψ(l) = {e ∈ ES(d) : e is placed inside l}.
To interpret the arrow labels we firstly define US(d) to be the set of universal spiders in d and, as for existential
spiders, we denote the habitat of universal spider u by η(u). Each arrow label, l ∈ AL, then maps to

φ(l) = {(e1, e2) ∈ ES(d)× ES(d) : ∃(l, s, t) ∈ A(d) (e1 = s ∨ (s ∈ US(d) ∧ η(e1) = η(s))) ∧ e2 ∈ hit((l, s, t), d)}.

This interpretation plays an important role in the completeness proof.

4.3 Reasoning Rules for Unitary Diagrams

In this section we illustrate some of the reasoning rules for constraint diagrams. Due to space reasons, the majority of
the rules are not included. Those discussed here are stated informally and illustrate the types of rules that are in the
system. In the thesis, the rules range from being very simple to define (such as the erasure of an arrow rule below) to
having more involved definitions (such as the disjunctifying unitary α-diagrams rule below). Even though their formal
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definitions are not given, the rules included here indicate the breadth of difficulty levels associated with defining the
rules. In the thesis, all of the rules are formally defined using the abstract syntax. In total, there are twenty five
rules, of which twenty two are required for completeness. The other three rules provide useful shortcuts for certain
sequences of rule applications. Some of the reasoning rules for constraint diagrams are modifications and extensions
of those for spider diagrams and, in addition, many new rules relating to arrows are necessary for completeness. For
example, in Fig. 13, the arrow labelled f can erased from the diagram d1 to give d2.

Rule 1. Erasure of an arrow. We may erase any arrow from a unitary diagram. If erasing an arrow results in a
universal spider that is no longer the source of an arrow then that spider is also erased. Similarly, if erasing an arrow
results in a derived contour that is no longer the target of an arrow then that contour is also erased.

A

g

f C

g

A C

d 1 d 2

Figure 13: An application of rule 1.

Erasing an arrow (potentially) loses information, as do some other rules in the system. The remaining rules
discussed here preserve semantic information.

Rule 2. Introduction of a contour. A contour may be drawn in the interior of the boundary rectangle of a unitary
diagram provided the following occurs.

1. The new contour has a label not present in the diagram.

2. Each zone splits into two zones and shading is preserved.

3. Each node of an existential spider (recall, an existential spider is a graph) is replaced by a connected pair of
nodes – one in each new zone of the habitat.

4. Each universal spider, u, is replaced by a pair of universal spiders – one in each new zone of the habitat. Each
arrow, a, sourced on u is replaced by a pair of arrows with the same label and target as a, one sourced on each
new universal spider.

Fig.14 shows an application of rule 2.

A f A

f

fB

d 1 d 2

Figure 14: An application of rule 2.

Rule 3. Introduction of an arrow: universal equivalence. Let d be a unitary diagram with a shaded zone z
where every existential spider that touches z is the source of an arrow with label l and target t (l and t are fixed).
Then we can introduce a universal arrow (and if necessary a universal spider) whose source inhabits z, labelled l with
target t provided that the new arrow is not already present in d.

In Fig. 15, the diagram d1 expresses that each element in A has relational image, under f , that is B. Therefore a
universal spider can be introduced to the zone inside A, which is the source of an arrow with label f , targeted on B.

Rule 4. Introduction of an arrow: contour to contour. Let d be a unitary diagram with a pair of contours,
C1 and C2, whose symmetric difference is shaded and not touched by any existential spider and C1 is the target of an
arrow, a. Then we can introduce an arrow to d with the same source and label as a and target C2 provided that the
new arrow is not already present in d.
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A

f

A

f

f BB f
f

d 1 d 2

Figure 15: An application of rule 3.

The diagram d1 in Fig. 16 expresses that there is an element, x say, in A that is related to each element in B
under f . Furthermore d expresses that B represents the same set as C. Thus x is related to each element in C under
f .

A f A

f

f

d 1 d 2

B B

C C

Figure 16: An application of rule 4.

In total there are six rules that introduce an arrow to a unitary diagram.

Rule 5. Excluded middle for regions. Let d be a unitary diagram with a completely non-shaded region, r. We
can replace d with d1 t d2, where d1 and d2 are copies of d except that r is shaded in d1 and r contains an additional
existential spider in d2.

The excluded middle for regions rule is applied to diagram d in Fig. 17. We shade B − C (giving d1) and add an
existential spider to B − C (giving d2), as shown in d1 t d2.

ò

�

d d 1 d 2

A A AB B B
C CC

f ff

Figure 17: An application of rule 5.

