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“Science is a way of thinking much more than it is a body of knowledge”. 
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Abstract 

 

This thesis work is focused on two applicative fields of image processing research, 

which, for different reasons, have become particularly active in the last decade: Mixed 

Reality and Biometry. Though the image processing techniques involved in these two 

research areas are often different, they share the key objective of recognizing salient 

features typically captured through imaging devices.  

Enabling technologies for augmented/mixed reality have been improved and 

refined throughout the last years and more recently they seems to have finally passed 

the demo stage to becoming ready for practical industrial and commercial applications. 

To this regard, a crucial role will likely be played by the new generation of smartphones 

and tablets, equipped with an arsenal of sensors connections and enough processing 

power for becoming the most portable and affordable AR platform ever. Within this 

context, techniques like gesture recognition by means of simple, light and robust 

capturing hardware and advanced computer vision techniques may play an important 

role in providing a natural and robust way to control software applications and to 

enhance on-the-field operational capabilities. The research described in this thesis is 

targeted toward advanced visualization and interaction strategies aimed to improve the 

operative range and robustness of mixed reality applications, particularly for demanding 

industrial environments. 

Biometric recognition refers to the use of distinctive physiological and behavioural 

characteristics, called biometric identifiers, for automatically recognizing individuals. 

Being hard to misplace, forge, or share, biometric identifiers are considered more 

reliable for person recognition than traditional token or knowledge-based methods. 

Others typical objectives of biometric recognition are user convenience (e.g., service 

access without a Personal Identification Number), better security (e.g., difficult to forge 

access). All these reasons make biometrics very suited for Ambient Intelligence 

applications, and this is especially true for the user’s face that is one of the most 
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common methods of recognition that humans use in their visual interactions. Moreover, 

face features allow to recognize the user in a non-intrusive way without any physical 

contact with the sensor. To this regard, the second part of this thesis, presents a face 

recognition method based on 3D features to verify the identity of subjects accessing the 

controlled Ambient Intelligence Environment and to customize all the services 

accordingly. In other words, the purpose is to add a social dimension to man-machine 

communication thus contributing to make such environments more attractive to the 

human user. 
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Chapter 1  
 

Introduction 
 

Today, we live in a image-centric world in which visual communication and 

comprehension represent crucial ways to interact and learn at any level. The power of 

images has never been so tangible and valuable in every human activity. Consequently, 

the interest of scientific research in every aspect of this form of knowledge has never 

been so strong. The digital revolution has made possible measuring, sampling, 

processing and even sinthetizing images captured through a new breed of devices 

almost impossible to imagine a few decades ago, whose tecnological evolution does not 

know pauses and is itself a stimulus for further development and research in a seamless 

loop. Computer scientists have the privilege of being at the center of this revolution and 

research areas such as image processing and image synthesis are constantly pushing the 

boundary of available technology, with huge effects on the mass-market and on 

industrial applications as well. 

 In this context, Mixed/Augmented Reality is emerging from a long period of 

unfulfilled promises as the related enabling technologies are finally mature enough to 

unleash the potential of combining computer generated visual contents with the actual 

enviroment around the user. As the impact of this technology on the everyday life is 

possibly huge, there is a clear need for addressing the main open challenges that 

currently still limit its usage, particularly in demanding environments and applications. 

 On another front of the image related research, the outstanding technological 

progress that has characterized the development and the pervasive diffusion of high-

definition low-noise image sensors, put the basis for ubiquitous biometric applications 

almost unfeasible in the near past. About twelve years after September 11th 2001, the 

diffusion of person identification and verification systems has reached a worldwide 

dimension, as anyone travelling overseas has probably experimented while waiting in a 
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queue for immigration control procedures. As most biometric systems (face, iris, 

fingerprint, ear, etc. ) rely on image capture and processing to extract and compare 

user’s biometric traits, the worldwide availability of high-performance ubiquitous image 

capture devices (smartphones, tablet, etc.) is opening the horizon for a new generation 

of applications. 

This thesis, tries to provide a glimpse of these new application fields, focusing on 

applying techniques of image processing in both the 2D and 3D domains for Mixed 

Reality and Biometry contexts. The topics covered hereafter, could probably not be 

considered “mainstream”, though they concern aspects which might well have a great 

impact on the usability of the aforementioned techologies. More in detail, the study 

presented in the following pages is organized as follows: 

 

• Chapter 2 is dedicated to Mixed Reality topics as detailed below 

 

o Section 2.1 describes a comprehensive proposal for a mixed reality 

environment, providing powerful interaction capability with the co-

registered virtual/real objects by means of a not-instrumented finger 

based interface to improving the effectiveness of computer assisted 

training procedures in mission critical systems,  

 

o Section 2.2 addresses the topic of “diminished reality”. Besides the usual 

augmenting paradigm common in mixed reality, the proposed approach 

enables a diminishing visualization strategy allowing the user to see only 

the fraction of the real object/environment that is visually relevant for the 

task to be performed. 

 

o Section 2.3 deals with the occlusion problem related to hand-based 

interaction in mixed reality. The method described, enables the 

composition of the virtual objects onto the real background to be 

performed respecting the distance of each rendered pixel according to the 

user viewpoint. 
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o Section 2.4 presents a context adaptive head-up interface, which is 

projected in the central region of the user’s visual field and exploiting 

gesture based interaction to enable easy, robust and powerful 

manipulation of the virtual contents which are visualized after being 

mapped onto the real environment surrounding the user. 

 

• Chapter 3 is dedicated to Biometry and it describes in Section 3.1 a 

comprehensive face recognition framework based on 3D features to verify the 

identity of subjects accessing an Ambient Intelligence Environment and to 

customize all the services accordingly. The face descriptor is based on normal 

map to enabling fast probe-gallery matching yet it is robust to facial expressions 

and facial hair by means of specific weighting maps. 
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Chapter 2  
 

Advanced Interaction and Visualization Methods for 

Mixed Reality 
 

Over the last decade Augmented/Mixed Reality (AR/MR) technology has become more 

and more diffused and affordable, dramatically expanding the applicative horizon across 

fields ranging from aerospace to automotive, from surgery to marketing, proving that 

the mix between real and virtual has a huge potential for the big enterprise and the mass 

market as well. The last years in particular, have seen a growing hype about 

Augmented/Mixed Reality pushed by announcements of new dedicated devices like the 

Google Glass, just to mention the most known, claiming the ability to augment the 

vision field with context dependent contents, eventually co-registered to the real world.  

It is clear enough that these technologies, apart from technical limitations still 

concerning tracking accuracy/robustness, or field-of-view wideness, really have a great 

potential for a broad range of applicative fields and particularly for multimedia training 

and learning which could finally move from the computer space to the real world.  

The growth experimented so far has been stimulated by different factors: a dramatic 

increase of both general and visual computing power of any kind of computer, a general 

cost reduction of AR specific devices, like see-trough Head Mounted Displays and 

motion tracking systems and, last but not the least, the new generations of smartphones, 

equipped with an arsenal of sensors (hi-res cameras, gyroscopes, accelerometers, GPS, 

electronic compass, etc.) and enough processing power to became the most portable and 

affordable AR platform ever. Within this exciting scenario, the research effort should be 

focused not only on new approaches to the main AR topics (more accurate tracking in 

outdoor applications, better and lighter hi-res HMD, etc.) but also on open and new 

challenges as well. The following subsections of this thesis deal with some of these last 

kind of research topics, and particularly they concern not-instrumented finger-based 

interface in a MR environment (Section 2.1), diminished reality (Section 2.2), occlusion 
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handling (Section 2.3) and advanced gesture-based interaction (Section 2.4), also trying 

to stress the proposed approaches in demanding application contexts. 

 

2.1 Finger Based Interaction for Demanding AR Environments 

 

Mixed Reality technologies often reveal serious limitations when applied to challenging 

application environments. For these particular context, indeed, specific requirements in 

terms of tracking accuracy and coverage, augmentation strategies and interaction 

capabilities determine whether a mixed reality application is useful or not. Mission 

critical installations such as military and civil radar systems, navigation systems aboard 

ships and airplanes, high performance communication systems based in airports, ports 

and oil rigs are just a few examples of high-tech environments featuring an ever 

growing range of complex hardware and software components. In case of break down 

of one of these components, it is of paramount importance that the faulty part is repaired 

as quickly as possible, as the security of a large number of people may be at risk. In this 

context, the latest advances of Mixed Reality (MR) technologies [1] may prove really 

useful in assisting on-site operators during servicing and repair activity. Most of on-site 

interventions in this field depend on trained personnel applying established procedures 

to complex equipment in relatively static and predictable environments. These 

procedures are typically organized into well-defined sequences of tasks, concerning 

specific items in specific locations. A fundamental aspect to be considered is 

represented by the interaction level available and the related interaction paradigm. The 

user, indeed, should be able to select what kind of augmenting content to display 

according to his/her needs by interacting with the MR environment without complicated 

gear. This section describes a not-instrumented finger based interface to provide 

effective and reliable visual aid during maintenance operations. This interface has been 

designed and tested as a part of a comprehensive MR environment aimed to support 

servicing and repair operations in mission critical systems, but that could be suited to 

other demanding contexts as well. The proposed architecture is based on a multiple 

marker-based tracking, and it has been tested in a radar control training facility to assess 

its benefits and limitations in a real scenario. 
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Scientific literature presents a number of studies covering the topic of 

mixed/augmented reality applied to industrial contexts. In 2002, the project ARVIKA 

[2] fostered the research and the development of AR technologies for production and 

service in the automotive and aerospace industries, for power/process plants, for 

machine tools and production gear. Klinker et al. [3] presented an AR system for the 

inspection of power plants at Framatome ANP, while Shimoda et al. [4] presented an 

AR solution in order to improve efficiency in nuclear power plants (NPP) maintenance 

interventions and to reduce the risk of human error. Mendez et al. [5] developed a 

virtual (AR based) filter to reveal hidden information that is behind an occluding object, 

to enhance data of interest or to suppress distracting information. Pentenrieder et al. [6] 

showed how to use AR in automotive design and manufacturing, to analyse interfering 

edges, plan production lines and workshops, compare variance and verify parts. Still et 

al. [7] proposed an augmented reality system for aiding field workers of utility 

companies in outdoor tasks such as maintenance, planning or surveying of underground 

infrastructure, exploiting geographical information system.  

More recently, De Crescenzio et al. [8] described AR based interfaces as valuable 

tools in preventing manufacture errors in the aviation field. Whatever the context 

considered, tracking precisely and reliably the user point of view (POV) with respect to 

six degrees of freedom is of paramount importance for co-registering virtual objects 

with the surrounding environment. Over the years different technologies have been 

proposed for this purpose (magnetic, ultrasonic, inertial, computer vision based, hybrid, 

etc.), each with advantages and disadvantage. However, to this date, none of them can 

be considered as a general solution, whereas each approach can be suited to a particular 

domain (indoor/outdoor usage, small/wide/scalable operating volume, presence/absence 

of ferromagnetic materials or electromagnetic fields, etc.).  

Computer vision, in both the marker-based [9] [4] and marker-less [10] [11] 

variants, is generally recognized as the only tracking methodology that has the potential 

to yield non-invasive, accurate and low cost co-registration between virtual and real 

[12]. As the MR interface described in the following pages should be able to working  

on equipment rich of small components and operating in the vicinity of strong 

electromagnetic fields, the choice of a multi-marker tracking method seems adequate to 
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deliver high accuracy and robustness. This last scenario also highlights the relevance of 

a proper interaction capability within the augmented environment, which could not be 

properly addressed by conventional input device like mouse and keyboard, as the user 

usually stands upright, eventually moving. Wei et al. [13] introduced a MR framework 

featuring voice commands, but a hand-based interface would rather be more suited to 

the scope. As a hardware solution (instrumented gloves plus wrists tracking) would 

provide accurate hands capturing but would also reduce system’s acceptability, a more 

feasible option is to exploit image-based techniques to track hands in real time [14]. The 

simple and robust approach described hereafter is based on the recent work by Mistry 

and Maes [15] and rely on colored caps worn on index and thumb fingers to track their 

position and gestures, providing effective and natural interaction within the MR 

environment. A final aspect to be considered is the computing/visualization hardware 

required by the system to operate. The growing diffusion of new-generation 

smartphones/tablets promise to deliver cheaper and more usable [16] AR platforms 

[17]. This is probably true if the interaction is always mediated by the touch-screen, but 

when the interaction also implies a contact with physical environment, the user is forced 

to hold the device with one hand while operating with the other hand behind the 

device’s screen. If this is the case, a prolonged working session is likely to become a 

stressful experience. For this main reason a video see-through HMD and a backpack 

enclosed notebook has been preferred over a tablet computer. 

 

2.1.1. Overall system architecture 

The system proposed is schematically depicted in Figure 1. It is composed by three 

main components. The Mixed Reality Engine (MRE) is in charge of user’s head 

tracking, scene augmentation/rendering and servicing procedures management. The 

User-System Interface captures fingers position/gestures enabling the human-computer 

interaction, while the Maintenance Database contains the working environment setup, 

the virtual contents and the maintenance procedures required for the system to work. To 

start the assisted servicing procedure, the user has to wear a video-based see-through 

HMD, a backpack enclosed notebook and a few fingertips caps required for contactless 

interaction. This architecture is further detailed in the following subsections. 
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2.1.2. Mixed reality engine 

As mentioned in the previous sections, the tracking system developed exploits optical 

markers for estimating user’s perspective. It is based on the well-known ARToolkit 

open source AR library [18] by implementing new functions and designing a marker 

configuration optimized for the application context considered. Typical marker based 

tracking systems operating under controlled conditions (i.e. avoiding or at least reducing 

strong reflections, extreme shadows and excessive camera noise) are able to track the 

user’s point of view provided that the head mounted camera entirely frames a single 

marker.  

 
Figure 1: The overall schematic view of the system. 
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This simple solution, often adopted for desktop based AR applications, forces the user 

to continuously aim at the marker, holding it in the center of the visual field to reduce 

the risk of detection miss. Moreover, this configuration often involves the need to use 

large markers (10x10 cm. or more is fairly common), because the accuracy of user’s 

tracking directly depends on precise estimate of marker’s apparent position/orientation 

that, in turn, is affected by the amount of error in measuring marker geometrical 

features, which are proportionally easier to detect on a larger pixel surface. On the other 

side, arranging a large marker in the middle of operational environment could simply be 

unfeasible for many application contexts characterized by uneven surfaces or it could 

even interfere with the operations.  

In this study, many of these issues are addressed by exploiting multiple markers, 

thus delivering an inherently more robust and more accurate tracking even using small 

markers. Factors like the average distance between user and augmented object, required 

tracking volume, camera’s focal length and resolution, have to be carefully considered 

when designing the marker configuration as many of them depend on the particular 

operating environment. In our test-bed, a set of six 4x4 cm sized markers (see Figure 2) 

provides an optimal tracking coverage of approximately 60x60x60 cm with an 

equivalent co-registration error within 2 mm, which is below the size of most small 

parts. As the relative position of each marker with respect to the absolute reference 

system is known, when more than one marker is recognized each approximated estimate 

of camera’s position/orientation (relative to a particular marker) contributes in reducing 

the overall co-registration error through a weighted average strategy based on the 

quality and number of visual features recognized (see Figure 3). To this regard it has to 

be remarked that the rotational component of camera tracking has a greater impact on 

augmentation accuracy compared to the positional component. In fact, even a degree of 

error may produce a visible misalignment between virtual-to-real as the distance from 

the tracked point increases. To minimize this effect the origin of absolute reference 

system (respect to which is expressed the position of any virtual content) is deliberately 

located in the geometric center of the marker-set to further reduce the rotation co-

registration error of all objects falling within it. 
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Figure 2: The full marker set and all the available hotspots highlighted after successful co-

registration calibration. 

