
The Reversible Temporal Process Language?

Laura Bocchi1, Ivan Lanese2, Claudio Antares Mezzina3, and Shoji Yuen4

1 School of Computing, University of Kent, UK
2 Focus Team, University of Bologna/INRIA, Italy

3 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Italy
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Abstract. Reversible debuggers help programmers to quickly find the
causes of misbehaviours in concurrent programs. These debuggers can
be founded on the well-studied theory of causal-consistent reversibility,
which allows one to undo any action provided that its consequences are
undone beforehand. Till now, causal-consistent reversibility never con-
sidered time, a key aspect in real world applications. Here, we study the
interplay between reversibility and time in concurrent systems via a pro-
cess algebra. The Temporal Process Language (TPL) by Hennessy and
Regan is a well-understood extension of CCS with discrete-time and a
timeout operator. We define revTPL, a reversible extension of TPL, and
we show that it satisfies the properties expected from a causal-consistent
reversible calculus. We show that, alternatively, revTPL can be inter-
preted as an extension of reversible CCS with time.

1 Introduction

Recent studies [30,6] show that reversible debuggers ease the debugging phase,
and help programmers to quickly find the causes of a misbehaviour. Reversible
debuggers can be built on top of a causal-consistent reversible semantics [12,9],
and this is particularly suited to deal with concurrency bugs, which are hard
to find using traditional debuggers. By exploiting causality information, causal-
consistent reversible debuggers allow one to undo just the steps which led (are
causally related) to a misbehaviour, reducing the number of steps/spurious
causes and helping to understand its root cause. In the last years several re-
versible semantics for concurrency have been developed, see, e.g., [8,7,18,2,22].
However, none of them takes into account time1. Time-dependent behaviour
is an intrinsic and important feature of real-world concurrent systems and has
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ANR project DCore ANR-18-CE25-0007 and by INdAM – GNCS 2020 project Sis-
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referees for their helpful comments and suggestions.

1 The notion of time reversibility addressed by [2] is not aimed at studying hard or soft
time constraints but at performance evaluation via (time-reversible) Markov chains.
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many applications: from the engineering of highways [21], to the manufacturing
schedule [11] and to the scheduling problem for real-time operating systems [3].

Time is instrumental for the functioning of embedded systems where some
events are triggered by the system clock. Embedded systems are used for both
real-time and soft real-time applications, frequently in safety-critical scenarios.
Hence, before being deployed or massively produced, they have to be heavily
tested. The testing activity may trigger a debugging phase: if a test fails one
has to track down the source(s) of the failure and fix them. Actually, debug-
ging occurs not only upon testing, but in almost all the stages of the life-cycle
of a software system: from the early stages of prototyping to the post-release
maintenance (e.g., updates or security patches). Concurrency is important in
embedded systems [10], and concurrency bugs frequently happen in these sys-
tems as well [14]. To debug such systems, and deal with time-dependent bugs in
particular, it is crucial that debuggers can handle concurrency and time.

In this paper, we study the interplay of time and reversibility in a process
algebra for concurrency. There exists a variety of timed process algebras for the
analysis and specification of concurrent timed systems [27]. We build on the
Temporal Process Language (TPL) [13], a CCS-like process algebra featuring
an idling prefix (modelling a delay) and a timeout operator. The choice of TPL
is due to its simplicity and its well-understood theory. We define revTPL, a re-
versible extension of TPL, and we show that it satisfies the properties expected
from a causal-consistent reversible calculus. Alternatively, revTPL can be inter-
preted as an extension of reversible CCS (in particular CCSK [29]) with time.

A reversible semantics in a concurrent setting is frequently defined follow-
ing the causal-consistent approach [8] (other approaches are also used, e.g., to
model biological systems [28]). Causal-consistent reversibility states that any
action can be undone, provided that its consequences are undone beforehand.
Hence, it strongly relies on a notion of causality. To prove the reversible seman-
tics of revTPL causal-consistent, we exploit the theory in [20], whereby causal-
consistency follows from three key properties: any action can be undone by a
corresponding backward action (Loop Lemma); concurrent actions can be exe-
cuted in any order (Square Property); backward computations do not introduce
new states (Parabolic Lemma).

The application of causal-consistent reversibility to timed systems is not
straightforward, since time heavily changes the causal semantics of the language.
In untimed systems, causal dependencies are either structural (e.g., via sequen-
tial composition) or determined by synchronisations. In timed systems further
dependencies between parallel processes can be introduced by time, even when
processes do not actually interact, as illustrated in Example 1.

Example 1 (Motivating example). Consider the following Erlang code.

1 process A ( ) −>
2 r e c e i v e
3 X −> handleMsg ( )
4 a f t e r 200 −>

5 handleTimeout ( )
6 end end .
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7 process B ( Pid ) −>
8 t imer : s l e e p (500) ,
9 Pid ! Msg end .

10 PidA=spawn (?MODULE, process A , [ ] ) ,
11 spawn (?MODULE, process B , [ PidA ] ) .

Two processes are supposed to communicate, but the timeout in process A

(line 4) triggers after 200 ms, while process B will only send the message after
500 ms (lines 8−9). In this example, the timeout is ruling out an execution that
would be possible in the untimed scenario (the communication between A and
B) and introduces a dependency without need of actual interactions. �
From a technical point of view, the semantics of TPL does not fit the formats for
which a causal-consistent reversible semantics can be built automatically [29,15],
and also the generalisation of the approaches developed in the literature for
untimed models [8,7,18] is not straightforward. Actually, we even need to change
the underlying formalisation of TPL to ensure that its reversible extension is
causal consistent (see Section 5.1).

