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In this chapter, we first present the basic concepts of algebraic specification of
software systems. We see that there are many logical systems in use, to cover differ-
ent aspects of the software systems. This amounts to the need for a heterogeneous
framework for specification, where specifications written in different logics coex-
ist and can be combined in a formal way. Such a framework is provided by the
Heterogeneous Tool Set HETS, which is based on an extension of the de-facto stan-
dard algebraic specification language Cast. The central research topic of this work
is to further extend HETS, both theoretically and implementation-wise, in two di-
rections. First we will present experiences and new insights on its foundations from
developing HETS with new features. We then concentrate on the notion of stepwise
refinement, which has been a topic of research for many years in the theory of al-
gebraic specification, but was missing as a syntactical construction in CasL and thus
in HETS.

After an introductory discussion on algebraic specification, heterogeneity and
refinement of specifications, we present our goals in Sec. 1.4 and introduce the
roadmap of this thesis in Sec. 1.5. The chapter is then concluded with the list of
articles in which parts of this work have been published.

1.1 Algebraic Specifications

Formal methods for software engineering refer to the use of mathematical tech-
niques and tools in ensuring that a certain software product is correct. They are
applied especially in the area of safety-critical systems, where it is very important
that the system is indeed safe. Formal methods can be employed already from the
early stages of the development process, starting with the specification level, when
a description of the expected behavior of the system is produced. The advantage of
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using a formal language for writing specifications is that no ambiguities are intro-
duced, as the denotation of a specification is defined precisely, in a mathematical
way. Moreover, we can mathematically ensure that a certain design or implemen-
tation are correct with respect to the formal specification that we fixed before.

The basic assumption underlying the algebraic techniques of specification is that
programs are regarded as algebras, that is, a collection of sets of data values and
functions over those sets. The main purpose is to concentrate on the functional
behavior of software systems and to verify correctness of the input/output behavior
of a program. In this approach, a specification consists of logical axioms which
describe the expected properties an implementation should satisfy. Its denotation
however is model-theoretical: a specification determines a class of models satisfying
the axioms. The intention is to associate to each program a model in the logical
system and thus a program is a correct realization of a specification if its associated
model is included in the model class determined by the specification.

Originally, many-sorted equational logic was used for specifying abstract data
types axiomatically. However, a large number of extensions and variations have
been developed, to increase expressivity and to cover more aspects of software sys-
tems. This has greatly influenced the design of algebraic specification languages
even from the very first one, CLEAR [Burstall and Goguen, 1980], as the features
of the language like e.g. structuring operations for specification “in the large” can
be separated from the particularities of the logical system of choice (see also [San-
nella and Tarlecki, 1988b]). This has the advantage that the same specification
language can be (re-)used for any choice of underlying logical system and more-
over, the logic-dependent aspects can be abstracted away, allowing thus a better
understanding of the general theory underlying algebraic specification. Towards
this purpose, Goguen and Burstall introduced the concept of institution [Goguen
and Burstall, 1992], a category theoretic formulation of the notion of logical sys-
tem which allows to develop both the theory of algebraic specifications and the
features of algebraic specification languages at an abstract, institution-independent
level.

Starting with the late seventies, many algebraic specification languages have
been developed. We refer the interested reader to [Wirsing, 1995] and to Chapter
8 of [Astesiano et al., 2000] for an overview. The Common Algebraic Specification
Language CasL [Mosses, 2004] has been designed by the “Common Framework
Initiative for Algebraic Specification and Development” with the goal to provide a
standard language for algebraic specification, expressive enough to subsume many
of the existing languages. CasL provides

e a logic for writing individual specifications, namely multi-sorted partial first-
order logic with subsorting and induction;

e structuring constructs for specifications and a formalism for structured theo-
rem proving, both institution-independent;

e as a novel feature, architectural specifications for prescribing the structure of
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the implementation of a system, again in an institution-independent way, as
we will see in more detail below;

e libraries of specifications to ease re-use of specifications and their distribution
on the Web.

1.2 Heterogeneous Specifications

As also mentioned above, a great number of logical systems are used in formal
specification. The reason is that, on one side, some logics are better suited for cer-
tain types of problems and on the other side, software systems have reached a such
degree of complexity that in some cases it may be useful to give different specifica-
tions in different formalisms for the same component of a software system, to cover
different aspects of the application (“viewpoint specification”). Moreover, there are
research communities focused on each of the formalisms and investing efforts in
providing specialized tools for the underlying logical system. The philosophy of
heterogeneous specification is not to attempt to combine all features of all differ-
ent logics into a single "universal" logic, but rather to allow them to coexist and to
provide a framework for translating between formalisms during the specification
and verification processes. The specifier has thus the freedom to choose the logic
that suits best the problem to be solved, offers best tool support and according to
the degree of familiarity with a certain specification language. A very simple ex-
ample is the trade-off between the higher expressivity of higher-order logic when
compared to first-order logic and the better automated proof support for the latter
logic: when writing the specification, the user would prefer to use first-order logic
whenever possible and thus benefit from an automated mechanism for discharging
the proof obligations introduced in the verification process, and higher-order logic
only whenever necessary. Another goal of a heterogenous framework is to be easily
extensible with new formalisms.

A number of approaches to heterogeneous specification have been proposed,
CafeOBJ [Futatsugi and Diaconescu, 1998] providing the example of a heteroge-
neous algebraic specification language. Heterogeneity is achieved in CafeOBJ by
representing several logical systems, among which the logics of order-sorted alge-
bras, hidden algebras, preorder algebras and their combinations, as institutions and
the translations between these logics as so-called institution morphisms [Goguen
and Rosu, 2002], thus obtaining a cube of logics and projections between them,
similarly to the known lambda-cube in type theory. This cube is then flattened by
applying the Grothendieck construction [Diaconescu, 2002] to it and thus obtaining
again an institution.

The Heterogeneous Tool Set HETS [Mossakowski, 2005] is a natural extension
of CasL to heterogeneous specification. As we have seen above, the structuring,
proof management, architectural and library levels of CasL are independent of the
underlying institution and the Grothendieck construction provides a way of flat-
tening a graph of logics and their translations (this time not only projections be-
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tween logics can be considered, but various kinds of other translations as well, see
[Mossakowski, 2002a, 2003, 2005, 2006]) to obtain an institution. This institu-
tion is then used at the basic level of CasL to obtain heterogeneous specification in
HETS, and the underlying specification language is called HETCASL. Note that the
graph of logics in HETS is much more complex than the one of CafeOBJ and the
specialized tools of the formalisms included in this graph are interfaced by HETS to
ensure proof support. [WOolfl et al., 2007] presents an example that fits precisely
the scenario above, namely a heterogeneous verification using HETS of the RCC8
composition table — specified in first-order logic — w.r.t. the interpretation in met-
ric spaces — specified in higher-order logic. This verification task can be split into
two subtasks: (1) the interactive verification (using Isabelle) of just a few bridge
lemmas, and (2) the automatic verification that the bridge lemmas imply the RCC8
composition table (using SPASS). It should be stressed that HETS eases the inte-
gration of new logics, and that its logics are not limited to algebraic specification
techniques.

The work presented in this thesis has a very deep connection with HETS. The
entire picture presented so far lies at a high level of abstraction and HETS provides a
concrete and very dynamic instance of framework for heterogeneous specification.
The goals of this thesis are on one side, to extend the theory underlying HETS with
new results and on the other side, to present experiences learned from extending
the implementation of HETS with features previously developed, as it was often the
case that this led to new insights and reconsideration on theory from a practical
perspective.

1.3 Stepwise Refinement in Cast

The task of verifying correctness of a program w.r.t. the requirements given in a
specification may be hard to do directly in practice, because the program usually
reflects a number of design decisions like choice of data structures, of a certain al-
gorithm and so on. A cleaner methodology is to start with an abstract requirement
specification, that fixes only the expected properties and leaves open any such de-
sign decision, and to incorporate these decisions into the specification in a stepwise
manner while proving correctness of each step. Each choice narrows the model
class of the specification being refined. The process ends when we reach a specifi-
cation that contains enough detail to be translated into a program, and correctness
of the entire development is ensured by compositionality of correct realizations.
This can be represented graphically as follows:

SPy~rs> SPy rer> . ~o> SP,, ~o> P

where SPq,..., SP, are specifications, P is a program implementing SP,, and we
denote the refinement steps with ~~ . This approach has been largely advocated
in the literature on algebraic specification, including [Ehrig et al., 1982, Goguen
and Meseguer, 1982, Sannella and Tarlecki, 1988a]; in software engineering the
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idea can be traced back until at least [Wirth, 1971]. We refer the reader to Chapter
7 of [Astesiano et al., 2000] and to [Sannella and Tarlecki, 1997] for a survey. Note
that it may be not straightforward to translate from the last specification to a pro-
gram, as this may e.g. depend on the target programming language, see [Sannella
and Tarlecki, 1996] for a discussion on this topic. This task is however outside the
scope of algebraic specification in general, and of Cast in particular. Actually, the
linear model is too simple to cover the practical situations. An important aspect
concerns modular decomposition of a complex system into several implementation
tasks, that can be resolved independently, e.g. by different developers. This corre-
sponds to introducing branching points in the refinement tree. CasL architectural
specifications [Bidoit et al., 2002a, Mosses, 2004] have been designed for this pur-
pose, based on the insight that the structure of implementations may be different
from the structure of specifications [Fitzgerald and Jones, 1990].

SPq
SP ~~> BR :

SP,
Each branching point additionally specifies an operation BR that combines real-
izations Pi,..., P, of SPy,...,SP,, respectively to produce a realization of SP. As
explained in [Bidoit et al., 2002a], the operation BR can be thought of as a linking
procedure, in the sense that whenever we want to replace an implementation of a
component with another one, we can simply "re-link" it with the realizations of the
other components, without modifying them in any way. This is possible because the
development of components is independent.

CasL architectural specifications allow though the specification of individual
branching points only, and we may want to further decompose the specifications
of the components as well. In particular, this should be possible without having
to rewrite already defined architectural specifications. Moreover, CasL does not
provide any syntactical construct for specifying explicitly refinement between spec-
ifications. [Mossakowski et al., 2005] introduce an extension of CasL with a simple
refinement language that adds the means to formalize whole developments in the
form of refinement trees.

Spl ~> Py

SP  ~or> SP,1 o> {Spnn ~> o Pt
SP,, ~o~> :

Furthermore, the refinement notion has been enhanced to a behavioral or ob-
servational interpretation. This has been again widely studied in literature, starting
with [Giarratana et al., 1976], see also [Sannella and Tarlecki, 1987] and [Sannella
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and Tarlecki, 1997] for an overview. The idea is that an implementation is consid-
ered correct even if it does not satisfy the properties of a specification literally, but
only up to observable behavior. This is achieved e.g. in many-sorted logics by treat-
ing only a subset of sorts in the specification as directly observable while the others
are regarded as hidden and can be “observed” by terms of an observable sort and
by predicates. It is then possible to introduce an observational congruence relation
on the submodel obtained by restricting the carriers of hidden sorts to the values of
closed terms, which is then used as interpretation of equality. The classical example
is that in the implementation of stacks as arrays with pointers, two arrays are re-
garded to be equal if they only differ in their “junk” entries, above the stack pointer.
This has been developed in theory to some degree [Bidoit et al., 2008, Sannella and
Tarlecki, 2012], but not implemented in HETS yet.

1.4 Objectives of the Thesis

The aims of this thesis are twofold:

e to instantiate and further develop a number of theoretical results in the con-
crete setting provided by HETS as a framework for heterogeneous specifica-
tion and

e to add support for the CasL refinement language in HETS, including a first
approach to observational refinement.

For the first objective, our investigations target the following directions.

Logical frameworks in HETS. HETS uses institutions to formalize the notion of a
logical system. This allows, on one side, to develop foundational results and even
language constructs independently of the underlying logical system and, on the
other side, to implement institutions in HETS as a generic interface which is then
instantiated whenever a new logical system is added. Thus, the effort of adding
new logics is considerably reduced. However, this has the drawback that new logics
can be added only by HETS developers. Moreover, logics are not represented as for-
mal objects in HETS, and their verification can not be done automatically, but only
informally at the meta-level. Logical frameworks like LF or Isabelle on the other
hand provide strong capabilities for representing proof theory of a logic. In his PhD
thesis [Rabe, 2008], F. Rabe has developed a meta-framework for representing
logics which is no longer biased towards proof theory, but includes a representa-
tion of the model theory of an object logic as well. Our goal is to integrate this
meta-framework in HETS, making it possible to add new logics in HETS in a more
declarative manner, from their specification in a logical framework.

Logic translations. The next central notion in HETS is the one of translation be-
tween logics. Translations are represented in HETS as institution comorphisms,
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which usually capture embeddings or encodings of logics. In their theoroidal vari-
ant, comorphisms map theories of the source logic to theories of the target logic,
under the conditions that theories of the same signature are mapped to theories
of the same signature and the translation of sentences depends on signatures, not
on theories [Meseguer, 1989]. However, the logic graph of HETS includes several
logic translations that do not have these properties. We propose a generalization
of the notion of theoroidal comorphisms and study the impact of this change to
heterogeneous specification.

Heterogeneous colimits and amalgamation. Colimits are a categorical notion
that is used to combine interconnected objects taking into account the intercon-
nection. They have been used as a means for putting together logical theories and
specifications (see e.g. [Burstall and Goguen, 1977, Diaconescu et al., 1993]). A
major property of colimits of specifications is amalgamation. Roughly speaking,
this property states that models of given specifications can be combined to yield
a uniquely determined model of a colimit specification, provided that the origi-
nal models coincide on common components. While studied before [Diaconescu,
2002], the conditions for existence of colimits and amalgamation in a heterege-
neous setting prove to be too strong for all the practical situations. We develop an
algorithm for computing approximations of amalgamable colimits based on a result
in [Mossakowski, 2005] and also discuss their applications in HETS.

Maude integration. Maude [Clavel et al., 2007] is a high-performance system,
supporting both equational and rewriting logic for a wide range of applications.
Moreover, it provides another instance of logical framework for representing logics
(see [Marti-Oliet and Meseguer, 1994]). We present here an integration of Maude
as a new logic in HETS. For HETS, this brings the first dedicated rewriting engine;
for Maude, this enables external proof support at a general level using the provers
interfaced by HETS. We also include an extension of the proof management system
of HETS to cope with the special semantics of modules in Maude.

The second objective has also developed in more directions.

Semantics of generic unit expressions. In architectural specifications, generic
units denote parameterized programs, which combine compatible implementations
taken as arguments to obtain an implementation of an extension of their specifica-
tions, in a way that the arguments are preserved. They are build using generic unit
expressions, written in CasL using the A-notation. We identify a shortcoming in the
analysis of the semantics of generic unit expressions, rather technical, but which
has also an impact on the way units with imports can be refined. We propose a
number of changes to remedy this.

CasL refinement in HETS. The refinement language of CasL subsumes the archi-
tectural level and allows to capture the whole development process as a refinement
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tree. We implement the language in HETS and complement it with a calculus for
verifying correctness of refinement trees, which are also represented explicitly in
the tool. We also investigate conditions for completeness of the calculus. Moreover,
we present a calculus for checking consistency of refinements. In particular, this
calculus provides a method of simplifying the task of finding a model for a large
theory using an architectural refinement of this theory.

Integration of VSE. The specification environment Verification Support Environ-
ment (VSE) [Autexier et al., 2000], developed at DFKI Saarbriicken, provides an
industrial-strength methodology for specification and verification of imperative pro-
grams. VSE supports a notion of refinement of first-order specifications to specifi-
cations in dynamic logic, where modalities are programs written in an imperative
language. VSE further exploits this to provide code generation, making thus refine-
ment to VSE a good candidate for the last step of the development. This refinement
notion mimics behavioral refinement in a somewhat simpler way, based on mak-
ing submodels and congruences explicit. Our goal here is to integrate VSE and its
refinement notion into HETS in a non-disruptive way w.r.t. the proof management
system of HETS.

1.5 Roadmap

The thesis is organized as follows. The rest of Part I is dedicated to setting the foun-
dations. We start in Chapter 2 with a presentation of the Heterogeneous Tool Set
HETS and of the formalisms it currently supports. Chapter 3 recalls the mathemat-
ical concepts underlying HETS, starting with institutions and translations between
them like institutions, model amalgamation or conservativity of theory morphisms,
institution comorphisms and Grothendieck institutions. In Chapter 4 we present the
CasL language, starting with the underlying logic and then the structuring and the
architectural levels, together with the formalism of development graphs for proof
manangement. Chapter 5 describes the CasL refinement language and its semantics.

In Part IT we concentrate on the first objective, the extensions of HETS, both
from a theoretical and from the implementation perspective. In Chapter 6 we de-
scribe how Hets can be extended with new logics from their specification in a logical
framework. Chapter 7 introduces a new notion of generalized theoroidal comor-
phisms and discusses the impact of this change to heterogeneous specification and
verification. In Chapter 8 we present the implementation of an algorithm for com-
puting approximations of heterogeneous amalgamable colimits and its applications
in HETS. Finally, Chapter 9 describes the integration of the Maude logic in HETS and
extensions of the development graph calculus introduced to facilitate proof support
for Maude. Note that Part II depends on Chapters 2, 3 and 4.

Part III focuses on the architectural refinement level of CasL, our second ob-
jective. Chapter 10 discusses a modification in the semantics of the architectural
specifications which simplifies verification and refinement of unit with imports. In
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Chapter 11 we introduce a proof calculus for verification of Cast architectural and
refinement specifications, discuss its completeness and complement it with a calcu-
lus for checking consistency of refinements. Chapter 12 presents the integration of
the VSE refinement notion in HETS. Note that chapters 4 and 5 are a prerequisite
for understanding Part III, but the other chapters of Part I are also relevant.

Fig. 1.1 gives a preview of the contributions of this work and their dependencies.
The diagram is organized according to the levels of HETCASL, starting with basic
specifications (BS in the diagram), then with structured specifications and develop-
ment graphs (DG), architectural specifications (AS), refinement specifications (RS)
and finally heterogeneous specifications (HS). In each box, the number points to
the corresponding chapter or section. Note that heterogeneous refinement and its
incoming edges are dashed because future work is required to support this entirely
— however the part needed for writing down VSE refinements using the refinement
language of Cast is already available.

1.6 Publications
Parts of this thesis have been published in the following articles:

1. Mihai Codescu, Till Mossakowski (2008). Heterogeneous colimits. In F.
Boulanger, C. Gaston, P. Schobbens (Eds.), MoVaH’08 Workshop on Modeling,
Validation and Heterogeneity. IEEE press.

2. Mihai Codescu (2009). Generalized Theoroidal Institution Comorphisms.
In Andrea Corradini, Ugo Montanari (Eds.), WADT 2008, Vol. 5486, pp. 88-
101, Lecture Notes in Computer Science. Springer.

3. Mihai Codescu, Bruno Langenstein, Christian Maeder, Till Mossakowski
(2009). The VSE Refinement Method in HETS. In K. Breitman, A. Caval-
canti (Eds.), ICFEM 2009, Vol. 5885, pp. 660-678, Lecture Notes in Computer
Science. Springer. Superseeded by 8.

4. Mihai Codescu, Till Mossakowski, Adrian Riesco, Christian Maeder (2010).
Integrating Maude into HETS. In Mike Johnson, Dusko Pavlovic (Eds.),
AMAST 2010, Vol. 6486, pp. 60-75, Lecture Notes in Computer Science.
Springer.

5. Mihai Codescu (2011). Lambda Expressions in CASL Architectural Spec-
ifications. In Till Mossakowski, Hans-Jorg Kreowski (Eds.), Recent Trends
in Algebraic Development Techniques, 20th International Workshop, WADT
2010, Lecture Notes in Computer Science. Springer.

6. Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, Flo-
rian Rabe, Kristina Sojakova.(2011) Towards Logical Frameworks in the
Heterogeneous Tool Set HETS. In Till Mossakowski, Hans-Jorg Kreowski



20

Chapter 1. Introduction

(Eds.), Recent Trends in Algebraic Development Techniques, 20th Interna-
tional Workshop, WADT 2010, Lecture Notes in Computer Science. Springer.

. Mihai Codescu, Till Mossakowski (2011). Refinement trees: calculi, tools

and applications. In Andrea Corradini, Bartek Klin (Eds.), Algebra and Coal-
gebra in Computer Science, CALCO’11, Vol. 6859, pp. 145-160, Lecture Notes
in Computer Science. Springer.

. Mihai Codescu, Bruno Langenstein, Christian Maeder, Till Mossakowski

(2012). The VSE Refinement Method in HETS. To appear in Electr. Comm.
of the EASST.

The relationship between these papers and the present thesis, as well as my own
contribution to each of them is clarified at the end of the corresponding chapters.
Moreover, the following papers have been published during my PhD studies but the
results have not been included in the present thesis:

1.

Mihai Codescu, Daniel Gaina (2008). Birkhoff Completeness in Institu-
tions. In Logica Universalis, 2(2), pp. 277-309.

. Oliver Kutz, Till Mossakowski, Mihai Codescu (2008). Shapes of Alignments

- Construction, Combination, and Computation. In Ulrike Sattler, Andrei
Tamilin (Eds.), International Workshop on Ontologies: Reasoning and Modu-
larity (WORM-08), Vol. 348, CEUR-WS online proceedings.

. Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, Florian

Rabe (2011). A Proof Theoretic Interpretation of Model Theoretic Hiding.
In Recent Trends in Algebraic Development Techniques, 20th International
Workshop, WADT 2010, Lecture Notes in Computer Science. Springer.

Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, Florian
Rabe (2011). Project Abstract: Logic Atlas and Integrator (LATIN). In
James H. Davenport, William M. Farmer, Josef Urban, Florian Rabe (Eds.),
Intelligent Computer Mathematics 18th Symposium, Calculemus 2011, and
10th International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011.
Proceedings, Vol. 6824, pp. 289-291, Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg.

. Mihai Codescu, Gregor Horsinka, Oliver Kutz, Till Mossakowski, Rafaela Rau

(2011). DO-ROAM: Activity-Oriented Search and Navigation with Open-
StreetMap. In C. Claramunt, S. Levashkin,, M. Bertolotto (Eds.), Fourth In-
ternational Conference on GeoSpatial Semantics, Vol. 6631, (p. 88-107). ,
Lecture Notes in Computer Science. Springer

. Till Mossakowski, Mihai Codescu, Oliver Kutz (2011). Ontologie-basierte

Routenplanung fiir eine aktivitiatsorientierte Elektromobilitidt mit Open-
StreetMap. In Magdeburger Logistiktagung 2011.



21

1.6. Publications

¢'C1 — JuowoumoI ,T

HASA Jo Surpooury]

L

T

*S9AN3[qO USaMIaq satduspuadap jo ydeln :1°T aindig

\\\\\\ kﬁj

71 SN0oURS0I1030Y] |

\\\H\\\L

), — swstydiouwod

BRI

0 — SOIS0[ MdU JO

T 11 — Sjuowougod 10§

SNNoeDd JooIJ

11T — snnores jooxd

[eIN}ON)TYIIY

GTT — 3299
Aouo)sISu0))
et — (dSA)

OIS0 OTWRUA(]

pozifelausy) SN02U9Z0I030] SUOTYRIR[ID(]
71T —Soo1)
TIOWDUYIY
01 — m:oﬁmmmax@-«
JO SOTJURIOG
9'g — 3uIpry 76 — PN\ puU®
10J so[ny ISV)) UI SSOUdI]

G'{ — SUOISUO}XD
S pue 1ISV))
ut SHIo)

6 — OL30] mau
' Se opney

SH

Sd

SV

od

sd






CHAPTER 2
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The Heterogeneous Tool Set HETS is a parsing, static analysis and proof manage-
ment tool combining various such tools for individual specification languages, thus
providing a tool for heterogeneous multi-logic specification. HETS is a both flexible,
multi-lateral and formal (i.e. based on a mathematical semantics) integration tool.
Unlike other tools, it treats logic translations as first-class citizens. The central idea
of HETS is to provide a general multi-formalism framework for algebraic specifica-
tion, verification and proof management. Probably the best intuition is given by
the analogy of HETS acting like a motherboard where different expansion cards can
be plugged in, the expansion cards here being individual logics (with their analysis
and proof tools) as well as logic translations while the slots are generic interfaces.

Hets
motherboard

Figure 2.1: HETS motherboard.

HETS has developed into a complex tool. Therefore, we have chosen to sepa-
rate its presentation in three parts. The tool itself and the formalisms it currently
supports are presented in this chapter, in Sections 2.1 and 2.2 respectively. Note
that this chapter follows [Mossakowski et al., 2011] to a large extent. The logical
foundations of HETS are presented in detail in [Mossakowski, 2005]. We give an
overview in Chapter 3, concentrating on the concepts used in the present work.
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Finally, in Chapter 4 we recall the central logic of HETS, CasL, together with the
Cast specification language and its extension to heterogenous specifications, HET-
CAsL. As the refinement language of CasL is a rather recent addition and plays an
important role in this thesis, we present it separately in Chapter 5.

2.1 Architecture of HETS

The architecture of the Heterogeneous Tool Set is shown in Fig. 2.2, which separates
the logic-specific level, on the left, the logic-independent level, on the right, and the
logic graph of HETS, placed in the middle and acting like a parameter for the entire
tool. HETS uses Haskell [Peyton-Jones, 2003] as implementation language; we
present here only some relevant implementation details and refer the interested
reader to the HETS development page’.

Architecture of the heterogeneous tool set Hets

Tools for specific logics Logic graph Tools for heterogeneous
specifications
4 Text T (Haskell y lsabelle )
parser —— | | A LF / Te‘xt \
Abstract syntax —P HasCASL CspCASL > [Pase
Static Analysis —— | | CoCASL Abstrac‘t syntax
v |
(Signature, Sentences) [T Static Analysis
Interf‘aces - ] ”?"(]))tjt};OL MOdalCASL Global Environment
v ] _—
\ XML, Aterm Maude’ /CASL \; Interfaces
QBF Commonv]:og,lc \ ML Aterms | www, G/
Theorem provers A RelScheme OWL e v N
Rewriters ———\ Propositional g Heterogeneous
\ / development graphs
|
;\-, Heterogeneous inference engine
I Decomposition of proof obligations
Conservatlwty checkers Grothendieck IOgiC :s* Manageme‘m of proofs
Model finders v
Model checkers (F|attened |ogic graph) Heterogeneous proof trees
J

Figure 2.2: Architecture of the Heterogeneous Tool Set

HETS is based on theory of institutions (which we discuss in detail in Sec-
tion 3.1), a model-theoretic abstract concept that formalizes logical systems. In-
formally, an institution provides notions of signatures for the symbols of the lan-
guage, signature morphisms to capture changes of notations for symbols, then, for
each signature, sentences, models and a satisfaction relation between these which
is required to be preserved under change of notation.

The left side of Fig. 2.2 summarizes how an individual logic is represented in-
ternally in HETS. In our motherboard analogy, this is the expansion card for adding
new logics. First, we need to provide Haskell datatypes for the constituents of

! http://trac.informatik.uni-bremen.de:8080/hets/wiki/HetsForDevelopers
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class Logic lid sign morphism sen basic_spec symbol_map
| 1id —> sign morphism sen basic_spec symbol_map where

identity :: 1id —-> sign -> morphism

compose :: lid —-> morphism -> morphism -> morphism

dom, codom :: lid —-> morphism -> sign

parse_basic_spec :: 1lid -> String -> basic_spec
parse_symbol_map :: 1lid -> String —-> symbol_map
parse_sentence :: 1lid -> String -> sen

basic_analysis :: 1id -> sign -> basic_spec -> (sign, [sen])
stat_symbol_map :: 1lid —-> sign —-> symbol_map —-> morphism
map_sentence :: 1id -> morphism -> sen —-> sen

provers :: 1lid -> [(sign, [sen]) —-> [sen] -> Proof_status]
cons_checkers :: 1id -> [(sign, [sen]) —-> Proof_status]

Figure 2.3: The basic ingredients of logics

the logic, e.g. signatures, morphisms and sentences. This is done via instantiat-
ing various Haskell type classes, namely Category (for the signature category of
the institution), Sentences (for the sentences), Syntax (for abstract syntax of ba-
sic specifications, and a parser transforming input text into this abstract syntax),
StaticAnalysis (for the static analysis, turning basic specifications into theories,
where a theory is a signature and a set of sentences). All this is assembled in the
type class Logic, which additionally provides logic-specific tools like provers and
consistency checkers. The type class Logic used to represent logics in Hets inter-
nally is presented in Fig. 2.3, in a simplified version. Note that with this mechanism,
a new logic can only be added on the developer side; in Chapter 6 we will present
an extension of HETS which allows the logics to be specified by the user, in a more
declarative fashion.

The logic-independent level has a similar architecture, but the specification lan-
guage is now an extension of CasL to heterogeneous specification, called HETCASL.
HETCASL generalizes the CasL structuring mechanisms to arbitrary logics and al-
lows specifications written in different logics to be combined in a formal manner.
The idea is that the heterogenous parser carries in its state the current logic, which
can be altered explicitly or by translation to another logic. This determines which
logic-specific parser and static analysis method will be invoked. As a result of the
static analysis, HETS constructs heterogeneous development graphs, which provide
a formalism for proof management and theorem proving. We will present HETCASL
and development graphs in detail in Chapter 4. Moreover, HETS also accepts di-
rectly a number of input languages with their own structuring language, among
which OWL, Maude, Haskell or Twelf. In some cases, this is realized by calling a
logic-specific tool which does the parsing and the static analysis, and the result of
the analysis is then imported in HETS and transformed in a development graph.
This has the advantage that a number of complex algorithms do not have to be
reimplemented and maintained on the HETS side.
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Figure 2.4: Graph of logics currently supported by HETS.

2.2 HETS’ Logic Graph

In the center of HETS’ architecture (Fig. 2.2) we have the graph of supported logics

and logic translations. It acts like a parameter for the entire tool, as modifications

on the graph do not require reimplementation of the logic-independent part of the

tool. The graph of currently supported logics is in Fig. 2.4. Black nodes represent

logics with proof-support, while green nodes represent stable implementations.
The logics in the logic graph of HETS can be categorized as follows:

e general-purpose logics: Propositional, QBF, SoftFOL, CASL, HasCASL, HOL-
Light, FPL

e logical frameworks: Isabelle, LF, DFOL, Framework

e ontologies and constraint languages: CASL-DL, OWL2, CommonlLogic,
RelScheme, ConstraintCASL

e logics of reactive systems: CspCASL, CoCASL, ModalCASL, ExtModal,
Maude

e programming languages: Haskell, VSE
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e logics of specific tools: Reduce, DMU (CATIA), Adl, EnCL, FreeCAD

We now briefly describe each of them and also provide a reference when avail-
able.

CASL [Mosses, 2004, Bidoit and Mosses, 2004] is the central logic of HETS. We
will describe this logic in more detail in Chapter 4.

CoCASL [Mossakowski et al., 2006b] is a coalgebraic extension of Casi, suited for
the specification of process types and reactive systems. The central proof
method is coinduction.

ModalCASL [Mossakowski, 2004] is an extension of CasL with multi-modalities
and term modalities. It allows the specification of modal systems with Kripke’s
possible worlds semantics. It is also possible to express certain forms of dy-
namic logic.

ExtModal [Garlea, 2011] is an extended modal logic, currently in an experimental
state.

HasCASL is a higher order extension of CasL allowing polymorphic datatypes and
functions. It is closely related to the programming language Haskell and al-
lows program constructs being embedded in the specification. An overview
of HASCASL is given in [Schroder and Mossakowski, 2002]; the language is
summarized in [Schroder et al., 2003], the semantics in [Schréder, 2006,
Schroder, 2005].

Haskell is a modern, pure and strongly typed functional programming language.
Since it also is the implementation language of HETS, in the future HETS
might be applied to itself. The definitive reference for Haskell is [Peyton-
Jones, 2003], see also www.haskell.org.

CspCASL [Roggenbach, 2006] is a combination of CasL with the process algebra
Csp.

Common Logic (http://en.wikipedia.org/wiki/Common_logic) is a family of lan-
guages based on first-order logic, defined as an ISO standard for knowledge
representation in computer-based systems.

ConstraintCASL is an experimental logic for the specification of qualitative con-
straint calculi.

OWL2 is the Web Ontology Language recommended by the World Wide Web Con-
sortium (W3C, http://www.w3c.org); see [w3c, 2009]. It is used for knowl-
edge representation on the Semantic Web [Berners-Lee et al., 2001]. Hets
calls an external OWL2 parser written in Java to obtain the abstract syntax
for an OWL file and its imports. The Java parser also does a first analysis clas-
sifying the OWL ontology into the sublanguages OWL Full (all of OWL, under


www.haskell.org
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the RDF semantics, undecidable [Schneider, 2009]), OWL DL (all of OWL,
under the direct semantics [Motik et al., 2009b]), and the so-called OWL Pro-
files (i.e. proper sublanguages) OWL EL, OWL QL, and OWL RL [Motik et al.,
2009a]. Hets supports all except OWL Full.

CASL-DL [Liittich et al., 2005] is an extension of a restriction of CasL, realizing a
strongly typed variant of OWL in CasL syntax. It extends CastL with cardinality
restrictions for the description of sorts and unary predicates. The restrictions
are based on the equivalence between CASL-DL, OWL and SHOZN. Com-
pared to CasL only unary and binary predicates, predefined datatypes and
concepts (subsorts of the topsort Thing) are allowed. It is used to bring OWL
and Cast closer together.

Propositional is classical propositional logic, with the zChaff SAT solver [Herb-
stritt, 2003] connected to it.

QBF are quantified boolean formulas, with DepQBF (http://fmv.jku.at/depgbf/)
connected to it.

RelScheme is a logic for relational databases [Schorlemmer and Kalfoglou, 2008].

SoftFOL [Liittich and Mossakowski, 2007] offers several automated theorem prov-
ing (ATP) systems for first-order logic with equality:
i) SPASS [Weidenbach et al., 2002], see http://www.spass-prover.org;
ii) Vampire [Riazanov and Voronkov, 2002] see http://www.vprover.org;
iii) Eprover [Schulz, 2002], see http://www.eprover.org;

iv) E-KRHyper [Pelzer and Wernhard, 2007], see http://www.uni-koblenz.
de/~bpelzer/ekrhyper, and

v) MathServe Broker? [Zimmer and Autexier, 2006].

These together comprise some of the most advanced theorem provers for first-
order logic. SoftFOL is essentially the first-order interchange language TPTP
[Sutcliffe, 2010], see http://www.tptp.org.

Isabelle [Nipkow et al., 2002] is an interactive theorem prover for higher-order
logic.

HolLight (http://www.cl.cam.ac.uk/~jrh13/hol-light/) is John Harrison’s interac-
tive theorem prover for higher-order logic.

VSE is an interactive theorem prover for a variant of dynamic logic, see Chapter 12.

DMU is a dummy logic to read output of “Computer Aided Three-dimensional In-
teractive Application” (Catia).

2which chooses an appropriate ATP upon a classification of the FOL problem
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FreeCAD is a logic to read design files of the CAD system FreeCAD
http://sourceforge.net/projects/free-cad.

Maude (http://maude.cs.uiuc.edu/) is a rewrite system for first-order logic, see
Chapter 9.

DFOL is an extension of first-order logic with dependent types [Rabe, 2006].
LF is the dependent type theory of Twelf (http://twelf.plparty.org/).
Framework is a dummy logic added for declarative logic definitions, see Chapter 6.

Adl is “A Description Language” based on relational algebra originally de-
signed for requirements engineering of business rules (https://lab.cs.ru.nl/
BusinessRules/Requirements_engineering).

Fpl is the “logic for functional programs” defined in [Sannella and Tarlecki, 2012].

EnCL is an “engineering calculation language” based on first order theory of real
numbers with some predefined binders [Dietrich et al., 2011]. It allows the
formulation of executable specifications of engineering calculation methods.
For the execution of these specifications Hets provides connections to the com-
puter algebra systems Mathematica, Maple and Reduce.

Various logics are supported with proof tools. Proof support for the other logics
can be obtained by using logic translations to a prover-supported logic.

Logic translations translate from a given source logic to a given target logic.
More precisely, one and the same logic translation may have several source and
target sublogics: for each source sublogic, the corresponding sublogic of the target
logic is indicated.

A number of translations between the logics of HETS are logic inclu-
sions:  CASL2CoCASL, CASL2CoCASL, CASL2HasCASL, CASL2Isabelle (in-
clusion of sublogic CFOL=, translation (7) of [Mossakowski, 2002b]),
CASL2Modal, CASL2VSE (inclusion of sublogic CFOL), CASL DL2CASL,
CASL2CspCASL, CspCASL2CspCASL _Failure, CspCASL2CspCASL _Trace,
OWL2CASL, OWL2CommonLogic, Propositional2CASL, Propositional2QBF,
QBF2Propositional, RelScheme2CASL.

Another type of translations are encoding of features of a logic to a "poorer"
sublogic of itself: CASL2PCFOL (coding of subsorting (SubPCFOL=) by injections,
see Chap. III:3.1 of [Mosses, 2004]), CASL2Propositional (translation of proposi-
tional FOL), CASL2SubCFOL (coding of partial functions by error elements, trans-
lation (4a’) of [Mossakowski, 2002b], but extended to subsorting, i.e. sublogic
SubPCFOL=), DFOL2CASL (translating dependent types), CoCASL2CoPCFOL (cod-
ing of subsorting by injections, similar to CASL2PCFOL), CoCASL2CoSubCFOL
(coding of partial functions by error supersorts, similar to CASL2SubCFOL), Has-
CASL2HasCASLNoSubtypes (coding out subtypes), HasCASL2HasCASLPrograms
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(coding of HASCASL axiomatic recursive definitions as HASCASL recursive program
definitions).
The other logic translations currently supported by HETS are:

AdI2CASL (inclusion taking relations to CASL predicates)

CASL2PCFOLTopSort (coding of subsorting (SulPeCFOL=) by a top sort and
unary predicates for the subsorts)

CASL2SoftFOL (coding of CASL.SuleCFOL=E to SoftFOL [Liittich and
Mossakowski, 2007], mapping types to soft types)

CASL2SoftFOLInduction (same as CASL2SoftFOL but with instances of induc-
tion axioms for all proof goals)

CASL2SoftFOLInduction2 (similar to CASL2SoftFOLInduction but replaces
goals with induction premises)

CASL2VSEImport (inclusion on sublogic CFOL=)
CASL2VSERefine (refining translation of CASL.CFOL= to VSE)
CoCASL2Isabelle (extended translation similar to CASL2Isabelle)

CommonLogic2CASL (Coding Common Logic to CasL.Module elimination is
applied before translating to CasL.)

CommonLogic2CASLCompact (Coding compact Common Logic to CasL. Com-
pact Common Logic is a sublogic of Common Logic where no sequence mark-
ers occur. Module elimination is applied before translating to CasL.)

CommonLogicModuleElimination (Eliminating modules from a Common
Logic theory resulting in an equivalent specification without modules.)

CspCASL2Modal (keeps the CASL part and interprets the CspCASL labeled
transition system semantics as a Kripke structure)

DMU20WL (interpreting Catia output as OWL)

HasCASL2Haskell (translation of HASCASL recursive program definitions to
Haskell)

HasCASL2IsabelleOption (coding of HasCASL to Isabelle/HOL [Groning,
2005])

Haskell2Isabelle (coding of Haskell to Isabelle/HOL [Torrini et al., 2007])

Haskell2IsabelleHOLCF (coding of Haskell to Isabelle/HOLCF [Torrini et al.,
2007])

HolLight2Isabelle (coding of HolLight to Isabelle/HOL)
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e Maude2CASL (encoding of rewrites as predicates)

e Modal2CASL (the standard translation of modal logic to first-order logic
[Blackburn et al., 2001])
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This chapter is dedicated to presenting the logical foundations underlying HETS.
We assume that the reader is familiar with basic set theory and category theory. For
categories, we largely follow the notations in [Mac Lane, 1971], with the notable
exception that we prefer diagrammatic order for composition and denote it “;”. We
denote Set the category of sets and functions and C AT the category of categories
and functors.! The opposite of a category C is denoted CP. If C is a category, we
denote |C| the class of its objects and C(a,b) the class of arrows in C' of source a
and target b, where a, b are objects of C.

3.1 Institutions

The central abstraction principle used by HETS is to formalize logical systems as
institutions [Goguen and Burstall, 1992], a model-theoretic notion that arose in
the late 1970ies when Goguen and Burstall developed a semantics for the modular
specification language CLEAR [Burstall and Goguen, 1980].

We recall informally this notion here. An institution provides

e a notion of signature, carrying the context of user-defined (i.e. non-logical)
symbols, and a notion of signature morphisms (translations between signa-
tures), capturing changes of notation;

¢ for each signature, notions of sentence and model, and a satisfaction relation
between these;

e for each signature morphism, a sentence translation and a model reduction
(the direction of the latter being opposite to the signature morphism), such

!Strictly speaking, CAT is not a category but only a so-called quasi-category, which is a category
that lives in a higher set-theoretic universe [Adamek et al., 1990].
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that satisfaction is invariant under translation resp. reduction along signature
morphisms. This has been summarised as Truth is invariant under change of
notation on context and enlargenment of context.

This leads to the following formal definition.

Definition 3.1.1 An institution I = (Sig’, Sen’, Mod!, |=7) consists of
e a category Sig! of signatures,

e a functor Sen’: Sig! — Set giving, for each signature ¥, the set of sentences
Sen!(X), and for each signature morphism o: ¥ — ¥/, the sentence transla-
tion map Sen!(c): Sen!(X) — Sen!(X'), where often Sen’(c)(e) is written
as o(e),

e afunctor Mod!: (Sig!)?? — CAT giving, for each signature ¥, the category of
models Mod! (%), and for each signature morphism o: ¥ —s %, the reduct
functor Mod!(c): Mod! (%) — Mod! (%), where often Mod!(c)(M’) is
written as M’|,,

e a satisfaction relation =L C [Mod!(X)| x Sen! (X) for each ¥ € Sig/,
such that for each o: ¥ — Y in Sig’ the following satisfaction condition holds:
M EL o) & M), e
for each M’ € Mod!(X') and e € Sen!(X). 0

We will omit the index I when it is clear from the context. Note that we make the
general assumption that two isomorphic models satisfy the same sentences.

In the following we will present several examples of institutions, ranging from
standard examples like propositional logic and unsorted first-order logic, to more
exotic ones like an institution of relational schemes for relational databases or an
institution for an imperative programming language.

Example 3.1.2 (Propositional logic) The signatures of propositional logic Prop
are sets Y of propositional symbols, and signature morphisms are just maps o : ¥1 —
Yo between such sets. A Y-model is a function M : ¥ — {True, False}, and the
reduct of a Y9-model Msalong a signature morphism o : 31 — Yo is the Y1-model
given by the composition o; Ms. Y-sentences are built from the propositional sym-
bols with the usual connectives, and sentence translation is replacing the propositional
symbols along the morphism. Finally, the satisfaction relation is defined by the stan-
dard truth-tables semantics. It is straightforward to see that the satisfaction condition
holds.
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Example 3.1.3 (First-order logic) [Goguen and Burstall, 1992] In the institution
FOL,,s of many-sorted first-order logic with equality, signatures are many-sorted
first-order signatures, consisting of sorts and typed function and predicate symbols.
Signature morphisms map symbols such that typing is preserved. Models are many-
sorted first-order structures. Sentences are first-order formulas. Sentence translation
means replacement of the translated symbols. Model reduct means reassembling the
model’s components according to the signature morphism. Satisfaction is the usual
satisfaction of a first-order sentence in a first-order structure.

Example 3.1.4 (Partial first-order logic) [Mossakowski, 2002b] and [Burmeister,
1982]. Signatures consist of a set of sorts and sets of total and partial operations
and predicates symbols, divided by their profile. Signature morphisms map the sorts
and the symbols in a compatible way, and such that the totality of operation symbols
is preserved. Models are first-order structures, interpreting sorts as sets, operation
symbols as total/partial functions and predicates as relations. First-order sentences are
built from the atomic ones, using the usual first-order logic features (connectives and
quantification). Atomic sentences are predications, existential and strong equations
and definedness assertions. The satisfaction of formulas is the Tarskian first-order
satisfaction. One can check that thus we defined an institution, denoted PFOL,,,;.

Example 3.1.5 (Higher-order logic.) [Borzyszkowski, 1999] The many-sorted
variant of higher-order logic with equality, denoted HOL,,;, extends FOL,,s with
higher-order types, which are interpreted as appropriate subsets of the function types,
where appropriate means that all \-terms can be interpreted (Henkin semantics). Sen-
tences extend first-order sentences by A-abstraction and arbitrary application.

Example 3.1.6 (Relational Schemes) [Schorlemmer and Kalfoglou, 2008] Rela-
tional Schemes (for relational databases). A signature of Rel consists of a set of
relation symbols, where each relation symbol is indexed with a string of field names.
Signature morphisms map relation symbols and field names. A model consists of a
domain (set), and an n-ary relation for each relation symbol with n fields. A model
reduction just forgets the parts of a model that are not needed. A sentence is a rela-
tionship between two field names of two relation symbols. Sentence translation is just
renaming. A relationship is satisfied in a model if for each element occurring in the
source field component of a tuple in the source relation, the same element also occurs
in the target field component of a tuple in the target relation.

Example 3.1.7 (Description logic ALC) [Baader et al., 2003] Signatures of the de-
scription logic ALC consist of a set of A of atomic concepts, a set R of roles and a set 7
of individuals, while signature morphisms o provide respective mappings o4, o™ and

oL. Sentences are:

e TBox sentences, which are subsumption relations Cy T Co between concepts,
where concepts follow the grammar

Cu=A|T|L|CLUCy|CLNCy|~C|VR.C'|IR.C
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e ABox sentences, which assert memberships of individuals in concepts, written
a € C for an individual a € T and a concept C, or in roles, written R(a,b) for
individuals a,b € Z and a role R € R.

Sentence translation is defined inductively on the structure of the sentences by replacing
atomic concepts, roles and individuals according to the corresponding mappings in
the signature morphism. A model I consists of a set A called the domain or the
universe and an intepretation function which assigns to each atomic concept C a unary
predicate C! on A! (which can be identified to a subset of the domain where the
respective predicate holds), to each role R a binary predicate R' on A! and to each
individual a an element a’ € AL. To define the satisfaction relation, we first extend the
interpretation of atomic concepts to interpretation of arbitrary concepts, inductively on
the structure, as follows:
TI=A!

1r=0
(ﬁC)I — Al \ ol
(CLuC) =ctucs
(cinc) =cinct
(VR.C) = {z € AT |Vy € Al.(z,y) € R! implies y € C'}
(AR.C) ={z e AT |y e O (z,y) € RT}

Then a model I satisfies a subsumption relation Cy C Cy if C{ C C%, a membership
assertion a € C if a’ € C! and a role assertion R(a,b) if RY(a’,b") holds.

Example 3.1.8 (The institution of a programming language.) [Tarlecki, 1996]
The institution PLING of a programming language is built over an algebra of built-
in data types and operations of a programming language. Signatures are given as
function (functional procedure) headings; sentences are function bodies; and models
are maps that for each function symbol, assign a computation (either diverging, or
yielding a result) to any sequence of actual parameters. A model satisfies a sentence
iff it assigns to each sequence of parameters the computation of the function body as
given by the sentence. Hence, sentences determine particular functions in the model
uniquely. Finally, signature morphisms, model reductions and sentence translations
are defined similarly to those in FOLy,.

We now give several institution-independent logical notions that will be used in
the following chapters.

Let us fix an arbitrary institution / = (Sig, Sen, Mod, ). We assume that the
category of signatures has unions: for each two signatures ¥; and X, there is a
signature Y. called the union of ¥; and ¥, and denoted X; U X5 and two “injection”
morphisms ty,cy : ¥; — 3, ¢ = 1,2. This generalizes to arbitrary finite unions in
the expected way. In practice, union of signatures may fail to be a a total operation,
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as it is for example the case when overloading is not a feature of the logic and
two signatures give the same name to different things. We moreover assume that
this operation has the usual properties of the set-theoretic union. In practice, this
can be achieved by replacing institutions with the less abstract notion of institution
with qualified symbols [Mossakowski, 2000] or by working with signature categories
having associated an inclusion system [Cazanescu and Rosu, 1997]. Moreover, in
a similar setting, assume that oy : ¥; — X} and oy : ¥y — X are signature
morphisms. Their union o1 U oy : 31 U ¥y — X U X} is defined as the unique
morphism that makes the following diagram commute:

o1

when such a signature morphism exists 2 and is undefined otherwise. This general-
ized to finite unions of signature morphisms in the expected way.

We can naturally extend the satisfaction relation to a relation between models
and sets of sentences as follows: if 3 is a signature, M is a ¥-model and E is a
set of Y-sentences, we say that M is a model of E, denoted M = E, if M = e for
each e € E. The next definition introduces the concept of semantical entailment
between sentences.

Definition 3.1.9 (Logical consequence) If X is a signature, F is a set of Y.-sentences
and e is a ¥-sentence, we say that e is a logical consequence of E, written E =y e, if
for all ¥-models we have that M =y, E implies M =y e.

We omit the index when the signature is clear from the context.

A theory is a pair (3, E) where ¥ is a signature and F is a set of X-sentences.
A model of a theory (X, F) is a ¥-model M such that M = E. Given two theo-
ries (X, F) and (X', E’), a theory morphism o : (X,E) — (X, E’) is a signature
morphism o : ¥ — Y’ such that E' = o(F). For a theory (X, E), we denote
E*={ecSen(X) | F =y e}.

Example 3.1.10 (Institution of theories) Given an institution I, we define the in-
stitution of I-theories, denoted I'" = (Sig!", Sen'”, Mod'", =") as follows:

e Sig!" has as objects all I-theories and as arrows I-theory morphisms;
e for a theory (X, E), Mod!" (%, E) consists of all X-models that satisfy E;

e Sen’ and =" are inherited from I.

2See [Mosses, 2004] for more details.
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Definition 3.1.11 Given an institution I = (Sig, Sen, Mod, |=), a theory morphism
v: (X, E) = (X, E) is called:

e model-theoretically conservative if any (X, E')-model M has (at least) an ex-
pansion along ¢ to a (X', E')-model, i.e. there is a model M’ that satisfies E’
such that M’ |,= M;

e consequence-theoretically conservative if E' = ¢(e) implies E = e, for any
Y-sentence e.

It is known that the model-theoretic implies consequence-theoretic conservativ-
ity, but the converse is not true in general (see [Lutz et al., 2007] for an example
involving description logics).

3.1.1 Colimits and Amalgamation

Colimits are a mean of combining interconnected objects consistently to this inter-
connection. They can be employed for constructing larger theories from already
available smaller ones, see [Goguen and Burstall, 1992].

A diagram in a category C'is a functor D: G — C, where G is a small category,
and can be thought of as the graph of interconnections between the objects of C
selected by the functor D. A cocone of a diagram D: G — C consists of an object ¢
of C' and a family of morphisms «;: D(i) — ¢, for each object i of G, such that for
each edge of the diagram, e: i — i’ we have that D(e); oy = «;. A colimiting cocone
(or colimit) (¢, {a;}ie|q) can be intuitively understood as a minimal cocone, i.e.
has the property that for any cocone (d, {3;}ic|) there exists a unique morphism
~v: ¢—d such that «;;y = ;. By dropping the uniqueness condition and requiring
only that a morphism ~ should exist, we obtain a weak colimit.

When G is the category e<~——e —— e with 3 objects and 2 non-identity
arrows, the G-colimits are called pushouts.

Since specifications are actually theories over some institution (i.e. pairs (3, E)
with ¥ a signature and E a set of Y-sentences) we are actually interested in com-
puting colimits of theories rather than just signatures. A result in [Goguen and
Burstall, 1992] ensures that to obtain a colimit of theories, it suffices to compute
the colimit of signatures and then the set of sentences of the colimit theory is de-
fined as the union of all component theories in the diagram, translated along the
signature morphisms of the colimiting cocone.

A major property of colimits of specifications is amalgamation (called ‘exactness’
in [Diaconescu et al., 1993]). It can be intuitively explained [Schroder et al., 2005]
as stating that models of given specifications can be combined to yield a uniquely
determined model of a colimit specification, provided that the original models coin-
cide on common components. Amalgamation is a common technical assumption in
the study of specification semantics [Sannella and Tarlecki, 1988b]. For example,
computation of normal forms for specifications [Borzyszkowski, 2002], semantics
of parametrization and conservative extensions [Diaconescu et al., 1993] require
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amalgamation property for the underlying institution. The proof system for devel-
opment graphs with hiding (Sec. 4.3) is sound only for logics with amalgamation.
In the sequel, fix an arbitrary institution I = (Sig, Sen, Mod, |=).

Definition 3.1.12 Given a diagram D: J —» Sig!, a family of models M =
{Mp} ey is consistent with D (or sometimes compatible with D) if for each node
p of D, M, € Mod(D(p)) and for each edge e : p — q, M, = My|p(). A cocone
(2, (15)el.s) over the diagramin D: J — Sig! is called weakly amalgamable if it is
mapped to a weak limit by Mod. For models, this means that for each D-compatible
family of models (Mj);c| |, there is a ¥-model M with M [,,= M; (j € |J]), and
similarly for model morphisms. If this model is unique, the cocone is called amalgam-
able. I (or Mod) admits (finite) (weak) amalgamation if (finite) colimit cocones are
(weakly) amalgamable. Finally, I is called (weakly) semi-exact if it has pushouts and
admits (weak) amalgamation for these. O

3.1.2 Institutions with Proofs

The logical consequence relation |= provides a semantic way of establishing truth:
a sentence e is a logical consequence of a set of sentences E if all models that
satisfy F also satisfy e. This is often too inefficient to use, as the models we have to
consider may be infinitely many, and therefore a syntactical approach is prefered,
by giving a proof of the sentence or sentences we want to establish true from a set
of assumptions by applying syntactic transformations. The latter are usually given
in the form of a calculus, which consists of a set of syntactic rules.

The notion of entailment system (well known in proof theory, but first intro-
duced in the context of institutions in [Meseguer, 1989]) provides an abstract view
on calculi, allowing to formulate general properties.

Definition 3.1.13 Given an institution I = (Sig, Sen, Mod, =), an entailment sys-
tem for I is a relation FxC P(Sen(X)) x Sen(X) for each signature ¥, such that:

1. reflexivity: for any e € Sen(X), {e} Fx e;
2. monotonicity: if £ty eand E C E’, then E' b5 ¢;
3. transitivity: if E by e;, for i € Ind and E U {e;}icing by €, then E by e;
4. translation: if E by eand o : ¥ — Y, then o(FE) by o(e);
Moreover, an entailment system for [ is:
e sound if E by, e implies E =5 ¢e;
e complete if E =5, e implies E Fy e.