 

Additionally, to reduce unwanted camera shaking tracking data was smoothed out by 

means of a damping function. The marker set is easily scalable. For instance, by adding 

other six markers (arranged in two strips of three, placed 60 cm. above and below the 

basic set) an optimal tracking volume of 180x60x60 cm (adequate for a full-size 

industrial rack) is seamlessly achieved. Besides an embedded calibration function aimed 

to measure and correct camera’s lens distortion, a manual procedure allows the user to 

fine-tune co-registration between the real camera and its virtual counterpart in charge of 

rendering the required graphics.  

Each of the six degree of freedom plus the camera’s focal length and markers’ 

thresholding can be precisely adjusted. This task is performed only once unless physical 

or environmental changes occur in equipment’s configuration.  
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The hierarchical representation adopted provides an increasingly detailed 

description while proceeding from the highest to the lowest level. An environment 

description file, indeed, contains the precise positioning of any relevant equipment (e.g. 

a system rack) including all the associated items (e.g. the boards located within the rack) 

by means of specific tags. In a similar way, for any item, an object description file 

contains a tag list of all the hotspots associated to it (e.g. switches, screws, warning 

lights, connectors, etc.). The MR engine, according to the aforementioned descriptors, 

builds up a virtual scene by means of a DOM XML parser, while another XML based 

language, Xpath, is used to query the application database to retrieve the required data.  

The MR engine also performs another crucial task: the maintenance procedure 

management. Each generic maintenance procedure can be represented as a deterministic 

finite automaton (DFA). According to this approach, a particular state represents a 

maintenance step and its links define the execution order.  

 
Figure 3: Panel augmented by virtual labels, tools and GUI  (inset) a magnified view showing 
the small amount of co-registration error 
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DFA result particularly suited to model both simple and complex maintenance 

procedure in an easy, verifiable and legible way. The DFA representation of a particular 

procedure is converted in a XML file where a <step> tag defines a state. Any possible 

path through the automaton defines a procedure’s file.By this approach a single XML 

procedure file defines a specific execution order in a maintenance procedure. At 

runtime, this file is progressively parsed, and in every moment the user can switch to the 

next or previous task by means of the contact-less interface. A fragment of a generic 

procedure step is shown below. 

 

<step equipmentRef=”Server.xml”> 

<label rgbText="default" rgbBackground="default"> 

Unscrew the two fixing screws 

</label> 

<hotspot>screw</hotspot> 

<tool>screwdriver</tool> 

</step> 

 

This particular step refers to the device Server.xml. A label informs user that there are 

two screws which have to be unscrewed. By parsing Server.xml the engine locates the 

screws and highlights them by means of a blinking spot. Because a screwdriver is 

required to perform the step, the <tool> tag allows the MR engine to locate and load the 

proper 3D model from the virtual content repository to render it onto the corresponding 

screw showing how to perform the task. 

 

2.1.3. Finger based contact-less interface 

The contact-less interface developed frees the user from the usage of any tangible I/O 

device to communicate with the system. The user indeed, has only to wear small rubber 

caps of different colors over his thumb and index fingertips, eventually of both hands.  

The image-based tracking exploits the same video stream used for the camera tracking 

to achieve fingertips detection and tracking, thus yielding a reduction of computational 

cost compared to a solution based on a dedicated camera and a simpler hardware 
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configuration. Each finger is associated to a different color according to a simple 

enrollment procedure repeated for each finger and generally performed only the first 

time the system starts-up. The fingertips samples captured are analyzed in the HSL 

color space to extract the dominant hue and saturation ranges, while the lightness 

component is used to filter out eventual highlights. At runtime, the image grabbed from 

the camera is subsampled (by a factor of 4 to 8 times) to both reduce the effect of 

camera noise and to optimize system’s performance.  For each pixel in the subsampled 

image whose HLS levels fall within the ranges defined during enrollment, a recursive 

search for similar (color wise) neighbors is performed until a region of 20x20 pixels is 

explored. If at least one half of the pixels inside this region matches with the original 

pixel, then the engine recognizes that region as one of the colored caps to track (see 

Figure 4). This approach resulted both reliable and responsive, granting a sustained 

frame rate always well above 30 frame per second for an image resolution of 640x480 

pixels (typical for most HMD cameras). Finger tracking enables a rich interaction 

paradigm that can be exploited in many different ways. For instance the user may query 

the working environment to learn more about it by simply moving the index finger over 

any hotspot (i.e., a screw, a button, a handle, a led indicator and so on) according to his 

point of view to obtain visual info about a particular component. Moreover, finger 

tracking enables operating the system by using a graphical user interface (see Figure 5).  

The main challenge with an intangible GUI is related to the interaction paradigm, which 

has to manage the lack of physical contact with the interface elements (buttons, slider, 

toggles etc.). Indeed, when using a conventional (tangible) interface, the kinesthetic 

feedback provides an important confirm of the operations performed. To address this 

issue, a time based interaction paradigm was exploited, requiring the user to hold the 

finger in position for a defined (around one second) amount of time to trigger the 

associated function. A visual feedback, in the form of a small progress bar drawn over 

the GUI element selected, inform about the selection state (i.e. hold the finger until the 

progress is over). The same paradigm is used during a servicing procedure to move 

from a step to the next one or previous one as well as to play/pause/rewind an animated 

virtual tool showing how to perform a specific task. 

 



 20 

  

  

A) B)   

 

     
C)        D) 

Figure 4 – Fingertips tracking in four steps: (A) original frame grabbed from the camera; (B) 
candidate pixels highlighted (C); matching regions found; (D) resulting tracking 
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Additionally, as the system is designed to track up to four colored caps, multi-finger 

gestures can be used to provide more powerful interaction modalities, like object 

picking, zoom or rotation.  

 

2.1.4. Experiments and comments to the results 

Two kinds of experiments have been conducted on the system described above, to 

assess both the performance of the tracking approach and the overall usability of the 

MR environment applied to a training facility. The hardware used for the experiments 

includes a notebook, featuring Intel I5 processor and Nvidia GeForce 9 series graphics 

board and an ARVision-3D video see-through HMD from Trivisio, equipped with two 

800x600 LCD display and two 640x480 cameras capturing the surrounding 

environment at 30 FPS (see Figure 6.).  

 
Figure 5: User interacting with the servicing assistance environment through a contactless 
finger based interface while performing a simulated maintenance procedure. 
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Only the left camera has been used for scene capture. During operations the notebook 

was contained inside a small backpack. Both the accuracy and the robustness to camera 

motion of the multi-marker tracking have been tested. The measurements take into 

account the global error amount due to the combined effect of position and rotation 

errors. The results are summarized in Figure 7, and they overall confirm that accuracy 

delivered is more than adequate for the target application. the  At a distance of 30 cm an 

augmented point results offset respect the real position only for 1.64mm if only one 

marker is recognized. This error amount falls under 1.09 mm when two markers are 

detected. Due to rotation error if the same point is seen under an angle of 45° the error 

increases to 2.19 mm for a single marker. The same evaluations have been done at 

distance of 60cm and 90cm. Not surprisingly, as the distance increases, the number of 

markers recognized increases too. This ensures that the error remains small even at 

greater distance. In fact at 90 cm with six markers recognized the error is of just 2 mm 

meaning that for the user the perceived error is nearly negligible. Another important 

aspect affecting the tracking accuracy is represented by the camera angular velocity. 

 

 
Figure 6 User wearing HMD and colored fingertip caps. 
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Figure 7: Co-registration error measured according to number of markers detected, user-
markers distance and off-plane angle 
 

When the user rotates his head rapidly (this happens mostly with respect to the vertical 

axis), the video stream may results in blurred frames negatively affecting markers 

detection and recognition due to insufficient image contrast. This issue is directly 

related to the camera’s capturing speed, so the higher the frame rate the lower the blur 

produced and consequently the higher the angular velocity allowed. In the case 

considered, (the HMD’s camera operating at a common 30 FPS) the system was able to 

track the user reliably until the angular velocity is below 2 rad/sec. Over this limit a 

tracking failure is very likely, however as soon as the speed slow down the system 

recover form the error condition almost instantaneously. In any system evaluation, user 

testing is of great relevance in confirming the validity and the effectiveness of solutions 

adopted. To this aim, a user questionnaire has been prepared to assessing the perceived 

quality of the interaction after performing a number of tasks significant to the operating 

context considered. The evaluation sessions involved ten users, selected among 
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specialized technicians with no previous experience of either MR systems or contactless 

interfaces. The following is a list of the tasks performed by the testers: 

 

§ Load a new servicing procedure. 

§ Select a particular hotspot. 

§ Select a function from the GUI. 

§ Toggle between two functions. 

§ Perform a servicing procedure. 

In the final questionnaire, the questions were presented using a five-point Likert scale, 

where respondents specify their level of agreement to a statement. In order to avoid any 

bias, some statements were in positive form and others in negative one. This was taken 

into account in the final assessment of results. The following is the list of the proposed 

statements: 

 

1. Available finger based functions are easy to perform  

2. Functions are too many to remember them  

3. Interacting by fingers is not intuitive 

4. It is easy to select objects  

5. Visual aids are clear and useful 

6. It is easy to operate the contact-less GUI  

7. The type and number of available functions to interact with objects is not 

sufficient 

8. Devices worn are not comfortable during operations  

 

The answers to the questionnaire are summarized in Figure 9 above. Most participants 

reported a good confidence feeling during system’s usage, and some of them also 

reported an operational advantage in performing the proposed tasks with respect to their 

usual operating modality. All the participants to the evaluation sessions have also been 

interviewed to better understand the motivations behind the answers provided. 
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QUESTION 
I strongly 

agree 

I 

agree 

I do not 

know 

I 

disagree 

I strongly 

disagree 

1 1 6 1 2 0 

2 0 2 1 7 0 

3 0 1 2 5 2 

4 2 6 0 2 0 

5 2 7 0 1 0 

6 0 6 2 1 1 

7 0 1 2 6 1 

8 2 4 1 3 0 

 

Table 1: Scores reported after subjective system evaluation according to five-point Likert scale 

 

Most comments showed a general satisfaction about the finger-based interface, though 

most of them remarked the lack of a physical contact as something strange which is not 

easy get used to. Both the two visualization modalities were considered useful for 

improving the confidence and avoiding distraction errors during the operations, while, 

not surprisingly, the HMD caused a somewhat stressful experience to most users.  

The subjective system evaluation highlights the potential of the proposed approach, 

though issues related to the hardware used might sometimes detract from the MR 

experience. According to questionnaire answers, the combination of augmentation and 

finger-based interface worked well, providing an intuitive interaction paradigm that 

proved to be suited to the application context. Overall, the MR aided servicing 

environment produced a valuable improvement in user’s confidence during simulated 

interventions, which could eventually lead to a measurable reduction of time required to 

tasks completion.  
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2.2. Diminished Reality, an Alternative Visual Strategy for MR/AR 

 

In previous Section 2.1., it has been remarked the importance of an effective 

visualization strategy to maximize the potential of virtual contents augmenting the 

visual field for different applicative scenarios. How and when to augment real objects 

and environment may have a great impact on the quality of user assistance provided. 

For instance, in some situations the scene observed should be possibly simplified rather 

than augmented. To this regard the concept of diminished reality might prove useful to 

simplify complex assemblies and to improve user confidence during operations. 

Generally, this term refers to removing real-world objects from a live video stream, as 

demonstrated in [19] and [20]. The common idea behind these works is to remove the 

unwanted real object and to reconstruct the portion of the scene occluded by it 

exploiting multi-angle capturing, a technique not always viable in a typical AR setup. 

Herling and Broll [21] also propose a diminished reality environment, asking the user to 

select the object to hide. However, this selection could be problematic in case of a high 

density of components like switches, screws, etc. (not infrequent in industrial 

environments). There are situations, indeed, in which adding extra information to the 

scene may lead to an even more confusing effect. In particular, this issue might arise in 

environments characterized by the presence of a large amount of interaction points (e.g., 

a control board, a rear panel of a complex device etc). In this case, showing further 

information in addition to those already present might be counterproductive. These are 

the main considerations behind this proposal of an alternative augmentation strategy, 

inspired by the concept of diminished reality and based on the selective occlusion of 

unwanted elements rather than on image based object removal. Two different examples 

of this kind of “diminished reality” are reported in the following sections 2.2.1. and 

2.2.2., and they are both based on the Mixed Reality Engine described in Section 2.1.2. 

and applied to two different contexts: the industrial environment already presented and 

a home-environment, targeted to the broadest possible audience and not requiring 

dedicated hardware. 
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2.2.1. Selective removal of equipment features  

As recalled before the MRE is able to support two different approaches to scene 

augmentation. Indeed, beside the “classic” strategy consisting in the visualization of 

different kind of virtual objects (e.g., arrows, labels, 3D models and so on) onto the 

captured scene, it can even remove distracting items from the field of view, leaving as 

visible only the elements required to perform the desired task. The goal in hiding part of 

the operating environment is to let the user focus on the physical elements on which to 

perform a particular task.  From a more technical point of view, to the purpose of hiding 

real objects or part of them the engine renders an occluding (polygonal) surface on 

which can be applied either a diffuse map or an opacity map. By exploiting the device’s 

formal representation (see section 2.1.3.), the engine either load the associated textured 

polygons (see Figure 8_bottom) or it builds up a procedural texture consisting of a black 

background featuring white “holes” of various shapes (e.g, circles, squares, polygons 

and so on) corresponding to the hotspots that should stay visible. All the necessary 

information to perform this task is available in the working environment database. Once 

the textured polygons are built, the engine renders it over the real device (see Figure 8 

_top) occluding all the contextually not relevant hotspots. Both the more common 

augmenting and the diminishing strategies are meant to improve user’s operational 

capabilities, however, there are contexts in which one is more suited than the other. 

