7,537 research outputs found

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement

    Leveraging eXtented Reality & Human-Computer Interaction for User Experi- ence in 360◦ Video

    Get PDF
    EXtended Reality systems have resurged as a medium for work and entertainment. While 360o video has been characterized as less immersive than computer-generated VR, its realism, ease of use and affordability mean it is in widespread commercial use. Based on the prevalence and potential of the 360o video format, this research is focused on improving and augmenting the user experience of watching 360o video. By leveraging knowledge from Extented Reality (XR) systems and Human-Computer Interaction (HCI), this research addresses two issues affecting user experience in 360o video: Attention Guidance and Visually Induced Motion Sickness (VIMS). This research work relies on the construction of multiple artifacts to answer the de- fined research questions: (1) IVRUX, a tool for analysis of immersive VR narrative expe- riences; (2) Cue Control, a tool for creation of spatial audio soundtracks for 360o video, as well as enabling the collection and analysis of captured metrics emerging from the user experience; and (3) VIMS mitigation pipeline, a linear sequence of modules (including optical flow and visual SLAM among others) that control parameters for visual modi- fications such as a restricted Field of View (FoV). These artifacts are accompanied by evaluation studies targeting the defined research questions. Through Cue Control, this research shows that non-diegetic music can be spatialized to act as orientation for users. A partial spatialization of music was deemed ineffective when used for orientation. Addi- tionally, our results also demonstrate that diegetic sounds are used for notification rather than orientation. Through VIMS mitigation pipeline, this research shows that dynamic restricted FoV is statistically significant in mitigating VIMS, while mantaining desired levels of Presence. Both Cue Control and the VIMS mitigation pipeline emerged from a Research through Design (RtD) approach, where the IVRUX artifact is the product of de- sign knowledge and gave direction to research. The research presented in this thesis is of interest to practitioners and researchers working on 360o video and helps delineate future directions in making 360o video a rich design space for interaction and narrative.Sistemas de Realidade EXtendida ressurgiram como um meio de comunicação para o tra- balho e entretenimento. Enquanto que o vídeo 360o tem sido caracterizado como sendo menos imersivo que a Realidade Virtual gerada por computador, o seu realismo, facili- dade de uso e acessibilidade significa que tem uso comercial generalizado. Baseado na prevalência e potencial do formato de vídeo 360o, esta pesquisa está focada em melhorar e aumentar a experiência de utilizador ao ver vídeos 360o. Impulsionado por conhecimento de sistemas de Realidade eXtendida (XR) e Interacção Humano-Computador (HCI), esta pesquisa aborda dois problemas que afetam a experiência de utilizador em vídeo 360o: Orientação de Atenção e Enjoo de Movimento Induzido Visualmente (VIMS). Este trabalho de pesquisa é apoiado na construção de múltiplos artefactos para res- ponder as perguntas de pesquisa definidas: (1) IVRUX, uma ferramenta para análise de experiências narrativas imersivas em VR; (2) Cue Control, uma ferramenta para a criação de bandas sonoras de áudio espacial, enquanto permite a recolha e análise de métricas capturadas emergentes da experiencia de utilizador; e (3) canal para a mitigação de VIMS, uma sequência linear de módulos (incluindo fluxo ótico e SLAM visual entre outros) que controla parâmetros para modificações visuais como o campo de visão restringido. Estes artefactos estão acompanhados por estudos de avaliação direcionados para às perguntas de pesquisa definidas. Através do Cue Control, esta pesquisa mostra que música não- diegética pode ser espacializada para servir como orientação para os utilizadores. Uma espacialização parcial da música foi considerada ineficaz quando usada para a orientação. Adicionalmente, os nossos resultados demonstram que sons diegéticos são usados para notificação em vez de orientação. Através do canal para a mitigação de VIMS, esta pesquisa mostra que o campo de visão restrito e dinâmico é estatisticamente significante ao mitigar VIMS, enquanto mantem níveis desejados de Presença. Ambos Cue Control e o canal para a mitigação de VIMS emergiram de uma abordagem de Pesquisa através do Design (RtD), onde o artefacto IVRUX é o produto de conhecimento de design e deu direcção à pesquisa. A pesquisa apresentada nesta tese é de interesse para profissionais e investigadores tra- balhando em vídeo 360o e ajuda a delinear futuras direções em tornar o vídeo 360o um espaço de design rico para a interação e narrativa

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    The Application of Polynomial Response Surface and Polynomial Chaos Expansion Metamodels within an Augmented Reality Conceptual Design Environment