Note that in HETS entailment systems are not represented explicitly, as they are
rather a part of the tools that are interfaced by HETS. In Chapter 6 we discuss an
extension of HETS which also allows to represent the proof theory of a logic.
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Conservativity of signature morphisms can be given a proof theoretical meaning
as well.

Definition 3.1.14 Given an institution I = (Sig, Sen, Mod, |=) and an entailment
system by, for I, a theory morphism ¢ : (X,E) — (X', E’) is proof-theoretically
conservative if E’' sy p(e) implies E by, e, for any Y-sentence e.

3.2 Institution Comorphisms

In heterogneous specification, we are interested in combining specifications that
are written in different logics. To support this, several types of translations between
institutions have been introduced. Among them, institution comorphisms [Goguen
and Rosu, 2002] typically express that an institution is included or encoded into
another one. An institution comorphism provides

e a translation of signatures (and signature morphisms),
e a translation of sentences,
e atranslation of models (going backwards to the direction of the comorphism),

such that satisfaction is invariant under translation of sentences resp. models.

Definition 3.2.1 Given two institutions I; = (Sig;,Sen;,Mod,}=1) and I, =
(Sigy, Seny, Mods, =2), an institution comorphism consists of a functor ¢ : Sig; —
Sig,, a natural transformation 5 : p;Mods = Mod; and a natural transforma-
tion « : Sen; — ¢; Seny such that the following satisfaction condition holds for each
Y € |Sig,|, M' € [Modz(¢(X))| and e € Sen; (%)

Bs(M') s e & M =5 as(e)

Example 3.2.2 The obvious inclusions from FOL,,s to PFOL,,; and from FOL,,,
to HOL,,; are institution comorphisms.

Example 3.2.3 The translation of ALC to FOL,,s [Baader et al., 2003] can be
defined as follows. Each ALC-signature ¥ = (A, R,Z) is translated to a signa-
ture ®(X) = (S,F,P) where S = {Thing}, FF = {a : Thing | a € Z} and
P = {C : Thing | C € A} U{R : Thing x Thing | R € R}. An ALC-signature
morphism o is translated to the signature morphism that maps constants according to
o, unary predicates according to o* and binary predicates according to o*.

For an ALC-signature ¥ = (A, R, T), the sentence translation function sy, is based

on translation of concepts a;:
ax(C1 C Cy) =V : Thing(a,(Ch1) = az(C2))

ax(a:C) = a,(C)a/z]
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ax(R(a,b)) = R(a,b)

where «, is defined as follows for a variable x : Thing:

u(T) = True
(L) = False
ag(=C) = nay(C)
a;(C1 U Cy) = az(C1) V az(Cy)
a;(C1 M Cy) = az(C1) A ag(Cy)
au(VR.C) =¥y : Thing(R(z,y) = a,(C))
0 (3R.C) = Jy : Thing(R(z, y) A oy (C))

Given an ALC-signature ¥ = (A, R,Z) and a ®(X)-model M, we define fx.(M) =
(A, 1) where A = Mrying, AT = M4 for each atomic concept A, a’ = M, for each
individual a and R' = Mp, for each role R. O

Example 3.2.4 The comorphism from the institution of relational schemes Rel to
FOL,,; maps signatures and models in the straightforward way, while each Rel-
sentence R(f1,.., fn) = R'(fi, ..., f},) linking fields f; and f} is translated to the first-

orderformula R(l’l, ,ﬂ?n) — Elyl-‘-yj—lyj—‘rl---ym R,(yl, s Yi—15 T Y1y eees ym)
g

Example 3.2.5 There is an institution comorphism from PFOL,,, to FOL!", that
codes out partiality via error elements. Details can be found in [Mossakowski, 2002b].
By composing with the inclusion from FOL! to HOL  we get a comorphism from

PFOL,,; to HOL'"_. 0

Example 3.2.6 There is an institution comorphism from PLNG to HOL!"  that
codes the semantics of PLING within higher-order logic. O

Institution morphisms [Goguen and Rosu, 2002] are another important class
of translations between institutions, usually capturing projections from a more ex-
pressive institution to a less expressive one. The definition is similar to the one of
institution comorphisms, only this time sentences are translated against and mod-
els in the direction of the institution morphism. Finally, institution semi-morphisms
and institution semi-comorphisms differ from morphisms and comorphisms respec-
tively by that they do not have a sentence translation component, and thus no
satisfaction condition.
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Example 3.2.7 There is an institution semi-morphism toPFOL from PLNG to
PFOL,,; [Tarlecki, 1996]. It extracts an algebraic signature ®(X) with partial op-
erations out of a PLNG-signature Y. by adding the signature of built-in data types
and operations of the programming language. For any function declared, any PLNG-
model M determines its computations on given arguments, from which we can extract
a partial function that maps any sequence of arguments to the result of the computa-
tion (if any). These are used to expand the built-in algebra of data types and operations
of the programming language with an interpretation for the extra function names in
the signature obtained, thus obtaining a PFOL,, ;-model 5(M).

In our setting, this can be modelled as a span of comorphisms (cf. [Mossakowski,
2003])

PLNG < ?PFOL” & pROL,,, —°PFOL PROL,,,

as follows:
. id . ol .
SlgPLNG 4 SlgPLNG SlgPFOL
SenPLNG incl 0 incl P, SenPFOL
B id
MOdPLNG ‘I)op; 1\/_[0(11:'Fc)er‘S v (Dop; MOdPFOL

Here, the “middle” institution PFOL,,s o ® is the institution with signature cat-
egory inherited from PLNG, no sentences, and models inherited from PFOL,, s via
. 0O

Definition 3.2.8 An institution comorphism is model-expansive, if each model trans-
lation Py, is surjective on objects.

All of the comorphisms above, except the second one from Example 3.2.7, are
model expansive. Model-expansive comorphisms allow for translating questions
about logical consequence from [ into J, which leads to the possibility of re-using
a proof system for J also for I:

Proposition 3.2.9 Given a model-expansive comorphism (®,«, 3): [ — J,
I = o iff as(T) B a(p)

Amalgamation resp. exactness can be lifted to comorphisms as follows:

Definition 3.2.10 Let p = (®,«,3): I — J be an institution comorphism and let
D be a class of signature morphisms in I. Then p is said to have the (weak) D-
amalgamation property, if for each signature morphism o: ¥1 — ¥y € D, the dia-
gram

Mod! (55) <=2 Mod” (®(,))
Mod! (o) J{ lMod‘] (®(0))
Mod! (51) <221 Mod” (®(5)))
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admits (weak) amalgamation, i.e. any for any two models M, € Mod’ (39) and
M| € Mod” (®(%)) with My | o = fBx,(M]), there is a unique (not necessarily
unique) M} € Mod”(®(2,)) with B, (M}) = My and M} | ®(c) = M. In case that
D consists of all signature morphisms, the (weak) D-amalgamation property is also
called (weak) exactness. O

3.3 Grothendieck Institutions

The Grothendieck construction for indexed institutions (based on institution mor-
phisms) has been defined in [Diaconescu, 2002]; we here describe the dual,
comorphism-based variant [Mossakowski, 2002a]. The idea is to begin with a graph
of logics and logics translations formalized as comorphisms and then to flatten this
graph, using a so-called Grothendieck construction. This construction is character-
ized by the fact that no interaction between logics is made otherwise than via the
logic translations.

Definition 3.3.1 Given an index category Ind, an indexed coinstitution is a functor
Z: Ind°® — Colns into the category of institutions and institution comorphisms.

In an indexed coinstitution Z, we use the notations Z* = (Sig’, Sen’, Mod’, =)
for Z(i) and (®¢, a?, %) for the comorphism Z(d).

Definition 3.3.2 Given an indexed coinstitution Z: Ind°® —; Colns, we define the
Grothendieck institution Z# = (Sig#, Sen”, Mod™, =#) as follows:

e signatures in I are pairs (i,%), where i € |Ind| and ¥ a signature in T,

e signature morphisms (d,o): (i,31) — (j, 22) consist of a morphism d: j —
i € Ind and a signature morphism o : @d(El) — Yy in 77,

o if (di,01) : (i,2) — (3,%)) and (da,02) : (4,%) — (k,%"), the composition
(e,0) := (d1,01);(d2,02) : (i,2) — (k,X") is obtained by defining e as the
composition of dy and d:

I L W
~_7’ 7

e

and o as the composition of ®%(oy) and o:

aa (@b () 22

(I)dQ(Z/) 92 v
e for each signature (i, ),
Sen' (i,%) = Sen’ (%)

and
Mod# (i,%) = Mod!(X)

Moreover M =7 e iff M = e for any ©-model M and any Y-sentence e;
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e for each signature mophism (d,o): (i,%1) — (j, 22), the sentence translation
function Sen” (d, o) : Sen’(X;) — Sen’ (%) is defined by first translating the
sentence along Z(d) and then along the morphism o:

d

as, Sen’ (o)

Sen‘(%) Sen’ (®%(%1)) Sen’ (3%5)
while the model reduct Mod* (d, o) : Mod’(Xy) — Mod'(X,) is defined by

first reducing along the signature morphism and then along Z(d):

Mod? (o) Bs,

Mod’ (X5) Mod? (®%(%1)) Mod‘ (%)

That is, sentences, models and satisfaction for a Grothendieck signature (¢, >)
are defined component wise, while the sentence and model translations for a
Grothendieck signature morphism are obtained by composing the translation given
by the inter-institution comorphism with the one given by the intra-institution sig-
nature morphism.

[Mossakowski and Tarlecki, 2009] introduce the notion of heterogeneous logi-
cal environment as an alternative framework for heterogeneous specification. The
difference is that a distributed approach is pursued, in the sense that the specifica-
tions are not integrated to a unique institution. Instead, a diagram of specifications,
possibly in different formalisms, forms a single distributed specification.
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CasL is a general-purpose algebraic specification language. We give here an
overview of its layers, starting with the CasL logic for basic specifications together
with some syntactical constructs to explain the specifications presented throughout
this thesis, in Sec. 4.1. CasL provides then structuring mechanisms (Section 4.2)
that allow to compose specifications, making them easier to understand, main-
tain and reuse. CasL uses the formalism of development graphs (Section 4.3) for
structured theorem proving, proof management and management of change. As
a counterpart to structured specifications, architectural specifications (Section 4.4)
provide means for structuring implementations of modular systems. Finally, HETS
extends the structuring mechanism of CasL at the heterogeneous level (Section 4.5),
the resulting language being called HETCASL.

4.1 Cast Logic

The logic used at the basic level of CasL consists of an extension of first-order logic
with a combination of features commonly used in specification, like subsorting,
partiality or induction axioms. The resulting logic is many-sorted partial first-order
logic with equality, induction and subsorting, also denoted SubPCFOL,,,;. We use
SubPCFOL,,; and CASL to denote the same logic. Note that CasL also provides
notational means for selecting only some of these features for the logic currently in
use, thus resulting sublogics and sublanguages of Cas..

CasL signatures consists of a set of sorts with a subsort relation between sorts,
denoted <, a set of partial function symbols such that some of them are marked as
total and a set of predicate symbols. Moreover, if ¥ is a signature, two operation
symbols with the same name f and with profiles w — s and w’ — ¢/, denoted f,, s
and f,s s+ to disambiguate, are in the overloading relation, denoted fy, s ~r fu/ s
if there are wy € S* and sy € S such that wy < w,w’ and s, s’ < so. Overloading of
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predicates is defined in a similar way. Signature morphisms consist of maps taking
sort, function and predicate symbols respectively to a symbol of the same kind in
the target signature, and they must preserve subsorting, typing of function and
predicate symbols, totality of function symbols and overloading.

For a signature ¥ = (S,TF, PF, P), terms with variables from a sorted, non-
overloaded set X are formed with variables from X and applications of (total or
partial) function symbols to terms of appropriate sorts, while sentences are partial
first-order formulas, defined inductively as follows:

e the atomic formulas are application of predicate symbols to a list of terms of
appropriate sorts, assertion about definedness of terms, existential and strong
equality between terms of the same sort;

e if X is a sorted set of variables and ®, ®,, ®, are formulas, then —®, &1 A O,
D1V Dy, Py = Dy, P &= Py, VX o ® and IX e ® are formulas.

Moreover, Sen(Y.) includes sort generation constraints: a sort generation constraint
is a triple (S’, F’, ') such that ¢’ : ¥’ — ¥ and S’ and F” are respectively sort and
function symbols of . Sort generation constraints are translated along a signature
morphism ¢ : ¥ — 3" by composing the morphism ¢’ in their third component
with .

Models interpret sorts as sets such that subsorts are injected into supersorts,
partial/total function symbols as partial/total functions and predicate symbols as
relations such that the embeddings of subsorts into supersorts are monotone w.r.t.
overloading.

The satisfaction relation is the expected one for partial first-order sentences. A
sort generation constraint (S, F’, ¢’) holds in a model M if the carriers of M|, of
the sorts in S’ are generated by function symbols in F”.

Theorem 4.1.1 CASL is an institution.

A sound proof calculus for the Cast logic was introduced in [Mosses, 2004]
and [Mossakowski et al., 2008]. Completeness can be obtained only when sort
generation constraints are not used.

We now present the syntactic constructs for writing basic specifications, in a very
informal manner. [Mosses, 2004] gives a complete description of the CasL language
grammar. A CasL specification uses the keyword sort for sorts, < for subsorting, the
keyword op for function symbols and ->? in the profile of a symbol to denote its
partiality, and finally the keyword pred for predicate symbols. If more than a sym-
bol is declared, the keywords appear in plural and the declarations are separated by
commas. Binary operations may additionally have an attribute for declaring them
associative, commutative, idempotent or with a unit. Mixfix notation is allowed, us-
ing the placeholders __. Sort generation constraints are expressed concisely using
the generated type and free type constructions. Finally, axioms are prefixed with
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a bullet, and the annotation %implied is used to mark asserted theorems. Note that
these last two syntactic constructions are institution-indepedent.

A basic specification denotes a signature and a class of models. The static se-
mantics rules, of form + SP > 3, check whether a specification is syntactically
correct and produce a signature ¥ as result when that is indeed the case. If the
static semantics succeeds, the model semantics rules, of form ~ SP = M, check
the semantic correctness of the specification and produce a class M of ¥-models.
If any of the analyses fails, the specification does not have a denotation. Note that
the semantics is loose, that is, all models that satisfy the axioms of a specification
will be in the model class produced by the model semantics analysis.

4.2 Structured Specifications

The simplest specifications are the so-called basic specifications, obtained by pair-
ing a signature and a set of sentences over that signature. Working with basic
specifications is only suitable for specifications of fairly small size. Formal spec-
ification is however usually employed for large systems. Therefore, for practical
situations, unstructured specifications would become impossible to understand and
use efficiently. Moreover, a modular design allows for reuse of specifications.

In the following we will present a kernel of structuring-building operations over
an arbitrary institution I, very similar to the ones of Cast. and those introduced in
[Sannella and Tarlecki, 1988b]. We adhere to the model-theoretic semantics, i.e. a
specification denotes a signature and a class of models over that signature. Thus,
the signature of a structured specification SP will be given by the static semantics
rules, for proving judgements of the form F SP > ¥, where ¥ is a signature and
then we sometimes denote it by Sig(SP). Similarly, the class of models of SP will
be given by the model semantics rules, with judgements of the form - SP = M
where M is a class of ¥-models and then we sometimes denote it by Mod(SP).

¢ hiding:
FSP > Y
c:X =Y
F SP hideo > X
and

- SP' = M
M = (M|, | M" € M}
- SP’ hide o = M’

The simplest form of refinement is model class inclusion between structured
specifications: if o : ¥1 — Y5 and SP;, SP; are structured specifications such
that - SP; > X¥; and - SP; = M;, i = 1,2, we say that SP; refines along o
to SP,, denoted SP; s> SPy it Ms|, € M, for all My € Ms. CasL already
allows to postulate such refinements using views: if SP; and SP. are structured
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specifications, then view V' : SP; to SPy = o requires that each model of SP,

reduced along o should be a model of SP;.

Thus, the signature of a structured specification SP will be given by the static
semantics rules, of form - SP > ¥ where ¥ is a signature, while the class of models
of SP will be given by the model semantics rules, of form - SP = M where M is

a class of ¥-models which we sometimes denote Mod(SP).

Presentations:

Given a signature X and a set of ¥-sentences F, (3, E) is a struc-

tured specification such that:

and

Union: For two specifications SP; and SPy, SP; and SPs is a structured specifi-

(S, E) >3

- (2, E) = Mody(E)

cation such that

and

M

|—SP1>21
l_SPQDEQ

F SP;and SP> > Y1 U X,

}—SP1:>M1
}—SP2:>M2

Translation:

and

F SP, and SPy = M

SP with ¢ is a structured specification such that
FSP>3

oYX =Y
F SP with o > Y/

FSP =M
M ={M" € Mod(X)|M'|, € M}
F SP with o = M’

Hiding: SP’ hide o is a structured specification such that

and

FSP Y
c:X =Y
F SP hide o> X

FSP = M
M = {M'|,|M" € M}
F SP’ hide 0 = M’

Chapter 4. CasL

= (M € Mod(£1 USp) | Mlug, s, € Miyi = 1,2}
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Freeness: free SP’ along o is a structured specification such that

FSP > Y
o:X =Y
+ free SP’ along o > Y/

and
FSP' = M
G = Mod(o) : Mod(SP') - Mod(X)
M ={M € M|M’ is strongly persistently G — free}
+ free SP’ along o = M’

where we denoted the reduct functor with G to distinguish it from the reduct |,
defined on the whole category Mod(X’) and the strongly persistency condition is
given by the following definition:

Definition 4.2.1 Let F' : A — B be a functor. An object M of A is strongly persis-
tently F-free if for any model N of A and any arrow h : F(M) — F(N) in B, there
is a unique arrow h* : M — N in A such that F(h*) = h.

Cast additionally provides extension of theories using the keyword then and op-
tionally an annotation that the resulting theory inclusion is conservative, monomor-
phic, definitional or implicational. We further omit local and closed specifications
as they do not appear in our examples. Moreover, CasL specifications can be generic,
using parameters that can be later instantiated. We refer the interested reader to
[Mosses, 2004].

Note that in some cases (but not all) it is possible to "flatten" structured specifi-
cations to a basic specification presenting the same class of models. We discuss this
in the context of development graphs, in next section.

We can extend logical consequence to a relation between structured specifica-
tions and sentences.

Definition 4.2.2 Let SP a Y-specification and let e € Sen(X). Then SP =y e (SP
logically entails e) if M = e for any M € Mod(SP).

Example 4.2.3 We give some simple examples of CasL structured specifications. First
we give a basic specification for monoids by introducing a sort for elements and a
binary operation which is associative and has a unit:

spec MONOID =
sort Elem
ops e:Elem;
__*__: Elem x Elem — Elem, assoc, unit e

A group is then a monoid where each element has an inverse:
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spec GROUPINV =
MONOID
then op inv: Elem — Elem
V x : Elem
einv(x) xx=ce
ex xinv(x) =e

Finally, we can hide the inverse:

spec GROUP =
GROUPINV hide inv

Simple refinements between structured specifications can already be expressed
as so-called views in CasL, which denote morphisms of specifications: if o : 31 — X9
and SP;, SP- are structured specifications such that - SP; > ¥; and - SP; = M,,
i=1,2,0:SP; — SPy is a morphism of specifications if M|, € M for all M, €
M. Views are specified in HETS using the keyword view and then giving the source
and target specifications followed by the signature morphism (as a symbol map,
see details in [Mosses, 2004]). We assume that there exists a sound proof calculus
for checking that such ¢ is indeed a morphism of specifications; possible choices
include the calculus defined in [Sannella and Tarlecki, 2012] and the formalism
of development graphs provided by HETS (see next section). We will also use the
notation SP ~~> SP’ to denote that SP’ is a refinement of SP.

Finally, we can introduce constructs for translating a structured specification
along an institution comorphism. This construction is standard in approaches to
heterogeneous specification, see e.g. [Tarlecki, 1998].

Definition 4.2.4 Let p = (®,«,3) : I — J be an institution comorphism. For any
I-specification SP with = SP > ¥ and + SP = M, p(SP) is a specification called the
translation of SP along p, such that

- p(SP) > (%)

and
= p(SP) = {M € Mod(®(X)) | Bx(M) € M}

The following definition gives conditions for a comorphism to translate a speci-
fication in a way that behaves well with entailment.

Definition 4.2.5 A comorphism p = (®,«, ) : I — J

e admits borrowing of entailment if for any X-specification SP and any -
sentence e, SP [=5, ¢ <= p(SP) gy as(e);

e admits borrowing of refinement if SPj ~~> S Py iff p(SP)) ~~> p(SPs).
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4.3 Development Graphs

For proof management, CAsL uses development graphs [Mossakowski et al., 2006a].
They can be defined over an arbitrary institution, and they are used to encode
structured specifications in various phases of the development. Roughly speaking,
each node of the graph represents a theory. The links of the graph define how
theories can make use of other theories.

The following definitions (up to Def. 4.3.3) are all copied from [Mossakowski
et al., 2006a].

Definition 4.3.1 A development graph is an acyclic, directed graph DG = (N, L).
N is a set of nodes. Each node N € N is a tuple (XN, ®") such that ¥V is a
signature and ®V C Sen(XN) is the set of local axioms of N.
L is a set of directed links, so-called definition links, between elements of N. Each
definition link from a node M to a node N is either

e global (denoted M == N), annotated with a signature morphism o : ¥ —
N or

e local (denoted M —Z— N), again annotated with a signature morphism o :
M _y »N or

e hiding (denoted M ﬁ N), annotated with a signature morphism o : ¥V —

¥M going against the direction of the link, or

o free (denoted M % N), annotated with a signature morphism o : ¥ — ©M
(5]

where ¥ is a subsignature of ¥,

Definition 4.3.2 Given a node M in a development graph DG, its associated class
Modpg (M) of models (or M-models for short) is inductively defined to consist of
those ¥ -models m for which

1. m satisfies the local axioms ®M,
2. for each N =2= M € DG, m|, is an N-model,
3. for each N —2= M € DG, m|, satisfies the local axioms ®V,

4. for each N ﬁ M € DG, m has a o-expansion m’ (i.e. m'|, = m) that is an
N-model, and

5. for each N %‘(;M € DG, m is an N-model that is strongly persistently
Mod(o)-free in Modpg(N)'.

!This notion was introduced by Dfn 4.2.1.
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Complementary to definition links, which define the theories of related nodes,
we introduce the notion of a theorem link with the help of which we are able to
postulate relations between different theories. Theorem links are the central data
structure to represent proof obligations arising in formal developments. Again, we
distinguish between local and global theorem links (denoted by N = <= M and

N — Z > M respectively). We also need hiding theorem links N ?Lz’dge?? M (where

forsome ¥, 9 : ¥ — XV and ¢ : ¥ — ¥M). The semantics of theorem links is given
by the next definition.

Definition 4.3.3 Let DG be a development graph and N, M nodes in DG.

e DG implies a global theorem link N =< = M (denoted DG = N =Z<= M) iff
for all m € Modpg(M), m|, € Modpg(N);

e DG implies a local theorem link N — Z = M (denoted DG |= N - Z = M) iff for
all m € Modpg (M), m|, = ®V;

e DG implies a hiding theorem link N EU{;% M (denoted DG = N ?nfe% M) iff
for all m € Modpg(M), m|, has a ¥-expansion to a ¥™-model, which means
that there is n € Modpg(N) such that N|y = m|,.

For our simple structuring language presented in Section 4.2, the transformation
of a structured specification SP into a development graph DG is defined inductively:

e if SP is a basic specification (X, F), then DG contains a node N for SP with
YN =¥ and &V = E;

e if SP = SP; and SP, and Nj, N, are the nodes of SP; and SPy in DG
respectively, then we add a new node N with ¥ = 2N U 22 and &V = )
and for i = 1,2, a global definition link from N; to N labeled with LyN; $IN

e if SP = SP’ with o, N’ is the node of SP’ in DG and ¢ : V' — ¥, then we
add a new node N with ¥V = ¥ and ®" = () and a global definition link from
N’ to N labeled with ¢;

e if SP = SP' hide o, N’ is the node of SP’ in DG and o : & — V', then we
add a new node N with ¥V = ¥ and ®" = () and a hiding definition link
from N’ to N labeled with o (notice that the morphism goes indeed against
the direction of the link);

e if SP = free SP’ along o, N’ is the node of SP’ in DG and o : © — £V, then
we add a new node N with ¥V = ¥V and ®" = () and a free definition link
from N’ to N labeled with o.

Note that the semantics of development graphs is also model-theoretic. In prac-
tice, we associate to each node N in a development graph DG a theory Thpg(N)
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such that every model m € Modpg(N) is also a model of Thpg(N). Thpg(N) is
then used for discharging the proof obligations corresponding to the node N. When
the node N has no incoming hiding of free definition links, Thpg(N) is obtained
by translating the sentences of each node M in the subgraph of N to the signature
N along the path from M to N. In the other case, when N has incoming hiding
links, Thpg(IN) is only an approximation of the model class of NV, as we discuss in
Sec. 8.6. Finally, in Sec. 9.4 we present a method for normalizing free definition
links in a development graph in Cast; a third case is therefore not needed here.

Example 4.3.4 The development graph of the specifications in Example 4.2.3 is pre-
sented in Fig. 4.1. First, a node for the basic specification MONOID is introduced.
GROUPINV extends MONOID, so we record this with a global definition link from the
node of MONOID to the node of GROUPINV labeled with the inclusion morphism be-
tween the corresponding signatures. Finally we introduce a hiding definition link from
GROUPINV to GROUP, labeled with the inclusion of the signature of GROUP to the
signature of GROUPINV (so the morphism goes against the direction of the link).

Figure 4.1: Development graph of algebraic structures example.

Development graphs are equipped with a proof calculus for discharging theo-
rem links. Roughly, the idea is to decompose global theorem links into simpler ones
by applying a number of transformation rules to the graph, until eventually theo-
rems are introduced in the nodes and they can be proved or disproved using the
tools specific to the logic of the theory of the node or by translating along institution
comorphisms. The proof calculus of development graphs is proved sound and more-
over complete relatively to an oracle for conservative extensions in [Mossakowski
et al., 2001].

4.4 Cas. Architectural Specifications

While structured specifications provide means for managing the complexity of large
specifications, CasL architectural specifications [Bidoit et al., 2002a] have been in-
troduced with the goal to prescribe the architecture of the implementations of a
software system. In particular, they can also be regarded as providing means for
building models in a structural way. Note that in contrast, the structure of a speci-
fication imposes no extra requirement on the structure on the models of that spec-
ification, which are treated, just like models of basic specifications, in a monolithic
way.

Each architectural specification contains a number of component units together
with a linking procedure which describes how to combine the components to obtain
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an implementation of the overall system, thus providing structure for the implemen-
tation. The intuition is that architectural specifications introduce branching points
in the development process and each branch can be further refined (i.e. imple-
mented independently of development on the other branches). Each unit is given a
name and assigned a specification; the intended meaning is to provide a model of
the specification. Models can be parameterized, taking models as arguments and
delivering models as results. Such parameterized models are generic units, specified
by giving the a list of specifications for the arguments and a specification describing
the results. The models produced by a generic unit are required to preserve the
parameters (persistency), with the intuition that the programs passed as arguments
must not be re-implemented, and the function is only defined on compatible models,
meaning that the implementation of the parameters must be the same on common
symbols. Units are combined in unit expressions with operations like renaming,
hiding, amalgamation and applications of generic units. Again, terms are only de-
fined for compatible models, in the sense that common symbols must be interpreted
in the same way. Let us mention that architectural specifications are independent of
the underlying formalism used for basic specifications, which is modelled as again
an institution (Sec. 3.1).

U1 : SPl
SP ~~> [k :
U,:SP,

In the figure above, SP is the initial specification, Uy, ... U, are units with their
specifications SP, ..., SP, and k is the linking procedure involving the units. We
record the design decision that the task of providing an implementation for SP
has been split into smaller subtasks of providing models for the specifications SP;
which are then combined as prescribed by k. The refinement relation is denoted
~~+> and the refinement is correct if for any models A; of SP;, i = 1,...,n, the
model k(A;, ..., A,)isindeed a model of SP. The corresponding CasL architectural
specification is written:

arch spec ASP =
units
U1 . SPl;

U, :SPy,;
result UT

where UT is a unit term describing the linking procedure & and possibly involving
the units U1, ..., U,. Note that in Chapter 5 we present an extension of Cas. which
allows to write not only an architectural specification, but an entire refinement step
as a CasL specification.

Specifications of units consist of parameters and result specifications, given as
structured specifications: if SPq,...,SP,, SP are structured specifications, then
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ASP ::= S | units UDD; ... UDD,, result UE

UDD ::= UDEFN | UDECL

UDECL ::= UN : USP (given UTy,...,UT,)

USP ::= SP | SP; X --- x SP, — SP | arch spec ASP

UDEFN := A =UF

UE :=UT |\ A;:SP;,..., A, : SP, eUT

UT == A | A[FITy]...[FIT,] | UT and UT | UT with o : & — ¥ |
UT hide o : £ — %' | local UDEFN; . .. UDEFN,, within UT

FIT::=UT |UTfito: ¥ — ¥’

Figure 4.2: Syntax of the CasL architectural language.

USP = SPy x --- x SP,, — SP is a unit specification. Its semantics is determined

as follows:
~ SPl > 21

FSP, > %,
FSP>X
Yextends X1 U---UX,
FUSP>3Y; XXX, =2
where ¥; x --- x X,, — 3, the signature of USP, is called a unit signature and is
typically denoted by U, and

FUSP > UX
@l—SP1=>M1

0+ SP, = M,
MO:MI@"'@Mn
Mo FSP =M
= USP = {F € Unit(U%) | foral M € Mg, M = (M|s,,...,M|s,) € dom(F),
F(M) e Mand F(M)|s = M}

where Unit(UY) is the set of all generic units over UY, i.e. partial functions taking
compatible models of the argument signatures to models of the result signature
in such a way that the arguments are protected. The compatibility of arguments
means that the models can be amalgamated to a model of the union of all the sig-
natures. The above definition ensures that the domain of any generic unit contains
compatible tuples of models only. When n = 0 (no parameters), unit signatures
are plain signatures and (non-generic) units are just models of the corresponding
signature. We denote the model class of USP as defined in the model semantics
rule by Unit(USP).

Fig. 4.2 presents the complete syntax of the architectural language of Cast. Here,
S stands for an architectural specification name, A for a component name,SP is
a structured specification, ¥ and ¥’ denote signatures and o denotes a signature
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morphism. The architectural language can be shortly explained as follows: an ar-
chitectural specification ASP consists of a list of unit declarations UDECL with an
optional list of imported units and unit definitions UDEFN (where declarations as-
sign unit specifications USP to units and definitions assign unit expressions UF to
units) and a result unit expression formed with the units declared/defined. No-
tice that we allow the specification of a unit to be itself architectural (named or
anonymous) and that for units declarations there is an optional list of imported
units (marked as such by enclosing in (.)). The list must be empty when USP is
architectural. Unit expressions are used to give definitions for generic units, while
unit terms define non-generic units. When the result unit of an architectural spec-
ification is generic, the system is “open”, requiring some parameters to provide an
implementation.

A very simple example is the specification below, which prescribes the architec-
ture of a container [Bidoit and Mosses, 2004].

arch spec CONTAINER =
units
N : NATURAL_ORDER;
C : CONT[NATURAL_ORDER] given N
result C

The task of providing an implementation for natural numbers ordered by the “less
than” relation is separated from the task of providing an implementation for the
containers having natural numbers as elements. Note that the component C is built
assuming the existence of an implementation for the component N. The implemen-
tation of natural numbers in the container must however preserve the implementa-
tion provided by N. In particular, in the implementation of C, no other assumptions
about the choices made during the implementation of N should be made, besides
what is explicitly ensured by the specification NATURAL ORDER.

We briefly recall the semantics of architectural specifications (see [Mosses,
2004, Bidoit et al., 2002a] for details). An architectural signature AX: consists of a
unit signature UY. for the result unit together with a static context which is a map
assigning unit signatures to the names of component units. Starting with the initial
empty static context, the static semantics for declarations and definitions adds to it
the signature of each new unit and the static semantics for unit terms and expres-
sions does the type-checking in the current static context. The static semantics rules
are of form - ASP > AY. where AY. is an architectural signature. Model semantics
is assumed to be run only after a successful run of the basic static semantics and it
produces a class of architectural models AM over the resulting architectural signa-
ture, where an architectural model over an architectural signature A consists of a
result unit over the result unit signature and a collection of units over the signatures
given in the static context, which is called a unit environment. The model semantics
rules are of form - ASP = AM with AM being an architectural model. Unit
terms and unit expressions denote unit evaluators U E'v which build a unit over the
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Py(F)=7:X =%
Co FT >34
oc:Y 24
(o0Rr, TR, XR) is the pushout of (o, 7)
Py, Cy F F[T fito] > Xg

CHT=UEv
foreach £ € C,UEv(E)|, € dom(E(F)) (i)
for each E € C, there is a unique M € Mod(Xg) such that
M|;, =UEv(F) and M|,, = E(F)(UEv(E)|,) (i)
UEvg = {E > M|E € C,M|,, = UEv(E), M|,, = E(F)(UEv(E)|,)}
C+ F[T fit o] = UEug

Figure 4.3: Basic static and model semantics rules for unit application

corresponding signature from a unit environment that records the units for the unit
names that can appear in the term.

As an example, Fig. 4.3 presents the basic static semantics and model semantics
rules for unit application (notice that we simplify to the case of units with just one
argument). The static semantics rule produces the signature of the term 7" and
returns as signature of F'[T'] the pushout Xy of the span (o, 7), where 7 is the unit
signature of F stored in the list of parameterized unit signatures Ps;. In the general
case, the signature is obtained with the following definition.

Definition 4.4.1 Let F : SPy x---x SP,, — SP be a generic unit. Let A : ¥ — ¥ be
the inclusion of the signatures of the formal parameters into the signature of the result
and at application, the fitting arguments give a signature morphism o* : ¥ — »4
from the formal parameters to the actual parameters. Then, (S(A), 04, Lyacn(a))
form a selected pushout for (o, A):

tsAcs(a)

Ypg———mF—=3(4)

i [
Y X by
N
X Xn

In the case of the Cast logic, [Mosses, 2004] presents a set-theoretical construction of
the selected pushout?.

The model semantics rule first analyzes the argument 7" and gives a unit eval-
uator UEwv. Then, provided that the conditions (i) the actual parameter fits the
domain and (ii) the models U Ev(F) and E(F)(UEv(FE)|,) can be amalgamated to

2This works for the institutions with qualified symbols defined in [Mossakowski, 2000] too.
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LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEMx*

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN
SPEC-DEFN ::= spec SPEC-NAME = SPEC

SPEC ::= (X, F) | SPEC and SPEC | SPEC with ¢ | SPEC hide o

VIEW-DEFN ::= view VIEW-NAME : SPEC-NAME to SPEC-NAME = o
ARCH-SPEC-DEFN ::= arch spec ARCH-SPEC-NAME = ASP
UNIT-SPEC-DEFN::= unit spec UNIT-SPEC-NAME = USP

Figure 4.4: CasL Libraries (generic specifications omitted).

a Y p-model M hold, the result unit evaluator U Fvg gives the amalgamation M
for each unit environment £ € C. The condition (i) will be discharged with the
help of a proof calculus for architectural specifications, that we present in Sec. 11.1.
Typically one would expect that the conditions of type (ii) would be discarded stat-
ically. For this purpose, an extended static semantics was introduced in [Schroder
et al., 2001], where the dependencies between units are tracked with the help of
a diagram of signatures. The idea is that we can now verify that the interpretation
of two symbols is the same by looking for a “common origin” in the diagram, i.e. a
symbol which is mapped via some paths to both of them.

Note that the assumption that generic units are interpreted as functions requires
that a generic unit yields the same result when applied to the same arguments.
However, the extended static semantics is sound and complete only w.r.t. a genera-
tive semantics, where applying a generic unit to the same arguments provides pos-
sible different results. If all generic units are applied only once, the generative and
the applicative (non-generic) semantics are equivalent. We denote - ASP =, AM
the generative model semantics of architectural specifications.

For any architectural specification ASP, we denote |ASP| the specification ob-
tained by removing everything but the signature from the specifications used in
declarations. Generic units can be interpreted as total functions by introducing an
additional value L - this ensures consistency of generic unit specifications in |ASP]
whenever the unit specification is already consistent in an architectural specifica-
tion ASP and is called partial model semantics in [Mosses, 2004], Section IV:5.

Note that both structured and architectural specifications are named. This is
managed by organizing specifications in libraries of specifications. A library consists
of a list of definitions of named specifications. The names of the specifications
must be distinct and the visibility is linear. Fig. 4.4 gives the grammar of library
definitions.

4.5 HETCASL

A key feature of CasL is that syntax and semantics of its language constructs are
formulated over an arbitrary institution. Intuitively, HETCASL can be regarded as
an extension of the variant of CasL obtained by replacing at the basic level the
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institution SubPCFOL,,; with the Grothendieck institution over a graph of logic
and their translations.

We assume that the logic graph contains the institution SubPCFOL,,; and it
marks it as default logic and that some of the logic translations in the logic graph
are marked as default logic inclusions, with the extra requirement that at most one
translation between two logics can be marked as default inclusion. Default logic
inclusions are used to coerce a specification by translating it along the corresponding
logic inclusion. We also assume a partial union operation on the logics of the logic
graph such that if the union of two logics is defined, both logics are included in
their union and this union is minimal with this property.

The syntax of heterogeneous specifications can be explained as follows. At the
library level, we add the posibility that the user selects the current logic (Logic ID,
where ID stands for a logic name), which is then used for parsing and analyzing the
subsequent definitions. If no current logic is specified, the default logic is assumed.
A translation along a logic comorphism is written SPEC with logic ID. In this case,
ID stands (1) for a comorphism name, or (2) for an anonymous comorphism given
just by specifying the source and target logics (L1 -> L2), which selects the unique
translation between the two logics, or (3) for the default inclusion comorphism
from the current logic to the specified one (->L1). The semantics of SPEC with
logic ID hasbeen already introduced in Def. 4.2.4, where p is now the comorphism
identified by ID as explained above. Then the syntax for Grothendieck signature
morphisms combines an inter-logic translation, written using SPEC with logic ID,
with an intra-logic translation, where the (now homogeneous) signature morphism
is written in the usual CasL syntax (see [Mosses, 2004]).

Heterogeneous proving is done in the Grothendieck institution also using the
formalism of development graphs. Conditions needed for completeness of de-
velopment graph calculus for the heterogeneous case have been investigated in
[Mossakowski, 2002a, 2005].

It should be stressed that the name “HETCASL” only refers to CasL’s structuring
constructs. The individual logics used in connection with HETCASL and HETS can
be completely orthogonal to CasL.
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In this chapter we present the refinement language for CasL introduced in
[Mossakowski et al., 2005]. The language can be regarded as an extension of the
architectural language, which it also subsumes. As the refinement language plays a
central role in this thesis, we decided to recall its static and model semantics in full
detail, again following the cited paper.

The issue of refinement has been discussed in many specification frameworks,
starting with [Hoare, 1972] and [Milner, 1971], and some frameworks provide
methods for proving correctness of refinements. But this is normally regarded as a
“meta-level” issue and specification languages have typically not included syntac-
tic constructs for formally stating such relationships between specifications that are
analogous to those presented here for Cast. A notable exception is Specware [Smith,
1999], where specifications (and implementations) are structured using specifica-
tion diagrams, and refinements correspond to specification morphisms for which
syntax is provided. This, together with features for expanding specification dia-
grams, provides sufficient expressive power to capture our branching specification
refinements. A difference is that Specware does not include a distinction between
structured specifications and Casti-like architectural specifications, and refinements
are required to preserve specification structure.

5.1 Syntax

The aim of the refinement language is to formalize development tress. As we dis-
cussed in Sec. 1.3, the basic idea is to start with a specification of requirements and
to add more details in a stepwise manned until we reach a specification concrete
enough to be (relatively) easily translated into a program. The degree of abstrac-
tion thus decreases at each step and as consequence, the class of models narrows
with each design decision. For this reason, we may refer to the specification being
refined as being more “abstract” than the specification we refine to. We can record
such refinements already using views, described in Sec. 4.2. Moreover, as we have
seen in Sec. 1.3, it is practically sensible to split up an implementation in a number
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of components, to be further developed individually. Towards this purpose, CasL
already provides architectural specifications, described in Sec. 4.4.

However, this does not suffice for all purposes. Firstly, views formalize only
refinement between non-generic unit specifications. Secondly, there is no way to
record that a structured specification is refined to an architectural specification. Fi-
nally, architectural specifications only specify individual branching points. While we
can specify that a component of an architectural specification is further decomposed
into sub-components by making its own specification architectural, the drawback is
that this decision must be specified within a single architectural specification, that
captures the whole development process.

In contrast, the CasL refinement language provides more flexibility. Refinement
of generic unit specifications and refinement to an architectural specification are
primitives of the language. Compositions of refinements are also made explicit,
using several alternative constructions. The language also permits an “a posteriori”
refinement of components, that is, we can further refine the unit specifications
appearing in an architectural specification after we have written the architectural
specification and without having to re-write it.

Example 5.1.1 We will illustrate the CasL architectural and refinement languages
with the help of an industrial case study: specification of a steam boiler control system
for controlling the water level in a steam boiler. The problem has been formulated in
[Abrial et al., 1996] as a benchmark for specification languages; [Bidoit and Mosses,
2004] give a complete solution using Casi, including architectural design and refine-
ment of components. However, the refinement steps were presented only in an informal
way.

The specifications involved can be briefly explained as follows. VALUE specifies
in a very abstract way a sort Value and some operations and predicates on val-
ues. This specification acts as a parameter of the entire design. PRELIMINARY
gathers the messages in the system, both sent and received, and also defines a se-
ries of constants characterizing the steam boiler. SBCS_STATE introduces observers
for the system states, while SBCS_ANALYSIS extends this to an analysis of the mes-
sages received, failure detection and computation of messages to be sent. Finally,
STEAM_BOILER _CONTROL_SYSTEM specifies the initial state and the reachability re-
lation between states. We record the requirement that the system is open in the models
for VALUE using a generic unit specification ':

unit spec SBCS_OPEN = VALUE — STEAM_BOILER_CONTROL_SYSTEM

The initial design for the architecture of the system is recorded by the following
architectural specification:

arch spec ARCH_SBCS =
units P : VALUE — PRELIMINARY;

IThe complete specification of the SBCS example can be found in the Appendix B.
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S : PRELIMINARY — SBCS_STATE;

A : SBCS_STATE — SBCS_ANALYSIS;

C : SBCS_ANALYSIS — STEAM_BOILER_CONTROL_SYSTEM
result AV : VALUE e C [A[S [P [V]]]]

Here, the units P, S, A and C are all generic units. Moreover, the components are
combined in the way prescribed in the result unit of ARCH_SBCS; a model of VALUE is
required to able to provide a model of the entire system.

The first kind of refinement introduced by the CasL refinement language is unit
specification refinement. This is written USP refined via o to USP’, where USP and
USP' are unit types of form SPy x ... x SP,, — SP and SP; x ... x SP,, — SP’
respectively and o : Sig(SP) — Sig(SP’). When ¢ is missing, it is assumed to be
the identity. This also covers the case of non-generic unit types by taking n = 0.
We make the simplifying assumption that the parameter specifications of generic
unit specifications do not change under refinement. This allows us to freely use the
reduct notation U|,, for generic units U € Unit(USP) as well; in this case, the no-
tation denotes the unit function obtained by reducing the result via o after applying
U. In practice, this restriction is not troublesome, since we always can write an ar-
chitectural specification that adjusts the parameter specification as required, as we
will show below. We can express then correctness of a unit specification refinement
as

U|, € Unit(USP) for each unit U € Unit(USP’)

and denote this by USP ~ ,USP’. If USP and USP’ are non-generic, we can ex-
press the refinement USP refined via o to USP’ equivalently as view V : USP to
USP’' = o. Therefore, simple refinements can be regarded as a generalization of
views to the generic case.

Two refinements can be combined to form a chain of refinements, which cap-
tures the situation USP ~~> ,USP’ ~~> _USP"”. We write this USP refined via o
to USP’ refined via T to USP”, or using named refinements as one of the three
equivalent constructions C1, C2 or C3 below:

refinement R1 = USP refined via o to USP’
refinement R2 = USP’ refined via 7 to USP”
refinement C1 = USP refined via o to R2
refinement C2 = USP refined via o to USP’ then R2
refinement C3 = R1 then R2

where the last two alternatives make use of an operation of composition of refine-
ment specifications, using the keyword then. The semantics rules, which will be
presented in Sec. 5.2, enforce which kind of compositions are legal.

As a next step, we can introduce branching in development by refining to an
architectural specification:

refinement R = USP refined via o to arch spec ASP
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The architectural language already permits that the specification of a component
unit of ASP is itself architectural. This means that we are allowed to record in an
architectural specification decisions regarding the design of a component. Since we
have a more expressive language at hand for such design decisions, it is natural to
generalize this by allowing the specifications of the component units of ASP to be
refinements themselves:

refinement R = USP refined via ¢ to USP’
arch spec ASP = {
units U : R

.

These two constructions give us the second kind of refinements, branching specifi-
cation refinements.

Finally, we also allow to further refine the (named) components of architectural
specifications using component refinements, which are written { UN; to SPR;};c 7,
where UN, stands for a unit name and SPR; for a refinement. This expresses that
for each i € J, the component UN; of the architectural specification at hand is
further refined to SPR;. This is usually recorded using a composition of the form

refinement R = arch spec ASP then {UN, to SPR;}

which specifies that the component UN; of ASP is refined to SPR;. The semantics
rules prevent the specification of a unit in an architectural specification to be a
component refinement, that is, only simple or branching refinements are allowed.

All this can be intuitively summed up as follows. The refinement language for
Cast provide means for specifying development trees which are constructed using
three types of building blocks:

e simple refinement steps, which can be graphically represented as

TP

where USP ~<> USP' and the double arrow denotes a refinement,

e branching refinements, which can be represented as

where T; are themselves development trees and the simple arrow denotes an
architectural decomposition
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e component refinements, which are families of named development trees and
can be represented as

UNl’—>Cl
UNQ’_)CQ
C =
UN} — | T
UNp— Cp =
UN — C}

where UN; are unit names and C; are either development trees or themselves
families of trees (as we made explicit in the case of C});

which can be combined using composition of refinements, corresponding to putting
together subtrees that match at the connection points. We will make all this formal
in Sect. 11.4.

Example 5.1.2 (Refinement of arbitrary unit types) Given two unit specifications
SP — SP' and SP, — SP! with a specification morphism o : SP; — SP, the
following is a correct specification refinement?:

unit spec USP = SP — SP’
unit spec USP’ = SP; — SP’;
refinement R = USP refined via T to arch spec{
units F : USP’
result lambda X : SP o F [X fit o]}

where T is a specification morphism from SP; to the pushout specification SP| & SP
in the following diagram:
SP, SP

.

Sp > SPy & SP

G0

SpP’

The complete syntax for CasL refinements is presented in Fig. 5.1, where
A, Ay, A, stand for unit names and o for a signature morphism. We eliminate
architectural specifications as an alternative of unit specifications, since they are
a particular case of refinements. This is also why we can now speak of an archi-
tectural refinement level subsuming the architectural level in the CasL language.
Moreover, we consider units with imports in this chapter only a syntactic construc-
tion. Their semantics will be introduced in detail in Sec. 10.5.

2Assuming that all symbols shared between SP} and SP originate in SP1, as imposed by CASL
rules for application of generic units.
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LIB-ITEM ::=...| REF-SPEC-DEFN
REF-SPEC-DEFN ::= refinement REF-SPEC-NAME = SPR
SPR := USP | arch spec ASP | SPR then SPR |
USP refined (via o) to SPR | {A; to SPRy,..., A4, to SPR,}
UDECL ::= A : SPR | A : USP given UTy, ..., UT,

USP ::= SP | SPy X --- x SP,, — SP {-arch-speeASP-

Figure 5.1: Syntax of the CasL refinement language.

Example 5.1.3 We illustrate the CasL refinement language with the help of an exam-
ple from [Mossakowski et al., 2005]. We start with a loose specification of monoids:

spec MONOID =
sort Elem
ops 0:Elem;
__+_ :Elem x Elem — Elem, assoc, unit 0

then natural numbers are specified with the usual Peano axioms, addition is defined,
and finally the successor is hidden:

spec NATWITHSUC =
free type Nat ::= 0 | suc(Nat) %% shorthand for Peano axioms
op __ + :Nat x Nat — Nat, unit 0
YV x, ¥ : Nat e x + suc (y) = suc(x +y)

spec NAT =NATWITHSUC hide suc

and we can record that natural numbers with addition form a monoid as follows:
refinement R1 = MONOID refined via Elem — Nat to NAT

Natural numbers are further implemented as lists of binary digits, constructed by
two postfix operations __ 0 and __ 1. __ + __ is addition, __ + +__ is addition with
carry bit.

spec NATBIN =
generated type Bin :=0 | 1 | _ 0(Bin) | _ 1(Bin)
ops + , ++_ :Bin x Bin — Bin

VX, y:Bin
e00=0

e01=1
e-0=1
ex0=y0=x=y
e x0=yl1l
exl=yl=x=y
e0+0=0

e0++0=1
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ex0+y0=(x+y)0
ex0++y0=(x+y 1
ex0+yl=(x+y1
ex0++yl=0Cx++y)0
ex1l+y0=(0(x+y1
ex1l++y0=0++y)0
exl+yl=0C++y)0
exl++yl=(x++y1

and we obtain thus a new refinement:

refinement R2 = NAT refined via Nat — Bin to NATBIN
which can be composed with the first one to form a chain:
refinement R3 = R1 then R2

Furthermore, we can require that the addition should be implemented first, and
then the successor defined in terms of addition:

arch spec ADDITION_FIRST =
units N : NAT;
F : NAT — NATWITHSUC
result F[N]

and we can record this design decision as:
refinement R4 = NATWITHSUC then arch spec ADDITION FIRST
We can then further refine the component N of ADDITION FIRST:

refinement RComp ={N to R2}
refinement R5 = R4 then RCoOMP

Example 5.1.4 We write the initial refinement of the steam boiler system as
refinement REF_SBCS = SBCS_OPEN refined to arch spec ARCH_SBCS

We proceed with refining the individual units. The specifications of C and S in
ARCH_SBCS above do not require further architectural decomposition. The specifica-
tion of S, recorded in the unit specification STATE_ABSTR, can be refined by provid-
ing an implementation of states as a record of all observable values. This is done in
SBCS_STATE_IMPL, assuming an implementation of PRELIMINARY; we record this de-
velopment in the unit specification UNIT_SBCS_STATE. The refinement of S is then
written in STATE_REF:

unit spec STATE_ABSTR = PRELIMINARY — SBCS_STATE
unit spec UNIT_SBCS_STATE =
PRELIMINARY — SBCS_STATE_IMPL
refinement STATE_REF =
STATE_ABSTR refined to UNIT _SBCS_STATE
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For the units P and A, we proceed with designing their architecture. This is recorded
in the architectural specifications ARCH_ANALYSIS:

arch spec ARCH_ANALYSIS =
units FD : SBCS_STATE — FAILURE_DETECTION;
PR : FAILURE_DETECTION — PU_PREDICTION;
ME : PU_PREDICTION — MODE_EVOLUTION[PU_PREDICTION];
MTS : MODE_EVOLUTION[/PU_ PREDICTION] — SBCS_ANALYSIS
result A S : SBCS_STATE ¢ MTS [ME [PR [FD [S]]]]

and ARCH_PRELIMINARY:

arch spec ARCH_PRELIMINARY =

units SET : {sort Elem} x NAT — SET[sort Elem];

B : BASICS;

MS : MESSAGES_SENT given B;

MR : VALUE — MESSAGES_RECEIVED given B;

CST : VALUE — SBCS_CONSTANTS

result \ V : VALUE

e SET [MS fit Elem — S_Message] [V]
and SET [MR [V] fit Elem — R_Message] [V]
and CST [V]

We can now record the component refinement:

refinement REF_SBCS’ = REF_SBCS then
{P to arch spec ARCH_PRELIMINARY, S to STATEREF,
A to arch spec ARCH_ANALYSIS}

Moreover;, the components FD and PR of ARCH_ANALYSIS are further refined
(the architectural specifications ARCH_FAILURE_DETECTION and ARCH_ANALYSIS are
omitted, but their units are visible in Fig. 11.5):

refinement REF_SBCS” =
REF_SBCS’
then {A to
{FD to arch spec ARCH_FAILURE_DETECTION,
PR to arch spec ARCH_PREDICTION }}

Note that this is a corrected version of an example in [Mossakowski et al., 2005].

5.2 Semantics

We now recall the semantics of refinement specifications as defined in
[Mossakowski et al., 2005]. Both the refinement signatures, that will be used for
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the static semantics, and the refinement relations, which provide model semantics
of refinements, come in three variants, to correspond with the three types of refine-
ments.

Let us recall that refinement specification formalize development trees. The
intuition behind refinement signatures is that they store the signatures of the roots
and the leaves of these trees, which have to match when the trees are combined.

Definition 5.2.1 [Mossakowski et al., 2005] A refinement signature can have one of
the following forms:

RY = (UX,B%) | {UN; = R%;}ic 7
By :=UX |{UN; — BE;}ics

This means that a refinement signature RY. can be either

e a branching refinement signature (UX, BX) where on the second component
we have a branching signature BY. which can itself be either (i) a unit signa-
ture UX', and in this case RY. is called a unit refinement signature of (ii) a map
{UN; — BX,;};c 7 called branching static context and denoted BstC, assigning
branching signatures to unit names. The intuition is that a unit refinement
signature stores the signatures of a unit before and after refinement, and a
branching signature generalizes this to the case when a branching is intro-
duced by storing the signatures of all components in a map where they can
be retrieved by the corresponding component’s name;

e a component refinement signature { UN; — RY;};c7, storing the refinement
signature of each component to be refined. When all RY;, i € J are branch-
ing refinement signatures (UX;, BY;), we refer to the component refinement
signature { UN; — RY;}ic7 as a refined-unit static context, denoted RstC,
which can then be naturally coerced to a static context 71 (RstC) = {UN;
U }ies as well to a branching static context ma(RstC) = {UN; — B }ics.