Which of the two visualization methods should be used depends on the total number of 

hotspots present in the surrounding of the virtual contents visualized at a given step of 

the intervention. If the density of the hotspots exceeds a threshold then the diminishing 

modality is preferred. Anyhow, the user may always switch to the other modality in any 

moment by means of a specific Augmented/Diminished View toggle present in the 

visual interface. Finally, by combining both augmented and diminished reality a third 

hybrid visualization approach could be realized, providing a simplified view of the 

operating field in which only the elements left visible are augmented with additional 

info. Whatever the strategy adopted, scene augmentation or diminution is made possible 

thanks to a formal scene representation based on XML. The XML database consists of a 

collection of files providing the necessary information to correctly locate each relevant 

element of the working environment within the 3D space.  
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Figure 8: Original frame (top) and diminished view (bottom). Only the required elements are 
left visible, while textured polygons hide potentially confusing items. 
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2.2.2. A WYSIWYN approach to objects augmentation 

In the last years, the growing diffusion of lightweight portable computing device like 

netbooks, tablets, and smartphones, featuring adequate processing power coupled with 

trackpad/touchpad interface, one or two webcams and eventually additional sensors 

(accelerometers, gps, gyroscopes, digital compass, etc.) has provided a low-cost 

platform to augmented reality applications, usually relying on more dedicated but also 

expensive and bulky technologies like see-through head mounted displays. There are 

several contributions, in literature, based on this technological premise. Counter 

Intelligence [22] is a proposal for a conventional kitchen augmented with the projection 

of information onto its objects and surfaces to orient users, coordinate between multiple 

tasks and increase confidence in the system. CyberCode [23] is a visual tagging system 

based on a 2D-barcode technology and provides several features not provided by other 

tagging systems. CyberCode tags can be recognized by the low-cost CMOS or CCD 

cameras found in more and more mobile devices, and it can also be used to determine 

the 3D position of the tagged object as well as its ID number. Chuantao et al. [24] 

present a contextual mobile learning system framework, enabling to learn mastering 

domestic and professional equipments using mobile devices like Tablet PC, PDA or 

Smartphone and exploiting RFID technology to achieve contextualization. Gausemeier 

et al. [25] describe an image based object recognition and tracking method for mobile 

AR-devices and the correlative process to generate the required data. The object 

recognition and tracking base on the 3D-geometries of the related objects.  

The purpose of this application is to showcase how the AR architecture described in 

2.1.3. can be successfully re-engineered for applications targeted to everyday objects 

and environments and requiring inexpensive hardware like a compact netbook or a 

tablet PC. In particular, the proposed system is focused on providing accurate 

augmentation of AV components by means of visual aids to ease the most complex 

procedure involved with the advanced use of this diffused hi-tech equipment, which 

hardly could be performed without referring to the user manual. The system supports 

either the typical “additive” augmentation paradigm (co-registered graphics like labels 

or 3D objects) or the so called “mediated” or “diminishing” approach to AR, consisting 

in the “What You See Is What You Need” (WYSIWYN) approach to selective removal 
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of part of the physical object to focusing user attention only on the visual features 

required in a particular operative context. One interesting aspect of this system is that a 

portion of the user/machine interface is the same augmented device. Its buttons, labels, 

handles and so on are the graphical interface widgets of which the user disposes to 

interact with the system. During any operation, the user can choose if sending the 

suggested commands by trackpad/touchscreen interface or directly on the device. In the 

former case the AR engine sends the command to the device through a serial 

communication interface acting as a middleware. In the latter case the system acts only 

as a virtual assistant.  

 

 
Figure 9. The main system components. 

 

AR Engine 

 
On board Camera 

Calibration 
GUI 

ARToolkit 
Marker 

recognition 
 Augumented 

objects repository 

Tracking 
coord. 

video stream 

User  Video stream 

Augmented 
contents 

Final rendering 

+ 

Device 

RS232 

Trackpad/Touchpad 
interface 

sends a command 

Rendering to 
LCD display 

sees 



 31 

 

 
Figure 10.  Six markers surrounding an AV component. Each marker is a 4 cm. side square. 

 

  

The overall schematic view of the system is shown below in Figure 9. The AR engine is 

the main system component. It is built on Quest3D, a commercial authoring 

environment for real-time 3D applications featuring an “edit-while-executing” 

programming paradigm [26]. Each scene augmentation is applied to specific hotspots 

defined over the AV component by means of previous measurements and a XML 

database is used to record the precise hotspots locations. When the user points the 

camera toward the component, the AR engine load the corresponding XML file. The 

syntax of a device file consists essentially of a list of <hotspot> tags. An <id> tag 

allows the engine to recognize any hotspot from each other while a <shape> tag is 

exploited as approximation of the hotspot real shape to highlight it when required. A 

<details> tag provide short information about the function of the hotspot. Any hotspot 

tag has three child tags <position>, <rotation> and <size> which represent the relative 

hotspot’s 3D transformation with respect to the multi-marker’s reference system. The 
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AR engine, according to the aforementioned descriptors, builds up the virtual scene by 

means of a DOM XML parser. To find the required data in the application database a 

XML-based XPath query language is used. Combining the information from tracker and 

from XML database, the AR engine is therefore able to locate in every moment the user 

in the real world and to extract all the required augmenting contents from the repository. 

This repository consists of either 2D or 3D objects (eventually animated)  such as text 

labels, graphics and parametric “occluding objects” used to selectively hide features of 

the real component. An example of a typical tag structure for a hotspot is listed below: 

 

<hotspot> 

<id>OnOffButt</id> 

<label>On/off button</label> 

<shape>circle</shape> 

<details>This is a on/off button</details> 

<position x="0.0" y="0.0" z="0"></position> 

<rotation x="0" y="0" z="0"></rotation> 

<size x="0.01" y="0.01" z="0.01"></size> 

</hotspot> 

 

For any augmented hotspot the engine allows the user to edit his/her preferred 

attributes. When the user selects an interested hotspot he/her can associate to the 

selection the required visual aid. These attributes are stored in an external XML file 

associated to the AV component. The engine also provides an editor which allows the 

user to edit his/her manual information. The editor generates for each component an 

XML compliant file which can be used for augmentation. This feature can be handy if 

the user wants a custom documentation written according to his/her needs. Besides the 

augmentation, the engine performs another crucial task that is the support to complex 

procedure like, for instance, 7.1 surround installation and setup. Each procedure can be 

represented as a finite deterministic automaton (DFA). According to this approach, a 

particular state represents a procedure step and its links define the execution order. DFA 

result very suited to this context providing all the elements (states, links) required to 
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represent both simple and complex procedure in a easy, verifiable and legible way. It 

results convenient to convert the DFA representation of a particular procedure in a 

XML file, exploiting the above mentioned DOM parser and query language. The user 

can switch to the next or previous step using the trackpad/touchpad. At each step the 

system might suggests the user how to operate the device, explaining the purpose of the 

operation and the involved hotspot. An example of a simple step is described below. 

 

<step> 

<label rgbText="default"  

rgbBackground="default">Turn off the device</label> 

<hotspot id="OnOffButt"></hotspot>  

</step> 

 

The “subtractive” augmentation capability is able to hiding part of the AV component to 

let the user focus on the elements of the physical interface required to perform a 

particular operation, thus avoiding the confusion due to information overload. This 

represents a mediated or diminishing approach to augmentation, and rather than adding 

visual contents, all hotspots are hidden except those involved in the current operation. It 

is strictly based on the techniques exposed in section 2.2.1. and adapted to be performed 

on a less powerful mobile computing platform (a notebook or even a tablet). Advanced 

AV components may be equipped with a RS232 bidirectional serial communication 

interface. For those components, the system provides access to any functionality also by 

means of the netbook/tablet touchpad instead of operating directly on the device. To the 

aim of testing the proposed system in facilitating the usage of a commercial AV 

component, it in a real applicative scenario: the augmentation of a Denon AVR-3805 

surround receiver during two not trivial procedures (level equalization and input-output 

wiring) which typically force the user to refer to a voluminous manual. Generally any 

receiver/amplifier is characterized on the front panel by a variable number of buttons, 

switches, knobs etc. controlling for example,  source selection, sound effects and so on.  
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Figure 11  Top: an additive augmentation of front panel highlighting a knob and a button. 
Bottom: subtractive visualization strategy showing the actual rear panel (left) compared to the 
mediated version (right) with only the connectors required. 
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On the other side the rear panel is much less used but is crowded by a big number of I/O 

connectors whose correct usage depends on the comprehension of the particular wiring 

scheme chosen. The test-bed used for experiments is based on a Sony Vaio netbook 

featuring Intel dual core processor and Nvidia Quadro FX-500 series graphics board. 

The scene capturing is performed by a Logithech Camera C905 providing a video 

resolution of 800x600 pixel at 30 fps. This hardware setup has been capable to render 

an augmented scene featuring up to thousands of polygons providing a sustained frame 

rate always above 30 fps (limited to the camera’s fps). During the AR assisted 

operations the user sees through the netbook’s LCD display the virtual contents 

rendered over the captured scene. This design allows the user to focus on the relevant 

items to perform the required tasks. Clicking with mouse pointer on a specific device’s 

hotspot, the system shows some short technical data.By double-clicking an additional 

window is shown, which contains the detailed information for the selected hotspot. Both 

additive and subtractive approaches to augmentation have been tested (see Figure 11) 

according to the considerations drawn above, so the additive approach has been tested 

on the frontal panel of the amplifier whereas the subtractive has been tested on the rear 

panel. 
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2.3. Handling Occlusions While Interacting In Mixed Reality Environments 

 

As the number of augmented and mixed reality applications available on a variety of 

platforms increases, so does the level of interaction required, possibly leading to the 

emergence of challenging visualization issues. To this regard, it is worth to note that the 

illusion of the co-existence of virtual objects in the physical world (the essence of MR 

paradigm) is typically made possible by so called video-based1 see-through approach in 

which the rendering of virtual contents is superimposed onto the surrounding 

environment captured in real time by means of a proper transformation. This trick 

works well until the order of the planes to be composited is coherent to their distance 

from the observer (see Fig. 12_Left). But, whenever an object of the real world is 

expected to occlude the virtual contents, the illusion vanishes since the order of 

rendered planes does not lead to a correct visualization (see Fig. 12_Right). As a result, 

what should be seen behind a real object could be visualized over it instead,  

    
Figure 12.  Left: A virtual model of a keyboard rendered onto a captured frame of real 
environment to augment it. The hand positioned along the right side of the keyboard does not 
ruins the Mixed Reality illusion. Right: The same MR scene, but as the hand is positioned over 
the keyboard, it is occluded by the virtual content. 

 
generating a “cognitive dissonance” due to the loss of spatial coherence along the axis 

normal to camera plane that may compromise scene comprehension and, ultimately, the 

interaction capabilities during the MR experience. Hand occlusion in augmented reality 

is a challenging topic and scientific literature presents diverse approaches to it. 

                                                
1  Optical see-through is the other well known option for MR/AR, but besides being less diffused it is 
inherently less suited to support processing of environment visualization. 
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In particular, displaying occluded objects in a manner that a user intuitively understands 

is not always trivial. Furmanski et al. [27] in 2002 developed new concepts for 

developing effective visualizations of occluded information in MR/AR applications. 

They designed some practical approaches and guidelines aimed at evaluating user’s 

perception and comprehension of the augmented scene and distances. Many researchers 

aimed at solving the incorrect occlusion problem by analyzing various tracking methods 

or by integrating vision-based methods with other sensors [28]. Lee and Park proposed 

to address this issue in AR environment introducing the usage of an Augmented Foam 

[29]. A blue foam mock-up is overlaid with a 3D virtual object, which is rendered with 

the same CAD model used for mock-up production. By hand occlusion correction, 

inferred by color-based detection of the foam, virtual products and user’s hand are 

seamlessly synthesized. The advantage of the augmented foam is that it is cheap and 

easy to cut allowing to realize simple and complex shapes. On the other hand, it 

imposes that for all augmented objects has to be present in the scene the physical 

counterpart made of foam. A color-based similar approach is discussed by Walairacht et 

al [30]. They exploited the chroma-key technique to extract only the image of the hands 

from a blue-screen background merging the image of the real hands and the virtual 

objects with correct occlusion. Although chroma-key is particularly fast and efficient, it 

requires the use of a colored background that represents a not feasible solution in many 

environments. In addition, it does not provide any information about real objects in the 

scene and their spatial distances. Buchmann et al [31] also handled hand occlusions in 

augmented reality exploiting marker-based methods to determine the approximate 

position/orientation of user’s hands and, indirectly, their contour to fix the visualization 

order. The disadvantages are the inconvenience to wear specific gloves featuring 

fiducials on each finger and the rough level of accuracy in the segmentation of the hand 

from the background. In the field of medicine, Fischer et al [32] exploited a Phantom 

tracker and anatomic volumetric models in order to support surgical interventions 

resolving occlusions of surgery tools. They presented a simple and fast preprocessing 

pipeline for medical volume datasets which extracts the visual hull volume. The 

resulting is used for real-time static occlusion handling in their specific AR system, 

which is based on off-the-shelf medical equipment. Depth/range cameras (e.g. the 
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Kinect by Microsoft) have also been proposed [33][34][35] to provide a real-time 

updated depth-image of the surrounding world that can be conveniently used to evaluate 

whether a pixel from the captured environment is closer to the observer than the 

corresponding rendered pixel of virtual content, or not.  

This technique can lead to a more accurate result and also enables evaluating 

distances of real objects in the scene and their inter-occlusions with virtual objects. 

However, it requires additional hardware (usually an infrared pattern emitter and a 

dedicated infrared camera) and it should match the field-of-view of the see-through 

cameras, to works effectively. The generation of a disparity map by using stereo 

matching techniques [36][37] represent the most suited choice to correctly segment 

user’s hands in AR environments. Results produced by this technique are comparable to 

the ones form depth cameras without requiring dedicated hardware, which is a central 

aspect of this study.  

The following sections describe the proposed method to addressing effectively hand 

occlusion in many MR/AR interaction contexts without any additional hardware, apart 

from video see-through goggles enabling stereo-vision. In brief, the rendered virtual 

objects are composited onto the incoming video see-through streams according to a 

disparity map encoding real-to-virtual visualization order at a pixel level as a gray-scale 

image by means of stereo matching. The disparity map is generated by a belief 

propagation global algorithm [38] that exploits GPU’s highly parallel architecture for 

speeding up required calculations and for enabling real-time applications. The 

performance of the algorithm is optimized by segmenting the input image between hand 

and not-hand regions via a skin-tone filtering in the HSV color space (less affected from 

lighting conditions than RGB space). The purpose of this segmentation is twofold. From 

the one hand it is possible to reduce the region of interest (that directly affects the 

computational cost of the disparity map) to a cropped region of the original frame, on 

the other hand the contour of the segmented hand region is used as a reference to 

improve the edge sharpness of the disparity map. Some ad-hoc improvements aimed at 

further reducing the computational cost of the original algorithm are discussed in the 

following section. 
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2.3.1. The approach at a glance 

The proposed processing pipeline is shown in Fig. 13 The diagram highlights the main 

elements in the image-processing pipeline. The user wears a HMD with two embedded 

cameras enabling stereo vision. Two separated video streams, from left and right camera 

respectively, capture the real scene from a different perspective point. On each stream, a 

simple and fast skin detection technique detects the user’s hands in the scene. The 

binary image is used to apply a vertical crop to the original frame that preserves the 

region, including the foreground and the background, where the hands appear. On that 

crop two disparity maps, the one for the real scene captured and the other for the 

rendered content, are generated by exploiting a stereo-matching with belief propagation 

technique. The disparity maps are used to estimate the position of the hands in the field 

of view with regards to the virtual scene.  

 
 

Fig. 13.  The overall architecture of the approach proposed. 
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The occlusion correction is achieved by comparing them and combining the result with 

a skin-based segmentation of the hand. An edge blurring pass is applied to the 

segmentation in order to smooth the edges of the hand region. The combination of 

disparity map with blurred color-based segmentation of hands produces a cleaner 

approximation of the occlusions that can be applied as top-level layer of the augmented 

streams sent to the HMD displays. 