The rest of the paper is structured as follows. Section 2 gives an informal
overview of TPL and reversibility. Section 3 introduces the syntax and semantics
of the reversible Temporal Process Language (revTPL). In Section 4, we relate
revTPL to TPL and CCSK, while Section 5 studies the reversibility properties of
revTPL. Section 6 concludes the paper. Proofs and additional technical details
are collected in the associated technical report [4].

2 Informal overview of TPL and reversibility

In this section we give an informal overview of Hennessy & Regan’s TPL (Tem-
poral Process Language) [13] and introduce a few basic concepts of causal-
consistent reversibility [8,20].

Overview of TPL. Process bpid.P c(Q) models a timeout: it can either im-
mediately do action pid followed by P or, in case of delay, continue as Q. In
(1) the timeout process is in parallel with co-party pid.0 that can immediately
synchronise with action pid, and hence the timeout process continues as P .

pid.0 ‖ bpid.P c(Q)
τ−→ 0 ‖ P (1)

In (2), bpid.P c(Q) is in parallel with process σ.pid.0 that can synchronise only
after a delay of one time unit σ (σ is called a time action). Because of the delay,
the timeout process continues as Q:

σ.pid.0 ‖ bpid.P c(Q)
σ−→ pid.0 ‖ Q (2)

The processes in (2) describe the interaction structures of the Erlang program
in Example 1. More precisely, the timeout of 200 time units in process A can be
encoded using nested timeouts:

A(0) = Q A(n+ 1) = bpid.P c(A(n)) (n ∈ N)
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while process B can be modelled as the sequential composition of 500 actions σ
followed by action pid, as follows:

B(0) = pid B(n+ 1) = σ.B(n) (n ∈ N)

Using the definition above, bpid.P c(A(200)) models a process that executes pid
and continues as P if a co-party is able to synchronise within 200 time units,
otherwise executes Q. Hence, Example 1 is rendered as follows:

bpid.P c(A(200)) ‖ B(500)

The design of TPL is based on (and enjoys) three properties [13]: time-determi-
nism, patience, and maximal progress. Time-determinism means that time ac-
tions from one state can never reach distinct states, formally: if P

σ−→ Q and
P

σ−→ Q′ then Q = Q′. A consequence of time-determinism is that choices can
only be decided via communication actions and not by time actions, for example
α.P + β.Q can change state by action α or β, but not by time action σ. Process
α.P + β.Q can make an action σ, by a property called patience, but this action
would not change the state, as shown in (3).

α.P + β.Q
σ−→ α.P + β.Q (3)

Patience ensures that communication processes α.P can indefinitely delay com-
munication α with σ actions (without changing state) until a co-party is avail-
able. Maximal progress states that (internal/synchronisation) τ actions cannot

be delayed, formally: if P
τ−→ Q then P

σ−→ Q′ for no Q′. Namely, a delay can
only be attained via explicit σ prefixes or because synchronisation is not possible.
Basically, patience allows for time actions when communication is not possible,
and maximal progress disallows time actions when communication is possible:

α.P
σ−→ (by patience)

α.P ‖ α.Q 6 σ−→ because α.P ‖ α.Q τ−→ (by maximal progress)

Overview of causal-consistent reversibility. Before presenting revTPL, we
discuss the reversing technique we adopt. In the literature, two approaches to
define a causal-consistent extension of a given calculus or language have been
proposed: dynamic and static [16]. The dynamic approach (as in [8,7,18]) makes
explicit use of memories to keep track of past events and causality relations, while
the static approach (originally proposed in [29]) is based on two ideas: making
all the operators of the language static so that no information is lost and using
communication keys to keep track of which events have been executed. In the
dynamic approach, constructors of processes disappear upon reduction (as in
standard calculi).

For example, in the following CCS reduction:

a.P
a−→ P
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the action a disappears as effect of the reduction. The dynamic approach pre-
scribes to use a memory to keep track of the discarded items. In static ap-
proaches, such as [29], actions are syntactically maintained, and process a.P
reduces as follows

a.P
a[i]−−→ a[i].P

where P is decorated with the executed action a and a unique key i. The term
a[i].P acts like P in forward reductions, while the coloured part decorating P is
used to define backward reductions, e.g.,

a[i].P
a[i]
↪−−→ a.P

Keys are important to correctly revert synchronisations. Consider the process
below. It can take two forward synchronisations with keys i and j, respectively:

a.P1 ‖ a.P2 ‖ a.Q1 ‖ a.Q2
τ [i]−−→ τ [j]−−→ a[i].P1 ‖ a[i].P2 ‖ a[j].Q1 ‖ a[j].Q2

From the reached state, there are two possible backward actions: τ [i] and τ [j].
The keys are used to ensure that a backward action, say τ [i], only involves
parallel components that have previously synchronised and not, for instance,
a[i].P1 and a[j].Q2. When looking at the choice operator, in the following CCS
reduction:

a.P + b.Q
a−→ P

both the choice operator “+” and the discarded branch b.Q disappear as effect
of the reduction. In static approaches, the choice operator and the discarded
branch are syntactically maintained, and process a.P + b.Q reduces as follows:

a.P + b.Q
a[i]−−→ a[i].P+b.Q

where a[i].P+b.Q acts like P in forward reductions, while the coloured part
allows one to undo a[i] and then possibly proceed forward with an action b[j].

