2,245 research outputs found

    Meaningful XAI Based on User-Centric Design Methodology

    Get PDF

    Meaningful XAI Based on User-Centric Design Methodology

    Get PDF
    This report explores the concept of explainability in AI-based systems, distinguishing between "local" and "global" explanations. “Local” explanations refer to specific algorithmic outputs in their operational context, while “global” explanations encompass the system as a whole. The need to tailor explanations to users and tasks is emphasised, acknowledging that explanations are not universal solutions and can have unintended consequences. Two use cases illustrate the application of explainability techniques: an educational recommender system, and explainable AI for scientific discoveries. The report discusses the subjective nature of meaningfulness in explanations and proposes cognitive metrics for its evaluation. It concludes by providing recommendations, including the inclusion of “local” explainability guidelines in the EU AI proposal, the adoption of a user-centric design methodology, and the harmonisation of explainable AI requirements across different EU legislation and case law.Overall, this report delves into the framework and use cases surrounding explainability in AI-based systems, emphasising the need for “local” and “global” explanations, and ensuring they are tailored toward users of AI-based systems and their tasks

    Attack2vec: Leveraging temporal word embeddings to understand the evolution of cyberattacks

    Full text link
    Despite the fact that cyberattacks are constantly growing in complexity, the research community still lacks effective tools to easily monitor and understand them. In particular, there is a need for techniques that are able to not only track how prominently certain malicious actions, such as the exploitation of specific vulnerabilities, are exploited in the wild, but also (and more importantly) how these malicious actions factor in as attack steps in more complex cyberattacks. In this paper we present ATTACK2VEC, a system that uses temporal word embeddings to model how attack steps are exploited in the wild, and track how they evolve. We test ATTACK2VEC on a dataset of billions of security events collected from the customers of a commercial Intrusion Prevention System over a period of two years, and show that our approach is effective in monitoring the emergence of new attack strategies in the wild and in flagging which attack steps are often used together by attackers (e.g., vulnerabilities that are frequently exploited together). ATTACK2VEC provides a useful tool for researchers and practitioners to better understand cyberattacks and their evolution, and use this knowledge to improve situational awareness and develop proactive defenses.Accepted manuscrip

    ATTACK2VEC: Leveraging Temporal Word Embeddings to Understand the Evolution of Cyberattacks

    Full text link
    Despite the fact that cyberattacks are constantly growing in complexity, the research community still lacks effective tools to easily monitor and understand them. In particular, there is a need for techniques that are able to not only track how prominently certain malicious actions, such as the exploitation of specific vulnerabilities, are exploited in the wild, but also (and more importantly) how these malicious actions factor in as attack steps in more complex cyberattacks. In this paper we present ATTACK2VEC, a system that uses temporal word embeddings to model how attack steps are exploited in the wild, and track how they evolve. We test ATTACK2VEC on a dataset of billions of security events collected from the customers of a commercial Intrusion Prevention System over a period of two years, and show that our approach is effective in monitoring the emergence of new attack strategies in the wild and in flagging which attack steps are often used together by attackers (e.g., vulnerabilities that are frequently exploited together). ATTACK2VEC provides a useful tool for researchers and practitioners to better understand cyberattacks and their evolution, and use this knowledge to improve situational awareness and develop proactive defenses

    System Security Assurance: A Systematic Literature Review

    Get PDF
    System security assurance provides the confidence that security features, practices, procedures, and architecture of software systems mediate and enforce the security policy and are resilient against security failure and attacks. Alongside the significant benefits of security assurance, the evolution of new information and communication technology (ICT) introduces new challenges regarding information protection. Security assurance methods based on the traditional tools, techniques, and procedures may fail to account new challenges due to poor requirement specifications, static nature, and poor development processes. The common criteria (CC) commonly used for security evaluation and certification process also comes with many limitations and challenges. In this paper, extensive efforts have been made to study the state-of-the-art, limitations and future research directions for security assurance of the ICT and cyber-physical systems (CPS) in a wide range of domains. We conducted a systematic review of requirements, processes, and activities involved in system security assurance including security requirements, security metrics, system and environments and assurance methods. We highlighted the challenges and gaps that have been identified by the existing literature related to system security assurance and corresponding solutions. Finally, we discussed the limitations of the present methods and future research directions

    On the relative value of weak information of supervision for learning generative models: An empirical study

    Get PDF
    Weakly supervised learning is aimed to learn predictive models from partially supervised data, an easy-to-collect alternative to the costly standard full supervision. During the last decade, the research community has striven to show that learning reliable models in specific weakly supervised problems is possible. We present an empirical study that analyzes the value of weak information of supervision throughout its entire spectrum, from none to full supervision. Its contribution is assessed under the realistic assumption that a small subset of fully supervised data is available. Particularized in the problem of learning with candidate sets, we adapt Cozman and Cohen [1] key study to learning from weakly supervised data. Standard learning techniques are used to infer generative models from this type of supervision with both synthetic and real data. Empirical results suggest that weakly labeled data is helpful in realistic scenarios, where fully labeled data is scarce, and its contribution is directly related to both the amount of information of supervision and how meaningful this information is

    Designing for digital wellbeing: A research & practice agenda

    Get PDF
    Traditionally, many consumer-focused technologies have been designed to maximize user engagement with their products and services. More recently, many technology companies have begun to introduce digital wellbeing features, such as for managing time spent and for encouraging breaks in use. These are in the context of, and likely in response to, renewed concerns in the media about technology dependency and even addiction. The promotion of technology abstinence is also increasingly widespread, e.g., via digital detoxes. Given that digital technologies are an important and valuable feature of many people's lives, digital wellbeing features are arguably preferable to abstinence
    corecore