 

2.3.2. Method description 

The first step consists in capturing the scene observed by the user through the webcams 

mounted on the HMD. Since the HMD is intended for a stereoscopic vision, the streams 

from left and right camera capture the scene from a slight different point of view. Each 

of the two streams is therefore separately augmented by rendered virtual contents 

throughout the pipeline. Even though this implies a greater computational cost of the 

augmenting algorithm, it preserves the binocular vision of human eyes leading to a 

more reliable augmentation of the scene and the occlusion correction. Fig.  shows one 

frame captured by one of the cameras mounted on the HMD while the user wears it. 

 

 
Fig. 14.  The scene captured by one of the cameras mounted on the HMD. 
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To keep computational cost of the following steps slow, the frame is properly cropped 

so that the algorithm can focus the execution only on the relevant portion of the entire 

frame. The cropping is performed by a simple and fast skin color-based technique. It 

converts the video frame from the RGB to the HSV color space in order to have a 

simply way of filtering the color of naked hands by proper ranges of hue and saturation, 

thus leading to a gray-scale mask. Fast closure operators enable removing little 

irrelevant blobs in this mask and filling holes (if any) in main closed regions (the hands 

in our context). Every pixel inside the region boundaries (the hands’ contour) is 

therefore set to full white (see Fig 15a). The intersection of this first mask with the 

rendered content’s alpha channel (see Fig 15b) results in a new mask which limits the 

region on which the disparity maps of rendered content has to be computed (see Fig 

15c). To this aim, stereo matching with belief propagation is therefore performed on 

these cropped regions. By processing only a limited region of the whole scene, it has 

been possible reducing the computational costs of this step, which is the most time 

consuming in the processing pipeline. Firstly the matching costs for each pixel at each 

disparity level in a certain range (disparity range) are calculated. The matching costs 

determine the probability of a correct match. Afterwards, the matching costs for all 

disparity levels can be aggregated within a cross-shape neighborhood window. 

Basically the loopy belief propagation algorithm first gathers information from a pixel’s 

neighbors and incorporate the information to update the smoothness term between the 

current pixel and its neighboring pixels, and to iteratively optimize the smoothness term 

thus resulting in global energy minimization.  

Each node is assigned to a disparity level and holds its matching costs. The belief 

(probability) that this disparity is the optimum arises from the matching costs and the 

belief values from the neighboring pixels. For each iteration, each node sends its belief 

value to all four connected nodes. The belief value is the sum of the matching costs and 

the received belief values. The new belief value is the sum of the actual and the received 

value and is saved for each direction separately. This is done for each disparity level. 

Finally, the best match is the one with the lowest belief values defined by a sum over all 

four directions resulting in the final hand(s) disparity map.  
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The main factor that affects every stereo-matching technique is the number of 

disparity ranges considered during the matching cost function. The more values are 

considered the more the disparity map is reliable but, the more the cost increases. 

Considering the main goal of performing a fast hands occlusion correction, the number 

of disparity ranges has been reduced. The rough disparity maps (obtained by composing 

it with the corresponding crop of the binary image from skin detection acting as alpha 

layer) has been refined by means of one pass of edge blur allows to smooth the edges of 

the color-based segmentation. The result is a smoother segmentation of user’s hands 

(see Fig. 5d) that can be used for final compositing (Fig. 15e). For what concerns the 

rendered content, it would be simpler and faster to exploit the accurate depth info 

contained in the Z-buffer, but matching it coherently to the depth levels encoded in the 

hand(s) disparity map would be a not trivial task. 

 
Fig. 15.  Skin detection with closure functions refinement (a). Alpha channel of augmented 
objects rendered onto the video stream (b). Disparity map of user’s hand segmented from the 
scene by the skin color-based detection (d). Disparity map of the crop of the region where 
augmented virtual contents overlap the hand (e). 
 

(a) (b) (c) 

(d) (e) 



 43 

 

 
Fig. 16. Compositing and final result. The original real background shown in Fig.  is 
composited according to the disparity map of the scene enabling a correct visualization and a 
meaningful interaction (note that hand’s casted shadow is not currently handled by the 
proposed method). 
 

The final composited frame is obtained by comparing pixel-wise the gray level of the 

two disparity maps. The pixel whose gray level is lower than its homologous is 

considered not-visible from the observer’s point of view and is discarded. Fig shows an 

example of the final result in which the hand of a user interacting in a MR environment 

is properly composited onto the augmented content. 

 

2.3.3. Experimental results 

Preliminary experimental trial of the proposed technique in a MR environment has been 

performed on a test-bed featuring an i7 Intel quad_core processor and an Nvidia 

GTX760 graphic board equipped with 1152 cores and 2 GB of VRAM. The user worn a 

Trivisio HMD that features stereo capturing by two embedded webcams (752x480 

resolution, 6oFPS) and stereo vision by two 800x600 LCD displays (see Fig. 17).  
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Even though the method described in this thesis3.5 exploits time consuming 

algorithms, it meets the requirements of real-time application because it works only on a 

fraction of the whole captured scene. In addition, the improvement provided by utilizing 

graphics hardware acceleration makes possible to combine the time demands of stereo 

matching with typical marker-based tracking of the user on a stereo video stream. Table 

2. summarizes the performance measured during the experimental session. In particular, 

the table shows the frame per second achieved by the proposed solution when the 

disparity maps are generated for 16 and 32 ranges of disparity values. During the 

experimental trial the user is free to move his/her hands thus implying a size of the crop 

of the scene that varies over time. During normal condition of interaction, the number of 

pixels of user’s hand covers about 1/8 to 1/6 of the whole scene for over 60% of the 

experimental session. When the distance between user’s hand and the point of view 

results shorter, e.g., the user brings his/her hands closer to the cameras, the stereo 

matching works on a wide crop of the scene leading to a drop in performances to the 

limit of a smooth real-time rendering. Future improvement of this method could take 

into account such issue providing an adaptive amount of disparity levels to consider 

during the matching cost function. 

 
Fig. 17. A user wearing the Trivisio HMD during the experimental trial. 
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Even though these enhancements are inherently effective only on naked hand region, 

even not-naked arms can be reasonably handled by the disparity info alone. According 

to first users evaluations, the combination of augmentation and the detection of 

occlusions worked well, providing an intuitive interaction paradigm suited to a wide 

range of application contexts. Binocular scene capture and stereo rendering of virtual 

contents improve depth perception of real environment while stereo matching allows to 

estimate the distance from the observer and real/virtual objects in the scene. 

 

Table 2. Frame per second recorded during the experimental trial at different size of 

the cropping region of the scene. 

Crop size 

(fraction of the whole scene, which 

consists of 360960 pixels (752x480)) 

# disparity levels 

16 32 

FPS FPS 

< 1/8 (~ 45120 pixels) 56 48 

< 1/6 (~ 60160 pixels) 42 33 

< 1/4 (~ 90240 pixels) 31 22 

< 1/2 (~ 180480pixels) 25 12 

 

Issues related to the hardware used (the reduced HMD’s resolution/field-of-view, rough 

hands segmentation under rapid user’s movements) have to be more carefully addressed 

to achieve a robust system behavior. In particular, the generation of the disparity maps 

for the hands when they occupy the most of the framed scene. As a further development 

of this technique, besides improving the quality of the disparity map, it would be 

interesting trying to address the incorrect visualization of the shadows casted by the 

hands when they should be projected onto a virtual object.  
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2.4. Visual Interaction in Mixed Reality by Means of Gestures 

 

The typical AR paradigm implies that the user is able to perceptually merge the real 

environment around him/her with 2D/3D, static/ animated virtual contents he/she can 

interact with [39]. Such interaction can be hardly achieved through conventional mouse 

or keyboard-based devices even because, usually, AR is not experienced while seated at 

the desktop. To this regard, gesture based interfaces may represent a more suited and 

natural approach to interaction within mixed reality contexts. Though the underlying 

software and hardware technologies have been around since the early ‘90s [40], they 

were initially too expensive and often characterized by sub-optimal performance. More 

recently, most of the past issues has been addressed, making these devices much more 

affordable and reliable. The first uses of virtual/augmented reality in medicine, 

eventually empowered by gestural interfaces, go back to the mid-late 90s. Among the 

most significant examples, virtual surgical simulators, remote/tele surgery or even 

multimodal diagnostic imaging have to be cited. However,  despite its potential 

advantages, the use of such kind of interfaces has been rather limited due to practical 

issues [41]. At present, one of the main research topics of gesture based interaction in 

medical imaging is represented by sterile contact-less approaches to operating-room 

practice. Conventional “material” interfaces like mouse and keyboards are difficult to 

sterilize. Possible workarounds are the presence of an assistant to operate the computer, 

or the use of a voice-recognition based control system. Both such possibilities might not 

be practical for the task at hand, therefore gestural interfaces can represent an appealing 

alternative and a feasible choice [42] for such kind of applications. 

The approaches to gesture recognition can be roughly classified into three main 

groups. Some systems exploit  computer vision procedures, which typically require an 

inexpensive hardware (one or more cameras) but that have to deal with possible 

occlusions problems. It is worth noticing that such problems are among the “hard” ones 

addressed by pattern recognition and computer vision research. A second group of 

systems aims at solving the problem at sensor level, by means of instrumented gloves 

and non-image based tracking systems. Of course, this second group is suitable only 

when sterile operation is not a constraint. A last group includes systems where an 
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ambient equipped with sensors “tracks” the users. Most applications included in this 

group only require a gross identification of user’s position and gestures. For a survey of 

technologies and approaches, see [43]. As a consequence of the ever increasing 

diffusion of virtual entertainment applications, the hardware dedicated to visual 

interaction (graphics boards, force feedback interfaces, instrumented gloves, gyroscopic 

sensors, accelerometers, tracking systems, head mounted displays, and so on) has 

become much more affordable than in the past. This fosters the research on multimodal 

interfaces [44] as the obvious  candidate to enhance and integrate the functionalities and  

the interaction paradigm provided by the traditional WIMP (Windows, Icons, Menus, 

Pointers) approach [45]. Multimodal interfaces feature multiple sensors and i/o channels 

which can be combined in different schemes, whenever the WIMP metaphor is poorly 

applicable or can be enhanced. This condition is likely to happen when the (virtual) 

objects and the tasks to be performed on them are inherently 3D, thus requiring a (not 

always intuitive) combination of 2D actions as a workaround. In this case a gestural 

interaction within a more realistic 3D setting, performed by means of hands/fingers 

tracking, may represent a much more natural and effective approach to the task [46]. In 

the last years, multimodal interfaces have been proposed in many application domains 

[47]. Among them, it is worth to mention advanced VR based simulators, remotely 

controlled systems and virtual training environments, often combining different 

channels such as voice and gestures [48]. It is worth underlining that gesture based 

interfaces are well known in literature, since their usage has been often proposed even 

before the success of WIMP (see for example the gestural part of the pioneering system 

“Put That There” [49]). They have been especially investigated for settings when a 

"natural" interaction paradigm is an important requirement or in case conventional input 

devices are not a feasible choice. Medical simulation is one of the fields in which 

gestural interaction paradigm is best exploited. A visual approach to gesture recognition 

is generally preferred for this kind of applications because it does not require the user to 

interact with, or wear, any specific device, as the recognition is generally based on 

video acquisition and processing of gestures. In the medical field this has the additional 

advantage of avoiding introducing further objects into the medical environment, when 

this may cause troubles (e.g. for maintaining a sterile setting). Graetzel et al. [50] follow 
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this line of research, capturing color and depth information by means of a stereoscopic 

camera to the aim of robust, high-speed hand detection and tracking within a limited 

workspace in which hand gestures are interpreted as mouse commands (pointer 

movements and button presses). Another example of sterile operating room gesture 

based interface is represented by the Gestix system by Wachs et al. [51] which exploits 

simple user’s gestures  to perform image navigation and manipulation by associating 

them to commands based on their relative positions on the screen. Color-motion cues 

are exploited to track the user’s hand while a finite state machine enables switching 

among available functions. A different approach on the same topics is proposed in [52] 

by means of instrumented gloves and magnetic motion tracking technologies. Tani et al. 

[53] discuss the use of a glove-driven interface in radiological workstations, and present 

a prototype that aims at integrating common functions, such as virtual manipulation and 

navigation control, with a basic gesture interface. The user can control the mouse by 

simply pointing to the screen and moving the hand, or can perform gestures which are 

conventionally associated with specific commands in the given context. The interaction 

with 3D medical data (synthetic polygonal models of human organs, or of anatomical 

districts, generated via different techniques, as well as voxel based representations of 

real diagnostic imaging produced by radiological workstations) represents one of the 

more challenging application of gestural interfaces, and understanding the human 

factors influencing such kind of interaction remains one of the challenging problems in 

computer graphics. In fact, most computer graphics application are designed to operate 

via the usual “point and click” paradigm, since it is claimed to be intuitive [54]. 

However, when complex 3D data manipulation is required, this is not necessarily true. 

Common functions like image rotation with respect to a given point, which are 

performed intuitively in a bidimensional space, become more complex in three 

dimensions, requiring a combination of multiple 2D transforms or a more powerful 

interaction paradigm. As a result, approaches focusing on recognition accuracy, which 

try to map mouse and keyboard operation onto gesture patterns in a 3D space, might not 

exploit the full potential of this interaction technique. In this section, a framework based 

on a floating interface for gesture-based Interaction is presented. It puts together a 

context adaptive head-up interface, which is  projected in the central region of the user’s 
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field of view, and gesture based interaction, to enable easy, robust yet powerful 

manipulation of virtual contents visualized onto the real environment surrounding the 

user. The interaction paradigm combines one-hand, two-hands and time-based gestures 

to select tools/functions among those available as well as to operate them. Conventional 

keyboard-based functions like typing are available too, and can be performed without a 

physical interface by means of a floating (virtual) keyboard layout. The aim is to set-up 

a sort of mixed interaction paradigm by which the user can switch from direct (virtual) 

manipulation operations to more conventional system interaction operations, without 

changing his/her gesturing space. Though the proposed implementation of the approach 

to gesture-based interaction is tightly related to a particular choice of tracking/gesture 

recognition technology, it is worth remarking that the focus of this research is on the 

interaction paradigm rather than on the specific gear adopted. A prototype application 

addressing the practice and the training to medical imaging is presented, including a 

report on usability evaluation. 

 

2.4.1. Gesture recognition by means of multiple sensors 

The proposed framework exploits gesture recognition and tracking within a mixed 

reality environment plus, in order to provide advanced patterns for human-computer 

interaction. A more natural and familiar way of managing objects and situations, e.g. 

through (virtual) direct manipulation, can improve global user performance and increase 

applications effectiveness. Of course, a careful design is required to obtain this goal. 

Despite the appropriateness of this kind of interaction, in some situations the need arises 

to also perform classical keyboard-and-mouse supported operations, such as selecting 

an object from a menu of models or entering parameters for a complex operation. On 

one hand, switching to a “real” device would break off the interaction flow in a 

disturbing way. In other words, the user might need to move or change position to reach 

a different place or equipment, so interrupting the task operation flow. On the other 

hand, the way the user is accustomed to perform such operations has to be considered. 