In this paper, we adopt the static approach since it is simpler, while the
dynamic approach is more suitable to complex languages such as the π-calculus,
see the discussion in [16,19].

3 Reversible Temporal Process Language

In this section we define revTPL, an extension of TPL [13] with reversibility
following the static approach in the style of [29].

Syntax of revTPL. We denote with X the set of all the processes generated by
the grammar in Figure 1.

Programs (P,Q, . . .) describe timed interactions following [13]. We let A be
the set of action names a, A the set of action conames a. We use α to range over
a, a and internal actions τ . We assume a = a. In program π.P , prefix π can be a
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P = π.P | bP c(Q) | P +Q | P ‖ Q | P \ a | A | 0 (π = α | σ)

X = π[i].X | bXc[ i−→](Y ) | bXc[ i←−](Y ) | X + Y | X ‖ Y | X \ a | P

Fig. 1. Syntax of revTPL

communication action α or a time action σ, and P is the continuation. Timeout
bP c(Q) executes either P (if possible) or Q (in case of timeout). P +Q, P ‖ Q,
P \ a, A, and 0 are the usual choice, parallel composition, name restriction,
recursive call, and terminated program from CCS. For each recursive call A we

assume a recursive definition A
def
= P .

Processes (X,Y, . . .) describe states via annotation of executed actions with
keys following the static approach. We let K be the set of all keys (k, i, j, . . .).
Processes are programs with (possibly) some computational history (i.e., prefixes
marked with keys): π[i].X is the process that has already executed π, and the
execution of such π is identified by key i. Process bXc[ i←−](Y ) is executing the

main branch X whereas bXc[ i−→](Y ) is executing Y .

A process can be thought of as a context with actions that have already been
executed, each associated to a key, containing a program P , with actions yet
to execute and hence with no keys. Notably, keys are distinct but for actions
happening together: an action and a co-action that synchronise, or the same
timed action traced by different processes, e.g., by two parallel delays. A program
P can be thought of as the initial state of a computation, where no action has
been executed yet. We call such processes standard. Definition 1 formalises this
notion via function keys(X) that returns the set of keys of a process.

Definition 1 (Standard process). The set of keys of a process X, written
keys(X), is inductively defined as follows:

keys(P ) = ∅ keys(π[i].X) = {i} ∪ keys(X) keys(X \ a) = keys(X)
keys(bY c[ i−→](X)) = keys(bXc[ i←−](Y )) = {i} ∪ keys(X)

keys(X + Y ) = keys(X ‖ Y ) = keys(X) ∪ keys(Y )

A process X is standard, written std(X), if keys(X) = ∅.

Basically, a standard process is a program. To handle the delicate interplay
between time-determinism and reversibility of time actions, it is useful to distin-
guish the class of processes that have not executed any communication action
(but may have executed time actions). We call these processes not-acted and
characterise them formally using the predicate nact(·) below.
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Definition 2 (Not-acted process). The not-acted predicate nact(·) is in-
ductively defined as:

nact(0) = nact(A) = nact(bXc(Y )) = nact(π.X) = tt

nact(α[i].X) = nact(bXc[ i←−](Y )) = ff

nact(σ[i].X) = nact(X \ a) = nact(bY c[ i−→](X)) = nact(X)

nact(X ‖ Y ) = nact(X + Y ) = nact(X) ∧ nact(Y )

A process X is not-acted (resp. acted) if nact(X) = tt (resp. nact(X) = ff).

Basic standard processes are always not-acted (first line of Definition 2). Indeed,
it is not possible to reach a process π.X where X is acted. In the second line,
a process that has executed communication actions is acted. In particular, we
will see that bXc[ i←−](Y ) is only reachable via a communication action. The
processes in the third line are not-acted if their continuations are not-acted. For
parallel composition and choice, nact(·) is defined as a conjunction. For example
nact(α[i].P ‖ β.Q) = ff and nact(α[i].P + β.Q) = ff. Note that in a choice
process X1 + X2, at most one between X1 and X2 can be not-acted. Whereas
std(X) implies nact(X), the opposite implication does not hold. For example,
std(σ[i].0) = ff but nact(σ[i].0) = tt.

Semantics of revTPL. We denote withAt the setA∪A∪{τ, σ} of actions and let
π to range over the set At. We define the set of all the labels L = At× (K∪{?}).
The labels associate each π ∈ At to either a key i or a wildcard ?. The key
is used to associate the forward occurrence of an action with its corresponding
reversal. Also, instances of actions occurring together (synchronising action and
co-action or the effect of time passing in different components of a process) have
the same key, otherwise keys are distinct. We introduce a wildcard ? to label
time transitions that leave the state unchanged. We call transitions with key
i ∈ K recorded and transitions with ? patient. We let u, v, w, . . . to range over
K ∪ {?}.

Definition 3 (Semantics). The operational semantics of revTPL is given by
two LTSs defined on the same set of all processes X , and the set of all labels L: a
forward LTS (X , L, −→) and a backward LTS (X , L, ↪−→). We define 7−→=−→ ∪ ↪−→,
where −→ and ↪−→ are the least transition relations induced by the rules in Figure 2
and Figure 3, respectively.