The rules for static semantics of refinements are then presented in Fig. 5.2. The
result of the analysis is a refinement signature RY and the general format of the
rules is - SPR > RY.. When we only want to check that the rules apply successfully
and the result is not important, we will denote this by - SPR > [J .

We have a rule for each alternative of refinement and the rules are defined in-
ductively on the structure of the refinement. The rule for architectural specifications
hides a number of necessary changes to the semantics of architectural specifications,
as given in [Mosses, 2004], Sec. II1.5. This is because now the specifications of the
units are either simple or branching refinements, and we get thus a refined-unit
static context RstC' for the units of an architectural specification, as we illustrate
here with the rule for the static semantics of unit declarations:

I's F SPR > RY

UN ¢ Dom(RstC)
I's, RstC'+ UN : SPRi> {UN — RX}
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- USP 1> (US, US)
US = (2,...,5, > %)

oc: X =Y
- SPR > (U, BY)
- USP > US US = (S1,...,5, = %)

+ USP qua SPR > (UX, UX) - USP refined via o to SPR > (UX, BYX")

F SPRy > RY,
F SPR2 > RYo
- ASP > (US, RstC) RY = RY; ; R,
t arch spec ASP > (U, m2(RstC)) + SPR; then SPRy > RY.

UN.,..., UN, are distinct
FSPR,>RY;,i=1,...,k
F{UN;to SPRy,...,UN} to SPRk}D{UNli—)REL,UNkI—)REk}

Figure 5.2: Static semantics of CasL refinements

We can then coerce RstC to a static context using the projection to the first compo-
nent my, as below:
RstC(UN) = RX
I, RstC' = UN > 71 (RY)

For unit definitions, we do not want to allow to further refine the defined unit, and
we use the | sign to mark that:

s, RstC FUE > X
UN ¢ Dom(RstC)
I's,RstC+ UN =UE®>{UN — (X£,1)}

This ensures that the composition of a branching refinement signature with a com-
ponent refinement signature having the name of a defined unit in its domain is
illegal. The other static semantics rules for architectural specifications can be mod-
ified in a similar way; since this is rather straightforward, using the projection 7,
we will not present this in detail here. The signature of the result unit expression
of the architectural specification is then paired with the projection on the second
component of the refined-unit static context to obtain a branching signature which
is then given as result of the analysis. Finally, the complexity of the rule for re-
finement composition is hidden in an auxiliary partial composition operation on
refinement signatures, that can be explained intuitively as checking that, at each
connection point, the corresponding unit signatures match.
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Definition 5.2.2 [Mossakowski et al., 2005] Given refinement signatures R and
RY,, their composition RY, ; RY, is defined inductively on the form of the first argu-
ment.

e Ry = (Ux,UY): then RY;; RY; is defined only if RYs is a branching refine-
ment signature of the form (UY', BY"). Then RY, ; R¥q = (UX, BE").

e RYy = (UX,BstC'): then RY;;RYs is defined only if Ry is a compo-
nent refinement signature such that RYo matches BstC’, i.e., dom(RX3) C
dom(BstC") and for each UN € dom(RXs),

— either BstC'(UN) is a unit signature and then R35(UN) = (UY, BY")
with UY' = BstC'(UN), or

- BstC'(UN) is a branching static context and then RXy(UN) matches
BstC'(UN),

Then RY;;RYy = (U, BstC'[RX,]), where given any branching static con-
text BstC' and component refinement signature RYo that matches Bst(C',
BstC'[RY) modifies BstC' on each UN € dom(RX2) as follows:

- if BstC'(UN) is a unit signature then BstC'[RYs](UN) = BY where
RS,(UN) = (BstC'(UN), B="),

- if BstC'(UN) is a branching static context then
BstC'[RYs)(UN) = BstC'(UN)[RXa( UN)).

Finally, since defined units should not be further refined, we make illegal the
composition of a branching refinement specification with a component refine-
ment specification if the latter has the name of a defined unit in its domain.

e RY is a component refinement signature: then RY; RY, is defined only
if RYo is a component refinement signature too, and moreover, for all
UN € dom(RZl) N dOm(REQ), RYXyny = RE]_(UN);RZQ(UN) is deﬁned.
Then RY.;; RY.o modifies the (ill-defined) union of RY, and RY, by putting
(RX1;RY9)(UN) = REyn for UN € dom(RX1) N dom(R32).

Example 5.2.3 Let us apply the static semantic rules for the refinements in Ex. 5.1.3.
For each of the specifications involved, we denote its unit signature with the name of
the specifications, that is = NAT > NAT and so on. Then

e With the rule for unit specifications as refinement specifications we obtain
F MONOID qua SPEC-REF > (MONOID, MONOID) and - NAT qua SPEC-REF >
(NAT, NAT). Then with the rule for simple refinements we get that - R1 >
(MONOID, NAT);

e With a similar reasoning, we get - R2 > (NAT, NATBIN);
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e Since R3 is a composition of refinements, we have to compose the signatures of
R1 and R2. The first case in the definition of composition of refinement signa-
tures applies and since the target signature of R1 and the source signature of R2
are both NAT, the composition is legal and we get - R3 > (MONOID, NATBIN);

e For ADDITION_ FIRST, the refinement specifications of the units are analyzed
first. Since they are both unit specifications, we get a refined-unit static con-
text RstC which assigns (NAT, NAT) to N and (NAT — NATWITHSUC, NAT —
NATWITHSUC) to F. According to the rule for architectural specifications,
this refined-unit static context is projected on the second component, thus re-
sulting a branching static context BstC which assigns NAT to N and NAT —
NATWITHSUC to F. We get thus - ADDITION_FIRST > (NATWITHSUC, {N —
NAT, F' +— NAT — NATWITHSUC}). This is also the signature of R4, using the
rule for refinements;

e We have that = R2 > (NAT, NATBIN), so according to the rule for component
refinement specifications we get - RCOMP > { N — (NAT, NATBIN)};

e Finally, we have to make the composition of the signature of R4 with the signa-
ture of RComp. We are in the second case of the definition of the composition
of refinement signatures and the name N is indeed in the domain of the branch-
ing static context BstC which is on the second position in the signature of R4.
Moreover, BstC'(N) = NAT and thus matches the source signature of RCOMP.
Then by definition we update the signature of N in BstC' to NATBIN and get
F R5 > (NATWITHSUC, { N — NATBIN, F' — NAT — NATWITHSUC}).

For the model semantics, we first introduce the notion of constructor imple-
mentation [Sannella and Tarlecki, 1988a, 2012]. Constructors are simply partial
functions taking models to models, of form x : Mod(X) — Mod(X'). An example
of such a constructor is already provided by the model reduct along a signature
morphism o : ¥ — ¥/, which takes any >'-model M’ to its X-reduct M’|,.

Definition 5.2.4 [Sannella and Tarlecki, 1988a] Let SP,SP’ be specifications such
that - SP > ¥ and = SP' > ¥/ and let k : Mod(X') — Mod(X) be a constructor. We
say that SP' is a constructor implementation of SP along k, denoted SP ~~> SP', if
for any M € Mod(SP'), M € dom(x) and (M) € Mod(SP).

Note that by definition we have that o : SP — SP’ is a morphism of specifica-
tions iff SP ~> SP’ with k = _|,. These kind of constructors are specified using
unit specification refinements.

For capturing branchings as well, we need n-ary constructors of form « :
Mod(X;) x ... x Mod(%,) — Mod(X), which are partial functions mapping com-
patible models to ¥-models, where the compatibility requirement means that the
arguments can be amalgamated to a model of the union of signatures 3, ...,%,.
An implementation is now correct if given ¥;-specifications SP;, fori = 1,...,n,
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any compatible models M;, ..., M, of SPy,...,SP, respectively are in the domain
of k and k(Mj, ..., M,) is a model of the specification SP which we want to refine
to SPy,...,SP,. These constructors are specified using branching specification re-
finements.

Constructors provide then an intuitive notion of refinement model. We can ob-
serve this best in the case of unary constructors: if SP ~~> SP’, we denote G
the graph of « restricted to Mod(SP’), that is, pairs of form (M, x(M)), where
M € Mod(SP'). We then take the inverse relation G~! to obtain on the first com-
ponent models over Sig(SP) and on the second component models over Sig(SP’),
matching thus the order of models with the order of their unit signatures in the
corresponding refinement signature. This generalizes to n-ary constructors to cover
branching refinement and to families of constructors, which will be models of com-
ponent refinement specifications. This leads us to the following formal definition.

Definition 5.2.5 [Mossakowski et al., 2005] Given a refinement signature RY, we
define refinement relations, R, as classes of assignments, R, which take the following
forms:

e branching assignments, for RY. = (UX, BY'), are pairs (U, BM'), where U
is a unit over the unit signature UX and BM' is a branching model over the
branching signature BY', which is either a unit over BY' when BY' is a unit
signature (in which case the branching assignment is a unit assignment), or
a branching environment BE’ that fits BX' when BY' is a branching static
context. Branching environments are (finite) maps assigning branching models
to unit names, with the obvious requirements to ensure compatibility with the
branching signatures indicated in the corresponding branching static context.
Moreover, we require that whenever (u,bm) and (u’,bm) are in R we have that
u=n1u.

e component assignments, for RY. = {UN,; — RY,},cs, are (finite) maps
{UN; — R;};c7 from unit names to assignments over the respective refinement
signatures. When RY. is a refined-unit static context (and so each R;, i € 7, is a
branching assignment) we refer to RE = {UN; — (U;, BM;)}ic 7 as a refined-
unit environment. Any such refined-unit environment can be naturally coerced
to a unit environment 7 (RE) = {UN; — U, }ic7 of the plain CasL semantics,
as well as to a branching environment mo(RE) = {UN; — BM ;}ic 7.

The model semantics rules for refinements are presented in Fig. 5.3. They are
again defined inductively on the structure of the refinements and the judgements
are now of the form + SPR = R, where SPR is a refinement and R is a refine-
ment relation. Again, we need to modify the model semantics rules for architectural
specifications, as given in [Mosses, 2004], Sec. III.5. We build a refined-unit envi-
ronment RE for the units of an architectural specification that we coerce to a unit
environment using the projection to the first component 7. The model seman-
tics rule for unit declarations produces the context that consists of all refined-unit
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FUSP = U
= USP quaSPR = {(U,U) |U e U}

FUSP = U o:N =Y FSPR =R
U'l, eU, forall (U',BM") e R
R ={(U'|l,,BM") | (U',BM") € R}
+ USP refined via o to SPR = R/

HASP = AM
+arch spec ASP = {(U,m2(RE)) | (U, RE) € AM}

FSPRy=R: --- FSPR,=R,

- {UN; to SPRy, ..., UN, to SPRy} = {R | dom(R) = {UN1, ..., UNy},
R(UNZ) € R;, i = 1,...,’1’L}

}—SPRl =R FSPRQZ>R2 R:Rl;RQ
+ SPR; then SPRy; = R

Figure 5.3: Model semantics of CasL refinements

environments that map the declared unit name to a branching assignment in the
semantics of the refinement used in the declaration:

T, Ts - SPR =R
Ty, T, Cs,C - UN : SPR = CY[UN/R]

Then, the units in 7 (RE) produce a model of the result unit, which is then paired
with the projection 75 of the result-unit environment to the second component to
obtain an architectural model. In the case of compositions, similarly to the static
semantics, we define an auxiliary partial operation to compose refinement relations.
The intuition is that at each refinement step we further restrict the domain of a
constructor by compositions, thus narrowing the class of acceptable realizations,
which is the image of the constructor.

Definition 5.2.6 [Mossakowski et al., 2005] Given two refinement relations R1, Rs
over refinement signatures RY1, RY.o, respectively, such that the composition RY. =
RY1 ; RY., is defined, the composition R4 ; R is defined as a refinement relation over
RY: as follows:

e RYy = (U, UY), REy = (UY', BY"): then Ry ; Ry is defined only if for all
(U', BM") € Ry we have (U,U") € Ry for some U. Then

R1;R2 = {(U BM") | (U,U") € Ry1,(U",BM") € Ry for some U’}
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e RYy = (UX, BstC') and RY; is a component refinement signature that matches
BstC': then Ry ; Ry is defined only if for each Ry € Ro there is (U, BE') € Ry
such that Ry matches BE', that is, for each UN € dom(Ry),

— either BstC'(UN) is a unit signature and then Ry(UN) = (U”, BM") with
U"” = BE'(UN), or

- BstC'(UN) is a branching static context and then Ro(UN) matches
BE'(UN).

Then
Ri1;Ro = {(U, BE/[RQ]) | (U, BE,) € Ri,Ro € Ro, Ro matches BE/}

where given any branching environment BE' that fits BstC' and assignment Ry
that matches BE’', BE'|Ry] modifies BE' on each UN € dom(Rz2) as follows:

- if BstC'(UN) is a unit signature then BE'[Rs](UN) = BM" where
Ro(UN) = (BE'(UN), BM");

— if BstC'(UN) is a branching static context then we put
BE'[Ro](UN) = BE'(UN)[Ry(UN)].

e RY, and RY, are component refinement signatures such that for all UN €
dom(R¥1)Ndom(RX2), REyn = RE1(UN) ; RE2(UN) is defined then R1 ; Ro
is defined only if for each Ry € Ry there is Ry € R such that Ry transfers to
Ry, that is, for each UN € dom(Ry) N dom(R3),

— either RY1(UN) is a unit refinement signature (UX,UY'), and then
R1(UN) = (U,U7) and R2(UN) = (U, BM") with U{ = U}, or

- RX(UN) is a branching refinement signature (U%, BstC"), where BstC'’
is a branching unit context, and then R1(UN) = (U, BE') and Ry(UN) is
an assignment that matches BE', or

— RY1(UN) is component refinement signature, and then Ry (UN) transfers
to Ry(UN).

Then
R1;Re ={R1;Rs| R1 € R1, Rz € Ra, Ry transfers to Ry}

where given any assignments Ri, Ro over RY, RYo, respectively, such that Ry
transfers to Ry, then Rj; Ry is the assignment that modifies the (ill-defined)
union of Ry and Ry on each UN € dom(R1) N dom(R2) as follows:

- if RE1(UN) = (U, UY), Ri(UN) = (U,U;) and Ry(UN) = (U}, BM")
(hence U = U) then (Ry; Ry)(UN) = (U, BM");
- if RX1(UN) = (U, BstC'), where BstC' is a branching unit context,

R1(UN) = (U, BE") (hence Ry(UN) is an assignment that matches BE’)
then (Ry1; Ry)(UN) = (U, BE'[R2(UN)]);
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- if RE1(UN) is a component refinement signature (hence Ri(UN) and
Ro(UN) are component assignments such that Ri(UN) transfers to
Ro(UN)) then
(R1;R2)(UN) = R1(UN); Ro(UN).

Example 5.2.7 Let us apply the model semantic rules for the refinements in Ex. 5.1.3.

With the rule for unit specifications as refinement specifications we obtain
F MONOID qua SPEC-REF = {(U,U) | U € Unit(MoNOID)} and similarly
F NAT qua SPEC-REF = {(V,V) | V € Unit(NAT)}. For R1 we must use the
rule for simple refinements. For each model N of NAT, we have that N|, €
Mod(MONOID), where o is the signature morphism induced by Elem — Nat.
Thus the rule can be applied and we get that - R1 = {(V|,,V) | V €
Unit(NAT)};

With a similar reasoning, we get - R2 = {(U|,,U) | U € Unit(NATBIN)}
where o’ is the signature morphism induced by Nat — Bin;

For R3 we must compose the refinement models of R1 and R2. We are in the
first case of the definition of composition of refinement relations and moreover
for every assignment (B|,, B) with B € Unit(NATBIN) we have that B|, is a
NAT-model. Then the assignment (B|,/|s, Bl,) is in the refinement relation of
R1. We then get - R3 = {(B|y/|s, B) | B € Unit(NATBIN)};

Models of ADDITION_FIRST are pairs of form (F[N],{N € Unit(NAT,F €
Unit(NAT — NATWITHSUC))}). Note that the condition in the rule for sim-
ple refinements holds trivially in the case of R4 and R4 has the same refinement
model as ADDITION_FIRST;

With the rule for component specification refinements, we get that - RCOMP =
{N = {(Ul,,U) | U € Unit(NATBIN)}};

For R5 we must compose the refinement models of R4 and RComP. We are
in the second case and the refinement signatures match. For any assignment
{N — (B|s,B)} with B € Unit(NATBIN) we know that B|, is in Unit(NAT)
and thus there are assignments Ry = (U, BE1) in the refinement relation of
R4 such that BE{(N) = B|,. For any such assignment R; we take in the
composition the assignment (U, BE1[N/B]).
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As already mentioned in Sec. 2.1, the logics of HETS are specified on the meta-
level rather than within the system itself. Each logic or logic translation has to be
specified by implementing a Haskell interface that is part of the HETS code, and
tools for parsing and static analysis have to be provided. Consequently, only HETS
developers but not users can add them. Besides the obvious disadvantage of the
cost involved when adding logics, this representation does not provide us with a
way to reason about the logics or their translations themselves. In particular, each
logic’s static analysis is part of the trusted code base, and the translations cannot be
automatically verified for correctness.

Moreover, HETS is based on a model-theoretical approach to logical systems
— the semantics of implemented logics and the correctness of translations are de-
termined by model theoretic arguments. Proof theory is only used as a tool to
discharge proof obligations and is not represented explicitly.

In contrast, the proof theoretic approach of logical frameworks focuses on the
syntactic entailment relation between sentences, which gives rise to proof terms.
A sentence is then true if there exists a proof term for it. The most important
proof theoretic logical frameworks are Automath [de Bruijn, 1970], Isabelle [Paul-
son, 1994] and the Edinburgh Logical Framework [Harper et al., 1993]. The main
use of these frameworks is to encode deductive systems: object logics become thus
theories in the “universal” logic of the framework. Note that using Edinburgh Log-
ical Framework as a universal logic in which the other logics are represented has
already been suggested in [Harper et al., 1994, Tarlecki, 1996].
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The work reported here is part of the ongoing project LATIN (Logic Atlas and
Integrator, [Kohlhase et al., 2009]). LATIN has two main goals: to fully integrate
proof and model theoretic frameworks preserving their respective advantages, and to
create modular formalizations of commonly used logics together with logic morphisms
interrelating them: the Logic Atlas. To this end, we develop general definition of
a logical framework (the LATIN metaframework) that covers logical frameworks
such as LF, Isabelle, and rewriting logic and implement it in HETS. The LATIN
metaframework follows a “logics as theories/translations as morphisms” approach
such that a theory graph in a logical framework leads to a graph of institutions and
comorphisms via a general construction. This means that new logics can now be
added to HETS in a purely declarative way. Moreover, the declarative nature means
that logics themselves are no longer only formulated in the semi-formal language of
mathematics, but now are fully formal objects, such that one can reason about them
(e.g. prove soundness of proof systems or logic translations) within proof systems
like Twelf.

6.1 Preliminaries

6.1.1 Proof-Theoretic Logical Frameworks

We use the term proof theoretic to refer to logical frameworks whose semantics
is or can be given in a formal and thus mechanizable way without reference to
a Platonic universe. These frameworks are declarative formal languages with an
inference system defining a consequence relation between judgments. They come
with a notion of language extensions called signatures or theories, which admits the
structure of a category. Logic encodings represent the syntax and proof theory of a
logic as a theory of the logical framework, and logical consequence is represented
in terms of the consequence relation of the framework.

The most important logical frameworks are LF, Isabelle, and rewriting logic.
LF [Harper et al., 1993] is based on dependent type theory; logics are encoded
as LF signatures, proofs as terms using the Curry-Howard correspondences, and
consequence between formulas as type inhabitation. The main implementation is
Twelf [Pfenning and Schiirmann, 1999]. LF has been used extensively to repre-
sent logics [Harper et al., 1994, Pfenning et al., 2003, Avron et al., 1998], many of
them included in the Twelf distribution. The Isabelle system [Paulson, 1994] imple-
ments higher-order logic [Church, 1940]; logics are represented as HOL theories,
and consequence between formulas as HOL propositions. Logic representations in
Isabelle are notable for the size of the libraries in the encoded logics, especially for
HOL [Nipkow et al., 2002]. The Maude system [Clavel et al., 2007] is related to
rewriting logic [Meseguer, 1992]. Here logics are represented as rewrite theories,
and consequence between formulas as rewrite judgments. Logic representations in
rewriting logic [Marti-Oliet and Meseguer, 1994] using the Maude system [Clavel
et al., 2007] include the examples of equational logic, Horn logic and linear logic. A
notable property of rewriting logic is reflection i.e. one can represent rewriting logic
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within itself. Zermelo-Fraenkel and related set theories were encoded in a num-
ber of systems, see, e.g., [Paulson and Coen, 1993] or [Trybulec and Blair, 1985].
Other systems employed to encode logics include Coq [Bertot and Castéran, 2004],
Agda [Norell, 2005], and Nuprl [Constable et al., 1986]. Only few logic translations
have been formalized systematically in this setting. Important translations repre-
sented using the logic programming interpretation of LF include cut elimination
[Pfenning, 2000] and the HOL-Nurpl translation [Schiirmann and Stehr, 2004].
The latter guided the design of the Delphin system [Poswolsky and Schiirmann,
2008] for logic translations.

In the following, we give an overview of LF, which we will use as a running ex-
ample. LF extends simple type theory with dependent function types and is related
to Martin-Lof type theory [Martin-Lof, 1974].

LF expressions E are grouped into kinds K, kinded type-families A : K, and
typed terms ¢ : A. The kinds are the base kind type and the dependent function
kinds IT,.4 K. The type families are the constants a, applications A ¢, and the
dependent function type II,.4 B; type families of kind type are called types. The
terms are constants ¢, variables x, applications s ¢, and abstractions \,. 4 t. We write
A — B instead of I1,.. 4 B if x does not occur in B.

Kinds K n= type |4 K
Type families A,B := a|At|,aB
Terms s,t n= cl|lax|st]Apat

The following grammar is a simplified version of the LF grammar where we write -
for the empty list. It includes LF signature morphisms, which were added to LF in
[Harper et al., 1994] and to Twelf in [Rabe and Schiirmann, 2009]:

Signatures ¥ = - |[X,a: K (=A4)|%X, c:A(=1)
Morphisms o = -|o,c:=t|o, a:=A

An LF signature X is a list of kinded type family declarations ¢ : K and typed
constant declarations ¢ : A. Both may carry definitions, i.e., ¢ : A = t and a :
K = A, respectively; we have marked the optional definitions with (.). Due to
the Curry-Howard representation, propositions are encoded as types as well; hence
a constant declaration ¢ : A may be regarded as an axiom A, while ¢ : A = ¢
additionally provides a proof ¢ for A. Hence, an LF signature corresponds to what
usually is called a logical theory.

Relative to a signature ¥, closed expressions are related by the judgments -y
E : E' and y F = FE’. Equality of terms, type families, and kinds are defined by
afn-equality. All judgments for typing, kinding, and equality are decidable.

Given two signatures ¥ and ¥/, an LF signature morphism o : ¥ — Y/ is a
typing- and kinding-preserving map of Y-symbols to 3'-expressions. Thus, o maps
every constant ¢ : A of ¥ to a term o(c) : o(A) and every type family symbol
a : K to a type family o(a) : (K). Here, & is the homomorphic extension of ¢ to
Y-expressions, and we will write o instead of & from now on.
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Signature morphisms preserve typing, i.e., if -x, E : E’, then by o(E) : o(E'),
and correspondingly for kinding and equality. Due to the Curry-Howard encoding
of axioms, this corresponds to theorem preservation of theory morphisms. Compo-
sition and identity are defined in the obvious way, and we obtain a category LLF.

In [Rabe and Schiirmann, 2009], a module system was given for LF and imple-
mented in Twelf. The module system permits to build both signatures and signature
morphisms in a structured way. Its expressivity is similar to that of development
graphs (which we described in Sec.4.3).

6.1.2 A Logic Atlas in LF

In the LATIN project [Kohlhase et al., 2009], we aim at the creation of a logic
atlas based on LF. The Logic Atlas is a multi-graph of LF signatures and morphisms
between them. Currently it contains formalizations of various logics, type theories,
foundations of mathematics, algebra, and category theory.

Among the logics formalized in the Atlas are propositional (PL), first (FOL) and
higher-order logic (HOL), sorted (FOL,,s) and dependent first-order logic (DFOL),
description logics (DL), modal (ML) and common logic (CL) as illustrated in the
diagram below. We distinguish e.g. the many-sorted first-order logic in HETS, de-
noted FOL,,s and its representation in the LATIN Atlas, denoted FOL,,;. Single ar-
rows (—) in this diagram denote LF formalizations of logic translations and hooked
arrows (—) denote module imports between the two logics. Among the founda-
tions are encodings of Zermelo-Fraenkel set theory, Isabelle’s higher-order logic,
and Mizar’s set theory [Iancu and Rabe, 2011].

Note that a logical framework leaves the choice of the foundation deliberately
open. In this way, we can use one logical framework (e.g. LF) with several foun-
dations (e.g. ZFC, as well as category theory). Only the representation of a logic
includes the choice of a foundation.

PL
ML I~ FOLmS > DFOL

DL = FoL <~ |
N L/ ¢\H0L/

Isabelle > ZFC — Mizar

Figure 6.1: The LATIN Atlas.

Actually the graph is significantly more complex as we use the LF module sys-
tem to obtain a maximally modular design of logics. For example, first-order, modal,
and description logics are formed from orthogonal modules for the individual con-
nectives, quantifiers, and axioms. For example, the A connective is only declared
once in the whole Atlas and imported into the various logics and foundations and
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related to the type theoretic product via the Curry-Howard correspondence.

Moreover, we can use individual modules FOLP
for syntax, proof theory and model theory so FoLY
that the same syntax can be combined with dif- truth /
ferent interpretations. For example, the LATIN  Base — FQLSY" | FOLsound

formalization of first-order logic (presented in x
[Horozal and Rabe, 2011]) consists of the sig- FoL™ u
natures Base and FOL®Y" for syntax, FOL'/ for FOLM!
proof theory, and FOLM°? for model theory as il- M

lustrated in the diagram on the right. Base con- ZFC

tains declarations o : type and i : type for the type of formulas and first-order
individuals, and a truth judgment for formulas. FOL®Y" contains declarations for
all logical connectives and quantifiers (see Fig. 6.4). FOL™" is an inclusion mor-
phism from Base to FOL®Y". FOL"' consists of declarations for judgments and
inference rules associated with each logical symbol declared in FOL%¥". FOL is
simply an inclusion morphism from FOL" to FOL/.

For the representation of FOL model theory, LF is not a suitable metalanguage
because its type theory is minimalistic and the use of higher-order abstract syntax is
incompatible with the natural way of adding computational support needed to ex-
press models. However, LF can serve as a minimal, neutral framework to formalize
the metalanguage itself. We choose ZFC set theory as the appropriate metalanguage
because it is the standard foundation of mathematics, and formalize it in LF (in the
signature ZF'C) and use it as the metalanguage to define models.

The ZFC encoding includes the type of sets, the membership predicate as a
primitive non-logical symbol, and the usual ZFC set operations and axioms defined
in a first-order language with description operator. Additionally, ZFC contains a
type judgment elem for the elements of a set as well as a binary operation —> on
sets that returns the set of functions. This is important for being able to represent
models as signature morphisms (see below): signature morphisms map types to
types, and via elem, (carrier) sets can be turned into types.

FOLM?d includes ZFC as a metalanguage and uses it to axiomatize the prop-
erties of FOL-models. More precisely, FOLM°? declares a set bool for the boolean
values axiomatizing it to get the desired 2-element set {0, 1}, declares a fixed set
univ of individuals, along with an axiom stating that the universe is nonempty. For
each logical symbol s5%" in FOLSY", FOLM°? declares a symbol s™°¢ that repre-
sents the semantic operation used to interpret s°¥" along with axioms specifying its
truth values. For instance, for disjunction, which is declared as or : 0 — 0 — o in
FOL®™, FOLM°¢ declares the symbol V as a ZEC-function from bool? to bool and
axiomatizes it to be the binary supremum in the boolean 2-element lattice. This
corresponds to the case-based definition of the semantics of a formula.
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FOL®™ FOLM ZFC

1:type univ : set set : type

0:type bool : set prop : type

or:o0—0—o0 V 1 elem (bool = bool = | V : prop — prop —

bool ) prop

forall : (i — 0) — | V : elem ((univ = bool) = | V : (set — prop) —

0 bool) prop
€: set — set — prop
elem : set — type
=—: set — set — set

The morphism FOL™° interprets the syntax of FOL in the semantic realm specified
by FOLM?d: It maps the type i of individuals to the type of elements of univ, the
type o of formulas to the type of elements of bool, and the logical operations to the
corresponding operations on booleans.

The individual FOL-models are represented as LF signature morphisms from
FOLMo! to ZF(C that are the identity on ZFC. In other words, a model M maps
univ to a nonempty set expressed by using the set operations of ZFC'. M interprets
the boolean operations in FOL*°? in terms of the usual set operations in ZFC'. For
instance, the universal quantification for the booleans is mapped to the intersec-
tion of a family of subsets. This interpretation is ensured by the axiomatization of
universal quantification. Given such a morphism M, the composition FOL™? ; M
then yields the interpretation of FOL%Y" in ZFC.

A particular aspect of this formalization is that soundness of FOL can be rep-
resented naturally as an LF signature morphism from FOL?/ to FOLM°¢ making
the diagram above commute. Note that a morphisms in the opposite direction, i.e.,
from FOLM? to FOL*!, does not yield completeness.

6.2 The LATIN Metaframework

In this section we describe the theoretical background of the LATIN metaframework
(LMF) based on the approach taken in [Rabe, 2010]. The LMF is an abstract frame-
work that allows to represent logical frameworks as declarative languages given by
categories of theories. The LMF is generic in the sense that it can be instantiated
with specific logical frameworks such as LF, Isabelle or rewriting logic, thus allow-
ing HETS to be flexible in the choice of the logical framework in which logics should
be represented.

In Sect. 6.2.1, we show that this abstract representation of logical frameworks
complies with the notion of institutions and institution comorphisms. Here we
deliberately restrict attention to a special case of [Rabe, 2010] that makes the ideas
clearer and discuss generalizations in Sect. 6.2.2.
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6.2.1 Logical Meta-Frameworks

Definition 6.2.1 (Inclusions) A category with inclusions consists of a category to-
gether with a broad subcategory that is a partial order. We write B — C for the
inclusion morphism from B to C.

Definition 6.2.2 (Logical Framework) A tuple (C, Base, Sen, ) is a logical frame-
work if

e C is a category that has inclusions and pushouts along inclusions,
e Base is an object of C,

e Sen : C\Base — Set is a functor, where C\ Base is the so-called slice category
of C over Base, whose objects are arrows in C of source Base and morphisms
make triangles commute,

o for t € C\Base, t-; is a unary predicate on Sen(t),

e | is preserved under signature morphisms: if -y F' then - Sen(o)(F') for any
morphism o : t — t' in C\ Base.

C is the category of theories of the logical framework. Our focus is on declar-
ative frameworks where theories are lists of named declarations. Typically these
have inclusions and pushouts along them in a natural way.

Logics are encoded as theories 3 of the framework, but not all theories can be
naturally regarded as logic encodings. Logic encodings must additionally distin-
guish certain objects over ¥ that encode logical notions. Therefore, we consider
C-morphisms ¢ : Base — Y. where Base makes precise what objects must be distin-
guished.

We leave the structure of Base abstract, but we require that slices ¢ : Base —
> provide at least a notion of sentences and truth for the logic encoded by X.
Therefore, Sen(t) gives the set of sentences, and the predicate -, F' expresses the
truth of F.

Example 6.2.3 (LF) We define a logical framework FX¥ based on the category C to be
the category of ILF signatures and signature morphisms. LLF has inclusions by taking
the subset relation between sets of declarations. Given o : ¥ — ¥’ and an inclusion
¥ < X¥,c: A, apushout is given by

(o, c:=c) : (B, c:A) — (¥, c:0(A))

(except for possibly renaming c if it is not fresh for ¥'). The pushouts for other inclu-
sions are obtained accordingly.

Base is the signature with the declarations o : type and ded : 0 — type. For every
slice t : Base — X, we define Sen(t) as the set of closed fn-normal LF-terms of type
t(o) over the signature Y. Moreover, - F' holds iff the Y-type t(ded) F' is inhabited.
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Givent : Base — Y and t' : Base — Y and o : ¥ — X' such that to = ¢,
we define the sentence translation by Sen(o)(F') = o(F'). Truth is preserved: assume
by F; thus t(ded) F is inhabited over ¥; then o(t(ded) F') = t'(ded) o(F) is inhabited
over Y'; thus y Sen(o)(F).

We present the integration of LF in HETS in Sec. 6.3.2.

Example 6.2.4 (Isabelle) A logical framework based on Isabelle is defined similarly.
C is the category of Isabelle theories and theory morphisms (for the latter, see [Bortin
et al., 2006]). Base consists of the declarations bool : type and trueprop : bool —
prop where prop is the type of Isabelle propositions. Given t : Base — ¥, we define
Sen(t) as the set of X-terms of type t(bool), and b, F holds if t(trueprop) F is an
Isabelle theorem over ¥..

Note that Isabelle is already available in HETS.

Example 6.2.5 (Rewriting logic) A logical framework based on rewriting logic can
be defined along the lines of [Marti-Oliet and Meseguer, 1994], using the system
Maude. C is the category of rewriting logic theories and theory morphisms. Base
consists of the following Maude declarations:

sorts Prop FormList Sequent .

subsorts Prop < FormList .

op empty : -> FormList .

op tt : -> Prop .

op__F_: FormList FormList -> Sequent .
where Prop stands for the type of propositions, tt for the formula true, and + turns
two lists of formulas into a sequent. Given t : Base — Y, we define Sen(t) as the
set of X-terms of type t(Prop), and -, F holds for some term F' of type t(Prop) if
empty - F =y empty F tt. F, is preserved by rewriting logic theory morphisms
because rewriting must be preserved.

We present the Maude logic and the integration of Maude in HETS in Chapter 9.

Logical frameworks are then used to define institutions. The basic idea is that
slices t : Base — L5Y" define logics (L¥" specifies the syntax of the logic), signa-
tures of that logic are extensions L%¥" — ¥5¥" and sentences and truth are given
by Sen and . We could represent the logic’s models in terms of the models of the
logical framework, but that would complicate the mechanizable representation of
models. Therefore, we represent models as C morphisms into a fixed theory that
represents the foundation of mathematics. We need one auxiliary definition to state
this precisely:

Definition 6.2.6 Fix a logical framework, and assume L™°¢ : L5%" — LMod in C as
in the diagram below.
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(//"’! 7’\'\

LMod 5 EMod N L/\/'”[

mod
o

Lmod Emod Elmod

syn

LSyn c ZSyn X/S;/n

Firstly, for every inclusion L5V — ©5Y" we define XM and ¥™°? such that XM°4 is
a pushout. Secondly, for every o®¥™ : £59" — ¥/ we define g™o¢ . RMod _ yy/Mod
as the unique morphism such that the above diagram commutes.

We can now give the main definition:

Definition 6.2.7 (Institutions in LMF) Let F = (C, Base,Sen,F) be a logical
framework. Assume L = (LY, Ltrth [ Mod 7 [mod) gs in the following diagram:
idr
F F /
m
[om T

LMod [N EMod N E/Mod

O.mod
Lmod Emod E/mod
Ltruth syn
Base LSyn c ESyn - > E/Syn

Then we define the institution F(L) = (Sig”, Sen”, Mod’, =) as follows:

o Sig” is the full subcategory of C\LS¥" whose objects are inclusions. To simplify
the notation, we will write ©°¥" for an inclusion LY < $5Y" below.

e Sen” is defined by

Sen”(259") = Sen(L!%h; (L™ < %5¥"))  and  Sen’(c) = Sen(o).

e Mod?’ is defined by

Mod*(£5v") = {m zMod—>f | (F s SModyim = id s}
Mod"(o*")(m’) =

All model categories are discrete.

o We make the following abbreviation: For a model m € Mod*(25v"), we write
m for L (LSY" <y 22597). $mod. - Base — F. Then we define satisfaction
by

m S, Foiff o Sen(S7™0% m)(F).
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Theorem 6.2.8 (Institutions in LMF) In the situation of Def 6.2.7, F(L) is an in-
stitution.

Proof We need to show the satisfaction condition. So assume o%¥* : ¥ —
¥ F ¢ Senl (X)), and m/ € Mod(X/%"). First observe that m’ =
Ltruth;(LSyn SN Z/Syn);z/mod;ml _ Ltruth;(LSyn N ZSyn);Emod;(amod;m/) —

omed: /. Then Mod® (c)(m/) Lo Fiff T o Sen(Xm0?; (g™med; m/))(F) iff
7 Sen(X/™d: m/)(Sen(o*V")(F)) iff m' =55, Sen® (V") (F).

Example 6.2.9 (FOL) We can now obtain an institution from the encoding of first-
order logic in Sect. 6.1.2 based on the logical framework FLF'. First-order logic
is encoded as the tuple FOL = (FOLSY™, FOL™" FOLM°d ZFC, FOL™?) as in
Sect. 6.1.2.

We obtain an institution comorphism FOL — FLF(FOL) as follows. Signatures
of FOL are mapped to the extension of FOL®Y" with declarations f : i — ... =i — i
for function symbols f, p : i — ... — i — o for predicate symbols p. If we want
to map FOL theories as well, we add declarations ax : ded F' for every axiom F.
Signature morphisms are mapped in the obvious way. The sentence translation is an
obvious bijection. The model translation maps every m : ¥M°? — F to the model
whose universe is given by m(univ) and which interprets symbols f and p according
to m(f) and m(p). The model translation is not surjective as there are only countably
many morphisms m in FL¥'(FOL). However, since FOL has a constructive existence
proof of canonical models, these models can be represented as ZFC terms and are
in the image of the model translation. The satisfaction condition can be proved by
an easy induction. FXF(FOL) is complete thus FOL and FL¥'(FOL) have the same
consequence relation.

Logical frameworks can also be used to encode institution comorphisms in an
intuitive way:

Theorem 6.2.10 (Institution Comorphisms in LMF) Fix a logical framework F =
(C, Base,Sen, ). Assume two logics L = (L5, Liruth [ Mod F [mody gnd [pf =
(L!Syn, prtruth [iMod | pimod) " Then a comorphism F(L) — F(LP) is induced by
morphisms (1°Y",1™°?) if the following diagram commutes

L/l;d\

LMod L/Mod
mod Base Imod
L Lt% \Qruth
syn
LSyn l LlSyn

Proof. A signature L < 59" is translated to L'°Y" — %Y by pushout along
V" yielding o°v" : ¥£5Y" — ¥/SY"_ Sentences are translated by applying o*¥". We
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obtain g™0¢ ; y;Med _, y1/Mod a5 the unique morphism through the pushout ¥4,
Then models are translated by composition with ¢™°¢. We omit the details.

It is easy to see that comorphisms that are embeddings can be elegantly repre-
sented in this way, as well as many inductively defined encodings. However, the
assumptions of this theorem are too strong to permit the encoding of some less
trivial comorphisms. For example, non-compositional sentence translations, which
come up when translating modal logic to first-order logic, cannot be represented
as signature morphisms. Or signature translations that do not preserve the number
of non-logical symbols, which come up when translating partial to total function
symbols, often cannot be represented as pushouts. More general constructions for
the special case of LF are given in [Rabe, 2010] and [Sojakova, 2010].

6.2.2 Generalizations

In Ex. 6.2.9, we do not obtain a comorphism in the opposite direction. There are
three reasons for that. Firstly, F/¥'( FOL) contains a lot more signatures than needed
because the definition of Sig” permits any extension of L5¥", not just the ones cor-
responding to function and predicate symbols. Secondly, the discrete model cate-
gories of FX¥(FOL) cannot represent the model morphisms of FOL. Thirdly, only
a (countable) subclass of the models of FOL can be represented as LIF morphisms.
Moreover, Def. 6.2.2 and 6.2.7 are restricted to institutions, i.e., the syntax and
model theory of a logic, and exclude the proof theory. We look at these problems
below.

Signatures In order to solve the first problem we need to restrict F(L) to a sub-
category of Sig”. However, it is difficult to single out the needed subcategory in a
mechanizable way. A solution is provided by the MMT expression patterns [Horozal,
2012], which give a way to pattern-match declarations of the logical framework.
If a concrete logic definition contains a set P of patterns, we represent its logical
signatures as C-objects X°¥" that extend L*¥" only with declarations matching one
of the patterns in P.

Model Morphisms Regarding the second problem, if C is a 2-category, we can
define the model morphisms of F(L) as 2-cells in C. However it is difficult in
practice to obtain 2-categories for type theories such as LF or Isabelle. [Sojakova,
2010] gives a syntactical account of logical relations that behave like 2-cells in
sufficiently many ways to yield model morphisms.

Undefinable Models The third problem is the most fundamental one because no
formal logical framework can ever encode all models of a Platonic universe. Our en-
coding of ZFC is strong enough to encode any definable model. We call a model M
definable if it arises as the solution to a formula 3'M.F (M) for some parameter-free
formula F'(z) of the first-order language of ZFC. This restriction is philosophically
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serious but in our experience not harmful in practice. Indeed, if infinite LF signa-
tures are allowed, using canonical models constructed in completeness proofs, in
many cases all models can be represented up to elementary equivalence.

Proof Theory The examples from Sect. 6.1.2 already encoded the proof theory of
first-order logic in a way that treats proof theory and model theory in a balanced
way. The definitions can be easily generalized to this setting, see for example [Rabe,
2010]. The outcome is in this case a diagram of the form

Lrf

L17
Ltruth

Base — [,Syn

Lm‘%

LMod

f'
Our HETS representation covers this entire diagram.

6.3 Logical Frameworks in HETS

The differences between LF and HETS mentioned in Sect. 6.1 exhibit complemen-
tary strengths, and a major goal of our work is to combine them. We have enhanced
HETS with a component that allows declarative definitions of new logics. The user
specifies a logic by giving the representation of its constituents in a logical frame-
work and the combined system recognizes the new logic and integrates it into the
HETS logic graph. The implementation follows the HETS principles of high abstrac-
tion and separation of concerns: we provide an implementation for the general
concept of logical frameworks, which we describe in Sect. 6.3.1. This is further
instantiated for the particular case of LF in Sect. 6.3.2. Finally, in Sect. 6.3.3 we
present a complete description of the steps necessary to add a new logic in HETS
using the framework of LF.

6.3.1 Implementing the LMF in HETS

We now present how the concept of logical framework is integrated into HETS.
Note that this is done on the developer’s side and it is thus not visible to the user.
Once the integration of a new logical framework is done, the user can use it as a
meta-logic for the object logics he wants to specify.

Recall that in Sec. 2.1 we presented the Haskell type class Logic, which pro-
vides an interface for implementing new logics in HETS. Similarly, the central part
of the implementation is a Haskell type class LogicalFramework, which is then in-
stantiated by the logics which can be used as logical frameworks, i.e. in which
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object logics can be specified by the user. As we have seen, such candidates are LF,
rewriting logic and Isabelle; currently only LF has a full implementation in HETS
as a logical framework. The class LogicalFramework provides a selector base_sig
for the Base signature of the logical framework, a method write_logic which takes
an object logic name as an argument and generates Haskell source code with the
instance of class Logic for the given object logic and stores the morphisms L,
LPf and L™ respectively in their internal Haskell representation. Note that L!"uth
is needed in the static analysis of the specifications written in the object logic, while
LPf and L™°¢ are needed to check correctness of logic translations.

Since we can only instantiate this type class for logics, we get the category C
mentioned in Def. 6.2.2 from the requirement that signatures and signature mor-
phisms of a logic provide an instance of the type class Category. The sentence
functor Sen is specified implicitly by the write_logic method: the instantiation of
the StaticAnalysis class determines exactly which sentences are valid for a partic-
ular signature of L, thus giving Sen on objects. Since the current implementation of
logics in HETS does not include satisfaction of sentences in models, the predicate
is currently not represented as its main purpose is to define the satisfaction relation
for object logics.

At the syntactic level, we must provide a way to write down new logic defini-
tions in HetCASL, the underlying heterogenous algebraic specification language of
HETS. Since definitions of new logics have a different status than usual algebraic
specifications, we extend the language at the library level.

Concrete Syntax We add the following concrete syntax newlogic L =

(on the right) to HetCASL in order to define new logics. meta [

Here L is the name of the newly defined logic and F is syntax Lt
an identifier pointing to the logical framework used. The models L™
identifiers Liruth [ mod [Pl F are the components of the foundation F
new logic L. They refer to previously declared signature proofs LV

morphisms of F and the signatures representing L°v", LM°? LFf can be inferred
from them. F is a signature which gives the foundation.

After encountering a newlogic declaration, HETS invokes a static analyzer,
which retrieves the signatures and morphisms constituting the components of the
logic L. The analyzer verifies the correct shape of the induced diagram and instan-
tiates the Logic class for the logic L as specified by the write_logic method of the
framework F.

The logic L arising from the above newlogic L declaration differs slightly from
the one described in Def. 6.2.7 in that it uses signatures of F that extend L>Y"
rather than F-inclusion morphisms out of L%¥". Accordingly, the morphisms of L
are those morphisms of F which are the identity on LY. This is essentially the
same thing, but has the advantage that the data types representing the signatures
and morphisms of F can be directly reused for L and no separate instantiation of
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the class Category is required !.

6.3.2 LF as a Logical Framework in HETS

In this section we outline how to turn LF into a logical framework in HETS, i.e. how
to instantiate the LogicalFramework class for LF. In order to do so we will make
use of the instance of the Logic class for LF. An institution for LF can be defined
as for example in [Rabe, 2008]. The first step is to integrate it in HETS.

A special aspect of this integration is that Twelf will be used as an intermedi-
ate tool. After receiving the input file, Twelf performs parsing, static analysis and
reconstruction of types and implicit arguments. If the analysis succeeds, the out-
put is stored as an OMDoc version of the input file, and is subsequently imported
into HETS using standard XML technologies. HETS reads the imported OMDoc file
and transforms it into corresponding LF signatures and morphisms in their HETS
internal representation.

We now come to instantiating the class LogicalFramework for LF. The Base
signature is specified to be the LF signature containing the symbols o and ded,
as described in Ex. 6.2.3. The instantiations of the classes Logic, Syntax, etc.
provided by the write_logic method mostly inherit their LF implementations, with
one exception being the StaticAnalysis class. While both LF and the LF object
logics use Twelf to verify the well-formedness of input specifications, a specification
in an object logic L is assumed to have been given relative to the L5¥" signature

supplied when defining the object logic L and stored as target of the morphism
LtTuth.

6.3.3 Adding a New Logic in HETS: FOL

We will now illustrate the steps needed to add first-order logic as a new logic in
HETS. The aim of this section is not to show how to encode a particular logic in
Twelf, which for the case of first-order logic has been described in [Horozal and
Rabe, 2011], but rather to show how an existing encoding can be used to add the
logic in HETS.

Given a FOL encoding as in Section 6.1.2, all that is needed to be done is to
collect the components of the encoding in a newlogic definition, as in Fig. 6.2.
The first lines import the morphism FOL™" from Base to FOL®Y", the morphism
FOL™ from FOL*" to FOLM*?, and the morphism FOL? from FOL*" to FOL"
asin Ex. 6.2.9, from their respective directories. STTIFOLEQ is a fragment of ZF'C'
used to represent model theory. It is composed of simple type theory equipped with
external intuitionistic first-order logic. We assume for convenience that the file with
the new logic definition is in the folder that contains the directory of logics as sub-

!The theory presented in Section 6.2 could thus have been formulated equivalently, albeit less
elegantly, without referring to slice categories.
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%% FOLtruth

from logics/first-order/syntax/fol get FOL_truth

%% FOLmod

from logics/first-order/model_theory/fol get FOL_mod
WhFOLP!

from logics/first-order/proof_theory/fol get FOL_pf
hhF

from logics/meta/sttifol get STTIFOLEQ

newlogic FOL =
meta LF
syntax FOL_truth
models FOL_mod
foundation STTIFOLEQ
proofs FOL_pf

end

Figure 6.2: Defining FOL as a new object logic.

folder; the paths need to be adjusted if that is not the case 2. The directory structure
mirrors the modular design of logics in the Logic Atlas. As a result of calling HETS
on the above file, a new directory called FOL is added to the source folder of HETS.
The directory contains automatically generated files with the class instances needed
for the logic FOL. Moreover, the HETS variable containing the list of available logics
is updated to include FOL. After recompiling HETS, the new logic is added to the
logic graph of HETS and can be used in the same way as any of the built-in logics.

In particular, we can now use the new object logic to write specifications. For
example, the specification in Fig. 6.3 uses FOL as a current logic and declares a
constant symbol ¢ and a predicate p, together with an axiom that the predicate p
holds for the constant ¢. The syntax for logics specified in a logical framework F
is inherited from the framework (in our case LLF), but it has been extended with
support for sentences, in the usual CASL syntax i.e. prefixed by the ’.’ character.

Fig. 6.4 presents the theory of SP as displayed from within HETS; as mentioned
in Section 6.3.2, the theory is automatically assumed to extend FOLY". Since
in HETS all imports are internally flattened, the theory of SP when displayed will
include all the symbols from FOL".

6.4 Conclusion and Future Work

We have described a prototypical integration of HETS with logical frameworks in
general and LF and the Twelf tool in particular. The structuring language used

2The complete specification of FOL in LF can be found at https://svn.omdoc.org/repos/latin/
twelf-r1687/.
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A ) Theory of SP @ ®
logic FOL
o @ bype.
ded @ o —> type.
i type.
true : o.
false : o.
not : o -> o.
imp @ o —> o —> 0.
10g1C FOL and : o -» o -> oO.
or : o -» o —->» O.
SpeC SP - forall : (1 -> o) -» o.
c : 1. exists : (i -> o) -> o.
p 1 -> o. P :i->o.
. pcC %igen_ax 0%
p C
end
& Save @Close

Figure 6.3: Specification
in the new object logic. Figure 6.4: Theory of SP

by HETS has a model theoretic semantics, which has been reflected in the proof
theoretic logical framework LF by representing models as theory morphisms into
some foundation. While LF is the logical framework of our current choice, both the
theory and the implementation are so general that other frameworks like Isabelle
can be used as well. We expect important synergy effects from this as Isabelle is
already used as one of the main inference engines in HETS.

Proof theory of the represented logics has been treated only superficially in the
present work, but in fact, we have represented proof calculi for all the LATIN logics
within LF. Representing models in the system as well has enabled us to formally
prove soundness of the calculi. It is straightforward to extend the construction of
institutions out of logic representations in logical frameworks such that they deliver
institutions with proofs. In the long run, we envision that the provers integrated
in HETS also return proof terms, which HETS can then fill into the original file
and rerun Twelf on it to validate the proof. Thus, HETS becomes the mediator
that orchestrates the interaction between external theorem provers and Twelf as a
trusted proof checker.

Acknowledgement. The results of this chapter have been published as [Code-
scu et al., 2010a]. The LATIN atlas (Sec. 6.1.2) was developed at Jacobs University
Bremen by F. Rabe, F. Horozal and their students. The theoretical background
(Sec. 6.2) is due to F. Rabe and has the origin in [Rabe, 2008]. The integration
of logical frameworks in HETS (Sec. 6.3) has been done by myself jointly with K.
Sojakova.
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Several notions of translations between institutions have been proposed, cap-
turing different concepts; among them, institution comorphisms, also called repre-
sentations or maps of institutions, which usually represent logic encodings or inclu-
sions. This formalization is used in HETS, as the conditions for lifting the properties
from the logic-specific level to the logic-independent one are in this case easier
to meet in practice; however, other kind of logic translation can also be added
[Mossakowski, 2003]. Comorphisms, in their theoroidal variant, are required to
map theories of the same signature (i.e. using the same symbols) to theories over
the same signature and this mapping must interact well with the translation of sen-
tences. We present several logic translations of practical importance encountered
in HETS that do not have this properties. This motivates us to investigate, building
on the ideas in [Mossakowski, 1996], in which conditions the notion of comor-
phism can be generalized by dropping these restrictions and what the impact of
this generalization at the heterogeneous level is.

7.1 Theoroidal Comorphisms

Let us recall from Section 3.2 that given two institutions I and J, an institution
comorphism p : I — J consists of a functor ® mapping /-signatures to J-signatures,
a natural transformation « such that for each I-signature ¥, ax; maps Y-sentences
(in ) to ®(X)-sentences (in J) and a natural transformation  such that for each
I-signature ¥, S, reduces ®(3)-models (in J) to X-models (in /) and the following
satisfaction condition must hold:

M' gy ax(e) & Bu(M') Ege
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for each I-signature X, each ®(X)-model M’ (in J) and each X-sentence e (in I).

As noticed in [Meseguer, 1989], it is often a natural case that the signatures
of the source logic are translated to theories of the target one rather than just sig-
natures. This leads to a generalization of the concept of institution comorphism,
called theoroidal comorphism in [Goguen and Rosu, 2002] and map of institutions
in [Meseguer, 1989]. Firstly, the following notion captures the idea that a functor
between categories of theories of two institutions behaves nicely with logical con-
sequence. Note that in [Meseguer, 1989] the concept is introduced in the more
general setting of entailment systems.

Definition 7.1.1 Given two institutions I = (Sig!,Sen!, Mod!,|=!) and J =
(Sig”,Sen’, Mod’, |=7), a functor ® : Th! — Th’ and a natural transformation
o : Sen! — ®;Sen’, we say that ® is a-sensible if

e there is a functor ® : Sig! — Sig” such that the square

Th! —2 - Th/

signjl lsign"

. T .o J
Sig ?Slg
commutes, where sign : Th — Sig denotes the forgetful functor and

e for each I-theory T = (X,T"), if we denote ®(T) = (X', T") and ®((3,0)) =
(ZI,@/),
() = (0" UasT)*

This intuitively means that an «-sensible functor ® maps theories over to same
signature to theories over the same signature (the first condition) in a modular way;
which means that the translation an I-theory (X, T’) to J is equivalently obtained by
first translating (X, () to J and then adding ax(T") to the resulting theory as axioms
(the second condition).

A theoroidal comorphism between two institutions is then defined as a regu-
lar comorphism between their corresponding institutions of theories such that the
theory translation is a-sensible.

Definition 7.1.2 Given two institutions I = (Sig!,Sen!,Mod!,=!) and J =
(Sig”,Sen’, Mod’, |=7), a theoroidal comorphism p = (®,c,3) : I — .J consists
of a functor ® : Th! — Th’, a natural transformation « : Sen’ — ®; Sen” such that
® is a-sensible and a natural transformation § : ®°?; Mod’ — Mod! such that the
following satisfaction condition holds:

M’ = @y 02(e) <= Bua(M) = e

for each I-signature 3, each ®((3,0)))-model M’ (in J) and each X-sentence e (in I).
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7.2 Motivating Examples

We will now present several logic translations in the graph of logics of Hets which
do not respect the a-sensibility requirement. To ease understanding, we will use
examples instead of defining the comorphisms and the involved institutions in full
detail.