Consistency with familiar interaction patterns is a very important guideline, aiming at 

reducing the time and mental efforts needed to learn a new application [55]. For this 

reason, a virtual keyboard is projected onto the actual environment, so that the user can 
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comfortably switch from manipulation operations to system interaction operations 

without physically shifting his/her locus of attention/operation. The familiar point-and-

click pattern is also re-proposed through fingers movements, to extend the range of 

available functions while keeping the number of basic gestures to a minimum. A 

schematic view of the whole architecture is shown in Fig. 18. Briefly, the three main 

system’s components are responsible for Gesture Recognition, Interaction Control and 

Mixed Reality Environment respectively. User’s hands capturing and tracking, as well 

as head tracking, represent the input channels while a stereoscopic HMD (Head 

Mounted Display) is the main output device. Each one of these components is detailed 

in the following subsections. Three main input channels are processed and synchronized 

by the proposed system: right hand, left hand and head. 

 

 
Figure 18. A schematic view of the whole architecture. 
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The first two channels are exploited to capture the position and orientation in 3D space 

of each finger for both hands, while the third channel is crucial to the purpose of 

enabling a mixed reality environment through virtual-to-real co-registration. In practice 

the system must adapt the position of virtual objects to the user’s point of view, which 

can be inferred from the position of the head. In training systems, which are the main 

target of this proposal, sterile operation is not a constraint (i.e. it does not address a real 

operating room scenario). The main focus, indeed, is on the pattern of interaction, 

regardless of the specific involved technology. Therefore, it is reasonable to exploit 

wireless instrumented gloves and ultrasonic tracking devices to capture user data. Image 

based techniques are inherently contact-less, but potentially prone to inter-hands and 

inter-fingers occlusions, and solving the related problems was out of the scope of this 

work. On the contrary, instrumented gloves are technically more complex and 

expensive (hardware wise) but each single finger can be equipped with individual 

sensors to measure flexion and abduction, which are unaffected by those of any other 

finger. In this case a couple of wireless 5DT Data-glove 14 ultra have been used (Fig. 

19), featuring fourteen 12 bit piezo-resistive sensors for the measurement of finger 

flexion and abduction. Besides outputting fourteen raw values, the gloves provide a 

binary (open/closed finger) value, resulting from the comparison of normalized joint 

flexion values to a threshold. This leads to 24 different combinations or gestures of the 

four tracked fingers (thumb is not considered). While this simplified data lacks the full 

precision sensors are capable of, it turns out handy as partially flexed fingers do not 

compromise gesture recognition. The four hand postures used in this study are shown in 

Fig. 20a: fist, pointing, index finger, bended index finger and flat hand. They have been 

chosen as they are among the simplest to perform for most users, and among the most 

used in natural interaction [56]. Motion tracking hardware IS-900/VET from Intersense 

co. is used to capture left/right wrists and head position and orientation, for a total of six 

DOFs (Degrees Of Freedom) for each channel. Since instrumented gloves do not 

provide any spatial information, the system calculates the exact position in 3D space of 

a particular fingertip by applying forward kinematics to hand-back position/rotation and 

finger flexion/abduction. 
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Figure 19. Wireless instrumented gloves (Data Glove 14 ultra from 5DT) coupled with 
wrists/head wireless motion tracking (IS-900/VET Inertial Tracking from Intersense ) worn 
during testing. 
 

The use of such data is presented in the following section, when interaction techniques 

are discussed. The IS-900/VET is based on ultrasonic tracking to sample motion data. A 

clear advantage of this technology over video-based solutions is represented by the wide 

and scalable capture volume which frees the user from the need to be positioned in a 

precise place within the camera field of view. Magnetic based  tracking systems are also 

scalable, but they may be affected by electrical and magnetic fields, eventually present 

in a radiology facility. The precision of the measurement is in the range of a few 

millimeters for spatial position and within 0,5 degrees for angles, while sampling rate 

features up to 180 measures per second, a value which is more than adequate for gesture 

based applications. Raw data are preprocessed to filter capture noise by means of a high 

frequency cut and temporal averaging. Three data streams (left and right hand/fingers 

plus head) result from this process; the first two ones are exploited for gesture based 

interaction, while the third one is required for real-to-virtual co-registration as detailed 

in section 3.3. The main purpose of the gesture recognition module is to detect specific 

gestures by means of corresponding flexion-abduction patterns and therefore to trigger 
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the associated interaction activities. Gesture detection  exploits timed automata [57], to 

recognize not only one-hand and two-hands gestures but also timed patterns, thus 

allowing the user to access a wider range of functions with a small set of easy-to-

perform gestures. Moreover, taking time into account enhances the quality of user-

system interaction when a feedback is required in a reasonable time, or when the time 

elapsed between elementary actions can influence the interpretation of their 

composition. The aim here is to augment the basic one-hand gestures through timed 

patterns, or via a combination of left and right hands for a simple yet more powerful 

interaction. The use of timed automata offers a further key benefit as it enables the 

system designer to formally verify the interaction model by means of well-established 

model checking procedures [58]. In the proposed architecture, just eight gestures are 

defined and recognized, as shown in Fig. 3. Four of them are basic (one-hand) gestures 

(Fig. 20a), two are defined through a two hand combination of the aforementioned basic 

gestures (Fig. 20b), while the last two (Fig. 20c) are obtained by a timed sequence of 

basic gestures (for instance, fist/flat-hand/fist, or double pointing). In any of the cases 

considered, recognized gestures are represented by a vector including gesture index, 

first hand x-y-z spatial coordinates, first hand yaw-pitch-roll angles, second hand x-y-z 

spatial coordinates, second hand yaw-pitch-roll angles. 

 

 
Figure 20. The eight gestures required to operate the system. They include one-hand (a), two-
hands (b) and (c) time-based gestures. 
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2.4.2. Context-adaptive interaction approach 

The Interaction Control module is fed by the output (i.e. the recognized gesture vector) 

of the previous gesture recognition stage, and enables each available functionality by 

translating gestures into actions through a timed automata architecture. The approach 

used is context-based, therefore gestures are evaluated depending on the current 

interaction status, thus allowing the same gesture to control different functions in 

different operational contexts (rotation, measurements, landmark assignment, etc.). 

Selection of operational modes and of related functions is accomplished by means of a 

virtual interface, This interface is displayed as a frame surrounding the application-

dependent 3D content (see Fig. 6), eventually including text information concerning the 

ongoing operations (e.g.: numerical values for coordinates and angles, distances, etc.). 

From the user’s point of view, the interface layout is perceived as it was floating in front 

of him/her in a close-by position, due to the stereoscopic rendering. Interface 

positioning along the depth of the visual field, is adjustable by means of a calibration 

procedure. According to this procedure, the user is requested to touch a sequence of 

small targets, which are  positioned at various depths with the index fingertip, thus 

allowing an adaptation of the parameters that regulate the stereo effect. Interface design 

is mainly aimed at reducing the number of gestures required to operate it, therefore 

point-and-click interaction paradigm is replaced by its gestural adaptation. According to 

this philosophy, selection is triggered hitting an active area by index fingertip (see Fig. 

3, gesture #2), an action or a confirmation is triggered by double hitting (see Fig. 3, 

gesture #8), a cancel/escape command is triggered by a fist/flat-hand/fist sequence (see 

Fig. 3, gesture #7). Whatever the gesture recognized, visual and acoustic feedbacks are 

provided to confirm the “pressure” of a key or to acknowledge a particular command, 

thus reducing wrong operations. If required, interface layout can be hidden at any time 

via a gesture toggle. The interaction design only requires one-hand gestures to operate 

the interface, but it provides support for two hands to achieve faster and more effective 

operations for more experienced users. For instance, one such user might type 

characters in a text field by both hands resulting much faster than a mouse-like 

character-by-character selection, and this would not require a physical keyboard. 3D 
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actions implemented so far, allow the user to rotate/move a virtual object, to place 

landmarks over its surface and to take distance measurements between landmarks. 

Object pan can be operated with any of the two hands in a straightforward fashion, 

while the user fully exploits and appreciates the advantage of two-hand gestures when 

rotating objects in 3D space . These operations are addressed by associating object 

rotation over three axes (though a user may lock one or two of them) with the rotation 

of a vector connecting the two points of contact between index finger and thumb on 

each hand (see gesture #5 in Fig. 3, and Fig.7). Object rotations performed according to 

this approach are much more accurate than the typical one-hand based ones, which are 

often implemented, for instance, in VR applications. Advantages include a greater 

control of rotation (two hands visualize more effectively the overall rotation), a more 

comfortable operation (it does not matter how each wrist rotates during interaction, as 

only the vector connecting the two hands is relevant), and a less jerky interaction, yet 

without losing responsiveness (a weighted average of both hands spatial information 

improves tracking). After rotation has been selected, the user can set the rotation handle 

for each hand (the anchor points used to interact with the model) by gesture #3 in Fig. 3 

by simply moving the fingers along the object’s surface. A valid handle location (i.e. 

one that lies within a valid region) is highlighted by a colored spot. If the gesture #5 

(Fig. 3) is recognized, then the vector connecting the two handles is visualized and the 

interactive rotation is performed until this condition is true. Landmark positioning over 

an object surface may be accomplished according to two different operation patterns. In 

the first case, a rotation of the object is performed as explained before, to expose the 

location of interest, and then a landmark is placed by double hitting (gesture #8 in Fig. 

3). A more intuitive, though less precise, operation pattern requires to perform the 

rotation of the object by a single hand, grasping the object (see gesture #1 in Fig. 3) in a 

position which acts as the pivot point, and double pointing the location on which the 

landmark has to be placed. Whenever a task involves positioning in 3D space, a precise 

calculation of the actual fingertip positions is performed through a combination of 

forward-kinematics applied to a 3D parametric hand model, which is adapted to the real 

user’s hand measures during a calibration session. In this case the raw flexion values are 
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exploited for each finger. This setup procedure is performed only once, and may be 

saved and retrieved during system start up. 

 

2.4.3. Implementing the MR operating environment 

According to the interaction paradigm previously defined, the above mentioned floating 

interface, including the keyboard, as well as the tridimensional contents have to co-exist 

in the visualization projected in the real environment, in the space surrounding the user. 

This task is accomplished by the Mixed Reality Environment module. In the present 

implementation, this module is based on Quest3D real time engine (refer to Fig. 21 for 

samples of the visual programming environment), while dynamic simulation is enabled 

by the open-source library Open Dynamics Engine (OpenDE, a.k.a. ODE) [59].  

As mentioned previously, any mixed/augmented reality environment requires a 

precise co-registration of real and virtual objects. In other words, the objects in the real 

and virtual world must be properly aligned with respect to each other, or the illusion 

that the two worlds coexist will fail. To this aim, the user’s head position and 

orientation (x, y, z, yaw, pitch, roll) are captured by the previously described motion 

tracking system and are exploited to obtain the desired effect. In fact, these data are 

used to transform the virtual content as seen from the user’s point of view, and 

coherently to the reference system of the surrounding environment. As this system is 

designed to provide stereopsis (i.e. the impression of depth perceived when a scene is 

viewed through binocular vision) two rendering cameras (one for each eye) which 

match the exact position/orientation of user’s eyes are feed at runtime, and each vertex 

of each virtual object to be displayed onto the real scene is transformed accordingly. 

The two resulting renderings (left and right) are therefore displayed through an optical 

see-through HMD helmet (a Cybermind Visette SXGA, see Fig. 22). With optical see-

through HMDs, the real world is seen through half-transparent mirrors placed in front of 

the user’ s eyes. 
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Figure 21. A few examples of graph-based programming related to the gesture recognition 
component. (Top) Overall hand control. (Center) Data-glove and wrist tracker handling. 
(Bottom) Metacarpal thumb control. 
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These mirrors also reflect the computer-generated images into the user’s eyes, thereby 

optically combining the real and virtual world views. It is worth underlining that, due to 

the aforementioned nature of the viewing device, the overall (virtual + real) images as 

seen by the viewer during the experiments cannot be recorded. For this reason, Figures 

23 and 24 hereafter have been simulated by overlaying the virtual content outputted by 

one channel of the visualization engine onto images of the working environment. The 

rendering engine has been adapted for optical see-through vision (for instance keeping 

into account the optical parameters of the HMD selected), but it could be adapted to 

video see-through as well. However, according to our experience, an optical see-through 

HMD is preferable over a video see-through solution (featuring comparable visual 

resolution) only if the quality of its optical combiners is high enough to provide a 

reasonably wide field of view. Unfortunately, this feature usually makes this equipment 

very expensive. As the overhead involved by this step is relevant, the suitability of such 

process depends on the real requirements of the application at hand. As a matter of fact, 

in most cases it could not be worth the effort. 

 
Figure 5. A close up view of the Cybermind optical see-through HMD worn to visualize the 
virtual contents onto the real environment. 
 



 59 

2.4.4. An application to medical imaging 

This section presents a novel application of the framework described above to support 

interactive exploration of 3D medical datasets. With regard to the field of diagnostic 

imaging, it is very common to observe experts preferring to work on 2D sections of CT 

or NMR (for instance to place a landmark or to delimitate a region) rather than 

operating directly on a 3D view. The given explanation is that they do not feel confident 

about 3D environment and tools which are often available in commercial diagnostic 

systems, since these are usually considered appealing but not sufficiently reliable. The 

reason for this common belief possibly resides in the way these data are made 

accessible and on how complex is to interact with them through a bi-dimensional 

display and interface. Indeed, 3D visualization of diagnostic images is not inherently 

less accurate, as it is rendered on the basis of the (reliable) 2D sections, therefore the 

problem might rather be on the interface side. Operating on a 3D surface or volume 

requires a more powerful way to specify actions or locations in 3D space. This need is 

not well addressed by a usual 2D interaction paradigm, involving mouse or trackball. 

The system described in the previous section seems suited to address this problem and it 

is part of a wider project which aims at improving the usage of three dimensional data 

in medical imaging practice. Since from an early stage of this study, the main concern 

has been to assess if the proposed approach to 3D manipulation could match the 

requirements for a more accurate (therefore more useful) and intuitive way to deal with 

complex data. At the same time many conventional functions have to be accessible and 

easy to use, preferably in a way similar to the one experienced with common devices 

(mouse and keyboard). This compatibility is achieved by means of the floating interface 

and virtual keyboard which are visualized according to the aforementioned AR setting 

(see Fig. 23). Quoting Kölsch and Turk [60], “a virtual keyboard is a touch-typing 

device that does not have a physical manifestation of the sensing areas. That is, the 

sensing area which acts as a button is not a button per se but instead is programmed to 

act as one”. Moreover, as the user has not to move from his place or change his position 

to type commands to the computer, distractions and breakdowns in the gesture patterns 

are reduced to a minimum.  
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Figure 23. Sample images of the user’s field of view (simulated) during gesture interaction 
within the mixed reality environment. The floating interface layout (which can be hidden  (top) 
or shown  (bottom) via a gesture toggle) is projected onto the central region of the field of view 
to enable the selection of the required functionalities as well as the interaction with virtual 
objects. 
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Due to the way the 3D models are computed (from CT or NMR), the exploration 

provided by the implemented system can also proceed by layers, allowing to explore the 

desired anatomical district at different depths.Such setting is intended to mainly address 

training or learning activities, but, with appropriate adaptations, it can also be exploited 

in operative contexts. The functionalities already implemented include: object browsing, 

two-hand operated object rotation/translation with respect to any axis, object 

transparency setting, landmark positioning and landmark-based measurements. For 

testing purposes, a library of anatomical 3D models has been used, since the 

visualization engine is currently suited to operate on polygonal-based objects rather than 

on voxel-based datasets, usually resulting from the processing of diagnostic images (see 

Fig. 7).  

