

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Tesis de Doctorado
en Informática

Heterogeneous Verification of

Model Transformations

Daniel Calegari García

2014

Heterogeneous Verification of
Model Transformations
ISSN 0797-6410
Tesis de Doctorado en Informática
Reporte Técnico RT 14-08
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República.
Montevideo, Uruguay, 2014

Universidad de la República

PEDECIBA Informática

Uruguay

Heterogeneous Verification of

Model Transformations

Daniel Calegari García

Tesis presentada en cumplimiento parcial de los
requisitos para el grado de Doctor en Informática

Universidad de la República - Pedeciba Informática

Montevideo, Uruguay, Abril de 2014

Director de Tesis: Dra. Nora Szasz

Universidad ORT Uruguay

Heterogeneous Verification of
Model Tranformations

Daniel Calegari García

ISSN 0797–6410
Tesis de Doctorado en Informática
Reporte Técnico
PEDECIBA
Universidad de la República
Montevideo, Uruguay, Abril de 2014

tan fácil, fácil no es
horizonte lejano
correr y correr

el dia que no llega
dura es la noche, en soledad

pero el hombre que mira lejos no aprende a ver

Carretera Perdida - Buitres (2001)

Resumen

Esta tesis trata sobre la verificación formal en el contexto de la Ingeniería Dirigida por Mo-
delos (MDE por sus siglas en inglés). El paradigma propone un ciclo de vida de la ingeniería
de software basado en una abstracción de su complejidad a través de la definición de modelos
y en un proceso de construcción (semi)automático guiado por transformaciones de estos mo-
delos. Nuestro propósito es abordar la verificación de transformaciones de modelos la cual
incluye, por extensión, la verificación de sus modelos.

Comenzamos analizando la literatura relacionada con la verificación de transformaciones de
modelos para concluir que la heterogeneidad de las propiedades que interesa verificar y de los
enfoques para hacerlo, sugiere la necesidad de utilizar diversos dominios lógicos, lo cual es
la base de nuestra propuesta. En algunos casos puede ser necesario realizar una verificación
heterogénea, es decir, utilizar diferentes formalismos para la verificación de cada una de las
partes del problema completo. Además, es beneficioso permitir a los expertos formales elegir
el dominio en el que se encuentran más capacitados para llevar a cabo una prueba formal. El
principal problema reside en que el mantenimiento de múltiples representaciones formales de
los elementos de MDE en diferentes dominios lógicos, puede ser costoso si no existe soporte
automático o una relación formal clara entre estas representaciones.

Motivados por esto, definimos un entorno unificado que permite la verificación formal trans-
formaciones de modelos mediante el uso de métodos de verificación heterogéneos, de forma
tal que es posible automatizar la traducción formal de los elementos de MDE entre dominios
logicos. Nos basamos formalmente en la Teoría de Instituciones, la cual proporciona una
base sólida para la representación de los elementos de MDE (a través de instituciones) sin
depender de ningún dominio lógico específico. También proporciona una forma de especi-
ficar traducciones (a través de comorfismos) que preservan la semántica entre estos elementos
y otros dominios lógicos. Nos basamos en estándares para la especificación de los elementos
de MDE. De hecho, definimos una institución para la buena formación de los modelos es-
pecificada con una versión simplificada del MetaObject Facility y otra institución para trans-
formaciones utilizando Query/View/Transformation Relations. No obstante, la idea puede
ser generalizada a otros enfoques de transformación y lenguajes.

vi

Por último, demostramos la viabilidad del entorno mediante el desarrollo de un prototipo
funcional soportado por el Heterogeneous Tool Set (HETS). HETS permite realizar una es-
pecificación heterogénea y provee facilidades para el monitoreo de su corrección global. Los
elementos de MDE se conectan con otras lógicas ya soportadas en HETS (por ejemplo: ló-
gica de primer orden, lógica modal, entre otras) a través del Common Algebraic Specification
Language (CASL). Esta conexión se expresa teóricamente mediante comorfismos desde las
instituciones de MDE a la institución subyacente en CASL.

Finalmente, discutimos las principales contribuciones de la tesis. Esto deriva en futuras líneas
de investigación que contribuyen a la adopción de métodos formales para la verificación en
el contexto de MDE.

Palabras clave: Ingeniería Dirigida por Modelos, verificación, métodos formales, Teoría de
Instituciones, MOF, QVT-Relations, Heterogeneous Tool Set

Abstract

This thesis is about formal verification in the context of the Model-Driven Engineering (MDE)
paradigm. The paradigm proposes a software engineering life-cycle based on an abstraction
from its complexity by defining models, and on a (semi)automatic construction process driven
by model transformations. Our purpose is to address the verification of model transforma-
tions which includes, by extension, the verification of their models.

We first review the literature on the verification of model transformations to conclude that the
heterogeneity we find in the properties of interest to verify, and in the verification approaches,
suggests the need of using different logical domains, which is the base of our proposal. In
some cases it can be necessary to perform a heterogeneous verification, i.e. using different
formalisms for the verification of each part of the whole problem. Moreover, it is useful
to allow formal experts to choose the domain in which they are more skilled to address a
formal proof. The main problem is that the maintenance of multiple formal representations
of the MDE elements in different logical domains, can be expensive if there is no automated
assistance or a clear formal relation between these representations.

Motivated by this, we define a unified environment that allows formal verification of model
transformations using heterogeneous verification approaches, in such a way that the formal
translations of the MDE elements between logical domains can be automated. We formally
base the environment on the Theory of Institutions, which provides a sound basis for repre-
senting MDE elements (as so called institutions) without depending on any specific logical
domain. It also provides a way for specifying semantic-preserving translations (as so called
comorphisms) from these elements to other logical domains. We use standards for the spec-
ification of the MDE elements. In fact, we define an institution for the well-formedness of
models specified with a simplified version of the MetaObject Facility, and another institu-
tion for Query/View/Transformation Relations transformations. However, the idea can be
generalized to other transformation approaches and languages.

viii

Finally, we evidence the feasibility of the environment by the development of a functional
prototype supported by the Heterogeneous Tool Set (HETS). HETS supports heterogeneous
specifications and provides capabilities for monitoring their overall correctness. The MDE
elements are connected to the other logics already supported in HETS (e.g. first-order logic,
modal logic, among others) through the Common Algebraic Specification Language (CASL).
This connection is defined by means of comorphisms from the MDE institutions to the un-
derlying institution of CASL.

We carry out a final discussion of the main contributions of this thesis. This results in future
research directions which contribute with the adoption of formal tools for the verification in
the context of MDE.

Keywords: Model-Driven Engineering, verification, formal methods, Theory of Institutions,
MOF, QVT-Relations, Heterogeneous Tool Set

Acknowledgements

A thesis must be a long and winding road, but fortunately this was far from lonely. Therefore,
I want to express my gratitude to several people. First, I want to thank my supervisor Nora
Szasz for her guidance and support during the whole development of this thesis. I also want
to thank Till Mossakowski and Christian Maeder for their guidance and support during my
stay at the University of Bremen. Moreover, I want to thank María Victoria Cengarle and
Alexander Knapp for their review of the thesis as well as for the many fruitful discussions we
had on this topic, and to Héctor Cancela, Alberto Pardo and Claudia Pons for been part of the
evaluation committee.

I also want to thank to all those who have worked with me in the different projects related to
this thesis, in particular to Carlos Luna and Alvaro Tasistro which were coauthors of some
papers at early stages of this thesis, to those undergraduate students of Computer Engineering
which have participated in several projects related to this subject, and to the anonymous
referees for their comments and suggestions concerning submitted papers and projects.

Several institutions have contributed with the development of this thesis with financial support
to specific projects and grants. I want to thank Agencia Nacional de Investigación e Inno-
vación (ANII), Comisión Académica de Posgrado of Facultad de Ingeniería, and Comisión
Sectorial de Investigación Científica of Universidad de la República. I also want to thank
Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) in which this PhD was held,
and in particular María Inés Sánchez for her help with formal matters.

Last but not least I want to thank my mates of Instituto de Computación, and in particular
my “cell mates” Andrea Delgado, Mónica Martínez and Marcos Viera which share everyday
suffering with me. Finally, I will not thank my friends or my family, they deserve better than
that... all my loving.

Daniel, April 2014

Contents

1 Introduction 1

2 A Quick Look at MDE 7

2.1 The MDE Paradigm . 7
2.1.1 Models, Metamodels and MOF . 8
2.1.2 Model Transformations and QVT-Relations 11

2.2 Class to Relational Example . 16

3 Verification of Model Transformations 21

3.1 What to Verify . 21
3.1.1 Language-Related Properties . 22
3.1.2 Transformation-Related Properties 22
3.1.3 Summary of Verification Properties 24

3.2 How to Verify . 25
3.2.1 Summary of Verification Approaches 26

3.3 Verification by Example . 29

4 An Introduction to Institutions 33

4.1 Institutions . 33
4.2 Institution Morphisms . 36

5 An Environment for Verification 41

5.1 Defining the Environment . 41
5.2 Representing SW-Models and Metamodels 44
5.3 Representing QVT Transformations . 45
5.4 A Proof-Theoretic View . 46
5.5 Benefits of the Environment . 47
5.6 Related Work . 49

6 An Institution for CSMOF 51

6.1 Preliminaries . 51
6.2 Signatures and Formulas . 52
6.3 Models . 55
6.4 Satisfaction Relation and Satisfaction Condition 57
6.5 Related Work . 60
6.6 Model Typing . 61

xii Contents

7 An Institution for QVTR 63

7.1 Preliminaries . 63
7.1.1 Recursive Model Transformations 64
7.1.2 Expressions Language . 64

7.2 Signatures and Formulas . 65
7.3 Models . 70
7.4 Satisfaction Relation and Satisfaction Condition 72
7.5 Related Work . 77

8 Extending the Institutions 79

8.1 An Institution for SW-Models . 79
8.2 Extending CSMOF and QVTR . 83
8.3 Discussion . 87

9 Connecting the Institutions with CASL 89

9.1 Borrowing an Entailment System . 89
9.1.1 Common Algebraic Specification Language 90

9.2 Encoding CSMOF into CASL . 91
9.3 Encoding QVTR into CASL . 97
9.4 Related Work . 103

10 Tool Support with HETS 105

10.1 Heterogeneous Tools Set . 105
10.2 Implementation of the Environment . 108
10.3 How the Environment Works . 112
10.4 Verification Properties . 119

11 Conclusions and Further Research 123

11.1 Summary and Contributions . 123
11.2 Discussions and Open Problems . 125

11.2.1 On the Formal Definition of the Environment 125
11.2.2 An Institution for OCL . 127
11.2.3 Model Transformations & Comorphisms 128
11.2.4 Bridging Technological Spaces . 129
11.2.5 Evolution of the Prototype . 130

Appendix A Publication List 133

Appendix B Proofs :: Institution for CSMOF 135

Appendix C Proofs :: Institution for QVTR 141

Appendix D Proofs :: CSMOF and QVTR Extensions 149

Appendix E Proofs :: Comorphisms 151

Appendix F Code Artifacts for the Running Example 157

References 179

1 Introduction

“Explain to me again what you are doing, I do
not understand anything but it sounds great”

My mom

Every traditional software development life-cycle is supported by a number of artifacts (e.g.
requirements specifications, analysis and design documents, source code) which are mostly
used as guides for the development as well as communication tools with the stakeholders. Hu-
man involvement creating, maintaining, interpreting and transforming these artifacts makes
this process highly complex and error-prone. In fact, there are studies suggesting that overall
software assurance costs account for 30 to 50 percent of total project costs for most software
projects [HS02].

These costs may be reduced by adopting a model-centric approach in which different views
of the system to be constructed are provided by models. Modeling is the abstraction of the
system to be built (or some aspects of it) to deal with its intrinsic complexity in a simplified
manner. A (semi)automatic construction process takes place in which models are transformed
from higher abstraction levels until an executable system is built. The use of automated
mechanisms for the construction of the system improves efficiency on the whole process.

The Model-Driven Engineering (MDE, [Ken02, Sch06]) paradigm is based on these prac-
tices. It envisions a software development life-cycle driven by models representing different
views of the system to be constructed and model transformations providing a (semi)automatic
construction process. It also encompasses other engineering efforts of a complete software
engineering process, such maintenance or reverse engineering. Since automation is desirable,
models must be formally defined. In this sense, models are defined from metamodels, i.e. a
model which introduces the syntax and semantics of certain domain-specific kind of models.
The relation between a model and its metamodel is called conformance [Béz05]. A model
transformation is basically the automatic generation of a target model from a source model,

1

2 Chapter 1. Introduction

according to a transformation definition, i.e. a set of rules that describe how certain elements
in the source model can be transformed into certain others in the target model [KWB03]. A
model transformation can also be considered as a model conforming to a metamodel.

There are many approaches for defining and executing model transformations [CH06, Men10].
In particular, the Object Management Group (OMG) has conducted a standardization process
of languages for MDE. They defined the MetaObject Facility (MOF, [OMG03b]) as the lan-
guage for metamodeling, as well as three transformation languages with different transfor-
mation approaches. The Query/View/Transformation Relations (QVT-Relations, [OMG09])
is one of those languages and follows a relational approach which consists of defining trans-
formations as mathematical relations between source and target elements. In this thesis we
will rely on these standards for the specification of MDE elements.

The quality of the whole MDE process strongly depends on the quality of the models and
model transformations. The reliability of the resulting products is increased by verification
of the generated models at early development stages, and of the model transformations to
avoid cascading errors. From now on we address the verification of model transformations,
which includes by extension the verification of their models and metamodels. In particular,
we focus on the use of formal methods (i.e. mathematically based techniques [HJC+08]) for
verification of these MDE elements.

The specification and verification of a MDE-built system has some parallelism with tradi-
tional software systems. The formal treatment of a problem requires some notation with for-
mal semantics, along with a deductive system for reasoning. This is often considered difficult
to apply and requires significant mathematical experience, which leads to a mismatch prob-
lem between software engineering expectations and formal methods possibilities. To cope
with this situation, a separation of duties between software developers is usually proposed.

On the one side there are those experts in the MDE domain, and on the other, those in formal
methods. This gives rise to different technological spaces [KBA02], i.e. working contexts
with a set of associated concepts, body of knowledge, tools, required skills, and possibilities.
In general terms, MDE experts define models and transformations, while formal experts con-
duct the verification process, often aided by some (semi)automatic generation process which
translates the MDE elements to their formal representation into the domain used for verifica-
tion purposes. The formal representation is usually defined in a unified semantic domain (e.g.
[CLST10b, LR12, BHM09, RDV09]), having tools for conducting the verification process
and for retrieving some feedback to the MDE experts. However, the use of a mathematical
formalism serving as a unique semantic basis for verification can be quite restrictive.

The minimal requirement to be verified on a model transformation is that the transformation
and the source and target models are well-formed, i.e. that they conform to their respective
metamodels. However, there are multiple other properties of interest to verify and there is
a plethora of verification approaches in the literature [ALS+12, ARW13, CS13d]. In this
context, the “heterogeneity problem” arises, which can be defined as the need of using differ-
ent logical domains for verification. As with traditional software, “heterogeneous multi-logic

3

specifications are needed, since complex problems have different aspects that are best speci-
fied in different logics” [Mos05]. Even if we did not need to use heterogeneous approaches
at the same time, it could be useful to allow formal experts to choose the domain in which
they feel more confident, or in which they are more skilled to address a formal proof.

In both cases, it is useful to have a representation of MDE elements in different logical do-
mains. However, the maintenance of multiple formal representations of the same elements
(one for each domain) can be expensive if there is no automated assistance. One possibil-
ity is to generate a partial or complete formal representations of elements from the MDE
technological space in different formal domains, and then “connect” these specifications via
translations between the logical domains. These connections may be useful to perform a het-
erogeneous verification (i.e. using different domains for the verification of each part of the
whole problem), and also to integrate MDE elements with the specification and verification
of other traditional software artifacts.

This introduces an interesting problem to solve: how to create a unified environment in which
each technique is used to solve the problems that fits it best, minimizing the burden of switch-
ing from one technique to another?

We can follow a heterogeneous specification approach [CKTW08, Mos05] consisting in
having different mathematical formalisms for expressing parts of the overall problem and
defining semantic-preserving mappings in order to allow “communication” between the for-
malisms. This approach uses as a basis the Theory of Institutions [GB92] which allows
defining institutions giving a formal definition of the MDE elements, and formal transla-
tions (called comorphisms) from these institutions to other logics, also represented as insti-
tutions, which will be used for verification. We can also provide an implementation of the
environment using the Heterogeneous Tool Set (HETS, [MML07]), which is a tool that sup-
ports heterogeneous multi-logic specifications and provides proof management capabilities
for monitoring the overall correctness of the process. HETS supports several interconnected
logics (e.g. first-order logic, modal logic, rewriting logic, among others) with the Common
Algebraic Specification Language (CASL, [MHST03]) as its core language.

Goals and Contributions

The main goal of this thesis is to define a unified environment that allows formal verifica-
tion of a model transformation using heterogeneous verification approaches. We base the
environment on the Theory of Institutions which provides a sound basis to tackle with the
“heterogeneity problem” defined before, and to represent MDE elements in some consistent
and interdependent way without depending on any specific logical domain. Although we
build on the MOF and QVT-Relations standards for the specification of the MDE elements,
we follow an idea general enough to be extended to other transformation approaches and lan-
guages. We also rely on the existence of HETS to demonstrate the practical benefits of such a
formal definition.

4 Chapter 1. Introduction

We are not concerned with the proposal of a new verification method, with the comparison
of verification approaches or with the identification of the “best” verification approach for
each kind of problem. We assume that MDE and formal methods practitioners have enough
knowledge to select the appropriate strategy for verification. We are providing them with the
“glue” they need for connecting their technological spaces and the logical domains needed
for specification and verification.

This thesis contributes to the improvement of the quality and reliability of the products de-
veloped using the MDE approach by adopting formal tools for the verification of model
transformations. It also helps bridging still separate domains such as formal methods and
MDE. More specifically, our work makes the following contributions:

• We provide a comprehensive literature review on the verification of model transforma-
tions which extends and complements other existing works in the literature [ALS+12,
ARW13], and focuses on the use of formal methods for verification issues. We detect
the “heterogeneity problem” and conclude about the need of a heterogeneous approach
to verification.

• We define a unified environment for the heterogeneous verification of model transfor-
mations based on the Theory of Institutions. Compared to other approaches, the envi-
ronment defines a generic formal representation of the MDE elements in such a way
that it is possible to specify semantic-preserving translations from these elements to po-
tentially several logical domains for verification. The environment has many benefits
from a software engineering perspective, e.g. it is possible to automate the translations,
so the environment is scalable in terms of the transformation specification.

• We develop a solid foundation for the formal representation of MDE elements by defin-
ing institutions for both the conformance relation between models and metamodels
specified with a simplified version of MOF (CSMOF), and the QVT-Relations transfor-
mations (QVTR). These definitions improve existent knowledge on the semantics of
MDE and constitute a contribution on the use of institutions for the formalization of
specification languages.

• We illustrate how MDE elements can be formally translated into other logics by defin-
ing comorphisms from extensions of these institutions to CASL, the core logic of the
HETS system, and proving that in such translations the semantics are preserved. The
existent connections between CASL and other logics broadens the spectrum of logical
domains in which the verification of model transformations can be addressed.

• We evidence the feasibility of the environment by developing a functional prototype
supported by HETS. There is no evidence about the using of the Theory of Institutions
in practice for the verification of model transformations. In particular, Hets does not
support the MDE paradigm, i.e. it does not have specific languages (as CSMOF and
QVTR) for the specification of MDE elements. A discussion about the scope of this
implementation opens several research directions.

5

The research work undertaken during the development of this thesis has been presented and
published in the following instances. These papers cover most of the work: the comprehen-
sive literature review on the verification of model transformations [CS13d], the definition of
the heterogeneous environment [CS13a], and the definition of the institutions [CS13b].

• [CS13d] Daniel Calegari, Nora Szasz: Verification of Model Transformations: A Sur-
vey of the State-of-the-Art. Proc. Conf. Latinoamericana de Informática, Medellín,
Colombia, 2012. ENTCS 292: 5-25. Elsevier (2013) Best Paper Award

• [CS13a] Daniel Calegari, Nora Szasz: Bridging Techological Spaces for the Verifica-
tion of Model Transformations. Proc. Conf. Iberoamericana de Software Engineering,
Montevideo, Uruguay (2013)

• [CS13b] Daniel Calegari, Nora Szasz: Institution-Based Semantics for MOF and QVT-
Relations. Proc. 16th Brazilian Symp. Formal Methods, Brasilia, Brasil. LNCS 8195:
34-50. Springer. (2013) 2nd Best Paper Award

There are other papers not completely related to the content of this thesis but produced under
the same context. These papers are summarized in Appendix A.

Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 is dedicated to an overview
of MDE. We present the main idea behind this software engineering approach and introduce
its main elements (models, metamodels, the conformance relation between them, and model
transformations). We also present a simplified version of the well-known Class to Relational
transformation [OMG09], which is used throughout this thesis as a proof of concepts. We
continue dipping into MDE in Chapter 3, in which we summarize a comprehensive litera-
ture review on the verification of model transformations. This review will provide a better
understanding on what we call “heterogeneity problem” which motivates this proposal. In
Chapter 4 we provide background information on the Theory of Institutions on which our
proposal is formally based. In Chapter 5 we introduce the environment presenting how it is
defined and we summarize its benefits from a software engineering perspective. In Chapter 6
we provide a formal definition of an institution for the conformance relation (CSMOF), in
Chapter 7 we define an institution for model transformations (QVTR), and in Chapter 8 we
define an extension of these institutions in order to be used within a proof environment. In
Chapter 9 we present the definition of formal translations from these extended institutions
into CASL by means of institution comorphisms. The importance of such translations relies
in that we can give our environment tool support with HETS. The implementation of a pro-
totype of the environment is detailed in Chapter 10. Finally, Chapter 11 concludes with a
summary of our results, a discussion of the main contributions of our work, and an outline of
some possible directions of future work.

6 Chapter 1. Introduction

Some aspects were sent to appendices in order to improve readability of this document. In
Appendix A there is the complete publication list produced under the context of this thesis. In
Appendix B we give complete formal proofs of properties for the CSMOF institution defined
in Chapter 6, and in Appendix C the corresponding proofs for the QVTR institution defined
in Chapter 7. In Appendix D we give complete formal proofs of properties for the extended
institutions defined in Chapter 8. In Appendix E we give complete proofs for comorphisms
properties defined in Chapter 9. Finally, in Appendix F we show the code artifacts and the
complete CASL theories generated by the comorphisms for the running example.

How to Read this Thesis

It is possible to read this thesis straight through from start to finish. However, since the tar-
get audience is both MDE and formal methods practitioners, we recommend different paths
depending on their background and interests. Chapter 2 can be skipped if the reader is fa-
miliar with the MDE paradigm, but we recommend to read Chapter 3 if she has no deep
understanding on verification issues within such paradigm. Readers with a background in
institutions will probably prefer to skip Chapter 4. Chapter 5 should not be skipped since it
defines the environment proposed in this work. Chapters 6, 7, 8, and 9 are very technical and
not essential for the superficial understanding of the environment, but they provide impor-
tant foundational issues on its formal definition. Readers without a special interest in formal
details can skip them, as well as Chapter 4. Each one of the chapters, from Chapter 5 to
Chapter 9, has its own related work section. Chapter 10 can be skipped if there is no interest
in technical details on the implementation of the prototype. However, a quick glance at it will
provide a better understanding on how the environment works from a practical perspective.
Finally, Chapter 11 should not be skipped since it discusses conclusions and future work.

2 A Quick Look at MDE

As models are not intended to represent all aspects of reality, they allow us to deal with
the world in a simplified manner, avoiding the complexity, danger and irreversibility of real-
ity [RWLN89]. The Model-Driven Engineering paradigm is a software engineering paradigm
based on the construction of models of a system and their evolution through so called model
transformations.

In this chapter we provide an overview of the Model-Driven Engineering paradigm which
encloses the general context of our work. In Section 2.1 we describe the MDE paradigm
and we introduce its main elements: metamodels, models and model transformations. These
concepts are clarified in Section 2.2 with a basic example of a model transformation that will
be used throughout the thesis.

2.1 The MDE Paradigm

The Model-Driven Engineering (MDE, [Ken02, Sch06]) refers to the systematic use of mod-
els as primary engineering artifacts throughout the engineering process, encompassing all
engineering efforts such as development, maintenance or reverse engineering. In particular,
the paradigm envisions a development process driven by models (known as Model Driven
Development, MDD) representing different views of the system to be constructed. Its fea-
sibility is based on the existence of a (semi)automatic construction process driven by model
transformations, starting from abstract models of the system and transforming them until an
executable model is generated. This approach tends to improve efficiency on the construc-
tion process and the reliability of the resulting products. It also focuses on ensuring software
quality attributes by verification of the generated models at early development stages.

7

8 Chapter 2. A Quick Look at MDE

Model-Driven Architecture (MDA, [OMG03a]) is an implementation of MDD, defined by
the Object Management Group (OMG). MDA introduces different levels of abstraction of
the models. These range from models independent from any idea of computation (CIM),
e.g. the specification of a business process, to models tightly coupled to a specific implemen-
tation language (ISM), e.g. the code itself and configuration scripts. MDA also describes
model transformations driving business requirements models to implementations to provide
a conceptual framework, as shown in Figure 2.1.

Figure 2.1: Levels and transformations of MDA

MDA involves multiple standards, as the MetaObject Facility (MOF, [OMG03b]) as a lan-
guage for the definition of models, and the Query/View/Transformation Relations language
(QVT-Relations, [OMG09]) for specifying model transformations. These languages will be
subject of further explanation in the following sections.

2.1.1 Models, Metamodels and MOF

In the MDE ecosystem everything is a model, even the code is considered as a model. In
this context, a model is an abstraction of the system or its environment. Every model con-

forms [Béz05] to a metamodel, i.e. a model which introduces the syntax and semantics of

2.1. The MDE Paradigm 9

certain domain-specific kind of models. In the same way, a metamodel conforms to some
metametamodel. A metametamodel is usually self-defined, which means that it can be spec-
ified by means of its own semantics. These elements and relations introduce a set of layers
[Béz05] depicted in Figure 2.2. At the bottom level, the M0 layer is the real system. In the
other layers M1 to M3 are the three different kinds of models:

• Terminal models (level M1): conform to metamodels and are representations of real-
world systems.

• Metamodels (level M2): conform to metametamodels and define domain-specific con-
cepts.

• Metametamodels (level M3): conform to themselves and provide generic concepts for
metamodel specification.

Figure 2.2: The 3+1 architecture of MDE

Metamodels are usually graphically depicted using UML Class Diagrams [OMG05]. How-
ever, there are several other specific languages for this purpose, e.g. the MOF, the Ecore
metametamodel defined for the Eclipse Modeling Framework [FSM+03], and KM3 [ATL05]
defined for the ATL [JK05] transformation language.

10 Chapter 2. A Quick Look at MDE

The MOF is a standard language for metamodeling. To “simplify the MOF so as to facilitate
ease of implementation and conformance while maximizing interoperability and convenient
interchange” [OMG03b], the standard defines Essential MOF (EMOF) which is a subset of
MOF allowing simple metamodels to be defined. In Figure 2.3 there is a simplified version
of the EMOF metametamodel, without operations on classes or packages.

Figure 2.3: A simplified EMOF metametamodel

In few words, an EMOF metamodel defines classes which can belong to a hierarchical struc-
ture. Some of them may be defined as abstract (there are no instances of them). Any class
has properties which can be attributes (named elements with an associated type which can be
a primitive type or another class) and associations (relations between classes in which each
class plays a role within the relation). Every property has a multiplicity which constraints
the number of elements that can be related through the property, and it can be related with
another property (known as its opposite) if the property corresponds to a bidirectional associ-
ation between two classes. In some cases, there are conditions (called invariants) that cannot
be captured by the structural rules of this language, in which case the language is supple-
mented with another one, e.g. the Object Constraint Language (OCL, [OMG10]). OCL can
be used with any MOF metamodel, e.g. within any UML language.

These considerations allow defining the conformance relation in terms of structural and non-

structural conformance. Structural conformance with respect to a MOF metamodel means
that in a given SW-model: every object has a type defined within the metamodel, every prop-
erty link has a corresponding property, such that objects connected with such property link are

2.1. The MDE Paradigm 11

well-typed according to the corresponding property, and the SW-model also respects the mul-
tiplicity constraints. Non-structural conformance means that a given SW-model respects the
invariants specified with the supplementary constraints language. Sometimes some structural
constraints, e.g. multiplicity constraints, can also be represented using the supplementary
constraint language.

Although a metamodel usually defines a modeling language which has a concrete syntax, it
is possible to represent a model using the same languages as for metamodels. Moreover, for
representing models and instances of models, there is the graphical representation provided
by UML Object Diagrams [OMG05]. Every element in this schema can be represented us-
ing XML Metadata Interchange (XMI, [OMG11]), a XML-based language for exchanging
metadata information whose metamodel can be expressed in MOF.

2.1.2 Model Transformations and QVT-Relations

The second building block of the MDE paradigm is the model transformations, which can
also be considered as models. As pointed out in [CH06], model transformations are closely
related to program transformations. “Their differences occur in the mindsets and traditions of
their respective transformation communities, the subjects being transformed, and the sets of
requirements being considered. While program transformation systems are typically based on
mathematically oriented concepts such as term rewriting, attribute grammars, and functional
programming, model transformation systems usually adopt an object-oriented approach for
representing and manipulating their subject models.”

As summarized in Figure 2.4, a model transformation (or just transformation from now on)
basically takes as input a source model conforming to a given source metamodel and produces
as output another model conforming to a given target metamodel. The model transformation
can be defined as well as a model which itself conforms to a model transformation meta-
model. This last metamodel, along with the source and target metamodels, must conform to
a metametamodel (such as MOF). The transformation definition is executed by a transforma-
tion engine.

This schema defines model-to-model transformations. There are also model-to-text and text-
to-model transformations where the target and source models, respectively, are just strings
not conforming to any specific metamodel. Without loss of generality we will only consider
model-to-model transformations.

12 Chapter 2. A Quick Look at MDE

Figure 2.4: General schema of a model transformation

As pointed out in [MCG04, Men10], “this definition is very general, and covers a wide range
of activities for which model transformation can be used: automatic code generation, model
synthesis, model evolution, model simulation, model execution, model quality improvement
(e.g. through model refactoring), model translation, model-based testing, model checking,
model verification.” However, this schema can be extended as is exhaustively studied in
[CH06]. Leaving aside the details, the authors identify multiple variabilities on a model trans-
formation, e.g. it can be bidirectional, it can take more than one source model as input and/or
produce multiple target models as output, its rule application strategy can be deterministic,
non-deterministic or interactive, the source and target models can be at different abstraction
levels (horizontal versus vertical transformations) or not, and the source and target models
may conform to the same metamodel (endogenous versus exogenous transformations) or not.

There are several approaches for model transformations [CH06, Men10], among others:

Operational (Imperative). It is similar to direct manipulation but offers more dedicated sup-
port. A typical solution is to extend the used metamodeling formalism with facilities for
expressing computations. Examples of systems in this category are QVT-Operational
mappings [OMG09], and Kermeta [MFJ05].

Relational (Declarative). It consists on defining transformation rules as mathematical rela-
tions between source and target elements. Its execution can be seen as a form of con-
straint solving. Examples of this approach are QVT-Relations [OMG09], and Tefkat
[LS05].

Graph-transformation-based. It consists on considering models as typed, attributed, labeled
graphs and then applying graph transformations. Examples of this include the follow-
ing tools: AGG [Tae03], and VIATRA [CHM+02].

2.1. The MDE Paradigm 13

The OMG defines three languages with different transformation approaches. In particular, the
Query/View/Transformation Relations (QVT-Relations, [OMG09]) is a relational language
which defines transformation rules as mathematical relations between source and target ele-
ments. In Figure 2.5 there is an excerpt of the QVT-Relations metametamodel.

Figure 2.5: An excerpt of the QVT-Relations metametamodel

A relational transformation can be viewed as a set of interconnected relations (we will re-
fer to them as rules indistinctly) together with keys on metamodel elements of the form
key Class {prop1,..., propN}. Keys are a definition of which properties of a MOF
class, in combination, can uniquely identify an instance of that class. They are used in prac-
tice at the time of object creation. Notice that they are non-structural constraints on the source
and target metamodels, thus they can also be represented using the supplementary constraint
language. The identifying properties can also refer to non-navigable opposite roles, e.g.
key Class {prop1, opposite(Class2.property)}.

14 Chapter 2. A Quick Look at MDE

Relations are of two kinds: top-level relations which must hold in any transformation execu-
tion, and non-top-level relations which are required to hold only when they are referred from
another relation. We can view a relation as having the following abstract structure [OMG09]
(we consider only a source and a target metamodel).

[top] relation R {

<R_var_set> <R_par_set>

Domain { <domain_k_var_set> <domain_k_pat> } //k = 1,2

[when <when_var_set> <when_cond>]

[where <where_cond>]

}

Every relation has a set <R_var_set> of variables occurring in the relation, which are
particularly used within the domains (<domain_k_var_set>) and in the when clause
(<when_var_set>). Relations define source/target domain patterns <domain_k_pat>
which are used to find matching sub-graphs in a model. A pattern can be viewed as a graph of
typed elements (which will be matched by objects) and relations (which will be matched by
links), together with a predicate (boolean expression) which must hold. The predicate may
refer to variables other than the pattern elements; these are the free variables of a pattern. A
pattern can be represented as:

e1: <classname1>, e2: <classname2> ... en:<classnameN>

l1 : <assoc1> (ei, ej) ... lm:<assocM>(eu, ew)

where <predicate>

Relations can also contain when (<when_cond>) and where (<where_cond>) clauses.
A when clause specifies the conditions under which the relationship holds, whilst the where
clause specifies the condition that must be satisfied by all model elements participating in the
relation, and it may constrain any of the variables in the relation and its domains. The when
and where clauses, as well as the predicate of a pattern, may contain arbitrary boolean OCL
expressions in addition to the relation invocation expressions.

Finally, any relation can define a set of primitive domains which are data types used to pa-
rameterize the relation (<R_par_set>). In this sense, top-level relations can be parametric
when called from a when clause, whereas non-top-level relations are always parametric since
they are called for given source and target domains elements.

The execution of a transformation requires that all its top-level relations hold, as well as the
keys (if any). However the effect of a transformation depends on the direction of its execution,
and on the flags that can be attached to domains. Domains can be defined as checkonly or
enforced. As the standard says “When a transformation is enforced in the direction of a
checkonly domain, it is simply checked to see if there exists a valid match in the relevant
model that satisfies the relationship. When a transformation executes in the direction of the
model of an enforced domain, if checking fails, the target model is modified so as to satisfy
the relationship.” [OMG09].

2.1. The MDE Paradigm 15

These two execution modes are determined by two different semantics of a rule: the checking
and the enforcement semantics. The first allows determining what relations must exists be-
tween source and target models (useful for verification), whereas the second determines how

a model transformation needs to execute. Moreover, as we consider only two metamodels,
we also consider that the transformation is executed in the direction of the second domain.
In this context, we customize the standard checking semantics and take the first and second
patterns as the source and target patterns, respectively. Using |<var_set>| as a binding
of variables of the set <var_set>, and <exc_domain_k_var_set> as the variables of
domain k that do neither occur in the other domain nor the when clause, the standard states
that a rule holds if:

∀ |< when_var_set >|,
(< when_cond > →

∀ |< R_var_set >\(< when_var_set > ∪ < exc_domain_2_var_set >)|,
(< domain_1_pat > →

∃ |< exc_domain_2_var_set >|,
(< domain_2_pat > ∧ < where_cond >)))

This formula states that a rule holds if for each valid binding of variables of the when clause
and variables of domains other than the target domain, that satisfy the when condition and
source domain patterns and conditions, there must exist a valid binding of the remaining
unbound variables of the target domain that satisfies the target domain pattern and where

condition.

16 Chapter 2. A Quick Look at MDE

2.2 Class to Relational Example

Let us consider the following example which is a simplified version of the well-known Class
to Relational transformation [OMG09] that will be used throughout this thesis. The meta-
model on top of Figure 2.6 defines UML class diagrams, where classifiers (classes and prim-
itive types as string, boolean, integer, etc.) are contained in packages. Classes can contain
attributes and may be declared as persistent, whilst attributes have a type that is a primitive
type.

Figure 2.6: Metamodels for the Class to Relational transformation

2.2. Class to Relational Example 17

Notice that a class must contain only one or two attributes, and also that the Classifier class
is not abstract. We decided to handle these aspects differently from UML class diagrams in
order to have a more complete example. On the other side, relational models conform to the
second metamodel in Figure 2.6. Every schema contains a number of tables and each table
has a number of columns. Each column has a name and a kind, which can be the primary
keys of the corresponding table.

The transformation basically describes how persistent classes within a package are trans-
formed into tables within a schema.

transformation uml2rdbms (uml : UML , rdbms : RDBMS) {

key RDBMS::Table {name, schema};

key RDBMS::Column {name, owner};

key RDBMS::Key {name, owner};

top relation PackageToSchema {

pn : String;

checkonly domain uml p : UML::Package {

name = pn

};

enforce domain rdbms s : RDBMS::Schema {

name = pn

};

}

top relation ClassToTable {

cn, prefix : String;

checkonly domain uml c : UML::Class {

namespace = p : UML::Package {},

kind = ’Persistent’,

name = cn

};

enforce domain rdbms t : RDBMS::Table {

schema = s : RDBMS::Schema {},

name = cn,

column = cl : RDBMS::Column {

name = ’TID’,

typeT = ’NUMBER’

},

keyK = k : RDBMS::Key {

name = ’PK’,

column = cl

}

};

18 Chapter 2. A Quick Look at MDE

when {

PackageToSchema(p, s);

}

where {

AttributeToColumn(c, t, prefix);

prefix = ’’;

}

}

relation AttributeToColumn {

an, pn, cn, sqltype : String;

primitive domain prefix : String;

checkonly domain uml c : UML::Class {

attribute = a : UML::Attribute {

name = an,

typeT = p : UML::PrimitiveDataType {

name = pn

}

}

};

enforce domain rdbms t : RDBMS::Table {

column = cl : RDBMS::Column {

name = cn,

typeT = sqltype

}

};

where {

cn = if prefix = ’’ then an else prefix + an endif;

sqltype = if pn = ’INTEGER’

then ’NUMBER’

else if pn = ’BOOLEAN’

then ’BOOLEAN’

else ’VARCHAR’ endif endif;

}

}

}

The rule PackageToSchema states that UML packages are mapped into RDBMS schemas.
The rule ClassToTable states that classes marked as persistent are mapped into tables
with the same name, a primary key and an identifying column, such that the package to

2.2. Class to Relational Example 19

which the class belongs is in the relation with the schema to which the table belongs. The
rule AttributeToColumn is called from the where clause of ClassToTable. This rule
states that primitive attributes of the persistent class map to columns of the table, such that the
name of a column is determined by a formula according to the value of the primitive domain
prefix, and the type of that column is determined by another formula depending on the
name of the primitive attribute.

In Figure 2.7 there is an example of a source model and its corresponding target model.
The source model is composed by a persistent class of name ID within a package of name
Package. The class has an attribute of name value and type String which is a primitive
type. The forward execution of the transformation gives the target model which contains
a schema of name Package with a table of name ID, which corresponds to the package
and class in the source model. The table has two columns, one of name value and type
VARCHAR corresponding to the string attribute in the source class, and another which is a
default primary key without any correspondence in the source model.

Figure 2.7: Models for the Class to Relational transformation

3 Verification of Model Transformations

The verification of a model transformation –which includes by extension the verification of
its models and metamodels– is defined in [ALS+12] as a tri-dimensional problem consisting
of: the transformation involved, the properties of interest addressed, and the formal verifi-
cation techniques used to establish the properties. We developed a comprehensive literature
review [CS13d] (extended in [CS12]) on the verification of model transformations extending
[ALS+12] and focusing on the last two dimensions.

In this chapter we summarize the main aspects of the verification of model transformations
contained in our review. In Section 3.1 we introduce the different aspects of a transformation
that must be verified, and in Section 3.2 we review how these aspects are verified in the
literature. Finally, in Section 3.3 we define some cases to exemplify verification properties
and discuss how they can be verified.

3.1 What to Verify

As we have seen in Chapter 2, there are many transformation approaches. However, these
approaches do not define what things have to be verified but how in some cases the ver-
ification must be done. Consequently, transformation properties can be explored without
talking about any transformation approach in particular. Verification properties can be classi-
fied, according to [ALS+12], in language-related and transformation-related properties, the
first ones referring to the computational nature of transformations and target properties of
transformation languages, and the second ones referring to the modeling nature of transfor-
mations. When following a MDE-based approach, formal verification is mostly focused on
the second category of properties (transformation-related), whilst those within the first cate-
gory (language-related) are in general assumed to be somehow automatically verified by the
development tools.

21

22 Chapter 3. Verification of Model Transformations

3.1.1 Language-Related Properties

This category refers to the computational nature of transformations and target properties of
transformation languages. As introduced in [ALS+12], a transformation specification con-
forms to a transformation language which can possess properties on its own.

The first two properties are identified as execution-time properties. They are the Termination

property which guarantees the existence of a target model, i.e. that the transformation execu-
tion finishes for any well-formed transformation specification, and the Determinism (a.k.a.
Confluence) property which ensures uniqueness of the target model for a given source model
and transformation specification. These properties are related to undecidable problems for
sufficiently expressive (i.e. Turing-complete) transformation languages. In these cases, either
the transformation language is kept as general as possible, making these properties undecid-
able, but the transformation framework provides capabilities for checking sufficient condi-
tions ensuring them to hold on a particular transformation; or these properties are ensured by
construction by the language, generally by sacrificing its expressive power [ALS+12]. Ac-
cording to this, in the first case, the properties may also be identified as transformation-related
properties (as in the next section) when proved for a specific transformation specification.

The third property, identified as a design-time property, is Typing, i.e. ensuring the well-
formedness of the transformation specification with respect to its transformation language.
The process of type checking may occur either at compile or run-time. Since model trans-
formations are models, and models have metamodels (defining the transformation language),
solutions to this problem are strongly related to Conformance and Model Typing as will be
introduced in the next section.

Finally, there is a Preservation of Execution Semantics property. This execution-time prop-
erty states that the transformation execution must behave as expected according to the defini-
tion of the transformation language semantics. Related to this, and in strong contact with the
Typing property, there are consistency needs between transformation rules which must also
hold. For example, some languages do not allow an element of the input model to be matched
more than once (redundancy problem). If this property does not hold, contradictory rules may
be applied, e.g. two rules applied to the same element implying different things. Moreover, it
is possible that a rule applied to an element of a hierarchy may be more restrictive than other
one applied to an element in a lower level of the same hierarchy. In this case, there will be
some models not matched by the second rule.

3.1.2 Transformation-Related Properties

This category refers to the modeling nature of transformations. As introduced in [ALS+12],
a transformation refers to source/target models for which dedicated properties need to be
ensured for the transformation to behave correctly.

3.1. What to Verify 23

There is a first subcategory of properties known as On the Source/Target Model(s) that con-
cerns the source and/or target model(s) a transformation refers to. As pointed out in [VP03],
the minimal requirement is to guarantee that the generated model is a syntactically well-
formed instance of the target language. This introduces a first group of properties known as
Conformance and Model Typing. Conformance is nowadays well understood and automat-
ically checked within modeling frameworks. In this context, type systems derive from those
for object-based languages which are reasonably well-understood [SJ07]. There are also
typing requirements with respect to the artifacts handled at an architecture level, i.e. trans-
formation chains, repositories and other model-related services [VJBB13]. There is a second
group known as N-Ary Transformations Properties: transformations operating on several
models at the same time, e.g. model composition, merging, or weaving, require dedicated
properties to be checked. But verification interests go beyond this kind of problems. When
verifying a model transformation we want to consider its elements as a whole and not individ-
ually. In this sense, some authors, as in [CCGdL10], use the notion of a transformation model

[BBG+06b], i.e. a model composed by the source and target metamodel, the transformation
specification and the well-formedness rules. This transformation model can be implicit (i.e.
we assume that every element is connected), or explicit (i.e. we really construct a unified
structure with different purposes, e.g. tracing or verification).

There are properties known as Model Syntax Relations that relate metamodel elements of
the source and the target metamodels trying to ensure that certain elements or structures of
any input model will be transformed into other elements or structures of the output model.
This problem arises when these relations cannot be inferred by just looking at the individual
transformation rules, or when the transformation language does not allow expressing some
relations, and another constraint language must be used. This is also known as preservation
of transformation invariants or structural correspondence. Beyond structural relationships be-
tween source and target models, there are semantic properties that must be preserved, known
as Model Semantics Relations and also as semantic correctness or dynamic consistency

[VP03]. These properties generally depend on the metamodels semantics or on the kind of
transformation. Some properties of interest are semantic equivalence, (weak) bi-similarity
and preservation of properties, temporal properties, refactoring, and refinement.

Finally, there is a fourth category called Functional Behavior which refers to identifying if
a transformation behaves as a mathematical function [CCGdL10]. In particular, a transfor-
mation may be injective, surjective, bijective, or at least, executable (i.e. there exists a valid
pair of source and target models that satisfy the transformation). It is also possible to ana-
lyze these properties considering individual rules within a transformation. Moreover, there is
a specific property known as Syntactic Completeness which refers to completely covering
the metamodels by transformation rules. This is also presented in [KAER06] as metamodel

coverage introducing the problem that if the transformation does not cover the entire meta-
model, then this leads to some input models which cannot be transformed. From a functional
point of view, syntactic completeness means that the transformation is a total function. When
considered for a specific transformation, determinism is also a functional property. In fact,
when a transformation is total and deterministic, it is called functional [CCGdL10].