Example 7.2.1 The comorphism CASL2SubCFOL encoding partiality with the help
of bottom or ’undefined’ elements, described as translation (5a’) in [Mossakowski,
2002b] acts at the level of signatures by introducing for each sort s such that there is
a term of sort s using a partial function or a projection:

e a bottom element bots : s
e a definedness predicate defineds : s,

e total function symbols for projections to subsorts projs ¢ : s — s for each
subsort s’ of s (when such subsorts exist)

and by turning the partial functions into total ones. Moreover, axioms are introduced
for expressing the undefinedness of the bottom element, the non-emptiness of each
sort, injectivity of projection and that projection maps elements identically from the
supersort to the subsort.

However, the resulting theory may still contain many symbols that are not actually
needed for the proofs, so we try to optimize this translation by mapping an entire
theory to SubCFOL and introduce symbols for encoding partiality depending on its
sentences. Namely, the set of sorts for which there exists a partial term is computed
considering only the subsort projections on those subsorts for which there is a sentence
in the theory with a membership or a cast on the subsort, and then adding all their
supersorts. The motivation for making this simplification is that provers are more
efficient on smaller theories. Notice however that the theory translation component of
the comorphism is obviously not signature preserving, so the «a-sensibility requirement
is not met.

spec SP =
sorts Nat < Int; Car < Vehicle
ops speed_limit : Vehicle — Int;
car_speed_limit : Int
o Vv : Vehicle
e v € Car = speed_limit(v) = car_speed_limit
end

Figure 7.1: First-order specification of vehicles

Let us consider the specification from Fig. 7.1, where the axiom tests whether a
Vehicle is a Car. Then the projection from Vehicle to Car is considered for deter-
mining the partial terms. Note that speed_limit(v) can be undefined if v is the bottom
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spec SPEC =
sorts Nat < Int; Car < Vehicle
op car speed limit : Int
op gn _bottom_Car : Car
op gn _bottom Int : Int
op  gn bottom_Vehicle : Vehicle
op gn _proj Vehicle Car : Vehicle — Car
op  speed_limit : Vehicle — Int
pred gn defined : Car; pred gn defined : Int; pred gn_defined : Vehicle
V x,y : Vehicle
e gn_defined(gn_proj Vehicle Car(x))
A gn_defined(gn_proj Vehicle Car(y))
A gn_proj_Vehicle_Car(x) = gn_proj_Vehicle_Car(y)

=>Xx=Y
%injectivity
V x: Car
e gn_defined(x) = gn_proj Vehicle Car(x) = x
%projection

e Jx : Car e gn_defined(x)
%non-empty sort
Vx: Car
e — gn_defined(x) < x = gn_bottom_Car
%undefinedness of bottom
Vv : Vehicle
e gn_defined(v)
= gn_defined(gn_proj Vehicle_Car(v))
= speed_limit(v) = car_speed_limit
%translated sentence

Figure 7.2: Translated signature and axioms illustrating the effect of the translation
on sort Car.

element on sort Vehicle, so Int gets a bottom as well. However, no membership or
cast involves the sort Nat, so it shall not get a bottom element. Fig. 7.2 presents the
resulting signature and also the axioms introduced by the translation for the sort Car,
with an explanatory comment for each of them.

One can also decompose this translation as the composition of the original comor-
phism with an endo-translation on SubCFOL, making the simplification. As this
endo-translation maps theories in a formula-dependent way, it fails to be a comor-
phism.

Example 7.2.2 In [Liittich and Mossakowski, 2007] a comorphism from CASL to
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SoftFOL (an untyped variant of first-order logic with sort generation constraints, de-
tails omitted) is introduced with the purpose of connecting CASL to theorem provers.
The resulting SoftFOL theory is translated to provers’ input format; however, existing
provers like SPASS do not provide support for inductive datatypes. Recovering induc-
tion proofs can be done, as explained also in [Liittich and Mossakowski, 2007], by
instantiating the induction principles corresponding to sort generation constraints for
each given proof goal. Note that lemmas still have to be provided by the user.

spec NAT =
free type Nat ::= 0 | suc(Nat)
end

spec COMMPLUS =

NAT
thenop _ 4+ :Nat x Nat — Nat
vars x,y:Nat
e0+y=y
e suc(x) +y = suc(x +y)
o0 +x=x+0 %implied
o suc(x) +y =x + suc(y) %implied
oX+y=y+Xx %implied

end

Figure 7.3: Specification of natural numbers, with goals marked as implied

For example, consider the specification of natural numbers as a free type gener-
ated by 0 and successor and assume we want to prove commutativity of +, using two
lemmas, as in Fig. 7.3. Then Fig. 7.4 presents the axioms introduced by translation
CASL2SoftFOLInduction, which extends CASL2SoftFOL as described above.

This translation is preserving signatures when mapping theories, but, since new
axioms are introduced, the a-sensibility condition of the comorphism does not hold.

Example 7.2.3 This example actually contains two translations, CASL2HasCASL
[Mossakowski, 2005] and CASL2Isabelle (translation (7) in [Mossakowski, 2002b]),
which are similar in the sense that the same type of problem is encountered when trans-
lating theories. Both in Haskell and in Isabelle, it is essential to know the constructors
of a datatype when doing the analysis of program blocks, because pattern-matching
is allowed only against the constructors. Therefore, this information has to be stored
in the signature (see Fig. 7.5 with the translations of the CAsL theory NAT from Fig.
7.3 to HasCASL, where 0 and suc are constructors in the resulting HasCASL theory
and displayed as such), unlike the case of Casi. This causes the theory mapping of
the comorphism not to be signature-preserving, as it depends on the presence of sort
generation constraints.

It is not a solution to keep the constructors of datatypes in the CAsL signatures
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e (0+0=0+0
AVy:Nate(0+y =y + 0= 0+ succ(y) = succ(y) + 0)
=Vx:NateO+x=x+0

% (Ax4)%
e ((Vy : Nat e succ(0) +y =0 + succ(y))
AV yl:Nat
o (Vy:Natesucc(yl) +y =y1 + succ(y))
= Vy: Nat
o succ(succ(y1)) +y = succ(y1) + succ(y))
=V X,y : Nat e succ(x) +y =y + succ(x)
% (Ax5)%
e ((Wy:Nate 0 +y=y+0)
AV yl:Nat
e(Vy:Nateyl +y=y+yl)
= Vy:Natesucc(yl) +y =y1 + succ(y))
=Vx,y:Natex+y=y+x
% (Ax6)%

Figure 7.4: Axioms added by the translation CASL2SoftFOLInduction

as well: if we would restrict signature morphisms to map datatypes to datatypes,
we would lose many views which are now correct in CasL and if we allow signature
morphisms to map datatypes to ordinary sorts, a comorphism from this new logic
to CastL which introduces a sort generation constraint axiom for each datatype loses
functoriality of the signature translation.

logic HASCASL.PPOLYHOL =

spec SPEC =
type Nat
op 0 : Nat % (constructor)%
op suc : Nat — Nat % (constructor)%

V X1 : Nat; Y1 : Nat

esucXl =sucYl X1 =YI,

VY1 :Nate—0=sucYl;

free type Nat ::= 0 | suc Nat
end

Figure 7.5: Translation of specification Nat to HasCASL.
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7.3 Generalized Comorphisms

The previous examples show that there are cases when logic translations can not be
formalized as (theoroidal) comorphisms, as one of the two requirements introduced
by the a-sensibility condition (Definition 7.1.1) on the theory mapping components
fails to hold. We have therefore to generalize the notion to a concept that does not
have these restrictions anymore.

Specification frames [Ehrig et al., 1989] formalize abstract specifications and
models of specifications, while there are no notions of sentence and satisfaction.

Definition 7.3.1 A specification frame F = (Th, Mod) consists of
e a category Th whose objects are called theories and
e a functor Mod : (Th)°? — Cat giving the category of models of a theory.

Translation between specification frames provide the generality that they make
no restriction on the way the objects of T'h are mapped.

Definition 7.3.2 A specification frame comorphism (or representation) u : F — F'
consists of

e a functor ® : Th — Th' and
e a natural transformation 3 : ®°P; Mod' — Mod.

For generalizing the concept of theoroidal comorphism, we proceed in two
steps. First, given an institution, we can associate with it a specification frame.

Definition 7.3.3 [Cornelius et al., 1999] Let I = (Sig!,Sen!,Mod!, =') be an
institution. The specification frame associated with I, denoted SF(I), is defined as
follows:

o the category of theories Th of SF(I) is Th!, that is, objects are theories of I and
arrows are I-theory morphisms;

o the functor Mod of SF(I) is the functor Mod! : Th! — Cat, assigning to each
theory its category of models.

The sentences of the original institution are not completely lost, but rather
stored in the theories. We can then define generalized theoroidal comorphisms.

Definition 7.3.4 A generalized theoroidal institution comorphism p : I — I’ is just
a specification frame comorphism p : SF(I) — SF(J).

Let us denote genIns the category of institutions and generalized theoroidal in-
stitution comorphisms. We can define a functor, denoted SF : genlns — Spec,
(where Spec is the category of specification frames and specification frame co-
morphisms) which assigns to each institution its associated specification frame and
maps generalized theoroidal institution comorphisms identically.
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7.4 Heterogeneous Specifications

We now investigate to which extent we can apply the Grothendieck construction
(defined in Sec. 3.3) to a graph of institutions and generalized theoroidal institu-
tion comorphisms. Thus we can give semantics for heterogenous specification in our
new setting. Generalized comorphisms do not come with an explicit sentence trans-
lation component. This means that with the usual definition of Grothendieck insti-
tution we can not translate sentences along heterogeneous signature morphisms.

The solution is to add sentences to a specification frame SF'(I), using the obser-
vation that the sentences of the institution I are not lost, but stored in the theories.
Given a theory T' = (X, E) and a X-sentence e, we can add e to the set of sentences
E to obtain a theory extension. This leads us to consider all theory morphisms of
source T as sentences of the theory 7. We can also define a notion of satisfaction
for morphisms, in terms of expansions: a 7T-model M satisfies a theory morphism
¢ : T — T if there exists at least a p-expansion of M to a 7’'-model. The idea of
theory extensions as sentences originates from [Mossakowski, 1996].

To make the Grothendieck construction over a diagram I : Ind°® — genlns
of institutions and generalized theoroidal comorphisms, we first compose I with
the functor SF to obtain a diagram of specification frames and specification frame
comorphisms. We will then investigate the hypotheses under which a specification
frame can be extended to an institution, using morphisms as sentences, as described
above. Thus, we will have defined a functor /NS to coIns and, by further compos-
ing I; SF with IN S, we get a diagram to colns for which we can build the known
comorphism-based Grothendieck institution.

Definition 7.4.1 Let Spec®™9 be the subcategory of Spec such that:

e cach object S of Spec®™ 9 has pushouts of theories, with a canonical selection
of pushouts such that selected pushouts compose and are weakly semi-exact and

e each morphism of Spec®™9 has weak amalgamation property and preserves
selected pushouts.

Proposition 7.4.2 Let S = (Th, Mod) be an object of Spec®™*9. Then INS(S) =
(Sign!, Sen!, Mod!, =), defined as follows:

e Sign! =Th;
o Mod! = Mod;
e for each object T of Th, Sen!(T) = Th(T,e) !;

e for any objects T,T' of Th and any morphism f € Th(T,T"), Sen!(f)
Sen!(T) — Sen!(T') is the function that maps each morphism e : T — T}

! Note that morphisms of source T form rather a class than a set. This problem can be overcomed
if we consider institutions with small signature categories, which suffice in practical situations.
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to the morphism of source T’ of the selected pushout of the span formed by e and
f

T

\Le \Lq%:f(e)

P
T, —— T{

e for any object T of Th, any T-model M and any T-sentence ¢ : T — T’ in
INS(S), M [ e iff there exists a T'-expansion of M.

is an institution.

Proof.
We first prove that Sen! is functorial.
Let e be a T-sentence and let f, f/ be morphisms in T'h as in the diagram below:

/ !

THT/HT//

Then Sen!(f")(Sen!(f)(e)) is obtained by successively constructing selected
pushouts:

f f

THT/HT//

le lf(e) lf/(f(e))
V2

o
Ty —=T] —=2=T/

and Sen!(f; f')(e) is again obtained via a selected pushout:

T f4f/> T"
A

T, —2> Ty

and their equality f; f'(e) = f'(f(e)) follows from the requirement that selected
pushouts compose to a selected pushout.
The satisfaction condition for /N S(S) follows then easily from weakly semi-
exactness of S.
g

Proposition 7.4.3 Given two specification frames S; = (Thy,Mod;) and Sy =
(The, Mody) and a specification frame comorphism p = (®,5) : S — Sy in
Spec®™al9, then p = (®,a,3) : INS(S1) — INS(Ss) (note that the action of p
on signatures and models is inherited from p and we only need to define the sen-
tence translation componenent), where « gives for each object T' of Thy, the function
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ar : Seni(T) — Seny(P(T)) defined by ar(e) = ®(e) for each e € Seny(T):

T &(T)
e — o (e)
T o(T")

is an institution comorphism.

Proof:

The naturality of « is ensured by the fact that translations preserve selected
pushouts, while the satisfaction condition of the comorphism follows immediately
from weak amalgamation property of s. 0

Corollary 7.4.4 INS : Spec®™9 — colns is a functor.

Note that the hypotheses about the objects and morphisms of Spec®™9 have to
hold for the institutions in the image of I, for the composition (I; SF); INS to be
well defined, as illustrated by the diagram below:

amalg INS

Indr —L~ genlns Sk Spec colns

Let us compare our resulting institution (I; SF; INS)# with the Grothendieck
logic obtained by flattening a diagram D : Ind°® — colns which only involves
institutions existing in the logic graph. The differences are at the levels of sentences
and satisfaction relation. In the case of morphisms ¢ : (i, (X, E)) — (4, (£, EU{e})),
where e is a sentence in I and ¢ is the identity morphism,the satisfaction of ¢ in the
Grothendieck institution I# coincides with the ’local’ satisfaction of the sentence e
in institution I*. From a practical point of view, this is important because it allows
us to write specifications using the sentences of the logics and to obtain sentences
as morphisms only when translating along a generalized theoroidal comorphism.
Moreover, when we translate along a theoroidal comorphism that is a-simple in the
sense of [Meseguer, 1989], i.e. the functor ¢ between theories is the a-extension
to theories of a functor taking signatures to theories, then by translation along the
corresponding generalized comorphism, we still obtain ax(e) as the translation of
L.

7.5 Heterogeneous Proofs

When using generalized theoroidal comorphisms, the sentences of the Grothen-
dieck institution are, as defined in the previous section, theory morphisms of the
original institution. We would like to obtain an entailment system on sentences of
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INS(SF(I)) which extends or at least approximates the entailment system of the
original logic I. We start by noticing that the semantic entailment of INS(SF(I))
can be expressed in terms of model-theoretic conservativity.

Proposition 7.5.1 Let I be an institution with pushouts of signatures and weakly
semi-exact. Then for any theory T of I, for any set of T-sentences E U {e} in
INS(SF(I)), we have E =1 e in INS(SF(I)) if and only if the unique morphism
from the colimit of the diagram formed by the theory morphisms in E to the colimit
of the diagram formed by the theory morphisms in E U {e}, denoted xg . is model-
theoretically conservative.

Proof: Let us take all sentences in £ and let Tr be the colimit of the diagram
thus formed; moreover, we denote by a slight abuse E' = ¢;;7; where ¢; is some
sentence in F and #; is the corresponding structural morphism of the colimit. We
then make the colimit of the span formed by F and e, as below:

T
/ \
T Te

Truey

We now assume that x . is model-theoretically conservative and we want to
prove that E' =1 e. Let M be a T-model such that M = E. By definition this means
that there is a Tp-model Mg, such that Mg|r = M. Since x g . is model-theoretically
conservative, there is a T .y-model N such that N|,, . = Mpg. Notice then that
N|,, . is a e-expansion of M, which means M |= e.

For the reverse implication, let Mg be a Tr-model and we denote M = Mg|g.
Since by hypothesis we have E =1 e, it follows that there is a e-expansion M, of
M. I is weakly semi-exact, so we can amalgamate Mz and M, to a model N which
is the x g .-expansion of Mp and thus g . is conservative. ad

Unfortunately, there is no known logic-independent characterization or approx-
imation of model-theoretical conservativity based on the proof theoretical one, that
could be employed in defining entailment in /N S(SF(I)). We can instead assume
the existence of a "proof-theoretic conservativity" predicate on theory morphisms
of I, logic specific, which we denote PT'C(¢) for a theory morphism o, with the
property that whenever PT'C(o) holds, o is model-theoretically conservative. This
would allow us to define entailment in /N.S(SF(I)) based on this predicate:

Fre < PTC(XE78)

where xg . is as denoted above. The property of the predicate ensures that entail-
ment thus defined is sound. To prove that the relation  is indeed an entailment
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system, one could attempt to make an analysis of the properties that the predicate
should fulfill, but it is the case that they can not be completely derived in a logic-
independent manner i.e. some of the properties expected for entailement systems
rely on the particular choice of the predicate.

In practical situations, proof-theoretical conservativity needs to be studied for
the logics involved. For the case of Cast, we refer the reader to [Liith et al., 2005].

7.6 Conclusions

We have introduced the notion of generalized theoroidal institution comorphism,
which eliminates the restrictions on the the way theories are translated. This new
notion broadens the class of logic encodings formalized as comorphisms. We also
describe a framework for heterogeneous specifications based on a graph of institu-
tions and generalized comorphism and give conditions in which we can equip the
resulting Grothendieck institution with an entailment system.

Comparing our resulting framework with the comorphism-based Grothendieck
institution of [Mossakowski, 2002a], at the heterogeneous specification level the
differences are almost invisible for the user, since sentences of the logics can still
be used and logic translations that can be formalized as comorphisms do not map
sentences in a different way when they are represented as generalized theoroidal
comorphisms. Moreover, at this level pushouts of signatures are not actually needed
and therefore we can use approximations of colimits i.e. weakly amalgamable co-
cones, so the hypotheses turn to be equivalent. However, the changes are semni-
ficative when it comes to heterogeneous proving. The assumption that pushouts
should exists is, on one side, mandatory and, on the other side, too strong to hold
in all practical situations. In particular, this is also the case for some institutions in
the logic graph of HETS.

Future work should concern the study of interaction of logic-specific tools with
the heterogenous sentences, which are now signature morphisms and the imple-
mentation of this interaction in HETS.

Acknowledgement. This chapter extends [Codescu, 2009] with full proofs.
T. Mossakowski, L. Schroder and D. Liicke provided valuable feedback.
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Colimits are a categorical concept, used in particular as a means for combin-
ing logical theories and software specifications, see Sec. 3.1.1 for the theory and
[Williamson et al., 2001] for a tool computing colimits of specifications that has
been successfully used in industrial applications. As we discuss also in Sec. 3.1.1,
amalgamation is a property of colimits that allows to put together compatible mod-
els of the specifications in the diagram to obtain a model of the colimit specification.

In heterogeneous settings (like the one of HETS), colimits and amalgamation
can be obtained under certain conditions [Diaconescu, 2002], but often, these con-
ditions are too strong to be met in practice. Hence, we start from weaker conditions,
using both amalgamable colimits as well weakly amalgamable cocones.

We describe an algorithmic method of obtaining weakly amalgamable cocones
of heterogeneous diagrams, as an approximation of heterogeneous colimits, better
suited for practical situations. We also present the way the graph of logics and logic
translations, which is the base for heterogeneous specifications, gets a 2-categorical
structure by adding the concept of modification, relating translations that are es-
sentially the same.

8.1 Exactness in Grothendieck Institutions

The following results regarding cocompleteness and exactness of Grothendieck in-
stitutions have been proved in [Mossakowski, 2002a].

Theorem 8.1.1 Let Z: Ind°® — Colns be an indexed coinstitution and K be some
small category such that
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1. Indis K-complete (that is, has limits of all diagrams over K),

2. & is K-cocontinuous for each d: i — j € Ind (meaning that it preserves
colimits), and

3. the indexed category of signatures of Z is locally K-cocomplete (the latter mean-
ing that Sig’ is K-cocomplete for each i € |Ind|).

Then the signature category Sig” of the Grothendieck institution has K-colimits. O

An indexed coinstitution Z: Ind°®? — Colns is called (weakly) locally semi-
exact, if each institution I* is (weakly) semi-exact (i € |Ind|).
7 is called (weakly) semi-exact if for each pullback in Ind

. d .
z<—1j1

o ol

j2<2—k
the square

d
ﬁzl

Mod' (%) Mod’! (&% (X))

[322 T ﬂs:l T

Mod/2(d% (%)) < Mod* (0% (9% ())) = Mod" (#°= (= (%))

is a (weak) pullback for each signature ¥ in Sig’.

Theorem 8.1.2 Assume that the indexed coinstitution Z: Ind°® —> Colns fulfills
the assumptions of Theorem 8.1.1. Then the Grothendieck institution I# is (weakly)
semi-exact if and only if

1. T is (weakly) locally semi-exact,
2. T is (weakly) semi-exact, and

3. foralld: i—sj € Ind, % is (weakly) exact.

The importance of this theorem show up in connection with Prop. 3.2.9:

Corollary 8.1.3 The proof system for development graphs with hiding [Mossakowski
et al., 2006a] can be re-used for Grothendieck institutions satisfying the assumptions
of Theorem 8.1.2, provided that each of the involved institutions can be mapped (via
a model-expansive comorphism) into a proof-supported institution.
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8.2 Example: Heterogeneous Ontologies

Example 8.2.1 Let us consider the following formalisation of biblio-
graphical data from [Schorlemmer and Kalfoglou, 2008]: we have
a description logic T-Box formalized as an ALC signature Y, with
atomic concepts B = {Researcher,Article, Journal} and roles R =
{name, author, title, has Article, impactFactor}. The axioms Axpry;p are
Researcher C Iname. T
Article T Jauthor. T M Ititle. T
Journal ©dname. TMIhasArticle. T NJdimpact Factor. T
This is assumed to be a fragment of a larger ALC ontology with signature Y.
On the other hand, there is a similar formalization using the relational schema
with signature Y3 and axioms Axge gy presented in Figure 8.1 as a fragment of a
larger relational schema ¥4 of some relational database.

v

person(id, name) author_of(person, paper) paper(id, title, published_in) journal(id, name, impact_factor)

Figure 8.1: Relational schema of an information system

[Schorlemmer and Kalfoglou, 2008] link these two ontologies by mapping both
into a given reference ontology T living in first-order logic. However, with this ap-
proach, the question whether the axiomatizations Ax prpip and Ax ge iy have compa-
rable strength cannot be studied at all.

Hence, we here follow a different approach. Instead of using a common reference
theory, we specify an interface theory Interface in FOL,, that relates the two ontolo-
gies as follows here:

Vop,j,n, fat:s

.journal(j,n, f) & Journal(j) A name(j,n) A impactFactor(j, )
.paper(a,t,j) < Article(a) A Journal(j) A hasArticle(j, a) A title(a,t)
.author_of(p,a) < Researcher(p) A\ Article(a) A author(p, a)
.person(p,n) < Researcher(p) A name(p,n)

The signature X of this interface theory is the union of the translations (as given
by the comorphisms from Examples 3.2.4 and 3.2.3) of ¥1 and X3 to first-order logic.

Assume we want to check whether all models of the theory Axpryp in Yo are
models of a theory Axge iy in X4. Both theories would have to be translated into a
common language. We construct the diagram in figure 8.2 (we marked distinctively
the inclusions) and we compute its colimit, then we try to prove that 91 (Azpryip) E
V2( Az RerBibv), Where we denote ¥ = 71; 1.

O

Using the Heterogeneous Tool Set HETS, we found out that only two of the
axioms in Ax g p;, are provable in this way; the second relationship pointing from
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(FOL,,s,>")
T .
_.»-"(‘i.dFOLms +01) (Rel2FOL,95)
(FOL,,,, ) L
(ALC2FOL,71_‘)_.*7 A .(_?‘dFOLmS Y2)
(ALC, 22 FOLmS, Rel 24)
(idarc,e1) (Rel2FOL o2)
ALC2FOL,01) (idRe1,p2)
(ALC, %) (Rel, X3)

Figure 8.2: A heterogeneous colimit.

the paper field of the author_of relation to the id field of the paper relation cannot
be deduced from the description logic axiomatization Ax . The reason for this
is that Az prpip does not state that an Article must appear in Journal. In order to
extend Axprpip accordingly, the inverse of the role hasArticle would be needed.

8.3 Relaxing Colimits and Amalgamation

The example of the last section shows that theorems 8.1.1 and 8.1.2 have too strong
premises to be applied in all practical situations. Given a diagram J — Ind, its limit
must be the index of some institution that can serve to encode, via comorphisms, all
the institutions indexed by the diagram. The existence of such an institution may
not be a problem, but the uniqueness condition imposed by the limit property is
more problematic. This means that any two such “universal” institutions must have
isomorphic indices and hence be isomorphic themselves. This might work well in
some circumstances, but may not desirable in others: after all, a number of non-
isomorphic logics, such as classical higher-order logic, the calculus of constructions
and rewriting logic have been proposed as such a “universal” logic. Also, the as-
sumptions of Theorem 8.1.2 may not hold in all the cases - e.g. institutions with
subsorts [Schroder et al., 2005] or some temporal logics [Marti-Oliet et al., 2004]
are not weakly semi-exact.

Therefore, we drop the uniqueness restriction by replacing weak exactness with
quasi-exactness, i.e. amalgamable colimits with weakly amalgamable cocones.
Thus, the new framework will allow non-exact institutions and comorphisms to
be included in the indexed coinstitution serving as basis of the Grothendieck con-
struction.

A problem occurs when using this approach, namely a great number of co-
morphisms with the same behaviour are introduced via compositions. Therefore,
we use the institution comorphism modifications to identify comorphisms with the
same sentence and model translation maps. The definitions and results of this sec-
tion are all from [Mossakowski, 2005].

The idea is to first strengthen the original notion from [Diaconescu, 2002] to
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discrete modifications:

Definition 8.3.1 Given institution comorphisms (®,p): Iy — Iz and (¥, p'): [ —
I, a discrete institution comorphism modification 9: (®, p) — (®', p) is a natural
transformation 9: ® — @’ such that (I -9) o p = p'.

Together with obvious identities and compositions, discrete modifications can
serve as 2-cells, and thus Colns is turned into a 2-category. Moreover, Ind itself is
assumed to have a 2-category structure, and the functor 7 is then a 2-functor. This
leads us to the following definition.

Definition 8.3.2 Given an index 2-category Ind, a 2-indexed coinstitution is a 2-
functor Z: Ind°® — Colns into the 2-category of institutions, institution comor-
phisms and institution comorphism modifications. Note that we may omit the prefix
2- when the 2-category structure is not needed.

We obtain a congruence on Grothendieck signature morphisms: the congruence
is generated by

(d,T4: 3 (2) — 4(X)) = (d,id: ®YT) — d4(X))
for ¥ € Sig’, d,d': j— i € Ind, and v : d = d’ € Ind. This congruence has the

following crucial property:
Proposition 8.3.3 = is contained in the kernel of Z# (considered as a functor).

Let ¢*: Sig” — Sig” /= be the quotient functor induced by = (see [Mac Lane,
1971] for the definition of quotient category). Note that it is the identity on objects.
We easily obtain that the functor Z# factors through the quotient category Sig? / =.

Corollary 8.3.4 7#: Sig” — Room leads to a quotient Grothendieck institution
T#/=: Sig” /= — Room.

By abuse of notation, we denote Z7# /= by (Sig” /=, Sen”, Mod", |=#).

Consider the span PLNG - PPFOL™ ®; PFOL,,, __toPFOL PFOL,,, for
which we want to obtain a weakly amalgamable cocone. But this can e.g. be given
by coding of both PFOL,,,; and PLNG into a common logic such as higher order
logic (see Examples 3.2.5 and 3.2.6). However, the resulting square does not com-
mute, since on the way from ®; PFOL,,,; to HOL,,; via PFOL,,,, the operational
semantics of the programming language is expressed in HOL,,;. But there is a
diagram of two-cells:

HOL,,
PLNG2HO FOL2HOL

PLNG N < PFOL,,

t:% %‘L

®: PFOL,,,,
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which is weakly amalgamable in the following sense:

Definition 8.3.5 Given a 2-indexed coinstitution Z: Ind°? —s Colns, a square con-
sisting of two lax triangles of index morphisms

i

A

j2 22 | £- g1

NV

k

is called (weakly) amalgamable, if the following diagram is a (weak) pullback for any
¥ in Sig’

a1
Bs

Mod‘ (%) Mod’! (99 (%))
B%:
-
o k ul
o Mod*(34(%)) 2ot Mod* (371 (21(x)))
A
TMod’“(IEZ)
Mod’2(®%2(5)) <= Mod" (2 (042 (%)) < .

where the lower right square is a pullback. That is, each pair consisting of a ®%2(%)-
and a ¥ (X)-model with the same Y-reduct is (weakly) amalgamable to a pair con-
sisting of a ®°2(®%2(X))- and a ¢ (®?(X))-model having the same ®?(X)-reduct.

7 is called lax-quasi-exact, if each for pair of arrows j1 L j2 in Ind,
there is some weakly amalgamable square of lax triangles as above, such that addi-
tionally Z* is quasi-semi-exact.

Theorem 8.3.6 For a 2-indexed coinstitution Z: Ind* — Colns, assume that
e T is lax-quasi-exact, and
e all institution comorphisms in 7 are weakly exact.

Then % /= is quasi-semi-exact.

8.4 Algorithms for the Relaxed Setting

Call a diagram connected if the graph underlying its index category is connected
when the identity arrows are deleted. A diagram is thin, or a preorder, if its index
category is thin, i.e. there is at most one arrow between two objects. A preorder is
finitely bounded inf-complete if any two elements with a common lower bound have
an infimum.
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Corollary 8.4.1 Let T satisfy the assumptions of Theorem 8.3.6. Then I# /= admits
weak amalgamation of connected finitely bounded inf-complete diagrams.

Proof.

Let D: J — Sig” be a connected diagram and let Maz be the set of maximal
nodes in J. We successively construct new diagrams out of J. Take two nodes in
Maz that have a common lower bound (if two such nodes do not exist, the diagram
is not connected). By Theorem 8.3.6, there is a weak amalgamating cocone for the
sub-diagram consisting of the two maximal nodes and their infimum (together with
the arrows from it into the maximal nodes). Extend the diagram with the cocone.
The diagram thus obtained now has a set of maximal nodes whose size is decreased
by one. By iterating this construction, we get a diagram with one maximal node.
The maximal node then is just the tip of a weakly amalgamating cocone for the
original diagram. 0

Analogous to Cor. 8.1.3, we have:

Corollary 8.4.2 The proof system for development graphs with hiding [Mossakowski
et al., 2006a] can be re-used for Grothendieck institutions satisfying the assumptions
of Cor. 8.4.1, provided that each of the involved institutions can be mapped (via a
model-expansive comorphism) into a proof-supported institution.

This result leads to a weakly amalgamable square in the Grothendieck institu-
tion as follows:

(®;PFOL,,,, %,)

(toPy erz)

(PLNG, EP) (PFOLmSa ES)

(PLNG2HOL,i FOL2HOL,9x)

(HOL,,,, PLNG2HOL(Sp))

The algorithm implemented in HETS for obtaining weakly amalgamable cocones
of heterogeneous diagrams has some differences with the construction presented in
the Corollary 8.4.1. From the practical point of view, it is more convenient not to
check whether the entire 7 is lax-quasi-exact or if all comorphisms existing in the
logic graph are weakly exact, but to test this each time a pair of maximal nodes is
chosen. Since the tests may fail to hold for a particular situation, we use backtrack-
ing on pairs of maximal nodes and weakly amalgamable squares of lax triangles to
explore all possible choices. Also, for homogeneous diagrams, weakly amalgam-
able cocones are computed within the institution, without further assumptions on
the shape of diagram.

Another difference is that the situation when the preorder is not finitely
bounded inf-complete is also considered, i.e. the two maximal nodes do not have
an infimum, but several maximal common lower bounds. For simplicity, we may
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assume that only two such maximal common lower bounds exist, see following
diagram:

(z'l,El) (i2a22)
(dmol)T T(dzl,m)

(i3, Bg) (d202) (ds:23) " (iy, By)

Then, one of these common lower bounds, in our case say (i3, >3) is selected
for building the span for which we compute the weak amalgamating cocone, as in

Theorem 8.3.6. Assume this is (i1, 21)(81’—p1)> (7,%) m)(ig, Y9) . If the equality

d3;e; = dy; ez holds and Sign’ has coequalizers, we consider the following double

arrow
€1 (p3);p1
d .
LTON .
2 (p4)3p2
for which we compute the coequalizer (v,Y’). Then the diagram is extended with

(i1, 21)(eﬂ) (7, % )(iim )(ig, Y9) . If for a particular choice of maximal bound, one

of the assumptions fails to hold, a new common lower bound is selected until all
have been considered.

Definition 8.4.3 A weakly amalgamable square of lax triangles

2 2L 1
N4
k

is sufficiently large for a set of spans in Ind of shape j; A kq 2 jo if I*¥ has

coequalizers and for each of the spans in the set, f1,;dl = f2,;d2.

A diagram is compatible with squares if for any two maximal nodes of indexes
j1 and js there exists a choice of a maximal common lower bound with the index ¢
and a weakly amalgamable square of lax triangles which is sufficiently large for the
set of spans obtained from the other maximal common bounds.

Corollary 8.4.4 Let T satisfy the assumptions of Theorem 8.3.6. Then I# /= admits

weak amalgamation of connected finitely thin diagrams if when extending the diagram
with new maximal nodes the compatibility with squares is preserved.

To conclude, the algorithm’s steps are the following:
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1. Check whether the diagram is homogeneous. If it is, compute a weakly amal-
gamable cocone in the underlying institution.

2. If the diagram is not connected or not thin, the algorithm fails.

3. Let Mazx be the set of maximal nodes of the diagram. If Maz has only one
element, then this is a weakly amalgamable cocone of the original diagram.

4. Pick two maximal nodes that have a common lower bound (the diagram is
connected, so we know they exist).

5. Check whether the maximal nodes have an infimum. If they do, compute a
weakly amalgamable cocone of the span obtained from the arrows from this
infimum to the maximal nodes and extend the diagram with it. Then return
to step 3. If we fail to compute the weakly amalgamable cocone (i.e. we do
not have the square of lax triangles), return to step 4 to make a new choice.

6. If the two maximal nodes do not have an infimum, compute the list of all
maximal common lower bounds of the two nodes.

7. Pick a maximal lower bound and compute a weakly amalgamable cocone of
the span obtained from it and the two maximal nodes.

8. For all the others maximal lower bounds, check whether the coequalizers can
be computed (as explained above). If this succeeds, extend the diagram with
the new node and the arrows to it and go back to step 3. If it fails, return to
step 7 to pick another bound. If all the options have failed, return to step 4 to
pick new maximal nodes.

The algorithm could find several weakly amalgamable cocones, if there are more
squares of lax triangles available for two maximal nodes and a bound. We prefer
to display all possible answers and let the user select a cocone, since a certain logic
may have better problem-specific tool support. This is also the main advantage
over an algorithm that translates the entire diagram to some “universal” logic and
computes its colimit.

During the implementation of the algorithm, we also needed to test whether two
arbitrary compositions of institution comorphism modifications (as natural trans-
formation, therefore both horizontal and vertical compositions!, see [Mac Lane,
1971]) are equal. These two kinds of compositions are related by the so-called
“Interchange Law” stating that for any natural transformations -, u, 7, €

(ykm)o(uxe)=(you)x(noe)

when the compositions on the left side are defined. Using this law and rules for can-
celling identities, we develop a term rewrite system (see figure 8.3) which we prove

!We denote = the horizontal composition and o the vertical one.
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(yxm)o(uxe)— (you)*x(noe)
lpoy =~

volg =7

lp*lg—>1F;G

Figure 8.3: Rewrite rules for deciding equality of comorphism modifications

terminating and confluent. Then, two arbitrary terms denoting valid compositions
are equal if they rewrite to the same normal form.

While termination of the term rewrite system is easy to notice (since for all the
rules, on the right side either the depth of term or the number of horizontal compo-
sitions decreases), proving confluence is a little more difficult. We used the Church-
Rosser checker [Duran and Meseguer, 2010] written in Maude [Clavel et al., 2003]
to obtain the critical pairs of the term rewriting system and then noticed that all
of them are eliminated in the case of type-correct terms (i.e. modifications that
actually compose).

8.5 Colimits in Cas.

Before discussing applications of colimits in heterogeneous specification and HETS,
let us make a couple of remarks about the implementation of homogeneous (i.e.
logic-specific) colimits. Of course, colimits of signatures need to be implemented
for each of the logics in HETS’ graph, as the concept of signature is abstract, with
no assumption being made about what an individual signature contains. In most
cases, a signature consists of several sets of symbols, e.g. propositions, functions,
predicates, sorts, OWL concepts and so on. Colimits of such signatures are then
computed in general component-wise, by projecting the graph to one kind of sym-
bols and then computing the colimit in the category of sets, with a well-known
construction which we implemented as a generic algorithm. We need to make a
convention on how clashing symbols are renamed: to keep generality, we return as
result of computing colimits in Set a set of generic elements paired with the num-
ber of the node they originate from and the renaming is handled at the logic-specific
level.

However, in the case of CasL function and predicate symbols, we must take over-
loading into account: two overloaded symbols in a signature must be named in the
same way in the colimit, otherwise, the structural morphism of the signature is not
a correct CasL morphism. Moreover, we must decide which operation symbol in the
colimit must be total. Note that the existence of colimits for diagrams of CasL signa-
tures is proven in [Mossakowski, 1998]; here we only present the implementation
in HETS and naming decisions.
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Example 8.5.1 Let us consider the following pushout of CAsL signatures:

sorts s,t,u,v,w dc sorts s,t <u;v,w <z
op d:s ops c:s;c:t;c:v
d—c civC1iv

sorts s,t < w; v,w; cwsepw  SOTTS 8,1 <'u;‘v, w '< z;
ops c:s;c:ticivciw v ops c:s;c:t;
’ ’ ’ Cl:V;CQ:V;Cl W

The sorts of the colimit are obtained by simply projecting the graph of signatures to
the corresponding set of sorts and then computing the colimit in Set. For the operation
symbols, we take again the colimit in Set of the sets of operation symbols and then we
factor it to overloading classes: the symbols ¢ : v and ¢ : w were not in the overloading
relation in the lower left node of the span, but since in the top right node the sorts
v and w have a common supersort, they will be overloaded in the colimit. Also, note
that in each of the corners of the span we have two constants ¢ : t who do not share
a common origin, but they are mapped to symbols in the same overloading class in
the colimit, which means that they will not be distinguished. Finally, regarding the
choice of names, we renamed the symbol d : s in the source of the span to c as c is
the majoritary name for symbols mapped to its overloading class and ¢y and ¢y are
generated names.

Let D be a graph of CasL signatures and signature morphisms. The set of func-
tion symbols in the colimit signature of D is obtained with the following algorithm:

1. D is projected on operation symbols;
2. We compute colimit of the resulting graph:

3. We factor the resulting set according to the overloading relation in the colimit,
determined by the overloading in the nodes of D and the subsort relation in
the colimit. A symbol z must be total in the colimit if there is total operation
symbol in the graph which is mapped to x. Finally, for each equivalence class
thus obtained, we collect all names of the symbols in the graph which are
mapped in the equivalence class - we try to keep the original names;

4. For each equivalence class, in order of size - we try to make as few renamings
as needed - if the majoritary name does not introduce conflicts, assign it to
the symbols, otherwise generate a name using the symbol with the lowest
number entering the equivalence class and update the structural morphisms
of the colimit.

Finally, we can take advantage of the design of CasL signatures and morphisms:
the method computing colimits of CasL signatures (Fig. 8.4) takes as argument a
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signColimit :: (Category (Sign f e) (Morphism f e m)) =>
Graph (Sign f e) (Int,Morphism f e m) ->
(Graph e (Int, m) -> Map Int (Morphism f e m) ->
(e, Map Int m)) —>
(Sign f e, Map.Map Int (Morphism f e m))

Figure 8.4: Computing colimits of signatures in CasL.

polymorphic method that computes colimits on the extension part of the signature
and thus providing colimit computation for a logic that is implemented as a CasL
extension reduces to providing such a concrete method on the actual types.

8.6 Normal Forms of Specifications with Hiding
Heterogeneous colimits are needed for several purposes in HETS:

e The proof calculus for development graphs (Sec. 4.3) has been generalised
to Grothendieck institutions (Sec. 3.3), see [Mossakowski, 2005]. In order
to handle hiding (of parts of specifications) correctly, during a proof, the hid-
den parts have to be revealed. This is done by computing the so-called nor-
mal forms of structured specifications using colimits, and in the case of the
Grothendieck institutions, these colimits are of course heterogeneous.

e Suppose that we want to prove a view (or refinement) to be correct, which
means that we need to show a signature morphism to be a theory morphism.
In the development graph, this is represented as a so called global theorem
link o: Ny — N, (representing a theory morphism) between two nodes NV;
and N, (representing the two theories). Note that the logics of N; and N, may
be different and in this case we have to translate N; and Ny into the same
logic so we can make the proof. The logical framework approach assumes
that the theories of N; and N, are encoded into some logic that is fixed once
and forall. By contrast, in HETS we can rather flexibly find a logic that is a
“common upper bound” of the logics of both N; and N, and that moreover
has best possible tool support. This freedom allows us to exploit specialized
tools. This is also complemented by a sublogic analysis, which is required for
each of the logics in HETS, and which allows for an even more fine-grained
determination of available tools. Of course, such “common upper bounds”
can be realised as some weak form of colimit.

e Colimits also appear in the semantics of instantiation of parameterised speci-
fications.

e Colimits play a role for alignments of ontologies [Zimmermann et al., 2006],
and recently, also heterogeneous ontologies have been studied [Schorlemmer
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and Kalfoglou, 2008]. Therefore, we have added a menu for directly comput-
ing heterogeneous colimits with HETS.

Here we will only go into details for normal forms of specifications.

For revealing the hidden parts of a structured specification, we can use the
construction introduced in [Mossakowski et al., 2001] at the level of development
graphs. The idea is that for each node N with incoming hiding definition links we
can unfold the subgraph of N into a tree.

Definition 8.6.1 Let DG = (N, &) be a development graph and let N be a node of
DG. The diagram D : I — Sig associated with N (where I is a small category which
will be defined at the same time with 1) is defined inductively together with a map
G : |I| = N as follows:

e (N) is an object in I such that D((N)) = ¥V 2 and G((N)) = N;
e if M is an object in I not yet considered:

— for any incoming global definition link N =% G(M) or local definition

link N —7% G(M) in DG, we add to I a new node M’ with D(M') = N
and an edge e : M' — M with D(e) = o and we set G(M') = N;

— for any incoming hiding definition link N ﬁ G(M) in DG, we add to I

a new node M’ with D(M') = £~ and an edge ¢ : M — M’ with D(e) = o
and we set G(M') = N.

It is possible to have two objects of I mapped to the same node in DG: if a
node is imported into another node via two different paths, the two instances of
the imported node should be distinguished.

The normal form of the node N is then defined as the colimit of the diagram D
associated with N. D is by construction a connected finitely bounded inf-complete
diagram and thus we can compute an approximation of the colimit of D in the het-
erogenous case as well. The proof calculus of development graphs uses this normal
form node for proofs involving the node N. As heterogenous colimit computation is
now supported by HETS, we have been able to implement as well the corresponding
rule of the development graph calculus that deals with hiding.

Example 8.6.2 [Mossakowski et al., 2001] Let us consider the following development

graph:
€ O

where groups are specified first with an inverse operation, which is then hidden. The
specification of fields then imports twice the specification Group, once for the additive

2Recall that we denoted XV the signature of N in DG.
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and once for the multiplicative operation. Note that appropriate renaming is required
to ensure that the symbols of the two laws are not identified. The unfolded subgraph
of the node corresponding to the specification of fields and denoted Field in the figure
above is then as presented below:

and in the normal form of the specification of fields, which is the colimit of this graph,
the two inverses are not wrongly identified.

Note that in some cases, unfolding the graph yields too many distinctions be-
tween paths: we should consider that a node N is imported into another node M
via different paths only if some symbols in ¥V are mapped to different symbols in
»M along the paths. Checking this is computationally expensive, so further investi-
gations are needed before implementing this observation in HETS.

8.7 Conclusion

We have presented an algorithm that generalises the computation of colimits of
specifications to a heterogeneous setting. It has turned out that the notion of (amal-
gamable) colimit has to be replaced by that of weakly amalgamable cocone in order
to obtain a framework that is general enough to cover practically interesting cases.
Moreover, the algorithm provides a true colimit whenever this is possible. We have
illustrated the approach with two examples: one involving the relation between
specification and programming. For this example, the 2-categorical machinery is
needed in order to construct a weakly amalgamable cocone (which in turn is es-
sential for proving refinements in the proof calculus for development graphs with
hiding). The other example concerns ontologies for bibliographical information,
and links the schema of a relational database with an ontology specified in de-
scription logic. Here, the heterogeneous situation is simpler, because the involved
formalisms can be mapped to first-order logic, where also an interface theory lives.
However, the logical structure is a bit more complex: in a sense, a refinement be-
tween two weakly amalgamable cocones needs to be proved. This approach has the
advantage (compared with the integration into a common reference ontology pur-
sued in [Schorlemmer and Kalfoglou, 2008]) that the involved axiomatisations can
be directly compared w.r.t. their strength. We have pointed out where the strength
differs, and how this can be changed if wanted. The integration into a common
reference ontology in [Schorlemmer and Kalfoglou, 2008] is of much weaker na-
ture: it just states that the two axiomatizations have a common upper bound. It
should be stressed that the cocone computed for this example falls outside the scope
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of the standard theorems from the literature [Diaconescu, 2002], because FOL,,,,
generally is not the colimit institution for this diagram.

Concerning related work, [Haeusler et al., 2007] tackle the same problem, but
involving the invention of new institutions, without making clear how these will be
equipped with proof systems. Moreover, amalgamation is not studied at all.

The algorithm is implemented as part of the Heterogeneous Tool Set HETS. Fu-
ture work should provide more applications to specific examples of heterogeneous
specifications and ontologies.

Acknowledgement. This chapter is based on [Codescu and Mossakowski,
2008]. My contribution includes the algorithm in Sec. 8.4, which extends a result
from [Mossakowski, 2005] and also the implementation of colimit computation for
Cast signatures (Sec. 8.5) and of normal forms of specifications (Sec. 8.6) in HETS.
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Maude [Clavel et al., 2007] is a high-level language and high-performance sys-
tem supporting both equational and rewriting logic computation for a wide range
of applications. Maude modules correspond to specifications in rewriting logic, a
simple and expressive logic which allows the representation of many models of
concurrent and distributed systems.

The key point is that there are three different uses of Maude modules:

1. As programs, to implement some application. We may have chosen Maude
because its features make the programming task easier and simpler than other
languages.

2. As formal executable specifications, that provide a rigorous mathematical
model of an algorithm, a system, a language, or a formalism. Because of
the agreement between operational and mathematical semantics, this mathe-
matical model is at the same time executable.

3. As models that can be formally analyzed and verified with respect to differ-
ent properties expressing various formal requirements. For example, we may
want to prove that our Maude module terminates; or that a given function,
equationally defined in the module, satisfies some properties expressed as
first-order formulas.

However, when we follow this last approach we find that, although Maude can
automatically perform analyses like model checking of temporal formulas or verifi-
cation of invariants, other formal analyses have to be done “by hand,” thus discon-
necting the real Maude code from its logical meaning. Although some efforts, like
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the Inductive Theorem Prover [Clavel et al., 2006], have been dedicated to palliate
this problem, they are restricted to inductive proofs in Church-Rosser equational
theories, and they lack the generality to deal with all the features of Maude. With
our approach, we cover arbitrary first-order properties (also written in logics dif-
ferent from Maude), and open the door to automated induction strategies such as
those of ISAplanner [Dixon and Fleuriot, 2004].

Here we describe an integration of Maude into HETS from which we expect
several benefits: On the one hand, Maude will be the first dedicated rewriting
engine that is integrated into HETS (so far, only the rewriting engine of Isabelle is
integrated, which however is quite specialized towards higher-order proofs). On
the other hand, certain features of the Maude module system like views lead to
proof obligations that cannot be checked with Maude—HETSs will be the suitable
framework to prove them, using its above mentioned proof tools.

9.1 Rewriting Logic and Maude

Maude is an efficient tool for equational reasoning and rewriting. Methodologically,
Maude specifications are divided into a specification of the data objects and a spec-
ification of some concurrent transition system, the states of which are given by the
data part. Indeed, at least in specifications with initial semantics, the states can be
thought of as equivalence classes of terms. The data part is written in a variant of
subsorted conditional equational logic. The transition system is expressed in terms
of a binary rewriting relation, and also may be specified using conditional Horn
axioms.

Two corresponding logics have been introduced and studied in the literature:
rewriting logic and preordered algebra [Meseguer, 1992]. They essentially differ in
the treatment of rewrites: whereas in rewriting logic, rewrites are named, and dif-
ferent rewrites between two given states (terms) can be distinguished (which cor-
responds to equipping each carrier set with a category of rewrites), in preordered
algebra, only the existence of a rewrite does matter (which corresponds to equip-
ping each carrier set with a preorder of rewritability).

Rewriting logic has been announced as the logic underlying Maude [Clavel
et al., 2007]. Maude modules lead to rewriting logic theories, which can
be equipped with loose semantics (fth/th modules) or initial/free semantics
(fmod/mod modules). Although rewriting logic is not given as an institution [Di-
aconescu, 2008], a specification frame collapsing signatures and sentences into
theories would be sufficient for our purposes.

However, after a closer look at Maude and rewriting logic, we found out that
de facto, the logic underlying Maude differs from the rewriting logic as defined in
[Meseguer, 1992]. The reasons are:

1. In Maude, labels of rewrites cannot (and need not) be translated along sig-
nature morphisms. This means that e.g. Maude views do not lead to theory
morphisms in rewriting logic!
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2. Although labels of rewrites are used in traces of counterexamples, they play
a subsidiary role, because they cannot be used in the linear temporal logic of
the Maude model checker.

Specially the first reason completely rules out a rewriting logic-based integration
of Maude into HETS: if a view between two modules is specified, HETS definitely
needs a theory morphism underlying the view.! However, the Maude user does
not need to provide the action of the signature morphism on labeled rewrites, and
generally, there is more than one possibility to specify this action.

The conclusion is that the most appropriate logic to use for Maude is preordered
algebra [Futatsugi and Diaconescu, 1998]. In this logic, rewrites are neither labeled
nor distinguished, only their existence is important. This implies that Maude views
lead to theory morphisms in the institution of preordered algebras. Moreover, this
setting also is in accordance with the above observation that in Maude, rewrite la-
bels are not first-class citizens, but are mere names of sentences that are convenient
for decorating tool output (e.g. traces of the model checker). Labels of sentences
play a similar role in HETS, which perfectly fits here.

Actually, the switch from rewriting logic to preordered algebras has effects on
the consequence relation, contrary to what is said in [Meseguer, 1992].

Example 9.1.1 Consider the following Maude theory:

th A is

sorts S T .

op a : —> S

eq X:S = a

ops h k : S —> T .

rl [r] : a => a

rl [s] : h(a) => k(a)
endfth

This logically implies h(x) = k(z) in preordered algebra, but not in rewriting
logic, since in the latter logic it is easy to construct models in which the naturality
condition r; k(r) = h(r); s fails to hold 2.

Before describing how to encode Maude into HETS we briefly outline the struc-
turing mechanisms used in Maude specifications:

Module importation. In Maude, a module can be imported in three different
modes, each of them stating different semantic constraints: Importing a mod-
ule in protecting mode intuitively means that no junk and no confusion are
added; importing a module in extending mode indicates that junk is allowed,
but confusion is forbidden; finally, importing a module in including mode in-
dicates that no requirements are assumed.

f the Maude designers would let (and force) users to specify the action of signature morphisms
on rewrite labels, it would not be difficult to switch the HETS integration of Maude to being based on
rewriting logic.

2This observation is due to T. Mossakowski.
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Module summation. The summation module operation creates a new module that
includes all the information in its summands.

Renaming. The renaming expression allows to rename sorts, operators (that can
be distinguished by their profiles), and labels.

Theories. Theories are used to specify the requirements that the parameters used
in parameterized modules must fulfill. Functional theories are membership
equational specifications with loose semantics. Since the statements specified
in theories are not expected to be executed in general, they do not need to
satisfy the executability requirements.

Views. A view indicates how a particular module satisfies a theory, by mapping
sorts and operations in the theory to those in the target module, in such a
way that the induced translations on equations and membership axioms are
provable in the module. Note that Maude does not provide a syntax for map-
ping rewrite rules; however, the existence of rewrites between terms must be
preserved by views.

9.2 Relating Maude and Cas. Logics

In this section, we will relate Maude and CasL at the level of logical systems. The
structuring level will be considered in the next section.

9.2.1 Maude Logic

As already motivated, we will work with preordered algebra semantics for Maude.
We will define an institution, that we will denote MaudeP™, which can be, like in the
case of Maude’s logic, parametric over the underlying equational logic. Following
the Maude implementation, we have used membership equational logic [Meseguer,
1998]. The resulting institution MaudeP™ is very similar to the one defined in the
context of CafeOBJ [Futatsugi and Diaconescu, 1998, Diaconescu, 2008] for pre-
ordered algebra (the differences are mainly given by the discussion about operation
profiles below, but this is only a matter of representation). This allows us to make
use of some results without giving detailed proofs.

Signatures of Maude?™ are tuples (K, F, kind : (S,<) — K), where K is a set
(of kinds), kind is a function assigning a kind to each sort in the poset (S, <), and F'
is a set of function symbols of the form F' = {Fy, x,—z | ki.k € K} U{F5, 5,55 |
si,s € S} such thatif f € Fy, s, s, there is a symbol f € Flinacs,).. kind(sn)—kind(s)-
There is actually no essential difference between our putting operation profiles on
sorts into the signatures and Meseguer’s original formulation putting them into the
sentences.