 
Figure 24. User performing object rotation by means of two virtual handles, corresponding to 
the extremities of the green vector. This image shows the scene from the point of view of a third 
person, and is obviously simulated, due to the optical see-through design of the HMD. The 
brain model is the result of a true medical imaging processed to generate a 3D geometry, and 
further optimized (about 625,000 triangles). The shown color texture is fictional. 
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As an alternative, it could be possible obtaining a polygonal mesh from the iso-surface 

resulting after a segmentation process applied to a voxel-based model. Regardless of the 

technique adopted, the inherent geometrical complexity of human organs often leads to 

a high polygon count for the 3D scene, with a value ranging from many tens of 

thousands to even millions of triangles, depending on the required level of detail. The 

real-time rendering hardware is based on a workstation including two quad-core Xeon 

Processors coupled with a Nvidia Quadro FX-5600 graphics board featuring 128 

parallel cores and 1,5 GB of VRAM.  During experiments, this hardware setup has been 

capable to render in stereo scenes featuring more than 5 million of polygons, at an 

output resolution of 2x1280x1024 pixels, with a frame rate always above 30 fps.  

 

2.4.5. User evaluation study 

The ISO 9241 standard is a milestone in usability definition, and defines it as ‘‘the 

extent to which a product can be used by specified users to achieve specified goals with 

effectiveness, efficiency and satisfaction in a specified context of use’’ [61]. Usability 

plays a significant role for the success of any interaction paradigm as well as for any 

application. Various usability evaluation techniques exist. Choosing among them is a 

trade-off between cost and effectiveness. A gross distinction is among techniques for 

user testing, and expert evaluation. The former requires to gather a significant sample of 

target users, and to derive useful information from their experience through a number of 

methods, as for example observing them during interaction, or asking them to speak 

aloud during operations to record their comments, or asking them to fill a questionnaire. 

Users are “expensive”, and especially for some very specialized applications they are 

difficult to collect. Moreover, a quite significant amount of effort is required to set up 

such experiments, and appropriate usability laboratories are also needed. On the 

contrary, expert evaluation is based on the experience of few usability experts, who test 

the application and analyze it according to well-established guide-lines. Some such 

methods, such as heuristic evaluation introduced by [62], are easier to administer than 

others and less costly. The other side of the coin in the case of heuristic evaluation is 

represented by the limitations arising from applying a small set of principles, the 

heuristics, to a wide range of systems. This was pointed out by various researchers, who 
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addressed this problem by developing more specific guidelines for particular system 

classes. In any case, the two approaches are in fact complementary. 

Expert evaluation was performed in a first phase, with five usability experts, followed 

by a test with a group of fifteen users. It is worth underlining that a higher number of 

users would be desirable to increase the significance of evaluation results. However, the 

more specialised is the application to be evaluated, the more domain competencies are 

required by the users, the more difficult is to find a high number of them. As a matter of 

fact, it is important to be sure that possibly encountered problems are due to the 

application, and not to flaws in the user domain knowledge. A specific walkthrough was 

exploited [63]. Both experts and users have been asked to perform a list of tasks, before 

proceeding to fill the provided evaluation summary (an evaluation grid for the experts, a 

questionnaire for users, which are detailed in the following). Tasks performed by the 

users include: 

 

§ Load a new dataset within the visualization space. 

§ Select an anatomical object. 

§ Move an anatomical object on each of the three dimensions. 

§ Rotate an anatomical object along a freely specified pivot axis. 

§ Hide anatomical layers proceeding from the outside towards the inside. 

§ Show anatomical layers proceeding from the inside towards the outside. 

§ Change the transparency level of an anatomical layer. 

§ Show/Hide interface layout from the field of view. 

 

A suitable evaluation grid was prepared to obtain comparable outputs from different 

experts. The grid was organized in four sections: graphic presentation, architecture 

(structure and navigation), functionality (suitability and correctness of functions), and 

support to the user.  
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Table 3. Items for experts evaluation 

COMMUNICATION (GRAPHIC) 

1 - Quality of presentation: The software product offers a user interface appropriate for the 
tasks, with appropriate colors, icons and a suitable layout of graphical elements. The 

arrangement of the elements in the interface, in relation to their function, allows the user to 

understand on the fly, without explanation, the function of the elements. 

ARCHITECTURE (STRUCTURE AND NAVIGATION) 

2 - Quality of user dialogue:  does the software product present to the user a model of 

dialog which is easy to grasp by interacting with the application itself? 

3 - Simplicity of the structure of the tasks: the tasks or activities that the user must 

perform correspond to a sufficiently simple structure of interaction, in relation to the user’s 
need of processing information. 

4 - Support recognition rather than recall: looking at the interface the user can figure out 

what to do, how can do it and, after performing an action, what has happened and what were 

the results. 

5 - Feedback: the return information in response to the user action is timely and sufficient to 

make visible to the user the current state of the system, so as to avoid mistakes, 
misunderstandings and blocks during the  interaction. 

6 - Prevention and recovery from interaction errors: the interface guarantees the right 

level of flexibility to allow users to navigate freely without coming into blind alleys or in 

critical situations. 

7 - Consistency: the syntax (language, input fields, colors, etc. ..) and semantics (behavior 
associated with the objects) in the dialogue are uniform and consistent throughout the entire 

software product. 

FUNCTIONALITY (ADEQUACY AND ACCURACY OF FUNCTIONS) 

8 - Adherence to the user's language: the language used at the interface is simple and 
familiar to the user and reflects the concepts, terminology known to him, and the content of 

the tasks involved. 

EFFECTIVE SUPPORT PROVIDED TO THE USER 

9 - Efficiency and flexibility of use: there are levels of support, tools and strategies of 
interaction for several different types of users. 

10 - Support and manual: there are tools that can help assist the user in trouble. 

OTHER: Additional comments from the evaluator 
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Each section includes specific items to account for. The items are presented by 

individual positive statements so as to avoid misleading interpretations, by describing 

how the interface should be. In commenting the compliance of the interface with each 

item, the expert can list encountered problems, positive aspects and suggestions. A list 

is presented in Table 3.Notice the presence of the “OTHER” item, to allow the expert to 

include any unanticipated comment. 

In order to extract clear guidelines from merging the evaluation of the different 

experts, the evaluation results have been summarized and organized according to the 

Cognitive Dimensions (CD) framework [64][65]. Even if such framework is 

traditionally most exploited for visual languages, it could result extremely useful as high 

level ‘discussion tools’ (as defined by the author). As a matter of fact, CDs constitute a 

small and extremely clear set of terms providing a framework for a broad-brush 

assessment of almost any kind of cognitive artefact, even if it may not be trivial at first 

to see how to apply the framework to human-machine interactions, such as using a 

telephone or interacting with a video-surveillance application [66]. CD is adaptable to 

any stage of design, from the original idea to the finished artefact, and is also accessible 

to non-HCI experts. According to the guidelines in [67], from  the original dimensions, 

all cognitively relevant, have been considered those which resulted to be most related to 

the kind of tasks at hand. In the same way, the notions of notation, environment and 

media upon which the analysis is based, is adapted to the context of the tested 

application and of the expected patterns of interaction.  

The following ones were identified: a) the notation with the collection of virtual 

elements that can be manipulated, both pertaining to the interface and representing 

virtual objects related to the application at hand, b) the environment with the 

organization of virtual menus and gestures that can be assembled to shape interaction, 

i.e. to issue commands to the system to add, remove or change the visualization of 

virtual objects, and c) the medium with the overall virtual environment, as it is the place 

where the user can manipulate symbols. The following lines give a brief summary of 

some issues encountered in a first prototype according to such dimensions, and of 

possible solutions. 
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Abstraction: types and availability of abstraction mechanisms. The system does not 

allow the creation and management of abstractions in a straightforward way. As an 

example, in some contexts, it might be useful to create “scripts” of gestures based on 

user preferences and needs. However, this should require a kind of end-user 

programming, maybe to include the  timed automata, which is out of the scope of this 

work. 

Hidden dependencies: important links between entities are not visible. Some virtual 

commands trigger a sort of sub-menus. This is not evident in advance, and it is not 

always clear how to return to the upper-level item. As a solution, a special presentation 

of the virtual element might be considered. 

Premature commitment: constraints on the order of doing things. This problem is not 

present in this approach. Apart for virtual sub-menus items, there is no predefined order 

to explore the virtual environment. The user is free to model interaction paths at his/her 

preference, and this is very important in training settings, where meta-cognitive abilities 

can be so spurred. Obviously, the lack of constraints is referred to the interaction flow, 

and not to the logic which might apply in the application domain at hand. 

Viscosity: resistance to change. In this case the resistance is not implicit in the 

interaction, except when it is  required by the application domain. 

Visibility: ability to view components easily. This was not a problem for this framework. 

Whenever  a sequence of decisions has to be taken, the preceding ones are always 

available. The only exceptions are some nested elements, i.e. the levels of some 

commands in the virtual interface menu, and the action of recalling the virtual interface 

after hiding it, which was not sufficiently prompted. 

Closeness of mapping: closeness of representation to domain. Though simple to learn, 

the interaction style implies some familiarity with virtual settings. On the other hand, 

the gestures that were chosen to implement the interaction were considered quite natural 

and intuitive. 

Consistency: similar semantics are expressed in similar syntactic forms. No relevant 

problems were found in relation with such dimension. Only some difficulties were 

encountered with timed gestures, as in such case the time elapsed between successive 

basic gestures may influence the compound gesture interpretation. 
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Error-proneness: notation invites mistakes. The clear interaction model helps in 

avoiding errors during objects manipulation, and in any case all actions are easily 

reversible. 

Hard mental operations: high demand on cognitive resources. Interaction within the 

framework were  found easy to learn, except for an initial difficulty in precisely 

controlling the tracking devices. 

Role-expressiveness: the purpose of a component is readily inferred. There is a clear 

separation between the virtual interface and the virtual objects making up the explored 

content. Therefore, it was always clear in what context the user was operating. 

 

In any system evaluation procedure, user testing is of paramount relevance in 

confirming the validity and usefulness of the approach. To this aim, a user questionnaire 

was prepared to assess the perceived quality of the interaction after performing a 

number of tasks. The evaluation sessions involved  fifteen users, ten among them were 

trainees in image based diagnostic while five were expert radiologists. 

In the final questionnaire, the questions were presented using a five-point Likert scale, 

where respondents specify their level of agreement to a statement. In order to avoid any 

bias, some statements were in positive form and others in negative one. This was taken 

into account in the final assessment of results. Below is the list of the proposed 

statements. 

1. Available gestures are easy to perform  

2. Gestures are too many to remember them  

3. Browsing by gestures is not intuitive 

4. It is easy to select objects/place landmarks within the field of view  

5. It is easy to perform object translation in any direction  

6. It is easy to perform object rotation along any pivot axis 

7. The type and number of available functions to interact with objects is not sufficient 

8. Devices worn are comfortable during operations  

The answers to the questionnaire are summarized in the Table 4 below: 

The number of questions is low on purpose, since users are often negatively influenced 

by an excessive length of the list of questions (for tiredness, boredom, or loss of 
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concentration). As a matter of fact, even in the case of users questionnaire, a free 

comment field was included at the end to give the user the possibility to add comments 

and to underline issues, whre they wanted to provide a more detailed opinion. It is to 

say that, in general, processing free text comments is longer and harder, and that it is 

difficult to derive a quantitative evaluation. However, the limited number of users made 

this approach feasible in this case.  

Many interesting comments were given by the users using such free text section. 

Overall, the participants reported a good confidence feeling during interaction. In 

particular, some of them reported to have clearly experienced an operational advantage 

in performing the proposed tasks, with respect to their usual bidimensional reference 

working environment. All users underlined the appreciated advantage of exploring 3D 

model instead of looking at 2D printed images. Moreover, all the participants to the 

evaluation sessions have also been interviewed to better understand the motivations 

behind the answers provided.  

Overall the results show a general agreement about the  whole interface and the 

interaction paradigm experimented. With regard to question #1, while a total of 11 

testers out of 15 was able to perform the required gestures without relevant difficulties, 

4 out of 15 expressed some concerns about their capacity to repeat effectively the 

gestures over time. 

Table 4 Responses to users questionnaire 

Question 
I strongly 

agree 
I agree 

I do not 

know 
I disagree 

I strongly 

disagree 

1 3 8 0 4 0 

2 1 3 0 10 1 

3 0 1 2 9 3 

4 3 11 0 1 0 

5 4 9 1 1 0 

6 0 12 1 2 0 

7 0 0 5 8 2 

8 0 4 4 6 1 
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This kind of concern is somewhat reflected in the answers to question #2, where 3 

participants considered the number of gestures available too high to remember.  To this 

regard, the lack of familiarity with gesture based interface may be a possible 

explanation for these negative scores but, as none among the participants have ever used 

this kind of interfaces before, it is difficult to further elaborate on this result. Questions 

#4, #5 and #6 were aimed at assessing the operational effectiveness of the system. The 

answers are mostly positive with some limited difficulties experienced during object 

rotation along an arbitrary axis. Finally, it is interesting to note that answers to question 

#8 show a not adequate level of comfort experienced by some participants while 

wearing HMD and instrumented gloves. This problem is not new and, though modern 

helmets are much less bulky then their predecessors, they have to be still improved with 

regard to weight, resolution, contrast and particularly field of view to be accepted by a 

large audience. Nevertheless, the users were satisfied with the intuitiveness of the 

provided interaction (see question #3), and this was confirmed by the comments in the 

free text. This fact underlines that the provided natural kind of interaction with virtual 

artifacts is deemed as very satisfying, and this was the main goal. The approach is very 

promising, and it is likely that fast technological progress will soon allow to solve the 

emerged “ergonomic” problems.  
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3. Biometrics for Advanced Ambient Intelligence Environments 
 

Information and Communication Technologies are increasingly entering in all aspects 

of our life and in all sectors, opening a world of unprecedented scenarios where people 

interact with electronic devices embedded in environments that are sensitive and 

responsive to the presence of users. Indeed, since the first examples of “intelligent” 

buildings featuring computer aided security and fire safety systems, the request for more 

sophisticated services, provided according to each user’s specific needs has 

characterized the new tendencies within domotic research. The result of the evolution of 

the original concept of home automation is known as Ambient Intelligence [68], 

referring to an environment viewed as a “community” of smart objects powered by 

computational capability and high user-friendliness, capable of recognizing and 

responding to the presence of different individuals in a seamless, not-intrusive and often 

invisible way. As adaptivity here is the key for providing customized services, the role 

of person sensing and recognition become of fundamental importance.  