24 Chapter 3. Verification of Model Transformations

3.1.3 Summary of Verification Properties

We have seen a classification of the properties of interest addressed by the verification of
a model transformation. This classification identifies language-related and transformation-
related properties, the first ones referring to the computational nature of transformations and
target properties of transformation languages, and the second ones referring to the modeling
nature of transformations. When following a MDE-based software project, formal verifica-
tion is mostly focused on the second category of properties (transformation-related), whilst
those within the first category (language-related) are in general assumed to be somehow au-
tomatically verified by the development tools. A summary of the properties addressed in the
literature can be found in Table 3.1.

Table 3.1: Summary of properties addressed in the literature
Language-Related Properties

Termination [BLA+10][Bru08][EEdL+05][Küs06]
[LR10][VVGE+06][WKK+09]

Determinism [BLA+10][CCGdL10][HEOG10][HKT02]
[Küs06][LEO06][LR10][WKK+09]

Typing [KMS+09][LLM09],[SJ07]
Preservation [ABGR10][CCGdL10][GdLW+13]
of Exec. Sem. [LD10][PCG11][WKK+09]

Transformation-Related Properties

Source/Target
Conformance [ABGR10][AKP03][ALL10]

[CBBD09][CLST10b][GM07][Küs04]
[LD10][LMAL10][LR10][LR11][Poe08]
[Sch10][SMR11][WKK+09][VJBB13]

N-Ary [CNS12][Kat06][MSJ+10]
Syntax [AKP03][ALL10][CBBD09][CLST10b][GM07]
Relations [CHM+02][GdLW+13][LBA10][LD10][LMAL10][LR10]

[NK08a][OW09][Poe08][Sch10][SK08]
Semantics General [CLST10b][LR11][Poe08][Sch10][SMR11]
Relations Sem. Eq. [BEH06][BKMW08][CCGT09][GGL+06]

[HHK10][LR10][NK08b]
[PGE97][RLK+08][VP03]

Temporal [BBG+06a][BHM09][CHM+02][EKHL03]
Refactoring [HT05]
Refinement [CBBD09][MGB05][PG08]

Functional General [CCGdL10]
Behavior Synt. Comp. [CHM+02][GdLW+13][KAER06]

[LR10][PCG11][WKC06]

3.2. How to Verify 25

3.2 How to Verify

As pointed out in [EKHL03], a property can be either verified or validated, leading to the
well-known distinction between verification and validation. Formally, verification is ad-
dressed to “determine whether the products [...] satisfy the conditions imposed” whilst val-
idation is addressed to “determine whether it [the product] satisfies specified requirements”
[IEE90]. In other words, verification is the process of proving that we are building the prod-
uct in the right way, while validation is the process of proving that we are building the right
product.

We are focused on verification, and in particular on formal verification, i.e. in the act of
verifying using formal methods. Although formal verification techniques may be expensive,
they can be helpful in guaranteeing the correctness of critical applications where no other
verification technique is acceptable. In contrast to formal verification, there are other tech-
niques which may detect errors or improve confidence, but they cannot prove any property in
a definite way.

Verification techniques can be classified in different categories referring to: (a) the kind of
technique used for verification, (b) the abstraction level with respect to the elements involved
in the transformation, (c) the abstraction level with respect to the implementation of the trans-
formation, and (d) the dependency/independency with respect to the transformation specifi-
cation. It is worth saying that these categories are orthogonal, i.e. there are verification
techniques which correspond to more than one category.

Inference, model checking, testing, static analysis or by construction This category refers to
the kind of technique used for verification. Logical inference (a.k.a. theorem proving)
consists of using a mathematical representation of a system and the properties that must
be verified, as well as a logic in that semantic domain which allows reasoning about that
representation, leading from premises to conclusions. This process is usually carried
out using theorem proving software and it is usually only partially automated. Model

checking also consists of using a mathematical representation of a system and proofs
consist of a systematic exhaustive exploration of the mathematical model. With the
first approach there is usually a high verification cost, whilst with the second one there
are well-known limitations such as the state-explosion problem. On the other hand,
testing relies on the construction of test strategies for a property including subsequent
execution of (either parts or all of) the system according to these strategies. As it is
popularly said, testing can only show the presence of errors and not their absence. Fi-
nally, we can find strategies based on static analysis, i.e. on the analysis of a model
transformation that is performed without actually executing it. Static analysis typically
consists on semi-decision techniques. In this sense, they are efficient but they cannot
assure the overall correctness of the design. For the sake of completeness we also con-
sider the satisfaction of properties that hold by construction of the transformation, e.g.
those achieved by using special transformation languages as DSLTrans [BLA+10].

26 Chapter 3. Verification of Model Transformations

Metamodel or model level This category consists of the abstraction level with respect to the
elements involved in the transformation, and it is also referred as “offline and online”
verification [ALL10], and as “input independent and input dependent” verification
[ALS+12]. Metamodel-level verification uses the metamodel information for verify-
ing properties for any well-formed model instance while model-level verification uses
arbitrary source models. As pointed out in [VP03], the first level typically requires
the use of sophisticated theorem proving techniques and tools with a huge verification
cost. For this reason, the second is in many cases a practical and valuable aid, but it
cannot ensure the zero-fault level of quality since it checks a finite number of specific
cases. However, as model-level verification takes place on a lower level of abstrac-
tion, the range of properties that can be validated is much greater than when using
metamodel-level verification.

Specification or implementation As introduced in [EKHL03], verification can either be done
on the model (specification) level or on the implementation level. Specification-level

verification involves only the specification of the transformation in some transforma-
tion language, and in consequence the semantics defined for that transformation lan-
guage. In contrast, implementation-level verification means also considering the way
a transformation is executed by a transformation engine. As far as we know, verifi-
cation techniques found in the literature are of the first type, since it is assumed that
any transformation engine conforms with the semantics of the transformation language
and properties do not depend on how exactly the transformation is executed (includ-
ing the case of Determinism, Termination and Preservation of Execution Semantics
properties).

Transformation independent or dependent This is introduced in [ALS+12]. Transformation

independent techniques are those techniques which prove properties for any transfor-
mation, and in consequence they assure that no assumption is made on the specific
source model. In contrast, transformation dependent techniques rely on a specific
model transformation. Transformation independency is achieved either by a transfor-
mation language that preserves the properties by default, or by ensuring a property by
construction of the transformation.

3.2.1 Summary of Verification Approaches

We have shown how verification techniques can be classified in different categories referring
to: (a) the kind of technique used for verification, (b) the abstraction level with respect to
the elements involved in the transformation, (c) the abstraction level with respect to the im-
plementation of the transformation, and (d) the dependency/independency with respect to the
transformation specification. It is worth saying that these categories are orthogonal, i.e. there
are verification techniques which correspond to more than one category. A summary of the
verification techniques addressed in the literature within this categorization can be found in
Table 3.2 and Table 3.3.

3.2. How to Verify 27

Table 3.2: Summary of verification techniques addressed in the literature
inf mod sta tes con met mod spe imp tra tra

chk ana ind dep
[ABGR10]

√ √ √ √

[BBG+06a]
√ √ √ √

[ALL10]
√ √ √ √

[LMAL10]
√ √ √ √

[GGL+06]
√ √ √ √

[Bru08]
√ √ √ √

[Cha06]
√ √ √ √

[CLST10b]
√ √ √ √

[LR10]
√ √ √ √

[LD10]
√ √ √ √

[Poe08]
√ √ √ √

[Sch10]
√ √ √ √

[SMR11]
√ √ √ √

[AKP03]
√ √ √ √

[CNS12]
√ √ √ √

[PG08]
√ √ √ √ √ √

[CCGdL10]
√ √ √ √

[LEO06]
√ √ √ √

[EEdL+05]
√ √ √ √

[MSJ+10]
√ √ √ √

[HEOG10]
√ √ √ √

[HKT02]
√ √ √ √

[OW09]
√ √ √ √

[VVGE+06]
√ √ √ √

[WKK+09]
√ √ √ √

[LBA10]
√ √ √ √

[VP03]
√ √ √ √

28 Chapter 3. Verification of Model Transformations

Table 3.3: Summary of verification techniques... [Continuation]
inf mod sta tes con met mod spe imp tra tra

chk ana ind dep
[BEH06]

√ √ √ √

[BHM09]
√ √ √ √

[CBBD09]
√ √ √ √

[CHM+02]
√ √ √ √

[EKHL03]
√ √ √ √

[GdLW+13]
√ √ √ √

[GM07]
√ √ √ √

[HHK10]
√ √ √

[HT05]
√ √ √ √ √ √

[MGB05]
√ √ √ √ √ √

[RLK+08]
√ √ √ √ √ √

[Küs04]
√ √ √ √ √

[Küs06]
√ √ √ √ √

[NK08b]
√ √ √ √ √

[NK08a]
√ √ √ √ √

[Kat06]
√ √ √

[VR11]
√ √ √

[PCG11]
√ √ √ √

[WKC06]
√ √ √ √

[KAER06]
√ √ √ √

[BKMW08]
√ √ √ √

[BLA+10]
√ √ √ √

[KMS+09]
√ √ √ √

[LLM09]
√ √ √ √

[PGE97]
√ √ √ √

[SJ07]
√ √ √ √

[CCGT09]
√ √ √ √

3.3. Verification by Example 29

3.3 Verification by Example

In this section we illustrate several verification properties and discuss how the verification
can be addressed using the example introduced in Section 2.2.

Beyond the basic conformance needs, there are usually invariants that cannot be captured by
the structural rules of the modeling language. Invariants are well-formedness rules that must
hold at all time for any model conforming to a metamodel. In the example the following
invariants must hold:

• The owned attributes of a class are uniquely named within their owner class

• All tables have distinct names

• All columns have distinct names within a table

• Every table must have at least one primary column

Invariants can be expressed using a constraint language like the OCL, and as it was said in
Section 3.1, this conformance checking is nowadays automatically addressed within model-
ing frameworks using automated checkers. These checkers can be based on SAT solvers or
model-checking, as in [ABGR10, GM07]. This verification is at a model level. But there
are other alternatives, for example performing the verification using logical inference. In this
case, we can formalize metamodels, models and invariants in some formal language, like
B or directly FOL, and then use a proof assistant, like Coq and IsabelleHOL, as done in
[LD10, LR10, Sch10, SMR11].

Moreover, using this strategy, one can perform the verification at a metamodel level, forget-
ting models and considering transformations. Then, postconditions are proved assuming that
both the pre-conditions and the transformation rules hold, as done in [CLST10b]. For our run-
ning example, a simple property that can be proven is that the length of the Columns within
a Table must be greater than zero. This property holds by the fact that every Attribute

is transformed into a Column and because every Class has at least one Attribute. This
information is given in the transformation rules and in the source invariants, respectively.

A step further of this approach is the one presented in [Poe08] where the author proposes
a representation of models, metamodels and transformations in the Calculus of Inductive
Constructions [PPM89], and then a correct transformation can be extracted. This requires
specifying a transformation as types of the form

∀x : Pil.I(x) → (∃y : Psl.O(x, y))

where Pil and Psl are source and target metamodel types, I(x) specifies a precondition
on the source model x for the transformation to be applied, and O(x, y) specifies the re-
quired properties of the output model y. A proof of this expression implies the automatic

30 Chapter 3. Verification of Model Transformations

construction of a function f such that, given any x satisfying the precondition I(x), then the
postcondition O(x, fx) will be satisfied.

Finally, a complementary approach in [LMAL10] proposes a language for assertions based
on FOL that describes some characteristics of a model under transformation. Then, they
can derive how an assertion evolves when applying transformation rules using SWIProlog
[WSTL10] as an inference system. If the assertions to be verified can be derived from the
final assertion, thus they hold in the target model.

Model Syntax Relations

A transformation model gives useful information about the relation between the elements
connected by a transformation. With this, some other relations can be inferred which are not
evident by just looking at the individual elements.

If we consider the complete example in the QVT standard [OMG09] in which there is a
hierarchy between classes and attributes can be primitive or other classes, we can state that
if c is a subclass of d, then all columns of c’s table are included in d’s table. Since we need
three different rules for transforming attributes to columns, this property cannot be trivially
inferred.

There are many alternatives for proving this property. First, we can use a formal language to
state it and a proof assistant to prove it. We can also use the language for assertions and prove
that this property can be derived from the final assertion. We explored these alternatives when
discussed conformance and model typing.

Another option is to define a transformation contract stating the pre and post conditions of a
transformation (or an individual rule), and check whether this contract holds. This contract
can be written in OCL and then verified using an OCL checker or some other model-checker,
as in [CBBD09, GM07]. It can also be written using a dedicated tool and then verified using
some specific algorithm, as in [CHM+02, GdLW+13].

Functional Behavior

As defined in [CCGdL10], it is possible to check whether some properties hold considering
either a specific rule or the whole model transformation. In our example both top rules are ex-
ecutable since there exists a valid pair of models (those in Figure 2.7) that satisfy them. Since
they are the only top rules in the transformation, we can derive that the whole transformation
is also executable.

Following the same ideas, neither the rule nor the transformation is total (Syntactic Com-
pleteness) since they apply only for persistent classes and then non-persistent classes will
never be transformed. In this case it is clear that syntactic completeness is not desirable.

3.3. Verification by Example 31

These properties can be verified by encoding them as UML/OCL consistency problems on
the transformation model, as defined in [CCGdL10]. Then, an OCL-checker can be used.
Another alternative is to verify them by static analysis of the transformation rules and the
underlying metamodels, as in [PCG11].

Determinism and Termination

As we already said in the previous section, these two properties are the hardest to prove since
they are related to undecidable problems. One alternative to achieve them is to use some
language which guarantees both by construction, as introduced in [BLA+10]. However, this
option clearly reduces expressive power.

Other alternatives are representing the transformation model in some formal language to per-
form logical inference, as in [LR10], or using static analysis, as in [Küs06]. However, the
most referred alternative is expressing the transformation as a graph-rewriting problem which
allows performing critical pair analysis, as in [Bru08, HEOG10].

Preservation of Execution Semantics

The preservation of the execution semantics is matter of verification during the development
of a transformation engine. However, when defining a model transformation there are con-
sistency needs that must be addressed. As an example, we may not want redundant rules, and
indeed our example does not have redundancy. An example of a redundant rule would be one
mapping attributes to columns but applicable only to persistent classes.

As before, we can encode these needs as a consistency problem on the transformation model
and use a model-checker, as in [ABGR10], or use static analysis, as in [PCG11]. Moreover
we can use logical inference as in [LD10].

Another possible approach is the followed in [WKK+09], where the transformation is ex-
pressed as a CPN which allows the formal exploration of CPN properties. In particular, the
authors can verify whether there are transitions which are never enabled during execution, so
called Dead Transition Instances or L0-Liveness.

4 An Introduction to Institutions

The concept of Institution was introduced in order to deal with the “population explosion
among the logical systems used in computer science” [GB83]. It formalizes the notion of
“logical system”, which can be seen as a set of principles for some form of sound reason-
ing [MGDT05]. Many different logics, as first-order, modal and rewriting, have been shown
to be institutions [ST12]. An interesting aspect is that within most specification formalisms
there is a logical system allowing the user to write axioms describing the properties of the
software system to be developed. In this sense, the notion of institution can be used to repre-
sent any specification language since it provides ways of representing the syntax and seman-
tics of the language, as well as the relation between them by means of a satisfaction relation.
Examples of this are the institutions defined for UML languages [CKTW08, CS11b].

In this chapter we introduce the Theory of Institutions which gives the formal foundations of
our work. In Section 4.1 we present the main aspects of the Theory of Institutions needed
for a deep understanding of the definitions in the following chapters. Then, in Section 4.2
we present an important result of this theory which is the possibility of using the proof cal-
culus associated to an institution by another one through the definition of formal translations
between them.

4.1 Institutions

An institution consists of vocabularies (called signatures) for constructing sentences in a log-
ical system. A model (or interpretation) provides semantics by assigning interpretations to
the elements in the signature. We can allow a change of interpretation defining the notion of
homomorphism, which consists of a mapping of elements between two models. Institutions
also define formal translations (called signature morphisms) between signatures, allowing
many different vocabularies at once. Since signatures can change through signature mor-

33

34 Chapter 4. An Introduction to Institutions

phisms, we need to translate sentences and models accordingly. Sentences are translated
along signature morphisms since symbols must be replaced in each sentence conforming to
the signature morphism. In the case of models, they are translated in the opposite direction of
signature morphisms. In particular, models are reduced since they provide an interpretation
of elements in the signature and the signature morphism can translate elements to a bigger
signature. Finally, there is a satisfaction relation of sentences by models, such that when a
signature is changed (by a signature morphism), satisfaction of sentences by models changes
consistently.

The formal definition of an institution relies on Category Theory [Lan98] in order to “cap-
ture structure arising from signature morphisms, as well as forcing an appropriate level of
generality and abstraction” [ST12]. A category has objects and arrows, which associate two
objects. Arrows can be composed, composition is associative, and there exist identity arrows
for every object. For example, signatures and signature morphisms define a category SignI

such that signatures are the objects and the signature morphisms are the arrows. Moreover,
a functor relates two categories, mapping objects to objects and arrows to arrows such that
domain and codomain of the image of an arrow are the images of domain and codomain,
respectively, of the arrow, and composition and identities are preserved. For example, there
is a functor SenI in which each signature is mapped to a set of sentences (the set of possi-
ble sentences defined by the signature) and signature morphisms are mapped to morphisms
between sentences (what we call the extension of a signature morphism to sentences).

Definition 4.1.1 (Institution)

An institution I (as defined in [ST12]) consists of:

1. a category SignI
1 of signatures;

2. a functor SenI : SignI → Set, giving a set Sen(Σ) of Σ-sentences for each signature
Σ ∈ |SignI | 2 and a function SenI(σ):SenI(Σ1)→ SenI(Σ2) translating Σ1-sentences
to Σ2-sentences for each signature morphism σ : Σ1 → Σ2;

3. a functor ModI : Sign
op
I → Cat 3 , giving a category Mod(Σ) of Σ-models for each

signature Σ ∈ |SignI | and a functor ModI(σ):ModI(Σ2)→ ModI(Σ1) translating
Σ2-models to Σ1-models (and Σ2-morphisms to Σ1-morphisms) for each signature
morphism σ : Σ1 → Σ2;

4. for each signature Σ ∈ |SignI |, a satisfaction relation |=I,Σ ⊆ |ModI(Σ)|×SenI(Σ);

such that for any signature morphism σ : Σ1 → Σ2 the translation ModI(σ) of models and
SenI(σ) of sentences preserve the satisfaction relation, that is, for any ϕ ∈ SenI(Σ) and
M2 ∈ |ModI(Σ2)|:

M2 |=I,Σ2
SenI(σ)(ϕ) iff ModI(σ)(M2) |=I,Σ1

ϕ

1We often omit the subscript I
2|C| is the collection of objects of a category C
3Signop is the opposite category of the category Sign

4.1. Institutions 35

Example 4.1.2

An institution for first-order logic (FOL, [ST12]) is defined as follows. A FOL signature con-
tains function symbols and predicates, and sentences are first-order formulas built out from
atomic formulas (with variables and the logical constants true and false) using the standard
propositional connectives (∧,∨,⇒,⇔,¬) and quantifiers (∀, ∃). FOL models are structures
giving an interpretation for variables, functions and predicates. Signature morphisms allow
functions and predicates to change their names, and the extension of a signature morphism
to sentences is the replacement of every function and predicate according to the signature
morphism. In the case of models, the morphism induces a mapping called the reduct, defined
as the interpretation of variables, functions and predicates in the target signature restricted to
those reached from the source signature according to the signature morphism. Finally, the
satisfaction relation is the usual satisfaction of a first-order sentence.

In Figure 4.1 there is a graphical representation of the elements of an institution and its rela-
tions. On the left side there is a representation of the categories defined for signatures (Sign),
formulas (Set) and models (Catop) and the functors relating them, as well as the satisfac-
tion relation (|=) which relates formulas and models. On the right side there is a signature
morphism σ allowing a change of notation between signatures Σ and Σ′. Sentences trans-
late in the same direction as the change of notation, whereas models translate in the opposite
direction. Because reversing the direction of morphisms gives a contravariant functor, the
definition below uses Catop, the opposite of the category of categories. The satisfaction con-
dition states that truth is invariant under change of notation [GB92].

Set

Sign

Sen

66

Mod ((

|=

Catop

(a) Categories and functors

Σ

σ

��

Mod(Σ) |=Σ Sen(Σ)

Sen(σ)

��
Σ′ Mod(Σ′)

Mod(σ)

OO

|=Σ′ Sen(Σ′)

(b) The satisfaction condition

Figure 4.1: Graphical view of an institution

The definition of an institution can be extended to consider not only an individual signature,
but a theory, i.e. a pair T = 〈Σ, Ψ〉 consisting of a signature Σ and an arbitrary set of
axioms, which are Σ-sentences (we set Sig(T) = Σ and Ax(T) = Ψ). Moreover, it is
possible to define a theory morphism σ : 〈Σ, Ψ〉 → 〈Σ2, Ψ2〉 as the signature morphisms
σ : Σ1 → Σ2 for which Ψ2 |=Σ2 σ(Ψ), i.e. those signature morphisms that map axioms
to logical consequences. It is possible to extend Sen and Mod to start from the category

36 Chapter 4. An Introduction to Institutions

Th of theories by putting Sen(〈Σ, Ψ〉) = Sen(Σ) and letting ModTh(〈Σ, Ψ〉) be the full
subcategory of Mod(Σ) induced by the class of those models satisfying Ψ. In this way, we
get the institution of theories ITh = (Th, Sen, ModTh, |=) over I [GB83].

4.2 Institution Morphisms

From a model-theoretic point of view, it is possible to define the notion of logical conse-

quence or semantic entailment as follows.

Definition 4.2.1 (Semantic entailment)

Given a institution I = 〈Sign, Sen, Mod, |=Σ〉, a set of Σ-sentences Ψ and a Σ-sentence ϕ,
we say Ψ |=Σ ϕ iff for all Σ-models M , we have

M |=Σ Ψ implies M |=Σ ϕ

Here, M |=Σ Ψ means that M |=Σ ψ for each ψ ∈ Ψ. Moreover, it is possible to extend an
institution from a proof-theoretic point of view by defining a logic in some way compatible
with semantic entailment.

Definition 4.2.2 (Logic)

A logic LOG = 〈Sign, Sen, Mod, |=, ⊢〉 is an institution 〈Sign, Sen, Mod, |=Σ〉 equipped
with an entailment system ⊢ that is, a relation between sentences ⊢Σ⊆ P (Sen(Σ)) × Sen(Σ)
for each Σ ∈ |Sign|, such that the following properties are satisfied.

• reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} ⊢Σ ϕ

• monotonicity: if Ψ ⊢Σ ϕ and Ψ′ ⊇ Ψ then Ψ′ ⊢Σ ϕ

• transitivity: if Ψ ⊢Σ ϕi for i ∈ I and Ψ ∪ {ϕi| i ∈ I} ⊢Σ ψ, then Ψ ⊢Σ ψ

• ⊢-translation: if Ψ ⊢Σ ϕ, then for any σ : Σ → Σ′ in Sign, σ(Ψ) ⊢Σ′ σ(ϕ)

• soundness: Ψ ⊢Σ ϕ implies Ψ |=Σ ϕ, i.e. all provable statements are true

In some cases the entailment system can be complete: Ψ |=Σ ϕ implies Ψ ⊢Σ ϕ, i.e. all true
statements are provable. Entailment is typically defined via a system of finitary derivation
rules, giving the notion of proof that is absent when the institution is considered on its own,
even if ⊢ coincides with semantic entailment.

In order to use an institution for verification purposes, there are two alternatives: the defini-
tion of a logic, or the translation of the institution into another logic. Two institutions may
be related through institution morphisms [GR02] which come in several flavors. In partic-
ular, there are so-called institution comorphisms which capture how a weaker and poorer

institution can be represented in a stronger and richer one.

4.2. Institution Morphisms 37

Definition 4.2.3 (Institution comorphism)

Given arbitrary institutions I = 〈SignI , SenI , ModI , |=I
Σ〉 and

J = 〈SignJ , SenJ , ModJ , |=J
Σ 〉, an institution comorphism ρ : I → J consists of:

• a functor ρSign : SignI → SignJ

• a natural transformation ρSen : SenI → ρSign; SenJ

• a natural transformation ρMod : (ρSign)op; ModJ → ModI

such that for any signature Σ ∈ |SignI | the translations ρSen
Σ of sentences, and ρMod

Σ of
I-models, preserve the satisfaction relation, that is, for any ϕ ∈ SenI(Σ) and
M ∈ ModJ (ρSign(Σ)):

M |=J
ρSign(Σ)

ρSen
Σ (ϕ) ⇐⇒ ρMod

Σ (M) |=I
Σ ϕ

The functor ρSign translates signatures and morphisms from one institution into the other.
The natural transformation ρSen translates sentences from one signature to the other in the
same direction as the translation of signatures (as happens with signature morphisms). More-
over, the natural transformation ρMod translates models from one institution into the other in
the opposite direction (as happens with models of an institution). The satisfaction condition
of a comorphism states that a translated model satisfies a sentence in the source institution
only if the original model satisfies the translated sentence into the other institution.

Definition 4.2.4 (Natural transformation)

A natural transformation τ : F ⇒ G between two functors F, G : C → D is a family of
arrows τA : FA ⇒ GA, one for each object A of C, such that, for every f : A → B it holds:
Gf ◦ τA = τB ◦ Ff .

The naturality requirement amount to the facts that ρSen and ρMod are families of functions
ρSen

Σ : SenI(Σ) → SenJ (ρSign(Σ)) and ρMod
Σ : ModJ (ρSign(Σ)) → ModI(Σ), respec-

tively, such that for σ : Σ1 → Σ2 the diagrams in Figure 4.2 commute.

The first diagram states that applying the extension of a signature morphism to a sentence in
the institution I and then translating it to the institution J is the same as first translating the
sentence from I and the applying the translated morphism in J . The second diagram states
that translating a model (or homomorphism) from the institution J and then applying the
reduct in the institution I is the same as first applying the reduct in the institution J and then
translating the resulting model (or homomorphism) to the institution I.

38 Chapter 4. An Introduction to Institutions

SenI(Σ2)
ρSen

Σ2 // SenJ (ρSign(Σ2))

SenI(Σ1)

SenI(σ)

OO

ρSen
Σ1

// SenJ (ρSign(Σ1))

SenJ (ρSign(σ))

OO

ModI(Σ2)

ModI(σ)

��

ModJ (ρSign(Σ2))
ρMod

Σ2oo

ModJ (ρSign(σ))

��
ModI(Σ1) ModJ (ρSign(Σ1))

ρMod
Σ1

oo

Figure 4.2: Naturality diagrams for an institution comorphism

The importance of comorphisms is such that it is possible (in some cases) to re-use the en-
tailment systems of an institution in another one via a comorphism. This is possible thanks
to the borrowing technique which can be stated as follows.

Definition 4.2.5 (Borrowing of entailment)

Let I and J be two institutions, ρ = (ρSign, ρSen, ρMod) : I → J an institution comor-
phism, and T a class of I-theories. We say that µ admits borrowing of entailment for T , if
for any theory T = 〈Σ, Ψ〉 ∈ T and any Σ-sentence ϕ ∈ I, we have

Ψ ⊢I
Σ ϕ iff ρSen(Ψ) ⊢J

Sig(ρSign(Σ)) ρSen(ϕ).

In conclusion, as pointed out in [Mos05], “if we have a sound proof calculus for entailment in
J , and if we have an institution comorphism ρ : I → J admitting borrowing of entailment
for T , we can use the proof calculus also for proving entailment concerning I-specifications
in T : we just have to translate our proof goals using ρSign and ρSen. If, moreover, the proof
calculus is complete for proving entailment in J , then also its re-use for proving entailment
in I is complete.”

There is a final result which states that if there is an institution comorphism ρ : I → J ad-
mitting model expansion, then it admits borrowing of entailment and refinement for theories.
The comorphism admits model expansion if ρMod is point-wise surjective on objects (i.e.,
each ρMod

Σ is surjective on objects). This means that each model of the source institution has
a model representing it in the target institution. If the comorphism does not admit model ex-
pansion, then the proof calculus of the target institution can be borrowed only for disproving
entailment (not for proving it).

4.2. Institution Morphisms 39

These last results also hold for other variants of comorphisms. In particular there is a vari-
ant that maps signatures to theories (known as simple theoroidal comorphisms [GR02]), i.e.
an institution comorphism (ρSign, ρSen, ρMod) from I to J th, where J th is the institution
of theories over J . Simple theoroidal institution comorphisms capture the encoding of a
“richer” institution into a “poorer” one.

However, there are cases when logic translations cannot be formalized as (theoroidal) co-
morphisms, e.g. when the target signature depends on the translation of sentences, thus the
notion of generalized theoroidal comorphisms [Cod08] is defined, which is basically a theo-
roidal comorphism with no isolated sentence translation component. The following definition
is a condensed version of the original one in [Cod08].

Definition 4.2.6 (Generalized theoroidal institution comorphism)

Given arbitrary institutions I = 〈SignI , SenI , ModI , |=I
Σ〉 and

J = 〈SignJ , SenJ , ModJ , |=J
Σ 〉, a generalized theoroidal institution comorphism µ : I →

J consists of:

• a functor Φ : ThI → ThJ , with Th the category of theories and theory morphisms

• a natural transformation β : (Φ)op; ModJ → ModI , with Mod : Th → Cat the
functor giving the category of models of a theory.

5 An Environment for Verification

The myriad of alternatives summarized in Chapter 3 motivates a heterogeneous approach for
the formal verification of model transformations as well as for their corresponding models
and metamodels. With this motivation, we define an environment theoretically based on
the Theory of Institutions, introduced in Chapter 4, and supported in practice within the
Heterogeneous Tool Set ([MML07, Mos05]), as it is described in Chapter 10.

In this chapter we present an overview of the environment following the ideas presented in
[CS13a]. In Section 5.1 we present our heterogeneous environment without giving formal
details about the definition of its main components. Those details will be the subject of the
following chapters. Then, in Section 5.2 we define how models, metamodels and the con-
formance relation between them can be described by an institution, and in Section 5.3 we do
the same for model transformations. In Section 5.4 we define extensions of these institutions
to be used for the definition of formal translations into other logics for verification purposes.
Finally, in Section 5.5 we summarize the benefits of the environment and in Section 5.6 we
close this chapter with a discussion of related work.

5.1 Defining the Environment

In Chapter 1 we explained how a separation of duties in different technological spaces is car-
ried out for dealing with the specification and formal verification of model transformations,
as is graphically depicted in Figure 5.1. On the one side there are those experts in the MDE
domain specifying models and transformations, and on the other, those in formal methods
(FM) conducting the verification process. Our proposal is to exploit the Theory of Institu-
tions as a sound basis for constructing a FM technological space in which several logics can
be used for verification.

41

42 Chapter 5. An Environment for Verification

Figure 5.1: An overview of the environment

The idea is to represent models (from now on SW-models), metamodels, the conformance
relation, transformations and verification properties in some consistent and interdependent
way, following the heterogeneous specification approach [CKTW08, Mos05]. This approach
is based on providing institutions for the languages which are part of the environment. Al-
though this idea can be potentially formalized for any transformation approach and language,
our proposal is aligned with the OMG standards, in particular: the MetaObject Facility (MOF,
[OMG03b]), and the Query/View/Transformation Relations (QVT-Relations, [OMG09]) lan-
guage.

In particular, we provide an institution for QVT-Relations, for expressing check-only unidi-
rectional transformations (which we called QVTR), which will be introduced in Section 5.3.
This kind of transformations verifies whether a target SW-model is the result of transform-
ing the source SW-model, according to the transformation rules. To define this institution
we need a representation of SW-models and metamodels. Therefore we first define an insti-
tution expressing the structural conformance relation between metamodels and SW-models
(as presented in Section 2.1.1) specified with a simplified version of MOF (which we called
CSMOF), that will be introduced in Section 5.2. These two institutions (represented in the
leftmost box of the FM technological space in Figure 5.1) will provide a generic representa-
tion of the MDE elements with formal semantics in both cases.

5.1. Defining the Environment 43

As mentioned in Chapter 4, in order to use an institution for verification purposes, there are
two alternatives: either the definition of a logic (defining a proof calculus for the institution),
or the translation of the institution into another logic through an institution comorphism (bor-
rowing an existent proof calculus). We take the second alternative and define comorphisms
from an extended version of our institutions, as discussed in Section 5.4, to a host logic.

The definition of a comorphism not only gives us the chance of using some proof calculus, but
also of supplementing the former specification of MDE elements with additional properties
using the host logic. To the extent that there are many logics connected through comorphisms,
the capabilities of the environment increase. As a very simple example, consider that we have
a specification of the UML class diagrams metamodel in Figure 2.6 which is expressed with
the institution CSMOF. It can be noticed that this specification does not have non-structural
constraints. However, we can translate this specification into another logic and supplement
it with a property stating that there cannot be two Classifiers with the same name in
the UMLMetamodel specification. This constraint cannot be structurally stated using MOF.
Thus using this translation we can perform a non-structural conformance checking.

In particular, we define comorphisms (generalized theoroidal comorphisms indeed) from our
extended institutions to the Common Algebraic Specification Language (CASL, [MHST03]),
a general-purpose specification language (in the center box of the FM technological space
in Figure 5.1). The institution underlying CASL is the sub-sorted partial first-order logic
with equality and constraints on sets SubPCFOL=, a combination of first-order logic and
induction with subsorts and partial functions.

The importance of CASL relies in that it is the main language within the Heterogeneous Tool
Set (HETS, [MML07, Mos05]), which is a tool that supports heterogeneous multi-logic spec-
ifications (represented in the rightmost box of the FM technological space in Figure 5.1).
HETS allows defining institutions and comorphisms, and also provides proof management
capabilities for monitoring the overall correctness of a heterogeneous specification, while
different parts of it are verified using (possibly different) proof systems. HETS already sup-
ports several interconnected logics as shown in Figure 5.2.

We provided HETS with specific institutions for the specification of MDE elements. These
institutions are included as logics in such a way that it is possible to transform any speci-
fication into CASL or another logic reachable from it. A developer can import any MDE
element, use the logics within HETS to specify additional verification properties which must
be addressed, and perform the verification assisted by the tool.

With this approach we have only one generic representation of the MDE elements which is
formally (and automatically) translated into other logics when needed, and those logics can
also be used to specify additional verification properties. In some way, this is related with
the slogan created by Sun Microsystems to illustrate the cross-platform benefits of the Java
language: “write once, run anywhere”. In our case, we are trying to “specify once, prove
anywhere”.

44 Chapter 5. An Environment for Verification

Figure 5.2: Logic graph of HETS

5.2 Representing SW-Models and Metamodels

Since we need to consider SW-models and metamodels for the definition of a model transfor-
mation, we define, in Chapter 6, an institution IM for a MOF-based structural conformance
relation between these elements. We base our proposal on the institution defined for UML
class diagrams in [CK08, JKMR12], but adapting the definitions with the purpose of repre-
senting metamodels.

For the definition of the institution we follow the schema in Figure 5.3, and we consider
the simplified version of EMOF in Figure 2.3 for the representation of metamodels. From
any metamodel we can derive a signature with a representation of types and properties (at-
tributes and associations). Formulas represent multiplicity constraints determining whether
the number of elements in a property end is bounded (upper and/or lower). A model contains
a semantic representation of a SW-model. Given a model representing a SW-model, the satis-
faction relation applied to set of multiplicity constraints derived from the metamodel answers
the following question: does the SW-model structurally conforms to the metamodel?

5.3. Representing QVT Transformations 45

Figure 5.3: The conformance relation as an institution

It can be noticed that SW-models are always well-typed with respect to the metamodel, since
any model is, by construction, well-typed with respect to the signature. The satisfaction
relation only checks the multiplicity requirements of the structural conformance relation, as
defined in Section 2.1.1. In this sense, type-checking is addressed in the construction of mod-
els, i.e. if the SW-model is not well-typed, then it is impossible to define the corresponding
model. In order to fully understand the conformance requirements, we discuss in Chapter 6
how to address type-checking from an institutional perspective.

Moreover, non-structural conformance is not addressed by this institution, since no other
supplementary language is considered, as discussed in Section 11.2.2. However, it is possible
to consider other kind of constraints by translating (through comorphisms) this institution
into a more expressive logic, as done in Chapter 9 and put in practice in Chapter 10.

5.3 Representing QVT Transformations

In Chapter 7 we define an institution IQ for QVT-Relations. For the definition of this in-
stitution we follow the schema shown in Figure 5.4. The institution is an extension of the
CSMOF institution. The source and target metamodels that are involved in a specific model
transformation are represented within the signature, and the source and target SW-models are
represented in the model. Formulas represent the two basic conditions which must hold in a
model transformation: keys defined on source and target metamodel elements, and transfor-
mation rules stating relations between source and target elements. The satisfaction relation
checks if the keys hold in the corresponding SW-models, and it answers the following ques-
tion: is the target SW-model the result of transforming the source SW-model according to the
transformation rules?

46 Chapter 5. An Environment for Verification

Figure 5.4: A model transformation as an institution

5.4 A Proof-Theoretic View

From a proof-theoretic point of view, we need to use (or define) an entailment system, as
defined in Section 4.2, such that it is possible to prove that multiplicity constraints (or any
other constraint) hold in a SW-model, which is the context in which the verification must
be done. For this we extend the definition of CSMOF formulas to represent SW-models, as
shown in Figure 5.5 and defined in Chapter 8.

Formulas representing SW-models are a syntactic representation of CSMOF models, and thus
well-typed with respect to the signature (every object has a corresponding type in the sig-
nature and links are constrained by properties). The satisfaction relation needs to change in
order to state whether a SW-model formula is satisfied by a model (if there is an isomor-
phism between them). By extending the CSMOF institution in this way, we can prove that
for any model satisfying a SW-model formula, the same model also satisfies the multiplicity
constraints.

5.5. Benefits of the Environment 47

Figure 5.5: An extended CSMOF institution

In the case of QVTR the extension is similar. We extend QVTR formulas, as shown in Fig-
ure 5.6, and defined in Chapter 8.

Formulas include extended CSMOF formulas, i.e. now there is a representation of multiplicity
constraints and SW-models, indexed by the institutions in which they are defined. The satis-
faction relation is thus extended to consider these cases. The extension allows proving that for
any pair of models satisfying the source and target SW-models and multiplicity constraints,
such pair also satisfies the top transformation rule and key formulas.

These extended institutions are the ones used for the definition of the comorphisms to CASL

and borrowing of its entailment system.

5.5 Benefits of the Environment

In general terms, our proposal has many benefits from a software engineering perspective.
The first quality attribute we can remark is usability. The MDE expert specifies a model
transformation and such specification is taken by the formal verification expert who defines
the formal properties to be verified. HETS provides a graphical user interface that can be used
for visualizing the whole proof and selecting a prover for the corresponding logic. If the proof
is truly heterogeneous (i.e. there is more than one logic involved in the specification) the tool
performs automatic translations of proof obligations into other logics and allows selecting the
corresponding prover to be used. In order to do this there must be a comorphism linking the
current logic with the others involved. The verification process is thus performed hiding the
theoretical details of the environment from the developer. Moreover, since there is no need
of rewriting the MDE building blocks in each logic involved, the environment is scalable in
terms of the transformation specification.

48 Chapter 5. An Environment for Verification

Figure 5.6: An extended QVTR institution

Another benefit is that the environment supports a separation of duties between software
developers such that a formal perspective is available whenever it is required. This is a flexible
approach which is enhanced by the explicit representation of every element involved in the
verification of a transformation, which allows reasoning at different levels of abstraction.
When the representation of MDE elements is translated into a specific domain, it conforms a
transformation model [BBG+06b], based on the semantics of QVT-relations. This SW-model
states how elements are related, and these relations allow answering different syntactic and
semantic questions as defined in Chapter 3.

The environment is also extensible since it potentially supports any kind of logic and allows
the inclusion of new logics. This allows a wide variety of verification approaches so that
developers can work in the domain in which they feel more confident, or choose the tool they
prefer, if they work in only one domain. The use of several domains is useful not only for
verification but also for specification purposes, e.g. for the connection of MDE elements with
more traditional software artifacts in a non-full MDE development.

Moreover, although our proposal is aligned with OMG standards, this idea can be poten-
tially formalized for any transformation approach and language, which allows extending the
approach as far as necessary.

5.6. Related Work 49

Finally, the environment is reliable since it is supported by a well-founded theory and by a
mature tool in which there are several logics already defined.

5.6 Related Work

There are some works that define environments for the comprehensive verification of MDE
elements based on a unified mathematical formalism. In [RDV09, BHM09] rewriting logic is
used to analyze MOF-like and QVT-like elements. Since rewriting logic was integrated into
HETS [CMRM10], we can use these representations instead of using our comorphism into
CASL. Nevertheless, since our institution is logic-independent it provides more flexibility for
the definition of further specific comorphisms into other logics and languages (e.g. UML).

First-order logic [BEC12] and constructive type theory [CLST10b] have been used for the
verification of ATL transformations. In [Sch10] the authors present how SW-models, meta-
models and declarative transformation rules can be directly represented into Isabelle/HOL.
Although these works do not refer to QVT-Relations, they are based on relational transfor-
mation languages with some similarities.

A different approach is in [Poe08, PT10] in which the authors outline how constructive type
theory can be used to provide a uniform formal foundation for representing MDE elements
(relational model transformations, but using any specific language). What is interesting about
this proposal is that, given a proof, the proof-as-programs approach can be applied to extract
a correct model transformation. The second paper presents how this approach could be im-
plemented by using the Coq proof assistant. This is also achieved, but in the concrete case of
ATL in [CLST10b, For13].

In [LR12] the authors define a language-independent representation of metamodels and model
transformations supporting many transformation languages. They also define mappings to the
B and Z3 formalisms. Since they use only one generic language, only one semantic mapping
needs to be defined for each target formalism. However, the semantic mapping should be
semantics-preserving, and this aspect is not formally addressed in such work. In our case,
comorphisms already preserve the semantics with respect to the satisfaction relation. More-
over, our comorphism into CASL and the corresponding implementation in HETS, provides
the possibility of connecting our institutions to several logics and tools.

50 Chapter 5. An Environment for Verification

Other works are based on the construction of a transformation model [BBG+06b] which is
a unified representation of the MDE elements using OCL contracts. In [BCG11, CBBD09,
CCGdL10] the authors present how to extract OCL contracts from several model transforma-
tion languages to conform a transformation model. These SW-models can be easily checked
and analyzed using readily available OCL model finders. In [ALL10] the authors propose a
similar technique but create a new language called the assertion description language (ADL)
to specify the transformation model.

As far as we know, there is no other comprehensive institutional approach, apart from our
work. However, there are some works in which algebraic specifications and institutions are
involved. In [BKMW08] the authors propose to represent metamodels as institutions, and the
correctness of a transformation is stated in terms of the existence of an intermediate institution
that relates the source and target institutions through some institution morphism (which is
restrictive). In [OW09] the authors provide an algebraic representation of MDE elements in
which metamodels are represented as algebras and transformations as triple patterns. They
devise two options for the implementation of this approach: either using a tool like Maude
that would allow them to directly work on algebras, or specializing the approach to the case
of graphs and using some graph transformation tool. In [CKTW08] the authors define a
heterogeneous approach to the semantics of UML. In this work the institution of UML class
diagrams was defined, on which our CSMOF institution is based.

Although several approaches to heterogeneous specification have been developed for tradi-
tional software development, there is little tool support. CafeOBJ [DF98] is a prominent
approach based on the theory of institutions. However it provides a fixed cube of eight logics
and twelve projections (formalized as institution morphisms), not allowing logic encodings
(formalized as so called comorphisms). Thus, it is not an option for the definition of our
environment. Moreover, HeteroGenius [GMLF14] is a framework, based on institutions,
allowing the interaction between different external tools giving the user the possibility of per-
forming hybrid analysis of a specification. However, the framework is not formally defined
or available to be used as a basis for our environment.

6 An Institution for CSMOF

In this chapter we present the formal definition of an institution IM for the structural con-
formance relation between SW-models and metamodels specified with a simplified version
of MOF (which we call CSMOF). This definition is based on the institutions for UML class
diagrams presented in [CK08, JKMR12], but adapted for representing metamodels within the
scope of model transformations. The institution is an updated version of the one presented in
[CS13b, CS13c].

In Section 6.1 we present some preliminary considerations with respect to the MOF standard
and the previous works. Then, in Section 6.2 we define the syntactic aspects of the institution
(signatures and formulas). In Section 6.3 we define the notion of institution model, which
allows us to state, in Section 6.4, the satisfaction relation and the corresponding satisfaction
condition of the institution. Finally, in Section 6.5 we present some related work, and in Sec-
tion 6.6 we close this chapter discussing how to address typing requirements of the structural
conformance relation. Along the definition we illustrate the main concepts with the example
introduced in Chapter 2. For the sake of readability we do not include complete proofs of
institution properties, which are given in Appendix B.

6.1 Preliminaries

As mentioned in Chapter 5, this institution is based on the institutions for UML class dia-
grams presented in [CK08, JKMR12]. Unlike [CK08], in our definition there are no derived
relations, the signature has an explicit representation of abstract classes, and there are only
binary properties. Derived relations and n-ary properties are not used within transformations,
and abstract classes where not considered in the former works.

51

52 Chapter 6. An Institution for CSMOF

Moreover, unlike MOF, we do not consider aggregation, uniqueness and ordering properties
within a property end, operations on classes, or packages. Aggregation and operations are
not used within transformations, whilst packages are just used for organizing metamodel
elements (since they can be considered syntactic sugar). Although uniqueness and ordering
properties are neither commonly used, their future inclusion will improve the institution.

Finally, as explained in Section 5.2, this institution only considers the multiplicity require-
ments of the structural conformance relation. Neither typing requirements (discussed in Sec-
tion 6.6) nor non-structural conformance (addressed by means of a comorphism into a more
expressive logic, as done in Chapter 9) are addressed by the satisfaction relation.