Rule 6. Excluded middle for arrows. Let d be a unitary α-diagram such that every zone in d is shaded and, for
each subset of ES(d), Ei, such that |Ei| > 1, there is a contour, A, such that S(A, d) = Ei. Let l ∈ AL and let e be an
existential spider in d that is not the source of an arrow with label l. Define E(d, l) to be the set of unitary diagrams,
dj, each of which is a copy of d except that dj contains an additional arrow with source e, label l and any target. Then
we may replace d with

dj∈E(d,l)

dj.

An application of this rule is illustrated in Fig. 18. Since every possible subset of U is explicitly represented, we
can deduce that any given element must be related to nothing, itself, the other element or both elements under the
relation l, shown explicitly by d1 ∨ d2 ∨ d3 ∨ d4.

The final rule that we illustrate allows us to replace a diagram with a disjunction of unitary diagrams. There is a
spider diagram version of this rule (called ‘combining’) that is essential to the completeness proof strategy used in the
spider diagram system. The combining rule replaces two unitary α-diagrams taken in conjunction by a single unitary
α-diagram. To extend the proof strategy to this constraint diagram system, we require a constraint diagram version of
this rule and we call the rule disjunctifying unitary α-diagrams. The basic operation of disjunctification is performed
on unitary α-diagrams which have the same sets of zones. Unlike the combining rule in the spider diagram system,
disjunctifying constraint diagrams may result in a disjunction of unitary α-diagrams. However, we first we consider a
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Figure 18: An application of rule 6.
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Figure 19: Disjunctifying constraint diagrams.

simple example where disjunctifying two unitary diagrams does give a unitary diagram: the diagram d1ud2 in Fig. 19
is semantically equivalent to the unitary diagram d.

For our second example, the diagrams du d′ and d1 t d2 t d3 t d4 in Fig. 20 are semantically equivalent. In du d′

the spiders inside A could represent the same element or distinct elements. Similarly for B. This pair of choices gives
four alternatives, each represented by one of d1, d2, d3 and d4.

ò

º
�

d d 1 d 2

d '

ó

d 3 d 4
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A

A

A
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B

B

f f f

f f

g

g g

g g

Figure 20: Disjunctifying constraint diagrams.

To define the disjunctification of two unitary α-diagrams we first identify the unitary components that form the
disjunctification, called partial combinations.

Definition 16. Let d0 and d1 be two unitary α-diagrams with the same zone sets. Let d be a unitary α-diagram that
does not contain incompatible arrows. Then d is called a partial combination of d0 u d1 if and only if each of the
following are satisfied.

(i) The diagram d has the same zone set as d0 and d1.

(ii) The shaded zones in d are precisely those which are shaded in at least one of d0 and d1.

(iii) The number of existential spiders in any shaded zone in d is the maximum number of existential spiders inhabiting
that zone in d0 and d1.

(iv) The number of existential spiders inhabiting any unshaded zone in d is at most the maximum of

(a) the number of existential spiders inhabiting that zone in d0,

(b) the number of existential spiders inhabiting that zone in d1,

(c) the sum total of the number of existential spiders that are sources or targets of arrows inhabiting that zone
in d0 and d1.

16



f

f A A

d 1 d 2

�

f

Figure 21: The diagram d2 is a logical consequence of d1.

(v) The number of existential spiders in any zone in d is at least the largest number of existential spiders inhabiting
that zone in d0 and d1.

(vi) There is a universal spider in a zone in d whenever there is a universal spider in that zone in d0 or d1.

(vii) All of the arrows in d0 occur in d, similarly for d1, and no others.

We define Dpc(d0 u d1) to be the set of partial combinations of d0 u d1.

It may be that Dpc(d0 u d1) = ∅, for example, if one of d0 and d1 contains incompatible arrows.

Definition 17. Let d0 and d1 be unitary α-diagrams such that Z(d0) ≡ Z(d1) or d0 =⊥ or d1 =⊥. Define the
disjunctification of d0 and d1, denoted d0 ∗ d1, as follows.

1. If d0 =⊥ or d1 =⊥ then d0 ∗ d1 =⊥.

2. If a zone in one diagram contains more existential spiders than in a corresponding shaded zone in the other
diagram then d0 ∗ d1 =⊥.

3. If Dpc(d0 u d1) = ∅ then d0 ∗ d1 =⊥.

4. Otherwise d0 ∗ d1 =
d∈Dpc(d0ud1)

d.

