2,369 research outputs found

    Bridging Causal Reversibility and Time Reversibility: A Stochastic Process Algebraic Approach

    Full text link
    Causal reversibility blends reversibility and causality for concurrent systems. It indicates that an action can be undone provided that all of its consequences have been undone already, thus making it possible to bring the system back to a past consistent state. Time reversibility is instead considered in the field of stochastic processes, mostly for efficient analysis purposes. A performance model based on a continuous-time Markov chain is time reversible if its stochastic behavior remains the same when the direction of time is reversed. We bridge these two theories of reversibility by showing the conditions under which causal reversibility and time reversibility are both ensured by construction. This is done in the setting of a stochastic process calculus, which is then equipped with a variant of stochastic bisimilarity accounting for both forward and backward directions

    The Reversible Temporal Process Language

    Get PDF
    Reversible debuggers help programmers to quickly find the causes of misbehaviours in concurrent programs. These debuggers can be founded on the well-studied theory of causal-consistent reversibility, which allows one to undo any action provided that its consequences are undone beforehand. Till now, causal-consistent reversibility never considered time, a key aspect in real world applications. Here, we study the interplay between reversibility and time in concurrent systems via a process algebra. The Temporal Process Language (TPL) by Hennessy and Regan is a well-understood extension of CCS with discrete-time and a timeout operator. We define revTPL, a reversible extension of TPL, and we show that it satisfies the properties expected from a causal-consistent reversible calculus. We show that, alternatively, revTPL can be interpreted as an extension of reversible CCS with time

    The Reversible Temporal Process Language

    Get PDF
    Reversible debuggers help programmers to quickly find the causes of misbehaviours in concurrent programs. These debuggers can be founded on the well-studied theory of causal-consistent reversibility, which allows one to undo any action provided that its consequences are undone beforehand. Till now, causal-consistent reversibility never considered time, a key aspect in real world applications. Here, we study the interplay between reversibility and time in concurrent systems via a process algebra. The Temporal Process Language (TPL) by Hennessy and Regan is a well-understood extension of CCS with discrete-time and a timeout operator. We define revTPL, a reversible extension of TPL, and we show that it satisfies the properties expected from a causal-consistent reversible calculus. We show that, alternatively, revTPL can be interpreted as an extension of reversible CCS with time

    The INSIDEOUT framework provides precise signatures of the balance of intrinsic and extrinsic dynamics in brain states

    Get PDF
    Finding precise signatures of different brain states is a central, unsolved question in neuroscience. We reformulated the problem to quantify the 'inside out' balance of intrinsic and extrinsic brain dynamics in brain states. The difference in brain state can be described as differences in the detailed causal interactions found in the underlying intrinsic brain dynamics. We used a thermodynamics framework to quantify the breaking of the detailed balance captured by the level of asymmetry in temporal processing, i.e. the arrow of time. Specifically, the temporal asymmetry was computed by the time-shifted correlation matrices for the forward and reversed time series, reflecting the level of non-reversibility/non-equilibrium. We found precise, distinguishing signatures in terms of the reversibility and hierarchy of large-scale dynamics in three radically different brain states (awake, deep sleep and anaesthesia) in electrocorticography data from non-human primates. Significantly lower levels of reversibility were found in deep sleep and anaesthesia compared to wakefulness. Non-wakeful states also showed a flatter hierarchy, reflecting the diversity of the reversibility across the brain. Overall, this provides signatures of the breaking of detailed balance in different brain states, perhaps reflecting levels of conscious awareness

    Endogenous space in the Net era

    Get PDF
    Libre Software communities are among the most interesting and advanced socio-economic laboratories on the Net. In terms of directions of Regional Science research, this paper addresses a simple question: “Is the socio-economics of digital nets out of scope for Regional Science, or might the latter expand to a cybergeography of digitally enhanced territories ?” As for most simple questions, answers are neither so obvious nor easy. The authors start drafting one in a positive sense, focussing upon a file rouge running across the paper: endogenous spaces woven by socio-economic processes. The drafted answer declines on an Evolutionary Location Theory formulation, together with two computational modelling views. Keywords: Complex networks, Computational modelling, Economics of Internet, Endogenous spaces, Evolutionary location theory, Free or Libre Software, Path dependence, Positionality.

    Economic growth, innovation systems, and institutional change: a trilogy in five parts

    Get PDF
    Development and growth are products of the interplay and interaction among heterogeneous actors operating in specific institutional settings. There is a much alluded-to, but under-investigated, link between economic growth, innovation systems, and institutions. There is widespread agreement among most economists on the positive reinforcing link between innovation and growth. However, the importance of institutions as catalysts in this link has not been adequately examined. The concept of innovation systems has the potential to fill this gap. But these studies have not conducted in-depth institutional analyses or focussed on institutional transformation processes, thereby failing to link growth theory to the substantive institutional tradition in economics. In this paper we draw attention to the main shortcomings of orthodox and heterodox growth theories, some of which have been addressed by the more descriptive literature on innovation systems. Critical overviews of the literatures on growth and innovation systems are used as a foundation to propose a new perspective on the role of institutions and a framework for conducting institutional analysis using a multi-dimensional typology of institutions. The framework is then applied to cases of Taiwan and South Korea to highlight the instrumental role played by institutions in facilitating and curtailing economic development and growth
    • 

    corecore