6.2 Signatures and Formulas

A signature represents a metamodel, i.e. it defines hierarchical related classes, primitive types
and type constructors. For such reason we first introduce class hierarchies.

Definition 6.2.1 (Class hierarchy and type extension)

A class hierarchy is represented as a partial order C = (C, ≤C) where C is a set of class names,
and ≤C ⊆ C ×C is the subclass (inheritance) relation. By T(C) we denote the type extension

of C by primitive types (e.g. Boolean and String) and type constructors (e.g. List and Set).
T(C) is likewise a class hierarchy (T (C), ≤T (C)) with C ⊆ T (C) and ≤C ⊆ ≤T (C), which
is closed with respect to types, and “downwards” closed with respect to type constructors.

We can consider a fixed set of primitive types and type constructors similar to those defined
for the OCL [OMG10]. As in [JKMR12], in order to provide generic access to primitive types
and type constructors, we treat these as built-in with a standard meaning. All other classes
are assumed to be inhabited, i.e., to contain at least one object. However, unlike [JKMR12]
in which the existence of an object null is assumed, we impose that if c is abstract then there
exists another c′ in the hierarchy such that c′ ≤T (C) ... ≤T (C) c and c′ has at least one object.

Definition 6.2.2 (CSMOF signature)

A CSMOF signature Σ = (C, α, P) declares:

• a finite class hierarchy C = (C, ≤C) extended with a subset α ⊆ C denoting abstract
classes

• a properties declaration (attributes and associations) P = (R, P) where R is a finite set
of role names with a default role name “_”, and P is a finite set of properties of the
form 〈r1 : c1, r2 : c2〉 with r1, r2 ∈ R, c1, c2 ∈ T (C), such that for any class or type
name c ∈ T (C), the role names of the properties in which any c′ ≤T (C) c is involved
are all different, i.e. if 〈r1 : c1, r2 : c2〉 and 〈s1 : d1, s2 : d2〉 are properties in P and
ck = dl ∈ T (C), then ri Ó= sj for any i Ó= k and for any j Ó= l (1 ≤ i ≤ 2, 1 ≤ j ≤ 2)

6.2. Signatures and Formulas 53

Any property declaration 〈r1 : c1, r2 : c2〉 ∈ P represents a MOF property and its opposite
(if any, as explained in Section 2.1.1), such that the type ci attached to the role ri represents
the type of the property, as well the type in the opposite side represents its owned class. The
default role name “_” is used if a property has no opposite. For example, in the case of an
attribute r of type d in the type c, the property declaration will be 〈_ : c, r : d〉, and in the
case of an unidirectional association, the role in the opposite side of the arrow must also be
the default role name “_”.

Example 6.2.3

From the class metamodel in Figure 2.6 we derive the signature Σ = (C, α, P) with
C = (C, ≤C) and P = (R, P), such that:

C = {UMLModelElement, Package, Classifier, PrimitiveDataType,
Attribute, Class} and T (C) also contains type String

≤C = {Package ≤C UMLModelElement,
Attribute ≤C UMLModelElement,
Classifier ≤C UMLModelElement,
Class ≤C Classifier, PrimitiveDataType ≤C Classifier}

α = {UMLModelElement}
R = {namespace, elements, type, owner, attribute, name, kind}
P = { 〈namespace : Package, elements : Classifier〉,

〈_ : UMLModelElement, name : String〉,
〈_ : UMLModelElement, kind : String〉,
〈attribute : Attribute, owner : Class〉,
〈_ : Attribute, type : PrimitiveDataType〉}

Formulas represent multiplicity constraints, i.e. determining whereas the number of elements
in a property end is bounded (upper and/or lower).

Definition 6.2.4 (CSMOF formula)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), a Σ-formula representing
a multiplicity constraint is defined by the following grammar:

Φ ::= #Π = N | N ≤ #Π | #Π ≤ N

Π ::= C • R

The #-expressions return the number of links in a property when some role is fixed. We use
• as an operator representing the selection of the elements linked with an element of class
c ∈ C through role r ∈ R; there must exist a property 〈r′ : c, r : d〉 or 〈r : d, r′ : c〉 in P .

54 Chapter 6. An Institution for CSMOF

Example 6.2.5

The set of formulas ϕ corresponding to the metamodel in Figure 2.6 is defined by:

ϕ = { #(UMLModelElement • name) = 1, #(UMLModelElement • kind) = 1,
1 ≤ #(Class • attribute), #(Class • attribute) ≤ 2,

#(Attribute • type) = 1, #(Attribute • owner) = 1,
#(Classifier • namespace) = 1}

The formulas allow representing any kind of multiplicity, e.g. that the number of attributes of
a class has a lower bound of one element, and also and upper bound of two. In the other cases
there are only lower bounds defined. If a property end has no associated formula, it means
that there is no bound defined for it.

Definition 6.2.6 (CSMOF signature morphism)

Given signatures Σi = (Ci, αi, Pi) (i = 1, 2) with Ci = (Ci, ≤Ci
) and Pi = (Ri, Pi), a

signature morphism σ : Σ1 → Σ2 is a tuple of maps 〈σT , σR〉 between class and role names,
such that hierarchical relations and properties change consistently, i.e.

• a ∈ C1 implies σT (a) ∈ C2 (the extension of σT to T (C) leaves built-in types un-
changed),

• a, b ∈ C1 with a≤C1
b implies σT (a)≤C2

σT (b),

• a ∈ α1 implies σT (a) ∈ α2,

• 〈r1 : c1, r2 : c2〉 ∈ P1 implies 〈σR(r1) : σT (c1), σR(r2) : σT (c2)〉 ∈ P2

Signature morphisms extend to formulas over Σ1 as follows. Given a Σ1-formula ϕ, σ(ϕ) is
the canonical application of the signature morphism to the type and role in the formula such
that σ(c • r) = σT (c) • σR(r).

The following lemmas state basic properties of the institution: that signatures and signature
morphisms define a category Sign, and also that there is a functor Sen from this category to
the category of sets of formulas and their translations. For the sake of readability we only
show a proof sketch. The complete proofs are given in Appendix B.

Lemma 6.2.7. Signatures and signature morphisms define a category Sign. The points of the

category are the signatures and the arrows are the signature morphisms.

Proof sketch. Given signatures Σi = (Ci, αi, Pi) (i = 1..3) with Ci = (Ci, ≤Ci
), and Pi =

(Ri, Pi), and signature morphisms σi : Σi → Σi+1 (i=1..2), we can define the composition
of signature morphisms as the tuple 〈σT , σR〉 such that σT (c) = σT2

(σT1
(c)) for any c ∈ C1,

and σR(r) = σR2
(σR1

(r)) for any r ∈ R1. This composition defines a signature morphism
which is also associative. Moreover, we can define the identity signature morphism as a tuple
〈idT , idR〉 such that idT (c) = c, and idR(c) = c. This morphism also satisfies the signature
morphism conditions. Finally, with these elements the category Sign can be defined.

6.3. Models 55

Lemma 6.2.8. There is a functor Sen giving a set of formulas ψ (object in the category Set)

for each signature Σ (object in the category Sign), and a function σ : Sen(Σ1) → Sen(Σ2)
(arrow in the category Set) translating formulas for each signature morphism σ : Σ1 → Σ2

(arrow in the category Sign).

Proof sketch. The signature morphism in Definition 6.2.6 changes types and roles consis-
tently. In this sense, its application to any formula in Sen(Σ1) gives a formula in Sen(Σ2)
with the types and roles translated with respect to the signature morphism σ : Σ1 → Σ2.
In this sense, the domain and codomain of the image of an arrow in Set are the images of
domain and codomain, respectively, of the arrow in Sign. Moreover, since types and roles
are translated consistently with respect to a signature morphism, and signature morphism can
be composed (as defined in Lemma 6.2.7), the composition with respect to formulas is also
preserved. For the same reason, identities are preserved. Finally, the functor Sen is defined.

6.3 Models

An interpretation (or model) contains a semantic representation for a SW-model, i.e. objects
and links. For such reason we need to define the notion of object domain with respect to a
class hierarchy.

Definition 6.3.1 (Object domain and value extension)

Given a class hierarchy C = (C, ≤C), a C-object domain O is a family (Oc)c∈C of sets of
object identifiers verifying Oc1

⊆ Oc2
if c1 ≤C c2. Given a type extension T, the value

extension of a C-object domain O = (Oc)c∈C by primitive values and value constructions,
which is denoted by VT

C(O), is a T(C)-object domain (Vc)c∈T (C) such that Vc = Oc for all
c ∈ C. We consider disjoint sets of objects within the same hierarchical level, in particular,
if c1 ≤C c and c2 ≤C c, then Oc1 ∩ Oc2 = ∅.

Definition 6.3.2 (CSMOF interpretation)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), a Σ-interpretation I
consists of a tuple (VT

C(O), A) where

• VT
C(O) = (Vc)c∈T (C) is a T(C)-object domain

• A contains a relation 〈r1 : c1, r2 : c2〉I ⊆ Vc1 × Vc2 for each relation name
〈r1 : c1, r2 : c2〉 ∈ P with c1, c2 ∈ T (C)

• c2 ∈ α implies Oc2
=

⋃

c1≤Cc2
Oc1

56 Chapter 6. An Institution for CSMOF

Example 6.3.3

An interpretation I can have one element for each type in the signature as follows:

• A T(C)-object domain consisting of

VClass = {c1} VPrimitiveDataType = {pdt1}
VPackage = {p1} VClassifier = VClass ∪ VPrimitiveDataType

VAttribute = {a1} VUMLModelElement = VClassifier ∪ VPackage ∪ VAttribute

VString = {Pac,Str,Per,nul,ID,val}

• A set A consisting of relations:

〈_ : UMLModelElement, name : String〉I = {(p1,Pac), (c1,ID),
(c2,nul), (a1,val)}

〈_ : UMLModelElement, kind : String〉I = {(p1,nul), (c1,Per),
(a1,nul), (pdt1,nul)}

〈namespace : Package, elements : Classifier〉I = {(p1,c1), (p1,pdt1)}
〈attribute : Attribute, owner : Class〉I = {(a1,c1)}
〈_ : Attribute, type : PrimitiveDataType〉I = {(a1,pdt1)}

Given a Σ-interpretation, the evaluation of an expression ci • ri, associated to a property
〈r1 : c1, r2 : c2〉, with respect to the interpretation gives a set of sets of pairs of semantic
elements connected through property 〈r1 : c1, r2 : c2〉, grouped by the semantic elements
with type ci. Note that this set can be empty if the element with type ci is not connected with
any other. Formally:

Definition 6.3.4 (Evaluation of properties)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), a Σ-interpretation
I = (VT

C(O), A), and a property 〈r1 : c1, r2 : c2〉 ∈ P , we define the evaluation of ci • rj as
follows:

(ci • rj)I = {{t ∈ 〈r1 : c1, r2 : c2〉I | πi(t) = o} | o ∈ Vci
} (i = 1, 2).

Example 6.3.5

Consider the property 〈namespace : Package, elements : Classifier〉 representing that a pack-
age contains classifiers. This interpretation evaluates (Classifier • namespace)I as the set
{{(p1,c1)}, {(p1,pdt1)}} since there is only one object with role namespace which is
the package object p1, and there are two elements (c1 and pdt1) in the opposite side of the
property to group by.

6.4. Satisfaction Relation and Satisfaction Condition 57

Definition 6.3.6 (CSMOF homomorphism)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), Σ-interpretations
I = (VT

C(O), A) and I ′ = (VT
C(O)′, A′), a Σ-homomorphism h : I → I ′ is a family of maps

(hc)c∈T (C) with hc : Vc → V ′
c such that:

• hc(v) ∈ O′
c forall v ∈ Oc

• hc(v) ∈ V ′
c \O′

c forall v ∈ Vc\Oc

• (v1, v2) ∈ pI iff (hc1
(v1), hc2

(v2)) ∈ pI′

for any vi ∈ Vci
(i=1,2),

p = 〈r1 : c1, r2 : c2〉 ∈ P .

We can prove now that interpretations and homomorphisms define a category Mod(Σ). Again
here we just provide a sketch of the proof. The complete proof is given in Appendix B.

Lemma 6.3.7. For any signature Σ, the Σ-interpretations and Σ-homomorphisms define a

category Mod(Σ). The points of the category are the Σ-interpretations, and its arrows are

the Σ-homomorphisms.

Proof sketch. We need to show that homomorphisms can be composed, that the composition
of homomorphisms is associative, and that there exists identity homomorphisms. Let Σ =
(C, α, P) with C = (C, ≤C), and P = (R, P) be a signature, let Ii = (VT

C(Oi), Ai) (i=1..3)
be Σ-interpretations, and let hi : Ii → Ii+1 (i=1..2) be Σ-homomorphisms. It is possible to
define an associative composition h2◦h1 as a family of maps (hc)c∈T (C) with hc : Vc1

→ Vc3

such that hc(v) = hc2
(hc1

(v)) for all v ∈ Oc1
. The composition is a homomorphism.

Moreover, there exists an identity homomorphism idI : I → I consisting of a family of
maps (idc)c∈T (C) with idc : Vc → Vc such that: idc(v) = v, v ∈ Oc. Finally, interpretations
and homomorphisms define a category.

6.4 Satisfaction Relation and Satisfaction Condition

As explained in Section 5.2, we must express that a SW-model conforms to a metamodel if it
is well-typed and it also satisfies its multiplicity constraints. Well-typing holds by construc-
tion, since the interpretation representing a SW-model respects the signature which defines
types within the metamodel. The satisfaction of multiplicity constraints (formulas) by a SW-
model (interpretation) is thus the main concern of the satisfaction relation.

58 Chapter 6. An Institution for CSMOF

Definition 6.4.1 (CSMOF satisfaction relation)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), a Σ-formula ϕ represent-
ing a multiplicity constraint and a Σ-interpretation I, the interpretation satisfies ϕ, if one of
the following holds:

• ϕ is #(c • r) = n and |S| = n for all S ∈ (c • r)I

• ϕ is n ≤ #(c • r) and n ≤ |S| for all S ∈ (c • r)I

• ϕ is #(c • r) ≤ n and |S| ≤ n for all S ∈ (c • r)I

This means that for any object of class c, the number of elements within I related through
the role r (of a property of the class c) satisfies the multiplicity constraints.

This definition can be trivially extended for a set of formulas Φ, as follows: I |=Σ Φ iff
I |=Σ ϕ. ∀ϕ ∈ Φ.

Example 6.4.2

We can check that I |=Σ ϕ for every formula ϕ representing a multiplicity constraints defined
before.

• #(UMLModelElement • name) = 1 and |S| = 1
for all S ∈ (UMLModelElement • name)I =
{{(p1, Pac)}, {(c1, ID)}, {(a1, val)}, {(pdt1, Str)}}

• #(UMLModelElement • kind) = 1 and |S| = 1
for all S ∈ (UMLModelElement • kind)I =
{{(c1, P er)}, {(pdt1, nul)}, {(a, nul)}, {(p, nul)}}

• #(Classifier • namespace) = 1 and |S| = 1
for all S ∈ (Classifier • namespace)I = {{(p1, c1)}, {(p1, pdt1)}}

• #(Attribute • owner) = 1 and |S| = 1
for all S ∈ (Attribute • owner)I = {{(a1, c1)}}

• #(Attribute • type) = 1 and |S| = 1
for all S ∈ (Attribute • type)I = {{(a1, pdt1)}}

• 1 ≤ #(Class • attribute) and 1 ≤ |S|
for all S ∈ (Class • attribute)I = {{(a1, c1)}}

• #(Class • attribute) ≤ 2 and |S| ≤ 2
for all S ∈ (Class • attribute)I = {{(a1, c1)}}

6.4. Satisfaction Relation and Satisfaction Condition 59

Definition 6.4.3 (CSMOF reduct)

Given signatures Σi = (Ci, αi, Pi) with Ci = (Ci, ≤Ci
) and Pi = (Ri, Pi) (i = 1, 2), a

signature morphism σ : Σ1 → Σ2, and a Σ2-interpretation I = (VT
C(O), A), the reduct I|σ of

I along σ is the Σ1-interpretation I1 = (VT
C(O|σ), A|σ) with

• VT
C(O|σ) = (Vσ(c))c∈T (C1)

• A|σ = {〈σR(r1) : σT (c1), σR(r2) : σT (c2)〉I | 〈r1 : c1, r2 : c2〉 ∈ P1}

Moreover, given Σ2-interpretations I2 = (VT
C(O2), A2) and I ′

2 = (VT
C(O2)′, A′

2), I1 denoting
I2 |σ and I ′

1 denoting I ′
2 |σ , and a Σ2-homomorphism h2 : I2 → I ′

2, the reduct h2 |σ of
h2 along σ is the Σ1-homomorphism h1 : I1 → I ′

1 defined by h1c
(v) = h2σ(c)

(v) for any
c ∈ T (C1), for any v ∈ Vc. It is possible to check that h1 is indeed a Σ1-homomorphism,
since h2 is a homomorphism and h2|σ is defined for elements in T (C1).

The following lemmas prove that the reduct defines a functor and thus there is a functor
Mod giving a category of interpretations for each signature and a functor defined by the
reduct. Again here we just provide a sketch of the proofs. The complete proofs are given in
Appendix B.

Lemma 6.4.4. The reduct of Σ-interpretations and Σ-homomorphisms is a functor Mod(σ)

from Σ2-interpretations (Σ2-homomorphisms) to Σ1-interpretations (Σ1-homomorphisms)

for each signature morphism σ : Σ1 → Σ2.

Proof sketch. By definition, domain and codomain of the reduct of an homomorphism are
the reduct of domain and codomain, respectively, of the homomorphism. Also, the reduct
of a composition of two homomorphisms gives an interpretation for elements which are
reached by the signature morphism, which coincide with the composition of reduced ho-
momorphisms. Moreover, by definition of reduct of a homomorphism, the reduct of an
identity Σ2-homomorphism is an identity Σ1-homomorphism (only restricts that the iden-
tity homomorphism applies to elements in Σ1). Finally, the reduct of interpretations and
homomorphisms is a functor.

Lemma 6.4.5. There is a functor Mod giving a category Mod(Σ) of Σ-interpretations (ob-

ject in the category Cat) for each signature Σ (object in the category Sign), as shown in

Lemma 6.3.7, and a functor Mod(σ) (arrow in the category Cat) from Σ2-interpretations

to Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for each signature

morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in Lemma 6.4.4.

Proof sketch. By Lemma 6.4.4, the image of an arrow σ : Σ2 → Σ1 in the category Signop is
an arrow Mod(σ) : Mod(Σ2) → Mod(Σ1) in the category Cat. Also, by Lemma 6.3.7, the
image of a signature Σ in the category Sign is an object Mod(Σ) in the category Cat. Thus,
domain and codomain of the image of an arrow are the images of domain and codomain,
respectively, of the arrow. Now, let Σi (i=1..3) be signatures, let σi : Σi → Σi+1 (i=1, 2)
be signature morphisms. A Σ3-interpretation reduced with respect to the composed signature

60 Chapter 6. An Institution for CSMOF

morphism σ2 ◦σ1 gives an interpretation for the elements in Σ3 reached by the composed sig-
nature morphism (corresponding to interpretation of elements in Σ1), which by definition of
composition it is the same as reducing the interpretation to the elements reached from Σ2, and
then again reduced to those reached from Σ1. In the case of homomorphisms the reasoning is
similar. Moreover, following the same reasoning it is straightforward to prove that Mod(idσ)
is an identity functor, i.e., it is composed by the identity reduct of Σ-interpretations and the
identity reduct of Σ-homomorphisms. Finally, the functor Mod is defined.

We close the definition of the institution by giving a proof sketch of the satisfaction condition.
The complete proof is given in Appendix B.

Theorem 6.4.6 (CSMOF satisfaction condition). Given signatures Σi (i = 1, 2), a signature

morphism σ : Σ1 → Σ2, a Σ2-interpretation I, and a Σ1-formula ϕ, the following satisfac-

tion condition holds.

I|σ|=Σ1 ϕ iff I |=Σ2 σ(ϕ)

Proof sketch. We proceed in the same way as we did for proving the three cases of a formula
ϕ. The point is that the semantic elements giving an interpretation of a property do not change
with the reduct. This means that it is the same to evaluate (ci • rj) in a reduced interpretation
I|σ as evaluating its translation (σT (ci) • σR(rj)) in the original interpretation I. Thus, the
number of elements of |S| (as in Definition 6.4.1) is the same in both sides of the satisfaction
condition. Finally the satisfaction condition holds.

Given that the satisfaction condition holds we can state that IM consisting of signatures, mor-
phisms, formulas, interpretations, reducts, and the satisfaction relation, defines an institution.

6.5 Related Work

There are many works defining the semantics of MOF and the conformance relation in terms
of a shallow embedding of the language by providing a syntactic translation into another one,
e.g. rewriting logic [BM09, RDV09], constructive type theory [CLST10b], first-order logic
[BEC12, SZ09]. Unlike these works, we prefer to define a generic institution not restricted
by any logical domain.

There are also some works with an algebraic/institutional approach. In [OW09] the authors
propose an algebraic representation of metamodels based on many-sorted algebras. They
broadly define how these settings are related to institutions but they do not define a specific

6.6. Model Typing 61

institution for metamodels. Moreover, in [BKMW08] the authors propose to define concrete
institutions for any specific metamodel involved in a transformation.

In [LBEE+06] the authors use a graph-based representation for metamodels and SW-models
which is commonly used in the field of graph transformations. Graphs can also be bounded
in order to represent multiplicities [WMP13]. As it is presented in Section 6.6, the structural
conformance relation is given in terms of a graph morphism between an attributed graph
(representing a SW-model) and a attributed type graph (representing a metamodel).

In [Zhu12] the author proposes a formal approach for the definition of metamodels (not based
on MOF) using a meta-notation called GEBNF (graphic extension of BNF) and the specifica-
tion of constraints on models in a formal logic language induced from GEBNF. This is also a
shallow embedding into GEBNF, but in this case the author provides an institution in which
signatures represent metamodels (in GEBNF), interpretations represent SW-models, and for-
mulas are predicates using the language induced from GEBNF (intended to be as expressive
as OCL).

In [Fav09] the author proposes an algebraic formalization of MOF metamodels based on the
NEREUS language, which can be viewed as an intermediate notation that can be translated
to other formal languages. Something similar is presented in [ABGR10] in which the authors
define a method for representing MOF metamodels in a formalism called Alloy, based on
first-order logic.

In [CK08, JKMR12] the authors define institutions for simple and stereotyped UML Class
Diagrams. As mentioned before, we have adapted these works for the purpose of defining the
institution for the conformance relation. Finally, in [TBHW99] the authors define the seman-
tics of class diagrams with OCL constraints by defining a translation into CASL. Although
this is also a shallow embedding, as explained before, the translation (and the one proposed in
[JKMR12]) have some similarities with our comorphism from CSMOF to CASL, as discussed
in Section 9.4.

6.6 Model Typing

Structural conformance, as defined in Section 2.1.1, involves both typing requirements and
the satisfaction of multiplicity constraints. Typing requirements are not addressed by the
CSMOF satisfaction relation. In fact, the CSMOF institution only considers well-typed SW-
models, since any interpretation (a SW-model) is, by construction, well-typed with respect to
the signature (the metamodel). No matter where, type-checking must be addressed. In this
sense, for the matter of completeness of our institutional settings, we discuss how we can
address type-checking.

As presented in Section 3.1, type systems derive from those for object-based languages which
are reasonably well-understood [SJ07]. There are many works in this sense, but as far as we

62 Chapter 6. An Institution for CSMOF

know, no one strictly defines an institution for this purpose. However, we can take some re-
lated works for the definition of the typing problem. For example, we can consider Attributed
Type Graphs with Node Type Inheritance [LBEE+06] which are commonly used in the field
of graph transformation for the representation of metamodels and SW-models.

The idea is based on representing elements as graphs, i.e. structures of the form (V, E, s, t)
with V a set of vertices (also called nodes), E a set of edges, and s, t : E → V the source
and target functions. In the case of a SW-model, vertices represent objects and edges rep-
resent links. We can then assign each element of the graph a type by defining a type graph
representing a metamodel, which is a distinguished graph containing all the relevant types (as
vertices) and their properties (as edges). Graphs can be related by graph morphisms, map-
ping the nodes and edges of a graph to those of another one, preserving source and target
of each edge. The typing itself is depicted by a graph morphism between the initial graph
and the type graph. These basic settings can be improved. In particular, it is possible to
define attributed graphs which are graphs with attributes associated to nodes and arrows, and
attributed type graphs which are also graphs defining types with a correspondence with many
possible attributed graphs. A type graph can be extended with an inheritance relation and a
set of abstract node types [LBEE+06]. Graphs can also be bounded [WMP13] in order to
represent multiplicities.

In conclusion, in analogy with SW-models which conform to a metamodel, we have attributed
graphs typed with respect to an attributed type graph with inheritance. The typing relation
within the structural conformance relation can be stated as a graph morphism between an
attributed graph and an attributed type graph. In [HET08] there is an example of the for-
mal definition of the abstract syntax of UML class and sequence diagrams based on typed
attributed graph transformation with inheritance. We can assume that the typing problem is
completely resolved by the existence of such graph morphism.

In order to define an institution for model typing, we need to put metamodels and SW-models
at both sides of such relation, for example representing metamodels as interpretations (as in
CSMOF) and SW-models as formulas. This is a similar approach to the one followed for the
definition of an extension of CSMOF in Chapter 8). However, an important aspect to consider
is that metamodels (interpretations) and SW-models (formulas) must not be constrained by a
common set of types (within the signature as in CSMOF). In this sense, it can be no typing
relation between them, which is exactly what the satisfaction relation must define.

Leaving aside the details, we can represent attributed graphs (SW-models) as formulas, and
attributed type graphs with inheritance (metamodels) as interpretations. We have a fixed
signature which has the sorts (e.g. for vertices and edges) and functions (e.g. relating vertices
and edges) for the definition of any attributed (type) graph. A signature morphism is just a
renaming of the fixed sorts and functions. Homomorphisms and reducts are pointless since
the signature morphism is just a renaming. Finally, the satisfaction relation is expressed as
the existence of a graph morphism between the attributed graph and the type attributed graph
with inheritance.

7 An Institution for QVTR

In this chapter we introduce an institution IQ for QVT-Relations check-only unidirectional
transformations (called QVTR). Since any QVT-relation transformation involves a represen-
tation of SW-models and metamodels, we base this institution on the IM institution defined
in Chapter 6. The institution is an updated version of the one presented in [CS13b, CS13c].

In Section 7.1 we present some preliminary considerations with respect to the QVT standard,
and we define an abstract expressions language institution IE which will be the constraint
language used within model transformations. In Section 7.2 we define the syntactic aspects
of the institution, i.e. the signatures and formulas. Then, in Section 7.3 we define the notion
of institution model, and in Section 7.4 we define the satisfaction relation and we state the
satisfaction condition of the institution. Finally, in Section 7.5 we close this chapter with
a discussion of related work. Along the definition we illustrate the main concepts with the
example introduced in Chapter 2. For the sake of readability we do not include complete
proofs of institution properties, which are given in Appendix C.

7.1 Preliminaries

As for the institution for the conformance relation, we restrict some of the QVT-Relations
constructions. As mentioned in Chapter 2, we consider only a source and a target metamodel,
and the transformation is executed in the direction of the second domain. Moreover, we
do not consider black-box operations or rule and transformation overriding, since they are
advanced features not commonly used in practice. We neither consider auxiliary functions
and queries since they are syntactic sugar. Finally, we simplify the pattern structure by not
considering opposite roles in object templates, since they can be expressed as conditions
within a template, and collection templates, since they are advanced features not commonly
used in practice. The future inclusion of these elements will improve the institution.

63

64 Chapter 7. An Institution for QVTR

7.1.1 Recursive Model Transformations

We forbid cycles of rule invocations to avoid infinite recursion. Notice that when and where
clauses, as defined in Section 2.1.2, conform a potentially cyclic graph of dependencies be-
tween transformation rules. Cycles are however not problematic unless the satisfaction of a
rule involving a set of SW-model elements depends recursively on its own satisfaction. In this
case we have infinite recursion which cannot be handled by our proposal. We thus assume
that recursion is well-founded, i.e. no rule will be called twice in the same chain of depen-
dencies for the same set of elements. This constraint ensures well-foundness since we always
have a finite set of element in any SW-model. Another alternative evaluated in [GdL12] is
to forbid cycles of dependencies to avoid infinite recursion. However, this alternative is too
restrictive in practice.

7.1.2 Expressions Language

As mentioned in Chapter 5, the when and where clauses, as well as the <predicate>
of a pattern, may contain arbitrary boolean OCL expressions. From a formal perspective
we need an institution for OCL which would allow us to use the language not only for con-
straining the transformation rules, but also for expressing general constraints on metamodels.
Unfortunately there is no institution for OCL, which is left for future work. However, in our
work we consider a generic institution IE as an expressions language, which can be instan-
tiated for example with an institution for first-order logic with equality (FOL=) as defined
in [ST12, LR12]. With this decision we are not losing expressive power (there are works
[BKS02] with the aim of expressing OCL into first-order logic).

In FOL=, signatures are many-sorted algebraic signatures enriched with predicate symbols
of the form (S, Ω, Π) where S is a set (of sort names), Ω = (Ωw,s)w∈S∗,s∈S is a family
of sets (of operation names with their arities and result sorts indicated just as in algebraic
signatures) and Π = (Πw)w∈S∗ is a family of sets (of predicate or relation names with their
arities indicated). Signature morphisms are as usual between elements in the signatures.

Moreover, sentences are first-order formulas built out from atomic formulas using the stan-
dard propositional connectives (∧,∨,⇒,⇔,¬) and quantifiers (∀, ∃). The atomic formulas
are equalities of the form t = t′, where t and t′ are (S,Ω)-terms (possibly with variables)
of the same sort, atomic predicate formulas of the form p(t1, ..., tn), where p ∈ Πs1...sn

and t1, ..., tn are terms of sorts s1, ..., sn, respectively, and the logical constants true and
false.

Models are many-sorted first-order structures, i.e. consisting of a carrier set |D|s for each
sort name s ∈ S, a function fD for each operation name f ∈ Ω, and a relation pD for each
p ∈ Π. Finally, the satisfaction relation is the usual satisfaction of a first-order sentence in
a first-order structure. The formulas can also include variables Xs = (Xs)s ∈S , so for the
satisfaction relation we consider variable assignments µs : Xs → |D|s for each s ∈ S.

7.2. Signatures and Formulas 65

Specific signatures and models of the IE institution can be derived from (and constrained by)
signatures and models of the IQ institution. For example, in the case of FOL=, the signature
must contain sorts for every type, predicates for each property declaration, and predefined
functions for primitive types and type constructors (as those defined for the OCL). Moreover,
we can derive a FOL= first-order structure such that the interpretation of elements must be
the same than in each of the models MM

i of the IM institution. These aspects are more clear
in the examples of the next sections.

7.2 Signatures and Formulas

A signature defines the source and target metamodels that are involved in a specific model
transformation.

Definition 7.2.1 (QVTR signature)

A QVTR signature is a pair 〈ΣM
1 , ΣM

2 〉 of IM-signatures ΣM
i = (Ci, αi, Pi) (i = 1, 2) repre-

senting the source and target metamodels of the transformation.

We can either assume that there are no name clashes (types, roles and properties) between
IM-signatures or that equal names do not introduce an inconsistency.

From this signature, we can derive a IE-signature of the expressions language which must
contain an element for each type (in

⋃

i T (Ci)) and a predicate for each property declara-
tion (in

⋃

i Pi) in the IM-signatures, as well as predefined predicates and functions for type
constants and type constructors.

Example 7.2.2

The signature Σ = 〈ΣM
1 , ΣM

2 〉 contains the signature ΣM
1 of the source metamodel, which

is presented in Example 6.2.3, and the signature ΣM
2 of the target metamodel, which is not

shown here but can be derived in the same way as the other one.

The IE-signature ΣE is defined as the disjoint union of both signatures, plus other predicates
and functions, as for example the type constructor + (append) for strings. In case of using a
FOL= signature, there must also be sorts for every type (

⋃

i T (Ci) ⊆ S) and there must be
a predicate for each property declaration (

⋃

i Pi ⊆ Π).

66 Chapter 7. An Institution for QVTR

Formulas represent the two basic conditions which must hold in a model transformation: keys
defined on source and target metamodel elements and transformation rules stating relations
between source and target elements.

Definition 7.2.3 (QVTR formula)

Given a signature 〈ΣM
1 , ΣM

2 〉 such that ΣM
i = (Ci, αi, Pi) with Ci = (Ci, ≤Ci

) and
Pi = (Ri, Pi), Σ-formulas are defined as follows:

• A formula ϕK representing a key constraint of the form 〈c, {r1, ..., rn}〉 (1 ≤ n) with
c ∈ Ci (j = 1..n) a class in one of the metamodels, rj ∈ Ri (j = 1..n) roles defined in
properties in which such class participates (having such role or at the opposite side of
it), i.e. for each rj there is a property 〈rj : cj , ri : ci〉 or 〈ri : ci, rj : cj〉 ∈ Pi such that
c = ci (the property is non-navigable from c) or c = cj (rj is navigable from c). Roles
determine the elements within these properties that together can uniquely identify an
instance of the class.

• A formula ϕR representing a set of interrelated transformation rules, such that, given
variables Xs = (Xs)

s ∈(
⋃

i
T (Ci)), the formula is a finite set of tuples representing

rules of the form 〈top, VarSet, ParSet, Patterni (i = 1, 2), when, where〉, where:

– top ∈ {true, false} defines if the rule is a top-level relation or not

– VarSet ⊆ Xs is the set of variables used within the rule

– ParSet ⊆ VarSet representing the set of variables taken as parameters when the
rule is called from another one (corresponding to the top pattern element in the
source and target domains, and the primitive domains defined within the rule)

– Patterni (i = 1, 2) are the source and target patterns, i.e. tuples 〈Ei, Ai, P ri〉
such that Ei ⊆ (Xc)c ∈Ci

is a set of class-indexed variables, Ai is a set of
elements representing associations of the form rel(p, x, y) with p ∈ Pi and
x, y ∈ Ei, and Pri is a IE-formula over these elements. We denote by k_VarSet
(k = {1, 2}) the variables used in pattern k that do neither occur in the other
domain nor in the when clause.

– when/where are the when/where clauses of the rule, respectively. A when

clause is a pair 〈whenc, whenr〉 such that whenc is a IE-formula with variables
in VarSet, and whenr is a set of pairs of transformation rules (formulas) and set of
variables which are the parameters of the rules. We will denote by WhenVarSet
the set of variables occurring in the when clause. Finally, a where clause is a
pair 〈wherec, wherer〉 such that wherec is a IE-formula with variables in VarSet,
and wherer is a set of pairs of transformation rules and set of variables (as before).
Only variables used in a where clause (as prefix in the example) are contained
in 2_VarSet.

7.2. Signatures and Formulas 67

Definition 7.2.4 (QVTR signature morphism)

Given a signature 〈ΣM
1 , ΣM

2 〉, a signature morphism is defined as a tuple of signature mor-
phisms of the corresponding institutions 〈σM

1 , σM
2 〉. The signature morphism σE is derived

from the morphisms defined for types and predicates in σM
1 and σM

2

Given a set of variables X2 = (Xs
2)

s ∈(
⋃

i
T2(Ci)), we define a set X2|σ as

X1 = (Xs1
1)

s1∈(
⋃

i
T1(Ci)) by Xs1

1 = X
σ(s1)
2 . Signature morphisms extend to formulas over

Σ1 and X2 |σ as follows. Given a Σ1-formula ϕ, σ(ϕ) is the canonical application of the
signature morphism to every element in ϕ.

As shown in the following lemmas, we can prove that signatures and signature morphisms
define a category Sign, and that there is a functor Sen giving a set of formulas for each
signature and a function translating sentences for each signature morphism. We provide a
sketch of the proofs. The complete proofs are given in Appendix C.

Lemma 7.2.5. Signatures and signature morphisms define a category Sign. The points of the

category are the signatures and it arrows are the signature morphisms.

Proof sketch. A signature morphism is defined as a tuple of morphisms of the corresponding
institutions. We can define the composition as the componentwise composition of signa-
ture morphisms, and the identity signature morphism as the tuple with the identity signature
morphisms of the corresponding institutions. Since in those institutions, morphisms are com-
posable, the composition is associative, and there exists an identity signature morphism, we
can conclude that in our signature morphism those properties also hold. Finally, signatures
and signature morphisms define a category.

Lemma 7.2.6. There is a functor Sen giving a set of formulas ψ (object in the category Set)

for each signature Σ (object in the category Sign), as shown in the definition of a formula,

and a function σ : Sen(Σ1) → Sen(Σ2) (arrow in the category Set) translating formulas

for each signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in the

extension of the signature morphism to formulas.

Proof sketch. A signature morphism is, by Definition 7.2.4, a pair of CSMOF signature mor-
phisms changing types and roles consistently. In this sense, its application to any formula
in Sen(Σ1) gives a formula in Sen(Σ2) with the types and roles translated with respect to
the signature morphism σ : Σ1 → Σ2. In this sense, the domain and codomain of the im-
age of an arrow in Set are the image of domain and codomain, respectively, of the arrow in
Sign. Moreover, since signature morphism can be composed (as defined in Lemma 7.2.5),
the composition with respect to formulas is also preserved. For the same reason, identities
are preserved. Finally, the functor Sen is defined.

68 Chapter 7. An Institution for QVTR

Example 7.2.7

Key definitions within the example are represented by the following formulas:

• 〈Table, {name, schema}〉

• 〈Column, {name, owner}〉

• 〈Key, {name, owner}〉

Property 〈owner : Table, column : Column〉 is bidirectional. However, if owner role is non-
navigable (i.e. 〈_ : Table, column : Column〉), the second key can be represented using the
opposite role column as follows:

• 〈Column, {name, column}〉

There is also a formula representing the whole transformation with the following rules.

PackageToSchema = 〈top, VarSet, ParSet, Patterni (i = 1, 2), when, where〉

• top = true

• VarSet = {pn, p, s} with pn ∈ XString , p ∈ XP ackage, and s ∈ XSchema

• ParSet = {p, s}

• Pattern1 = 〈E1, A1, P r1〉 with E1 = {p}, A1 = ∅, and Pr1 = name(p,pn)

Remember that name(p, pn) is a property in the source metamodel, and thus a
predicate in the IE signature

• Pattern2 = 〈E2, A2, P r2〉 with E2 = {s}, A2 = ∅, and Pr2 = name(s,pn)

• when = 〈∅, ∅〉

• where = 〈∅, ∅〉

ClassToTable = 〈top, VarSet, ParSet, Patterni (i = 1, 2), when, where〉

• top = true

• VarSet = {cn, prefix, c, p, Persistent, t, s, cl, NUMBER, TID, k, PK} with
c ∈ XClass, p ∈ XP ackage, t ∈ XT able, s ∈ XSchema, cl ∈ XColumn,
k ∈ XKey , and the others in XString

• ParSet = {c, t}

• Pattern1 = 〈E1, A1, P r1〉 with
E1 = {c, p}
A1 = {rel(〈namespace : Package, elements : Classifier〉 , p, c)}
Pr1 = name(c,cn) AND kind(c,Persistent)

7.2. Signatures and Formulas 69

• Pattern2 = 〈E2, A2, P r2〉 with
E2 = {t, s, cl, k}
A2 = {rel(〈schema : Schema, tables : Table〉 , s, t),

rel(〈owner : Table, column : Column〉 , t, cl),
rel(〈column : Column, key : Key〉 , cl, k),
rel(〈owner : Table, key : Key〉 , t, k)}

Pr2 = name(t,cn) AND name(cl,TID) AND

type(cl,NUMBER) AND name(k,PK)

• when = 〈∅, {(PackageToSchema, {p, s})}〉

• where = 〈wherec, {(AttributeToColumn, {c, t, prefix})}〉
with wherec = prefix = EMPTY

AttributeToColumn = 〈top, VarSet, ParSet, Patterni (i = 1, 2), when, where〉

• top = false

• VarSet = {an, pn, cn, sqltype, c, a, p, t, cl, prefix, EMPTY, INTEGER,
NUMBER, BOOLEAN, VARCHAR} with c ∈ XClass, a ∈ XAttribute,
p ∈ XP rimitiveDataT ype, t ∈ XT able, cl ∈ XColumn, and the others in XString

• ParSet = {c, t, prefix}

• Pattern1 = 〈E1, A1, P r1〉 with
E1 = {c, a, p}
A1 = {rel(〈attribute : Attribute, owner : Class〉 , a, c),

rel(〈_ : Attribute, type : PrimitiveDataType〉 , a, p)}
Pr1 = name(a,an) AND name(p,pn)

• Pattern2 = 〈E2, A2, P r2〉 with
E2 = {t, cl}
A2 = {rel(〈owner : Table, column : Column〉 , t, cl)}
Pr2 = name(cl,cn) AND type(cl,sqltype)

• when = 〈∅, ∅〉.

• where = 〈wherec, ∅〉 with wherec =

((prefix = EMPTY AND cn = an) OR

(not (prefix = EMPTY) AND (cn = prefix + an)))

AND ((pn = INTEGER AND sqltype = NUMBER) OR

(pn = BOOLEAN AND sqltype = BOOLEAN) OR

(((not (pn = INTEGER) AND (not (pn = BOOLEAN))

AND sqltype = VARCHAR))

70 Chapter 7. An Institution for QVTR

7.3 Models

An interpretation contains a semantic representation for the source and target SW-models.

Definition 7.3.1 (QVTR interpretation)

Given a signature 〈ΣM
1 , ΣM

2 〉, an interpretation is a tuple 〈MM
1 , MM

2 〉 of disjoint SignM
i -

interpretations. Here we can also derive a IE model ME such that the interpretation of
elements in SignM

i must be the same in MM
i and ME.

Example 7.3.2

Assume that we have an interpretation M = 〈MM
1 , MM

2 〉 such that MM
1 is the one defined

in Example 6.3.3, and MM
2 is an interpretation with a direct correspondence with the SW-

model in the bottom of Figure 2.7. The interpretation of elements in SignM
i must be the same

in MM
i and ME. If the model is a FOL= structure, this means that |D|t = Vt. for every

t ∈ ⋃

i T (Ci), and pD = pI for every p ∈ ⋃

i Pi. In the case of t ∈ T (C)\C (primitive
types) we have that Vt ⊆ |D|t since the model can have more elements than those in the
source and target institutions, as type constants (e.g. the empty string) and elements created
using type constructors from other elements (e.g. new strings using type constructor +).

Definition 7.3.3 (Binding of variables)

Given a signature 〈ΣM
1 , ΣM

2 〉 such that ΣM
i = (Ci, αi, Pi) with Ci = (Ci, ≤Ci

) and Pi =
(Ri, Pi), an interpretation 〈MM

1 , MM
2 〉, and variables Xs = (Xs)

s ∈(
⋃

i
T (Ci)), the binding

of a variable xc ∈ Xc, denoted by |xc|, is the set of any possible interpretation of such
variable, which corresponds to |xc| = Vc if c is a class, or corresponds to this set together
with the elements created using type constructors (in ME) in the case of c is a primitive type.

Moreover, the binding of a set of variables (x1, ..., xn), denoted by |(x1, ..., xn)|, is defined
as {(y1, ..., yn) | yi ∈ |xi| (i = 1..n)}. We can also view |(x1, ..., xn)| as a set of variable as-
signments. We denote by µ[x1, ..., xn] a function with an assignment for variables x1, ..., xn.
We also denote by µ1 ∪ µ2 an assignment unifying the former ones, assuming that if there is
variable clash, the assignment takes for those variables the values in µ2.

Example 7.3.4

Binding of variables depends on the type of elements. For a class variable, we have that the
set of possible values coincides with the set of elements within the CSMOF institutions. For
example, we have that |p| = VPackage = {p1}. However, if the variable is of a primitive type,
since transformation rules can use other elements beside those in the CSMOF institutions (for
example those strings created using the type constructor +), we can have more elements. In
the example, we have that |pn| = {Pac, Str, ID, ..., tid, numb, ..., ID+tid, ID+numb, ...}.

7.3. Models 71

Definition 7.3.5 (QVTR homomorphism and reduct)

Given signatures Σi = 〈ΣM
1 i, ΣM

2 i〉 (i = 1, 2), a signature morphism σ : Σ1 → Σ2, and Σ2-
interpretation M = 〈MM

1 , MM
2 〉 and M2 = 〈MM

1 2, MM
2 2〉, homomorphisms and reducts

are defined componentwise. A Σ2-homomorphism h : M → M2 is defined as a tuple of
homomorphisms 〈hM

1 , hM
2 〉 of the corresponding institutions. The reduct M|σ of M along

σ is the Σ1-interpretation 〈MM
1 |σ, MM

2 |σ〉. Moreover, the reduct h |σ of h along σ is the
Σ1-homomorphism 〈hM

1 |σ, hM
2 |σ〉.

The following lemmas state that interpretations and homomorphisms define a category, and
also that the reduct defines a functor. Thus, there is a functor Mod giving a category of
interpretations and the reduct functor for each signature. Again here we just provide a sketch
of the proofs. The complete proofs are given in Appendix C.

Lemma 7.3.6. For any signatures, the Σ-interpretations and Σ-homomorphisms define a cat-

egory Mod(Σ). The points of the category are the Σ-interpretations, and its arrows are the

Σ-homomorphisms.

Proof sketch. An interpretations is a tuple of interpretations of the corresponding institutions,
and homomorphisms are defined componentwise. We can define the composition of homo-
morphisms as the componentwise composition of homomorphisms, as well as the identity
homomorphism as the tuple with the identity homomorphisms of the corresponding institu-
tions. Since in the corresponding institutions, homomorphisms are composable, the compo-
sition is associative, and there exists an identity homomorphism, we can conclude that these
properties also hold for homomorphisms. Finally, interpretations and homomorphisms define
a category.

Lemma 7.3.7. The reduct of Σ-interpretations and Σ-homomorphisms is a functor Mod(σ)

from Σ2-interpretations to Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorph-

isms) for each signature morphism σ : Σ1 → Σ2.