To summarize, d0 ∗ d1 ≡² d0 u d1 and d0 ∗ d1 is a disjunction of unitary α-diagrams.

Rule 7. Disjunctifying unitary α-diagrams. Let d0 and d1 be unitary α-diagrams such that Z(d0) = Z(d1) or
d0 =⊥ or d1 =⊥. Then d0 u d1 may be replaced by d0 ∗ d1.

Of the twenty five reasoning rules defined in the thesis, seventeen are ‘diagrammatic rules’ and the remaining eight
are ‘propositional logic’ rules.

4.4 Soundness and Completeness

In the thesis, it is shown that all of the rules are valid (most of the validity proofs are straightforward, but some are
more involved) and that the system is sound.

Theorem 6. Soundness. Let d1 and d2 be constraint diagrams. If d1 ` d2 then d1 ² d2.

The strategy for proving completeness of the spider diagram system extends to this constraint diagram system.
Part of the completeness proof strategy used for spider diagrams begins with a disjunction of unitary α-diagrams each
with the same zone sets, (acquired by adding contours and zones – using an ‘add shaded zone’ rule – then splitting
the spiders and, finally, disjunctifying). For spider diagrams, there are simple syntactic checks that establish whether
one unitary α-diagram is a logical consequence of another. If we consider the subset of all spider diagrams consisting
of unitary α-diagrams with the same zone sets, then all the rules necessary for completeness are erasure rules.

In this constraint diagram system it is possible to transform any diagram into a disjunction of unitary α-diagrams,
using the same strategy. However, for constraint diagrams, it is not easy to determine whether one unitary α-diagram
is a logical consequence of another. There are examples of unitary α-diagrams with the same label sets, where one
constraint diagram, d2 say, is a logical consequence of another but requires more complex rules than simple erasure of
components to establish syntactic entailment. An example of two such diagrams is given in Fig. 21.

Central to the completeness proof for constraint diagrams is the notion of a β-diagram. A β-diagram is an α-
diagram in which every zone is either shaded or inhabited by an existential spider. We can apply the the excluded
middle for regions rule to a disjunction of unitary α-diagrams, adding shading and spiders to produce a disjunction of
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unitary β-diagrams. If we introduce ‘all possible’ syntactic elements to a unitary β-diagram, d1, using our reasoning
rules, giving d2, then any unitary β-diagram, d3, that is a logical consequence of d1 will ‘contain only syntactic
elements that are in d2’. It can be shown that d3 is obtainable from d1 by simply erasing components of d2. This
gives a completeness result for unitary β-diagrams3. We note that the proof of this completeness result for unitary
β-diagrams is particularly challenging and requires non-trivial and subtle insights.

We use the completeness result for unitary β-diagrams to prove completeness of the system. Consider two constraint
diagrams that satisfy d1 ² d2. All of the rules that transform a constraint diagram into a disjunction of unitary β-
diagrams are equivalences, so we transform d1 and d2 into such disjunctions, βd1 and βd2 respectively, as outlined
above. We then apply the excluded middle for regions rule repeatedly to βd1 until the number of existential spiders in
each zone of each unitary component exceeds the number of existential spiders in that zone in any unitary component
of βd2, giving a diagram d, say. We then add ‘all possible’ syntactic elements to d using our reasoning rules giving
diagram d′, say. We can then show each unitary component of d′, say d′′, semantically entails a unitary component of
βd2, say di. From the completeness result for unitary β-diagrams, d′′ ` di and it follows that d1 ` d2.

The sketch of the proof strategy that we have given does not convey the difficulty of the proof. The proof, along
with a more detailed discussion and illustrative examples, can be found in the thesis on pages 196 – 277.

Theorem 7. Completeness. Let d1 and d2 be constraint diagrams. If d1 ² d2 then d1 ` d2.

To prove completeness, we constructed an algorithm to transform d1 into d2. It is straightforward to modify this
algorithm to detect whether d1 ² d2, giving us not only a decidability result but also a decision procedure.

Theorem 8. Decidability. Let d1 and d2 be constraint diagrams. There is an algorithm which determines whether
d1 ` d2.

5 Conclusions

There are three main contributions made in this thesis. First, we developed a spider diagram system that directly
extends previous work, particularly that in [20]. The spider diagram system presented in this thesis is the ‘definitive’
version, in that it is based on Euler diagrams and does not restrict to CNF. The approaches we have taken in our
formalization are more elegant than those for previous systems. If we had, instead, chosen to closely follow previous
approaches then many of the formal definitions and proofs would be considerably more complex.

