173 research outputs found

    Total irredundance in graphs

    Get PDF
    AbstractA set S of vertices in a graph G is called a total irredundant set if, for each vertex v in G,v or one of its neighbors has no neighbor in S−{v}. We investigate the minimum and maximum cardinalities of maximal total irredundant sets

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that u∈Xiu\in X_{i}, v∈Xjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k≥1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k≥2k\geq 2. First we prove that n(G)k≤γ×k,t(GI)≤n(G)(k+1)−1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of G−eG-e or vv-components of G−vG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    A Note on Isolate Domination

    Full text link
    A set SS of vertices of a graph GG such that ⟨S⟩\left\langle S\right\rangle has an isolated vertex is called an \emph{isolate set} of GG. The minimum and maximum cardinality of a maximal isolate set are called the \emph{isolate number} i0(G)i_0(G) and the \emph{upper isolate number} I0(G)I_0(G) respectively. An isolate set that is also a dominating set (an irredundant set) is an \emph{isolate dominating set} \ (\emph{an isolate irredundant set}). The \emph{isolate domination number} γ0(G)\gamma_0(G) and the \emph{upper isolate domination number} Γ0(G)\Gamma_0(G) are respectively the minimum and maximum cardinality of a minimal isolate dominating set while the \emph{isolate irredundance number} ir0(G)ir_0(G) and the \emph{upper isolate irredundance number} IR0(G)IR_0(G) are the minimum and maximum cardinality of a maximal isolate irredundant set of GG. The notion of isolate domination was introduced in \cite{sb} and the remaining were introduced in \cite{isrn}. This paper further extends a study of these parameters

    FROM IRREDUNDANCE TO ANNIHILATION: A BRIEF OVERVIEW OF SOME DOMINATION PARAMETERS OF GRAPHS

    Get PDF
    Durante los últimos treinta años, el concepto de dominación en grafos ha levantado un interés impresionante. Una bibliografía reciente sobre el tópico contiene más de 1200 referencias y el número de definiciones nuevas está creciendo continuamente. En vez de intentar dar un catálogo de todas ellas, examinamos las nociones más clásicas e importantes (tales como dominación independiente, dominación irredundante, k-cubrimientos, conjuntos k-dominantes, conjuntos Vecindad Perfecta, ...) y algunos de los resultados más significativos.   PALABRAS CLAVES: Teoría de grafos, Dominación.   ABSTRACT During the last thirty years, the concept of domination in graphs has generated an impressive interest. A recent bibliography on the subject contains more than 1200 references and the number of new definitions is continually increasing. Rather than trying to give a catalogue of all of them, we survey the most classical and important notions (as independent domination, irredundant domination, k-coverings, k-dominating sets, Perfect Neighborhood sets, ...) and some of the most significant results.   KEY WORDS: Graph theory, Domination
    • …
    corecore