Proof sketch. An interpretations is a tuple of interpretations of the corresponding institu-
tions, and homomorphisms are defined componentwise. In the corresponding institutions,
the reduct of interpretations and homomorphisms is a functor. From this we can conclude
straightforwardly that domain and codomain of the reduct of an Σ-homomorphism are the
reduct of domain and codomain, respectively, the reduct of a composition of two homomor-
phisms is the composition of the reducts of those homomorphisms, and the reduct of an
identity homomorphisms is likewise an identity. Finally, the reduct of interpretations and
homomorphisms is a functor.

Lemma 7.3.8. There is a functor Mod giving a category Mod(Σ) of Σ-interpretations (ob-

ject in the category Cat) for each signature Σ (object in the category Sign), as shown in

Lemma 7.3.6, and a functor Mod(σ) (arrow in the category Cat) from Σ2-interpretations

72 Chapter 7. An Institution for QVTR

to Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for each signature

morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in Lemma 7.3.7.

Proof sketch. By Lemma 7.3.7, the image of an arrow σ : Σ2 → Σ1 in the category Signop is
an arrow Mod(σ) : Mod(Σ2) → Mod(Σ1) in the category Cat. Also, by Lemma 7.3.6, the
image of a signature Σ in the category Sign is an object Mod(Σ) in the category Cat. Thus,
domain and codomain of the image of an arrow are the images of domain and codomain, re-
spectively, of the arrow. Now, reducts (and homomorphisms) are defined as tuples of reducts
(and homomorphisms) of the corresponding institutions. Since composition is preserved in
isolation for each component, we can directly conclude that this also holds for the tuple. Us-
ing the same reasoning, we can conclude that identities are preserved. Finally, the functor
Mod is defined.

7.4 Satisfaction Relation and Satisfaction Condition

As explained in Section 5.3, the satisfaction relation must express that the target SW-model
(represented within the interpretation) is the result of transforming the source SW-model
(represented within the interpretation) according to the transformation rules and also that key
constraints hold (both represented as formulas).

Definition 7.4.1 (QVTR satisfaction relation)

Given a signature 〈ΣM
1 , ΣM

2 〉 such that ΣM
i = (Ci, αi, Pi) with Ci = (Ci, ≤Ci

) and Pi =
(Ri, Pi), and an interpretation M = 〈MM

1 , MM
2 〉, we define that M satisfies a formula ϕ,

written M |=Σ ϕ, in one of the following cases:

• A formula ϕK = 〈c, {r1, ..., rn}〉 with c ∈ Ci (j = 1..n), rj ∈ Ri (j = 1..n), is satisfied in
the corresponding metamodel MM

i if there are no two elements of type c with the same
set of elements related through properties involving roles rj (they must differ in at least
one element). Formally, for each rj the corresponding property pj is 〈r : c, rj : d〉 if rj

is navigable, or 〈rj : c, _ : d〉 if the opposite role of rj is non-navigable. We can define
that given an element x ∈ (Vc)c∈Ci

, the set of semantic elements linked with x in pj

is ν(x, pj) = {π2(t)| π1(t) = x, t ∈ pj
M}. The definition is straightforward in the

case of c in the second component of the property. The formula is satisfied if for all
x, y ∈ (Vc)c∈Ci

, x Ó= y implies
⋃

j ν(x, pj) Ó= ⋃

j ν(y, pj).

• A formula ϕR is satisfied if the semantics defined in the standard [OMG09] holds,
i.e. if every top-level relation holds, which means that there are matching elements
in the source and target SW-models in the relation. Formally, given a IE model ME

constructed from the interpretation M, ϕR is satisfied if for every top rule Rule ∈ ϕR,
we have that ME, ∅ |= Rule. We use ∅ as the empty variable assignment which will
be filled only in the case of explicit called rules.

7.4. Satisfaction Relation and Satisfaction Condition 73

A rule Rule = 〈top, VarSet, ParSet, Patterni (i = 1, 2), when, where〉 is satisfied with
respect to a model ME and a variable assignment µ, denoted by ME, µ |= Rule if

1. If WhenVarSet = ∅

∀ µ1[x1, ..., xn] ∈ |VarSet\2_VarSet|,
(ME, (µ1[x1, ..., xn] ∪ µ) |= Pattern1 →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,
(ME, (µ1 ∪ µ2 ∪ µ) |= Pattern2 ∧

ME, (µ1 ∪ µ2 ∪ µ) |= where))

2. If WhenVarSet Ó= ∅

∀ µw[z1, ..., zo] ∈ |WhenVarSet|,
(ME, (µw[z1, ..., zo] ∪ µ) |= when →

∀ µ1[x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,
(ME, (µ1 ∪ µw ∪ µ) |= Pattern1 →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,
(ME, (µ1 ∪ µ2 ∪ µw ∪ µ) |= Pattern2 ∧

ME, (µ1 ∪ µ2 ∪ µw ∪ µ) |= where)))

A pattern Pattern = 〈E, A, Pr〉 is satisfied with respect to a model ME and a variable
assignment µ (which must include a valuation for elements in E), denoted by
ME, µ |= Pattern if there is a matching subgraph of elements and the predicate holds, i.e.

• ∀ rel(〈r1 : c1, r2 : c2〉 , x, y) ∈ A. (µ(x), µ(y)) ∈ ME (this means that the model
ME has a relation (corresponding to the property 〈r1 : c1, r2 : c2〉) connecting ele-
ments µ(x) and µ(y))

• ME, µ |=E Pr, such that |=E is the satisfaction relation in IE

A when clause 〈whenc, whenr〉 is satisfied with respect to a model ME and a variable
assignment µ, denoted by ME, µ |= 〈whenc, whenr〉 if

ME, µ |=E whenc ∧ (∀(r, v) ∈ whenr. ME, µ[v] |= r)

such that |=E is the satisfaction relation in IE, and the later is the satisfaction of the para-
metric transformation rule r (which must be defined in the formula ϕR) using the variable
assignment µ[v] as a parameter. The satisfaction of a where clause is defined in the same
way.

74 Chapter 7. An Institution for QVTR

Example 7.4.2

We need to prove that our interpretation satisfies both kinds of formulas.

In the case of keys 〈Table, {name, schema}〉 and 〈Key, {name, owner}〉, we have only one
table t and only one key k, thus the condition trivially holds.

In the case of key 〈Column, {name, owner}〉 we have two columns c1 and c2 and their sets
of elements related through properties are {TID, t} and {value, t}, correspondingly. The
sets differ in one element, and thus the formula holds.

We need to prove now that ME, ∅ |= PackageToSchema.
We know that |pn| = {Pac, Str, ID, Per, val, nul, pk, tid, numb, varch, ...}, and
|p| = VPackage = {p1}, thus |{pn, p}| is {(Pac, p1), (Str, p1), (ID, p1), ...}. We also have
that |s| = VSchema = {s1}. Thus, ME, ∅ |= PackageToSchema if

∀ µ1[pn, p] ∈ {(Pac, p1), (Str, p1), (ID, p1), (Per, p1), (val, p1), (nul, p1), ...},

(ME|ϕ, µ1 |= Pattern1 →
∃ µ2[s] ∈ {s1},

(ME|ϕ, (µ1 ∪ µ2) |= Pattern2 ∧
ME|ϕ, (µ1 ∪ µ2) |= where))

For every µ1[pn, p] different from (Pac, p1) we have that Pattern1 does not hold, since it
depends on the predicate name(p,pn). Thus, in these cases the implication holds. Now,
in the case of (Pac, p1), we have that Pattern1 holds, and that the only possible value for
s is s1. In this case, we also have that ME, (µ1 ∪ µ2) |= Pattern2 since the predicate
name(s,pn) holds. Note at the bottom of Figure 2.7 that the schema has the same name as
the package, which is semantically represented as Pac. Moreover, since the where clause is
empty, ME, (µ1 ∪ µ2) |= where trivially holds.
In conclusion, we have that ME, ∅ |= PackageToSchema indeed.

Finally, we need to prove that ME, ∅ |= ClassToTable. Proceeding in the same way, we
have to prove that:

∀ µw[p, s] ∈ {(p1, s1)},

(ME, µw[p, s] |= when →
∀ µ1 ∈ |(cn, c, Persistent)|,

(ME, (µ1 ∪ µw) |= Pattern1 →
∃ µ2 ∈ |(prefix, t, cl, NUMBER, TID, k, PK)|,

(ME, (µ1 ∪ µ2 ∪ µw) |= Pattern2 ∧
ME, (µ1 ∪ µ2 ∪ µw) |= where)))

7.4. Satisfaction Relation and Satisfaction Condition 75

We have a when clause which is the invocation of the relation PackageToSchema with a
concrete variable assignment for domain variables p and s. We have proved above that with
this assignment ME, µw[p, s] |= PackageToSchema holds.
Now, in the case of ME, (µ1 ∪ µw) |= Pattern1 we need to prove that (µ(p), µ(c)) ∈ ME

since rel(〈namespace : Package, elements : Classifier〉 , p, c) ∈ A, and also that
ME, (µ1 ∪ µw) |=E name(c,cn) AND kind(c,Persistent). This only holds with
the variable assignment µ1[c, cn, Persistent] = (c1, ID, Per) and µw[p] = p1. In any other
case, Pattern1 does not hold and thus the rest of the expression holds.

Now, for proving ME, (µ1 ∪ µ2) |= Pattern2 we need to prove that

• (µ(s), µ(t)) ∈ ME since rel(〈schema : Schema, tables : Table〉 , s, t) ∈ A

• (µ(t), µ(cl)) ∈ ME since rel(〈owner : Table, column : Column〉 , t, cl) ∈ A

• (µ(cl), µ(k)) ∈ ME since rel(〈column : Column, key : Key〉 , cl, k) ∈ A

• (µ(t), µ(k)) ∈ ME since rel(〈owner : Table, key : Key〉 , t, k) ∈ A

and also that ME, (µ1 ∪ µ2) |=E Pr2. These expressions hold with
µ2[prefix, t, cl, NUMBER, TID, k, PK] = (nul, t1, cl1, num, TID, k1, PK).
Finally, with the variable assignment we have at the moment
(µ1 ∪ µ2 ∪ µw)[...] = (ID, c1, p1, P er, nul, t1, s1, cl1, num, TID, k1, PK), we can prove
ME, µ[c, t, prefix] |= AttributeToColumn.

As before, we have to prove that:

∀ µ1[...] ∈ |c, a, p, an, pn|,
(ME, (µ1[c, a, p, an, pn] ∪ µ[c, t, prefix]) |= Pattern1 →

∃ µ2[...] ∈ |cn, sqltype, t, cl, prefix, EMPTY, INTEGER,

NUMBER, BOOLEAN, VARCHAR, prefix + an|,
(ME, (µ1 ∪ µ2 ∪ µ) |= Pattern2 ∧

ME, (µ1 ∪ µ2 ∪ µ) |= where))

For every µ1[c, a, p, an, pn] different from (c1, a1, pdt1, val, Str) we have that Pattern1

does not hold, since it depends on the predicate name(a,an) AND name(p,pn). Thus,
in these cases the rest of the expression holds. Now, in the case of (c1, a1, pdt1, val, Str),
we have that Pattern1 holds.

In this case, there exists a variable assignment
µ2[...] = (val, varch, t1, cl2, nul, nul, int, numb, BOOL, V ARC, val) such that
ME|ϕ, (µ1 ∪µ2 ∪µ) |= Pattern2. This can be viewed at the bottom of Figure 2.7, where the
table t (semantically represented as t1) has a column c2 (semantically represented as cl2) with
column name value (semantically represented as val) and type VARCHAR (semantically
represented as V ARC) which satisfies the predicate

76 Chapter 7. An Institution for QVTR

name(cl,cn) AND type(cl,sqltype).
The same variable assignment satisfies the where clause since

(prefix = EMPTY) AND (cn = an) AND

(not (pn = INTEGER) AND (not (pn = BOOLEAN)))

AND (sqltype = VARCHAR)

We close the definition of the institution by giving a proof sketch of the satisfaction condition.
The complete proof is given in Appendix C.

Theorem 7.4.3 (QVTR satisfaction condition). Given signatures Σi (i = 1, 2), a signature

morphism σ : Σ1 → Σ2, a Σ2-interpretation M = 〈MM
1 , MM

2 〉, a set of variables X2 =
(Xs

2)s ∈S2
, and a Σ1-formula ϕ with variables in X2|σ , the following satisfaction condition

holds.

M|σ|=Σ1 ϕ iff M |=Σ2 σ(ϕ)

Proof sketch. In the case of a formula ϕK = 〈c, {r1, ..., rn}〉 with c ∈ Ci (j = 1..n), rj ∈ Ri (j
= 1..n), it is satisfied in the corresponding interpretation MM

i |σ if there are no two elements
of type c with the same set of elements related through properties involving roles rj (they
must differ in at least one element). Since the signature morphism changes types and roles
consistently, the interpretation MM

i will not have more or less elements of type σTi
(c), or

less or more elements related through properties involving roles σRi
(rj). Thus, the translated

formula is also satisfied. This implication also holds backwards. In the case of a formula ϕR,
the reasoning is similar. The formula holds if every top-level relation holds, which means
that there are matching elements in the source and target interpretations within M|σ satisfy-
ing the relations. After the signature morphism, we can find the same matching elements in
the source and target interpretations within M, and since the signature morphism can only
introduce new types and roles not used within σ(ϕR), the relations between matching ele-
ments still hold. Once again, this implication also holds backwards. Finally, the satisfaction
condition holds.

Given that the satisfaction condition holds we can state that IQ consisting of signatures, mor-
phisms, formulas, interpretation, reducts, and the satisfaction relation, defines an institution.

7.5. Related Work 77

7.5 Related Work

There are works defining the semantics of QVT-Relations in terms of a shallow embedding
of the language, e.g. into rewriting logic [BHM09] and coloured petri nets [dLG09]. There
are also embeddings into specific tools, as in the case of Alloy [ABK07] and KIV [SMR11],
which provide model checking capabilities. In some cases, the tool performs a translation into
another formal language, as in [LR12] in which the UML-RSDS language and tool performs
a translation into the B or Z3 languages. As said before, we do not follow this approach since
a unified mathematical formalism can be quite restrictive.

There are also some works with an algebraic/institutional approach. In [OW09] the authors
define model-to-model transformations based on triple algebras (in consonance with rela-
tional model transformations). The representation differs from ours since it depends on the
formal definition of a triple algebra. In [CGR12] the authors define an institution for graph
transformation systems, not completely related to QVT-Relations or any other transforma-
tion language. They interpret metamodels and SW-models as graphs, as we presented in
Section 6.6. Sentences are (injective) partial morphisms among typed graphs representing
transformation rules.

In [BKMW08] transformations are represented as institution comorphisms between two in-
stitutions representing the source and target languages. This is related with the heterogeneous
approach in [CKTW08] in which UML languages are related through comorphisms. How-
ever, this is somehow restrictive since it assumes a semantic relation between metamodels,
and not every model transformation is semantic-preserving. A discussion on this topic is
given in Chapter 11.

In [GdL12] the authors present a formal semantics for the QVT-Relations check-only scenario
based on algebraic specification and category theory. The definition of the institution is much
more complex than ours, and the work does not envisions a scenario in which the elements
of the transformation are translated to other logics for verification.

Finally, in [Ste13] the authors define game-theoretic semantics of QVT-Relations check-only
transformations, based on the semantics in the standard. This semantics is devised for ana-
lyzing the implications of minor variations in decisions about what the meaning of a QVT-R
transformation should be.

8 Extending the Institutions

In this chapter we introduce extensions of the CSMOF institution in Chapter 6 and the QVTR

institution in Chapter 7. As introduced in Section 5.4, the extension allows the inclusion
of SW-models as syntactic elements (represented as a formula Ω) to be considered by any
possible entailment system ⊢ devised to derive the satisfiability of other formulas, represented
as a set of formulas Ψ, i.e. Ω ⊢Σ Ψ. In the same way, we also need to verify whether a
key constraint (or a set of them), represented as a formula ϕK, is derived from the same Ω,
i.e. Ω ⊢Σ ϕK, or whether a transformation rule ϕR (or the whole model transformation) is
derived from a pair of SW-models, i.e. Ω1 ∪ Ω2 ⊢Σ ϕR. A sound entailment system will
ensure semantic entailment, i.e. Ω ⊢Σ Ψ implies Ω |=Σ Ψ. Semantic entailment is defined
by the satisfaction relations of the institutions.

In Section 8.1 we define a supporting institution for the extensions of the CSMOF and QVTR

institutions, which is basically the CSMOF institution but with SW-models as formulas. Then,
in Section 8.2 we define such extensions for the satisfaction of our proof-theoretic needs.
Finally, in Section 8.3 we discuss some decisions we made with respect to the inclusion of
SW-models as syntactic elements. Along the definition we illustrate the main concepts with
the example introduced in Chapter 2. For the sake of readability we do not include complete
proofs of institution properties, which are given in Appendix D.

8.1 An Institution for SW-Models

As stated before, we first define a supporting institution IΩ by taking the same basic defini-
tions from the CSMOF institution given in Chapter 6 and changing the definition of formulas,
as well as the corresponding satisfaction relation. A formula in this institution is a syntactic
representation of a SW-model.

79

80 Chapter 8. Extending the Institutions

Definition 8.1.1 (IΩ-formulas)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P) as defined for the CSMOF

institution, and variables X = (Xc)c∈T (C), we define formulas as follows:

Ω ::= xc | 〈r1, x1
c1 , r2, x2

c2〉 | Ω ⊕ Ω

with xc ∈ Xc, x1
c1 ∈ Xc1 , x2

c2 ∈ Xc2 , c, c1, c2 ∈ T (C), 〈r1 : c1, r2 : c2〉 ∈ P , r1, r2 ∈ R.

A variable xc represents a typed element, 〈r1, x1
c1 , r2, x2

c2〉 represents a link between two
typed elements with their respective roles, and Ω ⊕ Ω allows to compose these elements to
represent a whole SW-model.

Example 8.1.2

The formula Ω corresponding to the class SW-model in Figure 2.7 is defined as follows:

pPackage ⊕ cClass ⊕ aAttribute ⊕ pdtPrimitiveDataType⊕
PackageString ⊕ IDString ⊕ PersistentString ⊕ ...⊕

〈namespace, p, elements, c〉 ⊕ 〈_ : p, name, Package〉 ⊕
〈namespace, p, elements, pdt〉 ⊕ 〈_ : a, type, pdt〉 ⊕ ...

The extension of a signature morphism σ to a formula Ω is still the canonical application of
the signature morphism to every type and role in the formula such that σ(xc) = xσT (c), and
σ(〈r1, x1

c1 , r2, x2
c2〉) =

〈

σR(r1), x1
σT (c1), σR(r2), x2

σT (c2)
〉

.

Since signature and signature morphisms are taken from the CSMOF institution, the category
Sign is still defined, as in Lemma 6.2.7. Nevertheless, we need to prove that we still have a
functor Sen giving a set of formulas for each signature and a function translating sentences for
each signature morphism, as defined by the following lemma. The complete proof is given in
Appendix D.

Lemma 8.1.3. There is a functor Sen giving a set of formulas ψ (object in the category Set)

for each signature Σ (object in the category Sign), as shown in the definition of a formula,

and a function σ : Sen(Σ1) → Sen(Σ2) (arrow in the category Set) translating formulas

for each signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in the

extension of the signature morphism to formulas.

Proof sketch. The signature morphism in Definition 6.2.6 changes types and roles consis-
tently. We also proved in Lemma 6.2.8 that the original functor Sen satisfies that domain and
codomain of the image of an arrow are the images of domain and codomain, respectively, of
the arrow. Since formulas are just extended with a new component (Ω), and the extension
of the signature morphism to formulas is still the canonical application of the signature mor-
phism, the proof also holds in the case of formulas Ω. Moreover, composition and identities
are preserved in the original definition of formulas and signature morphisms, based on the

8.1. An Institution for SW-Models 81

fact that the extension of signature morphisms to formulas is the canonical application of the
signature morphism. In this case, nothing changes, since the the extension of signature mor-
phisms to these formulas is still the canonical application of the signature morphism. Thus,
composition and identities are still preserved. Finally, the functor Sen is defined.

We need to define a reduction of an interpretation with respect to the types used in the def-
inition of the SW-model formula Ω (as discussed in Section 8.3). This reduction defines an
explicit scope in which the satisfaction of a formula is checked. We first define the types used
within a formula as follows.

Definition 8.1.4 (Types of a IΩ-formula)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), variables (Xc)c∈T (C),
and a Σ-formula Ω representing a SW-model, the function types giving the set of types used
within Ω is inductively defined as follows:

• types(xc) = {c}

• types(〈r1, x1
c1 , r2, x2

c2〉) = {c1, c2}

• types(Ω1 ⊕ Ω2) = types(Ω1) ∪ types(Ω2)

Definition 8.1.5 (Explicit scope)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), a Σ-formula Ω repre-
senting a SW-model, and a Σ-interpretation I = (VT

C(O), A), the explicit scope defined by Ω
in I, denoted by I|Ω, is the Σ-interpretation (VT

C(O)|Ω, A|Ω) such that:

• VT
C(O)|Ω = (Vc)c ∈ types(Ω) with Vc ∈ VT

C(O)

• A|Ω only contains those relations 〈r1 : c1, r2 : c2〉I ∈ A such that c1, c2 ∈ types(Ω)

Example 8.1.6

The types used for the definition of the Σ-formula Ω in Example 8.1.2 coincide with those in
the signature Σ in Example 6.2.3. For such reason, the interpretation in Example 6.3.3 cannot
be reduced with respect to Ω, i.e. the explicit scope I|Ω = I. However, if we assume that the
type extension T (C) also contains type Integer, the T(C)-object domain of I will also have
integer values, and thus, VT

C(O)|Ω will not have any of them.

We define the satisfaction relation for Ω formulas based on a valuation function KI deter-
mining that there is an isomorphism between Ω and the interpretation I.

82 Chapter 8. Extending the Institutions

Definition 8.1.7 (Valuation of a IΩ-formula)

Given a signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P), variables (Xc)c∈T (C),
a Σ-formula Ω representing a SW-model, and a Σ-interpretation I = (VT

C(O), A), we de-
fine a valuation KI(Ω) as a bijective function mapping each xc ∈ υ(Ω) to an element of
(Vc)c∈T (C) for each c ∈ T (C), such that syntactic links in Ω and semantic links in I coin-
cide, i.e.

• for every
〈

r1, xc, r2, yd
〉

∈ ω(Ω),

(KI(xc), KI(yd)) ∈ 〈r1 : c, r2 : d〉I for some 〈r1 : c, r2 : d〉 ∈ P

• for every 〈r1 : c, r2 : d〉 ∈ P ,

〈r1 : c, r2 : d〉I
= {(KI(xc), KI(yd)) |

〈

r1, xc, r2, yd
〉

∈ ω(Ω)}

The function υ gives the set of variables within a formula Ω, i.e.

• υ(xc) = {xc}

• υ(〈r1, x1
c1 , r2, x2

c2〉) = {x1
c1 , x2

c2}

• υ(Ω1 ⊕ Ω2) = υ(Ω1) ∪ υ(Ω2)

The function ω gives the set of links within a formula Ω, i.e.

• ω(xc) = ∅

• ω(〈r1, x1
c1 , r2, x2

c2〉) = {〈r1, x1
c1 , r2, x2

c2〉}

• ω(Ω1 ⊕ Ω2) = ω(Ω1) ∪ ω(Ω2)

Finally, we can now define the satisfaction relation of a Ω formula with respect to an interpre-
tation I as the existence of the isomorphic function between the SW-model and the explicit
scope defined by the reduced interpretation with respect to the types in the SW-model.

Definition 8.1.8 (IΩ satisfaction relation)

Given a signature Σ, a Σ-formula Ω representing a SW-model, and a Σ-interpretation I, the
satisfaction relation is defined as follows:

I |=Σ Ω if there exists a valuation function KI|Ω(Ω)

This definition can be extended for a set of formulas.

Example 8.1.9

It can be noticed that there is a trivial function KI|Ω(Ω) between the formula Ω representing
a SW-model in Example 8.1.2 and the interpretation I defined in Example 6.3.3.

8.2. Extending CSMOF and QVTR 83

The definition of interpretations, reducts and homomorphisms do not change, thus original
properties of the CSMOF institution with respect to these elements still hold: the existence
of the category Mod(Σ) (Lemma 6.3.7), the functorial properties of reduct (Lemma 6.4.4),
and the existence of the functor Mod (Lemma 6.4.5). Nevertheless, we need to prove the
satisfaction condition, as shown in the following theorem. The complete proof is given in
Appendix D.

Theorem 8.1.10 (IΩ satisfaction condition). Given signatures Σi (i = 1, 2), a signature mor-

phism σ : Σ1 → Σ2, a Σ2-interpretation I, and a Σ1-formula Ω, the following satisfaction

condition holds.

I|σ|=Σ1
Ω iff I |=Σ2

σ(Ω)

Proof sketch. We know by definition that I |σ|=Σ1
Ω holds if there exists a bijective func-

tion K(I|Ω)|σ (Ω), i.e. a bijective mapping variables in Ω such that syntactic links in Ω and
semantic links in (I|Ω)|σ coincide. Since this interpretation is restricted to those types found
in the formula Ω, we can find the same elements (no more or less) in I|σ(Ω). We can have
more elements in I giving an interpretation to types and properties introduced by the signa-
ture morphism. However, these types and properties will not be considered in the translated
formula σ(Ω) and thus they will not be part of I|σ(Ω). In conclusion, there is also a bijective
function K(I|σ(Ω)(σ(Ω)). This implication also holds backwards, and thus, the satisfaction
condition holds.

Given that the satisfaction condition holds we can state that IΩ consisting of signatures, mor-
phisms, formulas, interpretations, reducts, and the satisfaction relation, defines an institution.

8.2 Extending CSMOF and QVTR

We can easily combine this supporting institution IΩ and the original CSMOF and QVTR

institutions, since the only differences between them are the definition of formulas and the
corresponding satisfaction relation. In this context, we can define an extended CSMOF insti-
tution IM+

in which formulas are the disjoint union of both kind of formulas.

Definition 8.2.1 (Extended CSMOF formulas)

Given a CSMOF signature Σ, an extended CSMOF formula is defined as the disjoint union of
CSMOF formulas and IΩ formulas, i.e.

Ψ ::= Φ | Ω

with Φ a CSMOF formula defined in Section 6.2, and Ω a IΩ formula defined in Section 8.1.

84 Chapter 8. Extending the Institutions

Since the definition of signature and signature morphisms coincide in both institutions, the
category Sign is still defined, as in Lemma 6.2.7. Moreover, we proved in Lemma 6.2.8 that
the functor Sen is defined for CSMOF formulas, and in Lemma 8.1.3 we do the same for IΩ

formulas. By using the fact that a IM+

-formula is the disjoint union of both kind of formulas,
we can straightforwardly conclude that the functor Sen is still defined in this extended CSMOF

institution.

Finally, we need to state the satisfaction relation.

Definition 8.2.2 (Extended CSMOF satisfaction relation)

Given a signature Σ, a Σ-formula and a Σ-interpretation I, the interpretation satisfies the
formula in one of the following cases:

• I |=Σ Φ as in Definition 6.4.1

• I |=Σ Ω as in Definition 8.1.8

As with the institution IΩ, the definition of interpretations, reducts and homomorphisms do
not change, thus original properties of the CSMOF institution with respect to these elements
still hold. Moreover, the satisfaction condition holds.

Theorem 8.2.3 (IM+

satisfaction condition). Given signatures Σi (i = 1, 2), a signature

morphism σ : Σ1 → Σ2, a Σ2-interpretation I, and a Σ1-formula ϕ, the following satisfac-

tion condition holds.

I|σ|=Σ1
ϕ iff I |=Σ2

σ(ϕ)

Proof. In the case of ϕ a CSMOF formula, we have that the satisfaction condition holds, as
proved by Theorem 6.4.6. Moreover, in the case of ϕ a IΩ formula, we also have that the
satisfaction condition holds, as proved by Theorem 8.1.10. By using the fact that a IM+

-
formula is the disjoint union of both kind of formulas, we can straightforwardly conclude
that the satisfaction condition holds for the union of them.

Given that the satisfaction condition holds we can state that IM+

defines an extended CSMOF

institution.

8.2. Extending CSMOF and QVTR 85

Example 8.2.4

Consider the formula Ω in Example 8.1.2 and the multiplicity constraints Φ in Example 6.4.2.
We can now use the extended CSMOF institution to prove Ω |=Σ Φ. We need to find an
interpretation I such that I |=Σ Ω implies I |=Σ Φ. The interpretation I in Example 6.3.3
satisfies the SW-model Ω, as shown in Example 8.1.9, and the multiplicity constraints Φ, as
shown in Example 6.4.2.

But the definition of Ω |=Σ Φ is not given for a single interpretation I, i.e. it holds if for all
interpretations I, we have that I |=Σ Ω implies I |=Σ Φ. This holds only for multiplicity
constraints Φ involving the same types defined in a SW-model Ω (those which are not affected
by|Ω). For any other multiplicity constraint we can find an interpretation such that it satisfies
Ω but not Φ, which is correct.

Lets consider an example in which there is a signature with types A, B and C, and associations
between them. There is also an interpretation I with just two related elements, one of type
A and another of type B. We also have two formulas: a multiplicity constraint formula ϕ =
B • rc = 1, i.e. there must be exactly one element of type C related with any element of
type B, and a SW-model formula Ω = aA ⊕ bB ⊕ 〈ra, a, rb, b〉.

We can notice that the interpretation provides a semantic representation for the SW-model,
i.e. I |=Σ Ω but I Ó|=Σ ϕ, since there is no semantic element of type C. This is the counterex-
ample to prove that Ω Ó|=Σ Φ.

The extension of QVTR is very similar. We can define an extended QVTR institution IQ+

in
which formulas are the disjoint union of QVTR formulas and IM+

formulas.

Definition 8.2.5 (Extended QVTR formulas)

Given a QVTR signature Σ, an extended QVTR formula is defined as the disjoint union of
QVTR formulas and extended IM+

formulas, i.e.

Π ::= Ψi | ϕK | ϕR

with Ψi (i = {1, 2}) a IM+

formula, as defined before, indexed by the institution in which it
is defined; ϕK a key constraint, and ϕR a set of interrelated transformation rules, both defined
in Section 7.2.

Since the definition of signature and signature morphisms coincide with the QVTR insti-
tutions, the category Sign is still defined, as in Lemma 7.2.5. Moreover, we proved in
Lemma 7.2.6 that the functor Sen is defined for QVTR formulas, and in the last section we do
the same for extended CSMOF formulas. By using the fact that a IQ+

-formula is the disjoint
union of both kind of formulas, we can straightforwardly conclude that the functor Sen is still
defined in this extended QVTR institution.

Finally, we state the satisfaction relation.

86 Chapter 8. Extending the Institutions

Definition 8.2.6 (Extended QVTR satisfaction relation)

Given a signature Σ, a Σ-formula and a Σ-interpretation I = 〈MM
1 , MM

2 〉, the interpretation
satisfies the formula in one of the following cases:

• 〈MM
1 , MM

2 〉 |=Σ Ψi if MM
i |=Σ Ψi as in Definition 8.2.2.

• 〈MM
1 , MM

2 〉 |=Σ ϕK as in Definition 7.4.1

• 〈MM
1 , MM

2 〉 |=Σ ϕR as in Definition 7.4.1

The definition of interpretations, reducts and homomorphisms is the same as with the QVTR

institution, thus the properties with respect to these elements still hold. Moreover, the satis-
faction condition holds.

Theorem 8.2.7 (IQ+

satisfaction condition). Given signatures Σi (i = 1, 2), a signature

morphism σ : Σ1 → Σ2, a Σ2-interpretation I, and a Σ1-formula ϕ, the following satisfac-

tion condition holds.

I|σ|=Σ1 ϕ iff I |=Σ2 σ(ϕ)

Proof. In the case of ϕ a QVTR formula, we have that the satisfaction condition holds, as
proved by Theorem 7.4.3. Moreover, in the case of ϕ an extended CSMOF formula, we also
have that the satisfaction condition holds, as proved by Theorem 8.2.3. By using the fact
that a IQ+

-formula is the disjoint union of both kind of formulas, we can straightforwardly
conclude that the satisfaction condition holds for the union of them.

Given that the satisfaction condition holds we can state that IQ+

defines an extended QVTR

institution.

Example 8.2.8

Following with the example, we can consider a set of formulas Ψ1 such that it contains a
formula Ω1 corresponding to the class SW-model in Figure 2.7, as defined in Example 8.1.2,
and the set of multiplicity constraint formulas defined in Example 6.2.5. Moreover, we can
consider a set of formulas Ψ2 composed by a formula Ω2 corresponding to the relational SW-
model in Figure 2.7, and the set of multiplicity constraint formulas derived from the relation
metamodel in Figure 2.6, which were not defined in past chapters. We can also have a set of
QVTR formulas ϕ representing keys and transformation rules, as in Example 7.2.7, and an
interpretation M = 〈MM

1 , MM
2 〉 as defined in Example 7.3.2, which satisfies these formulas

as shown in Example 7.4.2.

With all this information we can prove that the QVTR formulas ϕ are implied by the SW-
models in Ψ1 and Ψ2, i.e. Ψ1 ∪ Ψ2 |=Σ ϕ, since there exists the interpretation M such that
M |=Σ Ψi and M |=Σ ϕ.

8.3. Discussion 87

8.3 Discussion

In this section we discuss the definition of the satisfaction relation of SW-model formula with
respect to an interpretation as the existence of the isomorphic function between the SW-model
and the explicit scope defined by the reduced interpretation with respect to the types in the
SW-model.

Formulas of the CSMOF and QVTR institutions represent multiplicity constraints, key con-
straints and transformation rules. These formulas are satisfied, in the corresponding institu-
tions, with respect to a given interpretation representing a specific (or a pair of) SW-model.
However, as discussed in Section 5.4, we need to define an entailment system ⊢ to verify
whether multiplicity constraints, represented as a set of formulas Ψ, are derived from a syn-
tactic representation of a SW-model, represented as a formula Ω, i.e. Ω ⊢Σ Ψ. In the same
way, we also need to verify whether a key constraint (or a set of them), represented as a for-
mula ϕK, is derived from the same Ω, i.e. Ω ⊢Σ ϕK, or whether a transformation rule ϕR (or
the whole model transformation) is derived from a pair of SW-models, i.e. Ω1 ∪ Ω2 ⊢Σ ϕR.

A sound entailment system will ensure semantic entailment, i.e. Ω ⊢Σ Ψ implies Ω |=Σ Ψ.
Semantic entailment is defined by the satisfaction relations of the institutions. As defined in
Section 4.2, Ω |=Σ Ψ requires to find an interpretation I such that I |=Σ Ω implies I |=Σ Ψ.
However, if the interpretation I provides more elements than those used for interpreting the
formula representing the SW-model, we can have some contradictory cases, as shown in the
following example.

Consider a SW-model with two elements of classes A and B and a link between them, and
a multiplicity constraint of cardinality 1-2 between A and B. Also consider an interpretation
with a semantic interpretation of those elements, plus one object of class B with a relation to
the object of class A. We can notice that the interpretation provides a semantic representation
for the SW-model (and other elements) and it also satisfies the multiplicity constraints. How-
ever, it is clear that the multiplicity constraint does not hold in this SW-model, since we have
only one element of class B linked to the element of class A.

In this sense, we need an isomorphism between the SW-model and the interpretation, thus
any isomorphic interpretation I will satisfy Ω |=Σ Ψ and the syntactic relation between Ω
and Ψ will also make sense.

We also need to ensure that the satisfaction condition with respect to Ω holds, i.e. I|σ|=Σ1
Ω

iff I |=Σ2
σ(Ω). The problem is that if Σ2 has more elements that Σ1 we can have the case in

which I|σ|=Σ1
Ω since there is an isomorphism between I|σ and Ω, but I Ó|=Σ2

σ(Ω) since
I can have more elements than I|σ (corresponding to elements in Σ2 which are not in Σ1),
and thus the isomorphism is not possible.

88 Chapter 8. Extending the Institutions

In the last example, we can have another signature Σ2 with the same elements as before
plus another class C. We can define the signature morphism as the identity, and take as an
interpretation the same as before plus another object of class C. In this case, it is clear that
I |σ|=Σ1 Ω since the object of class C does not exists within I |σ . However, it does exists
within I, thus I Ó|=Σ2 σ(Ω) since there is no possible isomorphism.

To solve this problem we took a similar approach as in [CS13b], in which an interpretation is
reduced with respect to the types used in the definition of the SW-model formula Ω, before
checking the satisfaction condition. This defines an explicit scope in which the formula is
verified, and only affects the definition of the satisfaction relation for SW-model formulas,
not the original definitions.

9 Connecting the Institutions with CASL

In this chapter we present the definition of generalized theoroidal comorphisms (introduced
in Chapter 4) from our extended institutions defined in Chapter 8 to the Common Alge-
braic Specification Language (CASL, [CoF04]), a general-purpose specification language.
The importance of defining such comorphisms is that CASL is the main language within the
Heterogeneous Tool Set (HETS, [MML07, Mos05]), a tool meant to support heterogeneous
multi-logic specifications. HETS provides tool support for the verification of MDE elements,
as introduced in Chapter 10, but also for moving inside the graph of logics within HETS and
take advantage of the benefits of each logic.

In Section 9.1 we present CASL and its founding institution. Then, in Section 9.2 we define
the encoding of the CSMOF extension into CASL by means of a generalized theoroidal co-
morphism, and in Section 9.3 we do the same for the QVTR extension. Finally, in Section 9.4
we close this chapter with a discussion of related work. Along the definition we illustrate
the main concepts with the example introduced in Chapter 2. For the sake of readability,
complete proofs are given in Appendix E.

9.1 Borrowing an Entailment System

In Chapter 8 we introduce extensions of the CSMOF and QVTR institutions for the definition
of an entailment system devised to verify whether multiplicity constraints, key constraints
and transformation rules are derived from SW-models. However, as described in Section 5.1
we do not define our own entailment system, but borrow an existent one through the definition
of an institution comorphism (generalized theoroidal comorphisms indeed) to CASL.

89

90 Chapter 9. Connecting the Institutions with CASL

Since CASL has a sound proof calculus for entailment, and our comorphisms admits borrow-
ing of entailment, we can translate our proof goals using the comorphism into CASL and use
its proof calculus also for proving entailment concerning our extended CSMOF and QVTR

specifications. As explained in Section 8.3, since the entailment system is sound, we also
have a connection with the model-theoretic world defined by the satisfaction relation of the
extended CSMOF and QVTR institutions ensuring the desired properties.

9.1.1 Common Algebraic Specification Language

The institution underlying CASL is the sub-sorted partial first-order logic with equality and
constraints on sets SubPCFOL= [MHST03].

Signatures are many-sorted algebraic signatures enriched with predicate and function sym-
bols of the form (S, TF, PF, P, ≤S) where S is a set (of sort names), TF and PF are S∗×S-
sorted disjoint families of total and partial function symbols, respectively, P = (Pw)w∈S∗ is
a family of predicate symbols, and ≤S is a reflexive and transitive subsort relation (embed-
ding) on the set S of sorts. Signature morphisms consist of maps taking sort, function and
predicate symbols respectively to a symbol of the same kind, and they must preserve subsort-
ing, typing of function and predicate symbols and totality of function symbols. Signatures
and signature morphisms can be extended with a total injection function symbol inj, a partial
projection function symbol pr between sorts, and a unary membership predicate ∈s.

Sentences are the usual partial many-sorted first-order logic formulas together with sort gen-
eration constraints. Many-sorted first-order logic formulas are built out from atomic formulas
using the standard propositional connectives (∧,∨,⇒,⇔,¬) and quantifiers (∀, ∃). The atomic
formulas are applications of qualified predicate symbols to argument terms (variables or ap-
plication of functions) of appropriate sorts, assertions about the definedness of fully-qualified
terms, or existential t

e
= t′ and strong t

s
= t′ equations between fully-qualified terms of

the same sort, the logical constants true and false, and variables Xs = (Xs)s ∈S . Sort
generation constraints are triples (S′, F ′, σ′) such that σ′ : Σ′ → Σ and S′ and F ′ are re-
spectively sort and function symbols of Σ′, stating that a given set of sorts is generated by
a given set of functions. Formulas are translated along a signature morphism ϕ : Σ → Σ′′

by replacing symbols as prescribed by ϕ while sort generation constraints are translated by
composing the morphism σ′ in their third component with ϕ.

Models are many-sorted first-order structures, i.e. consisting of a non-empty carrier set |M |s
for each sort name s ∈ S, a partial function (or total) fM for each function symbol f ∈ PF
(or TF), and a relation pM for each predicate symbol p ∈ Pw, w ∈ S∗, satisfying some
axioms with respect to embedding, projection, and membership. Homomorphisms between
models M and M ′ consist of a function hs : |M |s → |M ′|s for each s ∈ S preserving not
only the values of functions but also their definedness, and preserving the truth of predicates.
Reducts are defined by interpreting symbols of the signature in the reduct in the same way
that their images under the signature morphism are interpreted.

9.2. Encoding CSMOF into CASL 91

Finally, the satisfaction relation is basically the usual satisfaction of a partial first-order for-
mula in a first-order structure. A sort generation constraint (S′, F ′, σ′) holds in a model M if
the carriers of the reduct of M along σ′ of the sorts in S′ are generated by function symbols in
F ′. A sentences is satisfied in a model if it is satisfied with respect to all variable valuations.

9.2 Encoding CSMOF into CASL

We define a generalized theoroidal institution comorphism between the extended CSMOF

institution IM+

defined in Chapter 8 and IC for SubPCFOL=, i.e.

• a functor Φ : ThIM+

→ ThIC

, with Th the category of theories and theory morphisms

• a natural transformation β : (Φ)op; ModIC → ModIM+

, with Mod : Th → Cat the
functor giving the category of models of a theory.

We use generalized theoroidal comorphism since we introduce in a CASL signature some
functions representing typed elements (of a SW-model) contained within extended CSMOF

formulas. This is not mandatory, but helpful in order to construct a more optimal and readable
CASL representation, without the need of existential and equality axioms.

Given a theory T = 〈Σ, Ψ〉 ∈ ThIM+

, the functor Φ is defined in three steps: first, Σ
is translated into a CASL theory, then a SW-model formula in Ψ is translated into CASL

formulas and some functions are added to the CASL signature of the same theory, and finally
multiplicity constraint formulas in Ψ are translated into CASL formulas of the same theory.

The class hierarchy represented within a IM+

signature is basically translated into a set of
sorts complying with a subsorting relation, properties are translated into predicates, and an
axiom is introduced to relate predicates derived from bidirectional properties. Formally, every
IM+

signature Σ = (C, α, P) with C = (C, ≤C) and P = (R, P) is translated into a theory
((S, TF, PF, P, ≤S), E) such that:

• For every class name c in C, there is a sort name c ∈ S.

• For every c1 ≤C c2 with c1, c2 ∈ C, we have c1 ≤S c2 with c1, c2 ∈ S.

• For every c ∈ α there is an axiom in E stating that c is the disjoint embedding of it
subsorts (sort generation constraint).

• For every 〈r1 : c1, r2 : c2〉 ∈ P , there are two predicates r1 : c2 × c1 and r2 : c1 ×
c2 ∈ Π, and an axiom in E stating the equivalence of the predicates, i.e. r1(x, y)
iff r2(y, x) with x ∈ S1, y ∈ S2. In the case of predicates with the default role
name _, we only generate the predicate in the opposite direction of the default role,
i.e. if 〈_ : c1, r2 : c2〉 or 〈r1 : c1, _ : c2〉 we only have r2 : c1 × c2 or r1 : c2 × c1,
respectively.

92 Chapter 9. Connecting the Institutions with CASL

We consider the existence of a built-in extension of the institution IC, e.g. the CASL standard
library. In this extension, the sets of functions TF and PF contain those functions defined
for built-in types (like ≤ for integers and + for strings).

Example 9.2.1

The signature in Example 6.2.3 corresponding to the class metamodel in Figure 2.6 is trans-
lated into a theory ((S, TF, PF, P, ≤S), E) such that:

S = {UMLModelElement, Package, Classifier, PrimitiveDataType,
Attribute, Class, String}

≤S = {Package ≤S UMLModelElement,
Attribute ≤S UMLModelElement,
Classifier ≤S UMLModelElement,
Class ≤S Classifier, PrimitiveDataType ≤S Classifier}

P = { elements : Package × Classifier, namespace : Classifier × Package,
name : UMLModelElement × String,
kind : UMLModelElement × String,
attribute : Class × Attribute, owner : Attribute × Class,
type : PrimitiveDataType × Attribute}

Since UMLModelElement ∈ α, there is a sort generation constraint in E stating that
UMLModelElement is the disjoint embedding of its subsorts Attribute, Classifier, and
Package. There are also axioms stating the equivalence of the predicates derived from bidi-
rectional properties, e.g. ∀ x : Package, y : Classifier. elements(x, y) ⇔ namespace(y, x)

In the case of a SW-model formula Ω, each variable within the formula (representing an
object) is translated into a total function of the corresponding type. We also add several
axioms in order to represent implicit constraints in the IM+

institution which are not neces-
sarily kept when representing the basic elements in SubPCFOL=, as for example the need
of distinguishing between two different variables (functions in the target institution) and the
specification of the cases in which a property holds (when there is a syntactic link represented
within the formula Ω). Formally,

• For every xc ∈ υ(Ω) there is a total function (constant) x : c ∈ TF with c ∈ S

• For every 〈r1, xc1 , r2, yc2〉 ∈ ω(Ω) with 〈r1 : c1, r2 : c2〉 ∈ P , there is an axiom in
E stating that the predicate r2 : c1 × c2 holds for x : c1, y : c2 ∈ TF . Notice
that the opposite direction holds for the equivalence of the predicates stated during the
signature translation.