Given two signatures ¥, = (K, F;, kind;), i € {1,2}, a signature morphism
¢ : ¥1 — X, consists of a function ¥ : K| — K, which preserves <, a function
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between the sorts p*°"t : S; — Sy such that ©*°™; kinds = kindy; ¢*"¢ and the sub-
sorts are preserved, and a function ¢°? : F} — F> which maps operation symbols
compatibly with the types. Moreover, the overloading of symbol names must be
preserved, i.e. the name of ¢°?(0) must be the same both when mapping the oper-
ation symbol o on sorts and on kinds. With composition defined component-wise,
we get the category of signatures.

For a signature ¥, a model M interprets each kind k as a preorder (M, <),
each sort s as a subset M of My, s that is equipped with the induced preorder,
with M a subset of My if s < s/, and each operation symbol f € Fy, . asa
function My : My, x ... x My, — M, which has to be monotonic and such that
for each function symbol f on sorts, its interpretation must be a restriction of the
interpretation of the corresponding function on kinds. For two Y-models A and B,
a homomorphism of models is a family {hy : Ay — B }rex of preorder-preserving
functions which is also an algebra homomorphism and such that h,q(s)(As) € Bs
for each sort s.

The sentences of a signature ¥ are Horn clauses built with three types of atoms:
equational atoms ¢ = ¢/, membership atoms ¢ : s, and rewrite atoms ¢ ~ ¢/, where
t,t' are F-terms and s is a sort in S. Given a YX-model M, an equational atom ¢t = ¢’
holds in M if M; = My, a membership atom ¢ : s holds when M; is an element of
M, and a rewrite atom ¢t ~» t' holds when M; < M. The set of variables X used
for quantification is K -sorted. The satisfaction of sentences extends the satisfaction
of atoms in the obvious way.

9.2.2 Encoding Maude in CASL

We now present an encoding of Maude into CasL. It can be formalized as a so-called
institution comorphism [Goguen and Rosu, 2002]. Note that we will only need the
Horn Clause fragment of first-order logic. For freeness (see Sect. 9.4), we will also
need sort generation constraints, as well as the second-order extension of CAsL with
quantification over predicates. The idea of the encoding of M audeP™ in CasL. is that
we represent rewriting as a binary predicate and we axiomatize it as a preorder
compatible with operations.

Every Maude signature (K, F, kind : (S, <) — K) is translated to the CasL the-
ory ((8',<', F, P), E), where S’ is the disjoint union of K and S, <’ extends the
relation < on sorts with pairs (s, kind(s)), for each s € S, rew € P;; for any
s € S’ is a binary predicate and E contains axioms stating that for any kind %,
rew € Py is a preorder compatible with the operations. The latter means that for
any f € F,, 5, s and any x;,y; of sort s; € S, i = 1, .., n, if rew(z;,y;) holds, then
rew(f(z1,...,xn), f(y1,...,yn)) also holds.

Let ¥;, i = 1,2 be two Maude signatures and let ¢ : ¥; — ¥, be a Maude
signature morphism. Then its translation ®(¢) : ®(X;) — ®(X2) denoted ¢, is
defined as follows:

e foreach s € S, ¢(s) := ¢*°"(s) and for each k € K, (k) := ¢*"4(k).
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e the subsort preservation condition of ¢ follows from the similar condition for
@Y.

e for each operation symbol o, p(0) := (o).

e rew is mapped identically.

The sentence translation map for each signature is obtained in two steps. While
the equational atoms are translated as themselves, membership atoms ¢ : s are
translated to CasL. memberships ¢ in s and rewrite atoms of form ¢ ~~ t' are trans-
lated as rew(t,t'). Then, any sentence of Maude of the form (Vz; : k;)H — C,
where H is a conjunction of Maude atoms and C' is an atom is translated as
(Va; : kj)H' = (', where H' and C’ are obtained by mapping all the Maude
atoms as described before.

Given a Maude signature X, a model M’ of its translated theory (X', E) is re-
duced to a ¥-model denoted M where:

e for each kind &, define M), = M] and the preorder relation on M}, is rew;

o for each sort s, define M to be the image of M under the injection i1 yina(s)
generated by the subsort relation;

o for each f on kinds, let M¢(x1,..,2,) = Mp(z1,..,2,) and for each f on
sorts of result sort s, let My(z1,..,z,) = z’njs,kmd(s)(M]’c(xl, X)), My is
monotone because axioms ensure that M is compatible with rew.

The reduct of model homomorphisms is the expected one; the only thing worth
noticing is that hy,q)(Ms) © N; for each sort s follows from the Cast model
homomorphism condition of A.

The model reduct is an isomorphism of categories.

9.3 From Maude Modules to Development Graphs

We describe in this section how Maude structuring mechanisms described in Section
9.1 are translated into development graphs. Then, we explain how these develop-
ment graphs are normalized to deal with freeness constraints.

Signature morphisms are produced in different ways; explicitly, renaming of
module expressions and views lead to signature morphisms; however, implicitly we
also find other morphisms: the sorts defined in the theories are qualified with the
parameter in order to distinguish sorts with the same name that will be instantiated
later by different ones; moreover, sorts defined (not imported) in parameterized
modules can be parameterized as well, so when the theory is instantiated with a
view these sorts are also renamed (e.g. the sort List{X} for generic lists can become
List{Nat}).

Each Maude module generates two nodes in the development graph. The first
one contains the theory equipped with the usual loose semantics. The second one,
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linked to the first one with a free definition link (whose signature morphism is
detailed below), contains the same signature but no local axioms and stands for
the free models of the theory. Note that Maude theories only generate one node,
since their initial semantics is not used by Maude specifications. When importing a
module, we will select the node used depending on the chosen importation mode:

e The protecting mode generates a non-persistent free link between the cur-
rent node and the node standing for the free semantics of the included one.

e The extending mode generates a global link with the annotation PCons?,
that stands for proof-theoretic conservativity and that can be checked with a
special conservativity checker that is integrated into HETS.

e The including mode generates a global definition link between the current
node and the node standing for the loose semantics of the included one.

The summation module expression generates a new node that includes all the
information in its summands. Note that this new node can also need a node with
its free model if it is imported in protecting mode.

The model class of parameterized modules consists of free extensions of the
models of their parameters, that are persistent on sorts, but not on kinds. This
notion of freeness has been studied in [Bouhoula et al., 2000] under assumptions
like existence of top sorts for kinds and sorted variables in formulas; our results hold
under similar hypotheses. Thus, we use the same non-persistent free links described
for protecting importation to link these modules with their corresponding theories.
Views do not generate nodes in the development graph but theorem links between
the node corresponding to the source theory and the node with the free model
of the target. However, Maude views provide a special kind of mapping between
terms, that can in general map functions of different arity. When this mapping is
used we generate a new inner node extending the signature of the target to include
functions of the adequate arity.

We illustrate how to build the development graph with an example. Consider
the following Maude specifications:

fmod M1 is fmod M2 is
sort S1 . sort S2
op _+_ : S1 S1 -> S1 [comm] . endfm
endfm
th T is mod M3{X :: T} is
sort S1 . sort S4
op _._ : S1 S1 -> S1 . endm
eq V1:31 . V2:S81 = Vv2:81 . V1:351
[nonexec]
endth

mod M is view V from T to M is
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Figure 9.1: Development Graph for Maude Specifications

ex M1 + M2 x (sort S2 to S) . op _._ to _+_
endm endv

HETS builds the graph shown in Fig. 9.1, where the following steps take place:

e Each module has generated a node with its name and another primed one that
contains the initial model, while both of them are linked with a non-persistent
free link. Note that theory T did not generate this primed node.

e The summation expression has created a new node that includes the theories
of M1 and M2, importing the latter with a renaming; this new node, since it is
imported in extending mode, uses a link with the PCons? annotation.

e There is a theorem link between T and the free (here: initial) model of M. This
link is labeled with the mapping defined in the view V.

e The parameterized module M3 includes the theory of its parameter with a
renaming, that qualifies the sort. Note that these nodes are connected by
means of a non-persistent freeness link.

It is straightforward to show:

Theorem 9.3.1 The translation of Maude modules into development graphs is
semantics-preserving.

Once the development graph is built, we can apply the (logic independent)
calculus rules that reduce global theorem links to local theorem links, which are in
turn discharged by local theorem proving. This can be used to prove Maude views,
like e.g. “natural numbers are a total order.” We show in the next section how we
deal with the freeness constraints imposed by free definition links.

9.4 Normalization of free definition links

Maude uses initial and free semantics intensively. The semantics of freeness is, as
mentioned, different from the one used in CasL in that the free extensions of models
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are required to be persistent only on sorts and new error elements can be added on
the interpretation of kinds. Attempts to design the translation to CasL in such a way
that Maude free links would be translated to usual free definition links in Cast. have
been unsuccessful. We decided thus to introduce a special type of links to represent
Maude’s freeness in CasL. In order not to break the development graph calculus,
we need a way to normalize these links, by replacing them with a semantically
equivalent development graph in CasrL. The main idea is to make a free extension
persistent by duplicating parameter sorts appropriately, such that the parameter is
always explicitly included in the free extension.

For any Maude signature ¥, let us define an extension X% = (S# <#, F#, P#)
of the translation ®(X) of ¥ to CasL as follows:

S# unites with the sorts of ®(X) the set {[s] | s € Sorts(X)};

<# extends the subsort relation < with pairs (s,[s]) for each sort s and
([s], [$']) for any sorts s < ';

F# adds the function symbols { f : [w] — [s]} for all function symbols on sorts
frw—s;3

P# adds the predicate symbol rew on all new sorts.

Now, we consider a Maude non-persistent free definition link and let o : ¥ — ¥/
be the morphism labeling it.* We define a CasL signature morphism o# : ®(%) —
Y/#: on sorts, 07 (s) := 0°°"!(s) and o7 ([s]) := [0°°"!(s)]; on operation symbols, we
can define o7 (f) := 0°P(f) and this is correct because the operation symbols were
introduced in ¥'#; rew is mapped identically.

The normalization of Maude freeness is then illustrated

in Fig.9.2. Given a free non-persistent definition link M :;> N
n.p.free
M :Uf> N, with ¢ : ¥ — Xy, we first take the translation é
n.p.free

of the nodes to CasL (nodes M’ and N’) and then intro-

duce a new node, K, labeled with Zﬁ, a global definition

link from M’ to M" labeled with the inclusion ¢ of X in ﬂw .

Zf\ﬁ,, a free definition link from M” to K labeled with o# M" % K ﬁ N’
and a hiding definition link from K to N’ labeled with the

inclusion ¢y .° Figure 9.2: Normali-
The models of N are Maude reducts of CasL models of zation of Maude free
K, reduced along the inclusion ¢ . links

The next step is to eliminate CasL free definition links. The idea is to use a
transformation specific to the second-order extension of CasL to normalize freeness.
The intuition behind this construction is that it mimics the quotient term algebra

3[z1 ... x,] is defined to be [z1] .. . [zn].
*In Maude, this would usually be an injective renaming.

>The arrows without labels in Fig.9.2 correspond to heterogeneous links from Maude to CASL.
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construction, that is, the free model is specified as the homomorphic image of an
absolutely free model (i.e. term model).
We are going to make use of the following known facts [Reichel, 1987]:

Fact 9.4.1 Extensions of theories in Horn form admit free extensions of models.
Fact 9.4.2 Extensions of theories in Horn form are monomorphic.

Given a free definition link M % N, with ¢ : ¥ — %V such that Th(M) is in
ree

Horn form, replace it with py _incl, - _inck np where N’ has the same signature
hide

as N, incl denotes inclusions and the node K is constructed as follows.

The signature ¥ consists of the signature ¥ disjointly united with a copy of
»M  denoted «(X ;) which makes all function symbols total (let us denote +(x) the
corresponding symbol in this copy for each symbol z from the signature ¥) and
augmented with new operations h : «(s) —7s, for any sort s of ¥ and make; :
s — (s), for any sort s of the source signature 3 of the morphism o labelling the
free definition link.

The axioms ¥ of the node K consist of:

e sentences imposing the bijectivity of make;

e axiomatization of the sorts in +(X)/) as free types with all operations as con-
structors, including make for the sorts in ¢(X);

e homomorphism conditions for h:
h([’(f)(xla ce 7$n)) = f(h(l‘l), SRR h(.’L’n))

and

[’(p)(tla s 7tn) = p(h(t1)7 SRR h(tn))
e surjectivity of homomorphisms:

e

Yy :s.3x:u(s).h(z) =y

e a second-order formula saying that the kernel of £ is the least partial predica-
tive congruence® satisfying Th(M). This is done by quantifying over a predi-
cate symbol for each sort for the binary relation and one predicate symbol for
each relation symbol as follows:

®A partial predicative congruence consists of a symmetric and transitive binary relation for each
sort and a relation of appropriate type for each predicate symbol.



9.4. Normalization of free definition links 133

V{PS : L(S)’ L(S)}SESOTtS(EM)’ {Pp:w : L(w)}p:weEM
. symmetry A transitivity A\ congruence A satThM =— largerThenKerH

where symmetry stands for

/\ Vo :u(s),y:u(s).Ps(x,y) = Ps(y,z),
s€Sorts(XM)

transitivity stands for

/\ Vo :u(s),y:u(s),z:u(s).Ps(x,y) A Ps(y,z) = Ps(z,2),
s€Sorts(XM)

congruence stands for

/\fw_meZM Vor1...2p,: L(U)),yl R 7 L(w) .
D(L(fw,s)(-f)) A D(L(fw,s)(g)) A\ Pw(.i‘, g) —— PS(L(fw,s)(i'), L(fw,s)(g))

and

Npoesm Vo1 .o zp t t(w), Y1 yn 2 (w)
D(u(fuw,s) (@) A D(t(fu,s)(§) A Pu(Z,9) = Ppuw(T) < Ppuw(9)

where D indicates definedness. satThM stands for
Th(M)[é /Ps;p : w/Ppin D(t)/Ps(t,t);t = u/Ps(t,u)\/(—\Ps(t,t)/\—'Ps(u, U))]

where, for a set of formulas ¥, U[sy;/sy]; . . .; syn/sy,,] denotes the simultane-
ous substitution of sy, for sy; in all formulas of ¥ (while possibly instantiating
the meta-variables ¢ and «). Finally larger ThenKerH stands for

Nsesortssiry Y 2 1(s),y « o(s).h(z) £ h(y) = Py(z,y)
ANppexm VT 2 t(w).i(p : w)(T) = Ppaw(7T)

Proposition 9.4.3 The models of the nodes N and N’ are the same.

Proof.

Let n be a N-model. To prove that n is also a N’-model, we need to show that
it has a K-expansion.

Let us define the following ¥ model, denoted k:

e on X/, k coincides with n;

e on (X)), the interpretation of sorts and function symbols is given by the free
types axioms (i.e. sorts are interpreted as set of terms, operations «(f) map
terms ¢y, ..t, to the term «(f)(¢1, .., ¢, )). We define interpretation of predicates
after defining h;
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e make assigns to each z the term make(z);

e the homomorphism # is defined inductively as follows:

- h

(make(x)) =z, if z € ng and s € Sorts(X);
- h(make(t)) = h(t), otherwise;
(
(

= h(e(f)(t1,..tn)) is defined iff f(h(t1),..h(t,)) is defined in n and then
h(e(F)(tr, 1)) = f(h(tr), -h(tn));

o for predicates in «(X,,) we define «(p)(t1, ..tn) iff p(h(t1), .., h(tn)).

The first three types of axioms of the node K hold by construction and ker(h)
satisfies Th(M ) because n is a M-model. The surjectivity of h and the minimality
of ker(h) are exactly the “no junk” and the “no confusion” properties of the free
model n.

For the other inclusion, let n’ be a model of N’, ng be its X-reduct and £’ a
K-expansion of n/. Using the fact that the theory of M is in Horn form, we get
an expansion of ng to a o-free model n. We have seen that all free models are
also models of N’ and moreover we have seen that ker(ky,) is the least predicative
congruence satisfying Th(M ). The free types axioms of K fix the interpretation of
(Xnr) and therefore ker(k;) and ker(kp) are both minimal on the same set, and
must be the same. This and the surjectivity of k;, and kj, allow us to define easily
an isomorphism between n and n’ and because n’ is isomorphic with a free model
it must be free as well. O

9.5 An example: reversing lists

The example we are going to present is a standard specification of lists with empty
lists, composition and reversal. We want to prove that by reversing a list twice we
obtain the original list. Since Maude syntax does not support marking sentences of
a theory as theorems, in Maude we would normally write a view (PROVEIDEM in
Fig. 9.3, left side) from a theory containing the theorem (REVIDEM) to the module
with the axioms defining reverse (LISTREV).

The first advantage the integration of Maude in HETS brings in is that we can
use heterogeneous CasL structuring mechanisms and the %implies annotation to
obtain the same development graph in a shorter way — see the right side of Fig.
9.3. We made the convention in HETS to have non-persistent freeness for Maude
specifications, modifying thus the usual institution-independent semantics of the
freeness construct.

For our example, the order in which the development calculus rules are applied
can be summarized as follows. First, the library is translated to Cast; during this
step, Maude non-persistent free links are normalized. The next step is to normalize
Cast free links, as we defined in the previous section. Note that this introduces
hiding definition links and to proceed with proving we first need to compute normal
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fmod MYLIST is
sorts Elt List
subsort Elt < List

op nil : —-> List [ctor]
op __ : List List —-> List
[ctor assoc id: nil] .
endfm logic MAUDE
fmod MYLISTREV is spec PROVEIDEM =
pr MYLIST . free
op reverse : List —-> List . {sorts Elt List .
var L : List . subsort Elt < List .

var E : Elt op nil : —> List [ctor] .

eq reverse(nil) = nil . . .
op _ :List List —> List
eq reverse(E L) = reverse(L) E — . .
endfm [ctor assoc id: nil] .
fth REVIDEM is ¥
pr MYLIST . then {op reverse : List —> List .
op reverse : List —-> List . var L : List . var E : Elt .
var L : List . eq reverse(nil) = nil .
eq reverse(reverse(L)) = L . eq reverse(E L) = reverse(L) E .
endfth . .
, } then %implies
view PROVEIDEM arL : Li
from REVIDEM to MYLISTREV is var L : List .
sort List to List . eqrevase@evase@))::L.
Oop reverse to reverse . }

endv

Figure 9.3: Lists with reverse, in Maude (left) and CASL (right) syntax.

forms (defined in Section 8.6) for the nodes with incoming hiding links. The rest of
the proof follows by applying proof calculus rules in a standard way.

In this way, we now have a proof goal for a second-order theory, introduced
while normalizing freeness. It can be discharged using the interactive theorem
prover Isabelle/HOL [Nipkow et al., 2002]. We have set up a series of lemmas
easing such proofs. First of all, normalization of freeness introduces sorts for the
free model which are axiomatized to be the homomorphic image of a set of the
absolutely free (i.e. term) model. A transfer lemma (that exploits surjectivity of the
homomorphism) enables us to transfer any proof goal from the free model to the
absolutely free model. Since the absolutely free model is term generated, we can
use induction proofs here. For the case of datatypes with total constructors (like
lists), we prove by induction that the homomorphism is total as well. Two further
lemmas on lists are proved by induction: (1) associativity of concatenation and (2)
the reverse of a concatenation is the concatenation (in reverse order) of the reversed
lists. This infrastructure then allows us to demonstrate (again by induction) that
reverse(reverse(L)) = L.

While proof goals in Horn clause form often can be proved with induction, other
proof goals like the inequality of certain terms or extensionality of sets cannot.
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Here, we need to prove inequalities or equalities with more complex premises, and
this calls for use of the special axiomatization of the kernel of the homomorphism.
This axiomatization is rather complex, and we are currently setting up the infras-
tructure for easing such proofs in Isabelle/HOL.

9.6 Conclusions and Future Work

We have presented how Maude has been integrated into HETS. To achieve this
integration, we consider preordered algebra semantics for Maude and define an
institution comorphism from Maude to Cast. This integration allows to prove prop-
erties of Maude specifications like those expressed in Maude views. We have also
implemented a normalization of the development graphs that allows us to prove
freeness constraints. We have used this transformation to connect Maude to Is-
abelle [Nipkow et al., 2002], a Higher Order Logic prover, and have demonstrated
a small example proof about reversal of lists. Moreover, this encoding is suited for
proofs of e.g. extensionality of sets, which require first-order logic, going beyond
the abilities of existing Maude provers like ITP.

Since interactive proofs are often not easy to conduct, future work will
make proving more efficient by adopting automated induction strategies like rip-
pling [Dixon and Fleuriot, 2004]. We also have the idea to use the automatic first-
order prover SPASS for induction proofs by integrating special induction strategies
directly into HETS.

We have also studied the possible comorphisms from CasL to Maude. We dis-
tinguish whether the formulas in the source theory are confluent and terminating
or not. In the first case, that we plan to check with the Maude termination [Duran
et al., 2008] and confluence [Duran and Meseguer, 2010] checkers, we map formu-
las to equations, whose execution in Maude is more efficient, while in the second
case we map formulas to rules.

Finally, we also plan to relate HETS’ Modal Logic and Maude models in order to
use the Maude model checker [Clavel et al., 2007, Chapter 13] for linear temporal
logic.

Acknowledgement. The results of this chapter have appeared in [Codescu
et al., 2010b]. I have participated in the implementation of Maude (mainly done
by A. Riesco and C. Maeder) and of the translation from Maude to CasL in HETS
(Sec. 9.2) and have designed and implemented in HETS the normalization of Maude
free definition links (Sec. 9.4) based on a result in [Mossakowski, 2005]. The trans-
lation of Maude modules to development graphs (Sec. 9.3) has been done by A.
Riesco and C. Maeder.



Part I11

Architectural Refinement in HETS






CHAPTER 10
Lambda Expressions in
Architectural Specifications

Contents
10.1 Semantics of Generic Unit Expressions . . . ... ... ....... 140
10.2 Adding Dependency Tracking . . . . . . ... ... ... ... 143
10.3 Completeness of Extended Static Semantics . . ... ........ 148
10.4 Parametric Architectural Specifications . . . . ... ... ... ... 149
10.5 Refinement of Units with Imports . . . .. ... ... ........ 153
10.6 An Application: Warehouse System . . . .. ... ... ....... 156
10.7Conclusions . . . . . . ..o i e e e e e 158

The semantics of architectural specifications (Sec. 4.4) relies on compatibility
checks between units as prerequisite for combining them. The intuitive idea is that
shared symbols must be interpreted in the same way for two models to be put to-
gether. The rules have been presented in two ways: the first way is to define a basic
static semantics and model semantics in a purely model-theoretical fashion and the
compatibility checks are required in the model semantics whenever needed, while
the second is an extended static semantics analysis which builds a graph of depen-
dencies between units and discards the compatibility conditions statically. Units of
an architectural specification can be generic [Sannella and Tarlecki, 1988a], with
the intended intuitive meaning that the implementation of the result specification
depends on the implementations of the arguments (e.g. some auxiliary functions).
Generic units are built using generic unit expressions, written in CasL using the \-
notation: A X1 : SP, ..., X,, : SP, . UT, where UT is a unit term which contains
Xi,... X, .

The motivation of this chapter is rather technical: the extended static semantics
rule for generic unit expression does not keep track of the dependencies between
the units used in the unit term UT'. This is unsatisfactory for a number of reasons
that we give in detail in Section 10.1: firstly, the completeness theorem for ex-
tended static semantics (Theorem 5.4 in [Mosses, 2004]) no longer holds when the
language is extended with definitions of parametric units. Moreover, unit imports
are known to be introducing complexity in semantics and verification of architec-
tural specifications. One way to reduce complexity is to replace unit imports with
an equivalent construction as below, provided that M is made visible locally in the
anonymous architectural specification:
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units M : SP1;

units M : SP1; N : arch spec {
N : SP2 given M; is equivalent to units F : SP1 — SP2
result F[M]};

If N would be a generic unit, then the result of the architectural specification in
the right side would be a A-expression and the two constructions would no longer
be equivalent because they treat differently the dependency between M and N. In
Section 10.2 we present our proposed changes for the extended static semantics
of architectural specifications, followed by a discussion in Section 10.3 on how the
completeness result can be extended to cover lambda expressions as well. Section
10.4 further extends the changes to parametric architectural specifications i.e. those
having lambda expressions as result. Section 10.5 introduces an extension of the
refinement language presented in Chapter 5 to cover refinement of unit with im-
ports, based on the equivalent construction sketched above. Finally, in Section 10.6
we present a larger example motivating the introduction of the new rules, involving
refinement of units with imports.

10.1 Semantics of Generic Unit Expressions

We present now the extended static semantic rule for generic unit expressions, with
the help of a typical example of a dependency between the unit term of a lambda
expression and the generic unit defined by it. Such dependencies are not tracked in
the diagram built with the rules for extended static semantics defined in [Mosses,
2004].

Example 10.1.1 Let us consider the CasL architectural specification below:

spec S =sort s

spec S1 =sort sl

spec S2 =sort s2

arch spec ASP =

units M : S; A1 :S1; A2:S2;
L1 =XX1:S1eMandX1;
L2 =X X2:S2 eM and X2;

result L1 [Al] and L2 [A2]

The unit term L1[Al] and L2[A2] is ill-formed w.r.t. the rules of extended static
semantics for architectural specifications because in the diagram in the Fig. 10.1 (built
using the extended static semantics rules for generic unit expressions and unit applica-
tions, which are presented in Fig. 10.2 and Fig. 10.3 respectively) the sort s can not
be traced to a common origin (which should be the node M).

g
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L1[A1] and L2[A2]

Figure 10.1: Diagram of ASP.

I, - UNIT-BIND-1 > (UNy,%1)...Ts - UNIT-BIND-n &> (UN,,, £,,)
Ye=(21,.,)and =2, U...UD,

UNy,..., UN, are new names
D' extends dgm(Cs) by new node ¢ with D’(q) = X,
nodes p; and edges ¢; : p; — ¢ with D'(e;) = vs,cxn forie1,...,n

Cé = ({}7 {UNI —p1,...,UN, — pn}v D/)
I's,Cs + C! + UNIT-TERM > (p, D”)
D" ensures amalgamability along (D" (p), (idpr (), ts,cp(p))iel,...n)
D" extends D" by new node z with D"'(z) = ()
I'y,Cs - unit-expr UNIT-BIND-1,..,UNIT-BIND-n UNIT-TERMp>
(Z7Ea, N D//(p),D///)

Figure 10.2: Extended static semantics rule for unit expressions (Cast Ref. Manual)

The rule for analysis of generic unit expressions (Fig. 10.2) introduces a node p
for the unit term of the lambda expression that keeps track of the sharing informa-
tion of the terms involved. However, this node p is not further used in application
of lambda expressions. In the extended static context, the entry corresponding to
the lambda expression only contains a new node labeled with the empty signature,
denoted z in Fig. 10.2, as node of imports, and this new node is isolated. Notice
also that the purpose of inserting the node ¢ and the edges from nodes p; to ¢ is to
ensure compatibility of the formal parameters when making the analysis of the unit
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term.

Cy = (Py, By, D)
Ps(UN) = (p!, (31, ..., 50 = X))
sF=DpHuxu..ux,
¥, T, Cs - FIT-ARG-i > (07 : B — B4 pA D) fori € 1,...,n
Dy, .., D, disjointly extend D
let DA =DyU..UD,

Y4 =DpHuzf. . uxd
ol = (idppryUorU..Uay) : DL
o4(A): ¥ — (24U X4(A)), where A : ©F — ¥ is the signature extension
»E=y4uri(A)

D4 ensures amalgamability along (34, (tp(,1)cxa, Lyacza)iel,..n)

D’ extends D“by new node ¢, edge e’ : p — ¢ with D'(e!) = 1p(yrcs),
nodes p!” and edges ef : p!" — ¢P with D’(el") = i15,cx
and e; : pf' — p/ with D'(e;) = o, fori € 1,...,n
D’ ensures amalgamability along (27, (64 (A), LyAcnR)iel,...n)

D" extends D’ by new node ¢, edge ¢’ : ¢® — ¢ with D"(¢/) = 04 (A)
and edges ¢; : p;' — g with D"(e}) = tyacyn fori€ 1,...,n

T,,Cs F unit-appl UN FIT-ARG-1,..,FIT-ARG-n [> (¢, D")

Figure 10.3: Extended static semantics rules for unit application (Cast. Ref. Manual)

Using this version of the rules raises a series of problems. First, there is no
methodological justification for making terms like the one in our example illegal by
not keeping track of the unit M in the lambda expressions. Moreover, the archi-
tectural specification ASP has a denotation w.r.t. the basic semantics (it is easy to
see that the specification type-checks) and |ASP| has a denotation w.r.t. the model
semantics (there is no problem in amalgamating M with a model of specifications
S1 or S2, since there are no shared symbols, and when making the amalgamation
of L1[A1] with L2[A2] the symbol s is interpreted in the same way by construction).
Thus, since one would expect that the completeness result of [Mosses, 2004] should
still hold for the entire architectural language, AS P should have a denotation w.r.t.
the extended static semantics.

Another reason to consider the current rules unsatisfactory is the relation be-
tween units with imports and generic units. A unit declaration with imports has
been informally explained in the literature as a generic unit instantiated once, like
in the following example.

Example 10.1.2 The following unit declarations, taken from the architectural speci-
fication of a steam boiler control system (Chapter 13 of [Bidoit and Mosses, 2004]):
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B : BASICS;
MR : VALUE — MESSAGES_RECEIVED given B;

can be expressed as a generic unit instantiated once (the linear visibility of units,
required in [Mosses, 2004], is assumed to be extended):

B : BASICS;
MR : arch spec {
units F : BASICS X VALUE — MESSAGES_RECEIVED
result A\ X : VALUE o F [B] [X]};
O

The two declarations in Example 10.1.2 are not equivalent because the former
traces the dependency between MR and B while the latter does not. However it
has been noticed that to be able to write down refinements of units with imports
using the CasL refinement language presented in Chap. 5, this equivalence must
become formal. This can only be the case if the second construction also tracks the
dependency of B with MR. Another advantage of making the equivalence formal is
that the completeness result for extended static semantics and the proof calculus for
architectural specifications cover imports as well, since they can now be regarded
only as “syntactic sugar” for the equivalent construction.

10.2 Adding Dependency Tracking

The proposed changes are based on the following observation: in the rule for unit
application(Fig. 10.3), new nodes are needed for the formal parameters and for the
result (labeled p!" and ¢” respectively). However, for lambda expressions the nodes
p; and p in Fig. 10.2 have already been introduced with the same purpose. This
symmetry can be exploited when making the applications of a lambda expression
and we will therefore need to keep track of the mentioned nodes.

Recall from [Mosses, 2004] that an extended static unit context consists of a
triple (Ps, Bs, D), where By € UnitName — Item and stores the corresponding
nodes in the diagram for non-generic units, Ps € UnitName — Item x ParUnitSig
and stores the parameterized unit signature of a generic unit together with the node
of the imports, such that both B, and P; are finite maps and have disjoint domains
and D is the signature diagram that stores the dependencies between units.

Firstly, we need to modify the definition of extended static unit contexts such
that P, maps now unit names to pairs in [Item| x ParUnitSig, to be able to store
the nodes of the parameters and of the result for lambda expressions. A lambda
expression must have at least one formal parameter, so the list of items contains
either the node of the union of the imports in the case of generic units or at least
two elements in the case of definitions of lambda expressions. Moreover, unit decla-
rations of form UN : arch spec ASP where ASP is an architectural specification
whose result unit is a lambda expression also should store the nodes for parameters
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Iy - UNIT-BIND-i > (UN;, ;) fori € 1,...,n
Y=, ,E)and ¥ =3 U...UX,
U N; are new names
D’ extends dgm(Cs) by new node ¢ with D’(q) = %,
nodes p; with D'(p;) = %;
and edges e; : p; — q with D'(e;) = ix,cx forie1,....n
Cl={},{UN; = pilie1,...,n},D’)
I's,Cs + CL - UNIT-TERM > (r, D")

D" ensures amalgamability along(D" (r), (idpr(y, ts,cp7(r)))
" /! : "

D" removes from D” the node ¢ and its incoming edges

T, Cs F unit-expr UNIT-BIND-1,..,UNIT-BIND-n UNIT-TERMD>
([ryp1,--pn], X0 — D" (r), D)

Figure 10.4: Modified extended static semantics rule for unit expressions.

and the result. The rule changes needed for this latter case are not straightforward
and will be addressed separately in Sec. 10.4. In Sec. 10.4 we will also make use
of this list of nodes for a different purpose, namely tracking dependencies between
different levels of visibility for units.

Fig. 10.4 presents the modified static semantics rule for generic unit expressions,
which introduces new nodes p; for the parameters and a node ¢ to ensure their
compatibility during the analysis of the unit term. Then, the result node of the unit
term p together with the nodes for parameters are returned as result of the analysis
of the lambda expression, together with the diagram resulting by removing the
node ¢ and the edges from the nodes p; to ¢ from the diagram obtained after the
analysis of the unit term. The reason why the node ¢ must be removed is that
the nodes of the formal parameters will be connected to the actual parameters and
their compatibility must be rather checked than ensured. Note that the node ¢ is
linked only by the edges added explicitly in D’ and therefore no dependency is lost
by removing it.

We also have to make a case distinction in the rule of unit application. In the
case of generic units, we can use the existing rule for unit applications. The rule for
application of lambda expressions is similar with the one used in the first case, but
it puts forward the idea that the nodes for formal parameters and result that were
stored in the analysis of the lambda expression should be used when making the
application. However, this requires special care, as we will illustrate with the help
of some examples.

Example 10.2.1 Repeated applications of the same lambda expression. Let us con-
sider the definition FF = AX : SP . X and M where we assume that SP and the
specification of M do not share symbols and M1, M2 : SP. If we use the stored nodes
for parameters and result at every application of F, we obtain the diagram in Fig.



10.2. Adding Dependency Tracking 145

& a2
& @’a
Figure 10.5: Unwanted sharing.

10.5, resulting after applying F' to M1 and M2. The edges from X to M1 and M?2
respectively introduce a sharing requirement between the actual parameters, which is
not intended. 0

The solution to this problem is to copy at every application the nodes introduced
in the diagram during the analysis of the term of the lambda expression. The copy
can be obtained starting with the stored nodes p; by marking their copies as new
formal parameter nodes and going along their outgoing edges: for each new node
accessible from p;, we introduce a copy of it in the diagram together with copies
of its incoming edges - this last step copies also the dependencies of the unit term
of the lambda expression with the outer units (in the example, the edge from the
node of M to the node of M and X is copied). The copying stops when all nodes
have been considered, and the copy of the result node is then marked as new result
node. Let us denote the procedure described above copyDiagram, which takes
as inputs the nodes for result and formal parameters of the lambda expression
and the current diagram and returns the copied nodes for formal parameters and
result and the new diagram. The procedure described works as expected because
the diagram created during the analysis of the unit term of the lambda expression
consists of exactly the nodes accessible from the formal parameter nodes and it has
no cycles; moreover, no new dependencies involving these nodes are ever added in
the diagram.

Example 10.2.2 Tracking dependencies of the actual parameters with the environ-
ment.
Let us consider the architectural specification below:

spec S =sort Xx

spec T =sorts s, t

spec U =sorts s, u

arch spec ASP =
units
P: {sort s};
A : T given P;
L=XX:SeAandX;
B : U given P
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Figure 10.6: Diagram of Example 10.2.2 before application.

result L [B fit x — u]

where the actual parameter and the unit A used in the term of the lambda expression
share the sort symbol s, which can be traced in the dependency diagram to a common
origin, which is the node of P - see Fig. 10.6. This application should be therefore
considered correct. O

Referring to the rule in Fig. 10.3, the generic unit is given by the inclusion A : " —
Y of its formal parameters into the body and at application, the fitting arguments
give a signature morphism ¢4 : ¥ — X4 from the formal parameters to the
actual parameters. Then, ¥4 U X4 (A) results by making the union of the fitting
arguments with the body translated along the signature extension o4(A) : ¥ —
¥4 U XA(A). Originally, an application has been considered not well-formed if the
result signature is not a pushout of the body and argument signatures (this is hidden
in the use of the notation UA(A), see [Mosses, 2004]) and this is indeed not the case
in Example 10.2.2. We can drop this requirement in the case of lambda expressions
and rely on the condition that the diagram should ensure amalgamability; indeed,
in this case the application is correct if whenever a symbol is present both in the
body and in the argument signatures, the symbol can be traced in the diagram to
a common origin which need not be the node of the formal parameter, like in the
case of sort s above.

Taking into account the observations in Examples 10.2.1 and 10.2.2, the rule
of for application of lambda expressions is presented in Fig. 10.7. Note that we
can rely on the fact that a lambda expression has at least one bound variable and
therefore the number of nodes stored for parameters is at least one. As we moreover
save the node resulting from the analysis of the unit term of the lambda expression,
we ensure that a distinction between the application of lambda expressions and of
declared generic unit is done and the corresponding rules are used correctly in each
case.
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C, = (P,, By, Do)
PS(UN) = ([p7p17 cee 7pn]7 (217 O 2))
([r, f1, .-+ ful, D) = copyDiagram([p,p1, - . ., pu], Do)
SF=%U..U%,
¥, T, Cs - FIT-ARG-i > (07 : 3 — B4, pA D) fori € 1,...,n
Dy, .., D, disjointly extend D
let DA=DyU..UD,
yA=xt.uxd
o= (o1 U..Udgy): 2 = 34
o4(A): ¥ — (24U X4(A)), where A : ©F — ¥ is the signature extension
and the pushout condition for ©4 U X4 (A) is dropped
»E=y4uzi(A)
D* ensures amalgamability along (24, (txacsaict. )
D’ extends D# with edges ¢; : f; — p;“ with D’(ei)l: o, foriel,...,n
D’ ensures amalgamability along (X%, (¢4(A), LyACsR)iel )
D" extends D’ by new node ¢, edge ¢’ : r — ¢ with D"(¢/) = 04(A)
and edges ¢; : p;' — g with D"(e}) = tyacyn, foriel,....n

I,,C, - unit-appl UN FIT-ARG-1,..,FIT-ARG-n > (¢, D")

Figure 10.7: Extended static semantics rule for unit application of lambda expres-
sions.

Figure 10.8: Diagram of Example 10.1.1 with the new rules.
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Fig. 10.8 presents then the diagram of the architectural specification ASP in
Example 10.1.1 using the modified rules of Fig. 10.4 and 10.7!; in this diagram
the sort s can be traced to a common origin and thus the amalgamation is correct.
Moreover, when making the application of the lambda expression, the diagram of
the term M and X is copied such that no dependency between the actual parame-
ters is incorrectly introduced by edges from the formal parameter node and copying
the diagram does not duplicate the node M.

10.3 Completeness of Extended Static Semantics

In this section we discuss how to extend the soundness and completeness result
from [Mosses, 2004] to the architectural specification language obtained by adding
definitions of generic units to the original fragment language in Section IV.5 of
[Mosses, 2004], i.e. unit definitions assign to unit names unit expressions instead
of unit terms. Comparing with the language in Fig. 4.2, the differences are that this
language does not mix declarations and definitions of units, i.e. all declarations
are done locally in the local ... within construction, unit declarations do not have
imports and unit specifications are never architectural. Also we only restrict to
lambda expressions with a single parameter. These differences do not modify the
language in an essential way. The soundness and completeness result is formulated
as follows.

Theorem 10.3.1 For any architectural specification ASP in which no generic unit
is applied more than once we have that ASP has a denotation w.r.t. the extended
static semantics iff ASP has a denotation w.r.t. the static semantics and |ASP| has a
denotation w.r.t. the partial model semantics.

The requirement that no generic unit is applied more than once is a simplifying
assumption for achieving a generative semantics 2.

The theorem is proved using a quite technical lemma (Lemma 5.6 in [Mosses,
2004]) which we do not present in full detail. Intuitively, it says that the extended
static semantics for a unit term is successful if and only if the static and model
semantics are successful as well and if it is the case, the signatures match and the
environment obtained in the model semantics can be represented as a family of
models compatible with the diagram obtained in the extended static semantics.
The proof of this lemma is done by induction on the structure of the unit term.
In order to extend the proof to cover lambda expressions as well, we have two
new cases to consider: applications of lambda expressions and local declarations of
generic units. The new proof is quite long and tedious, but follows very closely the
existing proof. Therefore, we only sketch here the proof idea. For applications of

!Note that we omitted the nodes of the term of the lambda expression that are copied at each
application and only kept the significant ones.

2Recall from Sec. 4.4 that this means that repeated applications of a generic unit to same argu-
ments no longer yields the same result.
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lambda expressions, we simply repeat the proof for unit applications but use this
time the copies of the nodes for arguments and result that are stored in the context
instead of introducing arbitrary distinguished ones. For local declarations of generic
units, the proof is similar to the one of local declarations of non-generic units, only
that now we have to spell out the rules for lambda expressions before applying
the inductive step for the unit term in the lambda expression. The introduced
dependency between the lambda expression and its unit term is essential when
proving compatibility of the environment with the diagram.

10.4 Parametric Architectural Specifications

Further changes are needed when considering the complete CasL architectural lan-
guage. The result unit of an architectural specification ASP can be itself a lambda
expression. In this case the architectural specification is called parametric. The
grammar of the architectural language also covers the case when the specification
of a unit is itself architectural (either named or anonymous). For such units, we
must ensure that designated nodes for formal parameters and result exist in the
diagram, since they are required in the rule of unit application of generic units.

Let us first consider the case of anonymous parametric architectural specifica-
tions. For the specification below, the static analysis of the architectural specifica-
tion is currently done in the empty extended static context and thus the nodes for
formal parameters and result, which are introduced when making the analysis of
the result lambda expression, are no longer present in the diagram at the global
level. The dependency between M and F' must be tracked in the diagram in order
to ensure correctness of the term F[M1 fit ¢ — u| and F[M2 fit t — v].

spec S = sort s
spec T = sort ¢
spec U = sort u
spec V = sort v
arch spec ASP2 =
units
F : arch spec {
units M : S
result \X: T e M and X
3
M1:U; M2:V;
result F [M1 fitt — u] and F [M2 fit t — v]

The way we overcome this problem is by making the analysis of the inner archi-
tectural specification in the existing global context instead of using an empty global
context. After the analysis, we will keep in the global context the diagram resulting
from the analysis of the locally-declared units. Thus, the nodes introduced locally
become available for further references. Moreover, the units declared locally will
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not be kept in the global extended context, since we do not want to extend their
scope. By making the analysis of the local specification in the global context, the
visibility of units declared at the global level is extended to the local context as well
(remember that we assumed this extension of visibility in Example 10.1.2) and the
dependencies of the global units with the local environment are tracked by keeping
the entire resulting diagram at the global level.

The second case to consider is the one of unit declarations of form U
arch spec ASP, when ASP is a named parametric architectural specification. In
this case, ASP cannot refer to units other than those declared within itself and
therefore its diagram does not carry any dependency information relevant for the
global level. Therefore, instead of adding the diagram of ASP to the global dia-
gram, we only need to introduce new nodes for formal parameters and edges to a
new result node. This abstracts away the dependencies of the result node of ASP
with the units declared locally (which we do not need) and only keeps the depen-
dencies of the result node with the parameter nodes along the new edges, which
will be then copied as diagram of the unit term of the lambda expression at each
application of U.

FS - (G57 ‘/Su Asv TS)
ASN is a new name
I's, Co - ARCH-SPEC 1> (nodes, AY, D')
I's F arch-spec-defn ASN ARCH-SPEC > (G, Vs, As U {ASN — AY}, Tk)

Figure 10.9: Rule for architectural library items.

The modifications of the extended static semantics rules are presented in Fig-
ures 10.9 to 10.17 and can be summarized as follows. At the library level, the
analysis of an architectural specification (Fig. 10.9) starts in the empty extended
static unit context. The analysis of an architectural specification (Fig. 10.10), we
need to extend the diagram for anonymous parametric architectural specifications
(first rule) and named parametric architectural specifications (third rule). In the
latter case, we also need to return the (new) nodes for formal parameters and
result (r, p1, -+, pn). The rule for basic architectural specifications (Fig. 10.11) an-
alyzes the list of declarations and definitions in the context received as parameter
rather than in the empty context like before. Thus the diagrams built locally will be
added to the global diagram and the visibility of global units is extended. The rule
for lists of declarations of definitions (Fig. 10.12) modifies the old version just by
introducing a unit context C? in the context of the rule and using it for the analysis
of the first declaration instead of C?. The changes made for unit specifications and
result unit expressions (Figures 10.13 to 10.16) are just meant to propagate the
results.

The rule for result unit (Fig.10.17) makes a case distinction for each of the
four alternatives in Fig. 4.2. When the specification of the unit is not architectural
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Ty, Cs b ARCH-SPEC [> (nodes, AS, D) \

I, Cs - BASIC-ARCH-SPEC 1> (nodes, AX, D’)
T,,C, - BASIC-ARCH-SPEC qua ARCH-SPEC > (nodes, AX, D')

ASN € Dom(As)
As(ASN) = (S5, %)
D' extends dgm/(C;) with a new node n such that D'(n) = %
(Gs, Vs, Ag, Ts), Cs = ASN qua ARCH-SPEC 1> ([n], As(ASN), dgm(Cs))

ASN € Dom(As)
As(ASN) = (S,(21,...,2,) = %)
D’ extends dgm/(Cs) with new nodes py, .., p,, r and edges p; — r
such that D'(p; — r) = ty,cx
(Gs, Vs, A, Ts),Cs H ASN qua ARCH-SPEC > ([r, p1, ..., Pn), As(ASN), D')

Figure 10.10: Rules for architectural specifications.

] I, Cy b BASIC-ARCH-SPEC I> (nodes, AS, D) \

I, C' - UDDY > C,
[y, Cs - RESULT-UNIT > (nodes, UY, D)
['s,CY F basic-arch-spec UDD™ RESULT-UNIT > (nodes, (ctz(Cs), UZ), D)

Figure 10.11: New extended static semantics rule for basic architectural specifica-
tions.

I's,Cs b UNIT-DECL-DEFNT > (',

Iy, C9 - UDD1 > (Cy)q

Is, (Cs)p—1 FUDDD > (Cs)p,
Is,Co+UDD1, ..., UDDn > (Cy),

Figure 10.12: New extended static semantics rule for lists of declarations and defi-
nitions.

(first two rules), the imported units are analyzed, a new node p labelled with the
signature union of all imports is introduced in the diagram and the dependency
between the declared unit and the imports is tracked either via the edge from p to
q in the first case, or by storing the node p as node of imports in the second case.
When the specification of the unit is a parametric architectural specification (third
rule), the nodes of formal parameters and results are saved and the unit will be
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Iy, C - RESULT-UNIT > (nodes, U, D) ‘

I's,C, - UNIT-EXPR > (p, UX, D)
['s,Cs - result-unit UNIT-EXPR > ([p], U%, D)

I's,Cs F UNIT-EXPR > (1 : fs,US, D)
['s,Cs - result-unit UNIT-EXPR > (r: fs,U%, D)

Figure 10.13: New extended static semantics rule for result unit expressions.

I's, Cs - ARCH-UNIT-SPEC [> (nodes, US, D) \

I's, Cs - ARCH-SPEC I> (nodes, (S,Ux), D')
I's, Cs F ARCH-SPEC qua ARCH-UNIT-SPEC > (nodes, UX, D)

Figure 10.14: New extended static semantics rule for architectural unit specifica-
tions

I's,Cs - unit-defn UN UNIT-EXPR > C!

', Cy - UNIT-EXPR &> ([p], 2, D)
UN is a new name
I's,Cs Funit-defn UN UNIT-EXPR > ({},{UN — (p, %)}, D)

[y, Cs - UNIT-EXPR > (7 : f5,U%, D)
UN is a new name
I, Cs Funit-defn UN UNIT-EXPR > ({UN — (r: fs,U%)},{}, D)

Figure 10.15: New rule for unit definitions.

5, Ty, Cy - UNIT-SPEC &> (nodes, US, D) ‘

I's, Cs = ARCH-UNIT-SPEC > (nodes, U, D')
3, T, Cy - ARCH-UNIT-SPEC qua UNIT-SPEC > (nodes, UX, D')

Figure 10.16: New extended static semantics rule for arch unit specs as unit specs.

applied using the rule for lambda expressions. Finally, when the specification of the
unit is a non-parametric architectural specification (last rule), we set the pointer for
the unit to the node of the result unit of the architectural specification to be able to
trace its dependencies. In the last two cases there are no imports so the node p will
always be labeled with the empty signature.
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’Fs, C, F UNIT-DECL &> (C', D) ‘

C, - UNIT-IMPORTED r> (p, D)
C=0Cs+ ({}7{}7D)
D(p),Ts,C - UNIT-SPEC > ([|, %, D)
UN is a new name
D" extends D’ by a new node g with D"(q) = D'(p) UX
and edge e : p — g with D"(e) = tp/(p)cpr(q)
T,,C, F unit-decl UN UNIT-SPEC UNIT-IMPORTED > ({},{UN ~ ¢}, D")

Cs - UNIT-IMPORTED > (p, D)
C=C+({}1L{}D)
D(p),Ts,C FUNIT-SPEC > ([], (31, .., 2n) — X0, D)
UN is a new name
I's,Cs Funit-decl UN UNIT-SPEC UNIT-IMPORTEDC>
{UN = (p, (21, ., Zn) = Lo U}, {}, D)

Cs - UNIT-IMPORTED > (p, D)
C=C+ ({1 {}D)
D(p),T's = UNIT-SPEC > (r : fp, (X1,..,5,) = X, D)
UN is a new name
I'y,Cs Funit-decl UN UNIT-SPEC UNIT-IMPORTED>
({UN = (r: fp,(31,.,2,) = )}, {}, D)

Cs | UNIT-IMPORTED > (p, D)
C=C+({}1L{}D)
D(p),I's b UNIT-SPEC > ([n], 2, D’)
UN is a new name
I's,Cs Funit-decl UN UNIT-SPEC UNIT-IMPORTEDD>>
{3 {UN = ([n], )}, D)

Figure 10.17: New rules for unit declarations.

10.5 Refinement of Units with Imports

In Sec. 10.1 we have discussed that one of the motivations of tracking dependen-
cies between the units used in the unit term of a lambda expression is to simplify
the analysis and refinement of units with imports. Recall from Chap. 5 that we
introduced units with imports only as syntactic construction, without introducing
corresponding rules for their static and model semantics in Sec. 5.2. We comple-
ment the definitions in Sec. 5.2 here, and start with a motivating example.
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Example 10.5.1 (Refinement of units with imports) In general, a unit may have
several imports, as below:

arch spec ASP =
units My : SPy;

M, : SPy;
U:SP — SP’ given My , ..., My;

result . ..
This can be equivalently expressed using an anonymous architectural specification with

a single generic unit which is then applied in the result unit expression to the imported
unit terms as below:

arch spec ASP =
units My : SPy;

M, : SP,;

U : arch spec {
units ¥ : SP, x --- x SP, x SP— SP’;
result A X : SP e F [M;]... [M,] [X] };

result ...
The refinement signature of ASP is a branching refinement signature of form

(U%, BstC'), with BstC(U) being itself a branching static unit context mapping F to
its unit signature.

In general, the imported unit may be written as a unit term of arbitrary com-
plexity instead of just a unit name, like in the example above. In this case, its
specification would be no longer directly available. Moreover, as remarked in [Hoff-
man, 2005], it is not always possible to find a specification that captures exactly the
class of all models that may arise as the result of the imported unit term (see also
Ex. 11.1.7). It is however possible, as we will see in Chapter 11, to use a proof cal-
culus for architectural specifications similar to the one defined in [Hoffman, 2003]
and Section IV.5.3 of [Mosses, 2004] to generate a structured specification that
includes this model class among its models. We can then use this structured speci-
fication as an approximation.

Note that in Fig. 10.17 the first two rules cover the cases of units with imports.
While they suffice for static analysis of architectural specifications in the classical
sense, the rules have to be slightly modified when architectural specifications are
analyzed as an alternative of refinement specifications. The idea is that the refine-
ment signature of U in the example above must be the same in both equivalent
cases. The modification follows easily; we do not present the rules explicitly as
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they require many changes to the semantics of architectural specifications to work
with refined-unit static contexts instead of unit static context. These changes are
however only of formal nature.

We now come to the task of refining units with imports. Given that imports are
now only a convenient way for writing down an anonymous architectural specifica-
tion, we simply need to refine the implicit generic unit introduced in the equivalent
syntactic construction, as we illustrate below.

Example 10.5.2 The refinement signature of ASP from Ex. 10.5.1 is a branching
refinement signature (UX, BstC'), with BstC(UN) being itself a branching static unit
context mapping F' to its unit signature. Notice that when using the first syntactic
construction, the unit name F' is not in the scope and therefore we can not refine the
component UN of ASP as:

refinement R = arch spec ASP then {UN to {F to R’}}

However, the construction of the anonymous architectural specification of UN ensures
that it will always have only one unit and therefore we want to allow to write:

refinement R = arch spec ASP then {UN to R’}

when the signature of UN 1is a branching static unit context with a single unit name
in the domain and the signature of that unit name matches the source signature of
R’. This would require that in the composition of refinement signatures, we simply
transform the refinement signature RY' of R’ into a component refinement signature
mapping the name of the generated generic unit (in our case F) to RY. before updating
the signature of UN in BstC and thus the name F is not made visible to the user. The
model semantics rule is similar.

We therefore extend the composition of refinement signatures (Def. 5.2.2) with
a new case:

e RY; = (Ux, BstC') with only one unit name UN in the domain of BstC
and the composition RY of BstC(UN) with RY is defined. In this case,
RY1; R¥y = (U, BstC[{UN — RY'}]).

Similarly, the composition of refinement relations (Def. 5.2.6) must be extended as
well with a new case:

e RYy = (UX, BstC') and BstC’ has only UN in the domain, and
RY = BstC'(UN); RY, is defined. In this case, R;;R2 is defined as
R1;{UN — Ry}

This does not introduce any ambiguities between units written at different nest-
ing levels in the same architectural specification, as they have different refinement
signatures: if we have a unit declaration of the form UN : arch spec {units UN :
SP; ...}, the signature of the inner declaration of UN is a simple refinement signa-
ture, while the signature of the outer declaration of UN is a branching refinement
signature.
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10.6 An Application: Warehouse System

This section illustrates the use of the new semantics rules for architectural specifica-
tions with the help of a case study example - the specification of a warehouse system
from [Baumeister and Bert, 2000]. Note that we will also use the CasL refinement
language described in Chap. 5 to record formally the refinements introduced in the
cited paper only informally, at the meta-level. The system keeps track of stocks of
products and of orders and allows adding, canceling and invoicing orders, as well
as adding products to the stock.

G ‘

Figure 10.18: Structure of the specification of the warehouse system.