The two most significant contributions are establishing the expressive power of spider diagrams and developing the
first ever constraint diagram reasoning system. Shin’s approach to proving that Venn-II is equivalent in expressive
power to MFOL [22] does not extend to the spider diagram case. As with Shin’s approach, similar work on converting
MFOL sentences into diagrams relies on syntactically manipulating MFOL sentences until they can easily be translated
into a diagram (where possible), see for example [23]. Thus, a new strategy needed to be found and we took a very
different approach, using a model theoretic argument. By proving that each MFOLe sentence, S, has a finite set of
classifying models, we were able to construct a spider diagram expressing the same information as S. As a consequence
of this equivalence in expressive power, along with the sound and complete set of reasoning rules, we can choose to
use spider diagrams to prove theorems of theories whose axioms are MFOLe sentences.

The development of the sound and complete constraint diagram system in this thesis represents a significant step
towards developing a reasoning system based on the full constraint diagram langauge which has potentially important
applications. We have shown that it is possible to develop highly expressive, sound and complete diagrammatic logics.
Since this thesis was completed, a formalization of the syntax and semantics of the full constraint diagram notation
has been provided [4].

A very interesting question is “what fragments of the full constraint diagram language yield decidable systems?” In
this thesis we have presented such a fragment. Ideally, a large fragment of the constraint diagram language that yields
a decidable system can be identified: users of the language, for example software engineers, need to know whether their
constraints are satisfiable. A known result in first order predicate logic is that the satisfiability problem for sentences
in the Bernays-Schönfinkel-Ramsey class with equality is decidable [1]. These sentences are prenex formulas of the
form ∃x1∃x2...∃xn∀xn+1∀xn+2...∀xn+mF , that is ‘there exists’ takes precedence over ‘for all’. Our constraint diagram
system may well be equivalent in expressive power to a fragment of this class, since we read existential spiders before
universal spiders. However, a direct translation of our diagrams into FOPL (the translation is rather more complex
than for spider diagrams) does not yield sentences in prenex normal form. Some of the equivalences that are required
to transform FOPL sentences into prenex normal form do not hold in the empty structure, which we allow. Thus we

3The outline of the strategy used to prove completeness for unitary β-diagrams is not entirely accurate, but illustrates the essentials of
the argument.
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cannot immediately deduce that our constraint diagram system is equivalent in expressive power to a fragment of the
Bernays-Schönfinkel-Ramsey class with equality.

The reasoning systems we have defined in this thesis provide the necessary mathematical underpinning required to
implement automated reasoning tools. Already one theorem proving tool, available from [25], has been implemented
based on the spider diagram language we have developed [7]. The algorithm that this tool uses to find a proof that
one diagram semantically entails another or to provide a counterexample is an improved version of that which can
be derived from the completeness proof strategy used for the spider diagram system. The improvements reduce the
number of rule applications made by using a sophisticated approach when comparing disjunctions of unitary diagrams.
However, many of the proofs generated by this algorithm are unnecessarily long.

In [5, 6] a heuristic approach to generating proofs in our spider diagram language is presented. Measures between
diagrams are defined that combine to give a lower bound on the number of proof steps required to transform any given
premise into any given conclusion. Taking this lower bound as a heuristic function and the number of reasoning rules
applied as a cost function, the A∗ search algorithm is applied to find a shortest proof between two diagrams. The
method guarantees to find a shortest proof from the premise to the conclusion, provided a proof exists and there is
sufficient time and computer memory.

It should be possible to extend the theorem prover to the constraint diagram language that we have defined.
Certainly, extending the tool to incorporate the additional syntax and reasoning rules is feasible. For automated
theorem proving, it is possible to extract a direct proof writing algorithm from the completeness proof for our constraint
diagram system. With improvements to its efficiency, this algorithm could be of practical use.

In summary, we have developed diagrammatic logics that can be used to formally specify software systems,
see [16, 19] for some modelling examples. The completeness proof for the constraint diagram system was partic-
ularly challenging and many subtle arguments contribute to the proof. The strategy we have taken to prove the
expressiveness result for spider diagrams is novel, requiring deep insights into the model-theoretic relationships be-
tween MFOLe sentences and spider diagrams. The hope is that diagrammatic logics will be more appealing to software
engineers (and others) who do not like using textual logics for formal specification. Indeed, diagrams are likely to
facilitate communication between all of the stakeholders, including domain experts and managers who are unlikely to
be familiar with textual logics. We believe that the research presented in this thesis, along with related work, will
help to promote the use of logic in computing applications. The work in the thesis represents a significant advance in
this area.
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