    Get PDF
    The engineering design process consists of many stages. In the conceptual phase, potential designs are generated and evaluated without considering specifics. Winning concepts then advance to the detail design and high fidelity simulation stages. At this point in the process, very accurate representations are made for each design and are then subjected to rigorous analysis. With the advancement of computer technology, these last two phases have been very well served by the software community. Engineering software such as computer-aided design (CAD), finite element analysis (FEA), and computational fluid dynamics (CFD) have become an inseparable part of the design process for many engineered products and processes. Conceptual design tools, on the other hand, have not undergone this type of advancement, where much of the work is still done with little to no digital technology. Detail oriented tools require a significant amount of time and training to use effectively. This investment is considered worthwhile when high fidelity models are needed. However, conceptual design has no need for this level of detail. Instead, rapid concept generation and evaluation are the primary goals. Considering the lack of adequate tools to suit these needs, new software was created. This thesis discusses the development of that conceptual design application. Traditional design tools rely on a two dimensional mouse to perform three dimensional actions. While many designers have become familiar with this approach, it is not intuitive to an inexperienced user. In order to enhance the usability of the developed application, a new interaction method was applied. Augmented reality (AR) is a developing research area that combines virtual elements with the real world. This capability was used to create a three dimensional interface for the engineering design application. Using specially tracked interface objects, the user\u27s hands become the primary method of interaction. Within this AR environment, users are able perform many of the basic actions available within a CAD system such as object manipulation, editing, and assembly. The same design environment also provides real time assessment data. Calculations for center of gravity and wheel loading can be done with the click of a few buttons. Results are displayed to the user in the AR scene. In order to support the quantitative analysis tools necessary for conceptual design, additional research was done in the area of metamodeling. Metamodels are capable of providing approximations for more complex analyses. In the case of the wheel loading calculation, the approximation takes the place of a time consuming FEA simulation. Two different metamodeling techniques were studied in this thesis: polynomial response surface (PRS) and polynomial chaos expansion (PCE). While only the wheel loading case study was included in the developed application, an additional design problem was analyzed to assess the capabilities of both methods for conceptual design. In the second study, the maximum stresses and displacements within the support frame of a bucket truck were modeled. The source data for building the approximations was generated via an FEA simulation of digital mockups, since no legacy data was available. With this information, experimental models were constructed by varying several factors, including: the distribution of source and test data, the number of input trials, the inclusion of interaction effects, and the addition of third order terms. Comparisons were also drawn between the two metamodeling techniques. For the wheel loading models, third order models with interaction effects provided a good fit of the data (root mean square error of less than 10%) with as few as thirty input data points. With minimal source data, however, second order models and those without interaction effects outperformed third order counterparts. The PRS and PCE methods performed almost equivalently with sufficient source data. Difference began to appear at the twenty trial case. PRS was more suited to wider distributions of data. The PCE technique better handled smaller distributions and extrapolation to larger test data. The support frame problem represented a more difficult analysis with non-linear responses. While initial third order results from the PCE models were better than those for PRS, both had significantly higher error than in the previous case study. However, with simpler second order models and sufficient input data (more than thirty trials) adequate approximation results were achieved. The less complex responses had error around 10%, and the model predictions for the non-linear response were reduced to around 20%. These results demonstrate that useful approximations can be constructed from minimal data. Such models, despite the uncertainty involved, will be able to provide designers with helpful information at the conceptual stage of a design process

    XR-RF Imaging Enabled by Software-Defined Metasurfaces and Machine Learning: Foundational Vision, Technologies and Challenges

    Full text link
    We present a new approach to Extended Reality (XR), denoted as iCOPYWAVES, which seeks to offer naturally low-latency operation and cost-effectiveness, overcoming the critical scalability issues faced by existing solutions. iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in wireless communications. Empowered by intelligent (meta)surfaces, PWEs transform the wave propagation phenomenon into a software-defined process. We leverage PWEs to i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR headset using PWEdriven, RF imaging principles (XR-RF). This makes for an XR system whose operation is bounded in the physical layer and, hence, has the prospects for minimal end-to-end latency. Over large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper provides a tutorial on the iCOPYWAVES system architecture and workflow. A proof-of-concept implementation via simulations is provided, demonstrating the reconstruction of challenging objects in iCOPYWAVES produced computer graphics

    Image processing techniques for mixed reality and biometry

    Get PDF
    2013 - 2014This thesis work is focused on two applicative fields of image processing research, which, for different reasons, have become particularly active in the last decade: Mixed Reality and Biometry. Though the image processing techniques involved in these two research areas are often different, they share the key objective of recognizing salient features typically captured through imaging devices. Enabling technologies for augmented/mixed reality have been improved and refined throughout the last years and more recently they seems to have finally passed the demo stage to becoming ready for practical industrial and commercial applications. To this regard, a crucial role will likely be played by the new generation of smartphones and tablets, equipped with an arsenal of sensors connections and enough processing power for becoming the most portable and affordable AR platform ever. Within this context, techniques like gesture recognition by means of simple, light and robust capturing hardware and advanced computer vision techniques may play an important role in providing a natural and robust way to control software applications and to enhance onthe- field operational capabilities. The research described in this thesis is targeted toward advanced visualization and interaction strategies aimed to improve the operative range and robustness of mixed reality applications, particularly for demanding industrial environments... [edited by Author]XIII n.s

    Evaluating 3D pointing techniques

    Get PDF
    "This dissertation investigates various issues related to the empirical evaluation of 3D pointing interfaces. In this context, the term ""3D pointing"" is appropriated from analogous 2D pointing literature to refer to 3D point selection tasks, i.e., specifying a target in three-dimensional space. Such pointing interfaces are required for interaction with virtual 3D environments, e.g., in computer games and virtual reality. Researchers have developed and empirically evaluated many such techniques. Yet, several technical issues and human factors complicate evaluation. Moreover, results tend not to be directly comparable between experiments, as these experiments usually use different methodologies and measures. Based on well-established methods for comparing 2D pointing interfaces this dissertation investigates different aspects of 3D pointing. The main objective of this work is to establish methods for the direct and fair comparisons between 2D and 3D pointing interfaces. This dissertation proposes and then validates an experimental paradigm for evaluating 3D interaction techniques that rely on pointing. It also investigates some technical considerations such as latency and device noise. Results show that the mouse outperforms (between 10% and 60%) other 3D input techniques in all tested conditions. Moreover, a monoscopic cursor tends to perform better than a stereo cursor when using stereo display, by as much as 30% for deep targets. Results suggest that common 3D pointing techniques are best modelled by first projecting target parameters (i.e., distance and size) to the screen plane.
    corecore