• E has some additional axioms:

– Distinguishability: {xi Ó= xj | i Ó= j. xi, xj : c ∈ TF} for all c ∈ S

– Completeness of elements: for all x : c we have that x = oi for some oi : c ∈ TF .

9.2. Encoding CSMOF into CASL 93

When c is a non-abstract class having sub-classes, completeness must be defined
for oi : c′ ∈ TF for all c′ ≤ c. These are sort generation constraints.

– Completeness of relations: for all x : c1, y : c2 we have that r(x, y) only if
x = o1 and y = o2 for some o1 : c1, o2 : c2 ∈ TF for which r(c1, c2) hold.

The “distinguishability” and “completeness of elements” axioms correspond to the so-called
“no junk, no confusion” principle: there are no other values than those denoted by the func-
tions x : c ∈ TF , and all distinct functions denote different values.

Example 9.2.2

The variables within the class SW-model in Figure 2.7 is translated into the following set of
total functions

TF = {p : Package, c : Class, a : Attribute, pdt : PrimitiveDataType
Package : String, ID : String, Persistent : String, ...}

Moreover, for every link there is an axiom stating that the corresponding predicate holds for
the functions corresponding to the translated elements within the link. This axiom can be
stated in conjunction with the “completeness of relations” constraint as follows:
∀ x : Package, y : Classifier. elements(x, y) ⇔ (x = p ∧ y = c) ∨ (x = p ∧ y = pdt)

The “completeness of elements” constraint is a sort generation constraint such that for a
given sort representing a type, elements of that sort are one of the total functions representing
objects of that type. For example, in the case of the non-abstract class Classifier which has
sub-classes, we have the following axiom: ∀ x : Classifier. x = c ∨ x = pdt.

Finally, the “distinguishability” constraint must be stated between elements of sorts related
by the subsorting relation (there is no confusion between elements of non-related sorts). For
example, in the case of the elements within the UMLModelElement hierarchy, we have the
following constraint:
¬ (a = c) ∧ ¬ (a = p) ∧ ¬ (a = pdt) ∧ ¬ (c = p) ∧ ¬ (c = pdt) ∧ ¬ (p = pdt)

For the translation of a multiplicity constraint formula we define the following predicates for
constraining the size of the set of elements in a relation with some other:

• min(n, R : D × C) holds if for all y : D exists x1, ..., xn : C such that R(y, xi) for
all i = {1..n}, and xi Ó= xj for all i = {1..n − 1}, j = i + 1.

• max(n, R : D × C) holds if for all y : D and x1, ..., xn+1 : C, Rel(y, xi) for all
i = {1..n + 1} implies there is some xi = xj i = {1..n}, j = i + 1

The first predicate states that there are at least n different elements related to every element y
by the relation R, which represents a minimal cardinality for the relation. The other predicate
states that there are no more than n elements related to any element y by the relation R, which

94 Chapter 9. Connecting the Institutions with CASL

represents a maximal cardinality for the relation. Using these predicates, we can translate any
multiplicity constraint formula as follows:

• n ≤ #D • R is translated into min(n, R : D × C)

• #D • R ≤ n is translated into max(n, R : D × C)

• #D • R = n is translated into min(n, R : D × C) ∧ max(n, R : D × C)

such that Q : C × D, R : D × C ∈ Π are the predicates generated by the functor
Φ(〈R : C, Q : D〉). In the case of C•Q the predicate Q : C×D is used instead of R : D×C.

Example 9.2.3

The formula #(UMLModelElement • name) = 1 in Example 6.2.5 is translated into the
conjunction of

min(1, name : UMLModelElement × String) =

∀ x1 : UMLModelElement. ∃ y1 : String. name(x1, y1)

max(1, name : UMLModelElement × String) =

∀ x1 : UMLModelElement, y2, y1 : String.

(name(x1, y1) ∧ name(x1, y2)) ⇒ y1 = y2

Moreover, the formula #(Class • attribute) ≤ 2 is translated into

max(2, attribute : Class × Attribute) =

∀ x1 : Class, y3, y2, y1 : Attribute.

(attribute(x1, y1) ∧ attribute(x1, y2) ∧ attribute(x1, y3)) ⇒
(y1 = y2 ∨ y1 = y3 ∨ y2 = y3)

Now we can define the translation of a theory morphism in IM+

, i.e. how signature mor-
phisms are translated. Given Σi = (Ci, αi, Pi) (i = 1, 2) with Ci = (Ci, ≤Ci

) and Pi =
(Ri, Pi), and a signature morphism σ : Σ1 → Σ2 = 〈σT , σR〉, its translation Φ(σ) is a IC

signature morphism 〈σS , σF , σP 〉 defined as follows:

• σS(Φ(c)) = Φ(σT (c)) for every c ∈ Ci

• the subsort preservation condition as well as the disjoint embedding constraint of Φ(σ)
follow from the similar conditions in σ.

• σP (r1(c2, c1)) = σR(r1)(σT (c2), σT (c1)), and
σP (r2(c1, c2)) = σR(r2)(σT (c1), σT (c2)), for every 〈r1 : c1, r2 : c2〉 ∈ P1 and
r1(c2, c1), r2(c1, c2) the predicates generated from Φ(〈r1 : c1, r2 : c2〉).

9.2. Encoding CSMOF into CASL 95

For each morphism between formulas in IM+

, i.e. the canonical application of a signature
morphism to every element in the formula, there is a morphism between formulas in IC

which is the canonical application of the translated signature morphism to every element in
the translated formula. We have that the extension of IM+

signature morphisms to theories
σ : 〈Σ, Ψ〉 → 〈Σ2, Ψ2〉 is a theory morphism since Ψ2 |=Σ2 σ(Ψ). We can prove that Φ(σ)
is also a theory morphism. Complete proof is given in Appendix E.

Lemma 9.2.4. Given IM+

signatures Σi, and a theory morphism σ : Σ1 → Σ2, its transla-

tion Φ(σ) is a IC theory morphism.

Proof sketch. We know that given a set of Σ1-formulas Ψ, and a set of Σ2-formulas Ψ2 they
comply with the theory morphism σ : 〈Σ, Ψ〉 → 〈Σ2, Ψ2〉 if Ψ2 |=Σ2

σ(Ψ). In such case
we have an interpretation I satisfying Ψ2, i.e. determining a concrete SW-model which
satisfies the multiplicity constraints, which also satisfies σ(Ψ). These formulas are derivable
multiplicity constraints or same structured SW-models with potentially less types (remember
that there must be an isomorphism between the SW-model and the explicit scope defined
by the reduced interpretation with respect to the types in the SW-model). The translation Φ
not only maps types and roles in a consistent way, but also adds axioms constraining the IC

models that must be used for checking the satisfaction relation (e.g. the “distinguishability”
and “completeness of elements” axioms). In this sense, the interpretation satisfying Φ(Ψ) and
Φ(Ψ2) must have the same structure that the original I. Thus, we have that Φ(Ψ2) |=Φ(Σ2)

Φ(σ)(Φ(Ψ)) also hold, and in conclusion Φ(σ) is a IC theory morphism.

We can prove that Φ is indeed a functor. Complete proof is given in Appendix E.

Lemma 9.2.5. The function Φ : ThIM+

→ ThIC

is a functor from the category of IM+

theories and theory morphisms to the category of theories in SubPCFOL=.

Proof sketch. By definition we have that domain and codomain of the image of a IM+

sig-
nature morphism are the images of domain and codomain, respectively, of the signature mor-
phism. We also have that the translation of a signature morphism changes sorts and predicates
consistently with respect to the change of types and roles within the signature morphism. In
this sense, the application of the translation of composed signature morphisms to a translated
SubPCFOL= formula gives the same result that the independent application of the transla-
tion of each signature morphism to such formula. Thus, composition is preserved. Moreover,
the identity signature morphism idσ in SignM is a tuple of identity functions for types and
roles, and its translation Φ(idσ) gives an identity signature morphism in SubPCFOL=.
Thus, identities are preserved. Finally, Φ is a functor.

96 Chapter 9. Connecting the Institutions with CASL

The semantic part of the comorphism corresponds to the definition of the natural transforma-
tion β, which involves the translation of IC interpretations and homomorphisms into IM+

interpretations and homomorphisms.

Given a IM+

theory T = 〈Σ, Ψ〉 ∈ ThIM+

, a IC model M of its translated theory (Σ′, E) is
translated into a Σ-interpretation denoted I = (VT

C(O), A) such that:

• Each non-empty carrier set |M |s with s ∈ S, is translated into the set Vc in the object
domain VT

C(O) such that s is the translation of type c ∈ T (C). Since the functor Φ
translates every c ∈ α into an axiom in E stating that c is the disjoint embedding of
it subsorts, a valid |M |c =

⋃

c1≤Sc |M |c1 . This property ensures that c2 ∈ α implies
Oc2

=
⋃

c1≤C c2
Oc1

.

• Each relation pM of a predicate symbol r2(c1, c2) ∈ P derived from the translation of
a predicate 〈r1 : c1, r2 : c2〉, is translated into the relation pI ⊆ Vc1

× Vc2
∈ A.

Given a IM+

theory T = 〈Σ, Ψ〉 ∈ ThIM+

, M and M′ be two IC models of its translated
theory (Σ′, E), and let h′ : M → M′ be a Σ′-homomorphism. Let us denote I = β(M)
and I ′ = β(M′) and let us define h : I → I ′ as follows: for any c ∈ T (C), hc = h′

Φ(c).
This is a homomorphism:

• Since h′ gives different carrier sets for each sort, we have that hc(v) ∈ O′
c forall

v ∈ Oc, and hc(v) ∈ V ′
c \O′

c forall v ∈ Vc\Oc

• Since h′ preserves the values of relations, we have that (v1, v2) ∈ pI iff
(hc1

(v1), hc2
(v2)) ∈ pI′

We can prove that β is indeed a natural transformation (complete proof in Appendix E).

Lemma 9.2.6. The function β : (Φ)op; ModIC → ModIM+

, with Mod : Th → Cat the

functor giving the category of models of a theory, is a natural transformation, i.e. a family of

arrows βA : (Φ)op; ModIC

(A) ⇒ ModIM+

(A), one for each theory A of SignM, such that,

for every theory morphism σ : A → B it holds: ModIM+

◦ βB = βA ◦ (Φ)op; ModIC

Proof sketch. Given any model in ModIC

(Φ(B)), the translation βB gives an interpretation
such that: each non-empty carrier set |M |s is translated into the set Vc such that s is the
translation of type c, and each relation pM of a predicate symbol derived from the translation

of a predicate is translated into a relation. By definition of reduct, the application of ModIM+

to this interpretation gives the same interpretation. In the other side, the reduct ModIC

(Φ(σ))
gives an interpretation of symbols of the translated signature A, and it composition with the
translation βA produces the same interpretation as before, since the carries sets |M |s and the
relations pM are those derived from the translation of elements in the translates signature,
which was reduced to the elements in the signature A. In the case of homomorphisms, its
translation is defined in conformance with the original homomorphism, and the reduct gives
the same homomorphism. Finally, β is a natural transformation.

9.3. Encoding QVTR into CASL 97

There is a final result which states that the comorphism admits model expansion, and thus
admits borrowing of entailment and refinement for theories. The comorphism admits model
expansion since β is pointwise surjective on objects, i.e. each model of a IM+

-theory has
a corresponding model in the translated theory within the IC institution. Just consider any
model (VT

C(O), A), we can construct a IC model such that |M |s corresponds to Vc with s the
translation of type c ∈ T (C), and for each relation 〈r1 : c1, r2 : c2〉I ∈ A a pair of relations
pM (or just one if the relation is unidirectional). Since they are equivalent, if the model
satisfies the IM+

-theory, it also satisfies the translated theory.

9.3 Encoding QVTR into CASL

We define a generalized theoroidal institution comorphism between the extended QVTR in-
stitution IQ+

defined in Chapter 8 and ICfor SubPCFOL=, i.e.

• a functor Φ : ThIQ+

→ ThIC

, with Th the category of theories and theory morphisms

• a natural transformation β : (Φ)op; ModIC → ModIQ+

, with Mod : Th → Cat the
functor giving the category of models of a theory.

As with the encoding of extended CSMOF, we use generalized theoroidal institution comor-
phism since we introduce in the CASL signature some elements in order to construct a more
optimal and readable CASL representation. In this case we will define predicates (within the
CASL signature) corresponding to transformation rules (within a IQ+

formula) such that it is
possible to call a rule just referencing the predicate.

Given a theory T = 〈Σ, Ψ〉 ∈ ThIQ+

, the functor Φ is defined in three steps: first, Σ is
translated into a CASL theory, then a key formula in Ψ is translated into a CASL formula and
a predicate of the same theory, and finally transformation rule formulas in Ψ are translated
into CASL formulas and some predicates of the same theory. The translation of IM+

formulas
which can also be within Ψ is the same as in the last chapter.

Every IQ+

signature 〈ΣM
1 , ΣM

2 〉 is translated by the functor Φ into a theory such that each
signature ΣM

i is translated as defined in the encoding of extended CSMOF into CASL. Notice
that since there are no name clashes between the signatures, the result is the disjoint union
of both translations. As said before with respect to the expressions language, we assume that
the institution IE has a correspondence (via a comorphism) with the built-in extension of the
institution IC introduced in the last section.

Example 9.3.1

The functor Φ translates the signature in Example 7.2.2 into a theory
((S, TF, PF, P, ≤S), E) such that the signatures ΣM

i are translated as in Example 9.2.1.

98 Chapter 9. Connecting the Institutions with CASL

IQ+

formulas representing keys and transformation rules are translated into named first-
order formulas. Formulas will be of the form P ⇔ F such that P is the predicate naming
the formula, and F the conditions which must hold in order to satisfy a key constraint ϕK or
transformation ϕR.

In the case of a formula ϕK, the formula F defines that there are not two different instances
of that class with the same combination of properties conforming the key of such class. For-
mally, every formula ϕK = 〈C, {r1, ..., rn}〉 is translated into

• a predicate key_C naming a key constraint definition

• a formula of the form key_C ⇔ ∀x, y ∈ C, vj : Tj . x Ó= y → ∧

i,j ri(x, vj) →
∨

i,j ¬ri(y, vj), with ri(_, _) one of the two predicates obtained from the translation of
the property 〈r1 : C1, r2 : C2〉 ∈ Pi such that one of the roles is of type C and the other
of type Tj . In the case that ri is the role of C in the property (because the opposite role
is not navigable), we use ri(vj , x) instead of ri(x, vj).

Example 9.3.2

Key formulas in Example 7.2.7 are translated as follows. First, we generate 0-arity predicates
for each key of name key_C, e.g. key_Table and then the following expressions are added.

• Key 〈Table, {name, schema}〉 is translated into

key_Table ⇔
∀x, y ∈ Table, v1 : String, v2 : Schema.

x Ó= y → name(x, v1) ∧ schema(x, v2)

→ ¬name(y, v1) ∨ ¬schema(y, v2)

• Key 〈Column, {name, owner}〉 is translated into

key_Column ⇔
∀x, y ∈ Column, v1 : String, v2 : Table.

x Ó= y → name(x, v1) ∧ owner(x, v2)

→ ¬name(y, v1) ∨ ¬owner(y, v2)

• Key 〈Key, {name, owner}〉 is translated into

key_Key ⇔
∀x, y ∈ Key, v1 : String, v2 : Table.

x Ó= y → name(x, v1) ∧ owner(x, v2)

→ ¬name(y, v1) ∨ ¬owner(y, v2)

9.3. Encoding QVTR into CASL 99

In the case of a formula ϕR, the formula F declares that top-level relations must hold, and
each individual rule is translated into the set of conditions stated by the checking semantics
of QVT-Relations, which was explained in Chapter 2, i.e. a relation holds if for each valid
binding of variables of the when clause and variables of domains other than the target do-
main, that satisfy the when condition and source domain patterns and conditions, there must
exist a valid binding of the remaining unbound variables of the target domain that satisfies
the target domain pattern and where condition.

Formally, every rule Rule = 〈top, VarSet, ParSet, Patterni (i = 1, 2), when, where〉 ∈ ϕR

is translated into:

• a predicate Rule : T1 × ... × Tn ∈ P with ParSet = {T1, .., Tn}, and a predicate
Top_Rule without parameters (only if top = true), naming the formula

• a formula ∀v1 : T1, ..., vn : Tn. Rule(v1, ..., vn) ⇔ F such that Rule(v1, ..., vn) is the
predicate defined before. In the case of a top rule, there is also a formula Rule ⇔ F .
For the formula F there are two cases corresponding to the checking semantics of
QVT-Relations:

1. If WhenVarSet = ∅

∀ x1, ..., xn ∈ (VarSet\2_VarSet)\ParSet. (Φ(Pattern1) →
∃ y1, ..., ym ∈ 2_VarSet\ParSet. (Φ(Pattern2) ∧ Φ(where)))

2. If WhenVarSet Ó= ∅

∀ z1, ..., zo ∈ WhenVarSet\ParSet. (Φ(when) →
∀ x1, ..., xn ∈ (VarSet\(WhenVarSet ∪ 2_VarSet))\ParSet.

(Φ(Pattern1) →
∃ y1, ..., ym ∈ 2_VarSet\ParSet.

(Φ(Pattern2) ∧ Φ(where))))

The translation Φ(Patterni) (i = 1, 2) of Patterni = 〈Ei, Ai, P ri〉 is the formula

∧

r2(x, y) ∧ Φ(Pri)

such that r2(x, y) is the translation of predicate p = 〈r1 : C, r2 : D〉 for every rel(p, x, y) ∈
Ai with x : C, y : D; and Φ(Pri) is the translation of the IE-formula into CASL. Moreover,
the translation Φ(when) of when = 〈whenc, whenr〉 is the formula

∧

Rule(v) ∧ Φ(whenc)

100 Chapter 9. Connecting the Institutions with CASL

such that Rule(v) is the parametric invocation of the rule (Rule, v) ∈ whenr, and Φ(whenc)
is the translation of the IE-formula into CASL. The translation Φ(where) is similar.

Example 9.3.3

For each rule in Example 7.2.7 there is a predicate defining the rule, as follows:

• Top_PackageToSchema

• PackageToSchema : Package × Schema

• Top_ClassToTable

• ClassToTable : Class × Table

• AttributeToColumn : Class × Table × String

The top and non-top versions of PackageToSchema are translated into the formulas stating
that for each package there must be a schema with the same name.

Top_PackageToSchema ⇔
∀ p : Package, pn : String.

name(p, pn) → ∃ s : Schema. name(s, pn)

∀p : Package, s : Schema. PackageToSchema(p, s) ⇔
∀ pn : String.

name(p, pn) → name(s, pn)

Notice the difference between these two versions: in the second case the variables p and s are
in the set of parameters ParSet. Moreover, the when and where clauses are empty, thus they
trivially hold (i.e. true formulas).

The non-top version of ClassToTable is translated into a formula stating that the relation
holds if for every package and schema satisfying the relation PackageToSchema, there is
a persistent class within that package and a table in the corresponding schema with the same
class name, a column within such table which is defined as a default key, and the attributes
and columns of both must be in the relation AttributeToColumn.

9.3. Encoding QVTR into CASL 101

∀c : Class, t : Table. ClassToTable(c, t) ⇔
∀ p : Package, s : Schema. PackageToSchema(p, s) →

∀ cn : String, prefix : String.

namespace(c, p) ∧ name(c, cn) ∧ kind(c, Persistent) →
∃ cl : Column, k : Key.

schema(t, s) ∧ name(t, cn) ∧ column(t, cl)∧
key(t, k) ∧ name(cl, T ID) ∧ type(cl, NUMBER)∧
name(k, PK) ∧ column(k, cl)∧
AttributeToColumn(c, t, prefix) ∧ prefix = EMPTY

Pattern1 = 〈E1, A1, P r1〉 in ClassToTable with
E1 = {c, p}
A1 = {rel(〈namespace : Package, elements : Classifier〉 , p, c)}

Pr1 = name(c,cn) AND kind(c,Persistent)

was translated into the formula namespace(c, p) ∧ ρSen(Pr1) since namespace(c, p) is the
translation of the predicate pr = 〈namespace : Package, elements : Classifier〉 for the rela-
tion rel(pr, p, c) ∈ Ai, and ρSen(Pr1) was trivially translated since we are using FOL= as
the expressions language. Moreover, AttributeToColumn(c,t,prefix) is the para-
metric invocation of the rule (AttributeToColumn, {c, t, prefix}) in the where clause.

For each signature morphism 〈σM
1 , σM

2 〉, there is a signature morphism which is the disjoint
union of the translations of σM

i . The result is a signature morphism since the translations of
σM

i preserve the subsort relation, as well as the overloading relations and the symbols used
for embedding, projection, and membership. For each morphism between formulas in IQ+

,
i.e. the canonical application of a signature morphism to every element in the formula, there
is a morphism between formulas in ICTh

which is the canonical application of the translated
signature morphism to every element in the translated formula. Moreover, both signature
morphisms are theory morphisms.

Lemma 9.3.4. Given IQ+

signatures Σi, and a theory morphism σ : Σ1 → Σ2, its transla-

tion Φ(σ) is a IC theory morphism.

Proof sketch. Reasoning in the same way as in Lemma 9.2.4, we have that given a set
of Σ1-formulas Ψ, and a set of Σ2-formulas Ψ2 they comply with the theory morphism
σ : 〈Σ, Ψ〉 → 〈Σ2, Ψ2〉 if Ψ2 |=Σ2

σ(Ψ). In such case we have a pair M of interpre-
tations satisfying Ψ2, i.e. determining concrete SW-models which satisfy the multiplicity
constraints and key constraints; which also satisfies σ(Ψ), i.e. these formulas are derivable
multiplicity constraints, same structured SW-models with potentially less types, or the same
key constraints. The translation Φ maps types and roles in a consistent way, and also adds

102 Chapter 9. Connecting the Institutions with CASL

axioms constraining the IC models. In this sense, the pair of models satisfying Φ(Ψ2) and
Φ(σ)(Φ(Ψ)) must have the same structure than in the original interpretation M. Thus, we
have that Φ(Ψ2) |=Φ(Σ2) Φ(σ)(Φ(Ψ)) also hold. If we consider now transformation rules,
we have that such rules does not constraint each individual interpretation but the relation be-
tween them. Reasoning as before, rules in Ψ2 can be more specific than those in Ψ, such that
any pair of interpretations satisfying the relation defined by those rules in Ψ2 also satisfies
the relation defined by σ(Ψ). Since the translation Φ also constraints the pair of models with
respect to the transformation rules, we have that Φ(Ψ2) |=Φ(Σ2) Φ(σ)(Φ(Ψ)) also hold with
the inclusion of transformation rules. Thus, Φ(σ) is a IC theory morphism.

We can prove that Φ is indeed a functor. Complete proof is given in Appendix E.

Lemma 9.3.5. The function Φ : ThIQ+

→ ThIC

is a functor from the category of IQ+

theories and theory morphisms to the category of theories in SubPCFOL=.

Proof sketch. Using the fact that signature morphisms are defined as the disjoint union of ex-
tended CSMOF signature morphisms, in which composition is preserved, and that the trans-
lation is defined componentwise, we can conclude that the functor preserves the composition
of signature morphisms. Reasoning in the same way, we have that the translated signature
morphism preserves the identities in SubPCFOL=. Thus, Φ is a functor.

We need now to define how the natural transformation β is defined, i.e. how IC models and
homomorphisms are translated into IQ+

interpretations and homomorphisms.

Given a IQ+

theory T = 〈Σ, Ψ〉 ∈ ThIM+

, a model M of its translated theory (Σ′, E) is
translated into a Σ-model M = 〈MM

1 , MM
2 〉 by constructing disjoint models with an inter-

pretation of elements for each corresponding IM+

theory. Each MM
i (i = 1, 2) is defined as

in Section 9.2.

Moreover, given two models of its translated theory (Σ′, E), and let h′ : M → M′ be a
Σ′-homomorphism. Let us denote N = ρMod(M) and N ′ = ρMod(M′) and let us define
h : N → N ′ as the disjoint translation of h′, as in Section 9.2, with respect to the elements
in the corresponding signatures. The disjoint union is a homomorphism since each translated
function is a homomorphism.

We can prove that β is indeed a natural transformation (complete proof in Appendix E).

9.4. Related Work 103

Lemma 9.3.6. The function β : (Φ)op; ModIC → ModIQ+

, with Mod : Th → Cat the

functor giving the category of models of a theory, is a natural transformation, i.e. a family of

arrows βA : (Φ)op; ModIC

(A) ⇒ ModIQ+

(A), one for each theory A of SignQ, such that,

for every theory morphism σ : A → B it holds: ModIQ+

◦ βB = βA ◦ (Φ)op; ModIC

Proof sketch. Given any model in ModIC

(Φ(B)), the translation βB gives a pair of disjoint

models, and the application of ModIQ+

gives the same pair of models. In the other side, the

reduct ModIC

(Φ(σ)) gives an interpretation of symbols of the translated signature A, and
the translation βA just divide the model into two disjoint ones with respect to the two parts
of the signature A. Thus, the property holds. In the case of homomorphisms the property
also holds, since the translation of a homomorphism is defined as a disjoint translation with
respect to the elements in the corresponding signatures, and the reduct of a homomorphism
is defined componentwise. Finally, β is a natural transformation.

Since each model of a IM+

theory has a correspondent model in the translated IC theory,
as proved in Section 9.2, the property holds for the disjoint union of models. Thus, the
comorphism also admits model expansion, and thus borrowing of entailment for theories.

9.4 Related Work

There are works representing the semantics of UML class diagrams with first-order logic, as
in [SZ09]. Since there are no so many alternatives for this representation, these works have
similarities with our representation of extended CSMOF into CASL. In particular, the work
in [SZ09] is the nearest to ours from which we take many aspects, e.g. the “distinguishabil-
ity” and “completeness of elements” axioms. In [TBHW99] the authors explain how class
diagrams with OCL constraints can be translated into CASL. However, their definition is
informally presented, and not in terms of a comorphism. In [JKMR12] the authors define a
comorphism from UML class diagrams with rigidity constraints to ModalCASL (an exten-
sion of CASL). Since our IM+

institution is an adaptation of the institution for UML class
diagrams, the comorphisms have some aspects in common, as the translation of formulas,
but without the modal logic particularities. In [Fav09] the authors present a formalization of
metamodels in the NEREUS language and they explain how this formalization is translated
into CASL. The final representation differs a lot from our, since for example each class and
association is represented as a CASL specification. Although ATL is another transformation
language, it is somehow related to QVT-Relations since it was originally developed to answer
the QVT Request For Proposal. In this sense, the mappings from ATL to constructive type
theory [CLST10b] and first-order logic [BEC12] have some similarities with our mapping
since they are also expressed as ∀∃-formulas following the standard checking semantics.

10 Tool Support with HETS

In this chapter we detail the implementation of a prototype of our environment using the
Heterogeneous Tools Set (HETS, [MML07, Mos05]), i.e. an implementation of the extended
CSMOF and QVTR institutions introduced in Chapter 8, and of the generalized theoroidal
comorphisms defined in Chapter 9. All these together give us the possibility of performing
the heterogeneous verification of a model transformation, as described in Chapter 5. The
prototype is already included in the HETS distribution that can be found in [Mos13b].

In Section 10.1 we present HETS and how institutions and comorphisms are handled within
the Tool, and in Section 10.2 we give details on the implementation of our environment. Then,
in Section 10.3 we present how the environment works by illustrating the main concepts with
the example introduced in Chapter 2. Finally, in Section 10.4 we explore the capabilities of
the environment with respect to verification aspects introduced in Chapter 3.

10.1 Heterogeneous Tools Set

As introduced in [MML07, Mos05], HETS is an open source software providing a general
framework for formal methods integration and proof management. HETS acts like a moth-
erboard where different expansion cards can be plugged in, the expansion cards here being
individual logics (with their analysis and proof tools) as well as logic translations.

Based on the Theory of Institutions, HETS supports a variety of different logics (defined
as institutions), as shown in Figure 10.1. Some of them are: CASL, an extension of many
sorted first-order logic with partial functions and subsorting; CoCASL [MSRR06], a coalge-
braic extension of CASL, suited for the specification of process types and reactive systems;
ModalCASL [Mos13c], an extension of CASL with modalities; Haskell [Jon02], a pure and
strongly typed functional programming language; ISABELLE [NPW02], an interactive the-
orem prover for higher-order logic; and Maude [CDE+02], a rewriting system for first-order

105

106 Chapter 10. Tool Support with HETS

logic. Various of these logics have tool support, e.g. the automated theorem proving system
SPASS [WBH+02] for first-order logic with equality.

Figure 10.1: Almost complete logic graph of HETS

The architecture of HETS is depicted in Figure 10.2. HETS consists of logic-specific tools for
the parsing and static analysis of basic theories written in the different involved logics. The
internal representation of a Logic is provided by a Haskell multiparameter type class Logic
with functional dependencies [JJM97]. This class allows representing signatures, signature
morphisms, sentences, abstract syntax of basic specifications etc., and functions for parsing,
printing, static analysis, and proving. Proof support for the other logics can be obtained by
using logic translations by means of implementing comorphisms within the logic graph.

For heterogeneous specifications there is the heterogeneous CASL (HetCASL, [Mos13a]) lan-
guage, which allows to combine and rename specifications (written in any logic of HETS),
hide parts thereof, and also translate them to other logics. The logic graph is flattened
into a Grothendieck logic (in Haskell) which is formally based on a Grothendieck institu-
tion [Dia02], with a proof calculus for heterogeneous specifications providing HetCASL with
a sound basis. There are also generic heterogeneous tools for parsing and static analysis of
heterogeneous specifications that call the logic-specific tools whenever is required.

10.1. Heterogeneous Tools Set 107

Figure 10.2: Architecture of HETS

HETS provides proof management capabilities for monitoring the overall correctness of a
heterogeneous specification. A heterogeneous specification is represented in a development
graph [MAH06], as the one in Figure 10.4. A development graph consists of a set of nodes
(corresponding to whole structured specifications or parts thereof), and a set of arrows called
definition links, indicating the dependency of each involved structured specification on its
subparts. The proof calculus for development graphs allows for decomposing global theorem
links into simpler ones, until eventually local implications are reached. The latter can be
discharged using a logic-specific calculus as given by an entailment system. The use of
HETS will be explained in Section 10.3 for the running example.

108 Chapter 10. Tool Support with HETS

10.2 Implementation of the Environment

The extended CSMOF and QVTR institutions are implemented within HETS.

In the case of CSMOF, the abstract syntax of the language is a direct Haskell representation
of classes and relations in Figure 10.3. The simplified version of MOF already depicted in
Figure 2.3, is supplemented with the notion of a metamodel containing named elements, and
associated to many SW-models. A SW-model is a collection of objects referencing types in
the metamodel, and of links between objects corresponding to properties in the metamodel.

Figure 10.3: Class-based representation of CSMOF

The following types correspond to the representation of metamodels and SW-models. We
note that the abstract syntax of any logic which must be included in HETS can be automati-
cally derived from a XMI file specifying its metametamodel (e.g. as the one in Figure 10.3),
as we will discuss in Chapter 11.

10.2. Implementation of the Environment 109

data Metamodel = Metamodel

{ metamodelName :: String

, element :: [NamedElement]

, model :: [Model]

} deriving (Eq, Ord)

data Model = Model

{ modelName :: String

, object :: [Object]

, link :: [Link]

, modelType :: Metamodel

} deriving (Eq, Ord)

The abstract syntax definition is used by a Haskell parser, based on the Text.XML.Light
library, which takes a XMI instance of the metametamodel in Figure 10.3 and constructs
an instance of these types. XMI files conform to a schema defined using Ecore (Eclipse
Modeling Framework [FSM+03]) as the metametamodel language, instead of MOF. This
decision was taken since in the context of this thesis the MediniQVT [IKV13] tool was used
for executing QVT-Relational transformations, and it includes an Ecore editor. The Ecore
definition of CSMOF can be found in Section F.1.

We also have a static analyzer which takes the Haskell type instances, performs some static
checking and if it is right, returns a concrete CSMOF theory. In the following code there is
an excerpt of the representation of a CSMOF theory following the definitions of signatures
(Sign) in Section 6.2 and extended formulas (Sen) in Section 8.2.

data Sign = Sign { types :: Set.Set TypeClass

, typeRel :: Rel.Rel TypeClass

, abstractClasses :: Set.Set TypeClass

, roles :: Set.Set Role

, properties :: Set.Set PropertyT }

data Sen = MultConstrSen { multConstr :: MultConstr }

| SWModelSen { sModel :: SWModel }

data MultConstr = MultConstr { getType :: TypeClass

, getRole :: Role

, cardinality :: Integer

, constraintType :: ConstraintType }

data ConstraintType = EQUAL | LEQ | GEQ

data SWModel = SWModel { instances :: Map.Map String TypeClass

, links :: Set.Set LinkT }

110 Chapter 10. Tool Support with HETS

Finally, we provide an instance of the type class Logicwhich is defined as follows. Note that
this class includes the definition of the abstract syntax (Metamodel), the signature (Sign),
the formulas (Sen) and signature morphisms (Morphism). After some configuration of
HETS, the logic graph includes a node with our CSMOF logic, as shown in Figure 10.1.

instance Logic CSMOF

() -- Sublogics

Metamodel -- basic_spec

Sen -- sentence

() -- symb_items

() -- symb_map_items

Sign -- sign

Morphism -- morphism

() -- symbol

() -- raw_symbol

() -- proof_tree

where

stability CSMOF = Experimental

empty_proof_tree _ = ()

We do the same in the case of QVTR, but in this case we have as the abstract syntax a
simplified version of the metamodel in Figure 2.5. In the following code, there is an excerpt
of the definition of a transformation and of a relation. Note that the transformation includes
a source and a target metamodel, using the same Haskell type as for CSMOF.

data Transformation = Transformation

{ transfName :: String

, sourceMetamodel :: (String,String,CSMOF.Metamodel)

, targetMetamodel :: (String,String,CSMOF.Metamodel)

, keys :: [Key]

, relations :: [Relation]

} deriving (Eq, Ord)

data Relation = Relation

{ top :: Bool

, relName :: String

, varSet :: [RelVar]

, primDomains :: [PrimitiveDomain]

, sourceDomain :: Domain

, targetDomain :: Domain

, whenCond :: Maybe WhenWhere

, whereCond :: Maybe WhenWhere

} deriving (Eq, Ord)

10.2. Implementation of the Environment 111

The abstract syntax definition is used by a Haskell parser, based on the Parsec library, which
takes a .qvt file and constructs an instance of these types. As before, we also have a static
analyzer which returns a QVTR theory. In the following code there is an excerpt of the rep-
resentation of the QVTR theory following the definitions of signatures (Sign) in Section 7.2
and extended formulas (Sen) in Section 8.2. Also note that the signature and formulas con-
tain a reference to CSMOF signatures and formulas, respectively.

data Sign = Sign { sourceSign :: CSMOF.Sign

, targetSign :: CSMOF.Sign

} deriving (Show, Eq, Ord)

data Sen = KeyConstr { keyConst :: Key }

| QVTSen { rule :: RelationSen }

| CSMOFSen { mofSen :: CSMOF.Sen }

deriving (Show, Eq, Ord)

Finally, we provide an instance of the type class Logic which is defined as follows. As
before, this class includes the definition of the abstract syntax (Transformation), the
signature (Sign), the formulas (Sen) and signature morphisms (Morphism). After some
configuration of HETS, the logic graph includes a node with our QVTR logic, as shown in
Figure 10.1.

instance Logic QVTR

() -- Sublogics

Transformation -- basic_spec

Sen -- sentence

() -- symb_items

() -- symb_map_items

Sign -- sign

Morphism -- morphism

() -- symbol

() -- raw_symbol

() -- proof_tree

where

stability QVTR = Experimental

empty_proof_tree _ = ()

The final step is the implementation of the generalized theoroidal comorphisms from ex-
tended CSMOF and QVTR to CASL. As shown in the following code (just an excerpt), we
instantiate the type class Comorphism. This instance has the elements defined in the in-
stance of Logic for both, CSMOF and CASL. The most important part is the implementation
of the translation functions, in particular mapTheory which takes an CSMOF theory and
constructs a CASL theory. This function is called each time the comorphism is applied to a
CSMOF specification. The definition of the instance for the comorphism from QVTR to CASL

is straightforward.

112 Chapter 10. Tool Support with HETS

instance Comorphism CSMOF2CASL

CSMOF.CSMOF

()

CSMOFAs.Metamodel

CSMOF.Sen

()

()

CSMOF.Sign

CSMOF.Morphism

()

()

()

CASL

CASL_Sublogics

CASLBasicSpec

CASLFORMULA

SYMB_ITEMS

SYMB_MAP_ITEMS

CASLSign

CASLMor

C.Symbol

C.RawSymbol

ProofTree

where

sourceLogic CSMOF2CASL = CSMOF

sourceSublogic CSMOF2CASL = ()

targetLogic CSMOF2CASL = CASL

map_theory CSMOF2CASL = mapTheory

has_model_expansion CSMOF2CASL = True

Once HETS is executed, the logic graph includes arrows from the nodes representing our
CSMOF and QVTR logics to the node representing the CASL logic, as shown in Figure 10.1.

10.3 How the Environment Works

Our problem is stated as a heterogeneous specification (in a .het file) using CASL structur-
ing constructs [CoF04]. Within such specifications it is possible to use references to other
logics by using the keyword logic. We have at least three logics: CASL, CSMOF and
QVTR. When a logic is called, HETS uses logic-specific tools for parsing and static anal-
ysis. We also perform logic translations through the implemented generalized theoroidal
comorphisms which are CSMOF2CASL and QVTR2CASL. Next, there is an excerpt of the
heterogeneous specification of the example.

10.3. How the Environment Works 113

logic CSMOF (1)

from QVTR/UML get UML |-> UMLMetamodel (2)

from QVTR/UML_WMult get UML |-> UMLConstraints

spec UMLProof = UMLMetamodel (3)

then %implies

UMLConstraints

end

logic QVTR (4)

from QVTR/uml2rdbms get uml2rdbms |-> QVTTransformation (5)

logic CASL (6)

spec ModelTransformation =

QVTTransformation with logic QVTR2CASL (7)

then %implies

. key_Table

. key_Column

. key_Key

. Top_PackageToSchema

. Top_ClassToTable

end

spec MoreProofs = UMLMetamodel with logic CSMOF2CASL (8)

then %implies

forall x,y : Classifier; str : String

. name(x,str) /\ name(y,str) => x = y

end

Within the CSMOF logic (1) we create two CSMOF-theories (specifications) from XMI files
(2) with the information of the class metamodel in Figure 2.6 and the class SW-model in
Figure 2.7. This implies the creation of a Haskell representation of signatures and formulas
according to the extended institution defined in Chapter 8. Both theories only differ in the
formulas, i.e. the first theory UMLMetamodel does not have any multiplicity constraint.
The same is done with the rdbms information, which is not shown in this example. For
convenience, we have defined an integrated XMI schema containing both metamodel and
SW-model information. However, it is possible to automatically generate this file from dif-
ferent formats used in UML modeling environments. Another specification is created (3) by
extending UMLMetamodel and stating that UMLConstraints is implied. This means
that every formula (multiplicity constraint) in the second specification can be derived, thus
there must be a proof of it. This is how the satisfaction relation of the CSMOF institution is
checked. Notice that for developing the proof, the comorphism CSMOF2CASL (or any other
if defined) must be called since CSMOF does not have any specific proof system.

114 Chapter 10. Tool Support with HETS

We also use the QVTR logic (4) to create a specification (5) from a standard .qvt file accord-
ing to the extended institution defined in Chapter 8. The model transformation is specified
using the same language defined within the QVT standard (e.g. as the one in the running
example). The only difference is that instead of using OCL as the expressions language, we
use for now a very simple FOL-based language containing boolean connectives, constants
true and false, term equality, strings and variables. This step also loads the XMI files con-
taining the information of source and target metamodels for constructing the signature of the
QVTR institution, as done in (2). We use the name of the source and target metamodel in the
transformation specification for finding the corresponding files. Finally, we move into CASL,
through the comorphism QVTR2CASL, (6) for creating another specification (7) in which the
translation of key and rule formulas (represented as propositions) defined in Chapter 7 are
implied by the transformation specification. As in (3), for each implied formula, a proof must
be given.

We can also translate our specifications and complement them with other constraints (8)
which cannot be stated as formulas of the former institutions. As an example we can state
that there cannot be two Classifiers with the same name in the UMLMetamodel spec-
ification. For this purpose we are using the CSMOF2CASL comorphism. Again, as in (3),
a proof of it must be given. Notice that that we can use any other logic within the logics
graph of HETS through existing comorphisms. This improves the proof capabilities of our
environment.

When the comorphism CSMOF2CASL is called, the CSMOF theory is translated according to
the comorphism specified in Section 9.2. The translation of the running example gives the
following CASL theory (in CASL syntax), as defined in Example 9.2.1 and in Example 9.2.2.
The complete code is in Appendix F.

sorts Class, PrimitiveDataType < Classifier;

Attribute, Package, String

generated type UMLModelElement ::=

sort Attribute | sort Classifier | sort Package

op Package : String

op Persistent : String

...

op a : Attribute

op c : Class

op p : Package

op pdt : PrimitiveDataType

pred attribute : Class * Attribute

pred name : UMLModelElement * String

pred elements : Package * Classifier

pred namespace : Classifier * Package

10.3. How the Environment Works 115

...

forall x : Package; y : Classifier

. elements(x, y) <=> namespace(y, x)

%{ completeness of relations }%

forall x : Package; y : Classifier

. elements(x, y) <=> (x = p /\ y = c) \/ (x = p /\ y = pdt)

%{ completeness of elements }%

forall x : Classifier . x = c \/ x = pdt

%{ distinguishability }%

. not a = c /\ not a = p /\ not a = pdt /\

not c = p /\ not c = pdt /\ not p = pdt

Notice that there is a sort for each type and a subsorting relation according to the hierarchy
relation between types. The abstract class UMLModelElement is represented as a generated
type, i.e. a sort defined together with a sort generation constraint which states that it is the
disjoint embedding of it subsorts. Moreover, there is a total function for each element in the
SW-model formula (not every string is shown in the example) and a predicate or a pair of
predicates for each unidirectional or bidirectional property, correspondingly.

There are also many axioms stating:

• the equivalence of predicates as the case of elements and namespace

• the “completeness of relations” constraint together with the satisfaction of a predicate
by the corresponding links in the SW-model formula, as in the case of elements.

• the “completeness of elements” constraint as in the case of the non-abstract class
Classifier which has sub-classes, we have an axiom involving the functions with
codomains Class and PrimitiveDataType

• the “distinguishability” constraint as in the case of elements within the
UMLModelElement hierarchy

The formula #(UMLModelElement • name) = 1 is translated into the conjunction of
min(1, name : UMLModelElement × String) and max(1, name : UMLModelElement ×
String), as defined in Example 9.2.3, which is represented in CASL syntax as follows.

116 Chapter 10. Tool Support with HETS

. (forall x_1 : UMLModelElement

. exists y_1 : String . name(x_1, y_1)) %Min%

/\ forall x_1 : UMLModelElement; y_2, y_1 : String

. (name(x_1, y_2) /\ name(x_1, y_1)) => y_2 = y_1 %Max%

When the comorphism QVTR2CASL is called, the QVTR signature and formulas are also
translated into CASL according to the comorphism specified in Section 9.3. The translation
of the running example gives a CASL signature which is the disjoint union of the translations
of each CSMOF theory (one of them is the signature presented before in CASL syntax), to-
gether with predicates declaring the following transformation rules and keys, as defined in
Example 9.3.3 and in Example 9.3.2, respectively.

pred Top_PackageToSchema : ()

pred PackageToSchema : Package * Schema

pred Top_ClassToTable : ()

pred ClassToTable : Class * Table

pred AttributeToColumn : Class * Table * String

pred key_Table : ()

pred key_Column : ()

pred key_Key : ()

Now is time to translate key and rule formulas. As defined in Example 9.3.2, the key
〈Table, {name, schema}〉 is translated into

. key_Table

<=> forall x_2, x_1 : Table; y_2 : String; y_1 : Schema

. not x_2 = x_1

=> name(x_1, y_2) /\ schema(x_1, y_1)

=> not name(x_2, y_2) \/ not schema(x_2, y_1) %

In the following code there are the top and non-top versions of PackageToSchema and
non-top version of ClassToTable formulas are translated, as defined in Example 9.3.3,
into the following formulas.

Top_PackageToSchema <=>

forall p : Package; pn : String

. name(p, pn) => exists s : Schema . name(s, pn)

forall p : Package; s : Schema . PackageToSchema(p,s) <=>

forall pn : String

. name(p,pn) => name(s,pn)

10.3. How the Environment Works 117

forall c : Class; t : Table . ClassToTable(c,t) <=>

forall p : Package; s : Schema

. PackageToSchema(p,s) =>

forall cn : String

. namespace(c,p) /\ kind(c, Persistent) /\ name(c, cn) =>

exists cl : Column; k : Key; prefix : String

. schema(t,s) /\ name(t,cn) /\ column(t,cl) /\ key(t,k) /\

name(cl,TID) /\ type(cl,NUMBER) /\ name(k,PK) /\ column(k,cl)

/\ AttributeToColumn(c,t,prefix) /\ prefix = EMPTY

The last formula says that the top-level relation holds whether for every package and schema,
if they satisfy the relation PackageToSchema, it implies that, if there is a persistent class
within that package, there must exist a table in the corresponding schema with the same class
name, and the attributes and columns of both must be in the relation AttributeToColumn.
When the proposition Top_ClassToTable is called from the CASL specification, a proof
of the implication must be given.

Once our heterogeneous specification is processed, HETS constructs a heterogeneous devel-
opment graph, as the one in Figure 10.4 for the example.