Fig. 10.18 presents the specifications involved and the relations between them.
The specifications ORDER, PRODUCT and STOCK specify the objects of the system.
The main purpose for the INVOICE specification is to specify an operation for in-
voicing an order for a product in the stock. The QUEUES and ORDER_QUEUES
specifications specify different types of queues (pending, invoiced) for orders. The
WHES specification is the top-level specification, with the main operations of the sys-
tem. The next step is to come up with a more concrete realization of ORDER, that
allows to distinguish between different orders on the same quantity of a product
by introducing labels. This results in specifications ORDER’, INVOICE’ and WHS’.
The specification WHS’ of the warehouse system is then further refined to an archi-
tectural specification describing the structure of the implementation of the system.
Moreover, NAT and LIST are the usual specifications of natural numbers and lists.

The modular decomposition of the warehouse system is then recorded in the
architectural specification below:

arch spec WAREHOUSE =
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units NATALG : NAT; PRODUCTALG : PRODUCT;
ORDERFUN : PRODUCT — ORDER’ given NATALG;
ORDERALG = ORDERFUN [PRODUCTALG];
STOCKFUN : PRODUCT — STOCK given NATALG;
STOCKALG = STOCKFUN [PRODUCTALG];
INVOICEFUN : {ORDER’ and STOCK} — INVOICE’;
QUEUESFUN : ORDER — QUEUES;
WHSFUN : {QUEUES and INVOICE’} — WHS’
result WHSFUN[QUEUESFUN [ORDERALG]
and INVOICEFUN [ORDERALG and STOCKALG]]

We can write this refinement chain in the following way:

refinement R = WHS refined to WHS’
refined to arch spec WAREHOUSE

We can further proceed to refine each component separately. For example, let
us assume we want to further refine ORDER’ in such a way that the labels of orders
are natural numbers and denote the corresponding specification ORDER”.

The changes in the extended static semantics rules allow us to rephrase the
declaration of ORDERFUN in an equivalent way using generic units:

ORDERFUN : arch spec {
units F : NAT x PRODUCT — ORDER’
result lambda X : PRODUCT e F [NATALG] [X] };

Then we need to write a unit specification for the specification of ORDERFUN to be
able to further refine it:

unit spec NATORDER’ = NAT x PRODUCT — ORDER’
and another unit specification to store the signature after refinement as well:
unit spec NATORDER” = NAT x PRODUCT — ORDER”

The refinement is done along a morphism that maps the sort Label to Nat:
refinement R” = NATORDER’ refined via Label — Nat to NATORDER”

The changes to the semantics of CasL refinement language introduced in the
previous section allow us to refine the component ORDERFUN without making use

of the arbitrary name (in our case F) chosen for the generic unit:

refinement R” = R then {ORDERFUN to R’}
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10.7 Conclusions

We have presented and discussed a series of changes to extended static semantics
of CasL architectural specifications, motivated by the unsatisfactory treatment of
lambda expressions in the original semantics of CasL. [Mosses, 2004]. We have iden-
tified a number of practically important situations requiring lambda expressions to
have dependency tracking with their unit term and we formulated the modified
rules accordingly. We have also discussed briefly how the known completeness re-
sult can now be successfully extended to the whole CasL architectural language; a
full proof is very lengthy and follows the lines of the existing result; for this reason
we have omitted it. Finally, we have presented an example of refinement of generic
units with imports; without the changes introduced in this paper such a refinement
could not have been expressed using the CasL refinement language. Concerning
future work, it appears natural to attempt to generalize generic units to the higher-
order case. Note that HETS now supports the new rules introduced in this chapter.

Acknowledgement. The results in this chapter have been published in [Code-
scu, 2011] and have greatly benefited from suggestions of T. Mossakowski and
A. Tarlecki.
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In this chapter we look to answer the question whether a refinement specifica-
tion is correct and consistent. In the most basic form, a refinement is correct when
each model of the target specification is mapped by the constructor associated with
the implementation step to a model of the source specification of the refinement.
The complexity increases in the context of the refinement language of Casi, as it
supports branchings and compositions of refinements.

We propose an extension of the proof calculus for the Cast. architectural lan-
guage introduced in [Mosses, 2004] to the entire CasL refinement language. The
key idea behind this extension is that given a refinement specification, we construct
a structured specification whose denotation is, under conditions we discuss below,
exactly the image of the constructor associated with the refinement. Correctness of
refinements reduces then to checking model class inclusions. We prove that the cal-
culus thus obtained is sound and moreover complete for the architectural fragment
of the Cast refinement language. When considering the whole refinement language
however, completenss can only be obtained when exploiting during the verification
process information regarding the choice of a particular implementation. We fur-
thermore complement the refinement language with a formal notion of refinement
trees, which can be thought of as playing a similar role as development graphs do
for structured specifications. This means that we can use refinement trees not only
to visualize the structure of the development, but also to inspect the involved spec-
ifications and to check logical properties of refinements. In particular, we exploit
that constructors preserve consistency of specifications to derive a consistency cal-
culus for refinement specifications, which we then connect to the refinement trees
in HETS.
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ASP ::= 5+ units UDD; ... UDD,, result UE

UDD ::= U-DE—F—N—.—UDECL

UDECL ::= UN : USP {givenUTrr——UT "

USP ::= SP | SP; %——xSP; — SP {-arch-spee-ASP

UDEFN ::= A = UT UE

UE =:=UT | A\ Ay : SP},~——~An+SPr e UT

UT ::= A | A [FIT] —1fF¥E:} | UT and UT | UT with o : X — 3/ |
UT hide 0 : ¥ — ¥/ | local UDEFN; —UBEEN,; within UT

FIT::=UT |UTfito: ¥ — ¥’

Figure 11.1: Restricted CasL architectural language as in [Mosses, 2004]. Our ver-
sion covers the entire language, with no restrictions.

11.1 Proof Calculus for Cast. Architectural Specifications

The main motivation for formalizing the development process using CasL architec-
tural specifications and refinements is that one can then formally prove correct-
ness of the entire development. In [Mosses, 2004], Section IV:5, a proof calculus
for verification of architectural specifications was introduced as an algorithm for
checking whether the resulting units of an architectural specification satisfy a given
unit specification. In order to simplify presentation, in [Mosses, 2004] the architec-
tural language was restricted as in Fig. 11.1; however, it is rather straightforward
to extend the proof calculus to the whole architectural language, with the notable
exception of unit imports. In the following, we will present a new calculus for
correctness of architectural specifications, which provides the advantage of being
easier to generalize to the whole architectural language, including unit imports. As
we have seen in Sec. 10.5, unit imports can be equivalently formulated using an
anonymous architectural specification and giving a specification that approximates
the model class of each imported unit term. Making use of Dfn. 11.1.6, that intro-
duces such a specification, we can regard unit imports as a syntactic sugar for this
construction.Therefore, in the following we assume that unit imports are omitted
from the architectural language, since introducing imports will not imply any new
conditions on the soundness and completeness of the proof calculus.

We first recall the existing calculus of [Mosses, 2004] and begin by introducing
a number of auxiliary concepts. A context I' is a diagram in the signature category
of I, whose nodes are additionally labeled with sets of specifications. We will write
A :x SP to denote that a node A of a context is labeled with the signature ¥ and
the set of specifications SP and o : A — B to denote an edge between the nodes
A and B labeled with o. Thus, we can regard contexts as sets of such declarations
of labeled nodes and edges. We moreover use A : X to denote that the signature
of the node A is ¥.. Given a context I' and a family of models M = { M} ,c nodes(r)
indexed by the nodes of T', we say that M is compatible with T" if M4 € Mod(SP),
for each specification SP in the set labeling the node A in I" and M4 = Mp|p() for
each edge 0 : A — B. A generic context Iy, is a finite set of declarations of the
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form A :x_,sv SP — SP’, where ¥ — Y is the unit signature of SP — SP’.

The proof calculus of [Mosses, 2004] is then given as below, together with the
general format of the rules (in the box in front of them). Its judgements are of the
form - ASP :: USP, where ASP is an architectural specification over an institution
I and USP is a given unit specification. The proof calculus can be regarded as hav-
ing two components. The first one is a constructive component, building a context
I for keeping track of the dependencies between units as well a generic context
I'yen for storing the generic units. This is done with the rules for unit declarations
UDECL and unit terms UT in the proof calculus below. The second component is
deductive and it uses the contexts I" and I'y,, built with the constructive compo-
nent to check whether models of a unit expression satisfy a given unit specification
USP. This component contains the rules for architectural specifications ASP and
unit expression UE in the proof calculus below. For simplicity, we have chosen to
express these proof obligations only semantically; [Mosses, 2004] provides means
of expressing them syntactically with the help of the specifications assigned to the
nodes in I" and of discharging them.

F ASP :: USP
(deductive)

F UDECL, :: T! T

gen>s

- UDECL,, :: T, I™

Ui:l,..‘,n Féen? Ui:l,...,n FZ = UE :: USP
F units UDECL; ...UDECL,, result UFE :: USP

= UDECL :: T gep,, I’
(constructive)

FA:SP:: @, {A :Sig[SP] SP}

FA:SP— SP/ o {A :Sig[SP]%Sig[SP’] SP — SP’},@

Lyen,I' = UE :: USP
(deductive)
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Lgen, THUT =TV, A
for any family of models M compatible with IV, M4 € Mod(SP)

Lyen,I' = UI'qua UE :: SP

sSig[SP ] = Sig[SP]| =X
SP and SP; are equivalent
Lgen, T U{A:x {SP}} FUT =:T",B
B : Sig[SP,] in T’
for any family of models M compatible with IV, Mp € Mod(SP,)
Lyen, ' XA : SP e UI':: SPy — SPy

Lgen, THUT =TV, A
(constructive)

Lyen,'FA=T, A

A DIFEES o SP — SPT in Pgen
Lyen, ' U :: Ty, Ay
for any family of models M compatible with I',, M4, € Mod(SPy)
(A,0(A), ) is the selected pushout of (0, t5,cx,)
As Ap, B ¢ dom(Ty,)
Lyen, TEA[UT fito: Yy — X, ]| =T U{Af 5, {SP},0: A = Ag,
A, s, {SP.}, typcw, A = Ay, Bia 0, v: Ay — B, 0(A): A, — B}, B

Fgen,F F Wl . Fl,Al

Lyen, ' UL :: T'g, Ay
Al : Zl in Fl
A2 : 22 in FQ

dom(I'1) Ndom(I'2) = dom(T")
B ¢ dom(I'1) Udom(I'2)
I‘gen,F F U and Ul :: Ty UT'LU
{B 321u22 07 L21QE1U22 : Al — Bu LEzgzluEg : A2 — B}aB

Lyen, T HUT = T", A
B ¢ dom(I1")
Lyen, THFUT witho : X - X =T"U{B:sy 0,0 : A— B},B

Lgen, T HUT = T7, A
B ¢ dom(1")
Lgen, THUT hideo : X - Y = T"U{B:x 0,0: B— A}, B
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Lyen, THUT =TV, B
B:YinI’
A ¢ dom(T")
Lyen, TU{A:x0,idy: A= B}FUI" =:T" E
D ¢ dom(T")
Tgen, T F local A = UT within UT” :: I"[D/A], E[D/A]

The theorem below states that the proof calculus is successful for a given unit spec-
ification if and only if the architectural specification is correct w.r.t. the generative
model semantics and the units produced with it satisfy the unit specification. It
follows easily from a result in [Mosses, 2004].

Theorem 11.1.1 Let ASP be an architectural specification such that - ASP > [ and
no generic unit declaration of ASP is inconsistent. For each unit specification USP we
have that = ASP :: USP if and only if - ASP =, AM for some AM such that for all
(U,BM) € AM, U € Unit|USP].

We show that the second assumption of Thm. 11.1.1 is indeed necessary

Example 11.1.2 Let us consider the following specifications:

spec CONSTS =
sort s
opsab:s
spec EQCONSTS = CONSTS
then
ea=">b
spec DIFFCONSTS = CONSTS
then
® (Cl = b)
arch spec ASP =
units
M : EQCONSTS;
F' : DIFFCONSTS — EQCONSTS;
result F[M]

The unit specification DIFFCONSTS — EQCONSTS is inconsistent, because the ex-
tension is obviously non-conservative, as we cannot construct a model in which the
interpretation of the constants a and b are equal from a model where they are different
in a way that the argument model is preserved. Therefore, ASP denotes the empty class
of models. Hence, the right hand-side of the equivalence in Theorem 11.1.1 holds for
any unit specification USP over the signature of CONSTS. However; the verification
condition DIFFCONSTS ~~ EQCONSTS for the unit application of F does not hold, and
therefore the left hand-side of the equivalence is false. This shows that the condition
that generic units must be consistent is needed in Theorem 11.1.1.
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We modify the proof calculus such that it becomes fully constructive: USP is
no longer provided, but rather obtained by defining the specification Sxsp(UE) of
each unit expression UE occuring in ASP inductively on its structure. Clearly,
the specification of a unit term given by a declared unit name can be read off the
declaration. If a unit term is translated, then its specification is so as well, that is,
Sasp(UT with o) = Sasp(UT') with o. Similarly for hiding. A complication arises
when determining the unit specification of a unit amalgamation or unit application.
The naive solution to define Sasp(UT} and Uly) to be Sasp(UT) and Sasp(UT3)
does not work. We illustrate this with an example.

Example 11.1.3 Let us consider the following architectural specification:

arch spec ASP =
units
UN : sort s;
UT = (UN with s — t) and (UN with s — )
result UT
end

Then Sasp(UN) = (sort s;0). The naive definition of Sasp(UI') would be
(sorts t,u; (). Now a model of ASP is a pair (U, BM) where BM(UN) is a model
of (sort s;0) and BM (UT) interprets both the sort ¢t and the sort uw as BM(UN)s.
This requirement is not recorded in (sorts t, u; ()); hence, this specification is too weak.
In order to express that sorts t and u must be interpreted in the same way, we need to
look at the following diagram:

st
s ——1
Hl l
t,u—s
u——t,u > 5
nur

Now (sorts t,u;() and (sort s,() hide t,u — s is the desired specification; it
requires that sorts t and u are interpreted in the same way.

In general, we will need to keep track of the dependencies between symbols,
using a weakly amalgamable cocone of the diagram of the unit term. The existence
of the latter is ensured by a successful run of the extended static semantics. This is
captured by the following definition:

Definition 11.1.4 For each unit term UT, let us denote Dy the sub-diagram corre-
sponding to the node of UT in the context I" of an architectural specification'. Then we
define Sco1im (UT) = (X, 0) hide n4 where A is the node of the unit term UT in Dyp
and n = (X, {nx } xedom(Dyr)) 18 @ weakly amalgamable cocone for Dyr.

IThis can be understood as restricting the declarations and definitions of the units of the architec-
tural specification to those involved in UT, and then constructing the context I" with the rules of the
proof calculus.
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We make use of an auxiliary structure for storing the specifications of the units
declared and defined in an architectural specification.

Definition 11.1.5 A verification context is a finite map I',, assigning unit specifica-
tions to unit names.

We denote the empty verification context by I'?.
The specification of a unit expression is then defined relatively to a verification
context.

Definition 11.1.6 Let T, be a verification context and UE a unit expression. Then
the specification of UE w.r.t I',,, denoted Sr,(UE), is defined as as follows:

e if UE is a unit term UT, Sr,(UT) is defined inductively:

if UT is a unit name, then Sr,(UT') = SP where T',(UT') = SP;
if Sr,(UT') = SP, then Sr,(UT" with o) = SP with o;
if Sr, (UT) = SP, then Sr, (UT hide o) = SP hide o;

if UI' = UT} and Ul and Sr, (UTL;) = SP,; for i = 1,2 then Sr, (UT') =
SP; and SP, and Sy, (UT);

-if UI' = F[UI) fit oy]...[UI,, fit o,], where TI',(F) =
Sp, x -+ x SP, — SP and for any i = 1,...,n,
SP; with o; ~»Sp, (UI;), then Sp,(UI') = {SP with o}

and Sp, (UTh) with ¢1; and ... and Sy, (UT,) with ¢,; " and Seopim (UT),
where the application is done as in the diagram below, with

Ef = Ui:l,...7nSig[SPi]: Y= Slg[SP], i = Sig[Uﬂ], Yo = Ui:l,...,nzi;

all v are inclusions, 0 = Uj—1,. n0; : ¥y — X, and (X,!/,0') is the

selected pushout of (v,0) (see Dfn.4.4.1) :

)
L
RN
X1 . >n
- Sr,(local UDEFN within UT') = Sy, (UT'), where I, extends T, accord-

ing to UDEFN in the obvious way.

e if UE is a lambda expression AX : SP . UT, then Sp,(UE) = SP — S, (UT),
where T extends T, with X : SP.

If ', has been built from all the units declared and defined in an architectural
specification ASP, we may denote the specification of a unit expression UE by
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Sasp(UE) instead of Sp, (UE). Moreover, we denote by Sssp the specification of
the result unit expression in ASP.

Notice that if H UI' > ¥yr and no non-generic unit is used more than once
in UT, directly or indirectly via unit definitions, we have that S..;;,(UT) =
Yur hide ids,,,.. This allows us to omit S.o,, (UT') from Spsp(UT) in such cases.

In general, the specification of a unit term does not give an exact axiomatization
of the class of models of the unit term. The reason is that non-generativity of CasL
architectural semantics can not always be captured by a structured specification,
and this becomes visible when the unit term involves more than one application of
the same generic unit, as we can see from Ex. 11.1.7 below. However, we will use
Sr, (UT) as an approximation, since models of the unit term are also models of this
specification.

Example 11.1.7 [Hoffman, 2005] Consider the following architectural specification:

arch spec ASP =
units
A : {sort s};
F : {sort s} — {sorts; op a : s};
G : {sorts} — {sorts; op a:s};
H: {sorts;opa:s} — {sorts;opsa, b:s};

B=F/[A];
C=G/[A]
result H [B] and {H [C] witha — a’, b — b’}

end

On one side, the specification Sasp of the result unit term of ASP is
{sort s;ops a,b,a’,b' : s}. On the other side, if M is a model of Sasp such that
M, = M, the non-generative semantics imposes that applying H twice (with B and
C as arguments, respectively) to the same model yields the same result, and therefore
My, and My must also be equal. However, a = ' = b = V' is not a consequence of
Sasp, which is in this case only an over-approximation of the model class of the result
unit term of ASP.

We are now ready to introduce a new calculus for correctness of architectural
specifications, that we refer to as constructive, as in Fig. 11.2. The judgements of
the calculus are of the form - ASP ::. USP, where USP is now no longer provided
as an argument, but constructed by the rules of the calculus. Therefore, the only
verification conditions of this calculus are those introduced in the definition of the
specification of a unit expression. It is also no longer needed to carry dependen-
cies between units in a diagram labeled with specifications. Instead, the calculus
builds a verification context for the units declared or defined, and this verification
context is then used to construct the specification of the result unit expression of
the architectural specification being verified. The rule for unit declarations takes
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I ASP ::, USP
F arch spec ASP ::. USP

I'=UDD;y ::. Ty

r,.«.+=UuUbD, :.. T,
I' F units UDD; ...UDD,, result UE ::. Sr, (UE)

I' = UDECL ::. TV I' = UDEFN ::.T"
I' - UDECL qua UDD ::. I I' - UDEFN qua UDD ::. I

I+ USP ::. USP'
T'F UN :USP . I U{UN s USP'}

I'F UN =UE ::. T U{UN — Sp(UE)}

'SPy x...x 8P, — 8P :.SP1x...xSP, — SP

Figure 11.2: Proof calculus for CasL architectural specifications.

into account the fact that the specification USP of a unit can be itself architectural.
The result of applying the calculus to USP is a unit type USP’, which can be either
USP if USP was already a unit type (last rule of the calculus) or the specification of
the result unit of USP if USP is architectural. We moreover use the context of outer
declarations of definitions when verifying the architectural specification USP’. This
is done to provide support for unit imports, see Sec. 10.5.

In the sequel we will use the following framework.

Framework 11.1.8 ASP is an architectural specification such that - ASP > [0 and
no generic unit is inconsistent.

The constructive and the deductive versions of the proof calculus are related by the
following result.

Theorem 11.1.9 In conditions of Framework 11.1.8, -+ ASP :. USP implies +-
ASP :: USP.

Proof. Assume that arch spec ASP = units UDD™" result UE. Moreover, as-
sume F% = UDD' ::. Iy and b UDD™ :: T'gep, I'. We prove that if USP = Ssgp then
Lyen,I' = UE :: USP.

We make a case distinction on UE. If UE = UT, it suffices to show that for
any family of models M compatible with the diagram I', Mp = Sasp(UT), where
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Lyen, I' = UT :: TV, B. We will proceed by induction on the structure of UT'. Notice
that in the case of unit application and union, Mp | S.oim(B) using the amalga-
mation properties ensured by the successful run of the extended static semantics.

e If UT = UN, then by definition Sy5p(UT") = SP where UN : SP in ASP and
by construction of IV, the node UN is labeled with SP. This means that My
must satisfy SP = Sasp(UT).

e If UI' = UT) and UTs, then by construction B has two incoming edges from
Ay and Ay, where Iy, I' F UT; :: Ty, A;, 4 = 1,2. By the inductive hypothesis
My, = Sasp(UT;). It follows easily that Mp = Sasp(UT1) and Sasp(UTn).

e If UT = F|UT' fit o], then, with the notation of the rule, B has two incoming
edges from A, and A, by construction, A, is labeled with SP,, and My, =
Sagp(UT") by induction. It is easy to check that Mp = Sagp(UT).

e If UT' = UT' with o then, with the notation of the rule, B has an incoming
edge from A by construction and M4 = Sasp(UT’), which implies Mp =
Sasp(UT).

o If UI' = UT’ hide o then, with the notation of the rule, B has an out-
going edge to A by construction and M, | Sasp(UT”), which implies
Mp = Sasp(UT).

IfUE = A\X : SP . UI', we have Mp |= Sasp(UT') where I'ye,,, ' = UT :: TV, B
and since SP is obviously equivalent with itself, we have that I'y.,,, I' - UE :: SP —
Sasp(UT).

a

Together with Thm. 11.1.1, we get the following immediate result.

Theorem 11.1.10 (Soundness) Under requirements of Framework 11.1.8, if +
ASP :. USP, we have that - ASP =, AM and for all (U BM) € AM,
U € Unit(USP).

For the implication in the other direction, we need to strengthen the framework,
because the specification of the unit term just approximates its model class:

Framework 11.1.11 ASP is an architectural specification such that = ASPr>[], each
generic unit is consistent and is not applied more than once, and each non-generic unit
not being used (directly or indirectly) in the result unit expression is consistent as well.

Let us first notice that in some cases the obtained unit specification exactly
captures the models of the architectural specification, if the latter are projected
with the possible semantics for the result unit term. Let therefore ProjRes take
any model of an architectural specification to the interpretation of its result unit
term in this model.
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Theorem 11.1.12 Under requirements of Framework 11.1.11, if - ASP ::. USP then
ProjRes(Mod(ASP)) = Mod(USP).

Proof. The inclusion from left to right follows from Thm. 11.1.1 and
Thm. 11.1.10. Concerning the converse inclusion, let - ASP > [0 and - ASP ::.
USP. We distinguish the cases of ASP being consistent or not. If ASP is inconsis-
tent, the specification of some non-generic unit UN in ASP must be inconsistent,
because all generic unit specification have been assumed to be consistent. But then
UN is being used in the result unit expression of ASP, causing USP to be inconsis-
tent as well. Hence, both sides of the equation are the empty set.

Let us now assume that ASP is consistent, and let M be a model of USP. For
simplicity, we consider M to be non-parametric; the parametric case is treated sim-
ilarly by considering all the possible applications to argument units. Let UI" be the
result unit term of ASP. For each occurrence of a subterm oT of UT in UT, we
construct a model M, satisfying Sasp(7"), where the latter is built in the context
of the unit definitions of ASP. In parallel, we define partial functions M for para-
metric units F' for one or more argument tuples. Let h compute the height of a unit
term. We proceed by nested induction over h(UT") — h(oT') within unit terms and
the dependency structure of the unit definitions, which means by moving from each
subterm to its immediate subterms and in the order of occurrence of defined units
in the unit term.

The induction base is UT’; we put My := M. For the induction step, we make
a case distinction:

e if T'is a unit name coming from a unit declaration, then there are no subterms;

e if T is a unit name coming from a unit definition 7' = UT’, we repeat the
procedure for UT” with the model My = Myp;

e if Tis T} and 15, let M, 7, := Mr|,,, where o; is the inclusion of the signature
of 7; into that of 7. From My € Mod(Sasp(T)), we easily get M,r, €
Mod(Sasp(T3))-

o if Tis T} with o, let M,r, := Mr|,. Again, from My € Mod(Sasp(T)), we
easily get M,r, € Mod(Sasp(T1));

e if T is 71 hide o, Sasp(T) is Sasp(Ti) hide o. Hence, by
Mpr € Mod(Sasp(T)), there is some (not necessarily unique) M; €
MOd(SASP(Tl)) with Ml‘o = M. Put M0T1 = My,

o if ' = F[T fit 04]... [T, fit 0,,], then we know that Sysp(T) = {SP with o}
and Sysp(UTy) with 15/ and ... and Sysp(UT,) with ¢,; ¢ and Seopim (UT)
Hence, for i = 1,...,n, we define M,r, := M|,,,,. We also define the action
of Mr on the arguments thus defined: Mr(M,7,|oy,--., Mo, |0,) := Mr.
(Note that by assumption, F' is applied only once.) If F is the name of a
generic unit coming from a unit definition, we repeat the procedure for the
term defining F.
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We need to show that if 07y and oT9 are two occurrences of a term 7" in UT,
then M,r, = M,r,. Thus, we can define M7 = M, for each subterm 7" of UT
and for an arbitrary occurrence o7 of T in UI' and we also ensure that My is
well-defined, for any generic unit F.

Assume that 07T and o075 are two occurrences of 7' in UI'. Let UI" be the
least subterm of UT that contains both oT; and 072, and notice that UI” can be
either a unit application F[UT3]. .. [UT,] with 0T, 0Ty subterms of UT; and UT}
respectively, for some i,j € 1,...,n or a unit amalgamation U7} and ... and UT,
with oT'1, 0T subterms of UT; and UT} respectively, for some i,5 € 1,...,n. In
both cases, by Def. 11.1.6 we have that Myr = Scoim (UT”). Since the framework
assumes that any generic unit can be applied only once, 7" cannot be a unit appli-
cation. If that were the case, the diagram of the unit term Dy would contain a
sub-diagram like the following:

N

>
A

where the nodes labeled with ¥ correspond to the two occurences o7 and oT5.
Then the symbols of 3, that are not in the image along A of the symbols in ¥ do
not have a common origin in the diagram, and therefore their image along o gives
symbols that do not neccesarily share.

In all other possible cases, we can observe that the nodes corresponding to 0T
and oT5 in the diagram Dy of the unit term UT” have symbols with the same
origin. This implies that M,7, and M,r, must be equal.

We now construct a model of ASP as follows: non-parametric unit names A
are interpreted as M4 (if this is defined), while parametric units F' are interpreted
as Mr whenever this is defined for specific arguments. The interpretations of the
remaining non-parametric units and remaining applications of parametric units to
arguments does not affect UT at all, we hence can take them from any model
of ASP (which exists by consistency of ASP). Altogether, we have constructed a
model of ASP that interprets UT as M.

ZT/Z\ZUL/Z
NN

O

Theorem 11.1.13 Under requirements of Framework 11.1.11, if = ASP :: USP for
some USP, then = ASP ::. USP’ where USP’' = Sgp is the specification of the result
unit expression UE of ASP and moreover USP ~~» USP’.

Proof.
Assume that arch spec ASP = units UDD™ result UE. Moreover, assume -
UDD™ :: T gepn, I'. We prove that if for any unit expression UE’ occurring in ASP we
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have 'y, I' = UE' :: USP for some USP, then I‘g +UuDDt . Ty, Ty - UE" ::. USP'
where USP' = Sp, (UE') and USP ~~» USP’. Then the theorem follows immediately
by taking UE’ = UE.

The proof is done by induction on pairs of the form (z, UE") where UE’ is a unit
expression occurring in ASP and x is the position (given as a natural number) of
the occurrence of UE’ in ASP, ordered lexicographically: (x1,UFE;) < (z9,UFEs) iff
x1 < 9, OF £1 = x5 and UFE] is a subexpression of UFEj.

For the induction base we have to consider pairs (1, UN) where UN : USP’ in
ASP and UN is a unit name that appears in the unit expression UE involved in the
first unit definition of ASP. By the hypothesis we have that I'g.,,,I' = UN :: USP for
some USP. By definition of Sysp(UN), we have that ", = UN ::. USP’. We have to
show that USP ~~» USP’. Let ASP’ be the architectural specification obtained from
ASP by replacing its result unit expression with UN. Since - ASP’ ::. USP’, with
Thm. 11.1.12 we have ProjRes(Mod(ASP’)) = Mod(USP’). By + ASP’ :: USP
and soundness of - _:: _we have ProjRes(Mod(ASP")) C Mod(USP). Hence,
Mod(USP’) € Mod(USP).

For the inductive step, we assume the property holds for each (xg,UE)) <
(z,UFE) and we want to show it for (z,UFE), where z is the position of the oc-
currence of UN = UFE in ASP. We make a case analysis on UF, and we present
here just the case of unit applications; the others are similar. Therefore, let us as-
sume that UE = F[UE’'] where F : SP — SP'in I'yep,. Since I'yep,,I' b UE :: USP
for some USP, we can easily show that I'y.,,I' - UE’ :: SP (this follows directly
from the verification condition of the proof calculus - :: for unit applications).
By the inductive hypothesis, we get that I, - UE’ ::. Sqsp(UE’) and moreover
SP ~~»> S ,sp(UE'), which is precisely the verification condition of the proof calcu-
lust _::. _for F[UE']. This means that I', - UE ::; Sysp(UE), where Sysp(UE) is
as given in Def. 11.1.6. We need to show that USP ~~> Sssp(UFE), and this is done
with the same argument as for the inductive base. 0

We now can combine the results that we have obtained so far. Therefore,
Thm. 11.1.1 needs to be generalized to the whole architectural language. Recall
that unit imports are excluded. This means we have to treat unit definitions and
generalise from single parameter to multiparameter units. This is rather straight-
forward. We then get the following result.

Theorem 11.1.14 (Completeness) Under requirements of Framework 11.1.11, if
F ASP =, AM for some AM such that for all (U, BM) € AM, U € Unit[USP)] for
some USP then = ASP ::. USP’, where USP’' = Sgp is the specification of the result
unit expression UE of ASP and moreover USP ~~ USP’.

11.2 Proof Calculus for Cas. Refinements

While the proof calculus for architectural specifications checks that result units sat-
isfy a given unit specification, we introduce a counterpart for the specification that
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refinements should satisfy, tailored according to the three kinds of refinements. This
allows to express the proof calculus rule for compositions of refinements in a more
concise manner.

Definition 11.2.1 Let RY be a refinement signature. A refinement specification S
over RY is defined as follows:

o if RY = (UX1,UXy), then S takes the form (USP,, USP,) such that - USP,;>U;,
fori=1,2;

e if RY. = (UX, BY), then S takes the form (USP, BSP), where \ USP > UY. and
BSP is a branching specification, which is in turn either a unit specification
USP’ such that -+ USP' > UY/, when BYX = UY or a map SPM such that
dom(SPM) = dom(BstC) and SPM(X) is a branching specification over
BstC(X), for each X € dom(BstC), when BY. = BstC;

e if RY. = {UN; — RY;}ic7, then S takes the form {UN; — S;}ic7, where S; is
a refinement specification over RY;.

The intuitive idea is that if a refinement specifies a constructor « : Mod(X) —
Mod(Y'), a refinement specification (USP’, USP) consists of two unit specifications
USP and USP’ with + USP > ¥ and - USP’ > ¥’ such that dom(x) € Mod(USP)
and cod(k) € Mod(USP’). The latter two conditions are captured by Def. 11.2.3.
This generalizes to n-ary constructors and to families of constructors in the obvious
way. We denote the empty map with SPMj.

Again, the proof calculus rules rely on a composition operation for refinement
specifications.

Definition 11.2.2 Let RY; and RYs be two refinement signatures such that
RY1; RY, is defined and let S; be a refinement specification over RY; for i = 1,2.
The composition Si; S is defined inductively as follows:

e if S; = (USP,,USP,), then Sy = (USPs, BSP) and Sy; So = (USPy, BSP), pro-
vided that USPy ~~» USP;.

o if Sy = (USP;,SPM;) then Sy must be of the form {UN; — S;}icy. We
define S1;S2 = (USPy,SPM;[Ss]), where SPM|[S]| modifies SPM for any
A € dom(S) as follows:

- if SPM(A) is a unit specification USP, then S(A) must be of the form
(USP’, BSP'). Then SPM|S](A) = BSP’, provided that USP ~~» USP'.

- if SPM(A) = SPM/, then S(A) must be of the form {UN; + S’} e 7.
Then SPM|S](A) = SPM'[S(A)).

o lfsl = {UNl — Si}iej; then S1;55 is deﬁned only lfSQ = {UN; — Sj}jej’-
Then S1; S modifies the ill-defined union of S1 and Ss by putting (S1; S2)(A) =
S (A), SQ(A) fOT’ any A € dom(Sl) N dOTn(SQ).
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The constructive proof calculus for architectural specifications is complemented
at the level of refinements as in Fig. 11.3. The judgments of the proof calculus for
refinements are of the form + SPR ::. S, where SPR is a refinement and S is a
refinement specification and the calculus is defined inductively on the structure of
the refinements. We also complete the architectural proof calculus, as introduced
in Fig. 11.2, as specifications of units are now simple or branching refinements.
The idea is that for each unit declaration UN; : SPR; of an architectural specifica-
tion ASP, we define I',(UN;) = USP,; if - SPR; ::. (USP;, BSP;), where T, is the
verification context of ASP. This would suffice for the verification of ASP with
the architectural calculus. Furthermore, we need to set SPM(UN;) = BSP; in the
refinement specification SPM of ASP, to be able to check correctness of further
refinements of the units UN;.

Definition 11.2.3 Let RY be a refinement signature, S a refinement specification over
RY. and R a refinement relation over RY.. We define the satisfaction of a refinement
specification by a refinement relation, denoted R |= S, inductively as follows:

o if RY. = (U, UY), then S = (USP,USP') and R C {(U,U")|U € Unit(UY),
U' € Unit(UX)}. Then R |= SiffU € Unit(USP) and U’ € Unit(USP’) for any
(U,U") € R and moreover, for any U’ € Unit(USP’) there is a U € Unit(USP)
such that (U,U’) € R;

o if RY. = (UX,BstC), then S = (USP,SPM) and R C {(U,BM)|U €
Unit(UY),
BM is a branching model over BstC'}. Then R = S iff for any (U, BM) € R,
U € Unit(USP) and for any A € dom(SPM) we have that BM(A) =
SPM(A). (SPM and BM have the same domain) and moreover for each
branching model BM of SPM there is a unit U such that (U, BM) € R ;

° lfRE = {UNl — REZ-}Z-GJ, then S = {UNl — Si}iej and R = {UNZ —
Ri}icg. Then R = Siff R; E Si forany i € J.

The following result states that if a statically well-formed refinement SPR can
be proven correct w.r.t. a refinement specification S using the proof calculus for
refinements, then SPR has a denotation according to the model semantics and
moreover the refinement relation thus obtained satisfies S.

Theorem 11.2.4 (Soundness) Let SPR be a refinement such that - SPR > [0 and
all refinements appearing in SPR are consistent. If = SPR ::. S, then - SPR = R for
some refinement relation R and moreover R |= S.

Proof.

The proof follows by induction on the structure of SPR.

If SPR = USP, then according to the model semantics rules we have - SPR =
R where R = {(U,U)|U € Unit(USP)}. With the proof calculus rule we have
F SPR ::. (USP,USP) and it is obvious that R = (USP, USP).
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- SPR ::, (USP', BSP)
USP ~rs> ,USP’

F USP ::. (USP,USP) - USP refined via o to SPR ::. (USP, BSP)

F SPRy ::. St

F SPRs . So
S = 51; 59 foreachi € J + SPR; ::. S;

[ SPRl then SPR2 lle S H {UNl to SPRz}lej lle {UNZ — Si}iej

'’ SPMy+ ASP ::. (USP,SPM)
+ arch spec ASP ::. (USP,SPM)

I, SPMF UDD; i (T, SPM,)

r,-1,SPM,_1 - UDD, :. (T'),, SPM)
I' - units UDD; ...UDD,, result UE ::. (Sr, (UE),SPM)

I,SPM - UDECL ::. (I',SPM’)
I',SPM + UDECL qua UDD ::. (I, SPM")

T - UDEFN ::. T
I',SPM F UDEFN qua UDD ::, (I, SPM)

'+ SPR ::. (USP, BSP)
I,SPMFE UN : SPR ::. ([ U{UN s USP},SPMU {UN — BSP})

'+ UN =UE :. TU{UN ~ Sr(UE)}

Figure 11.3: Proof calculus for CasL refinements.
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If SPR = USP refined via o to SPR’ such that - SPR ::. S, then according
to the proof calculus rule we have that - SPR’ ::. (USP’, BSP), USP e USP'
and S = (USP,BSP). By the inductive hypothesis we get that there is R’
such that - SPR = R’ and R’ = (USP’,BSP). Then - SPR = R where

R = {(U|,, BM)|(U,BM) € R’} and the refinement condition USP ~~s> USP’
ensures that R = S.

If SPR = archspec ASP, then according to the proof calculus rule we
have that for any unit declaration of the form UN; : SPR; in ASP, - SPR; ::.
(USP;, BSP;). Let ASP’ be the architectural specification obtained by replac-
ing SPR; with USP; for each unit declaration UN; : SPR; in ASP and let UE
denote the result unit of ASP. Then we define SPM(UN) for any unit UN
of ASP as SPM(UN) = BSP,, if UN is a declared unit UN; of ASP, and
SPM(UN) = Sp,(UE') if UN = UE’ is a unit definition of ASP, where I, is the
verification environment of ASP’. This allows us to define S = (Sr, (UE), SPM).
By induction we have + SPR; = R; and R; E (USP;, BSP;) for each 1.
Then = SPR = R where R = {(U,m(RE))| RE(UN;) € R; for the de-
fined units UN;, U combines the units in 7;(RE) according to UE} and R |= S by
Thm. 11.1.10, where AM = R.

If SPR = {UN,; to SPR;};c7 such that - SPR ::. S, then according to the proof
calculus rule we have that S = {UN; — S,}ics and - SPR; ::. S; for i € J. By
the inductive hypothesis we get that - SPR; = R; and R; = S;. Then - SPR = R
where R = {R | dom(R) = {UN;}ic7,R(UN;) € R; foreachi € J} and notice
that R |= S by definition.

Finally, if SPR = SPR; then SPRs, with the proof calculus rule we get -
SPR; ::. S; fori = 1,2 such that S = S7; S5 and by induction we have - SPR; = R;
and R; = S;, for i = 1,2. It follows (by case analysis, sketched below) using
consistency of SPR; that R = R1; R, is defined and R | S.

Let us assume that - SPR; > (UX1,UX%,); the other cases are similar. This
means that SPRy = (U9, BX). Then S; = (USPy,USP,) with - USP; > UX; and
Sy = (USPy, BSP) where - USP; > U%, and BSP is a branching specification over
BY. Let (Us, BM) € Rs. Since Si;Ss is defined, we have that USP, ~~> USP; and
since Ry = S, there is a unit U; of USP; such that (Uy, Us) in R4. This gives us an
assignment (U, BM) and the class of all such assignments is the needed refinement
relation R .

a

Example 11.2.5 We illustrate how the proof calculus for the CasL refinement language
applies to the specifications in Ex. 5.1.3.

For the unit specifications MONOID, NATWITHSUC, NAT and NATBIN, the refine-
ment specification is of the form (USP,USP), where USP is in each case the name of
the unit specification.

For R1, we use the proof calculus rule for simple refinements (second rule in

Elem—N
Fig. 11.3) and check that MONOID WS NaT. Since addition of natural num-
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bers is associative and 0 is the unit for addition, the refinement condition holds and
the refinement R1 is correct. The refinement specification of R1 is (MONOID, NAT).

For R2, we use again the proof calculus rule for simple refinements and check that

Nat—Bin . e . .
NAT ~~> NATBIN. The refinement specification of R2 is (NAT, NATBIN).

For R3, we need to compose the refinement specifications (MONOID, NAT) and
(NAT, NATBIN). The verification condition NAT ~~> NAT holds trivially and thus
the composition of R1 and R2 is correct, with the resulting refinement specification
(MoNOID, NATBIN).

For ADDITION_FIRST, we first replace the imports with generic units (see
Sect. 10.5):

arch spec ADDITION_FIRST =
units N : NAT;
M :arch spec {
units F :NAT — NATWITHSUC
result F[N]}
result M

and the refinement specification of ADDITION FIRST is (NATWITHSUC,{N
NAT, M +— {F + NAT — NATWITHSUC}}).

Correctness of R4 is immediate because the condition
NATWITHSUC ~~> NATWITHSUC holds trivially and R4 has the same refinement
specification as ADDITION FIRST.

Finally for R5, the refinement specification of the anonymous component refine-
ment specification (following then) is {N — (NAT,NATBIN)} and we need to check
that it composes with the refinement specification of R4, which we denote by Vj.
Indeed, N is in the domain of the branching specification B on the second compo-
nent of V, and B(N) = NAT; thus, the verification condition NAT ~~ NAT holds
again immediately. The refinement specification of R5 becomes (NATWITHSUC, { N —
NATBIN, M +— {F +— NAT — NATWITHSUC}}).

Example 11.2.6 We now present how the proof calculus applies in the case of the
refinements in Ex. 5.1.4.

For REF_SBCS, the second rule in Fig. 11.3 must be applied. This amounts to
checking correctness of ARCH_SBCS and proving that

SBCS_OPEN ~~> Sapcn_spcs(UE)

where UE = AV : VALUE e C[A[S[P[V]]]].
Since ARCH_SBCS contains only unit declarations, each unit is assigned its declared
specification and Sarcu_spcs(UE) is obtained as follows:

e UL is a lambda expression, so Sarcu_sscs(UE) = VALUE — SP, where SP =
SARCH_SBCS(C[A[S[P[VHH;
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e since V : VALUE and P : VALUE — PRELIMINARY, the verification condition for
the application P[V] is VALUE ~~> VALUE and holds trivially. The specification
of P[V] is PRELIMINARY (because VALUE is included in PRELIMINARY);

e the other units are similar, and the last specification obtained is
STEAM_BOILER _CONTROL_SYSTEM.

We obtain thus Sarcn_spcs(UE) = VALUE — STEAM_BOILER_CONTROL_SYSTEM,
and since this is precisely SBCS_OPEN, the refinement REF_SBCS is cor-
rect.  The refinement specification of REF_SBCS is (SBCS_OPEN, SPM) where
SPM(P) = VALUE — PRELIMINARY, SPM(S) = PRELIMINARY — SBCS_STATE,
SPM(A) = SBCS_STATE — SBCS_ANALYSIS and SPM(C) = SBCS_ANALYSIS —
STEAM_BOILER_CONTROL_SYSTEM.

For REF_SBCS’, the third rule in Fig. 11.3 is applied. We have just checked cor-
rectness of REF_SBCS and obtained its refinement specification (SBCS_OPEN, SPM).
Therefore, we only have to check correctness of the component refinement following
then and that the refinement specification obtained, which will be a map SPM’, can
be composed to (SBCS_OPEN, SPM).

With the fourth rule in Fig. 11.3, we must check correctness of the refinement
specification of each of the components P, S and A.

For the unit S, we must check correctness of STATE_REF, which amounts to proving
that models of SBCS_STATE_IMPL are indeed models of SBCS_STATE. The verification
specification obtained is (STATE_ABSTR, UNIT_SBCS_STATE).

For the unit P, we must check that ARCH_PRELIMINARY is correct. The verification
conditions for the two anonymous architectural specifications obtained for MS and MR
(as in Sect. 10.5) hold trivially, and we get Sarcu_previnary (M S) = MESSAGES_SENT
and Sarcu_preuivinary (M S) = VALUE — MESSAGES_RECEIVED. The specification
of the result unit expression (call it UE’) of ARCH_PRELIMINARY is of the form
VALUE — SP’ where SP’ is the specification of the unit term (call it UT) of the
lambda expression. By definition, because UT is a unit amalgamation, SP’ is
the union of the specifications of the terms SET [MS fit Elem — S_Message|[V],
SET [MR[V] fit Elem — R_Message|[V] and CST [V] with the specification Scojim (UT).

For the first term, the verification conditions are

MESSAGES_SENT |= {sort Elem} with Elem — S_Message
and VALUE ~~> VALUE. Both hold immediately and the specification of the term is
(SET[sort Elem| with Elem — S_Message) and MESSAGES_SENT
For the second term, similarly we obtain the specification
(SET[sort Elem| with Elem — R_Message) and MESSAGES_RECEIVED

For the third term, notice that V : VALUE and the condition VALUE ~~ VALUE holds
immediately. Because SBCS_CONSTANTS extends VALUE, the specification obtained is
just SBCS_CONSTANTS.
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Finally, for the unit A, we need to check correctness of the architectural specification
ARCH_ANALYSIS. This does not bring anything new to the cases discussed before and
therefore we omit a detailed presentation.

We must then check that the refinement specifications (SBCS_OPEN, SPM) and
SPM' compose. Notice that the domain of SPM’ is included in the domain of SPM.
For the unit S, the verification condition is immediate and the corresponding specifica-
tion of S is updated to UNIT_SBCS_STATE. For the unit A, the verification condition
holds by noticing that PRELIMINARY is equivalent with the specification S P’ obtained
in the specification of the result unit of ARCH_PRELIMINARY. SPM is then updated in
A to the map taking the units of ARCH_PRELIMINARY to their specification.

11.3 Completeness of the Proof Calculus for Refinements

Recall that the intuition behind Def. 11.2.3 is that we check that a refinement spec-
ifies a constructor « : Mod(X) — Mod(Y') that takes any model U of some X-
specification USP to a model x(U) of some X'-specification USP’. While we en-
sure that the constructor should be total on Mod(USP), the definition does not
require that the constructor should be surjective on Mod(USP’). In particular,
there can be another Y'-specification USP” that provides a more precise descrip-
tion of x(Mod(USP)). This is obvious in the case of simple refinements: if the
refinement R = USP refined via o to USP’ is correct, we have that - R = R
where R = {(uls,u)|lu € Unit(USP’)}. Then the models produced by the con-
structor associated with R are not necessarily all USP-models, but generally only
(USP' hide o)-models.

Architectural specification defines a construction that appears in a top-down
development process, when a given requirement specification is implemented by
a number of specifications and these specifications act like an interface between
the components of the architectural specification. In particular, this introduces an
abstraction barrier between a given requirement specification and its architectural
refinement. The implementation of the units of an architectural specification can be
changed (as long as they respect their specifications) while keeping the possibility
to assemble the units to a system satisfying the given requirement specification.

The calculus that we introduced in the previous section respects this abstrac-
tion barrier. However, this comes at a certain price: Ex. 11.3.1 below shows that
in some cases, we can prove a refinement correct only if we exploit the properties
induced by a certain implementation we have chosen during development of the
system. Using information about the choice of implementation gives a more pre-
cise description of the image of a constructor. But this of course breaks the above
mentioned abstraction barrier. In our case, we have to make use of a particular
choice for a refinement of such a component when proving correctness of the entire
development.

Hence, we cannot expect to prove completeness of the calculus introduced
above, just because it respects the abstraction barrier. In the following we will
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introduce an enhanced proof calculus that can be proven complete and hence nec-
essarily breaks the abstraction barrier.

Example 11.3.1 Let us consider the following specifications:

spec SIG = sort s
ops X, y:s

spec EQ =SiGthen {ex =Yy}

refinement INCL = SIG refined to EQ

arch spec ASP = units M : SIG result M

refinement ASP_EQ = arch spec ASP then {M to INCL}

refinement REF_EQ = EQ refined to ASP_EQ

Here the tree of ASP (in the sense of Sect. 11.4) “grows" in both directions: first the
branch corresponding to the unit M is extended via the refinement ASP_EQ, then the
tree of ASP_EQ “grows" towards the root, via the refinement REF_EQ.

We have that - ASP :. (S1G,{M +— SI1G}) and + {M to INCL} . {M +—
(S1G,EQ)}. Thus, = ASP_EQ ::. (S1G,{M — EQ}) and the verification condition of
REF_EQ is EQ ~~ SIG, which obviously does not hold. This is due to the fact that
we do not make use of the fact that M has been further refined when proving the
correctness of the entire development: in the specification of ASP_EQ we have only
modified the specification of the component M. However, this induces a restriction on
the domain of the associated constructor, and the codomain gets restricted as well. This
change is not captured in the definition of the compositions of refinement specifications.

We can simplify the task of keeping track of the changes by expressing every re-
finement as equivalent architectural specification(s), in the sense that their models
are in a one-to-one correspondence, as we will see below. We have seen that for
any architectural specification ASP, S4sp captures exactly (under some conditions)
the models produced by the architectural specification. The idea is that rather than
defining Sssp as a specification, we define it as a specification expression involv-
ing the specifications of the units involved. The expression is then evaluated when
proving a refinement and composition of refinements induces substitution of the
specification of the refined unit with the expression associated to the refinement
we compose with. This gives a dynamic nature to the verification process: at each
moment, the specifications provide only a snapshot of the model classes involved,
and they can be further restricted by compositions.

Example 11.3.2 Let us again assume that the refinement R =
USP refined via o to USP’ is correct, and then we have that - R = R where
R ={U|s,U) | U € Unit(USP")}.
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The same constructor as the one specified by R, namely Mod(o) : Unit(USP’) —
(Unit(USP') hide o), can be equivalently specified by the architectural specification

arch spec ASP =
units UN : USP’
result UN hide o

Given that - ASP = {(U|,,{UN — U}) | U € Unit(USP’)}, we get a one-to-
one correspondence between the assignment (U|,,U) in the model class of R, on one
side, and (U|,,{UN + U}) in the model class of ASP, on the other side, for each
U € Unit(USP'). In the general case, when such a correspondence can be set, we will
say that the models of R and ASP correspond up to unit names.

arch spec ASP = units UN : USP result UN
+ USP ::, ASP

F SPR' ::. ASP’
USP ~v> Sagp:
arch spec ASP = units UN : arch spec ASP’ result (UN hide o)
I USP refined via ¢ to SPR’ ::. ASP

F SPR; ::c ASP;
arch spec ASP' = ASP[{UN,/arch spec ASP;};—1. »]
F ASP = units {UNz : SPRi}i:l,‘..,n result UE ::, ASP’

= SPRi e VSZ
F {UNZ to SPRZ}'LGJ e {UNl to V‘Si}iej

F SPRy e VS,
F SPR2 e VS2
VS =VS1;VSs
F SPRy then SPRy ::. VS

Figure 11.4: Enhanced calculus for refinements.

Note that in the case of component refinements, the refinement of each compo-
nent needs to be replaced by an equivalent architectural specification. We define
then enhanced verification specifications VS:

VS i:= ASP | {UN; — VS, }tics

where ASP is an architectural specification and we call enhanced verification spec-
ifications of the form { UN; — VS,},cs enhanced verification maps. The idea is
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that if VS is the enhanced verification specification of a refinement SPR, VS spec-
ifies the constructor(s) induced by SPR. Moreover, we define a partial operation
of composition between enhanced verification specifications, denoted VS1; VS5 as
follows:

e if VS, = ASP; such that ASP; has no branching? and VS, is also an archi-
tectural specification ASP2, then VS1; VS replaces the specification of the
leaf in ASP; with ASP5;

e if VS, = ASP; and V8> is an enhanced verification map, then VS1; VS, is
defined iff for each UN € dom(VS3), UN is in dom(VS1) such that

- if the specification of UN in ASP; is a unit specification USP,
then VS3(UN) must be an architectural specification ASP, and
USP ~~> Sasp,. Then we update the specification of UN in ASP; to
ASP 2,

— if the specification of UN in ASP; is an architectural specification ASP’,
then VSy(UN) must be an enhanced verification map VS’ such that
ASP'; VS’ is defined. Then we update the specification of UN in ASP to
ASP"; VS,

e if VS, is an enhanced verification map, then VS, must be an enhanced verifi-
cation map as well and we define VS1; VS» by modifying the ill-defined union
of VS; and VSs, putting VS1; VS2(UN) = VS1(UN); VS2(UN) for each unit
name UN in the intersection of the domains of VS and VSs.

Models of enhanced verification specifications are obvious generalizations of
models of architectural specifications: if a verification specification V'S is an archi-
tectural specification ASP, then the model of VS is just the architectural model
AM such that - ASP = AM, while if VS is an enhanced verification map
{UN; — VS,}ic7 and M, is a model for VS;, for each i € 7, then {UN; — M, }ics
is a model for VS. By a slight abuse of notation, we denote the models of verifica-
tion specifications also with .AM, as in the case of architectural specifications, and
we write - VS = AM to denote that AM is the model of VS.

An enhanced proof calculus for refinements is presented in Fig. 11.4, with judge-
ments of the form - SPR ::, VS, where SPR is a refinement and VS is an enhanced
verification specification. In the rule for architectural specifications, we denote by
ASP[{UN;/arch spec ASP;};— . ] the architectural specification obtained from
an architectural specification ASP with unit declarations UN; : SPR;,i = 1,...,n
by replacing the specification of each declared unit UN; with some architectural
specification ASP; and keeping all unit definitions as in ASP.

2This means that the architectural specification has just one unit, and the specification of that unit
can be architectural only if it has one component itself, and so on, until a leaf is reached when the
specification of the current unit is a unit specification.
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Theorem 11.3.3 (Soundness) Let SPR be a refinement such that - SPR > [0 and
all generic units in the architectural specifications appearing in SPR are consistent. If
F SPR ::. VS for some enhanced verification specification VS, then - SPR = R for
some refinement relation R, and - VS = AM for some AM such that R and AM
correspond up to unit names.

Proof. Induction on the structure of SPR.

If SPR = USP, then - USP ::. ASP where arch spec ASP = units UN :
USP result UN. By definition, - USP = R where R = {(U,U)|U € Unit(USP)}.
With the model semantics rules for architectural specifications, we know that
ASP = AM, where AM = {(U,{UN — U})|U € Unit(USP)}. It is obvious that
AM and R correspond up to unit names.