This scenario offers the opportunity to exploit the potential of face as a not intrusive 

biometric identifier to not just regulate access to the controlled environment but to adapt 

the provided services to the preferences of the recognized user. Biometric recognition 

[69] refers to the use of distinctive physiological (e.g., fingerprints, face, retina, iris) and 

behavioural (e.g., gait, signature) characteristics, called biometric identifiers, for 

automatically recognizing individuals. Because biometric identifiers cannot be easily 

misplaced, forged, or shared, they are considered more reliable for person recognition 

than traditional token or knowledge-based methods. Others typical objectives of 

biometric recognition are user convenience (e.g., service access without a Personal 

Identification Number), better security (e.g., difficult to forge access). All these reasons 

make biometrics very suited for Ambient Intelligence applications, and this is specially 

true for a biometric identifier such as face which is one of the most common methods of 

recognition that humans use in their visual interactions, and allows to recognize the user 

in a not intrusive way without any physical contact with the sensor.  

A generic biometric system could operate either in verification or identification 

modality, better known as one-to-one and one-to-many recognition [70]. In the 
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proposed Ambient Intelligence application the aim is to perform one-to-one recognition, 

as the goal is recognizing authorized users accessing the controlled environment or 

requesting a specific service.  

The following sections, present and describe in detail a face recognition technique 

based on 3D features to verify the identity of subjects accessing the controlled Ambient 

Intelligence Environment and to customize all the services accordingly. In other terms 

to add a social dimension to man-machine communication and thus may help to make 

such environments more attractive to the human user. The proposed approach relies on 

stereoscopic face acquisition and 3D mesh reconstruction to avoid highly expensive and 

not automated 3D scanning, typically not suited for real time applications. For each 

subject enrolled, a bidimensional feature descriptor is extracted from its 3D mesh and 

compared to the previously stored correspondent template. This descriptor is a normal 

map, namely a color image in which RGB components represent the normals to the face 

geometry. Specific masks, automatically generated for each authorized person, 

improves recognition robustness to a wide range of facial expression and to facial hair 

as well.  

 

 

3.1.  Main approaches to 3D face recognition 

As highlighted by various surveys  [71] [72], face recognition represents a research 

topic for whom “the variety and sophistication of algorithmic approaches explored is 

expanding”. Particularly for 3D face recognition, the main challenges result to be the 

improvement of recognition accuracy, a greater robustness to facial expressions and, 

more recently, the efficiency of algorithms. The various methods proposed so far can be 

categorised as holistic, if they perform face comparison at a global level; region-based, 

if they compare homologous regions between to faces; hybrid, if they exploits both the 

previous approaches and multimodal if they rely on both 2D and 3D features for the 

comparison, fusing togheter the results of both modalities of face matching. Many 

holistic methods are based on Principal Component Analysis (PCA) applied either to 

depth images [73] [74] or to both color and depth channels [75]. Other authors combine 

3D and 2D similarity scores obtained comparing 3D and 2D profiles [76], or extract a 
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feature vector combining Gabor filter responses in 2D and point signatures in 3D [77]. 

Canonical sufaces have been exploited to mitigate the effects of facial expressions on 

recognition accuracy [78, 79]. Morphable models, and elastic registration have also 

been used [80], though the computational cost involved is relevant. Among region-

based approaches,  Xu et al. [81] aim to divide face in sub-regions using nose as the 

anchor, PCA to reduce feature space dimensionality and minimum distance for 

matching. They also proposed a method to face partitioning based on the intersection 

between spheres of increasing radius and the face scans [82]. Another major research 

trend is based on Iterative Closest Point (ICP) algorithm, which has been exploited in 

many variations for 3D shape aligning, matching or both. The first example of this kind 

of approach to face recognition has been presented from Medioni and Waupotitsch [83], 

while other authors [84] proposed to apply ICP to a set of selected subregions instead 

[85, 86]. Iso-geodesic stripes and 3D Weighted Walkthroughs (3DWWs) have been 

proposed in [87] proving to be accurate in terms of recognition and robust to intra-class 

variations. The methods belonging to the hybryd and multimodal categories aim at 

improving the precision of recognition by combining well established techniques like 

PCA, LDA and ICP and/or operating at a 2D and 3D level, to overcome the limits of the 

individual approaches. The work by Mian et al. [88] represent a good example of this 

approach, producing the best score on the FRGC v2.0 contest.  

 

3.2. Technical issues in face recognition 

As already recalled before, the research on face recognition conducted in the last two 

decades as witnessed by the various editions of face recognition contests organized in 

the last decade (the FRVT- Face Recognition Vendor Test [89] and the FRGC - Face 

Recognition Grand Challenge [90], produced a great number of algorithms and 

methodologies [91] [92] [93] [94] [95] [96]. The first objective was mainly in raising 

the upper limit of recognition accuracy in controlled conditions (one of the explicit 

goals of FRGC) also because most of the first publicly available reference datasets for 

face recognition like the FERET [97] and the YaleB [98] were acquired in studio with 

controlled settings and cooperative subjects. 
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However, after the first wave of approaches resulted in higher and higher recognition 

precision, the efforts were focused on improving performances in the presence of Pose, 

Illumination and Expression (PIE) variations, three issues extremely common in real 

world applications which could degrade significantly the accuracy of the results. That 

said, face recognition poses even more compelling challenges [99] that can be resumed 

as: 

 

• Subject-sensor distance  

• Image quality 

• Unconstrained Pose/Expression/Illumination 

• Partial occlusions and facial hair/ware 

 

In face recognition applications, the average distance between the subject to be acquired 

and the sensing device is typically in the range of one meter or less. A common way to 

quantify the resolution of a face crop for recognition is to measure the distance between 

the pupils of the captured subject (for almost frontal shots). A distance of 20-30 pixels 

is generally considered a lower limit for reliable recognition, while 50+ pixels represent 

a more realistic measure. Let us consider the hardware related aspects of these 

requirements. By using a typical surveillance camera, capturing 640x480 pixels per 

frame and equipped with a “normal” lens providing a 45° FOV (Field Of View), there 

could be face crops with 55-60 pixels of intra-pupils spacing at about one meter of 

subject-camera distance, 27-30 pixels at 2 meters and only 10 pixels around 9 meters 

according to:   

 

(1) NIS=ResH/((2sin(FOVH/2)DC-S)/IS )  

 

where NIS is the inter-pupils spacing in pixels, ResH is the horizontal resolution of 

captured frame, FOVH is the horizontal field of view of the camera’s lens, DC-S is the 

camera-subject distance and IS is the average intra-pupils spacing (6,5-7,5 cm). The 

situation is even worse in case of wide-angle lenses (common in ceiling or elevated 

camera installations), as the resulting face crops would be much smaller and, probably, 
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difficult to use for recognition purposes. Obviously, it would be possible to get larger 

crops by increasing sensor resolution and/or decreasing the lens’ FOV (higher focal 

length). In the first case this comes at the price of a more expensive device and of a 

much greater overhead both in terms of processing power/computing time required to 

analyze the larger frame and of a much greater video throughput (a 1280x720 sensor 

produces almost fourfold the pixels per frame outputted by a standard 640x480 device, 

while a Full HD 1920x1080 sensor has almost seven times more pixels). In the second 

case, decreasing the FOV means to use a greater fraction of the captured image, but this 

implies that the probability a subject will stay framed is much smaller for a fixed 

camera. To this regard the use of software controlled Pan, Tilt and Zoom (PTZ) cameras 

(possibly capable to follow the subject while zooming in/out when required to get more 

detailed face crop) could be of interest, though it would increase the complexity and the 

overall cost of the system. 

With regard to the image processing approaches to cope with low resolution resulting 

from distant face capturing, most methods proposed so far exploits super-resolution 

techniques [100] [101] [102] which output recovered high resolution images from low 

resolution input samples, but often at the price of strong artifacts. Other methods 

exploits coupled metric learning [103], dictionaries [104] or multidimensional scaling 

[105], but all these techniques tend to degrade their performance in presence of PIE 

variations. 

Whatever its size, if the captured facial image results of low quality the chances of 

a reliable identification are reduced. Factors like image noise and blur, indeed, may 

degrade the discriminant information in acquired images, thus lowering considerably 

the recognition performance. This is particularly true for face captured at a distance. 

Image noise is partly related to the characteristics of the typically small sized 

CCD/CMOS sensing device (in general, the smaller the physical pixel dimension the 

stronger the noise produced due to mutual interference effects, particularly in low light) 

but it is also due to compression artifacts, common in case of video capturing.  

Blur (i.e. image defocusing) represents another cause of image degradation and loss of 

details. It results from incorrect focalization of the image on the focal/sensor plane (at a 

local and/or global level) due to optical defects or insufficient depth of field with 
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respect to the camera-subject distance. As depth of field decreases as focal length 

increases, it is easy to understand why using telephoto lens to zoom in subjects may 

result in more critical focusing and higher percentage of blurred frames. On the 

contrary, wide-angle lenses have very ample depth of field.  

Apart from optical issues, image may be affected by another kind of defocusing 

effect, known as “motion blur” and related to the dynamic aspects of frame capturing. 

Motion blur is due to the insufficient frame capturing rate in presence of rapid subject or 

camera movements and it results in image blurring along the motion direction. Of 

course, the higher the capturing rate, the smaller the motion blur effect.  

In outdoor scenarios, also weather conditions may involve additional factors eventually 

affecting image quality. Rain, fog, haze and snow may contribute in reducing image’s 

dynamic range while increasing noise. In a typical scenario all the aspects mentioned 

before are inter-dependent at some extents, indeed face recognition could be performed 

at a distance which is likely to require medium-to-long focal length camera optics with 

limited depth of field and prone to exhibit motion blur artifacts in case the subject 

moves rapidly across the FOV width.  

Furthermore, as larger imaging sensors require much costly and bulkier optics to 

achieve the same focal length and aperture, the sensor’s size would probably be small, 

therefore featuring a greater average level of noise and a narrower dynamic range. From 

all these considerations, a clear need emerges for objectively quantifying image quality 

in facial images taken at a distance through a specific metric to assess their usability for 

recognition. To this aim, in [106] a signal-to-noise ratio estimator is proposed by 

correlating signal-to-noise estimation and noise level to the statistics of image edge 

intensity. Experimental evidence proves that this estimator is directly correlated to the 

recognition accuracy of a face recognition system so that it represents a trustable 

measure of image quality useful to filter out unsuitable incoming images. 

Unconstrained Pose/ Illumination/Expression (PIE) variations represent one of the 

most active research topics for face recognition, as the combination of these factors 

often transforms a face’s appearance so as to result less similar to its neutral version 

than to other faces belonging to completely different individuals. Consequently, 

uncontrolled pose, expression and illumination may easily lead to both false positive 
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and false negative recognition. Therefore, face recognition literature is rich of proposals 

specifically targeted to cope with pose variations by means of a number of approaches 

such as morphable models [107], tied factor analysis [108], stereo matching [109], 

albedo estimation [110]. Robustness to illumination variations has been approached by 

exploiting spherical harmonics [111], quotient image [112], total variation models 

[113]; stereoscopic images [114]; albedo [115] and dictionaries [116], while canonical 

image [117] iso-geodesic stripes [118] represents a few among the many methods 

developed toward the goal of expression invariant face representation. Though many 

advances have been registered over the years with regard to these topics, most of the 

solutions proposed perform at their best only in controlled situation and/or at a close 

distance. This is partly due to the operational constraints (e.g. 3D methods need a 

sensing technology often limited to indoor/close-range usage) and partly to the specific 

challenges faced for outdoor recognition, where the subject’s freedom of movement and 

complexity of motion patterns is potentially much greater than in a typical indoor face 

verification scenario, the intensity and the effects of illumination can be extreme (direct 

sunlight, strong sharp shadows, environmental reflections, etc.) and facial expression 

may have an even stronger impact due to low resolution or long range issues in facial 

image quality.  

A further challenge for face recognition in general and for face re-identification in 

particular is represented by the partial lack of information eventually due to occluding 

objects. These may be clothing elements  (hats, scarves, sunglasses, etc.) worn by the 

subject to be identified, other persons or even architectural elements positioned between 

the subject-camera line-of-sight. In both cases the face descriptors resulting from 

capture may lack important features that possibly affect the reliability of recognition. 

Sparse representation [96] has proved to be suited to address this issue, while 

robustprincipal component analysis has also been exploited with interesting results 

[119]. Particular applicative scenarios might involve severe occlusion conditions, as the 

width of movements, the probability of a subject wearing sunglasses and the variety of 

objects and persons eventually hiding part of the captured face are much more relevant 

than in “conventional” face recognition.  Beard and facial hair in general are (along with 

facial expressions) among the “user-factors” which may affect face recognition 
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performance. These variations of facial appearance have also been addressed by a 

number of papers but their impact on remote outdoor face recognition is greater for 

uncontrolled situations because average image quality, and resolution are likely to be 

lower.  

 

3.3. Face signature by normal map 

The basic idea behind the system proposed is to represent user’s facial surface by a 

digital signature called normal map. A normal map is an RGB color image providing a 

2D representation of the 3D facial surface, in which each normal to each polygon of a 

given mesh is represented by a RGB color pixel. To this aim, the 3D geometry is 

projected onto 2D space through spherical mapping. The result is a bidimensional 

representation of original face geometry which retains spatial relationships between 

facial features. Color info coming from face texture are used to mask eventual beard 

covered regions according to their relevance, resulting in a 8 bit greyscale filter mask 

(Flesh Mask). Then, a variety of facial expressions are generated from the neutral pose 

through a rig-based animation technique, and corresponding normal maps are used to 

compute a further 8 bit greyscale mask (Expression Weighting Mask) aimed to cope 

with expression variations. At this time the two greyscale masks are multiplied and the 

resulting map is used to augment with extra 8 bit per pixel the normal map, resulting in 

a 32 bit RGBA bitmap (Augmented Normal Map). The whole process (see Fig. 25 ) is 

discussed in depth in the following section. As the proposed method works on 3D 

polygonal meshes it is necessary to acquire actual faces first and to represent them as 

polygonal surfaces.  

The Ambient Intelligence context, in which the face recognition algorithm has to 

operate, requires fast user enrollment to avoid annoying waiting time. Usually, most 3D 

face recognition methods work on a range image of the face, captured with laser or 

structured light scanner. This kind of devices offer high resolution in the captured data, 

but they are too slow for a real time face acquisition. Face unwanted motion during 

capturing could be another issue, while laser scanning could not be harmless to the eyes. 

For all this reasons a 3D mesh reconstruction from stereoscopic images based on [120] 

has been chosen since it requires a simple equipment more likely to be adopted in a real 



 78 

 

 

 
Figure 25. Facial and Facial Expression Recognition workflow. 

 

application: a couple of digital cameras shooting at high shutter speed from two slightly 

different angles with strobe lighting. Though the resulting face shape accuracy is 

inferior compared to real 3D scanning it proved to be sufficient for recognition yet 

much faster, with a total time required for mesh reconstruction of about 0.5 sec. on a 

I7/3.4 Ghz based PC, offering additional advantages, such as precise mesh alignment in 

3D space thanks to the warp based approach, facial texture generation from the two 

captured orthogonal views and its automatic mapping onto the reconstructed face 

geometry. 
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As the 3D polygonal mesh resulting from the reconstruction process is an 

approximation of the actual face shape, polygon normals describe local curvature of 

captured face which could be view as its signature. As shown in Fig. 26, these normals 

will be represented by a color image transferring face’s 3D features in a 2D space. To 

preserve the spatial relationships between facial features, vertices’ 3D coordinates are 

projected onto a 2D space using a spherical projection. It is now possible to store 

normals of mesh M in a bidimensional array N using mapping coordinates, by this way 

each pixel represents a normal as RGB values. The resulting array is referred as the 

Normal Map N of mesh M and this is the desired signature to be used for identity 

verification.  