Figure 10.4: Development graph of the example

In such graph, nodes correspond to specifications and red ones correspond to specifications
with open proof obligations. In the example we have three proof obligations which corre-

118 Chapter 10. Tool Support with HETS

spond to those formulas marked as %implies within the specifications. The double arrows
are heterogeneous theorem links, meaning that the logic changes along the arrow. In the ex-
ample this corresponds to the construction of the specifications by extending an existing one
which is translated through the comorphism CSMOF2CASL and QVTR2CASL. In the case of
the multiplicity constraints, which are still within the CSMOF institution, some comorphism
must be selected in order to perform the proof, e.g. the CSMOF2CASL comorphism.

Proof goals can be discharged using a logic-specific calculus. In the example we used the
automated theorem proving systems SPASS [WBH+02], as shown in Figure 10.5.

Figure 10.5: HETS selection of a logic-specific tool

The proof window shows all goal names prefixed with the proof status in square brackets.
An empty bracket indicates an open proof goal, and a ‘+’ (also painted in green) indicates
a proved goal. The bottom right list shows the axioms used for proving a goal, as shown in
Figure 10.6.

10.4. Verification Properties 119

Figure 10.6: Proved goal in HETS

10.4 Verification Properties

There are several properties that can be verified, some of them related to the computational
nature of transformations and target properties of transformation languages, and other to the
modeling nature of transformations [CS13a], as discussed in Chapter 3.

The minimal requirement is conformance, i.e. that the source and target models (resp. the
transformation specification) are syntactically well-formed instances of the source and target
metamodels (resp. the transformation language). Our framework provides this verification,
first, in the construction of the CSMOF and QVTR theories. Parsing and static analysis checks
whether signatures and formulas are well-formed, and as we introduced before, a SW-model
within a signature is a structurally well-formed instance of the metamodel in the same signa-
ture, as well as a transformation specification given in a formula is well-formed with respect
to the signature containing both source and target metamodels. Second, by proving CSMOF

formulas which contains the conformance with respect to multiplicity constraints. Finally,
when verifying non-structural constraint by extending both CSMOF and QVTR specifications
using other logics, as CASL in the example.

120 Chapter 10. Tool Support with HETS

One interesting point is that HETS also allows for disproving goals using consistency check-
ers, provide an additional point of view in the verification process. In this sense, a goal can
also be marked as disproved or inconsistent. In particular, an inconsistent set of transforma-
tion rule means that there are contradictory conditions which could inhibit the execution of
the transformation. A very simple example of this is the following specification in which we
state that every package contains only one classifier.

spec InvalidProperty = UMLMetamodel with logic CSMOF2CASL

then %implies

forall x : Package; y,z : Classifier

. elements(x,y) /\ elements(x,z) => y = z

end

This goal can be disproved since in our example, package p has two classifiers: class c and
primitive datatype pdt.

In most cases a general-purpose logic, as provided by CASL, is enough to cover most of the
verification approaches presented in Chapter 3. The future inclusion of OCL as an institu-
tion will provide additional support in this sense, as discussed in Chapter 11. However, the
verification process may depend on the problem to verify, since it is well-known that there
is a “state explosion” problem when using automated checkers. Thus, automatic proofs are
not always possible. As shown in Figure 10.5, in HETS it is possible to choose the tool we
want to use. In this sense, we can choose not to use an automated theorem proving system as
SPASS, but for example an interactive theorem prover as ISABELLE.

Recall the notion of a transformation model, i.e. a model composed by the source and target
metamodel, the transformation specification and the well-formedness rules. A QVTR theory
(QVTTransformation in the example) is a transformation model which allows to add
additional properties by combining elements from the source and target metamodels and SW-
models. With this we can state model syntax relations, trying to ensure that certain elements
or structures of any input model will be transformed into other elements or structures of the
output model (transformation rules are indeed model syntax relations). We can also state
model semantics relations, e.g. temporal properties and refinement. Although further work
is needed to evaluate the alternatives, there are languages and tools already in HETS, as
ModalCASL and VSE [CLMM09] (based on dynamic logics) commonly used for verifying
these kind of things.

We could also be interested in working at another abstraction level, i.e. not considering
specific SW-models but only metamodels and the transformation specification. This can be
useful, for example, for proving that a transformation guarantees some model syntax relations
when transforming any valid source SW-model. This is also needed for proving termination
and determinism of a transformation: the existence of a target SW-model for any execution
and the uniqueness of such SW-model, respectively. In particular, termination and determin-
ism properties can be basically stated as in the following CASL code: for any class model
satisfying the source constraints (Pre), there must be a relational model (only one in the

10.4. Verification Properties 121

case of determinism) satisfying the target constraints (Post) and the transformation rules
(Rules). These kind of problems are hard to be verified automatically since the space of
solutions for ma : ClaM is almost always infinite.

%{ Termination property }%

forall ma : ClaM . Pre ma =>

(exists mb : RelM . Rules ma mb /\ Post mb)

%{ Determinism property }%

forall ma : ClaM . Pre ma =>

(exists! mb : RelM . Rules ma mb /\ Post mb)

The problem here is that we need another institutional representation, somehow related to
[CK08] in which our CSMOF institution is based, in which models of the institution are not
constrained by the SW-model within the signature. Moreover we need to generate as part of
the comorphism an abstract representation of a SW-model (e.g. ClaM in the example). This
is subject of future work, as discussed in Chapter 11.

11 Conclusions and Further Research

In this thesis we introduced a unified environment that allows formal verification of a model
transformation using heterogeneous verification approaches. This chapter presents our con-
clusions and perspectives of further research. The main results and contributions of our work
are summarized in Section 11.1. Section 11.2 closes with several discussions and open prob-
lems that promote further research.

11.1 Summary and Contributions

The idea of developing a unified environment for verification was motivated by the compre-
hensive literature review on the verification of model transformations we conducted. In this
review, summarized in Chapter 3, we found that there are many properties of interest ad-
dressed by the verification of a model transformation. These properties can be classified in
language-related and transformation-related properties, the first ones referring to the compu-
tational nature of transformations and target properties of transformation languages, and the
second ones referring to the modeling nature of transformations. With respect to verifica-
tion approaches, we found that almost any traditional verification technique can be applied in
MDE. These techniques can also be classified in different orthogonal categories referring to:
the kind of technique used for verification, the abstraction level with respect to the elements
involved in the transformation, the abstraction level with respect to the implementation of the
transformation, and the dependency/independence with respect to the transformation specifi-
cation. A contribution that differentiates our review from the others is that we illustrated by
means of examples how the verification of each kind of property can be addressed by many
approaches.

123

124 Chapter 11. Conclusions and Further Research

This last result led us to the definition of a unified environment for the heterogeneous verifi-
cation of model transformations, introduced in Chapter 5. In this environment the MDE ele-
ments involved in a model transformation (SW-models, metamodels and the transformation
itself) are defined without depending on any specific logical domain, and there are semantic-
preserving translations from these elements to several other logical domains where the veri-
fication of desired properties can be addressed. This idea is innovative since in most of the
cases the MDE elements are directly represented within some specific logical domain which
makes their translation into another domain expensive. In our case we do not need to maintain
multiple formal representations of the same MDE elements, but to define those translations
which can be then reused. These translations are also useful to integrate MDE elements with
the specification and verification of other software artifacts in a traditional software develop-
ment. Although we build on the MOF and QVT-Relations standards for the specification of
the MDE elements, we follow an idea general enough to be extended to other transformation
approaches and languages.

The definition of such environment was feasible due to the Theory of Institutions which pro-
vided solid foundations to achieve our goals. We have provided institutions for the structural
conformance relation between SW-models and metamodels specified with a simplified ver-
sion of MOF (which we called CSMOF), introduced in Chapter 6, and for QVT-Relations
check-only unidirectional transformations (which we called QVTR), introduced in Chapter 7,
both extended in Chapter 8. These institutions provide a generic representation of the MDE
elements with formal semantics covering almost every important element. These definitions
not only serve as a basis for our environment but also improve existent knowledge on the
semantics of MDE and on the use of institutions for the formalization of specification lan-
guages. Indeed, those representations could be connected with other UML languages to
conform the heterogeneous institution environment in the sense of [CKTW08]. We have not
considered some aspects that are not commonly used, e.g. uniqueness and ordering proper-
ties within a property end. Beyond that, the most important aspect that we left apart is the
inclusion of OCL. Instead we considered a generic institution used as an expressions lan-
guage within transformations, which can be instantiated with, for example, an institution for
first-order logic. With this decision we are not losing expressive power.

We also provided generalized theoroidal comorphisms from our institutions to CASL (an
extension of many sorted first-order logic with partial functions and subsorting), defined in
Chapter 9. This connection allowed us to develop a functional prototype of the environment
supported by HETS, introduced in Chapter 10, providing an implementation for institutions
and comorphisms. Within this prototype, MDE experts can specify model transformations in
their technological space and such specifications can be complemented by verification experts
with other properties to be verified, e.g. non-structural constraints. All this information is
taken by HETS, which performs automatic translations of proof obligations into other logics
and allows selecting the corresponding prover to be used, whilst a graphical user interface is
provided for visualizing the whole proof. In other words, we provided to MDE practitioners
the “glue” they need for connecting their technological space with the logical domains needed
for verification. Another contribution is that there was no evidence about the using of the

11.2. Discussions and Open Problems 125

Theory of Institutions in practice for the verification of model transformations. Moreover,
the existent connections between CASL and other logics, broadens the spectrum of logical
domains in which the verification of model transformations can be addressed.

11.2 Discussions and Open Problems

Throughout the development of this thesis we have identified several aspects that deserve dis-
cussion. These aspects cover the different alternatives for the definition of the institutions and
comorphisms, the definition of an institution for OCL, the relation between model transfor-
mations and comorphisms, and the improvement of the environment. A discussion of these
aspects introduces possible directions of future research.

11.2.1 On the Formal Definition of the Environment

In Chapter 6 and Chapter 7 we analyzed some related works to point out that there is no only
one alternative for the definition of an institution.

In general, when trying to define an institution, two main discussions are addressed. The first
one refers to what the semantics of the logic we are trying to represent is. This discussion
is mostly presented when the institution is not for a logic in the classical sense but for a
specification language, as CSMOF and QVTR. The other important discussion refers to which
elements must be in the signature and which one in the formulas. Institutions neither restrict
nor determine this, and the decision depends on what we want to express and on the purpose
of the institution.

From a model-theoretic point of view the original CSMOF and QVTR institutions are enough
to represent the whole problem. However, as we already discussed in Section 5.4, we need a
syntactic representation for SW-models in order to prove (in a proof-theoretic environment)
that multiplicity constraints can be derived from SW-models. An entailment system allows
proving a formula if it can be derived from other valid formulas. In the CSMOF institution, we
only have a syntactic representation of multiplicity constraints as formulas. In this case, any
possible entailment system will only derive multiplicity constraints from other multiplicity
constraints, which is pointless for our purposes. The problem is that the specification lan-
guage used for formulas is not expressive enough as for example a general logic like FOL.
In this sense, several languages, as QVT-Relations transformations and OCL constraints, are
not completely expressed by their own, i.e. they depend on the existence of a context, given
by SW-models, in which they must be defined.

However, we have different alternatives: (1) to represent SW-models in the formulas, as in
the extended institutions defined in Chapter 8, (2) to represent SW-models in the signature in
such a way that the institution model is reduced to mimic the structure of the SW-model in
the signature to be used by the satisfaction relation to avoid some contradictions (as the one

126 Chapter 11. Conclusions and Further Research

in Chapter 8), or (3) to represent SW-models in the signature in such a way that an institution
model is determined by the SW-model. We took the first representation which is the most
natural decision.

It is possible to define only one institution for representing MDE elements. The CSMOF in-
stitution together with an extended definition of formulas adding an expressions language on
metamodels, e.g. the one defined in Chapter 7, can be enough. Indeed, this representation
is equivalent to the idea of a transformation contract, as in [BMC+11], in which both source
and target metamodels are defined in a unified metamodel, and constraints are used for ex-
pressing invariants in metamodels as well as describing the pre and post-conditions of the
transformation. The problem with a representation of this kind is that its translation into a
logical domain could be useless, since there is no difference between transformation rules and
any other constraint, or between each one of the metamodels, which affects the understanding
of the problem in the logical domain and perhaps the feedback which can be returned.

As discussed in Section 6.6, typing requirements of the structural conformance relation are
not addressed by the satisfaction relation of the (extended) CSMOF institution since interpre-
tations (SW-models) are always well-typed with respect to the signature (metamodel). We
also argued in Section 3.1 that typing (conformance in general) is nowadays well understood
and automatically checked within modeling frameworks. Nevertheless, for a complete formal
basis based on institutions, it is interesting to consider the ideas presented in Section 6.6 for
the definition of an institution addressing the type-checking problem, which is also connected
with the theory of graph transformations.

As explained in Section 10.4, to address the verification of properties at another abstraction
level, i.e. not considering specific SW-models but only metamodels and the transformation
specification, we need another institutional representation or another comorphism in which
concrete SW-models are forgotten but an abstract representation for them is generated. In
terms of CASL, we can represent a SW-model as a type generated from a set for each concrete
class. This SW-model can be instantiated if necessary with specific elements. These aspects
are shown in the following code.

type Class_Model ::= mkClass_Model (Set[Class];...)

%{ A specific model instance }%

setClass : Set[Class] = {} + Class_1 + Class_2 + Class_3 + Class_4;

model : Class_Model = mkClass_Model(setClass,...)

For processing this model we need to generate some minimum infrastructure. In the following
example we have an operation accessing Classifier instances in the SW-model and a
predicate allowing identifying if some Classifier instance exists within the SW-model.

11.2. Discussions and Open Problems 127

Classifier_allInstances __ : Class_Model -> Set[Classifier];

Classifier_allInstances model =

PrimitiveDataType_allInstances model

union Class_allInstances model

inModel __ __ (x : Classifier; model : Class_Model) <=>

x eps Classifier_allInstances model;

Constraints must also be changed since every element referred in the constraint must be
defined within the SW-model, as in the following example.

constraint __ (model : Class_Model) <=>

forall x : Class . inModel x model /\

exists y : Attribute . inModel y model /\ attribute x y;

Finally, the use of generalized theoroidal comorphisms [Cod08] was a must for the translation
of QVTR but not for the translation of CSMOF. In the case of CSMOF we introduced total
functions (constants) representing typed elements contained in a SW-model formula. In the
case of using a theoroidal or plain comorphism we cannot generate these functions, thus
existential and equality axioms of typed elements must be added such that, in conjunction
with the other generated axioms, need to enclose any other formula which must be proved. In
this sense, we end up having big formulas, which is not necessarily a problem but it is a less
optimal and not so readable CASL representation. In the case of QVTR we define predicates
(within the CASL signature) corresponding to transformation rules (within a QVTR formula)
such that it is possible to call a rule just referencing to its corresponding predicate. In the case
of using a theoroidal or plain comorphism we cannot generate these predicates. However, in
this case we can have a problem where two rules are mutually dependent, since the direct
translation would imply an infinite embedding of formulas.

11.2.2 An Institution for OCL

As mentioned in Chapter 2, the when and where clauses, as well as the predicate of a pat-
tern, may contain arbitrary boolean OCL expressions. From a formal perspective we would
rather have an institution for OCL which would allow us to use the language not only for con-
straining the transformation rules, but also for expressing general constraints on metamodels.

Since OCL constraints need to be expressed in the context of a concrete SW-model in order to
be checked, we can use our extended CSMOF institution and add the OCL constraints as part
of the formulas (the multiplicity constraints can be expressed in OCL). The most problematic
aspect for defining such institution is the fact that OCL is a three-valued logic, i.e. beyond the
notion of truth or falsity of a constraint there exists the notion of undefinedness. In this sense,
the satisfaction relation needs to be handled in a different way. Fortunately, there are some
works, as [Dia13] in which the author develops institutional basis to combine many-valued
logics with other logical systems. Further studies should be conducted in this sense.

128 Chapter 11. Conclusions and Further Research

Instead of defining a new institution we can evaluate the use of some current representation
of OCL in another institution, e.g. in rewriting logics as in [BM09]. We already consider the
inclusion of another institution for representing OCL by means of the expressions language
introduced in Section 7.1.2, but we need to study the relation between our abstract definition
and these other semantics.

The future inclusion of OCL as an institution will provide additional support in automated
proofs. For example, we will provide a comorphism from our institutions to the one for
OCL to support other verification approaches, as the one in [CCGdL10] for generating a
transformation contract in OCL.

11.2.3 Model Transformations & Comorphisms

It is important to understand the relation between model transformations and comorphisms.
Comorphisms are semantic-preserving transformations but not every model transformation
is semantic-preserving. The identification of a model transformation as a comorphism can
be reasonable for some kinds of model transformations, like a refactoring (a change in the
representation without changing its externally observable behavior) or the Class to Relational
transformation in this thesis. The key point here is that both source and target languages are
considered semantically equivalent, even though there are represented in different techno-
logical spaces. In our example the semantics of Class diagrams and Relational models are
defined in terms of the set of SW-models which conform to a specific Class (resp. Relational)
metamodel. The transformation preserves these instances, e.g. any valid class diagram is
transformed into a valid relational model. However, if source and target metamodels contain
fundamentally different assumptions, it might be difficult to completely preserve the seman-
tics.

On the contrary, a comorphism can be represented as a model transformation. In fact, the
representation of comorphisms in HETS can be seen as functional text-to-text transforma-
tions. We can actually represent the institutions as metamodels, and state the comorphisms
as model transformations. This idea promotes the use of MOF and QVT-Relations as a meta-
language within HETS which may improve the adoption of HETS by MDE practitioners. We
can specify a metamodel for any logic we want to add, e.g. our CSMOF logic is specified by
the metamodel in Figure 10.3, and we can define any logical description conforming to such
model, e.g. any CSMOF instance is represented as a XMI file conforming to such metamodel.
From this point we have two alternatives:

1. We can automatically derive a Haskell representation of the metamodel, following the
idea of the CSMOF representation in which hierarchical classes are represented as in-
terrelated types, and state the comorphism in Haskell as usual. We also need to define a
Haskell representation of the institution, as well as a parser and a static analyzer. This
is basically the path we followed.

11.2. Discussions and Open Problems 129

2. If the target logic is already specified by a metamodel, we can define a QVT-Relations
transformation between both logics such that any logical description using the source
logic will be transformed into a logical description of the target logic. This avoids
the implementation of Haskell code, but the environment has formal basis that cannot
be ignored, i.e. the transformation between both logics must be semantic-preserving.
Indeed, we must prove on paper that there is an institution for the source logic and a
comorphism from it to the target logic such that the comorphism is model expansive.

11.2.4 Bridging Technological Spaces

The environment can be extended to support other transformation approaches, and to provide
specific tools for MDE practitioners.

We can remove the restrictions imposed for the definition of an institution for QVT-Relations,
i.e. we considered only a source and a target metamodel, and the transformation was executed
in the direction of the second domain. Now that we have a first version of the environment, we
can study how to extend its support to QVT-Relations by considering multiple metamodels
and several domains, as defined in the standard. In the same sense, we need a deeper study
for supporting other transformation approaches as the graph-transformation-based and the
operational approaches. This introduces an interesting question: Is it possible to add another
language into the environment without defining a new institution?

If it is possible to define a model transformation from the desired language to QVT-Relations,
we can add it to the environment following the same idea introduced in the last subsection in
which metamodels and model transformations are devised as a meta-language within HETS.
However, the use of an intermediate language (QVT-Relations in this case) before reaching
a logical domain may generate a formal representation which is not the one we expected.
An example of this is the following, related to the comorphism between Maude and CASL

[CMRM10], and the proposal or representing the semantics of MOF with rewriting logics
[BM09]. We can specify a model transformation between our CSMOF institution and the rep-
resentation of SW-models and metamodels in [BM09]. In this case, there will be a generic
Maude sort Class representing every possible class in the metamodel, which can be instan-
tiated. Then, if we follow the comorphism in [CMRM10] we will generate the corresponding
sort in CASL. However, if we directly use our comorphism we will have one CASL sort for
each class in the metamodel, thus, the representations are different and could affect the kind
of reasoning we want to address.

Another alternative for the representation of transformation approaches and languages is the
definition of an institution for a generic transformation language, as in [LR12], or a trans-
formation contract, as in [BMC+11]. In both cases the institution must express the intended
effect of a transformation by a metamodel plus constraints (e.g. in OCL) describing the pre-
and post-conditions of the transformation. We must conduct a deeper study in this sense. For
now we have identified some potential problems as stated in Section 11.2.1.

130 Chapter 11. Conclusions and Further Research

Although we state a separation in different technological domains, we can bridge the gap
between MDE and formal verification in terms of tool development. First, we can connect
the definition of the MDE elements in any popular tool with an automatic generation of the
heterogeneous specification, as explained in Section 10.3, and the execution of HETS using
this specification. Moreover, we could perform an automated verification of some properties
(if possible) by running HETS in the background and providing a better user interface to
show the problems found by HETS. For this to be possible, we need to improve feedback
from existing formal tools. As studied in [ZCP13], this needs better traceability between the
problem definition and the results given by a verification tool. We can define some traceability
links from comorphisms, interpret the output of the verification tool and return something
that the MDE practitioner can interpret. This interpretation is like defining a transformation
between the domain of outputs of the verification tool and the domain of messages in MDE.

Finally, as described in Chapter 10, the environment deals with many verification properties,
but a deeper understanding of this is a must. In this sense, we can use the knowledge in
Chapter 3 to provide a guide for the selection of the “right” verification approach for the
problem which is of interest to verify.

11.2.5 Evolution of the Prototype

Although the prototype is fully functional, there are some aspects that can be improved, e.g.
a better documentation for final users, the inclusion of OCL (as described before), and a bet-
ter support for primitive types. This last aspect is related to the fact that the comorphisms
need to generate CASL theories with a representation of primitive types and type constructors
(those within the expressions language introduced in Chapter 7). Nowadays the QVTR2CASL
comorphism generates types as any other class, and includes the generation of the type con-
structor + (append) for strings. However, there is an extensive CASL library which would
be good to integrate. Since theories within these libraries are needed to be added to other
theories when a comorphism is executed, we must define a new mechanism in HETS for this
purpose which is currently not supported.

CASL libraries are not tuned for automated proofs. An evidence of this is the constraint on
strings in the where clause of the AttributeToColumn relation (see Section F.4). The
constraint states that if prefix is not empty, the name of the column must be equal to the
prefix plus the name of the attribute, i.e. =(cn)(prefix+an). The problem here is that
the whole expression generates an unbounded domain in which there are potentially infinite
strings to consider. If we change this expression for =(cn)(an) the proof is found immedi-
ately. Another limitation for automated proofs is the representation of hierarchical structures
between classes by the subsorting relation. In the example we have three levels, i.e. Class≤
Classifier ≤ UMLModelElement, but when trying to verify the complete Class to Re-
lational example in the standard and another level is included, i.e. Class ≤ Classifier

≤ PackageElement ≤ UMLModelElement, the complexity of proving properties in
upper levels (e.g. that each Classifiers has only one name) increases exponentially.

Appendices

131

A Publication List

The research work undertaken during the development of this thesis has been presented and
published in the following instances. These papers cover most of the work: the comprehen-
sive literature review on the verification of model transformations [CS13d], with an extended
version [CS12] and preliminary literature reviews on the specification [LVV+09a] and verifi-
cation [LVV+09b] of models transformations published as technical reports; the definition of
the heterogeneous environment [CS13a]; and the definition of the institutions [CS13b], with
an extended version [CS13c].

1. [CS13d] Daniel Calegari, Nora Szasz: Verification of Model Transformations: A Sur-
vey of the State-of-the-Art. Proc. Conf. Latinoamericana de Informática, Medellín,
Colombia, 2012. ENTCS 292: 5-25. Elsevier (2013) Best Paper Award

• [CS12] Daniel Calegari, Nora Szasz: Verification of Model Transformations:
A Survey of the State-of-the-Art (Extended Version). Tech. Rep. 12-05, Se-
ries ISSN: 0797–6410, Instituto de Computación, Universidad de la República,
Uruguay (2012)

• [LVV+09a] Horacio López, Fernando Varesi, Marcelo Viñolo, Daniel Calegari,
Carlos Luna. Estado del Arte de Lenguajes y Herramientas de Transformación de
Modelos. Tech. Rep. 09-19, Series ISSN: 0797–6410, Instituto de Computación,
Universidad de la República, Uruguay (2009)

• [LVV+09b] Horacio López, Fernando Varesi, Marcelo Viñolo, Daniel Calegari,
Carlos Luna. Estado del Arte de Verificación de Transformación de Modelos.
Tech. Rep. 10-07, Series ISSN: 0797–6410, Instituto de Computación, Universi-
dad de la República, Uruguay (2010)

133

134 Appendix A. Publication List

2. [CS13a] Daniel Calegari, Nora Szasz: Bridging Techological Spaces for the Verifica-
tion of Model Transformations. Proc. Conf. Iberoamericana de Software Engineering,
Montevideo, Uruguay (2013)

3. [CS13b] Daniel Calegari, Nora Szasz: Institution-Based Semantics for MOF and QVT-
Relations. Proc. 16th Brazilian Symp. Formal Methods, Brasilia, Brasil. LNCS 8195:
34-50. Springer. (2013) 2nd Best Paper Award

• [CS13c] Daniel Calegari, Nora Szasz: Institution-Based Semantics for MOF and
QVT-Relations (extended version). Tech. Rep. 13-06, Series ISSN: 0797–6410,
Instituto de Computación, Universidad de la República, Uruguay (2013)

There are other papers not completely related to the content of this thesis but produced un-
der the same context. In early stages of this thesis we studied how to apply a type-theoretic
framework, composed out by the Calculus of Inductive Constructions (CIC) and its associ-
ated tool the Coq proof assistant [BC04], to the formal treatment of model transformations
[CLST09, CLST10b, CLST10a]. The approach is based on a semi-automatic translation pro-
cess from metamodels, models and transformations of the MDE technical space into types,
propositions and functions of the CIC technical space.

• [CLST09] Daniel Calegari, Carlos Luna, Nora Szasz, Álvaro Tasistro: Experiment
with a Type-Theoretic Approach to the Verification of Model Transformations. Proc.
II Workshop Chileno de Métodos Formales, Santiago de Chile, Chile (2009)

• [CLST10b] Daniel Calegari, Carlos Luna, Nora Szasz, Alvaro Tasistro: A Type-Theoretic
Framework for Certified Model Transformations. Proc. 13th Brazilian Symposium
Formal Methods, Natal, Brasil. LNCS 6527: 112-127. Springer. (2010)

• [CLST10a] Daniel Calegari, Carlos Luna, Nora Szasz, Alvaro Tasistro Representation
of Metamodels using Inductive Types in a Type-Theoretic Framework for MDE. Tech.
Rep. 10-01, Series ISSN: 0797–6410, Instituto de Computación, Universidad de la
República, Uruguay (2010)

Moreover, as a way of exploring the theory of Institutions and the characteristics of a het-
erogeneous environment, as in [CKTW08], we defined an institution for UML 2.0 State Ma-
chines [CS11b], with an extended version [CS11a] published as a technical report (Series
ISSN: 0797–6410). The building blocks of this institution are based on a previous semantics
dealing with processing simple input events within a transition step. We also extend these
semantic definitions for handling sequences of events, and then for considering runs through
the state machine.

• [CS11b] Daniel Calegari, Nora Szasz: Institutionalising UML 2.0 State Machines.
ISSE 7(4): 315-323 (2011)

• [CS11a] Daniel Calegari, Nora Szasz: An Institution for UML 2.0 State Machines.
Tech. Rep. 11-02, Series ISSN: 0797–6410, Instituto de Computación, Universidad de
la República, Uruguay (2011)

B Proofs :: Institution for CSMOF

In this appendix we present proofs for the CSMOF institution defined in Chapter 6.

Lemma 6.2.7. Signatures and signature morphisms define a category Sign. The points of the

category are the signatures and the arrows are the signature morphisms.

Proof. Let Σi = (Ci, αi, Pi) (i = 1..4) with Ci = (Ci, ≤Ci
), and Pi = (Ri, Pi) be signatures,

and let σi : Σi → Σi+1 (i=1..3) be signature morphisms, then:

• Signature morphisms can be composed. We define the composition σ2 ◦σ1 as the tuple
〈σT , σR〉 such that σT (c) = σT2(σT1(c)), and σR(c) = σR2(σR1(c)). We have to show
that σ2 ◦ σ1 is a signature morphism:

– For all a ∈ C1 we have that σT (a) = σT2
(σT1

(c)) by definition of σT , and that
σT1

(c) ∈ C2 by definition of σT1
. Moreover, σT2

(σT1
(c)) ∈ C3 by definition of

σT2
. In consequence, a ∈ C1 implies σT (a) ∈ C3.

– For all a, b ∈ C1 with a≤C1b we have that σT1(a)≤C2σT1(b) by definition of
σT1

. Moreover, we have that σT1
(a), σT1

(b) ∈ C2 and thus
σT2

(σT1
(a))≤C3

σT2
(σT1

(b)) by definition of σT2
. Finally, we conclude that

a, b ∈ C1 with a≤C1
b implies σT (a)≤C3

σT (b) by definition of σT .

– For all a ∈ α1 we have that σT1(a) ∈ α2 by definition of σT1 and also that
σT2(σT1(a)) ∈ α3 by definition of σT2 . Finally, a ∈ α1 implies σT (a) ∈ α3 by
definition of σT .

– For all 〈r1 : c1, r2 : c2〉 ∈ P1 we have that
〈σR1

(r1) : σT1
(c1), σR1

(r2) : σT1
(c2)〉 ∈ P2 by definition of σT1

and σR1
, and

also that 〈σR2(σR1(r1)) : σT2(σT1(c1)), σR2(σR1(r2)) : σT2(σT1(c2))〉 ∈ P3 by
definition of σT2 and σR2 . Finally, 〈r1 : c1, r2 : c2〉 ∈ P1 implies

135

136 Appendix B. Proofs :: Institution for CSMOF

〈σR(r1) : σT (c1), σR(r2) : σT (c2)〉 ∈ P3 by definition of σT and σR.

• Composition of signature morphisms is associative, i.e. (σ3 ◦ σ2) ◦ σ1 = σ3 ◦ (σ2 ◦ σ1):

– For each a ∈ C1 we have that σT2 ◦ σT1(a) = σT2(σT1(a)) and thus σT3 ◦ (σT2 ◦
σT1)(a) = σT3(σT2(σT1(a))) by the definition of composition. Finally, this last
result is equals to σT3

◦ σT2
(σT1

(a)) which is equals to (σT3
◦ σT2

) ◦ σT1
(a).

– The proof is the same in the case of σR.

• There exists an identity signature morphism idΣ1 : Σ1 → Σ1 defined as a tuple
〈idT , idR〉 such that idT (c) = c, and idR(c) = c. This morphism satisfies the sig-
nature morphism conditions:

– a ∈ C1 implies idT (a) ∈ C1,

– a, b ∈ C1 with a≤C1b implies idT (a)≤C1idT (b),

– a ∈ α1 implies idT (a) ∈ α1,

– 〈r1 : c1, r2 : c2〉 ∈ P1 implies
〈idR(r1) : idT (c1), idR(r2) : idT (c2)〉 ∈ P1,

Finally, signatures and signature morphisms define a category.

Lemma 6.2.8. There is a functor Sen giving a set of formulas ψ (object in the category Set)

for each signature Σ (object in the category Sign), and a function σ : Sen(Σ1) → Sen(Σ2)
(arrow in the category Set) translating formulas for each signature morphism σ : Σ1 → Σ2

(arrow in the category Sign).

Proof. We have to prove that Sen is indeed a functor, i.e.: (a) domain and codomain of the
image of an arrow are the images of domain and codomain, respectively, of the arrow, (b)
composition is preserved, and (c) identities are preserved.

(a) By the definition of formulas, the image of a signature Σi in the category Sign is an object
Sen(Σi) in the category Set. Moreover, by the definition of the extension of the signature
morphism to formulas, the translation of the object in Sen(Σ1) coincides with an object in
Sen(Σ2) with the types and roles translated with respect to the signature morphism σ : Σ1 →
Σ2. Thus, the image of an arrow in Sign is an arrow σ : Sen(Σ1) → Sen(Σ2) in the category
Set. Finally, domain and codomain of the image of an arrow are the images of domain and
codomain, respectively, of the arrow.

137

(b) We have to prove that Sen(σ2 ◦ σ1) = Sen(σ2) ◦ Sen(σ1).
Let Σi (i=1..4) be signatures, and let σi:Σi → Σi+1 (i=1, 2) be signature morphisms.
Sen(σ2) ◦ Sen(σ1) is the canonical application of the signature morphism σ1 to the elements
in ψ1, composed with the canonical application of the signature morphism σ2 (by definition
of signature morphism extend to formulas). Since signature morphisms can be composed (as
defined in Lemma 6.2.7), this is the same as the canonical application of the composition of
the signature morphism to ψ1, i.e. Sen(σ2 ◦ σ1).

(c) Let idΣ1
: Σ1 → Σ1 be an identity signature morphism (defined in Lemma 6.2.7). We

can see that identities are preserved since, by definition, for any Σ1-formula ψ1, idΣ1
(ψ1) is

a Σ1-formula such that id(r • p) = idR(r) • idP (p) = r • p.

Finally, the functor Sen is defined.

Lemma 6.3.7. For any signatures, the Σ-interpretations and Σ-homomorphisms define a cat-

egory Mod(Σ). The points of the category are the Σ-interpretations, its arrows are the Σ-

homomorphisms.

Proof. Let Σ = (C, α, P) with C = (C, ≤C), and P = (R, P) be a signature, let
Ii = (VT

C(Oi), Ai) (i=1..4) be Σ-interpretations, and let hi : Ii → Ii+1 (i=1..3) be
Σ-homomorphisms, then:

• Σ-homomorphisms can be composed. We define the composition h2 ◦ h1 as a family
of maps (hc)c∈T (C) with hc : Vc1

→ Vc3
such that: hc(v) = hc2

(hc1
(v)), v ∈ Oc1

.
We have to prove that h2 ◦ h1 is a Σ-homomorphism, i.e.

– hc(v) ∈ Oc3 forall v ∈ Oc1 . By definition of homomorphism, we have that for
each v ∈ Oc1 , hc1(v) ∈ Oc2 and that for each w ∈ Oc2 , hc2(w) ∈ Oc3 , thus
hc2

(hc1
(v)) = hc(v) ∈ Oc3

.

– hc(v) ∈ Vc3
\Oc3

forall v ∈ Vc1
\Oc1

. Proceeding in the same way as before, we
have that for each v ∈ Vc1\Oc1 , hc2(hc1(v)) = hc(v) ∈ Vc3\Oc3 .

– (v1, v2) ∈ 〈r1 : c1, r2 : c2〉I1 iff (hc(v1), hc(v2)) ∈ 〈r1 : c1, r2 : c2〉I3 for any
vi ∈ Vc1

(i = 1, 2) and 〈r1 : c1, r2 : c2〉 ∈ P . By definition of homomorphism,
we have that for any vi ∈ Vc1

(i = 1, 2) and 〈r1 : c1, r2 : c2〉 ∈ P , (v1, v2) ∈
〈r1 : c1, r2 : c2〉I

1 iff (hc1(v1), hc2(v2)) ∈ 〈r1 : c1, r2 : c2〉I2 , and also for any
wi ∈ Vc2 (i = 1, 2) and 〈r1 : c1, r2 : c2〉 ∈ P , (w1, w2) ∈ 〈r1 : c1, r2 : c2〉I2 iff
(hc2(w1), hc2(w2)) ∈ 〈r1 : c1, r2 : c2〉I2 . Thus, for any vi ∈ Vc1 (i = 1, 2) and
〈r1 : c1, r2 : c2〉 ∈ P , (v1, v2) ∈ 〈r1 : c1, r2 : c2〉I1 iff
(hc2(hc1(v1)), hc2(hc1(v2))) = (hc(v1), hc(v2)) ∈ 〈r1 : c1, r2 : c2〉I3 .

• Composition of Σ-homomorphisms is associative. By definition of composition of
homomorphisms, for each v ∈ Oc1

we have that (h3◦h2)◦h1(v) = (h3◦h2)(hc1
(v)) =

hc3
(hc2

(hc1
(v))) = h3 ◦ hc2

(hc1
(v)) = h3 ◦ (h2 ◦ h1).

138 Appendix B. Proofs :: Institution for CSMOF

• There exist an identity Σ-homomorphism idI1
: I1 → I1 consisting of a family of

maps (idc)c∈T (C) with idc : Vc1
→ Vc1

such that: idc(v) = v, v ∈ Oc1
. It trivially

holds that idI1
is a Σ-homomorphism since:

– idc(v) = v ∈ Oc1 forall v ∈ Oc1 .

– idc(v) = v ∈ Vc1
\Oc1

forall v ∈ Vc1
\Oc1

.

– (v1, v2) ∈ 〈r1 : c1, r2 : c2〉I1 iff (idc(v1), idc(v2)) = (v1, v2) ∈
〈r1 : c1, r2 : c2〉I1 for any vi ∈ Vc1

(i = 1, 2) and 〈r1 : c1, r2 : c2〉 ∈ P .

Finally, Σ-interpretations and Σ-homomorphisms define a category.

Lemma 6.4.4. The reduct of Σ-interpretations and Σ-homomorphisms is a functor Mod(σ)

from Σ2-interpretations (Σ2-homomorphisms) to Σ1-interpretations (Σ1-homomorphisms)

for each signature morphism σ : Σ1 → Σ2.

Proof. By definition, domain and codomain of the reduct of an homomorphism are the reduct
of domain and codomain, respectively, of the homomorphism. We have now to prove that:
(a) the reduct of a composition of two homomorphisms is the composition of the reducts of
those homomorphisms, and (b) that the reduct of an identity homomorphism is likewise an
identity.

Let Σ = (C, α, P) with C = (C, ≤C), and P = (R, P) be a signature, let Ii = (VT
C(Oi), Ai)

(i=1..3) be Σ-interpretations, and let hi : Ii → Ii+1 (i=1, 2) be Σ-homomorphisms.

(a) (h2 ◦ h1)|σ = h2|σ ◦h1|σ . By definition of reduct of homomorphisms, we have that for
any c ∈ T (C), for any v ∈ Vc, (h2 ◦ h1)|σ is defined by (h2 ◦ h1)σ(c)(v). By definition of
composition of homomorphisms, this is equals to (h2)σ(c)((h1)σ(c)(v)). Thus, by definition
of composition of homomorphisms, this is equals to ((h2)σ(c) ◦ (h1)σ(c))(v) which is the
definition of h2|σ ◦h1|σ .

(b) Let idI2 be an identity Σ2-homomorphism, then idI2|σ is an identity
Σ1-homomorphism, since by definition of reduct of a homomorphism idI2

|σ is the Σ1-
homomorphism h1 defined by h1c

(v) = idI2σ(c)
(v) = v for any c ∈ T (C), for any v ∈ Vc.

Finally, the reduct of Σ-interpretations and Σ-homomorphisms is a functor.

139

Lemma 6.4.5. There is a functor Mod giving a category Mod(Σ) of Σ-interpretations (ob-

ject in the category Cat) for each signature Σ (object in the category Sign), as shown in

Lemma 6.3.7, and a functor Mod(σ) (arrow in the category Cat) from Σ2-interpretations

to Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for each signature

morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in Lemma 6.4.4.

Proof. We have to prove that Mod is indeed a functor, i.e.: (a) domain and codomain of the
image of an arrow are the images of domain and codomain, respectively, of the arrow, (b)
composition is preserved, and (c) identities are preserved.

(a) By Lemma 6.4.4, the image of an arrow σ : Σ2 → Σ1 in the category Signop is an arrow
Mod(σ) : Mod(Σ2) → Mod(Σ1) in the category Cat. Also, by Lemma 6.3.7, the image of
a signature Σ in the category Sign is an object Mod(Σ) in the category Cat. Thus, domain
and codomain of the image of an arrow are the images of domain and codomain, respectively,
of the arrow.

(b) We have to prove that Mod(σ2 ◦ σ1) = Mod(σ2) ◦ Mod(σ1) for both, interpretations and
homomorphisms. Let Σi (i=1..3) be signatures, let σi : Σi → Σi+1 (i=1, 2) be signature
morphisms, let I = (VT

C(O), A) be a Σ3-interpretation, and let h be a Σ3-homomorphism.
Then, we have to prove:

• I|σ2◦ σ1
= (I|σ2

)|σ1
.

By definition of reduct, I|σ2
is the Σ2-interpretation (VT

C(O|σ2
), A|σ2

) such that:

– VT
C(O|σ2

) = (Vσ2(c))c∈T (C2)

– A|σ2 = {〈σ2R(r1) : σ2T (c1), σ2R(r2) : σ2T (c2)〉I |
〈r1 : c1, r2 : c2〉 ∈ P2}

Then (I|σ2
)|σ1

is the Σ1-interpretation (VT
C((O|σ2

)|σ1
), (A|σ2

)|σ1
) such that:

– VT
C((O|σ2

)|σ1
) = (Vσ2(σ1(c)))c∈T (C1)

– (A|σ2
)|σ1

= {〈σ2R(σ1R(r1)) : σ2T (σ1T (c1)), σ2R(σ1R(r2)) : σ2T (σ1T (c2))〉I |
〈r1 : c1, r2 : c2〉 ∈ P1}

and this is equal to I|σ2◦ σ1
.

• h|σ2◦ σ1
= (h|σ2

)|σ1
.

By definition of reduct, h|σ2 is defined by h|σ2 c (v) = hσ2(c)(v) for any c ∈ T (C2),
for any v ∈ Vc, and thus (h |σ2) |σ1 is defined by (h |σ2) |σ1 c (v) = hσ2(σ1(c))(v) =
hσ2◦σ1(c)(v) for any c ∈ T (C1), for any v ∈ Vc, which is equals to h|σ2◦ σ1

.

(c) Let idσ : Σ → Σ be an identity signature morphism (defined in Lemma 6.2.7). We have
to prove that Mod(idσ) is an identity functor, i.e., it is composed by the identity reduct of
Σ-interpretations and the identity reduct of Σ-homomorphisms.

140 Appendix B. Proofs :: Institution for CSMOF

• By definition of reduct, for any Σ-interpretation I = (VT
C(O), A), I |idσ

is the Σ-
interpretation
(VT

C(O|idσ
), A|idσ

) such that:

– VT
C(O|idσ

) = (Vidσ(c))c∈T (C)

– A|idσ
= {〈idσR(r1) : idσT (c1), idσR(r2) : idσT (c2)〉I |

〈r1 : c1, r2 : c2〉 ∈ P}

Finally, by the definition of idσ , I |idσ
= I, thus _ |idσ

is the identity reduct of Σ-
interpretations.

• By definition of reduct, given a Σ-interpretation I1 = (VT
C(O1), A1), for any Σ-

homomorphism h : I1 → I2, the reduct h|idσ
is defined by h|idσ c (v) = hidσ(c)(v) =

hc(v) for any c ∈ T (C), for any v ∈ Vc. Now, since I|idσ
= I, we have that _|idσ

is
the identity reduct of Σ-homomorphisms.

Finally, the functor Mod is defined.

Theorem 6.4.6 (CSMOF satisfaction condition). Given signatures Σi = (Ci, αi, Pi) (i =
1, 2) with Ci = (Ci, ≤Ci

), and Pi = (Ri, Pi) a signature morphism σ : Σ1 → Σ2, a Σ2-

interpretation I = (VT
C(O), A), and a Σ1-formula ψ, the following satisfaction condition

holds.

I|σ|=Σ1
ψ iff I |=Σ2

σ(ψ)

Proof. We know that 〈r1 : c1, r2 : c2〉I|σ = 〈σR(r1) : σT (c1), σR(r2) : σT (c2)〉I

∀ 〈r1 : c1, r2 : c2〉 ∈ P1 by definition of _|σ . With this result, we can deduce that (ci•rj)I|σ =
(σT (ci) • σR(rj))I . Moreover, for all ϕ of the form #(c • r) = n, we have that σ(ϕ) is
#(σT (c) • σR(r)) = n, by definition of σ. Finally, using both results we have that ϕ is
#(c • r) = n and |S| = n ∀ S ∈ (c • r)I|σ ⇔ σ(ϕ) is #(σT (c) • σR(r)) = n and |S| = n
∀ S ∈ (σC(c) • σR(r))I . Thus, I|σ |=Σ1

ϕ ⇔ I |=Σ2
σ(ϕ).

We can proceed exactly in the same way for proving the other two cases of ϕ.

Finally, the satisfaction condition holds.

C Proofs :: Institution for QVTR

In this appendix we present proofs for the QVTR institution defined in Chapter 7.

Lemma 7.2.5. Signatures and signature morphisms define a category Sign. The points of the

category are the signatures and the arrows are the signature morphisms.

Proof. A signature morphisms is defined as a tuple of morphisms of the corresponding insti-
tutions 〈σC

1 , σC
2 〉. In those institutions, morphisms are composable, the composition is asso-

ciative, and there exists an identity signature morphism. We define the composition σ2 ◦ σ1

as the componentwise composition of morphisms, as well as the identity signature morphism
as the tuple with the identity signature morphisms of the corresponding institutions. Using
these facts, we conclude that: signature morphisms can be composed, composition of sig-
nature morphisms is associative, and there exists an identity signature morphism. Finally,
signatures and signature morphisms define a category.

Lemma 7.2.6. There is a functor Sen giving a set of formulas ψ (object in the category Set)

for each signature Σ (object in the category Sign), and a function σ : Sen(Σ1) → Sen(Σ2)
(arrow in the category Set) translating formulas for each signature morphism σ : Σ1 → Σ2

(arrow in the category Sign).

141

142 Appendix C. Proofs :: Institution for QVTR

Proof. We have to prove that Sen is indeed a functor, i.e.: (a) domain and codomain of the
image of an arrow are the images of domain and codomain, respectively, of the arrow, (b)
composition is preserved, and (c) identities are preserved.

(a) By the extension of the signature morphism to formulas, the image of an arrow σ : Σ1 →
Σ2 in the category Sign is an arrow σ : Sen(Σ1) → Sen(Σ2) in the category Set. Also, by the
definition of formulas, the image of a signature Σ in the category Sign is an object Sen(Σ)
in the category Set. Thus, domain and codomain of the image of an arrow are the images of
domain and codomain, respectively, of the arrow.