Given a relation R, we indicate with R∗ its transitive and reflexive closure. We

use notation X 6 τ−→ (resp. X 6 τ↪−→) for X 6 τ [i]−−→ X ′ (resp. X 6
τ [i]
↪−−→ X ′) for any process

X ′ and key i.
We now discuss the rules of the forward semantics (Figure 2). Rule [PAct]

describes patient actions: program α.P can make a time step to itself. This
kind of actions allows a process to wait indefinitely until it can communicate
(by patience [13]). Since [PAct] does not change the state of α.P , we do not
track this action by associating it to wildcard ? rather than to a key. [RAct]
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PAct α.P
σ[?]−−−→ α.P RAct π.P

π[i]−−→ π[i].P
Act

X
π′[u]−−−→ X ′ u 6= i

π[i].X
π′[u]−−−→ π[i].X ′

STout
X 6 τ−→ std(X) std(Y )

bXc(Y )
σ[i]−−→ bXc[ i−→](Y )

SWait
Y

π[u]−−−→ Y ′ u 6= i

bXc[ i−→](Y )
π[u]−−−→ bXc[ i−→](Y ′)

Tout
X

α[i]−−→ X ′
std(Y )

bXc(Y )
α[i]−−→ bX ′c[ i←−](Y )

Wait
X

π[u]−−−→ X ′ u 6= i

bXc[ i←−](Y )
π[u]−−−→ bX ′c[ i←−](Y )

SynW
X

σ[u]−−−→ X ′ Y
σ[v ]−−−→ Y ′ (X ‖ Y ) 6 τ−→ δ(u, v) = w

X ‖ Y σ[w ]−−−→ X ′ ‖ Y ′

Par
X

α[i]−−→ X ′ i 6∈ keys(Y )

X ‖ Y α[i]−−→ X ′ ‖ Y
Syn

X
α[i]−−→ X ′ Y

α[i]−−→ Y ′

X ‖ Y τ [i]−−→ X ′ ‖ Y ′

ChoW1
X1

σ[u]−−−→ X ′
1 X2

σ[v ]−−−→ X ′
2 δ(u, v) = w nact(X1 +X2)

X1 +X2
σ[w ]−−−→ X ′

1 +X ′
2

ChoW2
X1

σ[u]−−−→ X ′
1 nact(X2) ∧ ¬nact(X1)

X1 +X2
σ[u]−−−→ X ′

1 +X2

Cho
X1

α[i]−−→ X ′
1 nact(X2)

X1 +X2
α[i]−−→ X ′

1 +X2

Idle 0
σ[?]−−−→ 0

Hide
X

π[u]−−−→ X ′ π 6∈ {a, a}

X \ a π[u]−−−→ X ′ \ a
Const

A
def
= P P

π[u]−−−→ X

A
π[u]−−−→ X

The set of rules also includes symmetric versions of rules [Par], [ChoW2] and [Cho].

Fig. 2. revTPL forward LTS
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executes recorded actions α[i] or σ[i] on a prefix program. Observe that, unlike
patient time actions on α.P (which may or may not happen depending on the
context), a time action on σ.P corresponds to a deliberate and planned time
consuming action and is, therefore, recorded so that it may be later reversed.
[Act] lifts actions of the continuation X on processes where prefix π[i] has
already been executed. [STout] and [SWait] model timeouts. In [STout], if X
is not able to make τ actions then Y is executed; this rule models a timeout that
triggers only if the main process X is stuck. The negative premise on [Stout]
can be encoded into a decidable positive one as shown in the associated technical
report [4]. In rule [Tout] instead the main process can execute and the timeout
does not trigger. Rule [SWait] (resp. [Wait]) models transitions inside a timeout
process where the Y (resp. X) branch has been previously taken. The semantics
of timeout construct becomes clearer in the larger context of parallel processes,
when looking at rule [SynW]. Rule [SynW] models time passing for parallel
processes. The negative premise ensures that, in case X or Y is a timeout process,
timeout can trigger only if no synchronisation may occur, that is if the processes
are stuck. [SynW] requires time to pass in the same way (an action σ is taken
by both components) for the whole system. Note that u and v may or may not
be wildcards, depending on the form of X and Y . To determine w we use a
synchronisation function δ : (K ∪ {?} × K ∪ {?}) 7→ K ∪ {?} defined as follows,
assuming i, j ∈ K:

δ(i, i) = i δ(i, ?) = δ(?, i) = i δ(?, ?) = ? δ(i, j) = ⊥ (i 6= j)

Basically, in rule [SynW], if either u or v needs to be recorded then w also needs
to be recorded, and if both u and v need to be recorded then we require u = v.
Rules [Par] (and symmetric) and [Syn] are as usual for communication actions
and allow parallel processes to either proceed independently or to synchronise.
Defining the semantics of choice process X1 +X2 requires special care to ensure
time-determinism (recall, choices are only decided via communication actions).
Also, we need to record time actions (unless they have a wildcard) to be able
to reverse them correctly (cfr. Loop Lemma, discussed later on in Lemma 1).
Rule [ChoW1] is for time actions when no choice between X1 and X2 has been
made yet (as enforced by premise nact(X1 + X2)), and a time action happens
in both branches. As in rule [SynW], w is determined by the synchronisation
function δ(u, v). Rule [ChoW2] models a time action when branch X1 has al-
ready been chosen, as enforced by premise ¬nact(X1); the time action only
affects the ‘active’ branch X1. For example, in the process below, the premise
nact(β.Q) ∧ ¬nact(α[i].σ.P ) allows us to apply [ChoW2] obtaining:

α[i].σ.P + β.Q
σ[j]−−→ α[i].σ[j ].P + β.Q

Having rule [ChoW2], besides [ChoW1], for time actions on a chosen branch,
is justified by scenarios as the following:

α[i].σ.P + bQc(R)
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If we would model time transitions of the process above using [ChoW1] we
would obtain

α[i].σ.P + bQc(R)
σ[j]−−→ α[i].σ[j ].P + bQc[ j

−→
](R)

wrongly suggesting that the timeout on the right branch has evolved. Rule [Cho]
allows one to take one branch, or continue executing a previously taken branch.
The choice construct is syntactically preserved, to allow for reversibility, but
the one branch that is not taken remains non-acted (i.e., nact(X2)). This en-
sures that choices can be decided by a communication action only. Rules [Idle],
[Hide], and [Const] are standard, except that [Idle] only does patient actions
using wildcards, and [Hide] and [Const] may or may not use wildcards depend-
ing on the form of X.

The rules of the backward semantics, in Figure 3, undo actions previously
recorded via the forward semantics, and they allow for timed actions with wild-
card. Backward rules are symmetric to the forward ones.

Definition 4 (Initial and reachable processes). A process X is initial if
std(X). A process X is reachable if it can be derived by an initial process.

Basically, a process is initial if it has no computational history, and reachable if
it can be obtained via forward and backward actions from an initial process.

4 Properties

We now give some properties of revTPL. In Section 4.1 we introduce a syntactic
characterisation of the class of processes that can delay without changing state.
In Section 4.2 we show that revTPL extends both (non reversible) TPL and
(untimed) reversible CCS.

4.1 Idempatience and properties of ?

We introduce a class of processes, which we call idempatient, that can make
state-preserving patient actions. This class is key to define the causal-consistent
reversible semantics of revTPL (see Section 5.1).

Definition 5 (Idempatience). We say that X is idempatient if IP(X) where:

IP(0) = IP(α.P ) = tt IP(bP c(Q)) = IP(σ.P ) = ff

IP(X1 ‖ X2) = IP(X1) ∧ IP(X2) ∧X1 ‖ X2 6
τ−→

IP(X1 +X2) = IP(X1) ∧ IP(X2)

IP(π[i].X) = IP(bY c[ i−→](X)) = IP(bXc[ i←−](Y )) = IP(X \ a) = IP(X)

Proposition 1 shows that idempatience is a sound and complete characterisation
of processes that can make state-preserving patient actions.

Proposition 1 (Idempatience). IP(X) ⇔ X
σ[?]7−−→ X.
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Pact α.P
σ[?]
↪−−→ α.P Ract π[i].P

π[i]
↪−−→ π.P

Act
X

π′[u]
↪−−−→ X ′ u 6= i

π[i].X
π′[u]
↪−−−→ π[i].X ′

STout
X 6 τ−→ std(X) std(Y )

bXc[ i−→](Y )
σ[i]
↪−−→ bXc(Y )

SWait
Y

π[u]
↪−−→ Y ′ u 6= i

bXc[ i−→](Y )
π[u]
↪−−→ bXc[ i−→](Y ′)

Tout
X

α[i]
↪−−→ X ′

std(Y )

bXc[ i←−](Y )
α[i]
↪−−→ bX ′c(Y )

Wait
X

π[u]
↪−−→ X ′ u 6= i

bXc[ i←−](Y )
π[u]
↪−−→ bX ′c[ i←−](Y )

SynW
X

σ[u]
↪−−→ X ′ Y

σ[v ]
↪−−→ Y ′ (X ‖ Y ) 6 τ↪−→ δ(u, v) = w

X ‖ Y
σ[w ]
↪−−−→ X ′ ‖ Y ′

Par
X

α[i]
↪−−→ X ′ i 6∈ keys(Y )

X ‖ Y
α[i]
↪−−→ X ′ ‖ Y

Syn
X

α[i]
↪−−→ X ′ Y

α[i]
↪−−→ Y ′

X ‖ Y
τ [i]
↪−−→ X ′ ‖ Y ′

ChoW1
X1

σ[u]
↪−−→ X ′

1 X2

σ[v ]
↪−−→ X ′

2 δ(u, v) = w nact(X1 +X2)

X1 +X2

σ[w ]
↪−−−→ X ′

1 +X ′
2

ChoW2
X1

σ[u]
↪−−→ X ′

1 nact(X2) ∧ ¬nact(X1)

X1 +X2

σ[u]
↪−−→ X ′

1 +X2

Cho
X1

α[i]
↪−−→ X ′

1 nact(X2)

X1 +X2

α[i]
↪−−→ X ′

1 +X2

Idle 0
σ[?]
↪−−→ 0

Hide
X

π[u]
↪−−→ X ′ π 6∈ {a, a}

X \ a
π[u]
↪−−→ X ′ \ a

Const
A
def
= P X

π[u]
↪−−→ P

X
π[u]
↪−−→ A

The set of rules also includes symmetric versions of rules [Par], [ChoW2] and [Cho].

Fig. 3. revTPL backward LTS

Next, we give a property of time actions, and show that patient actions are
state preserving.