 

 
Figure 26. (a) 3d mesh model, (b) wireframe model, (c) projection in 2D spatial coordinates, 

(d) normal map. 

 

To compare the normal map NA from input subject to another normal map NB 

previously stored in the reference database, has to be computed: 

 
( )

BABABA NNNNNN bbggrr ⋅+⋅+⋅= arccosθ  (2) 

 

the angle included between each pairs of normals represented by colors of pixels with 

corresponding mapping coordinates, and store it in a new Difference Map D with 

components r, g and b opportunely normalized from spatial domain to color domain, so 

1,,0 ≤≤
AAA NNN bgr  and 1,,0 ≤≤

BBB NNN bgr . The value θ, with 0 ≤ θ < π, is the angular 
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difference between the pixels with coordinates ),(
AA NN yx  in NA and ),(

BB NN yx  in NB 

and it is stored in D as a gray-scale color. 

At this point, the histogram H is analyzed to estimate the similarity score between NA 

and NB. The resulting angles between each pair of comparisons (sorted from 0° degree 

to 180° degree) is represented on the X axis, while the Y axis represents the total 

number of differences found. The curvature of H represents the angular distance 

distribution between mesh MA and MB, thus two similar faces featuring very high 

values on small angles, whereas two unlike faces have more distributed differences (see 

Fig. 27). The similarity score is defined through a weighted sum between H and a 

Gaussian function G, as in: 
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where with the variation of σ and k is possible to change recognition sensibility. To 

reduce the effects of residual face misalignment during acquisition and sampling 

phases, the angle θ is calculated using a k × k (usually 3 × 3 or 5 × 5) matrix of 

neighbour pixels.  

 

 
Figure 27. Example of histogram H to represent the angular distances. (a) shows a typical 

histogram between two similar Normal Maps, while (b) between two different Normal Maps. 
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The presence of beard with variable length covering a portion of the face surface in 

a subject previously enrolled  without it (or vice-versa), could lead to a measurable 

difference in the overall or local 3D shape of the face mesh (see Fig.28). In this case 

the recognition accuracy could be affected resulting, for instance, in a higher False 

Rejection Rate FRR. To the aim of improving the robustness to this kind of variable 

facial features, the method relies on color data from the captured face texture to 

mask the non-skin region, eventually disregarding them during the comparison. 

Flesh hue characterization in the HSB color space is exploited to discriminating 

between skin and beard/moustaches/eyebrows. Indeed, the hue component of each 

given texel is much less affected from lighting conditions during capturing then its 

corresponding RGB value. Nevertheless there could be a wide range of hue values 

within each skin region due to factors like facial morphology, skin conditions and 

pathologies, race, etc., so defining this range on a case by case basis is required to 

obtain a valid mask. To this aim a set of specific hue sampling spots located over the 

face texture at absolute coordinates is considered. These spots are selected to be 

representative of flesh’s full tonal range and possibly distant enough from eyes, lips 

and typical beard and hair covered regions.  
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Figure 28. Normal maps of the same subject enrolled in two different sessions with and 

without beard. 

 

 

 
Figure 29. Flesh Hue sampling points (a), Flesh Hue Range (b) non-skin regions in white 

(c). 
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This is possible because each face mesh and its texture are centered and normalized 

during the image based reconstruction process (i.e. the face’s median axis is always 

centered on the origin of 3D space with horizontal mapping coordinates equal to 

0.5), otherwise normal map comparison would not be possible.  A 2D or 3D 

technique could be used to locate main facial features (eye, nose and lips) and to 

position the sampling spots relative to this features, but even these approaches are 

not safe under all conditions. For each sampling spot not just that texel but a 5 x 5 

matrix of neighbour texels is sampled, averaging them to minimize the effect of 

local image noise. As any sampling spot could casually pick wrong values due to 

local skin color anomalies such as moles, scars or even for improper positioning, the 

median of all resulting hue values from all sampling spots is calculated, resulting in 

a main Flesh Hue Value FHV which is the center of the valid flesh hue range. All 

texels whose hue value is within the range: -t ≤ FHV ≤ t, (where t is a hue tolerance 

which experimentally found  that could be set below 10°) are considered belonging 

to skin region (see Fig. 29). After the skin region has been selected, it is filled with 

pure white while the remaining pixels are converted to a greyscale value depending 

on their distance from the selected flesh hue range (the more the distance the darker 

the value). To improve the facial recognition system and to address facial 

expressions an expression weighting mask (a subject specific pre-calculated mask 

aimed to assign different relevance to different face regions) is exploited. This 

mask, which shares the same size of normal map and difference map, contains for 

each pixel an 8 bit weight encoding the local rigidity of the face surface based on the 

analysis of a pre-built set of facial expressions of the same subject. 

 

 
Figure 30. An example of normal maps of the same subject featuring a neutral pose 

(leftmost face) and different facial expressions. 
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Indeed, for each subject enrolled, each of expression variations (see Fig. 30) is 

compared to the neutral face resulting in difference maps. The average of this set of 

difference maps specific to the same individual represent its expression weighting mask. 

More precisely, given a generic face with its normal map N0 (neutral face) and the set of 

normal maps N1, N2, …, Nn (the expression variations), the set of difference map D1, 

D2, …, Dn resulting from {`N0 - N1', `N0 - N2', …, `N0 – Nn'} is calculated first. The 

average of set {D1, D2, …, Dn} is the expression weighting mask which is multiplied by 

the difference map in each comparison between two faces. Expression variations are 

generated through a parametric rig based deformation system previously applied to a 

prototype face mesh, morphed to fit the reconstructed face mesh [120]. This fitting is 

achieved via a landmark-based volume morphing where the transformation and 

deformation of the prototype mesh is guided by the interpolation of a set of landmark 

points with a radial basis function. To improve the accuracy of this rough mesh fitting a 

surface optimization obtained minimizing a cost function based on the Euclidean 

distance between vertices is applied. So each 24 bit normal map can be augmented with 

the product of Flesh Mask and Expression Weighting Mask normalized to 8 bit (see Fig. 

31).  

 
Figure 31. Comparison of two Normal Maps using Flesh Mask and resulting Difference Map 

(c). 
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The resulting 32 bit per pixel RGBA bitmap can be conveniently managed via various 

image formats like the Portable Network Graphics format (PNG) which is typically 

used to store for each pixel 24 bit of colour and 8 bit of alpha channel (transparency). 

When comparing any two faces, the difference map is computed on the first 24 bit of 

color info (normals) and multiplied to the alpha channel (filtering mask). 

 

3.4.  A Biometrics-empowered Ambient Intelligence Environment 

Ambient Intelligence (AmI) worlds offer exciting potential for rich interactive 

experiences. The metaphor of AmI envisages the future as intelligent environments 

where humans are surrounded by smart devices that makes the ambient itself perceptive 

to humans’ needs or wishes. The Ambient Intelligence Environment can be defined as 

the set of actuators and sensors composing the system together with the domotic 

interconnection protocol. People interact with electronic devices embedded in 

environments that are sensitive and responsive to the presence of users. This objective is 

achievable if the environment is capable to learn, build and manipulate user profiles 

considering from a side the need to clearly identify the human attitude; in other terms, 

on the basis of physical and emotional user status captured from a set of biometric 

features. 

 
Figure 32. Ambient Intelligence Architecture. 
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To design Ambient Intelligent Environments, many methodologies and techniques have 

to be merged together originating many approaches reported in recent literature [121].In 

particular, a framework aimed to gather biometrical and environmental data, described 

in [122] is exploited to test the effectiveness of face recognition systems to aid security 

and to recognize the emotional user status. This AmI system’s architecture is organized 

in several sub-systems, as depicted in Fig. 32, and it is based on the following sensors 

and actuators: internal and external temperature sensors and internal temperature 

actuator, internal and external luminosity sensor and internal luminosity actuator, indoor 

presence sensor, a infrared camera to capture thermal images of user and a set of color 

cameras to capture information about gait and facial features. Firstly Biometric Sensors 

are used to gather user’s biometrics (temperature, gait, position, facial expression, etc.) 

and part of this information is handled by Morphological Recognition Subsystems 

(MRS) able to organize it semantically. The resulting description, together with the 

remaining biometrics previously captured, are organized in a hierarchical structure 

based on XML technology in order to create a new markup language, called H2ML 

(Human to Markup Language) representing user status at a given time. Considering a 

sequence of H2ML descriptions, the Behavioral Recognition Engine (BRE), tries to 

recognize a particular user behaviour for which the system is able to provide suitable 

services. The available services are regulated by means of the Service Regulation 

System (SRS), an array of fuzzy controllers exploited to achieve hardware transparency 

and to minimize the fuzzy inference time. This architecture is able to distribute 

personalized services on the basis of physical and emotional user status captured from a 

set of biometric features and modelled by means of a mark-up language, based on 

XML. This approach is particularly suited to exploit biometric technologies to capture 

user’s physical info gathered in a semantic representation describing a human in terms 

of morphological features. 

 

3.5.  Experimental Results 

As one of the aims in experiments was to test the performance of the proposed method 

in a realistic operative environment, a 3D face database was built from the face capture 
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station used in the domotic system described above. The capture station featured two 

digital cameras with external electronic strobes shooting simultaneously with a shutter 

speed of 1/250 sec. while the subject was looking at a blinking led to reduce posing 

issues. More precisely, every face model in the gallery has been created deforming a 

pre-aligned prototype polygonal face mesh to closely fit a set of facial features extracted 

from front and side images of each individual enrolled in the system.  

Indeed, for each enrolled subject a set of corresponding facial features extracted by a 

structured snake method from the two orthogonal views are correlated first and then 

used to guide the prototype mesh warping, performed through a Dirichlet Free Form 

Deformation. The two captured face images are aligned, combined and blended 

resulting in a color texture precisely fitting the reconstructed face mesh through the 

feature points previously extracted. The prototype face mesh used in the dataset has 

about 7K triangular facets, and even if it is possible to use mesh with higher level of 

detail this resolution resulted to be adequate for face recognition. This is mainly due to 

the optimized tessellation which privileges key area such as eyes, nose and lips whereas 

a typical mesh produced by 3D scanner features almost evenly spaced vertices. Another 

remarkable advantage involved in the warp based mesh generation is the ability to 

reproduce a broad range of face variations through a rig based deformation system. This 

technique is commonly used in computer graphics for facial animation [123] and is 

easily applied to the prototype mesh linking the rig system to specific subsets of vertices 

on the face surface. Any facial expression could be mimicked opportunely combining 

the effect of the rig controlling lips, mouth shape, eye closing or opening, nose tip or 

bridge, cheek shape, eyebrows shape, etc. The facial deformation model used is based 

on [124] and the resulting expressions are anatomically correct. 

The 3D dataset of each enrolled subject has been augmented through the synthesis 

of fiften additional expressions selected to represent typical face shape deformation due 

to facial expressive muscles, each one included in the weighting mask. The fifteen 

variations to the neutral face are grouped in three different classes: “good-mood”, 

“normal-mood” and “bad-mood” emotional status (see Fig. 33). For the first group of 

experiments, a database of 235 3D face models in neutral pose (represented by “normal-

mood” status) each one augmented with fifteen expressive variations was obtained. 
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Figure 33. Facial Expressions grouped in normal-mood (first row), good-mood (second row), 

bad-mood (third row). 

 

Experimental results are generally good in terms of accuracy, showing a 

Recognition Rate of 100% using the expression weighting mask and flesh mask, the 

Gaussian function with σ=4.5 and k=50 and normal map sized 128 × 128 pixels. These 

results are generally better than those obtained by many 2D algorithms but a more 

meaningful comparison would require a face dataset featuring both 2D and 3D data. To 

this aim a PCA-based 2D face recognition algorithm [125] [126] has been experimented 

on the same subjects. The PCA-based recognition system has been trained with frontal 

face images acquired during several enrolment sessions (from 11 to 13 images for each 

subject), while the probe set is obtained from the same frontal images used to generate 

the 3D face mesh for the proposed method. This experiment has shown that our method 

produce better results than a typical PCA-based recognition algorithm on the same 

subjects. More precisely, PCA-based method reached a recognition rate of 88.39% on 

gray-scaled images sized to 200 × 256 pixels, proving that face dataset was really 

challenging. Figure 10 shows the precision/recall improvement provided by the 

expression weighting mask and flesh mask. The results showed in Fig.34-a were 
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achieved comparing  in one-to-many modality a query set with one expressive 

variations to an answer set composed by one neutral face plus ten expression variations 

and one face with beard. In Fig. 34-b are shown the results of one-to-many comparison 

between subject with beard and an answer set composed of one neutral face and ten 

expressive variations. Finally for the test reported in Fig. 34-c the query was an 

expression variation or a face with beard, while the answer set could contain a neutral 

face plus ten associated expressive variations or a face with beard. The three charts 

clearly show the benefits involved with the use of both expressive and flesh mask, 

specially when combined together. 

The second group of experiments has been conducted on FRGC dataset rel. 

2/Experiment 3s (only shape considered) to test the method's performance with respect 

to Receiver Operating Characteristic (ROC) curve which plots the False Acceptance 

Rate (FAR) against Verification Rate (1 – False Rejection Rate or FRR) for various 

decision thresholds. The 4007 faces provided in the dataset have undergone a pre-

processing stage to allow our method to work effectively. 
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Figure 34. Precision/Recall Testing with and without Expression Weighting Mask and Flesh 

Mask to show efficacy respectively to (a) expression variations, (b) beard presence and (c) both. 
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The typical workflow included: mesh alignment using the embedded info provided by 

FRGC dataset such as outer eye corners, nose tip, chin prominence; mesh subsampling 

to one fourth or original resolution; mesh cropping to eliminate unwanted detail (hair, 

neck, ears, etc.); normal map filtering by a 5 × 5 median filter to reduce capture noise 

and artifacts. Fig. XX shows resulting ROC curves with typical ROC values at FAR = 

0.001. The Equal Error Rate (EER) measured on all two galleries reaches 5.45% on the 

our gallery and 6.55% on FRGC dataset. Finally, the method has been tested in order to 

evaluate statistically the behaviour of method to recognize the “emotional” status of the 

user.  To this aim, a one-to-one comparison of a probe set of 3D face models 

representing real subjective mood status captured by camera (three facial expressions 

per person) versus three gallery set of artificial mood status generated automatically by 

control rig based deformation system (fifteen facial expression per person grouped as 

shown in Fig. 35) has been performed.  

 
Figure 35. Comparison of ROC curves and Verification Rate at FAR=0.001. 
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As shown in Table 1, the results are very interesting, because the mean recognition rate 

on “good-mood” status gallery is 100% while on “normal-mood” and “bad-mood” 

status galleries is 98.3% and 97.8% respectively (probably, because of the propensity of 

the people to make similar facial expressions for “normal-mood” and “bad-mood” 

status). Ongoing research will implement a true multi-modal version of the basic 

algorithm with a second recognition engine dedicated to the color info (texture) which 

could further enhance the discriminating power. 

 

Recognition Rate 

“normal-mood” “good-mood” “bad-mood” 

98.3% 100% 97.8% 

 

Table 1. The behaviour of method to recognize the “emotional” status of the user. 
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