If SPR = USP refined via o to SPR’ and by the hypothesis - SPR ::. ASP,
then according to the proof calculus we know that - SPR’ ::. ASP’, where ASP’
is as in the rule for simple refinements. By the induction hypothesis we get that
F SPR’ = R/ and R’ and AM’ correspond up to unit names, where - ASP' =
AM'. Moreover, the refinement condition USP ~vs> S 4sp’ holds. Let (U, BM) €
R’ and since R’ and AM’ correspond up to unit names we get that U | Sygp
and therefore U|, = USP. Then by definition we have that - SPR = R, where
R ={(U|s, BM)|(U, BM) € R'}. With the model semantics rules for architectural
specifications, we get that - ASP = AM where AM = {(U|,, BM)|(U,BM) €
AM'’} and since R’ and AM’ correspond up to unit names, so do R and AM.

If SPR = arch spec ASP, then by the hypothesis for any unit declaration UN; :
SPR; in ASP, + SPR; ::¢ ASP;. By the induction hypothesis this means - SPR; =
R; and R; corresponds up to unit names with the model class AM; of ASP;. This
means that for any (U, BM) € R;, U = Sagsp,- Then for any choice of models
(Ui, BM;) € R; for each i, we obtain on one hand a unit environment for ASP by
projecting the models on the first component and we can combine them according
to the result unit expression of ASP to obtain a model U. On the other hand,
with the same construction we get a unit environment for ASP’ (where ASP’ is the
architectural specification defined in the corresponding proof rule of the calculus)
and since the result unit expression is the same, we get the same model U. Then
the models of ASP and ASP’ correspond up to unit names.

If SPR = {UN, to SPR;};c7, then by the hypothesis we know - SPR; ::c VS;
and by the inductive hypothesis we have - SPR; = R; and R; corresponds with
the model class of VS;. Then using the model semantics rule we get - SPR = R =
{UN; = R;}ic7 and R corresponds with the model class of { UN; — VS;}ic7.

Finally, if SPR = SPR; then SPR, and - SPR ::. VS, then by the correspond-
ing proof rule - SPR; ::. VS, for i = 1,2 and VS = VS1;VS,. By the induction
hypothesis we get - SPR; = R; and R; corresponds to the model class of VS;, for
1 = 1,2. We show that R;; R is defined and it corresponds to the model class of
VS by case analysis on the refinement signature R>; of SPR;.

If RY, = (U%,UY) then RYy = (UY, BX). Then, VS, and VS, are both archi-
tectural specifications and VS; has only one unit UN labelled with a unit specifica-
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tion USP (possibly inside several architectural levels). Therefore the assignments in
R2 are branching assignments of the form (U, BM) and by induction we know that
U = Sys,. Since VS1;VSs is defined, this implies that U |= USP and there must
be an assignment (Uy, U) of R, because VS, is architectural and therefore U gen-
erates a unit environment for VS; in which the result unit of VS; is evaluated to a
model Uy, and AM; and R, correspond up to unit names. This means that R1; R»
is defined. Moreover, if we replace USP in VS; with the result of evaluating Sy, in
the context given by VS2, we get that the model Uy satisfies Sys,[UN /Sys,], which
ensures that R1; Ry corresponds to the model class of VS1;VSs. The other cases
are similar but tedious and we omit them.

a

Theorem 11.3.4 (Completeness) Let SPR be a refinement such that - SPR > [J
and all the generic units in the architectural specifications appearing in SPR are con-
sistent and applied only once. If = SPR = R then + SPR ::. VS for some enhanced
verification specification VS and - VS = AM for some AM such that R and AM
correspond up to unit names.

Proof. Induction on the structure of SPR.

If SPR = USP, then -+ SPR :. ASP and -+ A(SPR) = AM, where
AM = {(U,{UN — U})|U € Unit(USP)}. By definition, -+ USP = R where
R = {(U,U)|U € Unit(USP)} and therefore the one-to-one correspondence is ob-
vious.

If SPR = USP refined via o to SPR’ and we know that - SPR = R,
then with the model semantics rules we get that - SPR’ = R’ and for every
(U,BM) € R/, U|l, € Unit(USP). By the inductive hypothesis we have that
F SPR' ::. ASP' and there is a one-to-one correspondence between R’ and AM’,
where - ASP’ = AM'. We need to prove that USP ~> S, gpr, S0 let V = S gp.
We know that there is a branching model BM such that (V,BM) € AM’ and
we know that (V, BM) corresponds with an assignment of R’, which gives us that
V|, = USP. Thus - SPR ::. ASP. Finally, notice that the model class of ASP and
R correspond by construction of ASP, definition of R and correspondence between
AM’" and R'.

If SPR = arch spec ASP and - ASP = R, then by the model semantics
rule we get that - SPR; = R; for each unit declaration UN; : SPR; in ASP.
By induction we get that - SPR; ::c ASP; and model class of ASP; correspond
with model class of R;. It follows that - SPR ::. ASP’ and the model of ASP’
corresponds with the model class of R with the same argument as in the soundness
proof.

If SPR = {UN, to SPR;},c7 and - SPR = R, then with the model semantics
rule we get - SPR; = R,;. By induction we get - R; ::c VS; and with the proof
calculus rule we get - R ::c VS = {UN; to VS, }ic7. The correspondence between
R and the model of VS follows immediately by definition and the correspondence
between R; and the model of VS;, for each i € 7.
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Finally, if SPR = SPR; then SPR9, and - SPR = R. then according to the
model semantics rule we get that - SPR; = R; fori = 1,2 and R = Rq;R2. By
induction we get that - SPR; ::. VS; and R; corresponds with the model class of
VS, for i = 1,2. We need show that VS = VS1; VS, is defined.

We will consider only the case when VS is an architectural specification with
more than a component; the other cases are similar. We know that VS, is an
enhanced verification map since the refinements compose. Let UN € dom(VS2)
and assume the specification of UN in VS is a unit specification USP (the case
when the specification of U is architectural reduces to this case) and VSy(UN) =
ASP'. Let U = Sygp and then by Thm. 11.1.12 we know that there is a BM
such that (U, BM) is an architectural model of ASP’. Since the models of VS
correspond with Ry and Rq; R, is defined, there must be an assignment (U’, BM")
in Ry such that BM'(UN) = U. We know that (U, BM) corresponds with a VS;-
model, which implies U |= USP, so the refinement condition holds. To prove the
correspondence between R and architectural models of VS, let (U, BM) € VS.
Notice that by construction of VS, BM does not only produce a unit environment
for VS but also a unit environment for VS; such that evaluating the result unit
expression of VS and VS, yields the same result. This shows that we can write
(U, BM) as a composition between a model corresponding to an assignment in R
and a model corresponding to an assignment in Rs.

O

11.4 Refinement Trees

We now give a formal definition of the concept of refinement tree. Refinement trees
provide visualization means for the structure of the development and access points
in HETS to the logical properties of architectural specifications and refinements.
Refinement trees complement development graphs, that represent the structure of
the specifications involved and that can be used for discharging simple refinement
proof obligations. The refinement structure, as captured by refinement trees, may
be orthogonal to the specification structure.

While intuitively clear, refinement trees have a slightly involved formalization.
This is because they are built in a stepwise manner and must be combined in the way
prescribed by the refinements: composition of refinements gives rise to composition
of refinement trees, and we need a mechanism for keeping track of the branches
and nodes to retrieve the appropriate connection points between trees. Moreover,
in the case of component refinement, each component produces a (sub)tree.

Example 11.4.1 Fig. 11.5 presents the refinement tree of the specifications in
Ex. 5.1.4. Single arrows denote components, while double arrows denote refinements.
Notice that in the case of e.g. REF_SBCS”, we need to build the trees of the architec-
tural specifications ARCH_FAILURE_DETECTION and ARCH_PREDICTION, store them
as corresponding to the units FD and PR in a component refinement, obtaining thus
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Steam_EBoiler_Control_System
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Arch_Preliminary Unit_Sbcs_State Arch_analysis
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o - Arch_Failure_Detection Arch_Prediction

Figure 11.5: The refinement tree of the steam boiler control system.

a set of trees. We must then connect these trees to the corresponding components of
the unit A, and thus we must be able to identify their nodes in the refinement tree of
ARCH_ANALYSIS by name.

The example shows that refinement trees should consist of a collection of trees
and that they can grow not only at the leaves, but also at the root, thus old roots
becoming subtrees. This leads to the following definition.

Definition 11.4.2 A refinement tree R'T consists of a set of trees, where a tree has:
e nodes labelled with unit specifications and
e directed edges between nodes n1, ny of the tree, that can be either

1. refinement links n; = ny (to denote refinement of specifications) or

2. component links ny; — no, (to denote architectural decomposition).
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We need to define an auxiliary structure to keep track of the roots, leaves and
nodes of the branching decompositions; this will make it possible to compose re-
finement trees. We would like to stress that this information is only needed for
book-keeping during the construction of refinement trees, and it can be dispensed
with when looking at a completed refinement tree. Let us define refinement tree
pointers in a refinement tree R7 as either (i) simple refinement pointers of the form
(n1,n2) with n1, ne nodes in R7, with the intuition that the first node is the root
and the second node is the leaf of a path through the tree®, (ii) branching refinement
pointers of the form (n, f), where n is a node and f is a map assigning refinement
tree pointers to unit names, or (iii) component refinement pointers which are maps
assigning refinement tree pointers to unit names.

Let us give a series of notations and operations on refinement trees. We denote
RTy the empty tree. If RT is a refinement tree, R7[USP] is obtained by adding
to it a new isolated node n labelled with USP. For RT1,..., R T refinement trees,
RT[n1 — RT1,...,RT| denotes the tree obtained by inserting component links
from the node n; of R7T to the roots of each of the argument trees. Moreover,
refinement trees can be composed as defined below.

Definition 11.4.3 Given two refinement trees R7T 1 with pointer p; and R7T o with
pointer ps we denote (RT, p) the composition RT 1 op, ,,, RT 2 defined as follows:

1. if py is a simple refinement pointer (ny1,n2) and py is a simple refinement pointer
(m1, mga), RT is obtained by adding a refinement link from ny to the successor
of the node m; along the path (m1, mg) in RT . The pointer p is then (ny, ma).

2. if p1 is a simple refinement pointer (ni,n2) and py is a branching refinement
pointer (my, f), RT is obtained by adding a refinement link from ng to my. The
pointer p is (ny, f).

3. if py is a branching refinement pointer (ni, f1) and py is a component refinement
pointer fa, RT is obtained by making for each X in dom( f) the composition of
the subtree pointed by f1(X) with the tree pointed by f2(X), which also returns
a pointer px for each X in dom(f2). The pointer p is (n1, f1[f2]), where fi]fa]
updates the value of X in f1 with the pointer px.

4. if p1 is a component refinement pointer f, and po is a component refinement
pointer po, then RT is obtained by making for each X in dom( f2) the composi-
tion of the subtree pointed by f1(X) with the tree pointed by f2(X ), which also
returns a pointer px for each X in dom(f2). The pointer p is fi[fa].

The composition is undefined otherwise.

The refinement trees will be constructed for correct refinements, in parallel with
the verification process. To ease understanding, we have separated the parts that
build the refinement trees, as presented in Fig. 11.6.

3Notice that the two nodes can coincide.
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FUSP ::: RT1,p1

F SPR e RTQ,])Q
(n,RT) = RTy[USP] (RT,p) =RT10p, p, RT2
FUSP ::: RT,(n,n) F USP refined via o to SPR ::. RT,p

- SPR; ::e RT i, pi

UFE is the result unit of ASP foreachi e J
(n,R’T’) = 'RT@[SF(UE)} F SPRZ' e RTi,pi
RT = RT’[n —RT1,... ,'R,Tk] RT =UiegRT;
p=(n,{UN; = pi}i=1,..k) p={UN; = pitics
FASP ::. RT,p F{UN; to SPR;}ic7 ::c RT,p

F SPRy ::: RT1,m
= SPRy ::e RT 2, p2
(RT,p) =RT10p,p, RT2
F SPR; then SPRy ::c RT,p

Figure 11.6: Construction of refinement trees.

Example 11.4.4 We can illustrate the definition of composition of refinement trees
with the help of Ex. 5.1.3. We will use the names of the specifications and of the units
of architectural specifications to identify nodes in the refinement trees and therefore
the names will also appear in pointers. The refinement trees and the results of their
compositions are presented in Fig. 11.7.

Firstly, the refinements R1 and R2 are composed in R3 to form a chain; this is
case (1) of the definition of composition of refinement trees. The pointer p; of R1 is
(Monoid, Nat) and the pointer pa of R2 is (Nat, NatBin). The pointer of the result
of their composition is (Monoid, NatBin).

The refinement tree of R4 is obtained by composing the tree with a single
node and pointer q; = (NatWithSuc, NatWithSuc) with the tree of the architec-
tural specification ADDITION FIRST (case (2)). The pointer of the latter is qo =
(Addition_First,{M +— (M,M),N — (N,N)}). After composition, the pointer
¢3 is (NatWithSuc,{M — (M, M),

N~ (N,N)}).

Finally, the tree of R5 is obtained by composing the tree obtained at the previous
step, of pointer g3, with the set containing the tree of R2 with pointer g4 = {N
(Nat,NatBin)}. The pointer of the result is (NatWithSuc,{M — (M,M),N —
(N, NatBin)}) - case (3).

We can obtain an example for case (4) by writing the refinement of the components
equivalently, but in a different way:

refinement R = {
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@ @ ’

Y
CORCCPIRETY

Addition_First

Figure 11.7: Composition of refinement trees.

P to arch spec ARCH_PRELIMINARY, S to STATEREF,

A to arch spec ARCH_ANALYSIS }

then {

A to {FD to arch spec ARCH_FAILURE_DETECTION,
PR to arch spec ARCH_PREDICTION }}

and the corresponding refinement trees are obtained by removing the first three levels
from the tree in Fig. 11.5.

11.5 Checking Consistency of Refinement Specifications

We introduce a calculus for checking whether a refinement specification is consis-
tent, i.e. it has a refinement model. [Kutz and Mossakowski, 2011] successfully
apply this calculus to verify the consistency of the upper ontology Dolce. Dolce
is too large for contemporary model finders. Instead of hand-crafting a large and
specific model, the consistency of Dolce is shown using an architectural refinement.
This has the advantage of giving a modular model for Dolce, i.e. one that can be
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F cons(USP) - cons(SPR)
+ cons(USP qua SPEC-REF) F cons(USP refined via o to SPR)

- cons(SPR) for each UN : SPR in ASP - cons(SPR;),i € J
F cons(ASP) F cons({UN; to SPR;}ic7)

SPR; contains branchings

F cons(SPRy) SPR; does not contain branchings
F cons(SPR32) F cons(SPR32)
F cons(SPR; then SPR5) F cons(SPR; then SPR5)

Figure 11.8: Consistency calculus for refinements.

changed at various local places (= leaves of the refinement tree) without affect-
ing the possibility to assemble (via the semantics of architectural specifications) a
global model of Dolce.

The proof calculus for refinements relies on an obvious observation made al-
ready in [Sannella and Tarlecki, 1988a] that constructors preserve consistency. In-
tuitively, a refinement is consistent if its target is, and an architectural specification
is consistent if all its unit specifications are. This makes it clear that our calcu-
lus eventually (for checking consistency of the leaves of the refinement tree) must
be based on a calculus for the consistency of unit specifications, which we denote
F cons(USP) and is given by the rules in Fig. 11.8. Checking consistency of non-
parametric unit specification amounts to checking consistency of structured spec-
ifications; a calculus for this has been introduced in [Roggenbach and Schréder,
2001] (this is in turn based on some institution-specific calculus for consistency of
basic specifications). Checking consistency of parametric unit specification amounts
to checking conservativity of extensions of structured specifications; for the case of
first-order logic and CasL basic specifications, a sound but necessarily incomplete
calculus has been developed in [Liu, 2008].

For checking consistency of compositions, if SPR; contains a branching, it does
not suffice for SPR, (which must be a component refinement) to be consistent, be-
cause some component of SPR; outside the domain of SPR> might be inconsistent.

Theorem 11.5.1 (Soundness) If+ SPR ::. O, the calculi for checking consistency of
structured specifications and conservativity of extensions are sound and + cons(SPR),
then SPR has a model.

Proof. Induction on the structure of SPR.
Case SPR = USP follows from the soundness of the calculi for consistency and
conservativity.
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Case SPR = USP refined via o to SPR'. By definition, - cons(SPR) holds if
 cons(SPR’) holds. By the induction hypothesis, the model class R’ of SPR’ is

non-empty. Since - SPR ::. [, it follows that USP ~o> USP' , where - SPR’ ::.
(USP', BSP). This means that U|, € Unit(USP) for any (U, BM) € R'. It follows
that the model class R = {(U|,, BM) | (U, BM) € R'} of SPR is non-empty.

Case SPR = {UN,; to SPR;},c7. By the hypothesis we get that - cons(SPR;)
and - SPR; ::. O, for any 7 € J. By the induction hypothesis, for any i € 7, the
model class R; of SPR; is non-empty. We can therefore take a model from each
such class and combine them like in the rule for component refinements in Fig. 5.3
to obtain a model of SPR.

Case SPR = SPR; then SPRs has two sub-cases.

Let us first assume that SPR; contains branchings. By hypothesis we get that
F cons(SPR;) and - SPR; ::. [, for any i € {1,2}. By induction hypothesis, we get
that the model classes R and R» of SPR; and SPR, respectively are non-empty.
Since - SPR ::. [0 and SPR; and SPR- are consistent, using the soundness of the
proof calculus we have that Ri; R is defined and - SPR = Ri;R». Since the
composition R1; Ry is defined, there must be a model R} = (U, BE) € R4 such that
Ry matches the branching environment BE of R} and thus (U, BE[Ry]) is defined
and gives us a model of R1; Ros.

Let us then consider the case when SPR; does not contain branchings. By
hypothesis we get that - cons(SPR2) and - SPR; . O, for any i € {1,2}. By
induction we get that the model class R of SPR5 is non-empty. Notice that since
SPR; does not contain branchings, it must be the case that - SPR; > (U%, UY') and
F SPRy > (UY, BY.). Then, since the constructor x associated with SPR; is total,
we can define R = {(k(U), BM) | (U, BM) € R2} and, since R is non-empty, so is
R.

Case SPR = arch spec ASP. By induction hypothesis, SPR; has a model, for
all UN; : SPR; in ASP. This gives us a unit environment for ASP by projecting
each of the models of SPR; to the first component and we can combine the units in
the way described by the result unit of ASP to get a model of ASP because ASP is
statically correct.

d

Completeness holds again only if the specification of each unit term is not ap-
proximating, but exactly capturing the model class of the unit term.

Theorem 11.5.2 (Completeness) If no generic unit is applied more than once, the
calculi for checking consistency of structured specifications and conservativity of exten-
sions are complete, = SPR ::. 0 and SPR has a model, then - cons(SPR).

Proof. Structural induction on SPR.

Case SPR = USP follows from the completeness of the calculus for structured
specifications and conservativity of extensions of structured specifications.

Case SPR = USP refined via o to SPR’. Let R be the model class of SPR.
With the corresponding model semantics rule, R = {(U|,, BM) | (U,BM) € R’}
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where R’ is the model class of SPR’. Since  SPR ::. [ we also get = SPR’ ::. I
and non-emptiness of R implies non-emptiness of R’. We can apply the inductive
hypothesis to get - cons(SPR'), which implies + cons(SPR).

Case SPR = {UN; to SPR;},c7. If SPR has a model , then we can define
models of SPR; by projecting the model of SPR to the i-th component. Since cor-
rectness of SPR implies correctness of SPR;, by the induction hypothesis we obtain
F cons(SPR;). With the rule for component refinements we get that - cons(SPR).

Case SPR = SPR; then SPR,. If SPR has a non-empty model class R, let R €
R. With the corresponding model semantics rule there must be models R; € Ry
and R € Ry such that R = Ry; Ry. By induction hypothesis we get - cons(SPR;)
and - cons(SPR2) and with the calculus rule for compositions of refinements we get
F cons(SPR). Note that if SPR; has no branching, it suffices to use - cons(SPRz2).

Case SPR = arch spec ASP. If ASP has a model class AM, then by the model
semantics rule we know that for any unit declaration UN; : SPR; of ASP, SPR;
has a non-empty model class R; and moreover AM = {(U, m2(BM)) | BM(UN;) €
Ri,U combines the units 7 (BM) according to the result unit of ASP}. We can ap-
ply the induction hypothesis to get - cons(SPR;) and with the rule for architectural
specifications we get - cons(ASP).

O

Refinement trees prove useful for making consistency checks with HETS. Check-
ing consistency has been added as a context menu option for nodes in refinement
trees: in the case of architectural specifications, the branching points in refinement
trees provide the appropriate representation. Selecting ’Check consistency’ leads
to introducing consistency obligations in the development graph of the specifica-
tion: nodes corresponding to non-generic units carry consistency proof obligations
(marked with color yellow in HETS), while morphism corresponding to theory ex-
tensions of generic units carry conservativity obligations (marked with the label
Cons?” on the edge). If the node is a branching point, consistency is checked
recursively for all components. If an edge in the refinement tree is a refinement
link, it suffices to check consistency of the target of the edge. HETS can be further
employed for discarding these obligations, by making use of the model finders it in-
terfaces, e.g. Isabelle-refute [Weber, 2005], Darwin [Baumgartner et al., 2004],
or SPASS [Weidenbach et al., 2002], and also the conservativity checker of [Liu,
2008].

11.6 Conclusion and Future Work

We stress that both the language for refinements, as well as its semantics, the notion
of refinement tree and the (sound and complete) proof calculus for refinements are
given in an institution-independent way; that is, it applies to any logic that satis-
fies very mild conditions. In particular, we could use in principle the Grothendieck
institution (Sec. 3.3), thus obtaining heterogeneous refinement. While this can be
done with no problem for the simple refinements, using heterogeneous signatures
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morphisms, as we will already do in the next chapter, an open problem remains
making the architectural specifications heterogeneous. Recall that in Chapter 8 we
constructed an algorithm for computing approximations of heterogeneous colim-
its that could be employed in verification of such architectural specifications. The
question is then how to discharge statically the amalgamability conditions in the se-
mantics of architectural specifications [Mosses, 2004] for a heterogeneous diagram,
assuming that this can be done for the individual logics involved.

We also support refinements trees practically: we have implemented them in
the Heterogeneous Tool Set HETS, such that browsing through and inspection of
complex formal developments becomes possible. An implementation of the proof
calculus is currently in progress; the refinement part is already implemented. Note
that the proof calculus for architectural specifications of [Mosses, 2004] was given
for a restricted version of the language; it can be extended to the whole language
in a way substantially simplified by the transformation of units with imports into
generic units. We also have introduced and implemented a sound and complete
calculus for consistency of refinements and architectural specification, which al-
ready has been applied for proving the consistency of the upper ontology Dolce in
a modular way.

One problem with the approach described so far is that the constructors pro-
vided by specification morphisms and architectural specifications in Cas. do not
suffice for implementing specifications. In a sense, these constructors only provide
means to combine or modify existing program units—but there is no way to build
program units from scratch. That is, CasL lacks a notion of program. A discussion
on adding programs in CasL can be found in [Mossakowski et al., 2005].

Future work includes extending the language to support behavioural refinement,
corresponding to abstractor implementations in [Sannella and Tarlecki, 1988a]. Of-
ten, a refined specification does not satisfy the initial requirements literally, but only
up to some sort of behavioural equivalence: for example, if stacks are implemented
as arrays-with-pointer, then two arrays-with-pointer differing only in their “junk”
entries (that is, those that are “above” the pointer) exhibit the same behaviour in
terms of the stack operations, and hence correspond to the same abstract stack. This
can be taken into account by re-interpreting unit specifications to include models
that are behaviourally equivalent to literal models, see [Bidoit et al., 2002b, 2008];
then specification refinements as considered here become behavioural. The next
chapter provides a first step in this direction.

Another useful addition would be amalgamability checks for other logics than
Cast in the Hets’ logic graph, making thus possible to have architectural specifica-
tions in those logics.

Acknowledgement. This chapter extends [Codescu and Mossakowski, 2011]
with more detailed proofs and with the discussion on completeness of the proof
calculus for refinements in Sec. 11.3. The idea of defining the specification of a
unit term (Dfn. 11.1.6) and the proof of Thm. 11.1.12 are due to T. Mossakowski.
My contribution includes the definition of refinement trees in Sec. 11.4, the proof
calculi for refinement in Sec. 11.2 and the consistency calculus in Sec. 11.5, as
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Axiomatic specification of data and programs provide the means for develop-
ing formal models of software at a conceptual level, while dynamic logics and
Hoare-style logics can express correctness criteria that stay closer to the actual pro-
grams. For a formal development or verification of software, typically both levels
are needed, since using axiomatic modeling of the concepts alone misses the for-
mal link to real programs, while using a Hoare-style or dynamic logic alone only
allows for little formal conceptual modeling. Therefore, we integrate HETS with
the specification environment Verification Support Environment (VSE) [Autexier
et al., 2000], developed at DFKI Saarbriicken, which provides an industrial-strength
methodology for specification and verification of imperative programs.

We want to combine the best of both worlds by establishing a connection be-
tween the VSE prover and the HETS proof management. For VSE, this brings ad-
ditionally flexibility: VSE specifications can now be verified not only with the VSE
prover, but also with provers like the first-order prover SPASS [Weidenbach et al.,
2002] and the higher-order prover Isabelle [Nipkow et al., 2002] which are inter-
faced with HETS. On the other hand, HETS benefits from VSE’s industrial expe-
rience, including a practical relation between specification and programming lan-
guages together with the necessary proof support. Being interactive, the VSE prover
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offers enough flexibility to tackle even challenging proof obligations, while a set of
strong heuristics based on symbolic execution provide automation to keep the proof
effort still small. VSE provides also a code generation mechanism to imperative pro-
gramming languages like Ada or C.

The benefit of plugging VSE into HETS is that for both verification and refine-
ment, we can use the general proof management mechanisms of the HETS mother-
board, instead of the specialized refinement tools hard-wired into VSE. Moreover,
the HETS motherboard already has plugged in a number of expansion cards (e.g.,
the theorem provers Isabelle, SPASS and more, as well as model finders) that can
be used for VSE as well. The challenge is that typically, analysis and proof tools
that shall be plugged into the HETS motherboard are not compatible with HETS
expansion slots. Often, this is a matter of writing a suitable wrapper that encap-
sulates the tool in an expansion card that is compatible to the HETS motherboard.
However, sometimes also the specification of the expansion slot has to be enhanced.
Of course, such enhancements should only be done for very good reasons — oth-
erwise, one will end up with slots containing hundreds of special pins. Since VSE
provides a special notion of refinement, one is tempted to enhance the specification
of the expansion slot in this case. However, we will see that we can do without such
an enhancement.

Related work includes ad-hoc integration of (tools for) formal methods, see e.g.
the integrated formal methods conference series [Leuschel and Wehrheim, 2009],
and integrations of decision procedures, model checkers and automated theorem
provers into interactive theorem provers [Dennis et al., 2003, Meng et al., 2006].
However, these approaches are not as flexible as the HETS motherboard/expansion
card mechanism. In many approaches, the interfaces for these integrations are ad-
hoc and not re-used in many different contexts. Moreover, we will see in Sec. 12.3
below that the use of logic translations as first class citizens in the expansion card
mechanism is crucial for integrating VSE and HETS in a modular way. This clearly
is a novel feature of our approach.

12.1 Presentation of VSE

The Verification Support Environment (VSE) is a tool that supports the formal de-
velopment of complex large scale software systems from abstract high level spec-
ifications down to the code level. It provides both an administration system to
manage structured formal specifications and a deductive component to maintain
correctness on the various abstraction levels (see Fig. 12.1). Taken together, these
components guarantee the overall correctness of the complete development. The
structured approach allows the developer to combine specifications in an algebraic
functional style with state-based formal descriptions of concurrent systems.

VSE has been developed in two phases on behalf the German Bundesamt fiir
Sicherheit in der Informationstechnik (BSI) to satisfy the needs in software devel-
opments according to the upcoming standards ITSEC and Common Criteria. Since
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Figure 12.1: Architecture of VSE

then, VSE has been successfully applied in several industrial and research projects,
many of them being related to software evaluation [Hutter et al., 2000, Autexier
et al., 2000, Langenstein et al., 2000, Cheikhrouhou et al., 2006]. The models’
developed with VSE comprise among others the control system of a heavy robot
facility, the control system of a storm surge barrier, a formal security policy model
conforming to the German signature law and protocols for chip card-based biomet-
ric identification.

VSE supports a development process that starts with a modular formal descrip-
tion of the system model possibly together with separate requirements or security
objectives. Logically the requirements have to be derivable from the system model.
Therefore, the requirements lead to proof obligations that must be discharged by
using the integrated deductive component of VSE.

In a refinement process the abstract system model can be related to more con-
crete models. This is in correspondence with a software development that starts
from a high-level design and then descends to the lower software layers such that
in a sense higher layers are implemented based on lower layers. Each such step can
be reflected by a refinement step in VSE. These steps involve programming notions
in the form of abstract implementations, that can later be exploited to generate
executable code. Each refinement step gives rise to proof obligations showing the
correctness of the implementations. Refinements also can be used to prove con-
sistency of specifications, because they describe a way how to construct a model.
This plays a major role for the formal specifications required for Common Criteria,

IThis use of the term “model” is in the sense of modeling, while the institutional use is in the sense
of logic and model theory, see Sect. 12.2.3.
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which only need to cover higher abstraction levels.

In addition to the vertical structure given by refinement steps, VSE also allows
the specification to be structured horizontally to organize the specifications on one
abstraction level. Each single (sub)specification can be refined vertically or further
decomposed horizontally, such that the complete development is represented by a
development graph. The deductive component is aware of this structure. This is an
important aspect for the interactive proof approach, as the structure helps the user
to prove lemmas or proof obligations that require properties from various parts of
the specification.

12.2 Institution of Dynamic Logic

VSE provides an interactive prover, which supports a Gentzen-style natural deduc-
tion calculus for dynamic logic. This logic is an extension of first-order logic with
two additional kinds of formulas that allow for reasoning about programs. One of
them is the box formula [a]e, where « is a program written in an imperative lan-
guage, and e is a dynamic logic formula. The meaning of [a]e can be roughly put
as “After every terminating execution of «, e holds.”. The other new kind of formu-
las is the diamond formula («)e, which is the dual counter part of a box formula.
The meaning of («)e can be described as “After some terminating execution of «, e
holds”.

We will now describe the formalization of this dynamic logic as an institution,
denoted C' Dyn~=, in detail, because this has not been done in the literature so far.

12.2.1 Signatures

The starting point for dynamic logic signatures are the signatures of first-order logic
with equality (FOL™) that have the form Ypo = = (5, F, P) consisting of a set .S of
sorts, a family F' of function symbols and a family P of predicate symbols. Because
we need to name procedures, we add an S* x S*-sorted family PR = (PR, )uvwes*
of procedure symbols, leading to signatures of the form ¥ = (S, F, P, PR). We have
two separate lists v and w of the argument sorts of the procedure symbols in PR, ,,,
in order to distinguish the sorts of the input parameters (v) from those of the output
parameters (w) 2. When the string of output parameters consists of just one sort
s, we can mark some of the procedures of PR, ; as functional procedures and we
denote this subset as F'P, ,.

A signature morphism between two signatures maps sorts, operation symbols,
predicate symbols and procedure symbols in a way such that argument and result
sorts are preserved. Also, signature morphisms are required to map functional

2In VSE syntax, the input parameters of the procedures are preceded by IN and the output param-
eters, by OUT. In the case of functional procedures, since all parameters except the last are input
parameters, these annotations are not present.
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procedures to functional procedures and the mapping between procedure symbols
must be injective.

Moreover, it is assumed that all signatures have a sort Boolean together with
two constants true and false on it and this subsignature is preserved by signature
morphisms.

12.2.2 Sentences

Let ¥ = (S, F, P, PR) be a dynamic logic signature with PR = (PR, 1)v,wes+. The
variables will be taken from an arbitrary but fixed countably infinite set X which is
required to be closed under disjoint unions.

First we define the syntax of the programs that may appear in dynamic logic
formulas. The programs contain Y-terms, which are predicate logical terms of
(S, (Fys U FP,¢)yesses, P), i.e. in addition to variables and function symbols
we allow symbols of functional procedures to occur in these terms. The set Py, of
Y-programs is the smallest set containing:

e abort

e declarez:s=r71
e declarez : s =7
.« a8

e ifcthenaelse S fi

e whilecsdoaod

L4 p(x17x27"‘7‘rn;y17y27"‘7ym) )

where x, x1,x9,...,x, € X are variables, y1, 4o, ...,yn € X are pairwise different
variables, 7 a Y-term of sort s, € a boolean Y-formula (i.e. a X-formula without
quantifiers, boxes and diamonds)?, «, 5 € Py, p a procedure symbol, such that the
sorts of x1,...,%n,y1,--.,yn match the argument and result sorts of p. Moreover,
in the case of functional procedures, programs also contain return r, where 7 is a
term of the result sort of the functional procedure.

These kinds of program statements can be explained informally as follows:
abort is a program that never terminates. skip is a program that does noth-
ing. x := 7 is the assignment. declarez : s = 7 is the deterministic form of
a variable declaration which sets x to the value of 7. Its nondeterministic form

3This restriction is motivated by the straightforward translation of such formulas into program
expressions.
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declare r : s =7 sets x to an arbitrary value.* The nondeterministic declaration can
not be used for functional procedures. «; is the composition of the programs «
and 3, such that « is executed before 3. The conditional if ¢ then « else 3 fi means
that « is executed if ¢ holds, otherwise 8 is computed. The loop whilee do o od
checks the condition ¢, in case of validity executes « and repeats the loop. Fi-
nally, p(x1,x2,...,Zn;Y1,Y2,---,Ym) calls the procedure p with input parameters
x1,T2,...,%T, and output parameters yi, Y2, - - - , Ym-

There are three kinds of sentences that may occur in a ¥-dynamic logic specifi-
cation.

1. The set of dynamic logic X-formulas is the smallest set containing

e True and False
e the (S, F, P)-first-order formulas e;

e for any dynamic logic YX-formulas e, 1, e2, any variable x, and any sort
s € S and any X-program « the formulas [a]e, («)e and —e, e; A e2 and
Yz : s.e.

2. Procedure definitions are expressions of the form:

defprocs
1 o1 1
procedure pri(zq, ..., T, Yis- s Ym, )L
k koo k k
procedure pri. (o}, ..., x5 YT - Ym, )
defprocsend
where pr; € PRy, ., for some v, w; € S*,2%,..., 2%y}, ...yl arevariables
of the corresponding sorts in v;, w;, and «; € Py is a X-program with free
variables from {z%,...,z ,yi,...,y.,, }. In VSE the functional procedures are

written using function rather than procedure and without a formal output
parameter; to simplify notation, we will ignore this in this section.

3. Restricted sort generation constraints express that a set of values defined by
restriction procedure can be generated by the given set of procedures, the
constructors. Syntactically a restricted sort generation constraints takes the
form

generated types
spu=pi(. ) ps(oo )] .. pki(.. . ) restricted by r! |

spa=pF (. )pE (D). pE(. .. ) restricted by r* |

where s; are sort symbols, pi,...,p!, are functional procedure symbols, the
dots in p;( ..) etc. have to be replaced by a list of the argument sorts, and r*
is a procedure symbol taking one argument of sort s;.

*In VSE one can also declare more than one variable in a declare list; for simplicity we restrict to
the case of a single variable.
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In order to make the satisfaction condition hold, we formally define a sort
generation constraint over a signature X as a tuple (S’, F/, PR’,¢), where
9 Xy = (So,Fo,Po,PR()) — X, S C S0, F' C Fy and PR C PRy such that
in PR’ there is a restriction procedure r; for any sort s; in .S’.

For any signature morphism o : ¥ — Y, the translation of YX-sentences along o
is done by translating each symbol according to the sort, operation symbol, predi-
cate symbol and procedure symbol mappings respectively. In the case of quantified
sentences, V.X.e gets mapped to VX'.o(e), where for any sort s’ of ¥/, X!, is defined
as the disjoint union of X, for all s such that o(s) = s’. The translation of a sort
generation constraint (S, F', PR', ) over X along ¢ is defined as (S’, F', PR/, ¥; o).

12.2.3 Models

Let ¥ = (S, F, P, PR) be a dynamic logic signature with F' = (F,, s)wes+ scs, P =
(Py)wes+, PR = (PRyw)vwes+- A (dynamic logic) ¥-model M maps each sort
symbol s € S to a carrier set M, each function symbol f € F,, ; to a total function
My : M, — Mj, each predicate symbol p € P, to a relation M, C M, and each
procedure symbol pr € PR, to a relation M, C M, x M,, where M,
denotes M, x My, X ... x Mj, for (s1,s2,...,s,) € S*. Functional procedures are
required to be interpreted as total functions over their domain. Thus, such a model
can be viewed as a C FO L~ structure extended with the interpretation of procedure
symbols.

For any signature morphism o : ¥ — Y', the reduct M’|, of a ¥'-model M’
interprets z as the interpretation of o(x) in the original model, where = can be
either a sort, a function symbol, a predicate symbol or a procedure symbol.

12.2.4 Satisfaction of Dynamic Logic Formulas

Semantics is defined in a Kripke-like manner. For a given signature ¥ and a X-
model M the (program) states are variable valuations, i.e. partial functions taking
sorted variables x : s to values of M, where s is a sort of ¥ and x € X. We assume
that for each sort there is a designated output variable for storing the return values
of functional procedures; let us denote that variable o.

First, we need to define the interpretation of a term 7 in a model M and a
state q. Because the states are partial, the interpretation can be undefined. The
interpretation of terms is then done as usual inductively on the structure of terms:

e if 7 is a variable x : s, then 779 := ¢(x : s) (i.e. the value of the variable x : s
in state ¢ when defined and undefined otherwise);

oif - = f(n,...,7) and f € F,s or f € FP,, then M4 .=
M f(TlM 4. 72"%), and undefinedness of any of the TiM ! is propagated;
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The semantics of a program « with respect to a model M is a predicate _[a]™
on two program states. ¢[a]*r can be read as: If « is started in state g it may
terminate after having changed the state to r.

q[skip]™q

not gJabort]Mr
gl == 1]Mr & r = gz : s + ™) and 7™+ is defined, where s = sort(r)
q[z := 7]Mr does not hold for any r if 74 is not defined

qa; B]Mr < for some state s : q[a]™s and s[B]Mr

q[declarer : s = 7|Mr < q[z = 7]Mr

q[declarex : s = ?]Mr < for some a € s™ : r = q[z < d

qlife then aelse 3 fi]Mr < (q |= € and ¢[a]Mr) or (¢ = —¢ and q[B]Mr)
q[while e do a od]Mr < ¢([ifc then a else skip fi] )*r and r = —e

M

qlpr(z1, ..., zn;y1, - ym) |V r < prac(q(r), -y q(zn);r(y1), - o 7 (Ym))

g[returnt]r < r = ¢lo : s < 7], where o is the output variable of sort
s = sort(r).

where for any program o, ([a]™)* is the reflexive transitive closure of the relation

qly) ify#z

[a]™, and the state [z < a] is defined as ¢[z « a](y) = { T is

a ify=2a

a Y-term without predicate symbols and 79 is the evaluation of the term 7 with
respect to the model M and state q.
We define satisfaction on a model M and a program state r as follows:

M,r |= True and M, r [~ False

M,r = p(r,...7) < for all i = 1,...,n, 7" is defined and
M.

Mp(TlM’T, N |

M,r =7 =1 < " = 721" and interpretation of both terms in the state r
is defined

M,rE—-es Mrie
M,r=eNe & M,r=eand M,r ¢
M,rl=eve < MriEeor M,r=e
M,r=EVe:sesforalla e Ms: M,rjx:s<«+alle

M, r |= [a)e < for all program states ¢ with r[a]q: M,q = e
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The formula («a)e is to be read as an abbreviation for —[a]—e. Finally a formula
e holds on a model M (M [ e), if for all program states r it holds on M and r

(M,r |=e).

12.2.5 Satisfaction of Procedure Definitions

The procedures in our model will not have any side effects (except for modifying
the output parameters).

Unwinding a procedure call by replacing it by the body of the procedure and
substituting the formal parameter variables by the actual parameters should not
change the result of a program. Therefore, for a signature ¥, a ¥-model M is a
model of a procedure declaration without recursion

defprocs
1 1.1 1
procedure pri(zy,..., %, Y1, Ym, )1
k koo k k
procedure pri(zf, ..., x5 YT - - Y, )k
defprocsend
if
M vy, al .,

((pr(ah, - @ Y U)W = 1IN A, = 1n,) & (@Y1 = TIA Ny, = T,
holds for any ¢ = 1...k. Abbreviating the procedure declaration as II, we then
write M |=11.

In the presence of recursion this is not sufficient to make the procedure def-
initions non-ambiguous and adequate to conventional semantics of programming
languages. Therefore, from several models complying with the definitions the min-
imal model with respect to some order will be chosen. The order compares the
interpretations of the procedures symbols, such that the order relation M; <y M
holds for two models M; and M, for the same signature > = (S, F, P, PR) iff
priM 1 C prfWQ for all procedure symbols pr, and the interpretations of sort, function,
predicate symbols and procedure symbols which are not part of II are identical.
Moreover, we say that a model M, is a II-variant of My, written M, =1 M, if M,
and M, agree on the interpretations of all symbols except possibly the procedure
symbols in II. Then we define that the satisfaction of a procedure declaration II by
M as follows:

M =1 iff M |11 and for all IT-variants M’ of M, M’ |}= 11 implies M <;y M’.

12.2.6 Satisfaction of restricted sort generation constraints

A restricted sort generation constraint (S’, F', PR/, ¢) written as

generated types s; == p’(...)[p5(...)|...|p’(...) restricted by’ |
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is said to hold in a model M, if the subset of the carrier (M|y)s, on which the
restriction procedure r’ terminates is generated by the functional procedures pi, pb,
... pt, (called constructor procedures). In more detail: for each element a of (M|y) i
such that M|y, ¢ = (r(x))true when q is a state such that ¢(z) = a, there must by a
term ¢ built with constructor procedures only and having no free variables of sorts
s; and a state v such that v is defined only for variables of sorts distinct from the s;
and that tMl»* = ¢ holds.

12.2.7 Satisfaction condition

Proposition 12.2.1 Let ¥ = (S, F,P,PR) and ¥’ = (S',F',P',PR’) be two dy-
namic logic signatures, o : ¥ — Y/ a signature morphism, M’ a ¥'-model and e a
>-sentence. Then:

M Eo(e) < M|, Ee
Proof. We prove the satisfaction condition by case distinction on e.

1. e is a dynamic logic formula.

In this case, we prove by induction over e that M’ ' = o(e) <— M'|,,t'|, E
e, where for any state ¢’ for ¥’ and M’, we define the state ¢|, for 3 and M’|,
by taking ¢|,(z : s) = t(z : o(s)) for each sort s of ¥.. The proof is pretty
much routine, the interesting case being when e is of form [a]e’. Let us denote
M =DM, .

We begin with a lemma:

Lemma 12.2.2 For any state t' for ¥’ and M’, any state q for ¥ and M and

any X-program o, t'|,[a]™q iff there is a state ¢ such that t'[o(a)]M ¢ and
/

qloe=q

which can be proven by induction on «, by making use of the fact that the
variables used in « are bijectively renamed in the states ¢ and ¢'.

Let t' be a state for ¥’ and M’ such that M’ t' = o([a]e’). By definition
this means that for any state p’ such that ¢'[o(a)]M'p/, M',p' = o(€). Let
q be a state such that #'|,[a]q. We need to prove that M,q = ¢'. Using
Lemma 12.2.2, there is a state ¢’ such that #'[o(a)]™'¢’ and ¢/|, = ¢q. By
the hypothesis we get that M’, ¢’ = o(¢’). By the inductive hypothesis for ¢,
we obtain M, q'|, | €. Since ¢'|, = ¢, this means M, q = ¢/. Since ¢ was
arbitrary such that ¢|,[a]™ ¢, we obtain M, |, = [a]e’.

For the reverse implication, let ¢’ be a state for ¥’ and M’ such that M,t'|, E
[a]e/. By definition this means that for any state p such that ¢|,[a]Mp,
M,p = €. Let ¢ be a state such that ¢[o(a)]™'¢. By Lemma 12.2.2 we
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get t'|,[a]™¢|,. By the hypothesis we get that M, ¢|, = ¢/. By the induc-
tive hypothesis for ¢/ we get that M’, ¢’ = o(e’) and since ¢’ was arbitrary, by
definition M’ t' |= [o(a)]o(€).

2. e is a procedure definition.

We first prove the following lemma:

Lemma 12.2.3 Let 0 : ¥ — Y, let II be a procedure definition in ¥ and let N
be a ¥'-model, and let M = N|,. Then

N <,y N’ for any o(IT)-variant N’ of N such that N' [|= o(1I)
iff M <y M’ for any I-variant M’ of M such that M’ | 1L

Proof: For the left to right implication, assume for a contradiction that M is not
minimal among its II-variants satisfying I1. Then there exists a II-variant of M,
MY, satisfying 11 such that M % M°. We define a o-expansion N° of M° by
interpreting all symbols outside II as in the model N and taking Ng(ﬂ) = M for
any procedure w defined in I1. The well-definedness is ensured by M° |= II and
by the injectivity of o on procedure symbols and moreover, by the satisfaction
condition we get that N° ||= o(I). Since N £,y NV, we get a contradiction
with the minimality of N.

For the right to left implication, assume for a contradiction that N is not mini-
mal. Then there exists a o(Il)-variant of N, denoted N such that N £,y N°.
Let M° := N°|,. By the satisfaction condition we get M |= II. By definition
of reduct it follows that M9 = Ng(ﬂ) and since My = Ny () we get M &y M°
which contradicts the minimality of M.

a

The satisfaction condition follows from the definition of the model reduct for
procedure symbols (which ensures minimality) and from Lemma 12.2.3.

3. e s a restricted sort generation constraint.

The satisfaction condition is obvious.

12.3 VSE Refinement as an Institution Comorphism

By contrast with the behavioral refinement of Cast, the VSE specification language
supports a refinement approach based on explicit submodels and congruences [Reif,
1992], an idea that dates back to Hoare [Hoare, 1972]. This more specific and sim-
pler approach has been successfully applied in practice, and moreover, it is linked
with a code generation mechanism. Hence, integrating this approach into HETS
brings considerable advantages.

VSE'’s refinements associate an abstract data type specification, called the export
specification of the refinement, with an implementation. The implementation is
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based on another theory, called the import specification and contains several func-
tional procedures written in an imperative language. These procedures use the
functions and predicates of the import specifications. A so called mapping relates
each sort of the export specification to a sort of the import specification, while the
functions and procedures are mapped to procedures in the import specification.

A refinement describes the construction of a model for the signature of the ex-
port specification (export model) from a model of the import specification (import
model). The functions and predicates are interpreted by the computations of the
procedures. The elements of the carrier sets of the export model are constructed
from the carrier sets of the import model. The implementations are allowed to
represent a single value in the export specification by several values of the import
specifications. For example, when implementing sets by lists, a set might be repre-
sented by any list containing all elements of the set in any order. Furthermore, VSE
does not require that all values of a sort in the import specification really represent
a value of the export specification. In the example below where we will imple-
ment natural numbers by binary words, we will exclude words with leading zeroes.
In order to describe the construction of the carrier sets, the refinement contains
two additional procedures for each sort: a procedure defining a congruence relation
and a procedure defining a restriction. The restriction terminates on all elements
that represent export specification values. The congruence relation determines the
equivalence classes that represent the elements of the export model.

We can express this formally as in the following definition:

Definition 12.3.1 Let SP be a CFOL™-specification and SP’ a C Dyn=-specification.
Then SP' is a refinement of SP’, denoted SP ~»ysg SP, if for all M ¢
Mod“Py=(SP"), (M)/= € Mod“FOL™ (SP), where (M)/~ denotes the model ob-
tained from M by restricting the elements of each sort according to the restriction
procedures and taking the quotient to the congruence relation. >

Note that the definition is given in semantic terms. The VSE system generates
proof obligations that are sufficient for guaranteeing that a CFOL™-specification is
indeed a refinement of a C'Dyn=-specification.

When integrating VSE and its notion of refinement into HETS, a naive approach
would extend HETS with a new notion of restriction-quotient refinement link in
HETS, and would extend both the HETS motherboard and the expansion slot spec-
ification in a way that makes it possible to deal with such refinement links. VSE
easily could be turned into an expansion card that is able to prove these refinement
links.

However, this approach has a severe disadvantage: the specification of expan-
sion slots needs to be extended! If we did this for every tool that is newly integrated
into HETS (and every tool comes with its own special features), we would quickly
arrive at a very large and unmanageable expansion slot specification.

SFor a definition of quotients of first-order models, see [Sannella and Tarlecki, 2012].
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Fortunately, the heterogeneity of HETS offers a better solution: we can encode
VSE refinement as ordinary refinement in HETS, with the help of an institution
comorphism that does the actually restriction-quotient construction. With this ap-
proach, only the HETS logic graph needs to be extended by a logic and a comor-
phism; actually, we will see that two comorphisms are necessary. That is, we add
two further expansion cards doing the work, while the logic-independent part of
HETS, i.e. the motherboard and the expansion slot specification, can be left un-
touched!

12.3.1 The Refinement Comorphism

We model the refinement notion of VSE by a comorphism from the CasL institution
CFOL™ to the VSE institution C' Dyn=. The intuition behind it can be summa-
rized as follows. At the level of signatures, for each sort we need to introduce
procedure symbols for the equality relation and for the restriction formula together
with axioms specifying their expected behavior, while for function and predicate
symbols, we need to introduce procedure symbols for their implementations. For
all these symbols, we assign no procedure definition but rather leave them loosely
specified; in this way, the choice of a possible implementation is not restricted. The
sentence translation is based on translation of terms into programs implementing
the representation of the term. The model reduct performs the submodel/quotient
construction, leaving out the values that do not satisfy the restriction formula and
quotienting by the congruence generated by the equality procedure.

We now define the simple theoroidal comorphism CASL2VSERefine
CFOL= — CDyn~. Each CasL signature ¥ = (S, F, P) is mapped to the C Dyn~=
theory ((S,0,0, PR), E), denoted ®(X). PR contains (1) for each sort s, a symbol
restr_s € PRy, for the restriction on the sort and a symbol eqs € PR, 4 |Boolean]
for the equality on the sort and (2) for each function symbol f : w — s € Fy, 5, a
symbol gn_f : w — s € PR,, |, and for each predicate symbol p : w € P,, a symbol
gn_p : w — [Boolean] € PRy, (Boolean)-

The set of axioms E contains sentences saying that for each sort s, (1) eqs
is a congruence and it terminates for inputs satisfying the restriction and (2) the
procedures that implement functions/predicates terminate for inputs satisfying the
restriction and their results also satisfy the restriction. These properties are to be
proven when providing an actual implementation. The general pattern of the trans-
lation is presented in Fig. 12.2, which gives the symbols and the sentences intro-
duced in the resulting VSE theory for each symbol of the CasL theory that is trans-
lated. To improve readability, we only considered the case of unary function/predi-
cate symbols; the generalization to symbols of arbitrary arity is obvious. Moreover,
T stands for True, B for Boolean and the restriction restr, is abbreviated r,.

A CasL signature morphism ¢ : ¥ — Y’ is mapped to the C Dyn™ morphism
P(0) : ®(X) — ®(X') which works like o on sorts and procedure symbols corre-
sponding to function/predicate symbols in ¥ and for each sort s of ¥ maps eq; to
€qo(s) and restrs to restry ().
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CASL VSE VSE sentences
sort s (rs(@)) T A(rs(y) T = (egs(x, y;€)) T
sort s eqs € PR g 5] | (rs(7)T) = (egs(z,z5€))e =T
rs € PRy (rs(x))T A{rs(y))T A (eqs(z,y;e))e = T =
(eqs(y, z;e))e =T
(rs(@)T A (rs()T A (rs(2))T A
(eqs(z,y;e)ye = T Aleqs(y,z;e))e = T =
(eqs(z, z;e))e =T
feFu, gn_f € PRig | (rs(@)T A (rs(y)T A (egs(z,y;e))e = T
7 = (yl = gn_f@)y2 = gn_f(y))
(eqr(yl, y2;e))e=T
(rs(z) T = (gn_f(z;y))(re(y) T
peP gn_p € PRig g | (rs(z))T A(rs(y)) T Afeqs(w,yse))e = T =
’ (gn_p(a; 1)) {gn_p(y; r2))rl = r2
(rs(z)) T = (gn_p(x;e)) T

Figure 12.2: Summary of the signature translation part of the comorphism
CASL2VSERefine (for simplicity, only unary symbols are shown).

Given a CasL signature ¥ = (S,F,P) and a model M’ of its translation
®(X) = ((5,0,0, PR), E), we define the translation of M’ to an (S, F, P)-model,
denoted M = By (M’). The interpretation of a sort s in M is constructed in two
steps. First we take the subset M,y s C M. of elements, for which the restriction
predicate holds. Then we take the quotient M, ., s/= according to the congru-
ence relation = defined by eg;, such that for all a,b € M/, a = b is equivalent
to M',t = (eqs(x1,22;y))y = true whenever ¢ is a state such that ¢(x;) = a and
t(x2) = b. For each function symbol f, we define the value of M/ in the argu-
ments aq, ..., a, to be the value returned by the call of procedure M ;n_f on inputs
ai,...,an, thatis My(ai,...,a,) =bifand only if M’ ¢t |= (gn_f(z1,...,2n;y))y =
z when ¢ is a state such that ¢(z;) = a; for any ¢ = 1,...,n and t(z) = b. Ax-
ioms (1) and (2) in E ensure that M/ is total and well-defined. Similarly and
using the same notations, for each predicate symbol p, My(ai,...,ay,) holds iff

M',t = (gn_p(x1,. .., 203 y))y = true.
Proposition 12.3.2 The model translation is natural.

Proof. Follows easily from definition of the model translation and the definition of
model reducts. O

Sentence translation is based on translation of terms into programs that com-
pute the representation of the term. Basically, each function application is trans-
lated to a procedure call of the implementing procedure, and new output variables
are introduced:
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e a variable x is mapped to x := x, where the left-hand side z is the output
variable and the right-hand side x is the logical variable;

e a constant ¢ is mapped to gn_c(;y), where gn_c is the procedure implement-
ing the constant and y is a new output variable;

e a term f(t1,...,t,) is mapped to aq;...,an;a = gn_f(y1,...,yn), Where
«; is the translation of ¢; with the output variable y; and a is a new output
variable.