Proposition 2 (Patient actions). X
σ[?]−−→ implies X 6 σ[i]−−→, and X

σ[i]−−→
implies X 6 σ[?]−−→. Moreover, if X

σ[?]−−→ Y then X = Y . The same for ↪−→.

4.2 Relations with TPL and reversible CCS

We can consider revTPL as a reversible extension of TPL, but also as an extension
of reversible CCS (in particular CCSK [29]) with time. First, if we consider the
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forward semantics only, then we have a tight correspondence with TPL. To show
this we define a forgetful map which discards the history information of a process.

Definition 6 (History forgetting map). The history forgetting map φh :
X → P is inductively defined as follows:

φh(P ) = P φh(π[i].X) = φh(X)

φh(bXc[ i←−](Y )) = φh(X) φh(bXc[ i−→](Y )) = φh(Y )

φh(X ‖ Y ) = φh(X) ‖ φh(Y ) φh(X \ a) = φh(X) \ a

φh(X1 +X2) =

φh(X1) if ¬nact(X1) ∧ nact(X2)
φh(X2) if ¬nact(X2) ∧ nact(X1)
φh(X1) + φh(X2) otherwise

In TPL time cannot decide choices. This is reflected into the definition of φh(X1+
X2), where a branch disappears only if the other did an untimed action.

Notably, the restriction of φh to untimed processes is a map from CCSK to
CCS. In the following we will indicate with →t the semantics of TPL [13] and
with 7→k the semantics of CCSK [29].

Proposition 3 (Embedding of TPL). Let X be a reachable revTPL process:

1. if X
π[u]−−−→ Y then φh(X)

π−→t φ
h(Y );

2. if φh(X)
π−→t Q then

– either for any i ∈ K \ keys(X) there is Y such that X
π[i]−−→ Y or

– π = σ and there is Y such that X
π[?]−−→ Y

In both the cases φh(Y ) = Q.

Also, TPL is a conservative extension of CCS. This is stated in [13], even if
not formally proved. Hence, we can define a forgetful map which discards all the
temporal operators of a TPL term and get a CCS one. We can obtain a stronger
result and relate revTPL with CCSK [29]. That is, if we consider the untimed
part of revTPL what we get is a reversible CCS which is exactly CCSK. To this
end, we define a time forgetting map φt. We denote with X− the set of untimed
reversible processes of revTPL. The set inclusion X− ⊂ X holds.

Definition 7 (Time forgetting map). The time forgetting map φt : X → X−
is inductively defined as follows:

φt(0) = 0 φt(A) = A
φt(α.P ) = α.φt(P ) φt(α[i].X) = α[i].φt(X)
φt(X + Y ) = φt(X) + φt(Y ) φt(X ‖ Y ) = φt(X) ‖ φt(Y )
φt(X \ a) = φt(X) \ a φt(bXc(Y )) = φt(X) + φt(Y )
φt(σ.P ) = φt(P ) φt(σ[i].X) = φt(X)
φt(bXc[ i←−](Y )) = φt(X) + φt(Y ) φt(bXc[ i−→](Y )) = φt(X) + φt(Y )
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Notably, the restriction of φt to standard processes is a map from TPL to CCS.
The most interesting aspect in the definition above is that the temporal

operator bXc(Y ) is rendered as a sum. This also happens for the decorated
processes bXc[ i←−](Y ) and bXc[ i−→](Y ). Also, since we are relating a temporal

semantics with an untimed one (CCSK), the σ actions performed by the timed
semantics are not reflected in CCSK.

Proposition 4 (Embedding of CCSK [29]). Let X be a reachable revTPL

process. We have:

1. if X
α[i]7−−→ Y then φt(X)

α[i]7−−→k φ
t(Y );

2. if X
σ[u]7−−−→ Y then φt(X) = φt(Y );

Notably, it is not always the case that transitions of the underlying untimed
process can be matched in a timed setting, think, e.g., to the process in Exam-
ple 1 (and its formalisation in Section 2) for a counterexample.

revTPL

φt

Prop. 4yy

φh

Prop. 3 $$
CCSK

φh

Prop. 3 %%

TPL

φt

Prop. 4zz
CCS

Fig. 4. Forgetting maps.

Figure 4 summarises our results: if we remove the timed behaviour from a
revTPL process we get a CCSK term, thanks to Proposition 4. On the other
side, if from revTPL we remove reversibility we get a TPL term (thanks to
Proposition 3). Note that the same forgetful maps (and properties) justify the
arrows in the bottom part of the diagram, as discussed above. This is in line
with Theorem 5.21 of [29], showing that by removing reversibility and history
information from CCSK we get CCS.

5 Reversibility in revTPL

In a fully reversible calculus any computation can be undone. This is a funda-
mental property of reversibility [8,20], and revTPL enjoys it. Formally:

Lemma 1 (Loop Lemma). If X is a reachable process, then X
π[u]−−−→ X ′ ⇐⇒

X ′
π[u]
↪−−→ X
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Another fundamental property of causal-consistent reversibility is causal-
consitency [8,20], which essentially states that we store the correct amount of
causal information. In order to discuss it, we now borrow some definitions from

[8]. We use t, t′, s, s′ to range over transitions. In a transition t : X
π[u]7−−−→ Y

we call X the source of the transition, and Y the target of the transition. Two
transitions are said to be coinitial if they have the same source, and cofinal if
they have the same target. Given a transition t, we indicate with t its opposite,

that is if t : X
π[u]−−−→ Y (resp., t : X

π[u]
↪−−→ Y ) then t : Y

π[u]
↪−−→ X (resp.,

t : Y
π[u]−−−→ X). We let ρ, ω to range over sequences of transitions, which we call

paths, and with εX we indicate the empty sequence starting and ending in X.