(b) We have to prove that Sen(σ2 ◦ σ1) = Sen(σ2) ◦ Sen(σ1).
Let Σi (i=1..4) be signatures, and let σi:Σi → Σi+1 (i=1, 2) be signature morphisms.
Sen(σ2) ◦ Sen(σ1) is the canonical application of the signature morphism σ1 to the elements
in ψ1, composed with the canonical application of the signature morphism σ2 (by definition
of signature morphism extend to formulas). Since signature morphisms can be composed (as
defined in Lemma 7.2.5), this is the same as the canonical application of the composition of
the signature morphism to ψ1, i.e. Sen(σ2 ◦ σ1).

(c) Let idΣ1
: Σ1 → Σ1 be an identity signature morphism (defined in Lemma 7.2.5). Identi-

ties are preserved since is the componentwise application of the identity signature morphisms
to every element in the formula, which already preserve the identities.

Finally, the functor Sen is defined.

Lemma 7.3.6. For any signatures, the Σ-interpretations and Σ-homomorphisms define a cat-

egory Mod(Σ). The points of the category are the Σ-interpretations, and its arrows are the

Σ-homomorphisms.

Proof. A Σ-interpretation is a tuple of interpretations of the corresponding institutions, as
well as homomorphisms are defined componentwise. In the corresponding institutions, ho-
momorphisms are composable, the composition is associative, and there exists an identity
homomorphism. We define the composition of homomorphisms as the componentwise com-
position of homomorphisms, as well as the identity homomorphism as the tuple with the
identity homomorphisms of the corresponding institutions. Using these facts, it is straightfor-
ward to conclude that: homomorphisms can be composed, composition of homomorphisms
is associative, and there exists an identity homomorphism. Finally, Σ-interpretations and
Σ-homomorphisms define a category.

143

Lemma 7.3.7. The reduct of Σ-interpretations and Σ-homomorphisms is a functor Mod(σ)

from Σ2-interpretations (Σ2-homomorphisms) to Σ1-interpretations (Σ1-homomorphisms)

for each signature morphism σ : Σ1 → Σ2.

Proof. An interpretation is a tuple of interpretations of the corresponding institutions, as well
as reducts are defined componentwise. In the corresponding institutions, the reduct of in-
terpretations and homomorphisms is a functor. From this we can conclude straightforward
that domain and codomain of the reduct of a homomorphism are the reduct of domain and
codomain, respectively, the reduct of a composition of two homomorphisms is the composi-
tion of the reducts of those homomorphisms, and the reduct of an identity homomorphism is
likewise an identity. Finally, the reduct of interpretations and homomorphisms is a functor.

Lemma 7.3.8. There is a functor Mod giving a category Mod(Σ) of Σ-interpretations (ob-

ject in the category Cat) for each signature Σ (object in the category Sign), as shown in

Lemma 7.3.6, and a functor Mod(σ) (arrow in the category Cat) from Σ2-interpretations

to Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for each signature

morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in Lemma 7.3.7.

Proof. We have to prove that Mod is indeed a functor, i.e.: (a) domain and codomain of the
image of an arrow are the images of domain and codomain, respectively, of the arrow, (b)
composition is preserved, and (c) identities are preserved.

(a) By Lemma 7.3.7, the image of an arrow σ : Σ2 → Σ1 in the category Signop is an arrow
Mod(σ) : Mod(Σ2) → Mod(Σ1) in the category Cat. Also, by Lemma 7.3.6, the image of
a signature Σ in the category Sign is an object Mod(Σ) in the category Cat. Thus, domain
and codomain of the image of an arrow are the images of domain and codomain, respectively,
of the arrow.

(b) We have to prove that Mod(σ2 ◦ σ1) = Mod(σ2) ◦ Mod(σ1) for both, interpretations
and homomorphisms. A reduct (homomorphism) is defined as a tuple of reducts (homo-
morphisms) of the corresponding institutions which are applied to each component in the
interpretation. Since the property holds in isolation for each component, we can directly
conclude that this also holds for the tuple.

(c) Let idσ : Σ → Σ be an identity signature morphism (defined in Lemma 6.2.7). We have
to prove that Mod(idσ) is an identity functor, i.e., it is composed by the identity reduct of
Σ-interpretations and the identity reduct of Σ-homomorphisms. Since reducts and homomor-
phisms are defined componentwise and the property holds in isolation for each component,
we can directly conclude that this also holds for the tuple.

Finally, the functor Mod is defined.

144 Appendix C. Proofs :: Institution for QVTR

Theorem 7.4.3 (QVTR satisfaction condition). Given signatures Σi = 〈ΣCi

1 , ΣCi

2 〉(i =
1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-interpretation M = 〈MM2

1 , MM2
2 〉, a

set of variables X2 = (Xs
2)s ∈S2

, and a Σ1-formula ϕ with variables in X2|σ , the following

satisfaction condition holds.

M|σ|=Σ1
ϕ iff M |=Σ2

σ(ϕ)

Proof. We will first prove some preliminary results:

1. Given IE signatures Σi (i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-
interpretation M, a set of variables X2 = (Xs

2)s ∈S2 , a M-variable assignments µ,
and a Σ1-formula ϕ with variables in X2|σ , the following condition holds by definition
of the IE institution: M|σ, µ|σ |=Σ1

ϕ iff M, µ |=Σ2
σ(ϕ)

2. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a derived Σ2-
model ME with a variable assignment µ, and a pattern Pattern = 〈E, A, Pr〉, the
following condition holds: ME, µ |= σ(Pattern) iff ME|σ, µ|σ |= Pattern

Proof.

ME, µ |= σ(Pattern)
iff (µ(σ(x)), µ(σ(y))) ∈ ME. ∀ rel(σ(p), σ(x), σ(y)) ∈ σ(A)

and ME, µ |=E σ(Pr)
(by def. of pattern satisf.)

iff (µ|σ (x), µ|σ (y)) ∈ ME|σ . ∀ rel(p, x, y) ∈ A
(by def. of ME|σ and σ)

and ME|σ, µ|σ |=E Pr
(by result 1)

iff ME|σ, µ|σ |= Pattern
(by def. of pattern satisf.)

3. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a derived Σ2-
model ME with a variable assignments µ, and a clause when = 〈whenc, whenr〉, the
following condition holds: ME, µ |= σ(when) iff ME|σ, µ|σ |= when

Proof.

ME, µ |= σ(when)
iff ME, µ |=E σ(whenc)

and ME, µ[σ(v)] |= σ(r). ∀(σ(r), σ(v)) ∈ σ(whenr)
(by def. of satisfaction of a when clause)

We also know that ME, µ |=E σ(whenc) iff ME|σ, µ|σ |=E whenc by result 1. Thus,
we have to prove that:

145

ME, µ[σ(v)] |= σ(r). ∀(σ(r), σ(v)) ∈ σ(whenr) iff
ME|σ, µ|σ [v] |= r. ∀(r, v) ∈ whenr

This can be proved by induction on the length of the chain of dependencies of when
and where clauses which is assumed to be finite as we discussed in Section 7.1. This
means that the base case is whenr = ∅ in which the condition trivially holds, since
also σ(whenr) = ∅. The inductive hypothesis is such that ∀(σ(r), σ(v)) ∈ σ(whenr)
we have that ME, µ[σ(v)] |= σ(r). iff ME |σ, µ|σ [v] |= r (and the same ∀(r, v) ∈
whenr. Thus, the inductive thesis trivially holds from these hypothesis.

Finally, by definition of satisfaction of a when clause, we conclude that
ME|σ, µ|σ |= when also holds. This proof can be read backwards.

4. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a derived Σ2-
interpretation ME with a variable assignments µ, and a clause where, the following
condition holds: ME, µ |= σ(where) iff ME|σ, µ|σ |= where

Proof. The proof is similar to the case of a when clause.

Now, we can prove the satisfaction condition for the two kinds of formulas.

In the case of a formula ϕK = 〈c, {r1, ..., rn}〉 (1 ≤ n), we have that:

M|σ|=Σ1 ϕK

iff ∀x, y ∈ (Vσ(c))c∈Ci
, x Ó= y implies

⋃

j{π2(t)| π1(t) = x, t ∈ pj
M|σ } Ó= ⋃

j{π2(t)| π1(t) = y, t ∈ pj
M|σ }

(by def. of satisfaction relation)
iff ∀x, y ∈ (Vc)c∈Ci

, x Ó= y implies
⋃

j{π2(t)| π1(t) = x, t ∈ σ(pj)
M} Ó= ⋃

j{π2(t)| π1(t) = y, t ∈ σ(pj)
M}

(by def. of M|σ and σ,
since the morphism and the interpretation preserves the inequalities)

iff M |=Σ2 σ(ϕK)
(by def. of satisfaction relation)

146 Appendix C. Proofs :: Institution for QVTR

In the case of a formula ϕR, for every top rule Rule ∈ ϕR we need to prove that

ME|σ, ∅ |= Rule iff ME, ∅ |= σ(Rule)

For any rule Rule = 〈Rule, VarSet, ParSet, Patterni (i = 1, 2), when, where〉, we have
two cases:

1. If WhenVarSet = ∅, ME2|σ, ∅ |= Rule if

∀ µ1|σ [x1, ..., xn] ∈ |VarSet\2_VarSet|,
(ME2|σ, µ1|σ [x1, ..., xn] |= Pattern1 →

∃ µ2|σ [y1, ..., ym] ∈ |2_VarSet|,
(ME2|σ, µ1|σ ∪ µ2|σ|= Pattern2 ∧

ME2|σ, µ1|σ ∪ µ2|σ|= where))

2. If WhenVarSet Ó= ∅, ME2|σ, ∅ |= Rule if

∀ µw|σ [z1, ..., zo] ∈ |WhenVarSet|,
(ME2|σ, µw|σ [z1, ..., zo] |= when →

∀ µ1|σ [x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,
(ME2|σ, µ1|σ ∪ µw|σ|= Pattern1 →

∃ µ2|σ [y1, ..., ym] ∈ |2_VarSet|,
(ME2|σ, µ1|σ ∪ µ2|σ ∪ µw|σ|= Pattern2 ∧

ME2|σ, µ1|σ ∪ µ2|σ ∪ µw|σ|= where)))

In both cases we can directly use the preliminar results, plus the definition of µ|σ , to conclude
that the following cases also hold:

1. If σ(WhenVarSet) = ∅

∀ µ1[x1, ..., xn] ∈ |VarSet\2_VarSet|,
(ME2 , µ1[x1, ..., xn] |= σ(Pattern1) →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,
(ME2 , µ1 ∪ µ2 |= σ(Pattern2) ∧

ME2 , µ1 ∪ µ2 |= σ(where)))

147

2. If σ(WhenVarSet) Ó= ∅

∀ µw[z1, ..., zo] ∈ |WhenVarSet|,
(ME2 , µw[z1, ..., zo] |= σ(when) →

∀ µ1[x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,
(ME2 , µ1 ∪ µw |= σ(Pattern1) →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,
(ME2 , µ1 ∪ µ2 ∪ µw |= σ(Pattern2) ∧

ME2 , µ1 ∪ µ2 ∪ µw |= σ(where))))

Finally, we conclude that ME, ∅ |= σ(Rule). Note that we can also read this proof downside
up, thus the satisfaction condition holds.

D Proofs :: CSMOF and QVTR Extensions

In this appendix we present proofs for the extensions of the CSMOF institution and the QVTR

institution defined in Chapter 8.

Lemma 8.1.3. There is a functor Sen giving a set of formulas ψ (object in the category Set)

for each signature Σ (object in the category Sign), as shown in the definition of a formula,

and a function σ : Sen(Σ1) → Sen(Σ2) (arrow in the category Set) translating formulas

for each signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in the

extension of the signature morphism to formulas.

Proof. We have to prove that Sen is indeed a functor, i.e.: (a) domain and codomain of the
image of an arrow are the images of domain and codomain, respectively, of the arrow, (b)
composition is preserved, and (c) identities are preserved.

(a) In the original definition we have that domain and codomain of the image of an arrow
are the images of domain and codomain, respectively, of the arrow. Since formulas are just
extended with a new component (Ω), and the extension of the signature morphism to formulas
is still the canonical application of the signature morphism, the proof also holds in the case
of formulas Ω.

(b) We have proved that composition was preserved in the original definition of formulas
and signature morphisms. The proof was based in the fact that the extension of signature
morphisms to formulas is the canonical application of the signature morphism, and that sig-
nature morphisms can be composed, thus, the canonical application of the composition of
the signature morphism is the same as the composition of the canonical application of both
signature morphisms. In the new case, nothing changes, since the the extension of signature
morphisms to these formulas is still the canonical application of the signature morphism.
Thus, composition is still preserved.

149

150 Appendix D. Proofs :: CSMOF and QVTR Extensions

(c) Let idΣ1
: Σ1 → Σ1 be an identity signature morphism (defined in Lemma 6.2.7). We

had that identities are preserved in the case of a Σ1-formula Φ since idΣ1
(Φ) is a Σ1-formula

such that id(r • p) = idR(r) • idP (p) = r • p. Now, identities are preserved also in the
case of a Σ1-formula Ω since idΣ1(Ω) is a Σ1-formula such that idΣ1(xc) = x(c) = xc, and
idΣ1(〈r1, x1

c1 , r2, x2
c2〉) =

〈

id(r1), x1
id(c1), id(r2), x2

id(c2)
〉

= 〈r1, x1
c1 , r2, x2

c2〉.

Finally, the functor Sen is defined.

Theorem 8.1.10 (IΩ satisfaction condition). Given signatures Σi = (Ci, αi, Pi) (i = 1, 2)
with Ci = (Ci, ≤Ci

), and Pi = (Ri, Pi) a signature morphism σ : Σ1 → Σ2, a Σ2-

interpretation I = (VT
C(O), A), and a Σ1-formula Ω, the following satisfaction condition

holds.

I|σ|=Σ1 Ω iff I |=Σ2 σ(Ω)

Proof. We know by definition that I|σ|=Σ1
Ω if there exists a bijective function K(I|Ω)|σ (Ω)

mapping each xc ∈ υ(Ω) to an element of (Vσ(c))c∈T (C) for each c ∈ T (C), such that syn-
tactic links in Ω and semantic links in (I|Ω)|σ coincide. Since σ(Ω) change types and roles
not affecting variables or links, e.g. σ(xc) = xσT (c), we can define that KI|σ(Ω)(σ(Ω)) is
the bijective function mapping each xσT (c) ∈ υ(σ(Ω)) with c ∈ T (C) to the same element
of (Vσ(c))c∈T (C) as the other function. Since the interpretation I is restricted with respect to
the explicit scope defined by σ(Ω), it will have the same elements than those in (I|Ω)|σ and
thus the sets of elements (Vσ(c))c∈T (C) considered in both functions are exactly the same. In
the same way, since the interpretations coincide, we can define the correspondence between
a link in Ω and its interpretation to be the same as for the translated link in σ(Ω).

Finally, we have that given a function K(I|Ω)|σ (Ω) or KI|σ(Ω)(σ(Ω)) we can directly define
the other, and thus I|σ |=Σ1

Ω iff I |=Σ2
σ(Ω), i.e. the satisfaction condition holds.

E Proofs :: Comorphisms

In this appendix we present complete proofs for the properties stated in Chapter 9. In Sec-
tion E.1 we present proofs for the generalized theoroidal comorphism from CSMOF to CASL,
and in Section E.2 for the generalized theoriodal comorphism from QVTR to CASL.

E.1 Encoding CSMOF into CASL

Lemma 9.2.4. Given IM+

signatures Σi, and a theory morphism σ : Σ1 → Σ2, its transla-

tion Φ(σ) is a IC theory morphism.

Proof. Given a set of Σ1-formulas Ψ and a set of Σ2-formulas Ψ2 these sets have Φ formulas
representing multiplicity constraints and Ω formulas representing SW-models. We know that
Ψ and Ψ2 comply with the theory morphism σ : 〈Σ, Ψ〉 → 〈Σ2, Ψ2〉 if Ψ2 |=Σ2

σ(Ψ).
This means that if an interpretation I satisfies Ψ2, it must satisfy σ(Ψ). An interpretation
satisfying Ψ2 determines a concrete SW-model which satisfies the multiplicity constraints.
In this sense, if there is a formula Ω in Ψ2 representing a SW-model, any formula in σ(Ψ)
satisfied by the same interpretation I must be a derivable multiplicity constraint from the SW-
model, or same structured SW-model with potentially less types (remember that there must
be an isomorphism between the SW-model and the explicit scope defined by the reduced
interpretation with respect to the types in the SW-model). Moreover, if there is a formula
Φ in Ψ2 representing a multiplicity constraint, any formula in σ(Ψ) satisfied by the same
interpretation I must be a derivable multiplicity constraint.

We also know that the translation Φ not only maps types and roles in a consistent way, but
also adds axioms constraining the IC models that must be used for checking the satisfaction
relation (e.g. the “distinguishability” and “completeness of elements” axioms). In this sense,
any interpretation satisfying Φ(Ψ2) and Φ(σ)(Φ(Ψ)) must have the same structure that the
original I. This means that if we translate the formula Ω in Ψ2 and the corresponding deriv-

151

152 Appendix E. Proofs :: Comorphisms

able multiplicity constraint or reduced SW-model in σ(Ψ), we can find an equivalent IC

model satisfying Φ(Ψ2) |=Φ(Σ2) Φ(σ)(Φ(Ψ)). The same happens with the translation of Φ
formulas representing multiplicity constraints.

In conclusion Φ(σ) is a IC theory morphism.

Lemma 9.2.5. The function Φ : ThIM+

→ ThIC

is a functor from the category of IM+

theories and theory morphisms to the category of theories in SubPCFOL=, i.e.: (a) domain

and codomain of the image of an arrow are the images of domain and codomain, respectively,

of the arrow, (b) composition is preserved, and (c) identities are preserved.

Proof. (a) By definition, the image of an arrow σ : Σ1 → Σ2 in the category of IM+

theories
is an arrow Φ(σ) : Φ(Σ1) → Φ(Σ2) in the category of theories in SubPCFOL=.

(b) We have to prove that Φ(σ2 ◦ σ1) = Φ(σ2) ◦ Φ(σ1). Let Σi (i=1..4) be signatures, and
let σi:Σi → Σi+1 (i=1, 2) be signature morphisms. As defined in Lemma 6.2.7, the compo-
sition σ2 ◦ σ1 is a tuple 〈σT , σR〉 such that σT (c) = σT2

(σT1
(c)), and σR(c) = σR2

(σR1
(c)).

Its translation Φ(σ2 ◦ σ1) is a SubPCFOL= signature morphism 〈σS , σF , σP 〉 such that:

• σS(Φ(c)) = Φ(σT2
(σT1

(c))) for every c ∈ T (Ci)

• σP (r1(c2, c1)) = σR2(σR1(r1))(σT2(σT1(c2)), σT2(σT1(c1))), and
σP (r2(c1, c2)) = σR2

(σR1
(r2))(σT2

(σT1
(c1)), σT2

(σT1
(c2))),

for every 〈r1 : c1, r2 : c2〉 ∈ P1 and r1(c2, c1), r2(c1, c2) the predicates generated from
Φ(〈r1 : c1, r2 : c2〉).

Moreover, the translations Φ(σ1) and Φ(σ2) are SubPCFOL= signature morphisms
〈σSi

, σFi
, σPi

〉 (i = 1, 2). Using this information and the properties of signature morphisms,
we can conclude that Φ(σ2 ◦ σ1) = Φ(σ2) ◦ Φ(σ1), since

• σS2
◦ σS1

(Φ(c)) = σS2
(Φ(σT1

(c))) = Φ(σT2
(σT1

(c)))

• σP2 ◦ σP1(r1(c2, c1)) = σP2(σR1(r1)(σT1(c2), σT1(c1))) =
σR2(σR1(r1))(σT2(σT1(c2)), σT2(σT1(c1))). The other case is analogous.

(c) As defined in Lemma 6.2.7, the identity signature morphism idσ in SignM is a tuple of
identity functions for types and roles. Its translation Φ(idσ) is the identity signature mor-
phism in SubPCFOL=, since by definition of Φ we have that:

• σS(Φ(c)) = Φ(idσ(c)) = Φ(c) for every c ∈ T (Ci)

• σP (r1(c2, c1)) = idσ(r1)(idσ(c2), idσ(c1)) = r1(c2, c1), and
σP (r2(c1, c2)) = idσ(r2)(idσ(c1), idσ(c2)) = r2(c1, c2),
for every 〈r1 : c1, r2 : c2〉 ∈ P1 and r1(c2, c1), r2(c1, c2) the predicates
generated from Φ(〈r1 : c1, r2 : c2〉).

Finally, Φ is a functor.

E.1. Encoding CSMOF into CASL 153

Lemma 9.2.6. The function β : (Φ)op; ModIC → ModIM+

, with Mod : Th → Cat the

functor giving the category of models of a theory, is a natural transformation, i.e. a family of

arrows βA : (Φ)op; ModIC

(A) ⇒ ModIM+

(A), one for each theory A of SignM, such that,

for every theory morphism σ : A → B it holds: ModIM+

◦ βB = βA ◦ (Φ)op; ModIC

Proof. Given any model in ModIC

(Φ(B)), the translation βB gives an interpretation denoted
I = (VT

C(O), A) such that:

• Each non-empty carrier set |M |s with s ∈ S, is translated into the set Vc in the object
domain VT

C(O) such that s is the translation of type c ∈ T (C).

• Each relation pM of a predicate symbol r2(c1, c2) ∈ P derived from the translation of
a predicate 〈r1 : c1, r2 : c2〉, is translated into the relation
pI ⊆ Vc1

× Vc2
∈ A.

By definition of reduct, the application of ModIM+

to this interpretation gives the same

interpretation. In the other side, the reduct ModIC

(Φ(σ)) gives an interpretation of symbols
of the translated signature A, and it composition with the translation βA produces the same
interpretation as before, since the carries sets |M |s with s ∈ S, and the relations pM are those
derived from the translation of elements in the translates signature, which was reduced to the
elements in the signature A.

In the case of homomorphisms the property also holds. The translation of a homomorphism
is defined in conformance with the original homomorphism, and the reduct gives the same

homomorphism. For a homomorphism in ModIC

we have that h′
σ(c) = h′′

Φ(σ(c)) and the
composition with the reduct gives a homomorphism hc = h′

σ(c). In the other side, the reduct

of a homomorphism in ModIC

gives a homomorphism h′
Φ(c) = h′′

Φ(σ(c)), and its translation
gives a homomorphism hc = h′

Φ(c) which is the same as before.

Finally, β is a natural transformation.

154 Appendix E. Proofs :: Comorphisms

E.2 Encoding QVTR into CASL

Lemma 9.3.4. Given IQ+

signatures Σi, and a theory morphism σ : Σ1 → Σ2, its transla-

tion Φ(σ) is a IC theory morphism.

Proof. We already proved in Lemma 9.2.4 that the translation of extended CSMOF formu-
las is a IC theory morphism. Since IQ+

signatures and signature morphisms are a pair of
IM+

signatures and signature morphisms, we can conclude that Φ(σ) is a theory morphism
when restricting the set of formulas to extended CSMOF formulas (each component of σ is a
standalone theory morphism).

We can also extend this result by considering ϕK formulas representing key constraints. We
have that given a set of Σ1-formulas Ψ, and a set of Σ2-formulas Ψ2 they comply with
the theory morphism σ : 〈Σ, Ψ〉 → 〈Σ2, Ψ2〉 if Ψ2 |=Σ2

σ(Ψ). In such case we have a
pair M of interpretations satisfying Ψ2, i.e. determining concrete SW-models which satisfy
the multiplicity constraints and key constraints; which also satisfies σ(Ψ). As before, the
translation Φ maps types and roles in a consistent way, and also adds axioms constraining the
IC models. In this sense, the pair of models satisfying Φ(Ψ2) and Φ(σ)(Φ(Ψ)) must have
the same structure than in the original interpretation M. In this sense, if a formula ϕK in Ψ
or Ψ2 holds in IQ+

, then its translation along Φ will also hold in IC.

If we consider now transformation rules ϕR, we have that such rules does not constraint each
individual interpretation but the relation between them. Reasoning as before, rules in Ψ2 can
be more specific than those in Ψ, such that any pair of interpretations satisfying the relation
defined by those rules in Ψ2 also satisfies the relation defined by σ(Ψ). Since the translation
Φ constraints the pair of models with respect to the transformation rules, any pair of models
satisfying Φ(Ψ2) will also satisfy Φ(σ)(Φ(Ψ)) given the fact that Φ(σ) maps types and roles
in a consistent way without changing the required relation between models. Thus, we have
that Φ(Ψ2) |=Φ(Σ2) Φ(σ)(Φ(Ψ)) also hold with the inclusion of transformation rules.

Finally, Φ(σ) is a IC theory morphism.

E.2. Encoding QVTR into CASL 155

Lemma 9.3.5. The function Φ : ThIQ+

→ ThIC

is a functor from the category of IQ+

theories and theory morphisms to the category of theories in SubPCFOL=, i.e.: (a) domain

and codomain of the image of an arrow are the images of domain and codomain, respectively,

of the arrow, (b) composition is preserved, and (c) identities are preserved.

Proof. (a) By definition, the image of an arrow σ : Σ1 → Σ2 in the category of IQ+

theories
is an arrow Φ(σ) : Φ(Σ1) → Φ(Σ2) in the category of theories in SubPCFOL=.

(b)We have to prove that Φ(σ2 ◦ σ1) = Φ(σ2) ◦ Φ(σ1). Since signature morphism are the
disjoint union of extended CSMOF signature morphisms, we have that the composition is
preserved by Lemma 9.2.5.

(c) As defined in Lemma 7.2.5, the identity signature morphism idσ is the tuple with the
identity signature morphisms of the corresponding institutions. Its translation Φ(idσ) is the
disjoint union of the translations of the identity signature morphisms. Thus, the translated
signature morphism preserves the identity of sorts, functions and predicates, which is the
identity signature morphism in the category of theories in SubPCFOL=.

Lemma 9.3.6. The function β : (Φ)op; ModIC → ModIQ+

, with Mod : Th → Cat the

functor giving the category of models of a theory, is a natural transformation, i.e. a family of

arrows βA : (Φ)op; ModIC

(A) ⇒ ModIQ+

(A), one for each theory A of SignQ, such that,

for every theory morphism σ : A → B it holds: ModIQ+

◦ βB = βA ◦ (Φ)op; ModIC

Proof. Given any model in ModIC

(Φ(B)), the translation βB gives a pair of disjoint models.

By definition of reduct, the application of ModIQ+

gives the same pair of models. In the other

side, the reduct ModIC

(Φ(σ)) gives an interpretation of symbols of the translated signature
A, and the translation βA just divide the model into two disjoint ones with respect to the two
parts of the signature A. Thus, the property holds.

In the case of homomorphisms the property also holds, since the translation of a homomor-
phism is defined as a disjoint translation with respect to the elements in the corresponding
signatures, and the reduct of a homomorphism is defined componentwise. This means that
the translation gives the same homomorphism between elements as two disjoint functions,
and it composition with the reduct gives a reduced homomorphism with respect to the ele-
ments in the source signature. This is equal to the reduct of the homomorphism with respect
to the elements in the source signature and then its separation into two disjoint functions.

Finally, β is a natural transformation.

F Code Artifacts for the Running Example

In this appendix we present the code artifacts for the running example introduced in Sec-
tion 2.2: (1) the XMI representation of UML class diagrams and Relation metamodels in
Figure 2.6 and the corresponding SW-models in Figure 2.7 used for constructing the CSMOF

institutions, (2) the QVT model transformation used for constructing the QVTR institution,
and (3) the CASL theories generated by the comorphisms. CASL code has been commented.

In Section F.1 we first present the Ecore definition of CSMOF which allows representing
CSMOF specifications as XMI files. Then, in Section F.2 we present the corresponding arti-
facts for UML class diagrams, in Section F.3 for Relational models, and in Section F.4 for the
Class to Relational model transformation.

F.1 CSMOF Ecore

The Ecore model, strongly related to the EMOF standard, has a root object (EPackage) repre-
senting the whole model. This model has children representing classes (EClass), with zero or
more attributes and zero or more references. Attributes (EAttribute) have a name and a type
(represented by an EDataType). References (EReference) represent one end of an association
between two classes. The following definition is almost self explanatory by looking at its
graphical representation in Figure 10.3.

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

name="CSMOF"

nsURI="urn:CSMOF.ecore" nsPrefix="CSMOF">

157

158 Appendix F. Code Artifacts for the Running Example

<eClassifiers xsi:type="ecore:EClass"

name="NamedElement" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="name" lowerBound="1"

eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="owner" ordered="false"

eType="#//Metamodel" eOpposite="#//Metamodel/element"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Type"

abstract="true" eSuperTypes="#//NamedElement"/>

<eClassifiers xsi:type="ecore:EClass" name="Class"

eSuperTypes="#//Type">

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="isAbstract" lowerBound="1"

eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EBoolean"

defaultValueLiteral="false"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="ownedAttribute" ordered="false"

upperBound="-1" eType="#//Property" containment="true"

eOpposite="#//Property/class"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="superClass" ordered="false"

upperBound="-1" eType="#//Class"

eOpposite="#//Class/subClass"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="subClass" ordered="false"

upperBound="-1" eType="#//Class"

eOpposite="#//Class/superClass"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Property"

eSuperTypes="#//MultiplicityElement #//TypedElement">

<eStructuralFeatures xsi:type="ecore:EReference"

name="opposite" ordered="false"

eType="#//Property"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="class" lowerBound="1" eType="#//Class"

eOpposite="#//Class/ownedAttribute"/>

</eClassifiers>

F.1. CSMOF Ecore 159

<eClassifiers xsi:type="ecore:EClass"

name="MultiplicityElement" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="lower" lowerBound="1"

eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EInt"

defaultValueLiteral="1"/>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="upper" lowerBound="1"

eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EInt"

defaultValueLiteral="1"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass"

name="DataType" eSuperTypes="#//Type"/>

<eClassifiers xsi:type="ecore:EClass" name="Metamodel">

<eStructuralFeatures xsi:type="ecore:EReference"

name="element" ordered="false"

upperBound="-1" eType="#//NamedElement" containment="true"

eOpposite="#//NamedElement/owner"/>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="name" lowerBound="1"

eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="model" ordered="false"

upperBound="-1" eType="#//Model" containment="true"

eOpposite="#//Model/type"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="TypedElement"

abstract="true" eSuperTypes="#//NamedElement">

<eStructuralFeatures xsi:type="ecore:EReference"

name="type" ordered="false" lowerBound="1"

eType="#//Type"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Model">

<eStructuralFeatures xsi:type="ecore:EReference"

name="object" ordered="false"

upperBound="-1" eType="#//Object" containment="true"

eOpposite="#//Object/owner"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="link" ordered="false" upperBound="-1"

eType="#//Link" containment="true"

eOpposite="#//Link/owner"/>

160 Appendix F. Code Artifacts for the Running Example

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="name" lowerBound="1" eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="type" lowerBound="1" eType="#//Metamodel"

eOpposite="#//Metamodel/model"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Object">

<eStructuralFeatures xsi:type="ecore:EReference"

name="type" lowerBound="1" eType="#//Type"/>

<eStructuralFeatures xsi:type="ecore:EAttribute"

name="name" lowerBound="1"

eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="owner" lowerBound="1" eType="#//Model"

eOpposite="#//Model/object"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Link">

<eStructuralFeatures xsi:type="ecore:EReference"

name="type" lowerBound="1" eType="#//Property"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="source" lowerBound="1" eType="#//Object"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="target" lowerBound="1" eType="#//Object"/>

<eStructuralFeatures xsi:type="ecore:EReference"

name="owner" lowerBound="1" eType="#//Model"

eOpposite="#//Model/link"/>

</eClassifiers>

</ecore:EPackage>

F.2 UML Class Diagrams

In what follows we present the XMI file corresponding to the UML class diagrams metamodel
and SW-model of the example with multiplicity constraints. As explained in Chapter 10,
there is another XMI file without the multiplicity constraint. In this other file (not shown
here) every property has a lower multiplicity of 0 (it may have no elements connected) and
an upper multiplicity of -1 (it may have an unbounded number of elements connected). By
default, the multiplicity is 1, so in these cases the lower and upper properties are not shown.

F.2. UML Class Diagrams 161

<?xml version="1.0" encoding="ASCII"?>

<CSMOF:Metamodel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:CSMOF="urn:CSMOF.ecore"

xsi:schemaLocation="urn:CSMOF.ecore ../metamodel/CSMOF.ecore"

name="UML">

<element xsi:type="CSMOF:Class" name="UMLModelElement"

isAbstract="true"

subClass="//@element.1 //@element.3 //@element.5">

<ownedAttribute name="name" type="//@element.6"/>

<ownedAttribute name="kind" type="//@element.6"/>

</element>

<element xsi:type="CSMOF:Class" name="Package"

superClass="//@element.0">

<ownedAttribute lower="0" upper="-1" name="elements"

type="//@element.3"

opposite="//@element.3/@ownedAttribute.0"/>

</element>

<element xsi:type="CSMOF:Class" name="PrimitiveDataType"

superClass="//@element.3"/>

<element xsi:type="CSMOF:Class" name="Classifier"

superClass="//@element.0"

subClass="//@element.2 //@element.4">

<ownedAttribute name="namespace" type="//@element.1"

opposite="//@element.1/@ownedAttribute.0"/>

</element>

<element xsi:type="CSMOF:Class" name="Class"

superClass="//@element.3">

<ownedAttribute upper="2" name="attribute"

type="//@element.5"

opposite="//@element.5/@ownedAttribute.0"/>

</element>

<element xsi:type="CSMOF:Class" name="Attribute"

superClass="//@element.0">

<ownedAttribute name="owner" type="//@element.4"

opposite="//@element.4/@ownedAttribute.0"/>

<ownedAttribute name="typeT" type="//@element.2"/>

</element>

162 Appendix F. Code Artifacts for the Running Example

<element xsi:type="CSMOF:DataType" name="String"/>

<model name="UMLModel">

<object type="//@element.1" name="p"/>

<object type="//@element.2" name="pdt"/>

<object type="//@element.5" name="a"/>

<object type="//@element.4" name="c"/>

<object type="//@element.6" name="Package"/>

<object type="//@element.6" name="EMPTY"/>

<object type="//@element.6" name="ID"/>

<object type="//@element.6" name="Persistent"/>

<object type="//@element.6" name="value"/>

<object type="//@element.6" name="String"/>

<link type="//@element.1/@ownedAttribute.0"

source="//@model.0/@object.0"

target="//@model.0/@object.3"/>

<link type="//@element.1/@ownedAttribute.0"

source="//@model.0/@object.0"

target="//@model.0/@object.1"/>

<link type="//@element.4/@ownedAttribute.0"

source="//@model.0/@object.3"

target="//@model.0/@object.2"/>

<link type="//@element.5/@ownedAttribute.1"

source="//@model.0/@object.2"

target="//@model.0/@object.1"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.0"

target="//@model.0/@object.4"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.3"

target="//@model.0/@object.6"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.2"

target="//@model.0/@object.8"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.1"

target="//@model.0/@object.9"/>

<link type="//@element.0/@ownedAttribute.1"

source="//@model.0/@object.0"

target="//@model.0/@object.5"/>

<link type="//@element.0/@ownedAttribute.1"

source="//@model.0/@object.3"

target="//@model.0/@object.7"/>

<link type="//@element.0/@ownedAttribute.1"

source="//@model.0/@object.2"

target="//@model.0/@object.5"/>

F.2. UML Class Diagrams 163

<link type="//@element.0/@ownedAttribute.1"

source="//@model.0/@object.1"

target="//@model.0/@object.5"/>

</model>

</CSMOF:Metamodel>

The CASL theory generated by the comorphism CSMOF2CASL is the following one.

%{Sorts and subsorting relations}%

sorts Attribute, Class, Classifier, Package, PrimitiveDataType,

String, UMLModelElement

sorts Class, PrimitiveDataType < Classifier;

Attribute, Classifier, Package < UMLModelElement

%{String elements}%

op EMPTY : String

op ID : String

op Package : String

op Persistent : String

op String : String

op value : String

%{Objects as total functions}%

op a : Attribute

op c : Class

op p : Package

op pdt : PrimitiveDataType

%{Properties: attributes and associations}%

pred attribute : Class * Attribute

pred elements : Package * Classifier

pred kind : UMLModelElement * String

pred name : UMLModelElement * String

pred namespace : Classifier * Package

pred owner : Attribute * Class

pred typeT : Attribute * PrimitiveDataType

%{Multiplicity constraints}%

. (forall x_1 : UMLModelElement

. exists y_1 : String . name(x_1, y_1))

/\ forall x_1 : UMLModelElement; y_2, y_1 : String

. (name(x_1, y_2) /\ name(x_1, y_1)) => y_2 = y_1

164 Appendix F. Code Artifacts for the Running Example

. (forall x_1 : UMLModelElement

. exists y_1 : String . kind(x_1, y_1))

/\ forall x_1 : UMLModelElement; y_2, y_1 : String

. (kind(x_1, y_2) /\ kind(x_1, y_1)) => y_2 = y_1

. (forall x_1 : Classifier

. exists y_1 : Package . namespace(x_1, y_1))

/\ forall x_1 : Classifier; y_2, y_1 : Package

. (namespace(x_1, y_2) /\ namespace(x_1, y_1))

=> y_2 = y_1

. forall x_1 : Class; y_3, y_2, y_1 : Attribute

. (attribute(x_1, y_3) /\ attribute(x_1, y_2)

/\ attribute(x_1, y_1))

=> y_3 = y_2 \/ y_3 = y_1 \/ y_2 = y_1

. forall x_1 : Class

. exists y_1 : Attribute . attribute(x_1, y_1)

. (forall x_1 : Attribute . exists y_1 : Class

. owner(x_1, y_1)) /\

forall x_1 : Attribute; y_2, y_1 : Class

. (owner(x_1, y_2) /\ owner(x_1, y_1)) => y_2 = y_1

. (forall x_1 : Attribute

. exists y_1 : PrimitiveDataType . typeT(x_1, y_1))

/\ forall x_1 : Attribute; y_2, y_1 : PrimitiveDataType

. (typeT(x_1, y_2) /\ typeT(x_1, y_1)) => y_2 = y_1

%{Axioms}%

forall x : Class; y : Attribute . attribute(x, y) <=> owner(y, x)

%(equiv_owner_attribute)%

forall x : Package; y : Classifier

. elements(x, y) <=> namespace(y, x)%(equiv_namespace_elements)%

forall x : Classifier; y : Package

. namespace(x, y) <=> elements(y, x)%(equiv_elements_namespace)%

forall x : Attribute; y : Class . owner(x, y) <=> attribute(y, x)

%(equiv_attribute_owner)%

forall x : Attribute; y : PrimitiveDataType

. typeT(x, y) <=> (x = a /\ y = pdt)

%(compRel__AttributetypeTPrimitiveDataType)%

F.2. UML Class Diagrams 165

forall x : UMLModelElement; y : String

. kind(x, y)

<=> (x = a /\ y = EMPTY) \/ (x = c /\ y = Persistent)

\/ (x = p /\ y = EMPTY) \/ (x = pdt /\ y = EMPTY)

%(compRel__UMLModelElementkindString)%

forall x : UMLModelElement; y : String

. name(x, y)

<=> (x = a /\ y = value) \/ (x = c /\ y = ID)

\/ (x = p /\ y = Package) \/ (x = pdt /\ y = String)

%(compRel__UMLModelElementnameString)%

forall x : Package; y : Classifier

. elements(x, y) <=> (x = p /\ y = c) \/ (x = p /\ y = pdt)

%(compRel_namespacePackageelementsClassifier)%

forall x : Class; y : Attribute

. attribute(x, y) <=> (x = c /\ y = a)

%(compRel_ownerClassattributeAttribute)%

%{Sort generation constraints}%

%% free

generated type UMLModelElement ::=

sort Attribute | sort Classifier | sort Package

%(disjEmbedd)%

%% free

generated type Attribute ::= a %(sortGenCon_Attribute)%

%% free

generated type Class ::= c %(sortGenCon_Class)%

%% free

generated type Package ::= p %(sortGenCon_Package)%

%% free

generated type PrimitiveDataType ::= pdt

%(sortGenCon_PrimitiveDataType)%

%% free

generated type

String ::= EMPTY | ID | Package | Persistent | String | value

%(sortGenCon_String)%

forall x : Classifier . x = c \/ x = pdt

%(sortGenCon_Classifier)%

166 Appendix F. Code Artifacts for the Running Example

. not a = c /\ not a = p /\ not a = pdt

. not c = p /\ not c = pdt

. not p = pdt %(noConfusion_UMLModelElement)%

. not EMPTY = ID /\ not EMPTY = Package

/\ not EMPTY = Persistent /\ not EMPTY = String

/\ not EMPTY = value /\ not ID = Package

/\ not ID = Persistent /\ not ID = String

/\ not ID = value /\ not Package = String

/\ not Package = Persistent /\ not Package = value

/\ not Persistent = String /\ not Persistent = value

/\ not String = value

%(noConfusion_String)%

F.3 Relational Models

In what follows we present the XMI file corresponding to the Relational metamodel and SW-
model of the example with multiplicity constraints. Same comments as in the last section
apply.

<?xml version="1.0" encoding="ASCII"?>

<CSMOF:Metamodel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:CSMOF="urn:CSMOF.ecore"

xsi:schemaLocation="urn:CSMOF.ecore ../metamodel/CSMOF.ecore"

name="RDBMS">

<element xsi:type="CSMOF:Class" name="RDBMSModelElement"

isAbstract="true"

subClass="//@element.1 //@element.2

//@element.3 //@element.4">

<ownedAttribute name="name" type="//@element.5"/>

</element>

<element xsi:type="CSMOF:Class" name="Schema"

superClass="//@element.0">

<ownedAttribute lower="0" upper="-1" name="tables"

type="//@element.2"

opposite="//@element.2/@ownedAttribute.0"/>

</element>

F.3. Relational Models 167

<element xsi:type="CSMOF:Class" name="Table"

superClass="//@element.0">

<ownedAttribute name="schema" type="//@element.1"

opposite="//@element.1/@ownedAttribute.0"/>

<ownedAttribute lower="0" upper="-1" name="column"

type="//@element.3"/>

<ownedAttribute name="keyK" type="//@element.4"

opposite="//@element.4/@ownedAttribute.1"/>

</element>

<element xsi:type="CSMOF:Class" name="Column"

superClass="//@element.0">

<ownedAttribute name="typeT" type="//@element.5"/>

<ownedAttribute name="owner" type="//@element.2"

opposite="//@element.2/@ownedAttribute.1"/>

<ownedAttribute lower="0" upper="-1" name="keyK"

type="//@element.4"

opposite="//@element.4/@ownedAttribute.0"/>

</element>

<element xsi:type="CSMOF:Class" name="Key"

superClass="//@element.0">

<ownedAttribute name="column" type="//@element.3"

opposite="//@element.3/@ownedAttribute.2"/>

<ownedAttribute name="owner" type="//@element.2"

opposite="//@element.2/@ownedAttribute.2"/>

</element>

<element xsi:type="CSMOF:DataType" name="String"/>

<model name="RDBMSModel">

<object type="//@element.1" name="s"/>

<object type="//@element.2" name="t"/>

<object type="//@element.4" name="k"/>

<object type="//@element.3" name="c1"/>

<object type="//@element.3" name="c2"/>

<object type="//@element.5" name="Package"/>

<object type="//@element.5" name="ID"/>

<object type="//@element.5" name="PK"/>

<object type="//@element.5" name="TID"/>

<object type="//@element.5" name="value"/>

<object type="//@element.5" name="VARCHAR"/>

<object type="//@element.5" name="NUMBER"/>

<link type="//@element.1/@ownedAttribute.0"

source="//@model.0/@object.0"

target="//@model.0/@object.1"/>

168 Appendix F. Code Artifacts for the Running Example

<link type="//@element.2/@ownedAttribute.2"

source="//@model.0/@object.1"

target="//@model.0/@object.2"/>

<link type="//@element.2/@ownedAttribute.1"

source="//@model.0/@object.1"

target="//@model.0/@object.3"/>

<link type="//@element.2/@ownedAttribute.1"

source="//@model.0/@object.1"

target="//@model.0/@object.4"/>

<link type="//@element.3/@ownedAttribute.2"

source="//@model.0/@object.3"

target="//@model.0/@object.2"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.0"

target="//@model.0/@object.5"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.1"

target="//@model.0/@object.6"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.2"

target="//@model.0/@object.7"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.3"

target="//@model.0/@object.8"/>

<link type="//@element.0/@ownedAttribute.0"

source="//@model.0/@object.4"

target="//@model.0/@object.9"/>

<link type="//@element.3/@ownedAttribute.0"

source="//@model.0/@object.3"

target="//@model.0/@object.11"/>

<link type="//@element.3/@ownedAttribute.0"

source="//@model.0/@object.4"

target="//@model.0/@object.10"/>

</model>

</CSMOF:Metamodel>

The CASL theory generated by the comorphism CSMOF2CASL is the following one.