Then the sentence translation is defined inductively:

an equation ¢; = t5 is translated to

(a1); (@2); (egs(y1, y2; v))y = true
where «; is the translation of the term ¢;, with the output variable y;

e a predicate application p(t1,...,t,) is translated to

(1) . Aan){gn_p(y1, ... yn;y))y = true
where «; is the translation of the term ¢;, with the output variable y;

e Boolean connectives of formulas are translated into the same connections of
their translated formulas;

¢ for universally and existentially qualified formulas one also has to make sure
that the bound variables are assigned a value that satisfies the restriction: e.g
Vz : s.e gets translated to Vz : s.(restrs(z))true = «a(e), where we denoted
with «(e) the translation of e.

An example of how a CASL sentence is translated along the CASL2VSERefine
comorphism will be introduced in the next section in Fig. 12.4.

Sort generation constraints are translated to restricted sort generation con-
straints over implementing procedures. For example, assume we have in the ab-
stract specification of natural numbers a sort generation constraint:

generated type nat ::= 0| suc (nat)

Then in the VSE theory resulting from translation along comorphism, the restricted
sort generation constraint

generated typenat ::= gn_0 | gn_suc(nat) restricted by restr_nat .

is introduced, where gn_0 and gn_suc are the procedures implementing the con-
structors and restr_nat is the restriction procedure symbol on sort nat.

Proposition 12.3.3 The sentence translation is natural.
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Proof. Follows easily by induction on sentences and by noticing that for any Cast. sig-
nature morphism o : ¥ — ¥/ and any Y-term ¢ we have that the program computing
the representation of o (¢) is the o-image of the program computing the representa-
tion of ¢. 0

Lemma 12.3.4 Let 3 be a CFOL™-signature and let M’ be a model of the theory
®(X). Denoting M = Ps(M') we have that for any X-term t and any state q for ®(X)
and M', My = a iff M, q = (ax(t))y = z, where y the output variable of ax(t) and =z
is a variable such that q(z) = a.

Proof. Follows by induction on the structure of the term ¢. O

Theorem 12.3.5 The satisfaction condition for the comorphism CASL2VSERefine
holds.

Proof. Follows by induction on the structure of the sentences and making use of
Lemma 12.3.4. O

This construction follows very faithfully the steps of the refinement method of
VSE, as described above. The export specification of VSE is a first-order specifica-
tion that we can translate along the comorphism CASL2VSERefine to generate the
same kind of proof obligations that VSE would generate to prove correctness of a
VSE refinement. The difference is that now they are built using abstract (i.e. loose)
procedure names and actual implementations are to be later plugged in by means
of a refinement (in HETS) along a signature morphism which corresponds to the
VSE mapping, with the exception that instead of pairing export specification sym-
bols with implementations, the morphisms rather pairs abstract procedures with
implementations. Moreover, the correctness of the HETS refinement ensures us that
a model of the implementation reduces along the signature morphism to a model
of the translation of the original export specification, that we can further trans-
late along the comorphism to obtain a model of the export specification. Thus we
achieve that the model semantics of the refinement in VSE [VSE, 1997] and of the
refinement expressed using the comorphism CASL2VSERefine coincide.

Definition 12.3.6 Let I an J be two institutions, p = (p,«,3) : I — J be an insti-
tution comorphism. Let SP be a I specification and SP’ be a J specification. We say
that SP’ is a heterogeneous refinement of SP along p if for each M € Mod’ (SP’),
B(M) € Mod!(SP).

Our result can be formulated as follows:

Theorem 12.3.7 Let SP be a Cast specification and SP’ a VSE specification. Then
SP ~vsg SP'iff SP' is a heterogeneous refinement of SP along CASL2VSERefine.

We can now show that the proof calculus for heterogeneous development
graphs, combined with the VSE prover, can be used for discharging refinement
proof obligations in a sound way.

The following two lemmas follow easily:
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Lemma 12.3.8 The institution C' Dyn~ has the amalgamation property.

Proof idea: Similar to the proof for first-order logic, see for example [Diaconescu,
2008].

Lemma 12.3.9 The comorphism CASL2VSERefine admits model expansion.

Proof. For any CFOL™ signature X and each Y-model M, we build a ®(3)-model
by interpreting sorts s as Mj, functions gn_f like My, predicates gn_p as M, the
equality as the set-theoretical equality and the restriction as always returning true.
It is easy to see that the model such built satisfies the axioms of ®(X) and it reduces
via By, to M. ad

In VSE we do not have hiding as a structuring operation, and therefore all spec-
ifications are flattenable (see e.g. [Sannella and Tarlecki, 2012]). The following
corollary follows then directly from Lemma 12.3.9 and a result from [Mossakowski,
2002b].

Corollary 12.3.10 The comorphism CASL2VSERefine admits borrowing of entail-
ment and of refinement.

Unfortunately, we cannot expect completeness here, because first-order dy-
namic logic is not finitely axiomatisable [Blackburn et al., 2006].

12.3.2 Structuring in Context of Refinement

Consider a refinement from an abstract to a refined specification where a theory of
a library (e.g. the natural numbers) or a parameter theory that will be instantiated
later occurs both in the abstract and the refined specification. Such common import
specifications should not be refined, but rather kept identically — and this is indeed
the case in VSE.®

To handle this situation in the present context, the import of a first-order speci-
fication into a dynamic logic specification is not done along the trivial inclusion co-
morphism from CFOL= to C Dyn~ — this would mean that the operations of the
import need to be implemented as procedures. Instead, we define a comorphism
CASL2VSEImport : CFOL= — CDyn~, which, besides keeping the first-order
part, will introduce for the symbols of the import specification new procedure sym-
bols, similarly to CASL2VSERefine. Namely each CFOL™ signature (S, F, P) is
translated to the C Dyn~= theory ((S, F, P, PR), E') where PR is the same as in the
definition of the translation of (S, F, P) along CASL2VSERefine and E contains
the following types of sentences:

®This resembles a bit the notion of imports of parameterized specifications in CASL [Mosses, 2004],
where the import is shared between formal and actual parameter and is kept identically.
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e for each sort s € S, sentences giving the implementations for the restriction

and the equality of s, as follows:

PROCEDURE restrg(x)
BEGIN SKIP END;

and respectively

FUNCTION eq,(x, y)
BEGIN IF x = y THEN RETURN True
ELSE RETURN False FI END;

with the intuitive meaning that no element of the sort is restricted and the
equality on the sort is defined as the (meta-)equality on the interpretation of
the sort;

for each operation symbol f € F;_,;, a sentence giving the implementation of
the corresponding procedure symbol gn_f € PR

FUNCTION gn_f(x)
BEGIN DECLARE y : ¢ := f(z); RETURN y END;

which means that the implementation of the functional procedure for f re-
turns as result exactly the value f(a) for each input a;
for each predicate symbol p € P,, a sentence giving implementation of the

corresponding procedure symbol gn_p € PRy (Boolcan:

FUNCTION gn_p(z)
BEGIN DECLARE vy : Boolean := p(x); RETURN y END;

again with the meaning that the functional procedure gn_p is implemented
as returning true only on those inputs that make the predicate p hold.

The result of choosing these implementations is that the sorts are not restricted,
the congruence on each sort is simply the equality and the functional procedures
introduced for operation/predicate symbols have the same behavior as the origi-
nal symbols, i.e. give the same results on same inputs. Moreover, the signature
morphisms translation of the comorphism CASL2VSEImport is the straightforward
one, the translation of CasL sentences along the comorphism is simply the identity,
and the models can be reduced in an obvious way by simply forgetting the interpre-
tations of procedure symbols. The satisfaction condition of the comorphism follows
immediately.

(CASL, Nat)
/ W]’rﬂport
(CASL, Abstr) T TTT (VSE, Impl)

Figure 12.3: Common import.
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For example, let us consider the situation in Fig. 12.3, where the natural
numbers are imported both in the abstract and the concrete specification and the
(heterogeneous) refinement link is represented by the double arrow. The label
CASL2VSEImport on the right arrow indicates that Nat is translated via the im-
port comorphism before being imported in Impl. We can assume for simplicity that
Nat has only a sort nat and then in Impl we have procedure symbols for identi-
fication and restriction on nat, together with procedure definitions saying that no
element is restricted and the identification procedure is simply equality.

On the other side, when Abstr is translated along the refinement comorphism to
C Dyn=, no distinction between the sorts defined in Abstr and the imported ones is
made, so in the resulting translated theory we will have symbols for the restriction
on sort nat and for identification. These symbols are then mapped identically by
the C Dyn=-signature morphism that labels the refinement and since in Impl no
restriction and no identification on nat is made, the quotient on nat is trivial. For
any function/predicate symbols from Nat we would get the same behavior: the
default implementations provided by CASL2VSEImport act only as wrappers for
functions/procedures, without changing their values, and therefore the imported
specification symbols are kept identically.

12.4 Example: Implementing natural numbers by binary
words

As an example, we present the implementation of natural numbers as lists of binary
digits, slightly abridged from [Reif, 1992].7 The abstract CASL specification NATS is
the usual specification of natural numbers with 0, successor and addition with the
Peano axioms.

spec NATS =
free type nats ::= zero_n | succ_n(nats)
op  zero_n:nats
Op  succ_n:nats — nats
op prdc n:nats — nats
op add n:nats x nats — nats
vars m, n : nats
e prdc_n(zero_n) = zero_n
e prdc_n(succ_n(m)) =m
e add n(m, zero_ n) =m
e add n(m, succ_ n(n)) = succ_n(add_n(m, n))

The predecessor function is defined to take zero n to zero n; this is because
in VSE there are no partial functions. In Fig. 12.4 8, we present a fragment of the

7 The complete example can be found at https://svn-agbkb.informatik.uni-bremen.de/Hets-
lib/trunk/Refinement/natbin_refine.het.
SHETS uses <: a :> ¢ as input syntax for ().


https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/Refinement/natbin_refine.het 
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/Refinement/natbin_refine.het 
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theory obtained by translating NATS along the comorphism CASL2VSERefine: the
resulting signature and the translation of the first axiom - the other three translated
axioms and the sentences introduced by the comorphism are similar.

sort nats
PROCEDURES
gn_add n : IN nats, IN nats — nats;
gn_eq_nats : IN nats, IN nats — Boolean;
gn_prdc_n : IN nats — nats;
gn_restr_nats : IN nats;
gn _succ_n : IN nats — nats;
gn_gzero_n : — nats
V gn_x0 : nats; gn_x1 : nats; gn_x2 : nats; gn_x3 : Boolean
e <:gn x1 :=gn zero n;
gn _x0 := gn_prdc n(gn x1);
gn x2 :=gn zero_n;
gn_x3 := gn_eq_nats(gn_x0, gn_x2):>
gn_x3 = (op True : Boolean)

Figure 12.4: Natural numbers translated along the comorphism CASL2VSERefine.

The VSE implementation, NATS-IMPL (Fig. 12.5), provides procedures for the
implementation of natural numbers as binary words, which are imported as data
part along CASL2VSEImport from the CASL specification BIN (omitted here). We
illustrate the way the procedures are written with the example of the restriction
procedure, nlz, which terminates whenever the given argument has no leading
zeros. The implementation of the other procedures is similar and therefore omitted.
Notice that the equality is in this case simply the equality on binary words.

We now have to express that binary words, restricted to those with non-leading
zeros, represent a refinement of natural numbers. We can express this using the
refinement language introduced in Chapter 11, with the Grothendieck institution
of HETS as underlying institution, to allow capturing heterogeneous refinements.
Fig. 12.6 presents this refinement, where we record that each symbol of NATS is
implemented by the corresponding procedure in the symbol mapping of the view.

In Fig. 12.7, we present some of the proof obligations introduced by the refine-
ment. They are translations of the sentences of the theory presented in Fig. 12.4
along the signature morphism induced by the symbol map of the refinement. The
first two sentences are introduced by the signature translation of the comorphism
and state that (1) equality terminates on inputs for which the restriction formula
nlz holds and (2) the procedure implementing addition, i_add, terminates for valid
inputs and the result is again valid. Also the translation of an axiom of NATS along
the comorphism CASL2VSERefine is presented. The resulting development graph
is displayed in Fig. 12.8, where the double arrows correspond to translations along
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spec NATS IMPL =
BIN with logic — CASL2VSEImport
then PROCEDURES
hnlz : IN bin; nlz : IN bin; i_badd : IN bin, IN bin, OUT bin, OUT bin;
i_add : IN bin, IN bin — bin; i_prdc : IN bin — bin;
i succ : IN bin — bin; i_gero : — bin; eq : IN bin, IN bin — Boolean
e DEFPROCS
PROCEDURE hnlz(x)
BEGIN
IF x = b_zero THEN ABORT
ELSE IF x = b_one THEN SKIP ELSE hnlz(pop(x)) FI
FI
END;
PROCEDURE nlz(x)
BEGIN IF x = b_zero THEN SKIP ELSE hnlz(x) FI END
DEFPROCSEND
%% ...

Figure 12.5: Implementation using lists of binary digits.

refinement BINARY ARITH =
NATS refined via
logic — CASL2VSERefine,
nats — bin, gn_restr_nats — nlz, gn_eq_nats — eq,
gn_zero n +— i_gzero, gn Succ_n — i_succ,
gn prdc n— i prdc,gn _add n+— i _add
to NATS IMPL

Figure 12.6: Natural numbers as binary words.
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%% Proof obligations introduced by the refinement
%% equality procedure terminates on valid inputs
V gn_x, gn y : bine <:nlz(gn_x):> true N\ <:nlz(gn_y):> true
= <:gn_b :=-eq(gn _x, gn_y):> true
%% procedure implementing addition terminates and gives valid results on valid inputs
vV gn x1,gn x2 : bin e <:nlz(gn_x1):> true N <:nlz(gn_x2):> true
= <:gn x:=1i_add(gn_x1, gn x2):> <:nlz(gn_x):> true
%% translation of : forall m : nats . add n(m, zero_n) = m
V gn x0, gn_x1, gn _x2, gn x3 : bin; gn_x4 : Boolean,
m : bin
o <:nlz(m):> true
= <:gn xI1:=m;
gn x2 :=1_zero;
gn x0 :=1i _add(gn x1, gn x2);
gn x3 :=m;
gn x4 :=eq(gn _x0, gn_x3):>
gn_x4 = (op True : Boolean)

Figure 12.7: Generated proof obligations

X O ub 31.1-Di Graph for in_refine OB 6
File Edit View Navigation Abstraction Layout Options Help

Figure 12.8: The development graph of natural numbers example
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comorphisms and the red arrow is introduced by the refinement.

X @ ruleselec... @ @ & @ xl
split right
vardecls left
vardecls right
simplifier
weak simplifier BEGIN BEGIN

X &

specification-strat @ ¥ @ o &

weakening formulas nlz# (m)
contraction END END> ‘true
induction

structural induction BEGIN BEGIN

it Freminla / gn_1x1 = m ;

i_lzero#{gn_1x2) ;
i_ladd#Cgn_1x1, gn_1x2, gn_1x0) ;
gn_1x3 :=m ;
eq#(gn_1x0, gn_1x3, gn_1x4)
END
END> gn_1x4 = true

Figure 12.9: A sample proof goal in VSE

The proof obligations together with all axioms can be handed over to the VSE
prover; the user is presented with the interactive prover interface, where the current
proof state can be inspected and proofs of obligations or lemmas can be started.
Fig. 12.9 shows the situation after starting the proof for the obligation resulting
from the axiom describing zero as the neutral element with respect to addition.
There is a window containing the current goal and another window with a list of
applicable rules to choose from.

The prover uses a sequent calculus. Therefore the goals have the form of
sequents ej,eg,...,e, F €),¢e5 ... e meaning that under the assumption of
e1,ée2,...,e, one of the formulas ¢, €}, ..., or ¢/, holds.

The user could now complete the proof by selecting rules by hand. For this kind
of dynamic logic goals rules for each program construct are available. For example
for a conditional if ¢ then « else (3 fi we have the rule

Iiek (a)e,A T,—et (Be, A
I' - (ifethenaelse ffi)e, A

where I and A are sequences of formulas. Applying this rule would generate two
new goals, one assuming the condition ¢ holds which allows us to replace the con-
ditional with «, and the other one assuming —e.

The rule for an assignment statement = := 7 will change the sequent in a way
that it reflects the state after the assignment. It will remove all formulas where x
occurs freely and add the equation x = 7. In the following rule I resp. A’ are
obtained from TI' resp. A by removing all formulas with free occurrences of the
variable x:

Max=1ke A
'k (z:=7)e,A
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A simplifier is run after each rule application. When appropriate, it will apply a
substitution x = 7 on e and remove the equation x = 7. For example, starting
from the goal in Fig. 12.9, the user would soon want to get rid of the assignment
gn_lxz1 := m, which results in the following new goal:

<nlz# (m)> true
| —
<i_lzero# (gn_1x2)>
<i_ladd# (m, gn_1x2, gn_1x0)>
<gn_1x3 := m>
<eg# (gn_1x0, gn_1x3, gn_1x4)> gn_1x4 = true

Next the call of procedure i_1zero has to be dealt with. There is a rule which allows
to unwind procedure calls. In this case it will yield the following new goal:

<nlz# (m)> true
| —
<VAR BEGIN BEGIN res—i_lzero := b_lzero
END END>
<i_ladd# (m, res-i_lzero, gn_1x0)>
<gn_1x3 := m>
<eg# (gn_1x0, gn_1x3, gn_1x4)> gn_1x4 = true

The proof then would continue always choosing rules for the *

Status Line

first top level program construct. The user will rather activate H

the heuristics for that, and thus most of the remaining proof is
done automatically. As these heuristics are mainly driven by a

program appearing in one of the formulas and the result looks
like executing the program with symbolic terms instead of val-
ues, it is called symbolic execution.

In general VSE performs a heuristic loop, which means that
after each rule application it tries to apply heuristics from a
given list of heuristics the user has chosen. In case all heuristics
should fail, there is also a last resort heuristic which allows the

user to select a rule from the set of all applicable rules. g
Finally, a proof tree as shown in Fig. 12.10 results, where

each goal is shown as a node and each rule application lets the

tree grow upwards.

A more involved example is the proof obligation that will
show that the procedure i_add, if applied to well-formed input
arguments, terminates and produces a well-formed result (in
the sense of the restriction procedure):

<nlz# (gn_1x1)> true, <nlz# (gn_1x2)> true ————
| — Message Line
< i_ladd#(gn_1x1, gn_1x2, gn_1x)>

< nlz#(gn_1x)> true Figure 12.10:

VSE proof tree



12.5. Conclusions and future work 219

Many proof steps still can be done by symbolic execution. How-

ever, as i_add is recursive this could fail to complete the proof

and lead to an infinite loop instead. To prevent this, an induction proof is required,
in this case structural induction on the first input argument i_add. The induction
hypothesis can then be used for recursive calls of i_add. The proof should also
be made more concise by avoiding to unwind the i_succ calls occurring in i_add.
Instead these calls should be handled by using the similar proof obligation

<nlz# (gn_1x1)> true
|_
< i_1lsucc#(gn_1x1, gn_1x)> < nlz#(gn_1x)> true

as a lemma.

Most of the proof obligations for this example can be treated similar to the two
obligations we have discussed. After finishing the proof with the VSE prover, HETS
is informed about the obligations that have been completed.

The two comorphisms have been implemented and are part of HETS; the VSE
tool is also going to become available under public license. Provided VSE is in-
stalled, the example can be fully checked in HETS.

12.5 Conclusions and future work

We have integrated VSE’s mechanism of refining abstract specifications into proce-
dural implementations into HETS. Via a new logic and two logic translations, one of
them doing the usual restriction-quotient construction, we could avoid entirely the
introduction of new types of “refinement links” into HETS, but rather could re-use
the present machinery of heterogeneous development graphs and thus demonstrate
its flexibility. Visually spoken, we could avoid extending the HETS motherboard
and expansion slot specification, but rather just construct several expansion cards
related to VSE and plug them into the HETS motherboard.

However, there is a point when it actually makes sense to enhance the expan-
sion slot specification. Currently, it is based on the assumption that expansion cards
(aka theorem provers) can only handle flat unstructured theories. However, VSE
can also handle structured theories, and takes advantage of the structuring during
proof construction. Hence, we plan to extend the expansion slot specification in
a way that allows the transmission (between HETS and VSE) of whole acyclic di-
rected development graphs of theories with connecting definition links, reflecting
the import hierarchy. We expect to use this enhancement of the expansion slot spec-
ification also for other theorem provers supporting structured theories, like Isabelle.

Another direction of future work will try to exploit synergy effects between VSE
and HETS e.g. by using automatic provers like SPASS (which are now available
through the integration) during some sample VSE refinement proofs. The refine-
ment method could also be extended from first-order logic to the richer language
Cast, covering also features like subsorting and partial functions.
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In the final chapter of this thesis we give a brief summary of the results and
discuss directions of future work.

13.1 Summary

The central objective of this work is to further develop the Heterogeneous Tool
Set HETS, a tool for heterogeneous specification which interfaces a number of for-
malisms and their tools.

In Part II of this thesis we report on a number of recent extensions of HETS.

We have integrated in HETS declarative specifications of logics in a logical
framework like Edinburgh LF, Isabelle or Maude. This adds a new dimension to
HETS, in the sense that the users of the tool can now extend it with a new logic,
without having to understand the details of its implementation.

We have then taken a look at a number of logic translations in the graph of logics
of HETs that fall outside existing definition of institution comorphisms, which is
used as a formalization of logic translation in HETS. We have therefore developed a
generalization of this concept and studied the impact of the proposed generalization
to heterogeneous specification and heterogeneous proofs.

We have designed and implemented an algorithm for computing approxima-
tions of colimits for heterogeneous diagrams. This is of particular importance for
dealing with hiding in the development graph calculus of HETS. The corresponding
rules of this calculus are as a result supported as well by HETS.

We have furthermore added Maude as a new logic in HETS, providing thus
not only one more framework for specifying logics but also a state-of-the-art term
rewriting system. Since Maude is based heavily on initial semantics, using a special
notion of freeness to model it, we have developed an non-disruptive encoding of
Maude freeness, in terms of the existing links in development graphs. This is fol-
lowed by a normalization of CasL free definition links that facilitates proof support
for Maude.

In Part IIT of this work we concentrated on supporting the CasL refinement lan-
guage in HETS.
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The CasL refinement language has been developed as an extension of the ex-
isting architectural level of CasL. We start therefore with an enhancement of the
semantics of architectural specifications which also provides a simplification in the
verification and refinement of units with imports.

We then move to the entire refinement language. We have complemented the
language with an explicit notion of refinement trees, which allows to visualize the
structure of the development and provides access points for the logical properties of
refinement specifications, such as consistency. We moreover equip the refinement
language with a proof calculus for correctness and study its soundness and com-
pleteness. The latter is obtained rather easily for the architectural sublanguage,
but can only be achieved by exploiting information about the choice of a certain
implementation in the general case. Finally, we derive a consistency check calculus
for refinement specifications and prove its soundness and completeness. From an
implementation perspective, the refinement language, the proof calculus for refine-
ments and the consistency calculus are now supported by HETS.

Finally, we integrated the Verification Support Environment VSE in HETS, to-
gether with its notion of refinement that has similarities to the observational refine-
ment of CasL. We have taken advantage of the support for heterogeneity in HETS to
model the VSE refinement as an institution comorphism. This allows us to use the
simple refinement language of HETS for writing down VSE refinements. As a result,
we do not have to extend the development graph calculus with a special type of
VSE refinement link, but we can rather re-use the existing concepts.

13.2 Future Work

Future work is largely discussed at the end of each corresponding chapter, as well
as comparison with related work. Therefore, in the following we will just present a
brief overview of the most important aspects.

Firstly, the examples presented in this thesis are of rather medium size. An
important scalability test is to develop more complex case studies of software de-
velopment with HETS, using the refinement language to record the phases of devel-
opment. Towards this purpose, it is important to add full support for heterogeneity
in the refinement language of HETS, including heterogeneous architectural specifi-
cations.

Another interesting challenge is to support observational refinement in HETS
in a more general case than the one provided by VSE. [Bidoit et al., 2008] give a
solution for the case when the underlying institution is CasL; the next step would
be to generalize the construction to the heterogeneous case and to implement this
generalization in HETS.

Finally, in Chap. 6 we presented an extension of HETS that makes it possible to
add new logics in a declarative way. Further work is required to enhance support
for these logics. One drawback of the approach is that currently the syntax of the
new logics is inherited from the framework. We are looking at ways of generating
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a concrete syntax that is logic specific, possibly using the names of the declaration
patterns as keywords of the language. This should be followed by a transforma-
tion from the syntax of the declared logic to the syntax of a hard-coded logic in
HETS, such that the declared logic is also supported by tools, possibly via institu-
tion comorphisms. As a final step, the various tool interfaces of HETS should also
be made more declarative, such that HETS logics specified in a logical framework
can be directly connected to theorem provers and other tools, instead of using a
comorphism into a hard-coded logic. Then, in the long run, it will be possible to
entirely replace the hard-coded logics with declarative logic specifications in the
LATIN metaframework — and only the latter needs to be hard-coded into HETS.
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APPENDIX A

Natural numbers as binary words

spec NATS_SIG =
sort nats
op  gzero_n:nats
Op  succ_n:nats — nats
op prdc n:nats — nats
op add n:nats x nats — nats

spec SIMPNATS =
NATS_SIG
then free type nats ::= gzero_n | succ_n(nats)
vars m, n : nats
e prdc_n(zero_n) = zero_n
e prdc_n(succ_ n(m)) =m
e add n(m, zero_ n) =m
e add n(m, succ_n(n)) = succ_n(add_n(m, n))

logic VSE

spec SIMPNATS GOALS =
SIMPNATS with logic — CASL2VSERefine

logic CASL

spec BIN DATA =
free type bin ::=b_zero | b_one | sO(bin) | s1(bin)
op pop:bin — bin
var Xx:bin
e pop(sO(x)) = x
e pop(s1(x)) =x

spec BIN =
BIN DATA

then op  top : bin — bin
vars Xx,Y, z: bin
e top(b_zero) = b_zero
e top(b_one) = b _one
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e top(s0(x)) = b_zero
e top(s1(x)) =b_one

logic VSE

spec NATS IMPL =
BIN with logic— CASL2VSEImport
then PROCEDURES
hnlz : IN bin;
nlz : IN bin;
i badd : IN bin, IN bin, OUT bin, OUT bin;
i_add : IN bin, IN bin — bin;
i prdc : IN bin — bin,;
i_succ : IN bin — bin;
i _gzero : — bin;
eq : IN bin, IN bin — Boolean
e DEFPROCS
PROCEDURE hnlz(x)
BEGIN
IF x = b_zero
THEN ABORT
ELSE IF x = b_one THEN SKIP ELSE hnlz(pop(x)) FI
FI
END;

PROCEDURE nlz(x)
BEGIN IF x = b_zero THEN SKIP ELSE hnlz(x) FI END
DEFPROCSEND
% (restr)%
e DEFPROCS
PROCEDURE i_badd(a, b, z, c)
BEGIN
IF a = b_gero
THEN c := b_zero;
z:=b

ELSE ¢ := b;

IFb=Db one

THEN z := b_zero

ELSE z :=b_one

FI
FI
END;

FUNCTION i_add(x, y)
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BEGIN

DECLARE

Z : bin := b_gero, ¢ : bin := b_zero, s : bin := b_zero;
IF x = b_zero

THEN s :=y
ELSEIFy = b _zero
THEN s :=Xx

ELSE IF x = b_one
THEN s :=i_succ(y)
ELSEIFy = b_one
THEN s :=1i_succ(x)
ELSE i_badd(top(x), top(y), 2, ©);
IF c =b one
THEN s :=i_add(pop(x), pop(y))
ELSE s :=1i_succ(pop(x));
s :=1_add(s, pop())
FI,;
IF 2 = b_zero
THEN s := s0(s)
ELSE s :=s1(s)
FI
FI
FI
FI
FI;
RETURN s
END;

FUNCTION i_prdc(x)
BEGIN
DECLARE
y : bin :=b_zero;
IF x =b_zeroV x =b_one
THEN y := b_zero
ELSE IF x = sO(b_one)
THEN y :=b_one
ELSE IF top(x) = b_one
THEN y := s0(pop(x))
ELSE y :=i_prdc(pop(x));
y:=s1(Q)
FI
FI
FI;
RETURN y



246 Appendix A. Natural numbers as binary words

END;

FUNCTION i_succ(x)
BEGIN
DECLARE
y : bin := b _one;
IF x = b_zero
THEN y := b _one
ELSE IF x = b_one
THEN y := s0(b_one)
ELSE IF top(x) = b_zero
THEN y := s1(pop(x))
ELSE y :=1i_succ(pop(x));
Y :=s0(Q)
FI
FI
FI;
RETURN y
END;

FUNCTION i_zero()
BEGIN RETURN b_gzero END
DEFPROCSEND
% (impl) %
e DEFPROCS

FUNCTION eq(x, y)
BEGIN
DECLARE
res : Boolean := False;
IF x =y THEN res := True FI;
RETURN res
END
DEFPROCSEND

% (congruence)%

logic VSE

refinement BINARY ARITH =
NATS refined via
logic — CASL2VSERefine,
nats — bin, gn_restr_nats — nlz, gn_eq_nats — eq,
gn_zero_n +— i_zero, gn_succ_n — i_succ,
gn prdc n — i _prdc, gn_add _n — i_add
to NATS_IMPL



APPENDIX B

Steam boiler control system

library USERMANUAL/SBCS

%author Michel Bidoit <bidoit@lsv.ens—cachan.fr>
%date 20 Oct 2003

%display(__half %LATEX _ /2)%
%display(__square %LATEX _ 2)%

from BASIC/NUMBERS get NAT
from BASIC/STRUCTUREDDATATYPES get SET
from BASIC/STRUCTUREDDATATYPES get TOTALMAP
spec VALUE =
%% At this level we don’t care about the exact specification of values.
NAT
then sort Nat < Value
ops _ +_  :Value x Value — Value, assoc, comm, unit 0;
__—  :Value x Value — Value;
__x__: Value x Value — Value, assoc, comm, unit 1;
/2, 2:Value — Value;
min, max : Value x Value — Value
preds < , <= :Value x Value

spec BAsSICS =
free type
PumpNumber ::= Pumpl | Pump2 | Pump3 | Pump4
free type PumpState ::= Open | Closed
free type PumpControllerState ::= Flow | NoFlow
free type
PhysicalUnit
::= Pump(PumpNumber)
| PumpController(PumpNumber)
| SteamOutput
| WaterLevel
free type
Mode
::= Initialization
| Normal
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Steam boiler control system

| Degraded
| Rescue
| EmergencyStop

spec MESSAGES_SENT =
BASICS
then free type
S Message
::= MODE (Mode)
| PROGRAM_READY
| VALVE
| OPEN _PUMP(PumpNumber)
| CLOSE_PUMP(PumpNumber)
| FAILURE_DETECTION (PhysicalUnit)

| REPAIRED ACKNOWLEDGEMENT (PhysicalUnit)

spec MESSAGES_RECEIVED =
Basics and VALUE
then free type
R Message
:= STOP
| STEAM_BOILER WAITING
| PHYSICAL_UNITS_READY
| PUMP_STATE(PumpNumber; PumpState)
| PUMP_CONTROLLER_STATE(PumpNumber;

PumpControllerState)

| LEVEL(Value)
| STEAM (Value)
| REPAIRED (PhysicalUnit)

| FAILURE_ ACKNOWLEDGEMENT (PhysicalUnit)

| junk

spec SBCS_CONSTANTS =
VALUE
then ops C, M1, M2, N1,N2, W, U1, U2, P : Value;
dt : Value

%% Time duration between two cycles (5 sec.)
%% These constants must verify some obvious properties:

o () <M1
e M1 < N1
e NI < N2
o N2 < M2
e M2 <C
o0 < W
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spec

and
and

spec

then

spec

e 0 < Ul
e 0 < U2
e <P

PRELIMINARY =

SET[MESSAGES_RECEIVED fit Elem — R_Message]
SET[MESSAGES_SENT fit Elem — S_Message]
SBCS_ CONSTANTS

SBCS_STATE_1 =

PRELIMINARY

sort State

ops mode : State — Mode;
numSTOP : State — Nat

MODE_EVOLUTION
[preds Transmission_OK : State x Set[R_Message];
PU OK : State x Set[R_Message] x PhysicalUnit;
DangerousWaterLevel : State x Set[R_Message]]
given SBCS_STATE 1 =
local

%% Auxiliary predicates to structure the specification of next_mode.
preds Everything OK, AskedToStop, SystemStillControllable,
Emergency : State x Set[R_Message]
Vs : State; msgs : Set[R_Message]
e Everything OK(s, msgs)
& Transmission_OK(s, msgs)
A 'Y pu : PhysicalUnit e PU_OK (s, msgs, pu)
e AskedToStop (s, msgs) < numSTOP(s) = 2 A STOP eps msgs
e SystemStillControllable(s, msgs)
< PU_OK(s, msgs, SteamOutput)
A 3 pn : PumpNumber
e PU_OK(s, msgs, Pump(pn))
A PU_OK(s, msgs, PumpController(pn))
e Emergency (s, msgs)
< mode(s) = EmergencyStop V AskedToStop(s, msgs)
V = Transmission_OK (s, msgs)
V DangerousWaterLevel(s, msgs)
V (= PU_OK(s, msgs, WaterLevel)
A — SystemStillControllable(s, msgs))
within
ops next _mode : State x Set[R_Message] — Mode;
next numSTOP : State x Set[R_Message] — Nat
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spec

then

spec

%% Emergency stop mode:
V s : State; msgs : Set[R_Message]
e Emergency(s, msgs)
= next_mode(s, msgs) = EmergencyStop
%% Normal mode:
e — Emergency(s, msgs) A Everything OK(s, msgs)
= next_mode(s, msgs) = Normal
%% Degraded mode:
e — Emergency(s, msgs) A — Everything OK(s, msgs)
A PU_OK(s, msgs, WaterLevel)
A Transmission_OK (s, msgs)
= next_mode(s, msgs) = Degraded
%% Rescue mode:
e = Emergency(s, msgs) A = PU_OK(s, msgs, WaterLevel)
A SystemStillControllable(s, msgs)
A Transmission_OK (s, msgs)
= next_mode(s, msgs) = Rescue
%% next numSTOP:
o next numSTOP(s, msgs)
= numSTOP (s) + 1 when STOP eps msgs else 0

SBCS_STATE 2 =

SBCS_STATE 1

free type

Status ::= OK | FailureWithoutAck | FailureWithAck
op  status : State x PhysicalUnit — Status

STATUS_EVOLUTION
[pred PU OK : State x Set[R_Message] x PhysicalUnit]
given SBCS STATE 2 =
op  next status
: State x Set[R_Message] x PhysicalUnit — Status

Vs : State; msgs : Set[R_Message]; pu : PhysicalUnit
o status(s, pu) = OK A PU_OK(s, msgs, pu)

= next_status(s, msgs, pu) = OK
o status(s, pu) = OK A = PU_OK(s, msgs, pu)

= next_status(s, msgs, pu) = FailureWithoutAck
e status(s, pu) = FailureWithoutAck

N FAILURE ACKNOWLEDGEMENT (pu) eps msgs

= next_status(s, msgs, pu) = FailureWithAck
o status(s, pu) = FailureWithoutAck

A = FAILURE ACKNOWLEDGEMENT (pu) eps msgs

= next_status(s, msgs, pu) = FailureWithoutAck
e status(s, pu) = FailureWithAck N REPAIRED (pu) eps msgs
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= next_status(s, msgs, pu) = OK
o status(s, pu) = FailureWithAck
A — REPAIRED (pu) eps msgs
= next_status(s, msgs, pu) = FailureWithAck

spec MESSAGE_TRANSMISSION_SYSTEM_FAILURE =
SBCS_STATE_2
then local
%% Static analysis:
pred _ is static OK : Set[R_Messagel]
YV msgs : Set[R_Message]
e msgs is_static OK
& - junk eps msgs A (3! v : Value e LEVEL (v) eps msgs)
A (3!'v : Value e STEAM (v) eps msgs)
A (Y pn : PumpNumber
e 1! ps : PumpState
e PUMP STATE (pn, ps) eps msgs)
A (Y pn : PumpNumber
e 3! pcs : PumpControllerState
e PUMP CONTROLLER _STATE (pn, pcs) eps
msgs)
AV pu : PhysicalUnit
e - FAILURE ACKNOWLEDGEMENT (pu) eps msgs
A REPAIRED (pu) eps msgs
%% Dynamic analysis:
pred is NOT dynamic OK for _
: Set[R_Message] x State
V s : State; msgs : Set[R_Message]
e msgs is NOT dynamic_OK fors
& (= mode(s) = Initialization
N (STEAM_BOILER_WAITING eps msgs
V PHYSICAL UNITS READY eps msgs))
V (3 pu : PhysicalUnit
e FAILURE ACKNOWLEDGEMENT (pu) eps msgs
A (status(s, pu) = OK
V status(s, pu) = FailureWithAck))
V 3 pu : PhysicalUnit
e REPAIRED (pu) eps msgs
A (status(s, pu) = OK
V status(s, pu) = FailureWithoutAck)
within
pred Transmission OK : State x Set[R_Message]
V s : State; msgs : Set[R_Message]
e Transmission_OK (s, msgs)
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& msgs is_static OK
A = msgs is NOT dynamic_OK for s

spec SBCS_STATE 3 =
SBCS_STATE 2
then free type
ExtendedPumpState ::= sort PumpState | Unknown_PS
op PS predicted
: State x PumpNumber — ExtendedPumpState
%-
status(s,Pump(pn)) = OK <=>
not (PS_predicted(s,pn) = Unknown_PS) }%

spec PUMP_FAILURE =
SBCS_STATE_3
then pred Pump OK
: State x Set[R_Message] x PumpNumber
Vs : State; msgs : Set[R_Message]; pn : PumpNumber
e Pump OK(s, msgs, pn)
< PS predicted(s, pn) = Unknown_PS
V PUMP_STATE
(pn, PS_predicted (s, pn) as PumpState) eps msgs

spec SBCS_STATE 4 =
SBCS_STATE_3
then free type
ExtendedPumpControllerState
::= sort PumpControllerState | SoonFlow | Unknown_PCS
op PCS predicted
: State x PumpNumber — ExtendedPumpControllerState
%{
status(s,PumpController(pn)) = OK =>
not (PCS_predicted(s,pn) = Unknown_PCS) }%

spec PUMP_CONTROLLER_FAILURE =
SBCS_STATE_4
then pred Pump Controller OK
: State x Set[R_Message] x PumpNumber
Vs : State; msgs : Set[R_Message]; pn : PumpNumber
e Pump_Controller OK(s, msgs, pn)
& PCS predicted(s, pn) = Unknown_PCS
V PCS predicted(s, pn) = SoonFlow
V PUMP_CONTROLLER STATE
(pn, PCS_predicted (s, pn) as PumpControllerState)
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eps msgs

spec SBCS_STATE 5 =
SBCS_STATE 4
then free type Valpair ::= pair(low : Value; high : Value)
ops steam_predicted, level predicted : State — Valpair
%{

low(steam_predicted(s)) is the minimal steam output predicted,
high(steam_predicted(s)) is the maximal steam output predicted,

and similarly for level predicted. }%

spec STEAM_FAILURE =
SBCS_STATE 5
then pred Steam OK : State x Set[R_Message]
V s : State; msgs : Set[R_Message]
e Steamn_OK (s, msgs)
& Vv Value
e STEAM (v) eps msgs
= low (steam_predicted(s)) <=V
AV <= high (steam_predicted(s))

spec LEVEL FAILURE =
SBCS_STATE_5
then pred Level OK : State x Set[R_Message]
V s : State; msgs : Set[R_Message]
e Level OK(s, msgs)
& Vv Value
e LEVEL (v) eps msgs
= low (level predicted(s)) <=v
A v <= high (level predicted(s))

spec FAILURE_DETECTION =
{MESSAGE_TRANSMISSION SYSTEM_FAILURE
and PUMP_FAILURE
and PuMP_CONTROLLER_FAILURE
and STEAM_FAILURE
and LEVEL_FAILURE
then pred PU OK
: State x Set[R_Message] x PhysicalUnit
Vs : State; msgs : Set[R_Message]; pn : PumpNumber
e PU OK(s, msgs, Pump(pn))
< Pump OK(s, msgs, pn)
e PU_OK(s, msgs, PumpController(pn))
< Pump_Controller_OK(s, msgs, pn)
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e PU OK(s, msgs, SteamOutput)
< Steam_OK (s, msgs)
e PU_OK(s, msgs, WaterLevel) < Level OK(s, msgs)
¥
hide preds Pump_OK, Pump_Controller OK, Steam_OK,
Level OK

spec STEAM_AND_LEVEL_PREDICTION =
FAILURE_DETECTION
and SET[sort PumpNumber fit Elem — PumpNumber]
then local
ops received steam : State x Set[R_Message] — Value;
adjusted_steam : State x Set[R_Message] — Valpair;
received_level : State x Set[R_Message] — Value;
adjusted_level : State x Set[R_Message] — Valpair;
broken_pumps
: State x Set[R_Message] — Set[PumpNumberl];
reliable_pumps
: State x Set[R_Message] x PumpState —
Set[PumpNumber]
%% Axioms for STEAM:
Vs : State; msgs : Set[R_Message]; pn : PumpNumber;
ps : PumpState
e Transmission_OK (s, msgs)
= STEAM (received_steam(s, msgs)) eps msgs
e adjusted_steam(s, msgs)
= pair(received_steam(s, msgs), received_steam(s, msgs))
when Transmission_OK (s, msgs)
A PU_OK(s, msgs, SteamQOutput)
else steam_predicted(s)
%% Axioms for LEVEL:
e Transmission_OK (s, msgs)
= LEVEL (received_level(s, msgs)) eps msgs
e adjusted_level(s, msgs)
= pair(received_level(s, msgs), received_level(s, msgs))
when Transmission_OK (s, msgs)
A PU_OK(s, msgs, WaterLevel)
else level predicted(s)
%% Axioms for auxiliary pumps operations:
e pn eps broken_pumps (s, msgs)
< - PU_OK(s, msgs, Pump(pn))
A PU_OK(s, msgs, PumpController(pn))
e pn eps reliable_pumps (s, msgs, ps)
< - pn eps broken_pumps (s, msgs)
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N PUMP_STATE (pn, ps) eps msgs
within
ops next steam_predicted
: State x Set[R_Message] — Valpair;
chosen_pumps
: State x Set[R_Message] x PumpState —
Set[PumpNumber];
minimal_pumped water, maximal_pumped_water
: State x Set[R_Message] — Value;
next_level predicted
: State x Set[R_Message] — Valpair
pred DangerousWaterLevel : State x Set[R_Message]
%% Axioms for STEAM:
Vs : State; msgs : Set[R_Message]; pn : PumpNumber
e low(next_steam_predicted(s, msgs))
= max(0, low (adjusted_steam(s, msgs)) — (U2 x dt))
e high(next_steam_predicted(s, msgs))
= min(W, high (adjusted_steam(s, msgs)) + (U1 x dt))
%% Axioms for PUMPS:
e pn eps chosen_pumps (s, msgs, Open)
= pn eps reliable_pumps (s, msgs, Closed)
e pn eps chosen_pumps (s, msgs, Closed)
= pn eps reliable_pumps (s, msgs, Open)
e minimal_pumped_water (s, msgs)
= (dt x P) * #
(reliable_pumps (s, msgs, Open) — chosen_pumps
(s, msgs, Closed))
e maximal_pumped_water (s, msgs)
= (dt x P) * #

(((reliable_pumps (s, msgs, Open) union chosen_pumps

(s, msgs, Open))
union broken_pumps (s, msgs))
— chosen_pumps (s, msgs, Closed))
%% Axioms for LEVEL:
e low(next_level predicted(s, msgs))
= max
©,
(low (adjusted_level(s, msgs)) +
minimal_pumped_water (s, msgs))
((dt square = U1 half) +
(dt * high (adjusted_steam(s, msgs)))))
e high(next _level predicted(s, msgs))
= min
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(G,
(high (adjusted_level(s, msgs)) +
maximal_pumped_water (s, msgs))
((dt square = U2 half) +
(dt * low (adjusted_steam(s, msgs)))))
e DangerousWaterLevel(s, msgs)
< low (next_level predicted(s, msgs)) <= M1
V M2 <= high (next_level _predicted(s, msgs))
hide ops minimal pumped_water, maximal_pumped water

spec PUMP_STATE PREDICTION =
STATUS_EVOLUTION[FAILURE_DETECTION]
and STEAM_AND_LEVEL PREDICTION
then op  next PS predicted
: State x Set[R_Message] x PumpNumber —
ExtendedPumpState
Vs : State; msgs : Set[R_Message]; pn : PumpNumber
e next PS predicted(s, msgs, pn)
= Unknown_PS
when — next_status(s, msgs, Pump(pn)) = OK
else Open
when (PUMP_STATE (pn, Open) eps msgs
A — pn eps chosen_pumps (s, msgs, Closed))
V pn eps chosen_pumps (s, msgs, Open)
else Closed

spec PUMP_CONTROLLER_STATE_PREDICTION =
STATUS_EVOLUTION[FAILURE_DETECTION]
and STEAM_AND_LEVEL_ PREDICTION
then op  next PCS predicted
: State x Set[R_Message] x PumpNumber —
ExtendedPumpControllerState
Vs : State; msgs : Set[R_Message]; pn : PumpNumber
e next_PCS_predicted(s, msgs, pn)
= Unknown_PCS
when — next_status(s, msgs, PumpController(pn)) = OK
A next_status(s, msgs, Pump(pn)) = OK
else Flow
when (PUMP_CONTROLLER_STATE (pn, Flow)
eps msgs
V (PUMP_CONTROLLER_STATE
(pn, NoFlow) eps msgs
A PCS_predicted(s, pn) = SoonFlow))
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A — pn eps chosen_pumps (s, msgs, Closed)
else NoFlow
when pn eps chosen_pumps (s, msgs, Closed)
V (PUMP_CONTROLLER_STATE
(pn, NoFlow) eps msgs
A — PCS predicted(s, pn) = SoonFlow
A — pn eps chosen_pumps
(s, msgs, Open))
else SoonFlow
end

spec PU_PREDICTION =
PUMP_STATE_PREDICTION

and PuMP_CONTROLLER_STATE_PREDICTION

end

spec SBCS_ANALYSIS =
MoDE_EvOLUTION[PU_ PREDICTION]
then local
ops PumpMessages, FailureDetectionMessages
: State x Set[R_Message] — Set[S_Messagel];
RepairedAcknowledgementMessages
: Set[R_Message] — Set[S_Message]
V s : State; msgs : Set[R_Message]; Smsg : S_Message
e Smsg eps PumpMessages (s, msgs)
< 3 pn : PumpNumber
e (pn eps chosen_pumps (s, msgs, Open)
A Smsg = OPEN_PUMP(pn))
V (pn eps chosen_pumps (s, msgs, Closed)
A Smsg = CLOSE_PUMP(pn))
e Smsg eps FailureDetectionMessages (s, msgs)
< 3 pu : PhysicalUnit
e Smsg = FAILURE DETECTION (pu)
A next_status(s, msgs, pu) = FailureWithoutAck
e Smsg eps RepairedAcknowledgementMessages (msgs)
< 3 pu : PhysicalUnit
e Smsg = REPAIRED ACKNOWLEDGEMENT (pu)
A next_status(s, msgs, pu) = FailureWithAck
within
op  messages to_send
: State x Set[R_Message] — Set[S_Message]
V s : State; msgs : Set[R_Message]
e messages_to_send(s, msgs)
= ((PumpMessages (s, msgs) union
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FailureDetectionMessages (s, msgs))
union RepairedAcknowledgementMessages (msgs))
+ MODE (next_mode(s, msgs))
end

spec SBCS_STATE =
PRELIMINARY
then sort State
free type
Status ::= OK | FailureWithoutAck | FailureWithAck
free type
ExtendedPumpState ::= sort PumpState | Unknown_PS
free type
ExtendedPumpControllerState
::= sort PumpControllerState | SoonFlow | Unknown_PCS
free type Valpair ::= pair(low : Value; high : Value)
ops mode : State — Mode;
numSTOP : State — Nat;
status : State x PhysicalUnit — Status;
PS predicted
: State x PumpNumber — ExtendedPumpState;
PCS _predicted
: State x PumpNumber —
ExtendedPumpControllerState;
steam_predicted, level predicted : State — Valpair

spec STEAM_BOILER_CONTROL_SYSTEM =
SBCS_ANALYSIS
then op  init : State
pred is step
: State x Set[R_Message] x Set[S_Message] x State
%% Specification of the initial state init:
e mode(init) = Normal V mode(init) = Degraded
%% Specification of is_step:
Vs, s’ : State; msgs : Set[R_Message];
Smsg : Set[S_Message]
e is_step(s, msgs, Smsg, s’)
< mode(s’) = next_mode(s, msgs)
A numSTOP(s”) = next_ numSTOP(s, msgs)
A (VY pu : PhysicalUnit
o status(s’, pu) = next_status(s, msgs, pu))
A (V pn : PumpNumber
e PS predicted(s’, pn)
= next_PS predicted(s, msgs, pn)
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then

arch

arch

spec

then

A PCS_predicted(s’, pn)
= next_PCS_predicted(s, msgs, pn))
A steam_predicted(s”) = next_steam_predicted(s, msgs)
A level predicted(s’) = next_level predicted(s, msgs)
A Smsg = messages_to_send(s, msgs)

%% Specification of the reachable states:

free

{pred reach : State

Vs, s’ : State; msgs : Set[R_Message];

Smsg : Set[S Message]

o reach(init)

e reach(s) A is_step(s, msgs, Smsg, s’) = reach(s’)

¥

spec ARCH_SBCS =

units P : VALUE — PRELIMINARY;

S : PRELIMINARY — SBCS_STATE;

A : SBCS_STATE — SBCS_ANALYSIS;

C: SBCS_ANALYSIS — STEAM_BOILER_CONTROL_SYSTEM
result lambda V : VALUE e C [A [S [P [V]]]]

spec ARCH_PRELIMINARY =
units SET : {sort Elem} x NAT — SET[sort Elem];
B : BASICS;
MS : MESSAGES_SENT given B;
MR : VALUE — MESSAGES_RECEIVED given B;
CST : VALUE — SBCS_CONSTANTS
result \ V : VALUE
e SET [MS fit Elem — S_Message] [V]
and SET [MR [V] fit Elem — R_Message] [V]
and CST [V]

SBCS_STATE_IMPL =

PRELIMINARY

free type

Status ::= OK | FailureWithoutAck | FailureWithAck

free type

ExtendedPumpState ::= sort PumpState | Unknown_PS
free type

ExtendedPumpControllerState

::= sort PumpControllerState | SoonFlow | Unknown_PCS
free type Valpair ::= pair(low : Value; high : Value)

then TOTALMAP[BASICS fit S — PhysicalUnit][sort Status]
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and TOTALMAP
[Basics fit S — PumpNumber][sort ExtendedPumpState]
and TOTALMAP
[Basics fit S — PumpNumber]
[sort ExtendedPumpControllerState]
then free type
State
::= mk_state(mode : Mode;
numSTOP : Nat;
status : TotalMap[PhysicalUnit,Status];
PS predicted :
TotalMap [PumpNumber,ExtendedPumpState];
PCS predicted :
TotalMap
[PumpNumber,ExtendedPumpControllerState];
steam_predicted, level predicted : Valpair)
ops status(s : State; pu : PhysicalUnit) : Status
= lookup (pu, status(s));
PS predicted
(s : State; pn : PumpNumber) : ExtendedPumpState
= lookup(pn, PS_predicted(s));
PCS predicted
(s : State; pn : PumpNumber)
: ExtendedPumpControllerState
= lookup(pn, PCS_predicted(s))

unit spec UNIT_SBCS_STATE =
PRELIMINARY — SBCS_STATE_IMPL

arch spec ARCH_ANALYSIS =
units FD : SBCS_STATE — FAILURE_DETECTION;
PR : FAILURE_DETECTION — PU_PREDICTION;
ME : PU_PREDICTION — MODE_EVOLUTION[PU_ PREDICTION];
MTS : MODE_EVOLUTION[PU_ PREDICTION] — SBCS_ANALYSIS
result lambda S : SBcs_STATE ¢ MTS [ME [PR [FD [S]]]]

arch spec ARCH_FAILURE_DETECTION =
units
MTSF : SBCS_STATE — MESSAGE_TRANSMISSION_SYSTEM_FAILURE;
PF : SBCS_STATE — PUMP_FAILURE;
PCF : SBCS_STATE — PUMP_CONTROLLER_FAILURE;
SF : SBCS_STATE — STEAM_FAILURE;
LF : SBCS_STATE — LEVEL_FAILURE;
PU:
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MESSAGE_TRANSMISSION _SYSTEM_FAILURE X
PUMP_FAILURE x PUuMP_CONTROLLER_FAILURE X
STEAM_FAILURE X LEVEL_FAILURE — FAILURE_DETECTION
result
lambda S : SBCS_STATE
e PU [MTSF [S]] [PF [S]1] [PCF [S]] [SF [S]] [LF [S]]

hide Pump OK, Pump_Controller OK, Steam_OK,

Level OK

arch spec ARCH_PREDICTION =
units
SE:
FAILURE_DETECTION — STATUS_EVOLUTION[FAILURE_DETECTION];
SLP : FAILURE_DETECTION — STEAM_AND_LEVEL_ PREDICTION;
PP :
STATUS_EVOLUTION[FAILURE_DETECTION] X
STEAM_AND_LEVEL_PREDICTION —
PUMP_STATE_PREDICTION;
PCP :
STATUS_EVOLUTION[FAILURE_DETECTION] X
STEAM_AND_LEVEL_PREDICTION —
Pump_CONTROLLER_STATE PREDICTION
result
lambda FD : FAILURE_DETECTION
e local SEFD = SE [FD]; SLPFD = SLP [FD] within
{PP [SEFD] [SLPFD] and PCP [SEFD] [SLPFD]}

unit spec SBCS_OPEN = VALUE — STEAM_BOILER_CONTROL_SYSTEM
refinement REF_SBCS = SBCS_OPEN refined to arch spec ARCH_SBCS
unit spec STATEABSTR = PRELIMINARY — SBCS_STATE
refinement STATEREF =STATEABSTR refined to UNIT SBCS_STATE
refinement REF_SBCS’ = REF_SBCS then

{P to arch spec ARCH_PRELIMINARY, S to STATEREF,

A to arch spec ARCH_ANALYSIS}
refinement REF_SBCS” = REF_SBCS’ then

{A to

{FD to arch spec ARCH_FAILURE_DETECTION,
PR to arch spec ARCH_PREDICTION }}
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