Definition 8 (Causal Equivalence). Let � be the smallest equivalence on
paths closed under composition and satisfying:

1. if t : X
π1[u]7−−−→ Y1 and s : X

π2[v ]7−−−→ Y2 are independent, and s′ : Y1
π2[v ]7−−−→ Z,

t′ : Y2
π1[u]7−−−→ Z then ts′ � st′;

2. tt � ε and tt � ε

Intuitively, paths are causal equivalent if they differ only for swapping indepen-
dent transitions (we will discuss independence below) and for adding do-undo
or undo-redo pairs of transitions.

Definition 9 (Causal Consistency (CC)). If ρ and ω are coinitial and cofi-
nal paths then ρ � ω.

Intuitively, if coinitial paths are cofinal then they have the same causal informa-
tion and can reverse in the same ways: we want only causal equivalent paths to
reverse in the same ways.

Unfortunately, causal consistency does not hold in revTPL as defined in the
previous sections (and this is not related to a specific definition of independence).
This is due to actions with label σ[?].

Example 2 (CC does not hold with σ[?]). Consider the path ρ : α.P
σ[?]−−→ α.P .

Trivially, ρ and εα.P are coinitial and cofinal, but not causal equivalent. Indeed,
the number of forward transitions minus the number of backward transitions is
invariant under causal equivalence, and this is not the same for the two paths.

�

This leaves us two possibilities to enforce the property: either we change
the definition of causal equivalence (e.g., allowing one to freely add and remove
transitions with label σ[?]), or we change the semantics. We opt for the latter,
since it allows us to stay in the framework studied in [20] and exploit the theory
developped there to prove our results.
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5.1 Revised semantics

We change the semantics simply dropping all transitions with label σ[?]. Tech-
nically, this ensures that causal consistency (as well as other relevant properties)
holds. Conceptually, those transitions do not amount to actual actions of the
process (as shown in Proposition 2, they do not change the process) and are
mainly used to simplify a compositional definition of the semantics, see, e.g., rule
[SynW]. A compositional semantics could be defined by replacing premises of

the form X
σ[?]−−→ X with IP(X) thanks to Proposition 1. This option is discussed

in more detail in the companion technical report [4].
For simplicity, from now on we consider the semantics given by the labelled

transition system obtained by dropping all transitions with label σ[?]:

Definition 10 (Semantics with no self-loops). The operational semantics
with no self-loops of revTPL is given by the forward LTS (X , L, −→n) and the
backward LTS (X , L, ↪−→n), on the same sets X of processes and L of labels.
Transition relations −→n and ↪−→n are obtained by dropping from, respectively, −→
and ↪−→ the transitions with label σ[?].

Notably, the Loop Lemma holds also for the new semantics. Concerning em-
beddings, the embedding of TPL does not hold any more (a new operational
correspondence taking care of dropped transitions can be defined), while the
one of CCSK is unaffected.

We discuss below reversibility in revTPL using the semantics with no self-
loops. We first need to discuss the notion of independence.

5.2 Independence

We now define a notion of independence between revTPL transitions, based on
a causality preorder (inspired by [19]) on keys. Independence is useful to show
that reversibility never breaks causal links between actions.

Definition 11 (Partial order on keys). The function po(·), that computes
the set of causal relations among the keys in a process, is inductively defined as:

po(P ) = ∅ po(X \ a) = po(X)
po(X ‖ Y ) = po(X + Y ) = po(bXc(Y )) = po(X) ∪ po(Y )
po(π[i].X) = po(bXc[ i←−](Y )) = po(bY c[ i−→](X)) = {i < j | j ∈ keys(X)} ∪ po(X)

The partial order ≤X on keys(X) is the reflexive and transitive closure of po(X).

Let us note that function po computes a partial order relation, namely a set of
pairs (i, j), denoted i < j to stress that they form a partial order.

Definition 12 (Choice context). A choice context C is a process with a hole
• defined by the following grammar (we omit symmetric cases for + and ‖):

C = • | π[i].C | bCc(Y ) | bXc[ i−→](C) | bCc[ i←−](Y ) | X + C | X ‖ C | C \ a
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Intuitively, a choice context may enclose an enabled (forward) choice. We now
define a notion of conflict, and independence as its negation. For simplicity of
formalisation, we assume that generation of fresh keys in forward transitions is
deterministic: the same redex in the same process cannot generate different keys.

Definition 13 (Conflict and independence). Given a reachable process X,

two coinititial transitions t : X
π1[i]7−−−→n Y and s : X

π2[j ]7−−−→n Z are conflicting,
written t# s, if and only if one of the following conditions holds:

1. X
σ[i]−−→n Y and X

α[j ]−−→n Z;

2. X
π1[i]−−−→n Y and X

π2[j ]
↪−−−→n Z with j ≤Y i;

3. X = C[Y ′ + Z ′], Y ′
π1[i]−−−→n Y

′′ and Z ′
π2[j ]−−−→n Z

′′.

Transitions t and s are independent, written t I s, if t 6= s and they are not
conflicting.