%{Sorts and subsorting relations}%

sorts Column, Key, RDBMSModelElement, Schema, String, Table

sorts Column, Key, Schema, Table < RDBMSModelElement

%{String elements}%

op ID : String

op NUMBER : String

op PK : String

op Package : String

F.3. Relational Models 169

op TID : String

op VARCHAR : String

op value : String

%{Objects as total functions}%

op c1 : Column

op c2 : Column

op k : Key

op s : Schema

op t : Table

%{Properties: attributes and associations}%

pred column : Key * Column

pred column : Table * Column

pred keyK : Column * Key

pred keyK : Table * Key

pred name : RDBMSModelElement * String

pred owner : Column * Table

pred owner : Key * Table

pred schema : Table * Schema

pred tables : Schema * Table

pred typeT : Column * String

%{Multiplicity constraints}%

. (forall x_1 : RDBMSModelElement

. exists y_1 : String . name(x_1, y_1))

/\ forall x_1 : RDBMSModelElement; y_2, y_1 : String

. (name(x_1, y_2) /\ name(x_1, y_1)) => y_2 = y_1

. (forall x_1 : Table . exists y_1 : Schema . schema(x_1, y_1))

/\ forall x_1 : Table; y_2, y_1 : Schema

. (schema(x_1, y_2) /\ schema(x_1, y_1)) => y_2 = y_1

. (forall x_1 : Table . exists y_1 : Key . keyK(x_1, y_1))

/\ forall x_1 : Table; y_2, y_1 : Key

. (keyK(x_1, y_2) /\ keyK(x_1, y_1)) => y_2 = y_1

. (forall x_1 : Column . exists y_1 : String . typeT(x_1, y_1))

/\ forall x_1 : Column; y_2, y_1 : String

. (typeT(x_1, y_2) /\ typeT(x_1, y_1)) => y_2 = y_1

. (forall x_1 : Column . exists y_1 : Table . owner(x_1, y_1))

/\ forall x_1 : Column; y_2, y_1 : Table

. (owner(x_1, y_2) /\ owner(x_1, y_1)) => y_2 = y_1

. (forall x_1 : Key . exists y_1 : Column . column(x_1, y_1))

/\ forall x_1 : Key; y_2, y_1 : Column

. (column(x_1, y_2) /\ column(x_1, y_1)) => y_2 = y_1

170 Appendix F. Code Artifacts for the Running Example

. (forall x_1 : Key . exists y_1 : Table . owner(x_1, y_1))

/\ forall x_1 : Key; y_2, y_1 : Table

. (owner(x_1, y_2) /\ owner(x_1, y_1)) => y_2 = y_1

%{Axioms}%

forall x : Key; y : Column . column(x, y) <=> keyK(y, x)

%(equiv_keyK_column)%

forall x : Table; y : Column . column(x, y) <=> owner(y, x)

%(equiv_owner_column)%

forall x : Column; y : Key . keyK(x, y) <=> column(y, x)

%(equiv_column_keyK)%

forall x : Table; y : Key . keyK(x, y) <=> owner(y, x)

%(equiv_owner_keyK)%

forall x : Key; y : Table . owner(x, y) <=> keyK(y, x)

%(equiv_keyK_owner)%

forall x : Table; y : Schema . schema(x, y) <=> tables(y, x)

%(equiv_tables_schema)%

forall x : Schema; y : Table . tables(x, y) <=> schema(y, x)

%(equiv_schema_tables)%

forall x : Column; y : String

. typeT(x, y) <=>

(x = c1 /\ y = NUMBER) \/ (x = c2 /\ y = VARCHAR)

%(compRel__ColumntypeTString)%

forall x : RDBMSModelElement; y : String

. name(x, y)

<=> (x = c1 /\ y = TID) \/ (x = c2 /\ y = value)

\/ (x = k /\ y = PK) \/ (x = s /\ y = Package)

\/ (x = t /\ y = ID)

%(compRel__RDBMSModelElementnameString)%

forall x : Table; y : Column

. column(x, y) <=> (x = t /\ y = c1) \/ (x = t /\ y = c2)

%(compRel__TablecolumnColumn)%

forall x : Column; y : Key . keyK(x, y) <=> (x = c1 /\ y = k)

%(compRel_columnColumnkeyKKey)%

F.3. Relational Models 171

forall x : Table; y : Key . keyK(x, y) <=> (x = t /\ y = k)

%(compRel_ownerTablekeyKKey)%

forall x : Schema; y : Table . tables(x, y) <=> (x = s /\ y = t)

%(compRel_schemaSchematablesTable)%

%{Sort generation constraints}%

%% free

generated type RDBMSModelElement ::=

sort Column | sort Key | sort Schema | sort Table

%(disjEmbedd)%

%% free

generated type Column ::= c1 | c2 %(sortGenCon_Column)%

%% free

generated type Key ::= k %(sortGenCon_Key)%

%% free

generated type Schema ::= s %(sortGenCon_Schema)%

%% free

generated type String ::=

ID | NUMBER | PK | Package | TID | VARCHAR | value

%(sortGenCon_String)%

%% free

generated type Table ::= t %(sortGenCon_Table)%

. not c1 = c2 /\ not c1 = k /\ not c2 = k /\ not c1 = s

/\ not c2 = s /\ not c1 = t /\ not c2 = t

%(noConfusion_Column)%

. not k = s /\ not k = t %(noConfusion_Key)%

. not s = t %(noConfusion_Schema)%

. not ID = NUMBER /\ not ID = PK /\ not ID = Package

/\ not ID = TID /\ not ID = VARCHAR /\ not ID = value

/\ not NUMBER = PK /\ not NUMBER = Package

/\ not NUMBER = TID /\ not NUMBER = VARCHAR

/\ not NUMBER = value /\ not PK = Package

/\ not PK = TID /\ not PK = VARCHAR /\ not PK = value

/\ not Package = TID /\ not Package = VARCHAR

/\ not Package = value /\ not TID = VARCHAR

/\ not TID = value /\ not VARCHAR = value

%(noConfusion_String)%

172 Appendix F. Code Artifacts for the Running Example

F.4 Class to Relational Transformation

In what follows we present the QVT file corresponding to the model transformation. It is the
same transformation introduced in Section 2.2 but with modified where clauses for using
our simple expressions language, as explained in Section 10.3.

transformation uml2rdbms (uml : UML , rdbms : RDBMS) {

key RDBMS::Table {name, schema};

key RDBMS::Column {name, owner};

key RDBMS::Key {name, owner};

top relation PackageToSchema {

pn : String;

checkonly domain uml p : UML::Package {

name = pn

};

enforce domain rdbms s : RDBMS::Schema {

name = pn

};

}

top relation ClassToTable {

cn, prefix : String;

checkonly domain uml c : UML::Class {

namespace = p : UML::Package { },

kind = ’Persistent’,

name = cn

};

enforce domain rdbms t : RDBMS::Table {

schema = s : RDBMS::Schema { },

name = cn,

column = cl : RDBMS::Column {

name = ’TID’,

typeT = ’NUMBER’

},

keyK = k : RDBMS::Key {

name = ’PK’,

column = cl

}

};

F.4. Class to Relational Transformation 173

when {

PackageToSchema(p, s);

}

where {

AttributeToColumn(c, t, prefix);

= (prefix) (’EMPTY’);

}

}

relation AttributeToColumn {

an, pn, cn, sqltype : String;

primitive domain prefix : String;

checkonly domain uml c : UML::Class {

attribute = a : UML::Attribute {

name = an,

typeT = p : UML::PrimitiveDataType {

name = pn

}

}

};

enforce domain rdbms t : RDBMS::Table {

column = cl : RDBMS::Column {

name = cn,

typeT = sqltype

}

};

where {

or (and (= (prefix)(’EMPTY’)) (= (cn)(an)))

(and (not (= (prefix)(’EMPTY’)))

(= (cn)(prefix + an)));

or (or (and (= (pn)(’INTEGER’)) (= (sqltype)(’NUMBER’)))

(and (= (pn)(’BOOLEAN’)) (= (sqltype)(’BOOLEAN’))))

(and (and (not (= (pn)(’INTEGER’)))

(not (= (pn)(’BOOLEAN’))))

(= (sqltype)(’VARCHAR’)));

}

}

}

174 Appendix F. Code Artifacts for the Running Example

The CASL theory generated by the comorphism QVTR2CASL includes the theories of the
source and target metamodels (without multiplicity constraints) and SW-models generated
by the comorphism CSMOF2CASL using the same XMI files of the last sections. These
fragments are omitted in the following code.

%{String concatenation and new strings}%

op ++ : String * String -> String

op BOOLEAN : String

op INTEGER : String

%{Rules declarations}%

pred AttributeToColumn : Class * Table * String

pred ClassToTable : Class * Table

pred PackageToSchema : Package * Schema

pred Top_ClassToTable : ()

pred Top_PackageToSchema : ()

%{Keys declarations}%

pred key_Column : ()

pred key_Key : ()

pred key_Table : ()

%{Keys definitions}%

. key_Table

<=> forall x_2, x_1 : Table; y_2 : String; y_1 : Schema

. not x_2 = x_1

=> name(x_1, y_2) /\ schema(x_1, y_1)

=> not name(x_2, y_2) \/ not schema(x_2, y_1)

. key_Column

<=> forall x_2, x_1 : Column; y_2 : String; y_1 : Table

. not x_2 = x_1

=> name(x_1, y_2) /\ owner(x_1, y_1)

=> not name(x_2, y_2) \/ not owner(x_2, y_1)

. key_Key

<=> forall x_2, x_1 : Key; y_2 : String; y_1 : Table

. not x_2 = x_1

=> name(x_1, y_2) /\ owner(x_1, y_1)

=> not name(x_2, y_2) \/ not owner(x_2, y_1)

F.4. Class to Relational Transformation 175

%{Rules definitions}%

. Top_PackageToSchema

<=> forall p : Package; pn : String

. name((var p : Package), pn)

=> exists s : Schema . name((var s : Schema), pn)

forall p : Package; s : Schema

. PackageToSchema((var p : Package), (var s : Schema))

<=> forall pn : String

. name((var p : Package), pn)

=> name((var s : Schema), pn)

. Top_ClassToTable

<=> forall p : Package; s : Schema

. PackageToSchema((var p : Package), (var s : Schema))

=> forall c : Class; cn : String

. namespace((var c : Class), (var p : Package))

/\ kind((var c : Class), Persistent)

/\ name((var c : Class), cn)

=> exists cl : Column; k : Key;

prefix : String; t : Table

. (schema((var t : Table), (var s : Schema))

/\ name((var t : Table), cn)

/\ column((var t : Table), cl)

/\ keyK((var t : Table), (var k : Key))

/\ name(cl, TID)

/\ typeT(cl, NUMBER)

/\ name((var k : Key), PK)

/\ column((var k : Key), cl))

/\ AttributeToColumn((var c : Class),

(var t : Table),

prefix)

/\ prefix = EMPTY

forall c : Class; t : Table

. ClassToTable((var c : Class), (var t : Table))

<=> forall p : Package; s : Schema

. PackageToSchema((var p : Package), (var s : Schema))

=> forall cn : String

. namespace((var c : Class), (var p : Package))

/\ kind((var c : Class), Persistent)

/\ name((var c : Class), cn)

=> exists cl : Column; k : Key; prefix : String

. (schema((var t : Table), (var s : Schema))

/\ name((var t : Table), cn)

/\ column((var t : Table), cl)

176 Appendix F. Code Artifacts for the Running Example

/\ keyK((var t : Table), (var k : Key))

/\ name(cl, TID)

/\ typeT(cl, NUMBER)

/\ name((var k : Key), PK)

/\ column((var k : Key), cl))

/\ AttributeToColumn((var c : Class),

(var t : Table),

prefix)

/\ prefix = EMPTY

forall c : Class; t : Table; prefix : String

. AttributeToColumn((var c : Class), (var t : Table), prefix)

<=> forall a : Attribute; p : PrimitiveDataType; an : String;

pn : String

. attribute((var c : Class), (var a : Attribute))

/\ name((var a : Attribute), an)

/\ typeT((var a : Attribute), p)

/\ name((var p : PrimitiveDataType), pn)

=> exists cl : Column; cn : String; sqltype : String

. (column((var t : Table), cl) /\ name(cl, cn)

/\ typeT(cl, sqltype))

/\ (((prefix = EMPTY /\ cn = an)

\/ (not prefix = EMPTY /\ cn = ++(prefix, an)))

/\ (((pn = INTEGER /\ sqltype = NUMBER)

\/ (pn = BOOLEAN /\ sqltype = BOOLEAN))

\/ ((not pn = INTEGER /\ not pn = BOOLEAN)

/\ sqltype = VARCHAR)))

%{Since String is a primitive type, it is in both source and

target domains. We redefine here the "no junk, no confusion"

principle }%

. not BOOLEAN = EMPTY /\ not BOOLEAN = ID

/\ not BOOLEAN = INTEGER /\ not BOOLEAN = NUMBER

/\ not BOOLEAN = PK /\ not BOOLEAN = Package

/\ not BOOLEAN = Persistent /\ not BOOLEAN = String

/\ not BOOLEAN = TID /\ not BOOLEAN = VARCHAR

/\ not BOOLEAN = value /\ not EMPTY = ID /\ not EMPTY = INTEGER

/\ not EMPTY = NUMBER /\ not EMPTY = PK /\ not EMPTY = Package

/\ not EMPTY = Persistent /\ not EMPTY = String

/\ not EMPTY = TID /\ not EMPTY = VARCHAR /\ not EMPTY = value

/\ not ID = INTEGER /\ not ID = NUMBER /\ not ID = PK

/\ not ID = Package /\ not ID = Persistent /\ not ID = String

/\ not ID = TID /\ not ID = VARCHAR /\ not ID = value

/\ not INTEGER = NUMBER /\ not INTEGER = PK

/\ not INTEGER = Package /\ not INTEGER = Persistent

/\ not INTEGER = String /\ not INTEGER = TID

/\ not INTEGER = VARCHAR /\ not INTEGER = value

F.4. Class to Relational Transformation 177

/\ not NUMBER = PK /\ not NUMBER = Package

/\ not NUMBER = Persistent /\ not NUMBER = String

/\ not NUMBER = TID /\ not NUMBER = VARCHAR

/\ not NUMBER = value /\ not PK = Package

/\ not PK = Persistent /\ not PK = String /\ not PK = TID

/\ not PK = VARCHAR /\ not PK = value

/\ not Package = Persistent /\ not Package = String

/\ not Package = TID /\ not Package = VARCHAR

/\ not Package = value /\ not Persistent = String

/\ not Persistent = TID /\ not Persistent = VARCHAR

/\ not Persistent = value /\ not String = TID

/\ not String = VARCHAR /\ not String = value

/\ not TID = VARCHAR /\ not TID = value

/\ not VARCHAR = value %(noConfusion_String_77)%

%% free

generated type

String

::= ++(String; String)

| BOOLEAN

| EMPTY

| ID

| INTEGER

| NUMBER

| PK

| Package

| Persistent

| String

| TID

| VARCHAR

| value %(sortGenCon_String_86)%

References

[ABGR10] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On
challenges of model transformation from UML to Alloy. Software and System

Modeling, 9(1):69–86, 2010.

[ABK07] Kyriakos Anastasakis, Behzad Bordbar, and Jochen M. Küster. Analysis of
model transformations via Alloy. In Benoit Baudry, Alain Faivre, Sudipto
Ghosh, and Alexander Pretschner, editors, Proceedings of the 4th MoDeVVa

workshop Model-Driven Engineering, Verification and Validation, pages 47–
56, 2007.

[AKP03] David Akehurst, Stuart Kent, and Octavian Patrascoiu. A relational approach
to defining and implementing transformations between metamodels. Software

and System Modeling, 2(4):215–239, 2003.

[ALL10] Márk Asztalos, László Lengyel, and Tihamer Levendovszky. Towards auto-
mated, formal verification of model transformations. In ICST, pages 15–24.
IEEE Computer Society, 2010.

[ALS+12] Moussa Amrani, Levi Lucio, Gehan M. K. Selim, Benoît Combemale, Jürgen
Dingel, Hans Vangheluwe, Yves Le Traon, and James R. Cordy. A tridimen-
sional approach for studying the formal verification of model transformations.
In Giuliano Antoniol, Antonia Bertolino, and Yvan Labiche, editors, ICST,
pages 921–928. IEEE, 2012.

[ARW13] Lukman Ab Rahim and Jon Whittle. A survey of approaches for verifying
model transformations. Software & Systems Modeling, pages 1–26, 2013.

[ATL05] ATLAS. KM3: Kernel MetaMetaModel. LINA & INRIA, Manual v0.3 edition,
2005.

[BBG+06a] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling.
Symbolic invariant verification for systems with dynamic structural adaptation.
In Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors, ICSE,
pages 72–81. ACM, 2006.

179

180 References

[BBG+06b] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev,
and Arne Lindow. Model transformations? transformation models! In Oscar
Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors, MoDELS,
volume 4199 of Lecture Notes in Computer Science, pages 440–453. Springer,
2006.

[BC04] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

[BCG11] Fabian Büttner, Jordi Cabot, and Martin Gogolla. On validation of ATL trans-
formation rules by transformation models. In Proceedings of the 8th Inter-

national Workshop on Model-Driven Engineering, Verification and Validation

(MoDeVVa), pages 9:1–9:8. ACM, 2011.

[BEC12] Fabian Büttner, Marina Egea, and Jordi Cabot. On verifying ATL transforma-
tions using ’off-the-shelf’ SMT solvers. In Robert B. France, Jürgen Kazmeier,
Ruth Breu, and Colin Atkinson, editors, MoDELS, volume 7590 of Lecture

Notes in Computer Science, pages 432–448. Springer, 2012.

[BEH06] Luciano Baresi, Karsten Ehrig, and Reiko Heckel. Verification of model trans-
formations: A case study with BPEL. In Ugo Montanari, Donald Sannella,
and Roberto Bruni, editors, TGC, volume 4661 of Lecture Notes in Computer

Science, pages 183–199. Springer, 2006.

[Béz05] Jean Bézivin. On the unification power of models. Software and System Mod-

eling, 4(2):171–188, 2005.

[BHM09] Artur Boronat, Reiko Heckel, and José Meseguer. Rewriting logic semantics
and verification of model transformations. In Marsha Chechik and Martin Wirs-
ing, editors, FASE, volume 5503 of Lecture Notes in Computer Science, pages
18–33. Springer, 2009.

[BKMW08] Artur Boronat, Alexander Knapp, José Meseguer, and Martin Wirsing. What
is a multi-modeling language? In Corradini and Montanari [CM09], pages
71–87.

[BKS02] Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translating the object
constraint language into first-order predicate logic. In In Proceedings, VERIFY,

Workshop at Federated Logic Conferences (FLoC), pages 113–123, 2002.

[BLA+10] Bruno Barroca, Levi Lucio, Vasco Amaral, Roberto Félix, and Vasco Sousa.
DSLTrans: A turing incomplete transformation language. In Brian A. Malloy,
Steffen Staab, and Mark van den Brand, editors, SLE, volume 6563 of Lecture

Notes in Computer Science, pages 296–305. Springer, 2010.

References 181

[BM09] Artur Boronat and José Meseguer. Algebraic semantics of OCL-constrained
metamodel specifications. In Manuel Oriol and Bertrand Meyer, editors,
TOOLS (47), volume 33 of Lecture Notes in Business Information Processing,
pages 96–115. Springer, 2009.

[BMC+11] Christiano Braga, Roberto Menezes, Thiago Comicio, Cassio Santos, and Ed-
son Landim. On the specification, verification and implementation of model
transformations with transformation contracts. In Adenilso da Silva Simão and
Carroll Morgan, editors, SBMF, volume 7021 of Lecture Notes in Computer

Science, pages 108–123. Springer, 2011.

[Bru06] Jean-Michel Bruel, editor. Satellite Events at the MoDELS 2005 Conference,

MoDELS 2005 International Workshops, Doctoral Symposium, 2005, Revised

Selected Papers, volume 3844 of Lecture Notes in Computer Science. Springer,
2006.

[Bru08] Harrie Jan Sander Bruggink. Towards a systematic method for proving ter-
mination of graph transformation systems. Electr. Notes Theor. Comput. Sci.,
213(1):23–38, 2008.

[CBBD09] Eric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Djemam. OCL con-
tracts for the verification of model transformations. ECEASST, 24, 2009.

[CCGdL10] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. Verification and
validation of declarative model-to-model transformations through invariants.
Journal of Systems and Software, 83(2):283–302, 2010.

[CCGT09] Benoît Combemale, Xavier Crégut, Pierre-Loïc Garoche, and Xavier Thirioux.
Essay on semantics definition in MDE - an instrumented approach for model
verification. JSW, 4(9):943–958, 2009.

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Jose F. Quesada. Maude: specification and program-
ming in rewriting logic. Theor. Comput. Sci., 285(2):187–243, 2002.

[CGR12] Andrea Corradini, Fabio Gadducci, and Leila Ribeiro. An institution for graph
transformation. In Mossakowski and Kreowski, editors, WADT, volume 7137
of Lecture Notes in Computer Science, pages 160–174. Springer, 2012

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model trans-
formation approaches. IBM Systems Journal, 45(3):621–646, 2006.

[Cha06] Kenneth Chan. Formal proofs for QoS-oriented transformations. In EDOC

Workshops, page 41. IEEE Computer Society, 2006.

182 References

[CHM+02] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Patar-
icza, and Dániel Varró. VIATRA - visual automated transformations for formal
verification and validation of UML models. In ASE, pages 267–270. IEEE
Computer Society, 2002.

[CK08] María Victoria Cengarle and Alexander Knapp. An institution for UML 2.0
static structures. Technical Report TUM-I0807, Institut für Informatik, Tech-
nische Universität München, 2008.

[CKTW08] María Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirs-
ing. A heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco
De Nicola, and José Meseguer, editors, Concurrency, Graphs and Models, vol-
ume 5065 of Lecture Notes in Computer Science, pages 383–402. Springer,
2008.

[CLMM09] Mihai Codescu, Bruno Langenstein, Christian Maeder, and Till Mossakowski.
The VSE refinement method in hets. In Karin Breitman and Ana Cavalcanti,
editors, ICFEM, volume 5885 of Lecture Notes in Computer Science, pages
660–678. Springer, 2009.

[CLST09] Daniel Calegari, Carlos Luna, Nora Szasz, and Alvaro Tasistro. Experiment
with a type-theoretic approach to the verification of model transformations. In
Proceedings of the II Workshop Chileno de Métodos Formales (ChWFM’09),

Chile, 2009.

[CLST10a] Daniel Calegari, Carlos Luna, Nora Szasz, and Alvaro Tasistro. Representation
of metamodels using inductive types in a type-theoretic framework for MDE.
Technical Report RT10-01, InCo-PEDECIBA. ISSN 0797-6410, 2010.

[CLST10b] Daniel Calegari, Carlos Luna, Nora Szasz, and Alvaro Tasistro. A type-
theoretic framework for certified model transformations. In Jim Davies, Leila
Silva, and Adenilso da Silva Simão, editors, SBMF, volume 6527 of Lecture

Notes in Computer Science, pages 112–127. Springer, 2010.

[CM09] Andrea Corradini and Ugo Montanari, editors. Recent Trends in Algebraic

Development Techniques, 19th International Workshop, WADT 2008, Revised

Selected Papers, volume 5486 of Lecture Notes in Computer Science. Springer,
2009.

[CMRM10] Mihai Codescu, Till Mossakowski, Adrián Riesco, and Christian Maeder. In-
tegrating Maude into Hets. In Michael Johnson and Dusko Pavlovic, editors,
AMAST, volume 6486 of Lecture Notes in Computer Science, pages 60–75.
Springer, 2010.

[CNS12] Marsha Chechik, Shiva Nejati, and Mehrdad Sabetzadeh. A relationship-based
approach to model integration. ISSE, 8(1):3–18, 2012.

References 183

[Cod08] Mihai Codescu. Generalized theoroidal institution comorphisms. In Corradini
and Montanari [CM09], pages 88–101.

[CoF04] CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS
2960 (IFIP Series). Springer, 2004.

[CS11a] Daniel Calegari and Nora Szasz. An institution for UML 2.0 state machines.
Technical Report RT11-02, InCo-PEDECIBA, 2011.

[CS11b] Daniel Calegari and Nora Szasz. Institutionalising UML 2.0 state machines.
ISSE, 7(4):315–323, 2011.

[CS12] Daniel Calegari and Nora Szasz. Verification of model transformations: A
survey of the state-of-the-art (extended version). Technical Report RT12-05,
InCo-PEDECIBA, 2012.

[CS13a] Daniel Calegari and Nora Szasz. Bridging techological spaces for the verifi-
cation of model transformations. In Proc. Conf. Iberoamericana de Software

Engineering (CIbSE), 2013.

[CS13b] Daniel Calegari and Nora Szasz. Institution-based semantics for MOF and
QVT-relations. In Juliano Iyoda and Leonardo Mendonça de Moura, edi-
tors, SBMF, volume 8195 of Lecture Notes in Computer Science, pages 34–50.
Springer, 2013.

[CS13c] Daniel Calegari and Nora Szasz. Institution-based semantics for MOF
and QVT-Relations (extended version). Technical Report TR13-06, InCo-
PEDECIBA. ISSN 0797-6410, May 2013.

[CS13d] Daniel Calegari and Nora Szasz. Verification of model transformations: A
survey of the state-of-the-art. Electr. Notes Theor. Comput. Sci., 292:5–25,
2013.

[DF98] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language,

Proof Techniques, and Methodologies for Object-Oriented Algebraic Specifi-

cation, volume 6 of AMAST Series in Computing. World Scientific, 1998.

[Dia02] Razvan Diaconescu. Grothendieck institutions. Applied Categorical Structures,
10(4):383–402, 2002.

[Dia13] Razvan Diaconescu. Institutional semantics for many-valued logics. Fuzzy Sets

and Systems, 218:32–52, 2013.

184 References

[dLG09] Juan de Lara and Esther Guerra. Formal support for QVT-relations with
coloured petri nets. In Andy Schürr and Bran Selic, editors, MoDELS, volume
5795 of Lecture Notes in Computer Science, pages 256–270. Springer, 2009.

[EEdL+05] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel Varró,
and Szilvia Varró-Gyapay. Termination criteria for model transformation. In
Maura Cerioli, editor, FASE, volume 3442 of Lecture Notes in Computer Sci-

ence, pages 49–63. Springer, 2005.

[EHRT08] Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, ed-
itors. Graph Transformations, 4th International Conference, ICGT 2008. Pro-

ceedings, volume 5214 of Lecture Notes in Computer Science. Springer, 2008.

[EKHL03] Gregor Engels, Jochen Malte Küster, Reiko Heckel, and Marc Lohmann.
Model-based verification and validation of properties. Electr. Notes Theor.

Comput. Sci., 82(7), 2003.

[Fav09] Liliana Favre. A formal foundation for metamodeling. In Fabrice Kordon
and Yvon Kermarrec, editors, Ada-Europe, volume 5570 of Lecture Notes in

Computer Science, pages 177–191. Springer, 2009.

[For13] N. Fornaro. Interpretación de KM3/ATL en Teoría de Tipos. Master Thesis,
Universidad ORT, Uruguay, 2013.

[FSM+03] F.Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose. Eclipse Mod-

eling Framework. Addison-Wesley Professional, 2003.

[GB83] Joseph A. Goguen and Rod M. Burstall. Introducing institutions. In Edmund M.
Clarke and Dexter Kozen, editors, Logic of Programs, volume 164 of Lecture

Notes in Computer Science, pages 221–256. Springer, 1983.

[GB92] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory
for specification and programming. J. ACM, 39(1):95–146, 1992.

[GdL12] Esther Guerra and Juan de Lara. An algebraic semantics for QVT-Relations
check-only transformations. Fundam. Inform., 114(1):73–101, 2012.

[GdLW+13] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel,
Werner Retschitzegger, Johannes Schönböck, and Wieland Schwinger. Auto-
mated verification of model transformations based on visual contracts. Autom.

Softw. Eng., 20(1):5–46, 2013.

[GGL+06] Holger Giese, Sabine Glesner, Johannes Leitner, Wilhelm Schäfer, and Robert
Wagner. Towards verified model transformations. In David Hearnden, Jörn Guy
Süß, Benoit Baudry, and Nicolas Rapin, editors, Proceedings of the 3rd Inter-

national Workshop on Model Development, Validation and Verification, pages
78–93. Le Commissariat a l’Energie Atomique - CEA, October 2006.

References 185

[GM07] Miguel García and Ralf Möller. Certification of transformation algorithms in
model-driven software development. In Wolf-Gideon Bleek, Jörg Raasch, and
Heinz Züllighoven, editors, Software Engineering, volume 105 of LNI, pages
107–118. GI, 2007.

[GMLF14] Manuel Giménez, Mariano Moscato, Carlos López and Marcelo Frias. Hetero-
Genius: A Framework for Hybrid Analysis of Heterogeneous Software Spec-
ifications. 1st Latin American Workshop on Formal Methods. LAFM, 2008.

Proceedings, volume 139 of EPTCS. pages 65–70, 2014.

[GR02] Joseph A. Goguen and Grigore Rosu. Institution morphisms. Formal Asp.

Comput., 13(3-5):274–307, 2002.

[HEOG10] Frank Hermann, Hartmut Ehrig, Fernando Orejas, and Ulrike Golas. For-
mal analysis of functional behaviour for model transformations based on triple
graph grammars. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and
Andy Schürr, editors, ICGT, volume 6372 of Lecture Notes in Computer Sci-

ence, pages 155–170. Springer, 2010.

[HET08] Frank Hermann, Hartmut Ehrig and Gabriele Taentzer. A Typed Attributed
Graph Grammar with Inheritance for the Abstract Syntax of UML Class
and Sequence Diagrams. Electronic Notes in Theoretical Computer Science,
211(28):261–269, 2008.

[HHK10] Frank Hermann, Mathias Hülsbusch, and Barbara König. Specification and
verification of model transformations. ECEASST, 30, 2010.

[HJC+08] Mike Hinchey, Michael Jackson, Patrick Cousot, Byron Cook, Jonathan P.
Bowen, and Tiziana Margaria. Software engineering and formal methods. Com-

mun. ACM, 51(9):54–59, 2008.

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of
typed attributed graph transformation systems. In Andrea Corradini, Hartmut
Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, ICGT, volume
2505 of Lecture Notes in Computer Science, pages 161–176. Springer, 2002.

[HS02] Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing,
and verification. IBM Systems Journal, 41(1):4–12, 2002.

[HT05] Reiko Heckel and Sebastian Thöne. Behavioral refinement of graph
transformation-based models. Electr. Notes Theor. Comput. Sci., 127(3):101–
111, 2005.

[IEE90] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std

610.12-1990, page 1, 1990.

186 References

[IKV13] IKV++ Technologies. mediniQVT. http://projects.ikv.de/qvt,
apr 2014.

[JJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: exploring the
design space. In Proceedings of the Haskell Workshop, 1997.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Bruel
[Bru06], pages 128–138.

[JKMR12] Phillip James, Alexander Knapp, Till Mossakowski, and Markus Roggenbach.
Designing domain specific languages - a craftsman’s approach for the railway
domain using Casl. In Narciso Martí-Oliet and Miguel Palomino, editors,
WADT, volume 7841 of Lecture Notes in Computer Science, pages 178–194.
Springer, 2012.

[Jon02] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. http://haskell.org/, September 2002.

[KAER06] Jochen Malte Küster and Mohamed Abd-El-Razik. Validation of model trans-
formations - first experiences using a white box approach. In Thomas Kühne,
editor, MoDELS Workshops, volume 4364 of Lecture Notes in Computer Sci-

ence, pages 193–204. Springer, 2006.

[Kat06] Shmuel Katz. Aspect categories and classes of temporal properties. In Awais
Rashid and Mehmet Aksit, editors, T. Aspect-Oriented Software Development I,
volume 3880 of Lecture Notes in Computer Science, pages 106–134. Springer,
2006.

[KBA02] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological spaces: An ini-
tial appraisal. In CoopIS, DOA’2002 Federated Conferences, Industrial track,
2002.

[Ken02] Stuart Kent. Model driven engineering. In Michael J. Butler, Luigia Petre, and
Kaisa Sere, editors, IFM, volume 2335 of Lecture Notes in Computer Science,
pages 286–298. Springer, 2002.

[KMS+09] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. Systematic transformation development. ECEASST, 21,
2009.

[Küs04] Jochen Malte Küster. Systematic validation of model transformations. In Pro-

ceedings of WiSME’04 (associated to UML’04), 2004.

[Küs06] Jochen Malte Küster. Definition and validation of model transformations. Soft-

ware and System Modeling, 5(3):233–259, 2006.

References 187

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003.

[Lan98] Saunders M. Lane. Categories for the Working Mathematician (Graduate Texts

in Mathematics). Springer, 2nd edition, September 1998.

[LBA10] Levi Lucio, Bruno Barroca, and Vasco Amaral. A technique for automatic
validation of model transformations. In Dorina C. Petriu, Nicolas Rouquette,
and Øystein Haugen, editors, MoDELS (1), volume 6394 of Lecture Notes in

Computer Science, pages 136–150. Springer, 2010.

[LBEE+06] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange
and Gabriele Taentzer. Attributed graph transformation with node type inheri-
tance. Fundamental Aspects of Software Engineering, 376(3):139–163, 2007.

[LD10] Hung Ledang and Hubert Dubois. Proving model transformations. In Jing Liu,
Doron Peled, Bow-Yaw Wang, and Farn Wang, editors, TASE, pages 35–44.
IEEE Computer Society, 2010.

[LEO06] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Efficient detection of
conflicts in graph-based model transformation. Electr. Notes Theor. Comput.

Sci., 152:97–109, 2006.

[LLM09] Tihamer Levendovszky, László Lengyel, and Tamás Mészáros. Supporting
domain-specific model patterns with metamodeling. Software and System Mod-

eling, 8(4):501–520, 2009.

[LMAL10] Laszlo Lengyel, Istvan Madari, Mark Asztalos, and Tihamer Levendovszky.
Validating Query/View/Transformation relations. Model-Driven Engineering,

Verification, and Validation, Workshop on, 0:7–12, 2010.

[LR10] Kevin Lano and Shekoufeh Kolahdouz Rahimi. Specification and verification
of model transformations using UML-RSDS. In Dominique Méry and Stephan
Merz, editors, IFM, volume 6396 of Lecture Notes in Computer Science, pages
199–214. Springer, 2010.

[LR11] Kevin Lano and Shekoufeh Kolahdouz Rahimi. Model-driven development of
model transformations. In Jordi Cabot and Eelco Visser, editors, ICMT, volume
6707 of Lecture Notes in Computer Science, pages 47–61. Springer, 2011.

[LR12] Kevin Lano and Shekoufeh Kolahdouz Rahimi. Model transformation specifi-
cation and design. Advances in Computers, 85:123–163, 2012.

[LS05] Michael Lawley and Jim Steel. Practical declarative model transformation with
Tefkat. In Bruel [Bru06], pages 139–150.

188 References

[LVV+09a] Horacio Lopez, Fernando Varesi, Marcelo Viñolo, Daniel Calegari, and Carlos
Luna. Estado del arte de lenguajes y herramientas de transformación de mode-
los. Technical Report RT09-19, InCo-PEDECIBA. ISSN 0797-6410, 2009.

[LVV+09b] Horacio Lopez, Fernando Varesi, Marcelo Viñolo, Daniel Calegari, and Carlos
Luna. Estado del arte de verificación de transformación de modelos. Technical
Report RT09-19, InCo-PEDECIBA. ISSN 0797-6410, 2009.

[MAH06] Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs
- proof management for structured specifications. J. Log. Algebr. Program.,
67(1-2):114–145, 2006.

[MCG04] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. 04101 discussion - a
taxonomy of model transformations. In Jean Bézivin and Reiko Heckel, ed-
itors, Language Engineering for Model-Driven Software Development, vol-
ume 04101 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), 2004.

[Men10] Tom Mens. Model transformation: A survey of the state-of-the-art. In Sebastien
Gerard, Jean-Philippe Babau, and Joel Champeau, editors, Model Driven Engi-

neering for Distributed Real-Time Embedded Systems. Wiley - ISTE, 2010.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving exe-
cutability into object-oriented meta-languages. In Lionel C. Briand and Clay
Williams, editors, MoDELS, volume 3713 of Lecture Notes in Computer Sci-

ence, pages 264–278. Springer, 2005.

[MGB05] Tiago Massoni, Rohit Gheyi, and Paulo Borba. Formal refactoring for UML
class diagrams. In 19th brazilian Symposium on Software Engineering (SBES),
pages 152–167, 2005.

[MGDT05] Till Mossakowski, Joseph Goguen, Răzvan Diaconescu, and Andrzej Tarlecki.
What is a logic? In Jean-Yves Béziau, editor, Logica Universalis, pages 113–
133. Birkhäuser, 2005.

[MHST03] Till Mossakowski, Anne Elisabeth Haxthausen, Donald Sannella, and Andrzej
Tarlecki. Casl - the common algebraic specification language: Semantics and
proof theory. Computers and Artificial Intelligence, 22(3-4):285–321, 2003.

[MML07] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous
tool set, Hets. In Orna Grumberg and Michael Huth, editors, TACAS, volume
4424 of Lecture Notes in Computer Science, pages 519–522. Springer, 2007.

[Mos05] Till Mossakowski. Heterogeneous specification and the heterogeneous tool set.
Technical report, Universitaet Bremen, 2005. Habilitation thesis.

References 189

[Mos13a] Till Mossakowski. HetCASL - heterogeneous specification. language summary.
http://www.informatik.uni-bremen.de/agbkb/forschung/

formal_methods/CoFI/HetCASL/HetCASL-Summary.pdf, apr
2014.

[Mos13b] Till Mossakowski. Hets - the heterogeneous tool set website.
http://www.informatik.uni-bremen.de/agbkb/forschung/

formal_methods/CoFI/hets/index_e.htm, apr 2014.

[Mos13c] Till Mossakowski. ModalCASL - specification with multi-modal log-
ics language summary. http://www.informatik.uni-bremen.de/
~till/papers/Modal-Summary.pdfv, apr 2014.

[MSJ+10] Tim Molderez, Hans Schippers, Dirk Janssens, Michael Haupt, and Robert
Hirschfeld. A platform for experimenting with language constructs for modu-
larizing crosscutting concerns. In Proceedings of the 3rd International Work-

shop on Academic Software Development Tools and Techniques (WASDeTT),
2010.

[MSRR06] Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification in CoCasl. J. Log. Algebr. Program., 67(1-
2):146–197, 2006.

[NK08a] Anantha Narayanan and Gabor Karsai. Specifying the correctness properties of
model transformations. In Proceedings of the third international workshop on

Graph and model transformations (GRaMoT’08), pages 45–52. ACM, 2008.

[NK08b] Anantha Narayanan and Gabor Karsai. Towards verifying model transforma-
tions. Electr. Notes Theor. Comput. Sci., 211:191–200, 2008.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -

A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in

Computer Science. Springer, 2002.

[OMG03a] OMG. MDA guide version 1.0.1. Technical report, Object Management Group,
2003.

[OMG03b] OMG. Meta Object Facility (MOF) 2.0 Core Specification. Specification Ver-
sion 2.0, Object Management Group, 2003.

[OMG05] OMG. Unified Modeling Language: Superstructure. Specification Version 2.0,
Object Management Group, August 2005.

[OMG09] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation. Final
Adopted Specification Version 1.1, Object Management Group, 2009.

[OMG10] OMG. Object Constraint Language. Formal Specification Version 2.2, Object
Management Group, 2010.

190 References

[OMG11] OMG. OMG MOF 2 XMI Mapping Specification. Specification Version 2.4.1,
Object Management Group, 2011.

[OW09] Fernando Orejas and Martin Wirsing. On the specification and verification
of model transformations. In Jens Palsberg, editor, Semantics and Algebraic

Specification, volume 5700 of Lecture Notes in Computer Science, pages 140–
161. Springer, 2009.

[PGE97] Julia Padberg and Magdalena Gajewsky and Claudia Ermel. Refinement versus
verification: Compatibility of net-invariants and stepwise development of high-
level petri nets. Technical Report 97-22, Technical University Berlin, 1997.

[PCG11] Elena Planas, Jordi Cabot, and Cristina Gómez. Two basic correctness proper-
ties for ATL transformations: Executability and coverage. In 3rd International

Workshop on Model Transformation with ATL, July 2011.

[PG08] Claudia Pons and Diego García. A lightweight approach for the semantic vali-
dation of model refinements. Electr. Notes Theor. Comput. Sci., 220(1):43–61,
2008.

[Poe08] Iman Poernomo. Proofs-as-model-transformations. In Antonio Vallecillo, Jeff
Gray, and Alfonso Pierantonio, editors, ICMT, volume 5063 of Lecture Notes

in Computer Science, pages 214–228. Springer, 2008.

[PPM89] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the
calculus of constructions. In Michael G. Main, Austin Melton, Michael W.
Mislove, and David A. Schmidt, editors, Mathematical Foundations of Pro-

gramming Semantics, volume 442 of Lecture Notes in Computer Science, pages
209–228. Springer, 1989.

[PT10] Iman Poernomo and Jeffrey Terrell. Correct-by-construction model transfor-
mations from partially ordered specifications in Coq. In Jin Song Dong and
Huibiao Zhu, editors, ICFEM, volume 6447 of Lecture Notes in Computer Sci-

ence, pages 56–73. Springer, 2010.

[RDV09] José Eduardo Rivera, Francisco Durán, and Antonio Vallecillo. Formal spec-
ification and analysis of domain specific models using Maude. Simulation,
85(11-12):778–792, 2009.

[RLK+08] Guilherme Rangel, Leen Lambers, Barbara König, Hartmut Ehrig, and Paolo
Baldan. Behavior preservation in model refactoring using DPO transformations
with borrowed contexts. In Ehrig et al. [EHRT08], pages 242–256.

[RWLN89] Jeff Rothenberg, Lawrence E. Widman, Kenneth A. Loparo, and Norman R.
Nielsen. The nature of modeling. In in Artificial Intelligence, Simulation and

Modeling, pages 75–92. John Wiley & Sons, 1989.

References 191

[Sch06] Douglas Schmidt. Guest editor’s introduction: Model-Driven Engineering.
IEEE Computer, 39(2):25–31, 2006.

[Sch10] Bernhard Schätz. Verification of model transformations. ECEASST, 29, 2010.

[SJ07] Jim Steel and Jean-Marc Jézéquel. On model typing. Software and System

Modeling, 6(4):401–413, 2007.

[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars. In Ehrig et al.
[EHRT08], pages 411–425.

[SMR11] Kurt Stenzel, Nina Moebius, and Wolfgang Reif. Formal verification of QVT
transformations for code generation. In Jon Whittle, Tony Clark, and Thomas
Kühne, editors, MoDELS, volume 6981 of Lecture Notes in Computer Science,
pages 533–547. Springer, 2011.

[ST12] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specifica-

tion and Formal Software Development. EATCS Monographs on theoretical
computer science. Springer, 2012.

[Ste13] Perdita Stevens. A simple game-theoretic approach to checkonly QVT Rela-
tions. Software and System Modeling, 12(1):175–199, 2013.

[SZ09] Lijun Shan and Hong Zhu. Semantics of metamodels in UML. In Wei-Ngan
Chin and Shengchao Qin, editors, TASE, pages 55–62. IEEE Computer Society,
2009.

[Tae03] Gabriele Taentzer. AGG: A graph transformation environment for modeling
and validation of software. In John L. Pfaltz, Manfred Nagl, and Boris Böhlen,
editors, AGTIVE, volume 3062 of Lecture Notes in Computer Science, pages
446–453. Springer, 2003.

[TBHW99] Françoise Tort, Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Correct
realization of interface constraints with OCL. In Robert B. France and Bernhard
Rumpe, editors, UML, volume 1723 of Lecture Notes in Computer Science,
pages 399–415. Springer, 1999.

[VJBB13] Andrés Vignaga, Frédéric Jouault, María Cecilia Bastarrica, and Hugo
Brunelière. Typing artifacts in megamodeling. Software and System Model-

ing, 12(1):105–119, 2013.

[VP03] Dániel Varró and András Pataricza. Automated formal verification of model
transformations. In Jan Jürjens, Bernhard Rumpe, Robert France, and Ed-
uardo B. Fernandez, editors, Critical Systems Development in UML (CSDUML

2003), Proceedings of the UML’03 Workshop, number TUM-I0323 in Techni-
cal Report, pages 63–78. Technische Universität München, September 2003.

192 References

[VR11] Andreza Vieira and Franklin Ramalho. A static analyzer for model transfor-
mations. In 3rd International Workshop on Model Transformation with ATL,
Zurich, Switzerland, July 2011.

[VVGE+06] Dániel Varró, Szilvia Varró-Gyapay, Hartmut Ehrig, Ulrike Prange, and
Gabriele Taentzer. Termination analysis of model transformations by petri nets.
In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grze-
gorz Rozenberg, editors, ICGT, volume 4178 of Lecture Notes in Computer

Science, pages 260–274. Springer, 2006.

[WBH+02] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Chris-
tian Theobald, and Dalibor Topic. Spass version 2.0. In Andrei Voronkov,
editor, Automated Deduction CADE-18, volume 2392 of Lecture Notes in Com-

puter Science, pages 275–279. Springer Berlin Heidelberg, 2002.

[WKC06] Junhua Wang, Soon-Kyeong Kim, and David A. Carrington. Verifying meta-
model coverage of model transformations. In ASWEC, pages 270–282. IEEE
Computer Society, 2006.

[WKK+09] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Jo-
hannes Schönböck, and Wieland Schwinger. Right or wrong? - verification
of model transformations using colored petri nets. In Proceedings of the 9th

OOPSLA Workshop on Domain-Specific Modeling (DSM’09), 2009.

[WMP13] Hao Wu, Rosemary Monahan and James Power. Exploiting Attributed Type
Graphs to Generate Metamodel Instances Using an SMT Solver. In Proceed-

ings of the 7th Intl. Symp. on Theoretical Aspects of Software Engineering

(TASE), pages 175–182, 2013.

[WSTL10] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-
Prolog. CoRR, abs/1011.5332, 2010.

[ZCP13] Faiez Zalila, Xavier Crégut, and Marc Pantel. A transformation-driven ap-
proach to automate feedback verification results. In Alfredo Cuzzocrea and
Sofian Maabout, editors, MEDI, volume 8216 of Lecture Notes in Computer

Science, pages 266–277. Springer, 2013.

[Zhu12] Hong Zhu. An institution theory of formal meta-modelling in graphically ex-
tended BNF. Frontiers of Computer Science, 6(1):40–56, 2012.