The first clause tells us that a delay cannot be swapped with a communication
action. Consider process bb.0c(0):

bb.0c(0)

σ[i]

xx

b[j ]

&&
bb.0c[ i−→](0) bb[j ].0c[ j

←−
](0)

Transitions σ[i] and b[j ] are in conflict: they cannot be swapped since action b
is no longer possible after action σ, and vice versa. The second clause dictates
that two transitions are in conflict when a reverse step eliminates some causes
of a forward step. E.g., process a[i].b.0 can do a forward step with label b[j ] or
a backward one with label a[i]. Undoing a[i] disables the action on b. The last
case is the most intuitive: processes in different branches of a choice operator
are in conflict, e.g., a.0 + b.0 can do actions on a and b, but they can not be
swapped.

The Square Property tells that two coinitial independent transitions com-
mute, thus closing a diamond. Formally:

Property 1 (Square Property - SP) Given a reachable process X and two

coinititial transitions t : X
π1[i]7−−−→n Y and s : X

π2[j ]7−−−→n Z with t I s there exist

two cofinal transitions t′ : Y
π2[j ]7−−−→n W and s′ : Z

π1[i]7−−−→n W .

5.3 Causal consistency

We can now prove causal consistency, using the theory in [20]. It ensures that
causal consistency follows from SP, already discussed, and two other properties,
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stated below. BTI (Backward Transitions are Independent) generalises the con-
cept of backward determinism used for reversible sequential languages [31]. It
specifies that two backward transitions from a same process are always indepen-
dent.

Property 2 (Backward transition are independent - BTI) Given a reach-

able process X, any two distinct coinitial backward transitions t : X
π1[i]
↪−−−→n Y

and s : X
π2[j ]
↪−−−→n Z are independent.

The property trivially holds since by looking at the definition on conflicting
and independent transitions (Definition 13) there are no cases in which two
backward transitions are deemed as conflicting, hence two backward transitions
are always independent.

We now show that reachable processes have a finite past.

Property 3 (Well-Foundedness - WF) Let X0 be a reachable process. Then

there is no infinite sequence such that Xi

πn[jn ]
↪−−−−→n Xi+1 for all i = 0, 1, . . ..

WF follows since each backward transition removes a key.
The following lemma tells us that any path is causally equivalent to a path

made by only backward steps, followed by only forward steps. In other words, up
to causal equivalence, paths can be rearranged so as to first reach the maximum
freedom of choice, going only backwards, and then continuing only forwards.

Definition 14 (Parabolic Lemma). For any path ρ, there exist two forward-
only paths ω, ω′ such that ρ � ωω′ and |ω|+ |ω′| ≤ |ρ|.

We can now prove our main results thanks to the proof schema of [20].

Theorem 1 (From [20]). Suppose BTI and SP hold, then PL holds. Suppose
WF and PL hold, then CC holds.

6 Conclusions

The main contribution of this paper is the study of the interplay between time
and causal-consistent reversibility. A reversible semantics for TPL cannot be
automatically derived using well-established frameworks [29,15], since some op-
erator acts differently depending on whether the label is a communication or a
time action. For example, in TPL a choice cannot be decided by the passage of
time, making the + operator both static and dynamic, and the approach in [29]
not applicable. To faithfully capture patient actions in a reversible semantics we
introduced wildcards. However, as σ[?] actions violate causal consistency, to re-
cover it we had to refine the formalisation of the semantics. Another peculiarity
of TPL is the timeout operator bP c(Q), which can be seen as a choice operator
whose left branch has priority over the right one. Although we have been able to
use the static approach to reversibility [29], adapting it to our setting has been
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challenging for the aforementioned reasons. Notably, our results have a double
interpretation: as an extension of CCSK [29] with time, and as a reversible ex-
tension of TPL [13]. As a side result, by focusing on the two fragments, we
derive notions of independence and conflict for CCSK and TPL, which were not
available in the literature. We have just started to study the relations among
revTPL, CCSK and TPL. We leave as future work a further investigation in
terms of behavioural equivalences or simulations among the three calculi.

Maximal progress of TPL (as well as revTPL) has connections with Markov
chains [5], e.g., τ.P + (λ).Q (where λ is a rate) will not be delayed since τ
is instantaneously enabled. This resembles maximal progress for the timeout
operator. A deep comparison between deterministic time, used by TPL, and
stochastic time used by stochastic process algebras can be found in [1]. Further
investigation on the relation between our work and [2], studying reversibility in
Markov chains, is left for future work. The treatment of passage of time shares
some similarities with broadcast [24]: time actions affect parallel components
in the same way, and idempatience can be seen as unavailability of top-level
receivers.

We have just started our research quest towards a reversible timed semantics.
A further improvement would be to add an explicit rollback operator, as in [17],
that could be triggered, e.g., in reaction to a timeout. Also, asynchronous com-
munications (like in Erlang) could be taken into account. TPL is a conservative
timed extension of CCS. Due to its simplicity, it has a very clear behavioural
theory [13]. A further step could be to adapt such behavioural theory to account
for reversibility. Also, we could consider studying more complex temporal op-
erators [27]. Timed Petri nets are a valid tool for analysing real-time systems.
A step towards the analysis of real-time systems would be to encode revTPL

into (reversible) timed Petri nets [32], by extending the encoding of reversible
CCS into reversible Petri nets [23]. Another possibility would be to study the
extension of a monitored timed semantics for multiparty session types, as the
one of [26], with reversibility [25].
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